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The one-dimensional matrix Schiinger equation is considered when the matrix
potential is self-adjoint with entries that are integrable and have finite first mo-
ments. The small-energy asymptotics of the scattering coefficients are derived, and
the continuity of the scattering coefficients at zero energy is established. When the
entries of the potential have also finite second moments, some more detailed
asymptotic expansions are presented. 2@01 American Institute of Physics.
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I. INTRODUCTION
Consider the matrix Schdinger equation

' (KX)+ K2k, x)=Q(X)(k,x), xeR, (1.2

wherex e R is the spatial coordinate, the prime denotes the derivative with respgcktds the
energy,Q(x) is annx n self-adjoint matrix potential, i.eQ(x) "= Q(x) with the dagger standing
for the matrix conjugate transpose, a#itk,x) is either amnxX 1 or annXxn matrix function. We
use|-| to denote the(Euclidean norm of a vector or the operator norm of a matrix. Let
L (R;C™"M) with m=0 denote the Banach space of all measurabten matrix functionsf for
which (1+|x|)™|f(x)| is integrable orR. If n=1, we denote this space ly,(R). In this paper
we always assume th&@ is self-adjoint and belongs tb}(R;C“X”). Certain results will be
obtained under the assumption thaie L3(R;C"™"), but we will clearly indicate when this
stronger assumption is needed. We GSeto denote the upper-half complex plane and wate
for C"UR.

Among thenx n solutions of(1.1) are the so-called Jost solution from the léff(k,x), and
the Jost solution from the right,(k,x), satisfying the asymptotic boundary conditions

e ®f (k,x)=1,+0(1) and e "/ (k,x)=ikl,+0(1), X—+=, (1.2
e f(k,x)=I,+0(1) and **f/(k,x)=—ikl,+0(1), x——, 1.3

where |,, denotes the identity matrix of order. The existence of the Jost solutions can be
established as in the scalar<1) casé? by using the appropriate integral equatidhgcf. (2.2),
(2.3, and Theorem 2.1 in our pagder

For eachk e R\{0} we have

fi(k,x)=a,(k)e™+b(k)je ™+0o(1), x——, (1.9
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f(k,x)=a/k)e *+by(k)e*+0(1), x—+, (1.9

whereg,(k), bi(k), a,(k), andb,(k) are somen X n matrix functions ofk. These matrix functions
enter the scattering matri$(k) defined in(2.22, and our primary aim is the analysis of the
smallk behavior ofS(k).

The motivation for this paper comes from our interest in the inverse scattering problem for
(1.2), namely the recovery d from an appropriate set of data involving the scattering matrix. As
is known from the scalar case, it is important to have detailed information about the behavior of
S(k) for smallk. For examplé;? this information is used to characterize the scattering data, so as
to ensure that the potenti& constructed from the data at hand belongs to a certain class of
functions such at}(R) or L%(R). The inverse scattering problem f@r.1) whenn>1 has been
considered by several authdrs but we are not aware of any in-depth study of the srkall-
behavior ofS(k). Not even the continuity of the scattering matrixkat 0 seems to have been
established whe® e L1(R;C""); for example, in Ref. p. 294, the continuity ak=0 of the
transmission coefficients mssumedin the scalar case it is well knowA?that the continuity
of S(k) atk=0 is easy to establish i € L3(R), but not if onlyQ e L}(R). In the matrix case,
the situation is somewhat different. The decayQffx) asx— < plays an important role, but
there are further complications due to the particular structure of the solution sp&te)cdt k
=0. From the scalar case it is knoWitthat the behavior of the solutions ¢f.1) atk=0 makes
it necessary to distinguish between two casesgteeric caseand theexceptional caseand that
the smallk behavior ofS(k) is different in each case. H>1, the situation is more complicated
because the exceptional case gives rise to a variety of possibilities depending on the Jordan
structure of a certain matrix associated with the solution spacg.df at k=0. In this paper we
clarify the connection between the solutions(&fl) at k=0 and the behavior 08(k) neark
=0. As a result, we are able to prove the continuity of the scattering matio=& whenQ
e LI(R;C™") and to obtain more detailed asymptotic expansions wQerL 3(R;C"*"). The
inverse problem is not considered here; we may report on it elsewhere.

This paper is organized as follows. In Sec. Il we establish our notations and review some basic
known results on the solutions ¢f.1). Since this material is standard, we refer the reader to the
literature for proofs and more details. In Sec. Il we also give various characterizations of the
generic and exceptional cases. In Sec. Ill we prove the continuity of the scattering makrix at
=0 in the generic case, and we obtain some more detailed asymptotic results Qvhen
eL%(R;C”X“). The exceptional case is treated in Sec. IV, the main results are contained in
Theorem 4.6 whe® e L1(R;C"™") and in Theorem 4.7 whe@ e L3(R;C"*"), where we prove
the continuity and differentiability o8(k) atk=0, respectively. In Sec. V we discuss some special
cases that illustrate the results of Sec. IV. Finally, the Appendix contains the proof of Proposition
4.2, which is a key result needed to establish Theorems 4.6 and 4.7.

II. SCATTERING COEFFICIENTS AND A CASE DISTINCTION

In this section we review some basic results about those solutiofisIpfthat are relevant to
scattering theory, and we define the scattering coefficients and some related quantities. We also
elaborate on the distinction between the generic case and the exceptional case which will play an
important role in the subsequent sections.

We define the Faddeev functiong(k,x) andm,(k,x) by

mi(k,x)=e " (k,x), m,(k,x)=e"*f (k,x). (2.2

From (1.2), (1.3), and(2.1) it follows that

1 (= .
Mk =1t o | ay[e 0 - 21Qmky), (2.2
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1 (x .
mr(k,X)=In+ﬂf_mdy[ez'k“‘y)—1]Q(y)mr(k.y)- (2.3

Some properties of the matrix functioms;(k,x) and m,(k,x) are summarized in the next
theorem and its corollary. The proofs of these results can be obtained as in the scalar case and we
refer the reader to the literatufe®!in particular, see Theorem 1.4.1 in Ref. 3 and Theorem 1 in
Ref. 4. We denote differentiation with respectktbdy an overdot and us€ for suitable constants
that do not depend ox or k.

Theorem 2.1: If Q e L}(R;C"™"), then, for each xR, the functions ngk,x), m(k,x),

m/ (k,x), and nj(k,x) are analytic in ke C* andcontinuous in ke C*; moreover
my(k,x)=1,+0(1), mi(k,x)=0(1k), X—+oo, (2.9
m(k,x)=1,+0(1), m/(k,x)=0(1/x), X— —oo,

[m(k,x)|<C[1+maxX0,—x}], |Im(k,x)|<C[1+maxX0x}], ke [ (2.5

In addition, if Qe L%(R;C“X”), then m(k,x) and im(k,x) exist, are analytic irC*, continuous in
C™, and satisfy the estimates

Ik, x)|<C(1+x2), [m(k,x)|<C(1+x?), keC".

In the following an asterisk will be used to denote complex conjugation. Hi@fd) and
Theorem 2.1 we get the following.

Corollary 2.2: Assume @ L}(R;C”X”). Then, for each fixed & R, the four matrix functions
fi(—=k*x)T, f(=k* )T, f1(—k*,x)", and f/ (—k* ,x)" are analytic in ke C* and continuous in
C+._Moreover, if Qe L%(R;C”X”), then these functions are differentiable with respect to k
eCt.

The scattering coefficients will be defined in terms of certain Wronskians involving the Jost
solutions. We first state a standard result about such Wronskians, which is a consequence of the
selfadjointness 0Q. Let[F;G]=FG’'—F'G denote the Wronskian of two square matrix func-
tions F(x) andG(x).

Proposition 2.3: For ke C, let ¢(k,x) be any nx p solution and/(k,x) any nx q solution of
(1.1). Then the p<q Wronskian matrif ¢(=k*,x)T: ¢(k,x)] is independent of .x

As a result of Proposition 2.3 the matricegk), b,(k), a,(k), andb,(k) appearing in(1.4)
and(1.5) can be expressed in terms of certain Wronskians of the Jost solutions as follows:

al(k)=%[f,(—k*,xﬂ;f.(k,x)], ke C™\{0}, (2.6)
ar(k)z—%[fl(—k*,x)*;f,(k,x)], ke C*\{0}, (2.7)
b,(k)z—%[fr(k,x)ﬂﬁ(k,x)], ke R\{0}, (2.9
br(k)z%[fl(k,x)ﬁfr(k,x)], ke R\{0}. (2.9

Alternatively, it is sometimes convenient to use the integral representations

1 o0
al(k)zln_ﬂf_mdx QMx)my(k,x), (2.10
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1 ©
ar(k)=ln—ﬂf_mdx Q(x)m,(k,x), (2.11
1 (= .
by(k) = 5 f_ocdx X Q(x)m;y(k,x), (2.12
b,(k)=%fldx e 2 Q(x)m(k,x), (2.13

which follow from (1.4), (1.5), and(2.1)—(2.5). Also, with the help 0f1.2)—(1.5) and(2.6)—(2.9),
we obtain

a(—k*)T=a(k), keCh\{0}, (2.14
b(k)=—bi(k)T, keR\0}, (2.15
a(k)Ta(k)=b,(k)Tb,(k)+1,, keR\{0}, (2.1
a,(k)Ta(k)=b,(k)'b(k)+1,, keR\{0}, (2.17)
a(—k)Tbi(k)=b,(—k)Ta(k), keR\{0}, (2.18
a,(—k)"b(k)=b,(—k)'a(k), keR\{0}. (2.19

We define the transmission coefficient from the I&fi(k), and the transmission coefficient
from the right,T,(k), by

Tk =a(k) ™t Tk =a(k) (2.20

provided the inverses on the right-hand sides exist, and we define the reflection coefficient from
the left,L(k), and the reflection coefficient from the rigiR(k), by

L(k)=bi(k)a(k)~*, R(k)=b(k)a, (k). (2.21)

From (2.16) and (2.17 we see thag(k) anda,(k) are nonsingular fok e R\{0}. In C*, a,(k)
anda,(k) are nonsingular except possibly at a finite number of points on the positive imaginary
axis wheré both deig(k)=0 and deg,(k)=0; at these pointsT (k) and T,(k) have simple

pole€ corresponding to the bound states (df1). For QeL%(R;C”X”) the finiteness of the
number of bound states has already been established in Refs. 4 and 13. We note that even if
Qe L3(R;C™M but QeL}(R;C™"), the finiteness follows from th&operatoy inequality
Q(x)=—|Q(x)|I, and the fact that in one dimension a scalar potentidl}ifR) can support at

most a finite number of bound states. Alternatively, the finiteness of the number of bound states
will follow from the results of this papeicf. Theorems 3.1 and 4).,6which show thak=0 cannot

be an accumulation point for poles of eithig(k) or T,(k). Because of this latter property we will
study the asymptotic behavior of the transmission coefficienks-a8 through values i€ ". The
reflection coefficients, on the other hand, in general do not have analytic extensions off the real
axis, so their asymptotics will be studied for réednly. Then X n matrix functionsT,(k), T,(k),

R(k), andL(k) are referred to as scattering coefficients, and th& 2n matrix

[Tk Rk
Lk Tk

(2.22

is called the scattering matrix.
From (2.15—-(2.17), we get
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Ti(k)"R(k)+L(k)"T(k)=0, keR\{0},
Tik) (k) +L(k)'L(k)=1,, keR\O0}, (2.23
T(k) Tk +R(K)R(K)=1,, keR\{0}, (2.24
and hence, fok e R\{0}, S(k) is unitary. Using(2.14) we obtain
T(k=T,(—k*)T, keC"\{0}, (2.25
whenevera,(k) is nonsingular, and fron2.18 and(2.19 we get
L(—k)"=L(k), R(—k)'=R(k), keR\{0}.

In order to studyS(k) in the small-energy limit, we need to make an important case distinc-
tion which involves the solutions t@.1) with k=0, i.e., the solutions to

d"(x)=Q(X)p(x), xeR. (2.26)

We already know from(2.1) and Theorem 2.1 thaf(0x) is a solution of(2.26 satisfying
fi(0x)=1,+0(1) andf/(0x)=0(1/x) asx— +o. According to basic asymptotic results for
systems of linear differential equatiofiBheorem 1.5.1 of Ref.)3(2.26) also has amx n matrix
solution, ¢,(x), satisfying

d(X)=xlp+0(x), ¢/ (X)=1,+0(1), XxX— +oo.

Thus the columns of|(0x) together with the columns ap,(x) form a fundamental set ofr2
vector solutions foK2.26). Any vector solutiong(x) of (2.26) can be written as

d(x)=T11(0.x) 91+ & (X) 72, (2.27

where»,, 7, C" are uniquely determined by(x). It follows from (2.27) that a vector solution
of (2.26 is bounded ag— +« if and only if 7,=0, i.e., if and only if¢(x) = f,(0,x) , for some
7, C". Moreover, in this case lip, .. ¢(X)=n, exists. This means that if a solution is
bounded at+, then it also has a limit as— + . Also, (2.27) implies that any solution of2.26)
that iso(x) asx— +o is necessarily bounded &t + and any solution that is(1) asx—
+ o must be the zero solution. Similar results holckat—o0; in particular, any solution of2.26)
that iso(x) asx— —< is necessarily bounded &t —o and has a limit ax— —o0, and any
solution that iso(1) asx— —c must be the zero solution.

From (2.1)—(2.3) we see thaf(0,x) andf,(0x) obey the integral equations

fi(0X)=1In+ fde(y—X)Q(y)fl(O,Y), (2.28

f(0X)=1n— ffwdy(y—X)Q(y)fr(O,y). (2.29

In the subsequent analysis the two Wronskian matrices
AI:[fr(OaX)vaI(OaX)]a Ar: _[f|(01X)var(01X)]v (23@

will play a key role. By Proposition 2.3, andA, are independent of, and from(2.30) it follows
that

A=A (2.30
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The importance of these Wronskians lies in the fact that they are related to the transmission
coefficients via(2.20 and

A= lim 2ika(k), A,=lim 2ika,(k), (2.32
k—0 k—0

where the limits are taken from withi@*; (2.32 follows from (2.6), (2.7), and Corollary 2.2.
Evaluating the first Wronskian if2.30 asx— —o0 and using(2.28 we obtain

A= tim 1/0x=- | ayQw)tioy). 233

X— — 0

Similarly, from (2.29 and (2.30), letting x— +©, we get

A= im 10x=- | dyQwtioy). (2.3

X— + o0

From (2.28 and(2.29 we also infer that
fi(0X)=xA+0(X), X——o0,
f(OXx)=—xA,+0(x), X—+oo. (2.35

Now we are ready to introduce the distinction between the exceptional case and the generic
case. Let

N={£eC": f(0x)¢ is bounded onR}. (2.3

Then we say that the generic case occuy§#{0} and we say that the exceptional case occurs if
N#{0}. These two cases can be characterized in other ways. We choose the above definition as
our starting point and will arrive at some other characterizations as we go along.

We observe that the generic case occurs if and onl§2i26 has no bounded nontrivial
solution. The exceptional case occurs if and only if there exists at least one nontrivial bounded
solution. As the next theorem shows, we can alternatively characterize the two cases by means of
the subspace

M={xeC": f(0x)x is bounded onR}. (2.37

Then the generi¢exceptional case occurs if and only iM={0} (M#{0}).

We mention that when=1 the exceptional case occurs if and only,{f0x) andf,(0x) are
linearly dependent, i.e., the Wronskigf(0x);f,(0X)] is zero. In our paper we generalize this
characterization to the matrix case. In the scalar case it is also known that the dexezjational
case occurs if|(0)=0 (T,(0)#0). This will also turn out be true in the matrix case, but we do
not use this property as our primary characterization because it is implicitly based on the assump-
tion thatT,(k) is continuous ak=0, something we first need to prove.

The next theorem further clarifies the relations among the two cases, the Wronskiargi)in
and the subspace¥ and M.

Theorem 2.4:Assume @ L}(R;C"™"). Then we have
(i) The generic case occurs if and onlyAf, or equivalentlyA,, is nonsingular
(i) N=Ker A, and M=Ker A,.

(i) dim N=dim M.

Proof: If A, is nonsingular, ther{2.35 implies that every solution 0f2.26 of the form
f,(0x) 5, with some nonzero vectone C", becomes unbounded as—»—c. Hence, ifA, is
nonsingular, then2.26 has no bounded nontrivial solutions; so the generic case occurs. Con-
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versely, suppose the generic céise., N={0}) occurs and\, is singular. Then, by2.35), for any
nonzeroé e Ker A;, we havef|(0,x) é=0(x) asx— —x. Hence, by the remarks followin@.26
and(2.27), f,(0x) & is bounded, i.e.£ e A and thusN#{0}. This is a contradiction. Therefore, in
the generic case), cannot be singular. This provés for A,. In view of (2.31), the assertion also
holds if A, is replaced byA,. To prove(ii), suppose that e Ker A,. Then, by(2.35, f,(0x)¢
=0(x) asx— —. Hencef(0x)¢ is bounded and sée N. Conversely, ifé e NV, thenf,(0x) ¢
is bounded and, therefore, again .35, A£=0. This proves the first equality ifii). The
second equality is proved similarly. Finall§ii) follows immediately from(2.31). |

Ill. SMALL- k BEHAVIOR IN THE GENERIC CASE

In this section we analyze the behavior of the scattering coefficientskre@rin the generic
case. In order to state the next theorem, which is the main result of this section, we introduce the
matrices

E|=fldx XQX)m(0x), E,= J':dx XQ(x)m,(0x), (3.2

G = J:dx QX)m(0x), G= J:dx QEOM(0X).

The quantities, andE, will also play a role in Sec. IV.
Theorem 3.1: Assume Q is a generic potential irf,(R;C"*") for m=1 or 2. Then the
scattering coefficients satisfy the following:

(i) If m=1, then
Ti(k)=2ikA; *+o(k), Ty(k)=2ikA, *+o(k), k—0 in C",

R(k)=—1,+0(1), L(k)=-1,+0(1), k—0 in R.
(i)  1f m=2,then

Ti(k)=2ikA; *+k?A; [41,+2iG|]A; *+0(k?), k—O in C¥,
T(k)=2ikA,; *+k?A; [41,+2iG,]A, *+0(k?), k—O0 in CT,
L(k)=—1,+2ik[1,+E]A; *+0(k), k—0 in R,
R(k)=—1,+2ik[1,—E]A, *+0(k), k—O0 in R.

Proof: Using the fact that in the generic cadeandA, are invertible i) is a consequence of

(2.6—(2.9), (2.20, (2.21), (2.32, and Corollary 2.2. WheR e L%(R;C”X“), expanding the inte-
grals in(2.10—(2.13 as

1 —
a,(K)= 5 A+ +ZG +0(1), k—0 in C¥, (3.2
1 i ,
b|(k)——ﬂA|+E|—§G|+O(1), k—0 in R, (3.3
1 o
a,(k)= 5 At I+ 2G +0o(1), k—0 in C¥, (3.4)
k)= | k [

and using(2.20 and(2.21) we obtain(ii). [ |
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For later use we remark that whéhe L%(R;C”X”), E, andE, can be expressed in terms of
certain Wronskians, namely

ln+E=i[f(0x)%f(0%)],  1,—E=—i[f(0x)";f,(0x)]. (3.6)

Note that the Wronskians i3.6) are independent o becausef,(0x) and f(0x) are also
solutions 0f(2.26). The expressions i(8.6) follow easily from(2.28), (2.29, and the correspond-
ing integral equations fof,(0x) andf(0x) [cf. (A.20)]. Moreover, we hav&,= — G/ andE,
=E/+iG/[, as can be seen by usilig.14, (2.15, and(3.2—(3.5).

Theorem 3.1 shows that if the generic case occurs, Thg) =0. In the next section we will
see that the converse is also true.

IV. SMALL- k BEHAVIOR IN THE EXCEPTIONAL CASE

Recall that in the exceptional caé&26 has at least one bounded nontrivial solution. In this
section we analyze how this affects the snkgtiFoperties ofS(k), and we prove in the exceptional
case the continuity ofS(k) at k=0 when Qe L}(R;C™") and its differentiability whenQ
€ L%(R;C“X“). It turns out that wheQ e L}(R;C”X“) the exceptional case gives rise to certain
technical complications that necessitate a careful study of certain asymptotic expansions. Since the
proof of one result, namely Proposition 4.2, is especially long, that proof is given in the Appendix.
Recall the definitions of the subspac&Sand M given in (2.36 and (2.37), respectively.
There is a natural mapping fro to M, which we denote by, defined as follows. For every
Ee N, let

X~ lim f|(O,X)§, (41)

X— — o
and put
x=r¢. 4.2

Note that, by(2.36), f;(0x)¢ is bounded and hence, by the discussion bgl@&7), the limit in
(4.1) exists. To see thdf mapsA into M, we note tha(4.1) implies

lim [f,(0x)é—f,(0x)x]=0.

X— =

Hencef,(0x)&é—f,(0X) x is a solution of(2.26) which approaches zero as» —o; therefore, it
must be identically zero and we have

f(0x)é=f(0X)x, xeR. 4.3

Hencef,(0x)x is bounded, which implieg e M.

Proposition 4.1: Assume ©L1(R;C™™). ThenT is a bijection betweer\and M.

Proof: We have already seen thBtmaps\ into M. The mapl is injective, for if 'é=0,
then, by(4.2) and(4.3), f;(0x)£=0 for all xe R and henc&=0. It is also onto, because for every
xeM, lim f(0x)y=¢ exists, and henc&.3) holds; thusy=T"¢. |

X— + o0
The mappind” will make its appearance as a restriction\faf certain linear transformations
defined on all ofC". One such representation immediately follows fre@h8). We can pick anig
for which f,(0x) is invertible and write

T'=[f(0x0) " *i(0Xo) ]| s (4.9

where the symbd|,- denotes the restriction to the subspaceRecall that whem=1, " becomes
a constant, so thd#.4) expresses the fact that, in the exceptional case, the two Jost solutions at
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kk=0 are linearly dependent. Clearkg.4) is valid wheneveiQ e Li(R;C”X”). Another repre-
sentation ofl” that will play a role in this section is only valid wheDe L%(R;C”X”). It follows
from (2.28 which, for anyée N, implies

x= lim f,(0x)¢é=¢+ JZdVYQ(Y)[ﬁ(O,Y)f], (4.9

X— — -

where we have also usé@.33 and the fact thaf\;£=0. Note that the integral on the right-hand
side of (4.5 exists whenQ e L1(R;C"™") becausef (0,y)¢ is bounded. However, without the
vector¢ in the integrand, the integral in general does not exist as a matrix-valued integral, because
some column vectors of the matrfy(0,y) may grow linearly ag/— —<. In fact, according to
(2.39, this is always the case unleas=0. On the other hand, iQeL%(R;C”X”), then the
integral in(4.5) without the vectok in it exists as a matrix-valued integral and, in view(8f1),

we can writey=(l,+E)&. In other words, we have

I'=(l,+E)|y provided Qe Li(R;C™M). (4.6)
We will also need representations 6r . To this end we assume, without loss of generality,

that f;(0,0) is invertible. If not, we can perform a shift of the origin and use the factfifi@ix)

is invertible forx sufficiently large. We define
R: f|(010)7lfr(010)1 (47)

and note that, by4.3),

Rly=T"1 (4.9
Another representation far ~! is obtained by using the integral relation fé0x) given in

(2.29. If Qe L3(R;C"™*M), then, for anyy e M, by using(2.29, (2.34), and the fact that\ y
=0, we obtain

£= lim fr(O,X)X=X—[ |” ayvayroy v

X— +®
and thus, by3.1), £&=(1,—E,) x. Therefore,
I 1=(1,—E)|\ provided QeL3(R;C"™").

After these preparations we are ready to begin the analysis of the lsamlinptotics ofS(k)
in the exceptional case. We first consider the Wronskian

W(k):[fr(_k*,X)T;f|(k,X)], keF,
which appears i2.6) and, as seen frort2.20), is related to the transmission coefficidntk) by
Ti(k)=2ikW(k) L. (4.9

The method employed here to studi(k) is patterned after that used in Ref. 12 in the scalar case.
Unless otherwise stated, we will assume tkas real. This suffices for all the auxiliary results
leading up to our main result given in Theorem 4.6. There we will extend the asymptotics from the
real axis toC* with the help of a Phragnme-Lindeld theorem.

Using[f;(0x)":f,(0x)]=0 we first writeW(k) in the form

W(K)=f(—k,0)f(0,07]7 0+ Q,f,(0,07,(k,0),
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where we have defined
Q,=1,(0,0'f/(k,00—f/ (0,0 f,(k,0),
Q,=f(—k,07f/(0,00—f/(—k,0,(0,0).

The quantitied); and{(), can be written as Wronskians by means of a new solutidk,x), of
(1.2), which is defined by the initial conditions

¢(k,0)=11(0,0, ¢'(k,0=f{(0,0), (4.10
so that
o(0x)="11(0X%). (4.10
Then we have

W(k)=f(=k,0) (0,01 Lok, ) T fi(k, )T+ [f(—kX) T 0(k,x)1F1(0,0 7 (k,0).
(4.12

We mention that the particular choice of the solutipfk,x) is motivated by the fact that there is
a crucial estimate, namelfA8) of the Appendix, for the differencpp(k,x) — ¢(0Xx)]¢& with ¢
e N, which plays a key role in the proof of the next proposition. Since the proof of this propo-
sition is lengthy, it is given in the Appendix.
Proposition 4.2: Assume ©L}(R;C"™") for m=1 or 2. Then, as k-0 in R we have

m

[cp(k,x)T;f|(k,x)]=21 K'Y;+o(k™), (4.13
=
where
Y. =il,, Y2=fwdz[fl(o,z)Tfl(o,z)—|n],
0
and
m—1
[f(—k,x)e(kx)]= _20 KIX;+o(k™ 1), (4.14
=
with

X0:A|, X|:i[|n+E|].

For £ N we have

m

[fr(—k,xﬂxp(k,x)]s:j; KIX;&+0(k™), (4.19

o . 0
X,=il, x2=f dz[f(02)Tf(02)—1,]T.

The notational differences betweéh14) and(4.15 are justified by the fact that i.15 the
coefﬁcient)v(1 is used wherm=1, while in (4.14) the corresponding coefficieid; is used only
whenm=2. Of course, ifm=2, thenX;=X4|;, by (4.6).

Our first goal is to find the leading terms in the asymptoticd\gk) * ask—0. For this
purpose it is convenient to temporarily replace the factors multiplying the Wronskigaslizy by
their limits ask— 0. That is, we consider the simpler expression
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Z(k) =R (k) itk )1+ [F(—kx) T 0(k,x)], (4.16

where we have used.?) via its adjoint. In order to further motivate the usezgk), we note that
on account of4.12 and(4.16 we can write

W(k) “1=1,(k,0)"1,(0,0[ Z(k)+ O (k) + O,(k)] ", (4.17

where
0,1(k) =R e(kx)";fi(k,x)][f(k,07H,(0,0—1,], (4.18
0,(k)={f(—k0)f(0,0"T =R} (k)" f(k,x)]f|(k,0 (0,0, (4.19

provided the second inverse on the right-hand sidetdf7) exists. The existence of this inverse
will be established below, where we show tZ4k) ! exists for sufficiently smalk and satisfies
Z(k)~1=0(1/k) ask—0. This, together with the fact that, in view ¢4.13 and Corollary 2.2,
0,(k) and®,(k) are botho(k) ask—0, implies

W(k) "t =1i(k,0) (0,0 Z(k) {11+ [O1(k) + O2(k)]Z(k) "}, (4.20

where the inverse of the matrix inside the braces exists providmdsufficiently small. This
explains why we focus o@ (k) in the next result, which is an immediate consequencgldfo
and Proposition 4.2.

Corollary 4.3: Suppose that ©L1(R;C"*") for m=1 or 2. Then, as k-0 in R

m—1

Z(k)= 20 KV +o(k™1), (4.2
=

Vo=4,, V;=i[l,+E+R"].

Moreover, forée N, we have

m

Z(k) &= _Zl kiV;é+o(k™), (4.22
“

V,=i[[+R],

\72=RTf:dz[ﬁ(O,z)Tﬁ(O,z)—In]+fo dz[f,(0,2)"f,(02)—1,]T.

Now our task is to identify those matrix elementszgk) ~* that dominate ak— 0. To do this
we choose a Jordan basis oy as follows. We assume that there ardordan chains indexed by
a for a=1,...x, each consisting ofi, vectorsu,;, with j=1,...n,, satisfying the relations

[(Al_ha)ualzoy

. (4.23
(A|—)\a)uaj=ua(j,1), J=21"'na'

Here\, is an eigenvalue oA, ,u,, is the corresponding eigenvector belonging to dfie chain,

and the vectorsi,; with j# 1 are the generalized eigenvectors. We assume that the eigenvalue 0
of A, has geometric multiplicityx and algebraic multiplicity»; thus 24%_,n,=v and u

=dim N=1. We arrange the vectors of the Jordan basis in a list which is ordered according to the
rule thatu,; comes beforeu if and only if o< or =g andj<s. In other words, this is the
“dictionary order” of the two two-letter wordsrj and Bs. It is necessary to specify an order on

the Jordan basis because later we will have to perform certain permutations on these basis vectors.
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We further assume that the firgt Jordan chains belong to the eigenvalue 0Agfso that

{U11,Uz1,...,u,} forms a basis for the kernel df;. We will also need the adjoint Jordan basis

gwlaj} Whgse vectors, for=1,...x, satisfywzjupﬁéapéjt, where 6,5 denotes the Kronecker
elta, an

(A= 7\§)Wana=0,
(Ar_)\:;)waj:wa(jJrl), jzli"'na_l'

Thus the se{wlnl,...,wﬂnﬂ} forms a basis for the kernel df,. The transition matrix from the
standard basis to the Jordan basis will be denote8.[§yiven anynxXn matrix M in the standard
basis, we usé1, whereM =S~MS, to denote the matrix representation\dfin the Jordan basis
{Uy,j}. Then from(4.23) it follows thatA, has the appearance

=D 3, (), (4.24)
a=1

WhereJna()\a) is the Jordan block with , appearing on the diagonal and 1 on the first superdi-

agonal.

In the notation introduced above we can view the pgias a “block index” in the sense that
« indicates the Jordan blockesp. the Jordan chairto which the vector,; belongs, and
indicates the position within that block. Generalizing this notation, we will sometimes use block
indices to designate the matrix elements of matrices represented in the Jordafupgsi$hen

the matrix elements ofl =S~ *MS in block index notation are given by
mlgs;aj:WI;SM uaj . (425)

An important observation aboit(k) is that it hasw columns, namely those with “addresses
for a=1,.... which areO(k), and these are the only columns with this property. Any other
column contains at least one element that tends to a nonzero lirkit-:& Now, as we shall see

below, the entries oF (k) which determine the leading asymptotic behavioZ¢k) ~* ask—0

form a submatrix oZ(k) consisting of columns and rowssng, wherea and g both belong to
{1,...u}. It is, therefore, convenient to perform suitable permutations of the columns and rows of

Z(k) in order to collect these particular matrix elements ip.& u diagonal block of a new
matrix, calledZ(k). The formal definition of these permutations and their implementation are as
follows. Let 7r; be the permutation

myt (1,...,1/)'9((]1,---,(3],;),
where

ng+-+n,_+1, 7=1,..u,

q,= (4.26

B T—uta, T=pt+l.p,
anda e{1,...u} is the unique integer such that, for giverand n,
n1+n2+---+na_1—a+j=7'—,u,,

for somej e{2,...n,}. Note that, sincen,=1, the quantityn;+n,+---+n,_;—« is a nonde-
creasing function otv. Similarly, let 7r, be the permutation

o (1,...p)—=(0q,...,0,),



J. Math. Phys., Vol. 42, No. 10, October 2001 Small-energy asymptotics 4639

where

n1+"'+l’la, lezl,...,LL,

(4.27

Oq

- a—putp—1, a=p+l,..p,
andpe{1,...u} is the unique integer such that, for givenand u
ng+n,+---+n,_ —pts=a—pu,

for somese{2,...n,}. To implement these permutations wedefor j=1,...» denote the column
vectors of the standard basis@' and letll; be theyX v permutation matrix whosgth column
vector iséqj, and letlIl, be thevX v permutation matrix whos&th row vector isé:;k. Now
observe that, ifM is any vX v matrix, then the matridI,MII; can be thought of as being
obtained fromM by a permutation of the columns accordingstg and a permutation of the rows

according tomr,. In order to apply these operationsZ¢k) we define

P1=diag{l_[1,|n_,,}, P2=diag{1_[2,|n_,,},

Z(k)=P,Z(k)P1=P,S Z(k)SPy, (4.28
and we partitionZ(k) as
B A(k)  B(k)
Z(k)= ek D (4.29

where A(k) has sizeuX u and, consequentlyD(k) has size §—u)X(n—w). Then A(K)
coincides with the submatrix aZ(k) consisting of the elements in columa4 and rowssng,
where I=a<pu and 1=s<u. As we have already indicated above, the maipk) determines
the leading asymptotic behavior af(k) ! as k—0. The next two propositions provide the
necessary information about the behavior of the four matrix blockd.29.

Proposition 4.4: Assume @L#(R;C”X”) for m=1 or 2. Then the matricesd(k), B(k),
C(k), and D(k) appearing in (4.29) behave nears0, with ke R, as

m m—1
A(k)=21 KiA+o(k™), B(k)= 21 kKiB,+o(k™ 1), (4.30
J= 1=
m m—-1
C(k)zz1 Kiei+o(k™), D(k)= 20 KD, +o(k™ 1), (4.3
I= I=

where in the expansion foB(k) the sum is absent when=rl. Moreover A; and D, are
invertible

Proof: We give the proof only foB(k); the proofs for the other matrices are similar. egfor
j=1,..n denote the standard basis vectorsGf. Let se{1,....u} and first suppose thagb
e{l,..r—pu}. Then we have

5 ~ é
B(K)sp=e32(K)e, . p=esPoZ(K)P1e, . p=[&;, O]Z(k)[ QSW}

=el Z(keg,, =Z(K)yq, . =Z(K)sn_aj

o—quﬁ»p

wherea andj are determined by4.26) with 7= u+p=<w; hence Zj=<n, and I=sa<u. Thus
it follows from (4.29 and Corollary 4.3 thaB(k)sp,=0(1) if m=1 andB(k)sp=kB;5p+0(K) if
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m= 2. Specifically, we havé; s ,= w VluaJ , whereV, is given in(4.21). It remains to consider
the matrix elements witp e {n—v+1,...»—u}. SinceP.e,,,=¢€,,,, we obtain

B(K)sp=Z(K) g+ p = Z(K)sn s =Wen Z(K) Uy

where« andj are determined by the equation+---+n,_;+j=u+p; note thatu+ p>» and
thusae=pu+1. Sincesspu, by usmg Corollary 4.3, we conclude thétk)s,=0o(1) if m=1, and
B(K)sp=kByspt0(Kk) with Blsp—wsn ViU, if m=2.

To prove thatA, is invertible we first note that fos andj e {1,...u}, we have

AK)5i=Z(K) g q = Z(K)sn ;j1=Win Z(K)Uj1,
and thus, by4.21)
Apsj=w} nVilj1= IWsn[F-l—RT]UJl (4.32

We show that the kernel of the transformatidn : C*#— C* is trivial. Suppose there is a vector
(C1,-..,C,) such thatx# A 6cj=0 for s=1,...u. Let £=34 jcjuj; and y=T'¢ [cf. (4.2].
SinceXeM itis a Imear combination of the vectons ,... an and hence('V,£=0. On the
other hand, by usin4.7), we obtain

x'ViE=ix T +RTE=i(|x]2+11€12),

which is nonzero unless, =---=c,=0. HenceA, is invertible. Finally, from(4.28), (4.29, and
Corollary 4.3, we get

Dy=diagl,_,,Jn +1"""]"K}’ (4.33

whereJ, are the matrices appearing @#.24. Clearly, Dy is invertible. |

Next we study the behavior of the inverse of the matrix define@ig9 neark=0.
Proposition 4.5: Assume @le(R;C“X“) for m=1 or 2. Then as k-0 in R we have the
following:

(i) If m=1, then
(1K) A7+ 0(1k) o(1/k)

Z(k) = _ 4
W= Cppic,aitror) Dyto(n) (4.34
(i)  If m=2,then
1
2(k) =1 21+ Zo+o(1), (4.35
where
Z_,=diag{A; 1,0}, (4.3
— AT A AT B T ALY — A TB D, \
ZO_ _DalclAIl Dal ( . D
Proof: We exploit the fact that
l, =BKD \ 0]
0 I, }ak)LD(k)—lC(k) ,,|~diaduto.pok (438
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where
U(k)=A(k)—B(k)D(k) " *C(k).
By (4.30), (4.31), and Proposition 4.4, we have
B(k)D(k)"*C(k)=0(k), A(k)=kA;+o0(k),

with det 4;# 0, and hence we conclude that, for small enough nonkeitfk) is invertible and

L, [(WA T +o(1k), m=1,
(KA AT AA AL B D C A T o(1), m=2. (439
As a result, from(4.38 we obtain
_1_{ Ukt —U(k)~B(k)D(k) ~*
2= —D(k)"re(kuk) "t Dk)rek)uk) T Bk)D(k) "+ D(k) L)
and henced4.34—(4.37) follow by using(4.30), (4.31), and(4.39. [ |

The primary conclusion of Proposition 4.5 is thgtk) ~* has a 1K-singularity atk=0 if dim

N=1. ThereforeZ(k) ~* andZ(k) ~* have a similar behavior. Indeed, fro@#.28 and(4.35 we
infer that

m—1
Z(k)"t= 2 K'Z,_;+0(k™?), k—0 in R, (4.40
j=0
where
Z =8P, Z_P,S7 Y, Z,=SP,Z,P,S L (4.42)

This leads us to the main result of this section. We will lift the restriction kha¢ real and
allow ke C™ in the asymptotics of the transmission coefficients.

Theorem 4.6: Assume @ Li(R;C”X“) anddim A=1. Then the scattering coefficients are
continuous at k0, and we have

T(k)=2iZ_;+0(1), T.(k)=-2iz",+0(1), k—0 in c’, (4.42
ImT,(0)=Ker A;, Ker T/(0)=ImA,, (4.43
ImT,(0)=Ker A,, Ker T(0)=ImA,, (4.49

L(k)=—1,+TT,(0)+0(1), R(k)=—|n+F_lT|(0)T+o(1), k—0 in R, (4.4
Ker{l,+L(0)}=Ker T,(0), Ker T,(0)=Ker{l,+R(0)}, (4.46
Im{l,+L(0)}=ImT,0), Im{l,+R(0)}=ImT,0). (4.47

Proof: For ke R, the continuity of the transmission coefficients add42 follow immedi-
ately from (2.29, (4.9, (4.20, (4.40, and(4.41). To extend the asymptotic formulas {#.42
fromkeR to ke C* we first note that

detW(k)=[detZ(k)][1+0(1)]=[detZ(k)][1+0(1)]=Cok“[1+0(1)], k—0 in R,

whereCy=(—1)""#(detA;)(det Dy) # 0. This follows from(4.20), (4.28), (4.30, (4.36), (4.39,
Proposition 4.4, and the fact that (dg)(detP,)=(—1)""*. It follows thatk™* detW(k)—C, as
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k—0 along the real axis. Since datk) extends as an analytic function®", there is a constant

C such thatk~* detW(k)|<C|k|* for k near 0 inC*. Appealing to some theorems of Phragme
Li_ndelbf (e.g., Theorems 1.4.1-1.4.4 in Ref) Me conclude thak™* detW(k)—C, ask—0 in

C*. Thus there is a s&f ,={ke C*: 0<|k|<e€}, with € sufficiently small, on whicHdetW(K)|
=C,|k|* for some constant; . Recalling the cofactor representation of the inverse of a matrix we
conclude that

IW(k)“H[<Calk|™#, keX,

for some constanC,. Since T\(k)—T;(0) as k—0 along the real axis, we can apply a
Phragme—Lindeld theorem to 2kW(k) ~* and conclude that, b§4.9), T,(k)— T,(0) ask—0 in
C*. This, together with(2.25, completes the proof a#4.42).

To prove (4.43 we note that(4.24) and (4.26) imply Ker Z|=Spar{eq1,...,eq#}. Thus, in
view of the form of Z_, given in (4.36), we have

ueC* =P,Spade,....e,} =Ker 4.

|m{Plzlpz}:P1H3

SinceA,=SA,S 1, the first equality in(4.43 follows from (4.41) and(4.42. To prove the second
equality we note that

ImA,=Spadey: ke{oy,....o,}}

which follows from(4.24) and(4.25. Therefore,

0
Ker{ZlP2}=[WeC”: P2W=[U , veC”“]

={weC" e/P,w=0, k=1,.u}

={weC" ezkw=0, k=1,..u}

:lmZ|.

This implies Ker T{(0)=Im A, and thus the second equality #.43 is proved. The equalities in
(4.44 follow from (4.43 by taking adjoints and using the fact that (Kkt)“=Im M" for any
nXxn matrix M.

To prove the remaining assertions we use

f,(k, ) Ty(K) = f,(—k,x)+ F,(k,x)L(K), keR\{O}, (4.48
f.(k,X)T,(K)=f,(—k,x)+,(kX)R(K), keR\{0}, (4.49

which can be derived with the help ¢f.4) and(1.5). From (4.48 and the continuity ofl (k) it
immediately follows that (k) is continuous ak=0 and we have

f (01 +L(0)]=£,(0X)T(0). (4.50

Now choosex such thatf,(0,x) is invertible and multiply(4.50 from the left byf (0x) ~*. Owing
to (4.4) and the first equation i4.43, we can replacd (0x) f,(0x) by I'. Hence the first
relation in(4.45) follows. Similarly, the second relation i@.45 is obtained from(4.49. The two
equalities in(4.46 are immediate consequences (df45. Finally, (4.47) follows from (4.43,
(4.49, and Proposition 4.1. [ |
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From (4.43), (4.44), Proposition 2.4), and Theorem 3.1 we infer that the exceptional case
occurs if and only ifT,(0)# 0. Moreover,(4.43, (4.46), and Theorem 3.1 show tha{0) and
R(0) each have eigenvaluel if and only if A;#0. In view of (2.23 and (2.24 we also have
[L(0)|=|R(0)||=1 if and only ifA;# 0. The cas&\,=0 can be called the purely exceptional case
because then we hav®=M=C". This case is further analyzed in Example 5.4 of the next
section.

Theorem 4.7: Assume @& L%(R;C”X“) and dimN=1. Then the scattering coefficients are
differentiable at k=0 and

T(k)=T,(0)+kT,(0)+0o(k), k—0 in C*, (4.51)
with

T/(0)=2i[Z,—f; %(0,00f,(0,00Z_;+iH +iH,], (4.52

where Z_;, and Z, are given in (4.41) and
H,=Z_,R'%0,0f(0,0Z_,, H,=Z_,f(0,0'(0,0" *z_;.
Moreover,

T(k)=T,0)"—k*T,(0)'+0(k), k—0 in C*,
L(K)=—1,+(1,+E)T(0)+kL(0)+0o(k), k—0 in R,
R(k)=—1,+(1,—E)T,(0)+kR(0)+o0(k), k—0 in R,

where | and E are as in (3.1) and
L(0)=[1,+EIT(0)+i[f(0x)";f,(0x)]T\(0),
R(0)=[1,—=EIT(0)=i[f(0)";f,(0)]T(0).
Proof: To prove(4.51) and(4.52 for k—0 in R, we first note the expansions
f(k,00~f,(0,0=1,—kf,(0,00~*f,(0,0) + o(k),
f(—k,0)(0,0" *=R"—kf,(0,0[,(0,0"] *+0(k),
0,(k)=—ik?*R'f,(0,00~1f,(0,0)+ o(k?),
0,(k)=—ik?f(0,0[,(0,0"] 1+ o(k?),
which follow from (4.18), (4.19), together with(4.7) and Proposition 4.2. Inserting these expan-
sions in (4.20 and using(4.9 we obtain (4.51) and (4.52. As with (4.42 we can use a
Phragme—Lindeld argument to extenq the result ©*. To find the expansions fdr(k) and
R(k) we first note that the existence 6f(0), together with(4.48 and (4.49), implies the exis-

tence ofL(0) andR(0). Differentiating(4.48 with respect tok and taking the Wronskian with
f,(0x)T, we obtain

[F.(0)T;f(0x)IL(0)=[F(0x)";F,(0X)IT\(O)+[F(0x)T;f,(0X)]T\(0),  (4.53
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where we have used,(0x)";f,(0x)]=0. Using the integral relatiof2.29 and that forf,(0x)
[cf. (A.20)] we obtain[ f,(0x)";f,(0x)]=—il,. Inserting this together witl3.6) in (4.53 and
using (4.47 we get the expansion fdr(k). The proof of the expansion fd(k) is similar. B

V. EXAMPLES

In this section we consider some special cases that illustrate various details of the analysis in
Sec. IV. With the exception of Example 5.4 we only consi@igk).

Example 5.11let n=1 with Qe L%(R) and assume the exceptional case occurs. T{&)
=Z7(k)=Z(k)=A(k), and these are all scalar functions. We chogsel=w and puty=T
=1,(0,0)/f,(0,0), where nowy is a real nonzero constant. Sinégk)=T,k), we denote the
transmission coefficient by (k). By (4.32 we haveAd;=i(y*+1)/y,

A= 7_1f0md2[f|(0,Z)Tf|(0,Z)—|n]+ yfowdz[fr(O,Z)Tfr(O,Z)—|n],

so that

2y 2ikyE

N~

T(k)=

where we have defined

E=f(0x);f(0x)]+ Joocolz[fl(o,z)Z—l]Jr yzf:dz[fr(o,z)z—l].

In deriving (5.1) we have used the identity

f(ox) f,(0x)

F0x) T T0x) LIHOX5T(0X)], (5.2

which can be verified as follows. Sindg0x) andf,(0x) are linearly independent solutions of
(2.26), we can write

f,(0x)=c,f(0X)+c,f(0X),

and evaluate; andc, as

. . 1
c;=—i[f(0,0;f,(0,0], c,=— "

so that(5.2) follows. It seems that the expansiéB.1) is new under the assumpti@e L3(R).

Example 5.2:AssumeQ e Li(R;C”X”) and suppose thak, consists of one single Jordan
block of sizen=2 associated with the eigenvalue 0. Thus 1, u=1, andn=n;=v.

In this case we can simplify the notation by settng=u;, for j=1,...n. Thenu, is the
eigenvector for the eigenvalue 0 Af, that isN=Spadu,}. The adjoint basis i§w;,...,w,} and
we have M =Spadw,}. The mappind’ mapsu; to a multiple ofw,,, i.e.,I' ;;=c3w, for some
c3# 0. Moreover,A(k) is a scalar function and frort#.32 we obtain

i
Ar= o (lealwnl*+ lug]?),
3

where we have use@.7) via Rw,=(1l/c3)u,. The permutation matrices appearing(4n28 are
given by
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B 0 0 17
0 0 0
Pi=l,, P,= : Do
0 0 0
[0 O 1 0]
Using (4.41) and(4.42 we obtain
r0 0 ... 0 2,7
0 0 ... 0 O
Ti(0)= :
0O 0 ... 0 O
|0 0 ... 0 0]

where

1 -
C4:g(|03|2HWn||2+ us®, Ti(0)=8"'T,(0)S.

Example 5.3This example illustrates the situation whekgin (4.24) consists of two Jordan
blocks. We assum@ e L1(R;C"*") and leth=3, x=2,n;=1,n,=2, v=3, and« =2, so thatj,
has the Jordan form

0
0
0

Pl
I
o O O
o - O

The Jordan basis iSuq;,Uq,Us0t, Where{uyq,uU,q} is a basis forV, and the adjoint basis is
{W11,Wpq,Waot, Where{w,;,w,,} is a basis forM. In this case the rows af(k) need to be
permuted according te,: (1,2,3)~(1,3,2), whereas no permutation of the columns is required.
Thus we have

o
-
Il
w
0
N
Il
o o
» O O
o O

Then A(K) is a 2Xx2 matrix and

T T
Wi Vilgg Wi Vilpg

A=
T t ,
WyVilyp WaoViUpg

whereV, is given in(4.21). Hence we obtain

T T
WyVilyy 0 —wy VaUy
T t
—WyViUn 0 wyViug,
0 0 0

:’rl(O) - detA1
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Example 5.4This is the purely exceptional case mentioned above Theorem 4.7. We assume
Qe Li(R;C™M) with n>1. We haveA,=0, which impliesu=v=k=n. Then\'= M=C", and
thus no restrictions are necessary(#h4) and (4.9); that is, we haveR=I""1. Moreover,P;
=P,=1,. It follows that

A =iS T +(THT]s,
and thus, since&_,=4; *, we obtain
T(0)=2iS(SA;) t=2I"(I'TT+1,) "%
For the reflection coefficients, after some straightforward manipulations, we find
LO)=(T'=1)ITT+1)"% RO)=(,—TTT)(TT+1,"*

Example 5.5:SupposeQ(x) is even and belongs tb}(R;C"*"). This implies thatf (0x)
=f,(0,—x) and from(2.31), (2.33, and(2.34) we conclude that\, is self-adjoint. Hence\, is
diagonalizable and there are no Jordan chains of length greater than 1. We hayen,=1 for
l<a<k, andk=n. We also have®?;=P,=1,,. It is possible that\; has some nonzero eigen-
values, squ<n in general. Ifée N, then

fi(0x)=1,(0,—x)&,

which implies thaff (0, x) ¢ is bounded. This mears= M and henceV= M. Furthermore, using
(4.2) and (4.3) we conclude that

f|(01X)X:fr(O!_x)X:f|(01_x)§1 (53)
whereée NV and y=T¢. Lettingx— —oo, we see thal’ y=¢, that is
r2=1,. (5.4)

It follows that [ is diagonalizable becausg,(-1")P= 2'3‘1(Iﬂi1“) for p=1 and has eigenvalues
+1. Let e. denote the corresponding multiplicitieg (+e€_=pu). Sincen,=1, we putu,,

=u, for the vectors of the Jordan basis fyy and assume that they are normalized and arranged
such that

lu,=u,, a=1,.¢,,
lu,=-u,, a=e,+1,..u.

We also setvs, =Wws, SO thalwlua= Js, fors=1,...n anda=1,...n. Note that as a consequence

of (5.3), €, (€_) is the number of linearly independent bounded et@afd) solutions of(2.26).
Then from(4.8) and (5.4) we conclude that

wiRu,= (I "*wg)'u,=(Twy) u,=wiru,, (5.5

whereT'" is the adjoint ofl" as a mapping from\V to itself. Using(5.5) in (4.32 we obtain
Ay j=iw[T+T'"u;, and therefore

(A D= —iwi[T+TT ;.
As a result, from(4.36), (4.41), and(4.42 we deduce that
T(0)=[2(I'+T")"']®0,

where the direct sum refers to the direct decomposi@8s No N’ with
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N'=Spafu,1,...,.up}.
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APPENDIX: PROOF OF PROPOSITION 4.2

Proof: Since the assertions of Proposition 4.2 concern the skadirmptotics, we assume that
k lies in a fixed interva] — &, 8] with 6>0. In the followingC is used to denote various constants
that may depend on the choice &but not onk or x.

The solutione(k,x) of (1.1) defined by the initial condition$4.10 satisfies the integral
equation

sinkx 1 (x _
K )+Efdys"ik(x—y)]Q(y)so(k,y), (A1)
0

o(k,x)=1f,(0,0coskx+f{ (0,0

which can be solved by iteration. A standard Gronwall inequality shows that
le(k,x)<C(1+|x]), xeR. (A2)
Therefore, by usingAl) and(A2), it follows that for eactk e R\{0} we have
e(kx)=a(k)e"+B.(kje™ "+ e.(kx), (A3)

wheree. (k,x) and e’ (k,x) are botho(1) asx— =, and where

1 1 1 (== .
@ (0= 3100+ 51100+ 5o [ dy e MQW)p(ky), (A%)

1 1 1 (== 4
= — - f/ - ky,
From (A3) and(A4), together with(1.2) and(1.3), it follows that:

Lok, X)) (k,x)]=2ike, (k)T=ikf,(0,00T—f/(0,0T— Fdz é0(k,2)'Q(z), (A5)
0

[fr(—k,x)T;<p(k,x)]=2ika,(k)=ikf,(0,0)+f{(O,O)—ﬂ) dz e *Q(2)p(k,z). (AB)

In order to control the remainder terms in the subsequent asymptotic expansions, we will need the
estimates

(A7)

2
(k%) — @(0x)[[<C(L+max0,~x}) —1+|:||x|) '

kx |2
m) &, &eNN. (A8)

I[e(k,x)—@(0x)]€|<C

The term maj0,—x} in (A7) accounts for the fact that(0x) is in general unbounded ar@i(x)
asx— —o«, In (A8), this term is absent becaug€0x)¢ is bounded wherFe A. We omit the
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proofs of (A7) and (A8) here becaus€A7) follows from (Al) by some standard estimates and
(A8) can be proved by mimicking the proof in the scalar came Lemma 2.2 in Ref. 12
Now consider the integral on the right-hand sidg&b) and write it as

f "4z 6% (k,2)1Q(2) = Aq(K) + An(K), (A9)
0
where
Ay(k) = f "z é96(02)70(2), (A10)
0
Ao(k) = j:dz 7 o(k,2)'— 0(02)11Q(2). (A1)

Whenm=1, from (A.10) we get

Al(k)zf:dz<p(0,z)TQ(z)+ikf:dz 2(02)"Q(2) + F(k),
=—1/(0,0T+ik[f,(0,0T—1,]+ F(k),

(A12)

where
]—'(k)=J dz(e**—1-ikz)¢(0,2)'Q(2). (A13)
0
Note thatF(k) is o(k) by (4.11), the boundedness @f(0,z) on[0,+«), and the estimate
|e”‘z—1—ikz|sc— z=0
1+z’ '

In deriving (A12) we have also used the relations

fdeqD(O,Z)TQ(ZF —f/(0,07,
0

- (A14)
JdZZ‘P(OrZ)TQ(Z):fl(O:O)T_In:
0
which follow from (2.28. Using (A7) in (A1l) we see that
Ay(k)=0(K). (A15)

Combining(A5), (A9), (A12), and(A15) we obtain
[o(k,x) T fi(k,x) =ikl +0(k),

which agrees with{4.13 for m=1.
Now consider(A5) for m=2, that is,Qe L3(R;C™"). In this case we can expand the
remainderF(k) in (A12) as

® i 2
f(k)zfo dz(|k22) ¢(0,2)"Q(z) +0(k?), (A16)

where we have use@\7), (A13), and the estimate



J. Math. Phys., Vol. 42, No. 10, October 2001 Small-energy asymptotics 4649

k?z?|  C(|k|z)®
2=

ikz__ 1 _; B
e 1—-ikz+ < T+[KZ’

=U.

The integral in(A16) can be expressed in a form that does not inv@vexplicitly. To see this,
substitutee”(0,2)" for ¢(0,2)'Q(z) and replace the upper limit of integration by Then inte-
grate by parts twice and I&d— +o. This gives

2

T k2 ©
5 =—— lim g{,=—k2f dz[,(02)T—1,],

2N—>+OO 0

fmdz Z¢"(02)
0

where we have defined
QN=NZ@’(O,N)—ZN[@(O,N)—In]+2f0Ndz[<p(0,z)—ln].
Thus
f(k):—szomdz[f.(o,z)t|n]+o(k2). (A17)

In the derivation offA17) we have also used
¢'(ON)=0(1/N?), @(ON)=1,=0(1/N), @(ON)—I,eL R";C™").  (A19)

These properties follow directly fror2.28 and(4.11). The expressiotAl7) for F(k) has the
advantage that it allows us to combi€k) with another term that arises from the expansion of
A,(k). To see this we return tGA11). In order to expand the differenegk,x) — ¢(0x), we use
the variation of parameters formula in the form

go(k,x):<p(o,x)+ik2f|(o,x)f:dz'fl(o,z)w(k,zwik2i‘.(o,x) f:dz £(02)To(k,2).
(A19)

We briefly mention some details of the derivation(8fl9) because there is a useful identity that
falls out in the process. We wrif@.26) as a first-order system withn2components and note that
a fundamental matris¥ (x) for this system and its inversé&(x) ! are given by

fi(0x)  ,(0x)
f(0x) f/(0x)

fr(ox)" —f0x]
f|'(0,X)Jr —f1(0x)"

,1=.

T (Xx)=

By takingx— -+ and using2.4), one can prove that d#t(x)=i. For this and also later we need
to use certain asymptotic information about the functite x) andf,’(O,x). It suffices to men-
tion thatf,(0x) is the unique solution of the integral equation

F(000)=ixIy+ f:dyw—x)Q(y)h(o,y), (A20)

which, incidentally, shows thdt(0x) is also a matrix solution of2.26). Moreover, a Gronwall
inequality gives

If(0x)<C(1+|x]), xeR. (A21)

The identityW (x) ~ W (x) =1,, is easily verified by using the Wronskian relations
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[f(0x)T;f,(0x)]1=[f(0x)";f(0x)]=0,

[f,(0x) T ,(0x)]1=[F,(0x)T;f1(0x)]=il ,,

which follow from (2.28, (A20), and the first formula iNA18) which indicates thaf|(0x)
=0(1/x?) asx— +». Then(A19) is an easy consequence of the variation of parameters formula
for first-order systems. The useful identity alluded to above appears when we write out the identity
W(x)W(x) t=1,, (in this order) in terms of the entries of the matrices involved. Among the
resulting identities we find

f/(0x)F,(0x)T+f/ (0x)F,(0x) =il ,,
which will be useful later.
By iterating (A19) once and using4.11) we obtain
X X ) X
go(k,x)z@(O,x)+ik2f|(0,x)f dz f|(0,Z)Tf|(0,Z)+ik2f|(0,X)f dz £(0,2),(0,2) + p(k,x),
0 0
(A22)

wherep(k,x) obeys

2
. (A23)

lp(k,x)[<CK(1+]x])?

X
1+ |Kk|x|

This estimate follows by usingA7) and (A21). Taking the adjoint ofA,(k) given in(A1l) and
expanding the exponential function there we get

Az(k)T=f0de Q2)[¢(k,2)— ¢(02)]+0(K?), (A24)

where we have usgd\7) to determine the order of the error term. Now we in$A&2) into (A24)
and proceed as in the derivation EA17), using i‘f’(o,x)zQ(x)ﬁ(O,x) and two integrations
by parts. We also useA21), (A23), and the property| (O,N) —il ,=0(1/N) asN— -+, which
follows from (A20). The result is

fxdz Q(Z)[c,o(k,z)—cp(O,z)]:szoodz[h(O,z)—In]—szocdz[ﬁ(O,Z)Tf,(O,z)—In]+0(k2).
0 0 0

(A25)
Combining(A9), (A12), (A17), (A24), and(A25) we obtain
[cp(k,X)T;f|(k,X)]:ikln+sz dz[f,(02)",(0.2)—1,]+0(k?),
0
which is the desired result i@.13 for m=2.
To prove(4.14) we return to the Wronskian ifA6). If m=1, we have
fo ikz 0
dze z k,z=f dz Qz)¢(0,2)+0(1),
B Q2)e(k2)= | dzQ2)e(02)+0(1) a26)

— —A+f/(0,0+0(1),

where we have use@.28 and(A14). The order of the error term is again a consequend@ of.
Substituting(A26) in (A6) we get(4.14) for m=1. If m=2, we have
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JO dz e '*2Q(z) p(k,2)=— A+ /(0,0 — ikJo dz zQz)¢(0,2) +0(K), (A27)

and, using(3.1), (A14), and(A27) we obtain
LO dzzQz)e(0,2)=1,+E—f,(0,0. (A28)

Substituting this iNA6) we get
[f(—kx) T o(kx)]=A+ik(l,+E)+0(k),
proving (4.14 whenm=2,
It remains to prové4.15. So pickée N and assumen=1. Thene(0x)¢ stays bounded as

x— —o, which has the same effect on the integralA®), when it acts or¢, as ifmwere 2. In
particular,(A28) now becomes

0
f_wdz zQ2)[¢(02)¢]=T¢—-1,(0,0/€,

where we have use@.28 and(4.5). SinceA¢=0, from (A27) we obtain

fo dz e *2Q(2)[ ¢(k,z)&]=1/(0,0 £—ikI ¢+ikf (0,00 &+ o(Kk).

Substituting this expression i#6) we get
[f(—kx) T 0(k,x)]E=IKT é+0(K),

which agrees witl{4.15 for m=1. If m=2 andée N, then we can carry the expansion(ik27)
further as in the case ¢A9) and(Al1l). To obtain the corresponding coefficients in the expansion

we could proceed by using variation of parameters in terms of the solutjtg) and f,(0x).
However, there is a simpler approach that exploits the connection between the left and right Jost
solutions for(1.1) under the substitutior— — x, that is, under the transformati@(x)— Q*(x),
whereQ*(x) =Q(—x). We use the superscript # to indicate that a given quantity pertaifisio

with potentialQ”. It is straightforward to show that

f(kx)=f{(k,—x), fi(k,x)=ff(k,—x). (A29)
We now introduce a solutiom(k,x) of (1.1) satisfying the initial conditions
o(k,0)=f,(0,0, o'(k,0=f/(0,0.
Then it follows from(4.3) and (4.10 that for £ A" we have
e(k,x)é=o(k,X)x, (A30)
wherexy=T"¢. Since, by(4.10 and (A29)
¢ (k0 =f1(k0=f(k0), ¢*(k0=f}(k0=—1/(k0),

we get ¢”(k,x)=w(k,—x), which, together with(A30), yields ¢*(k,—x)x=¢@(k,x)¢. In the
following argument we use the more elaborate notat[c(B(k,x);H(k,x)](xo) to denote the
Wronskian of two matrix function&(k,x) andH(k,x) evaluated ak=x,. Then we have



4652 J. Math. Phys., Vol. 42, No. 10, October 2001 Aktosun, Klaus, and van der Mee

[fr<—k,x>*;¢<k,x>]<x)§=[f’i(; k,—x)T; 0%k, —X)] X
=== k)T 0" (kX) ] 0x
— [ (k)T (= k)T x (A31)
=[o"(—kx) T fi(—kx) 1,

where in the the last step we have used the fact that the Wronskian is constant apiktkiatis
an even function ok. The latter follows from the fact that the initial conditions #.10 are
independent ok. Now the Wronskian on the right-hand side(®#31) is of the same form as that
in (4.13. We can, therefore, apply the expansion given there. Then the integrafidinfolves
ff(o,z) which can be rewritten in terms &f(0,z) by means 0fA29). Using also(4.2), we obtain
(4.195. The proof of Proposition 4.2 is now complete. |
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