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S1. Multipolar scattering theory (T-matrix theory for a sphere above a 
metal plane) 

S1.1 Introduction 
We calculate the scattering off of a spherical particle separated from a solid surface by a thin film using a 
T-matrix1, 2 theoretical approach, where we will largely use the notation employed by Johnson.3 T-matrix 
theory is a powerful and numerically fast method for calculating the optical scattering properties of 
small particles and structures. In particular, it is substantially faster than techniques such as finite-
difference time-domain (FDTD) or the discrete dipole approximation (DDA).4 It also has the advantage 
that it generates output that is easily and accurately converted into differential and total scattering 
cross sections. This means for instance that extinction cross sections can be calculated with much 
greater ease than in alternative methods. 

S1.2 T-matrix theory 
In T-matrix theory, all electromagnetic waves are expanded into multipoles. For the electric field, leaving 
out an 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 factor that is common to all fields, we write 

 𝐄𝐄(𝐫𝐫) = � � 𝑎𝑎𝑙𝑙𝑙𝑙𝐌𝐌𝑙𝑙𝑙𝑙
(𝑖𝑖)(𝑛𝑛𝑛𝑛𝐫𝐫) + 𝑏𝑏𝑙𝑙𝑙𝑙𝐍𝐍𝑙𝑙𝑙𝑙

(𝑖𝑖)(𝑛𝑛𝑛𝑛𝐫𝐫)
𝑙𝑙

𝑚𝑚=−𝑙𝑙

∞

𝑙𝑙=1

= [𝑎𝑎 𝑏𝑏] �𝐌𝐌
(𝑖𝑖)(𝑛𝑛𝑛𝑛𝐫𝐫)

𝐍𝐍(𝑖𝑖)(𝑛𝑛𝑛𝑛𝐫𝐫)
�, (S1) 

where 𝑛𝑛 is the index of refraction of the medium and 𝑘𝑘 is the vacuum wavenumber of the radiation. The 
transverse spherical vector wave functions (SVWFs) 𝐌𝐌(𝑖𝑖) and 𝐍𝐍(𝑖𝑖) can be written in terms of vector 
spherical harmonics (VSHs) 𝐘𝐘𝑙𝑙𝑚𝑚(𝐞𝐞�𝑟𝑟), 𝚿𝚿𝑙𝑙

𝑚𝑚(𝐞𝐞�𝑟𝑟), and 𝚽𝚽𝑙𝑙
𝑚𝑚(𝐞𝐞�𝑟𝑟) as 

 
𝐌𝐌𝑙𝑙𝑙𝑙

(𝑖𝑖)(𝑛𝑛𝑛𝑛𝐫𝐫) = 𝑧𝑧𝑙𝑙
(𝑖𝑖)(𝑛𝑛𝑛𝑛𝑛𝑛)𝚽𝚽𝑙𝑙

𝑚𝑚(𝐞𝐞�𝑟𝑟), 

𝐍𝐍𝑙𝑙𝑚𝑚
(𝑖𝑖)(𝑛𝑛𝑛𝑛𝐫𝐫) =  

1
𝑛𝑛𝑛𝑛𝑛𝑛 �

𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝑟𝑟𝑧𝑧𝑙𝑙
(𝑖𝑖)(𝑛𝑛𝑛𝑛𝑛𝑛)�𝚿𝚿𝑙𝑙

𝑚𝑚(𝐞𝐞�𝑟𝑟) + �𝑙𝑙(𝑙𝑙 + 1)𝑧𝑧𝑙𝑙
(𝑖𝑖)(𝑛𝑛𝑛𝑛𝑛𝑛)𝐘𝐘𝑙𝑙𝑚𝑚(𝐞𝐞�𝑟𝑟)�.  

(S2) 



2 
 

𝑧𝑧𝑙𝑙
(𝑖𝑖)(𝑘𝑘𝑘𝑘) is a spherical bessel function, where 𝑧𝑧𝑙𝑙

(1)(𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑗𝑗𝑙𝑙(𝑛𝑛𝑛𝑛𝑛𝑛) for incoming waves and 𝑧𝑧𝑙𝑙
(3)(𝑛𝑛𝑛𝑛𝑛𝑛) =

ℎ𝑙𝑙
(1)(𝑛𝑛𝑛𝑛𝑛𝑛) for outgoing waves. The VSHs in turn relate to the scalar spherical harmonics 𝑌𝑌𝑙𝑙𝑚𝑚(𝐞𝐞�𝑟𝑟) through 

 

𝐘𝐘𝑙𝑙𝑚𝑚(𝐞𝐞�𝑟𝑟)  = 𝐞𝐞�𝑟𝑟𝑌𝑌𝑙𝑙𝑚𝑚, 
𝚿𝚿𝑙𝑙
𝑚𝑚(𝐞𝐞�𝑟𝑟) = 1

�𝑙𝑙(𝑙𝑙+1)
  𝑟𝑟𝛁𝛁𝑌𝑌𝑙𝑙𝑚𝑚      = 𝜏𝜏𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑)𝐞𝐞�𝜃𝜃 + 𝜋𝜋𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑)𝐞𝐞�𝜑𝜑, 

𝚽𝚽𝑙𝑙
𝑚𝑚(𝐞𝐞�𝑟𝑟) = 1

�𝑙𝑙(𝑙𝑙+1)
  𝐫𝐫× 𝛁𝛁𝑌𝑌𝑙𝑙𝑚𝑚 = 𝜋𝜋𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑)𝐞𝐞�𝜃𝜃 − 𝜏𝜏𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑)𝐞𝐞�𝜑𝜑,   

(S3) 

where we have defined the auxiliary functions 

 𝜏𝜏𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑) = 1

�𝑙𝑙(𝑙𝑙+1)

𝜕𝜕𝑌𝑌𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑)
𝜕𝜕𝜕𝜕

  ;    𝜋𝜋𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑) = 1

�𝑙𝑙(𝑙𝑙+1)
 
𝑖𝑖𝑖𝑖

sin𝜃𝜃
𝑌𝑌𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑), (S4) 

and the scalar spherical harmonics have the standard normalization: 

 𝑌𝑌𝑙𝑙𝑚𝑚(𝐞𝐞�𝑟𝑟) = �
2𝑙𝑙 + 1

4𝜋𝜋
(𝑙𝑙 − 𝑚𝑚)!
(𝑙𝑙 + 𝑚𝑚)!

𝑃𝑃𝑙𝑙𝑚𝑚(cos𝜃𝜃 )𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 , (S5) 

where 𝑃𝑃𝑙𝑙𝑚𝑚(𝑥𝑥) are associated Legendre polynomials. This notation also has the advantage that it 
separates the field into p-polarized (along 𝐞𝐞�𝜃𝜃) and s-polarized (along 𝐞𝐞�𝜑𝜑) components. 

The VSWFs satisfy 𝐍𝐍𝑙𝑙𝑙𝑙
(𝑖𝑖) =  1

𝑛𝑛𝑛𝑛
𝛁𝛁 ×𝐌𝐌𝑙𝑙𝑙𝑙

(𝑖𝑖)  and 𝐌𝐌𝑙𝑙𝑙𝑙
(𝑖𝑖) =  1

𝑛𝑛𝑛𝑛
𝛁𝛁 × 𝐍𝐍𝑙𝑙𝑙𝑙

(𝑖𝑖)  and form a complete set of solutions to 
Helmholtz equation. Therefore, any electromagnetic field in a charge-free medium that is consistent 
with Maxwell’s equations can be written as a linear combination of the transverse SVWFs. Solving the 
scattering problem then amounts to finding the coefficients of a scattered wave 

 𝐄𝐄𝑆𝑆(𝐫𝐫) = [𝛼𝛼 𝛽𝛽] �𝐌𝐌
(3)(𝑛𝑛𝑛𝑛𝐫𝐫)

𝐍𝐍(3)(𝑛𝑛𝑛𝑛𝐫𝐫)
� (S6) 

in terms of the coefficients of an incident wave 

 𝐄𝐄𝐼𝐼𝐼𝐼𝐼𝐼(𝐫𝐫) = [𝑎𝑎 𝑏𝑏] �𝐌𝐌
(1)(𝑛𝑛𝑛𝑛𝐫𝐫)

𝐍𝐍(1)(𝑛𝑛𝑛𝑛𝐫𝐫)
�. (S7) 

In the linear response regime, the two sets of coefficients are related by the T-matrix which gives the 
theory its name: 

 [𝛼𝛼 𝛽𝛽] = [𝑎𝑎 𝑏𝑏] �𝑇𝑇
11 𝑇𝑇12

𝑇𝑇21 𝑇𝑇22
�. (S8) 

The goal is then to find 𝒯𝒯 for the scatterer in the problem, so that 𝐄𝐄𝑆𝑆 can be found for an arbitrary 𝐄𝐄𝐼𝐼𝐼𝐼𝐼𝐼. 
The simplest case is that of a spherical scatterer in a uniform medium, which is the well-known Mie 
scattering problem. This gives a fully diagonal T-matrix: 
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𝑇𝑇𝑙𝑙𝑚𝑚;𝑙𝑙′𝑚𝑚′
11 = 𝑢𝑢𝑙𝑙𝛿𝛿𝑙𝑙𝑙𝑙′𝛿𝛿𝑚𝑚𝑚𝑚′  , 

𝑇𝑇𝑙𝑙𝑙𝑙;𝑙𝑙′𝑚𝑚′
22 = 𝑣𝑣𝑙𝑙𝛿𝛿𝑙𝑙𝑙𝑙′𝛿𝛿𝑚𝑚𝑚𝑚′  , 

𝑇𝑇𝑙𝑙𝑙𝑙;𝑙𝑙′𝑚𝑚′
12 = 𝑇𝑇𝑙𝑙𝑙𝑙;𝑙𝑙′𝑚𝑚′

21 = 0 , 
(S9) 

where 𝑢𝑢𝑙𝑙 and 𝑣𝑣𝑙𝑙are the Mie scattering coefficients: 

 

𝑢𝑢𝑙𝑙 = −
𝑛𝑛1𝜓𝜓𝑙𝑙′(𝑛𝑛1𝑘𝑘𝑘𝑘)𝜓𝜓𝑙𝑙�𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝑘𝑘𝑘𝑘� − 𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝜓𝜓𝑙𝑙(𝑛𝑛1𝑘𝑘𝑘𝑘)𝜓𝜓𝑙𝑙′�𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝑘𝑘𝑘𝑘�
𝑛𝑛1𝜁𝜁𝑙𝑙′(𝑛𝑛1𝑘𝑘𝑘𝑘)𝜓𝜓𝑙𝑙�𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝑘𝑘𝑘𝑘� − 𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝜁𝜁𝑙𝑙(𝑛𝑛1𝑘𝑘𝑘𝑘)𝜓𝜓𝑙𝑙′�𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝑘𝑘𝑘𝑘�

, 

𝑣𝑣𝑙𝑙 = −
𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝜓𝜓𝑙𝑙′(𝑛𝑛1𝑘𝑘𝑘𝑘)𝜓𝜓𝑙𝑙�𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝑘𝑘𝑘𝑘� − 𝑛𝑛1𝜓𝜓𝑙𝑙(𝑛𝑛1𝑘𝑘𝑘𝑘)𝜓𝜓𝑙𝑙′�𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝑘𝑘𝑘𝑘�
𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝜁𝜁𝑙𝑙′(𝑛𝑛1𝑘𝑘𝑘𝑘)𝜓𝜓𝑙𝑙�𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝑘𝑘𝑘𝑘� − 𝑛𝑛1𝜁𝜁𝑙𝑙(𝑛𝑛1𝑘𝑘𝑘𝑘)𝜓𝜓𝑙𝑙′�𝑛𝑛𝑆𝑆𝑆𝑆ℎ𝑘𝑘𝑘𝑘�

. 

(S10) 

Here, 𝑎𝑎 is the radius of the sphere, 𝑛𝑛𝑆𝑆𝑆𝑆ℎ and 𝑛𝑛1 are the indices of refraction of the sphere and the 
embedding medium, and 

 𝜓𝜓𝑙𝑙(𝜌𝜌) = �
𝜋𝜋𝜋𝜋
2
𝐽𝐽
𝑙𝑙+12

(𝜌𝜌)    ;     𝜁𝜁𝑙𝑙(𝜌𝜌) = �
𝜋𝜋𝜋𝜋
2
𝐻𝐻
𝑙𝑙+12

(1) (𝜌𝜌)     (S11) 

are Riccati-Bessel functions. 

A number of techniques exist for calculating the T-matrix for non-spherical particles,5, 6 but they will not 
be needed in the problem at hand. 

 

 

Fig. S1: Schematic of the geometry of the problem. The origin 𝑂𝑂 of the coordinate system is 
taken at the center of the sphere, with the 𝑧𝑧-axis facing away from the substrate, so that the 
film surface is located at (𝑥𝑥,𝑦𝑦,−𝑑𝑑). 
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S1.3 Sphere above plane 
 

The geometry of the situation is shown in Fig. S1, where the scattering sphere of index of refraction 𝑛𝑛𝑆𝑆𝑆𝑆ℎ 
and radius 𝑎𝑎 has its center located a distance 𝑑𝑑 above the top surface of a thin film with index 𝑛𝑛2 and 
thickness 𝑡𝑡. The substrate below the film is taken to be semi-infinite with index of refraction 𝑛𝑛𝑆𝑆𝑆𝑆, and 
the space above the thin film is a uniform dielectric with index 𝑛𝑛1. The origin of the default coordinate 
system coincides with the center of the sphere, with the 𝑧𝑧-axis pointing away from the surface, so that 
the top surface of the film is located at Cartesian coordinates (𝑥𝑥,𝑦𝑦,−𝑑𝑑). 

Light is incident on the surface as a plane wave 𝐄𝐄𝐼𝐼 with wave-vector in the 𝑥𝑥𝑥𝑥-plane and angle of 
incidence 𝛽𝛽 with respect to the 𝑧𝑧-axis. As it is reflected off the substrate, it gives rise to the reflected 
wave 𝐄𝐄𝑅𝑅. The wave scattered from the sphere is denoted 𝐄𝐄𝑆𝑆 and its reflection off the substrate as 𝐄𝐄𝑆𝑆𝑆𝑆. 
Since we are only interested in metallic substrates, we need not consider any refracted waves 
propagating in the lower half-space. The point 𝑂𝑂′ is the center of the reflected image of the sphere in 
the film’s top surface, and is located at (0,0,−2𝑑𝑑). 

If we could ignore the substrate and the film, the problem in the figure would reduce to simple Mie 
scattering, with the T-matrix as specified by the diagonal matrix in Eqn. S9 (which from now on we 
denote 𝒯𝒯0). Adding back the substrate does not in principle change the nature of the scattering, but the 
structures of the incident and scattered fields become more complex. First, the field scattered from the 
surface is actually the sum of two waves 

 𝐄𝐄𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐄𝐄𝑆𝑆 + 𝐄𝐄𝑆𝑆𝑆𝑆 , (S12) 

and second, the field incident on the sphere is the sum of three waves 

 𝐄𝐄𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐄𝐄𝐼𝐼 + 𝐄𝐄𝑅𝑅 + 𝐄𝐄𝑆𝑆𝑆𝑆 . (S13) 

It is 𝐄𝐄𝐼𝐼𝐼𝐼𝐼𝐼 and 𝐄𝐄𝑆𝑆 that are related by simple Mie scattering, while the far-field problem requires us to find 
the T-matrix that relates 𝐄𝐄𝐼𝐼 and 𝐄𝐄𝑆𝑆𝑆𝑆𝑆𝑆. Finding this matrix is complicated by the fact that 𝐄𝐄𝑆𝑆𝑆𝑆 is part of 
both the incident and the scattered fields, and it is thus 𝐄𝐄𝑆𝑆𝑆𝑆 that accounts for the interaction between 
the substrate and the sphere in our treatment. 

Plane waves 
Even though T-matrix theory is built around multipole waves, plane waves play an important role in the 
problem, both because the incident wave is typically a plane wave and because reflection in the planar 
substrate is most easily specified for plane waves. A plane wave can be written as a superposition of 
SVWFs: 

 
𝑒𝑒𝑖𝑖𝑖𝑖𝐤𝐤∙𝐫𝐫 𝐞𝐞�𝜑𝜑 = [𝑝𝑝(𝑠𝑠) 𝑞𝑞(𝑠𝑠)] �𝐌𝐌

(1)(𝑛𝑛𝑛𝑛𝐫𝐫)
𝐍𝐍(1)(𝑛𝑛𝑛𝑛𝐫𝐫)

� ,    (s-pol.) 

𝑒𝑒𝑖𝑖𝑖𝑖𝐤𝐤∙𝐫𝐫 𝐞𝐞�𝜃𝜃 = [𝑝𝑝(𝑝𝑝) 𝑞𝑞(𝑝𝑝)] �𝐌𝐌
(1)(𝑛𝑛𝑛𝑛𝐫𝐫)

𝐍𝐍(1)(𝑛𝑛𝑛𝑛𝐫𝐫)
� ,    (p-pol.) 

(S14) 
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where 

 
𝑝𝑝𝑙𝑙𝑙𝑙

(𝑠𝑠) = −𝑖𝑖𝑙𝑙𝜏𝜏𝑙𝑙𝑚𝑚(𝜃𝜃𝑘𝑘,−𝜑𝜑𝑘𝑘)   ;    𝑞𝑞𝑙𝑙𝑙𝑙
(𝑠𝑠) = 𝑖𝑖𝑙𝑙+1𝜋𝜋𝑙𝑙𝑚𝑚(𝜃𝜃𝑘𝑘,−𝜑𝜑𝑘𝑘) ;

 𝑝𝑝𝑙𝑙𝑙𝑙
(𝑝𝑝) = −𝑖𝑖𝑙𝑙𝜋𝜋𝑙𝑙𝑚𝑚(𝜃𝜃𝑘𝑘,−𝜑𝜑𝑘𝑘)   ;    𝑞𝑞𝑙𝑙𝑙𝑙

(𝑝𝑝) = −𝑖𝑖𝑙𝑙+1𝜏𝜏𝑙𝑙𝑚𝑚(𝜃𝜃𝑘𝑘,−𝜑𝜑𝑘𝑘) ;
 (S15) 

and (𝜃𝜃𝑘𝑘,𝜑𝜑𝑘𝑘) specify the direction of the wave vector 𝐤𝐤. Next, we take advantage of the fact that it is 
also possible to write the SVWFs as integrals over plane waves. For incoming waves we have that 

 

𝐌𝐌𝑙𝑙𝑙𝑙
(1)(𝑛𝑛𝑛𝑛𝐫𝐫) =

𝑖𝑖−𝑙𝑙

4𝜋𝜋
� 𝑑𝑑𝜑𝜑𝑘𝑘

2𝜋𝜋

0

� sin𝜃𝜃𝑘𝑘 𝑑𝑑𝜃𝜃𝑘𝑘

𝜋𝜋

0

𝚽𝚽𝑙𝑙
𝑚𝑚(𝐞𝐞�𝑘𝑘) 𝑒𝑒𝑖𝑖𝑖𝑖𝐤𝐤∙𝐫𝐫, 

𝐍𝐍𝑙𝑙𝑙𝑙
(1)(𝑛𝑛𝑛𝑛𝐫𝐫) = 𝑖𝑖

𝑖𝑖−𝑙𝑙

4𝜋𝜋
� 𝑑𝑑𝜑𝜑𝑘𝑘

2𝜋𝜋

0

� sin𝜃𝜃𝑘𝑘 𝑑𝑑𝜃𝜃𝑘𝑘

𝜋𝜋

0

𝚿𝚿𝑙𝑙
𝑚𝑚(𝐞𝐞�𝑘𝑘) 𝑒𝑒𝑖𝑖𝑖𝑖𝐤𝐤∙𝐫𝐫. 

(S16) 

For outgoing waves, building on a result by Bobbert and Vlieger7 generalized by Fucile et al.,8 the 
corresponding equations are  

 

𝐌𝐌𝑙𝑙𝑙𝑙
(3)(𝑛𝑛𝑛𝑛𝐫𝐫) =

𝑖𝑖−𝑙𝑙

2𝜋𝜋
� 𝑑𝑑𝜑𝜑𝑘𝑘

2𝜋𝜋

0

� sin𝜃𝜃𝑘𝑘 𝑑𝑑𝜃𝜃𝑘𝑘

𝜋𝜋

𝜋𝜋
2+𝑖𝑖∞

𝚽𝚽𝑙𝑙
𝑚𝑚(𝐞𝐞�𝑘𝑘) 𝑒𝑒𝑖𝑖𝑖𝑖𝐤𝐤∙𝐫𝐫, 

𝐍𝐍𝑙𝑙𝑙𝑙
(3)(𝑛𝑛𝑛𝑛𝐫𝐫) = 𝑖𝑖

𝑖𝑖−𝑙𝑙

2𝜋𝜋
� 𝑑𝑑𝜑𝜑𝑘𝑘

2𝜋𝜋

0

� sin𝜃𝜃𝑘𝑘 𝑑𝑑𝜃𝜃𝑘𝑘

𝜋𝜋

𝜋𝜋
2+𝑖𝑖∞

𝚿𝚿𝑙𝑙
𝑚𝑚(𝐞𝐞�𝑘𝑘) 𝑒𝑒𝑖𝑖𝑖𝑖𝐤𝐤∙𝐫𝐫. 

(S17) 

Since the integrals are carried over complex wave vectors, Eq. S17 are on this form only convergent in 
the lower half plane, where Re(𝑖𝑖𝑖𝑖𝐤𝐤 ∙ 𝐫𝐫) < 0. 

Plane waves that are reflected off of a planar surface pick up a polarization-dependent reflection 
coefficient 𝑅𝑅𝜎𝜎(𝛽𝛽), where 𝛽𝛽 = 𝜋𝜋 − 𝜃𝜃𝑘𝑘 is the angle of incidence. In the absence of the thin film, these 
simply equal the Dirichlet reflectivities: 

 

𝑟𝑟𝑠𝑠 �𝛽𝛽, 𝑛𝑛𝑆𝑆𝑆𝑆
𝑛𝑛1
� =

cos𝛽𝛽 − ��𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛1
�
2 − 1 + cos2 𝛽𝛽

cos𝛽𝛽 + ��𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛1
�
2 − 1 + cos2 𝛽𝛽

, 

𝑟𝑟𝑝𝑝 �𝛽𝛽, 𝑛𝑛𝑆𝑆𝑆𝑆
𝑛𝑛1
� =

�𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛1
�
2 cos𝛽𝛽 − ��𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛1

�
2 − 1 + cos2 𝛽𝛽

�
𝑛𝑛𝑆𝑆𝑆𝑆
𝑛𝑛1

�
2
cos𝛽𝛽+��𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛1

�
2
−1+cos2 𝛽𝛽

 

(S18) 
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for respectively s- and p-polarization. For non-zero thickness of the film, we have instead that 

 𝑅𝑅𝜎𝜎(𝛽𝛽) = 𝑟𝑟𝜎𝜎 �𝛽𝛽, 𝑛𝑛2
𝑛𝑛1
�+

�1 − 𝑟𝑟𝜎𝜎 �𝛽𝛽, 𝑛𝑛2𝑛𝑛1��
2
𝑟𝑟𝜎𝜎 �𝛽𝛽′, 𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛2 �

1 + 𝑟𝑟𝜎𝜎 �𝛽𝛽, 𝑛𝑛2𝑛𝑛1� 𝑟𝑟𝜎𝜎 �𝛽𝛽
′, 𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛2 � 𝑒𝑒

2𝑖𝑖𝑛𝑛2𝑘𝑘𝑘𝑘 cos𝛽𝛽′
𝑒𝑒2𝑖𝑖𝑛𝑛2𝑘𝑘𝑘𝑘 cos𝛽𝛽′ , (S19) 

where 𝜎𝜎 is either s or p, depending on the polarization of the light, and 𝛽𝛽′ is the angle of refraction 
inside the film, given by Snell’s law ( 𝑛𝑛2 sin𝛽𝛽′ = 𝑛𝑛1 sin𝛽𝛽). 

S1.4 Finding the T matrix 
To find an expression for 𝐄𝐄𝑆𝑆𝑆𝑆, we start from 𝐄𝐄𝑆𝑆 as expressed by Eq S6. Following Fucile,9 each of the 
outgoing 𝐌𝐌𝑙𝑙𝑙𝑙

(3) and 𝐍𝐍𝑙𝑙𝑙𝑙
(3) are then rewritten as integrals of plane waves as indicated by Eq. S17. To carry 

out the reflection, the integrands are first divided into s- and p-polarization components following Eq. 
S3. Then, each plane wave is replaced by its reflection in the film surface by taking 𝐤𝐤 → 𝐤𝐤𝐑𝐑 (which 
amounts to taking 𝜃𝜃𝑘𝑘 → 𝜋𝜋 − 𝜃𝜃𝑘𝑘) and multiplying by the appropriate reflection coefficient and a phase 
factor that takes into account the phase lag introduced by the reflection. Specifically: 

𝑒𝑒𝑖𝑖𝑛𝑛1𝐤𝐤∙𝐫𝐫𝐞𝐞�𝜑𝜑
    reflection    
�⎯⎯⎯⎯⎯⎯⎯⎯� 𝑅𝑅𝑠𝑠(𝜃𝜃𝑘𝑘 − 𝜋𝜋)𝑒𝑒𝑖𝑖𝑛𝑛1(𝐤𝐤𝐑𝐑∙𝐫𝐫−2𝑘𝑘𝑘𝑘 cos𝜃𝜃𝑘𝑘)𝐞𝐞�𝜑𝜑, 

𝑒𝑒𝑖𝑖𝑛𝑛1𝐤𝐤∙𝐫𝐫𝐞𝐞�𝜃𝜃
    reflection    
�⎯⎯⎯⎯⎯⎯⎯⎯� 𝑅𝑅𝑝𝑝(𝜃𝜃𝑘𝑘 − 𝜋𝜋)𝑒𝑒𝑖𝑖𝑛𝑛1(𝐤𝐤𝐑𝐑∙𝐫𝐫−2𝑘𝑘𝑘𝑘 cos𝜃𝜃𝑘𝑘)𝐞𝐞�𝜃𝜃. 

(S20) 

The reflected plane waves are then re-expressed in terms of SVWFs as in Eqs. S14 and S15 (using 
Einstein summation):  

𝑒𝑒𝑖𝑖𝑖𝑖𝐤𝐤𝐑𝐑∙𝐫𝐫 𝐞𝐞�𝜑𝜑 = (−1)𝑚𝑚 𝑖𝑖−𝑙𝑙[𝜏𝜏𝑙𝑙𝑚𝑚(𝜃𝜃𝑘𝑘,−𝜑𝜑𝑘𝑘), 𝑖𝑖 𝜋𝜋𝑙𝑙𝑚𝑚(𝜃𝜃𝑘𝑘,−𝜑𝜑𝑘𝑘)] �
𝐌𝐌𝑙𝑙𝑙𝑙

(1)(𝑛𝑛𝑛𝑛𝐫𝐫)

𝐍𝐍𝑙𝑙𝑙𝑙
(1)(𝑛𝑛𝑛𝑛𝐫𝐫)

�, 

𝑒𝑒𝑖𝑖𝑖𝑖𝐤𝐤𝐑𝐑∙𝐫𝐫 𝐞𝐞�𝜃𝜃 = (−1)𝑚𝑚 𝑖𝑖−𝑙𝑙[−𝜋𝜋𝑙𝑙𝑚𝑚(𝜃𝜃𝑘𝑘,−𝜑𝜑𝑘𝑘), 𝑖𝑖 𝜏𝜏𝑙𝑙𝑚𝑚(𝜃𝜃𝑘𝑘,−𝜑𝜑𝑘𝑘)] �
𝐌𝐌𝑙𝑙𝑙𝑙

(1)(𝑛𝑛𝑛𝑛𝐫𝐫)

𝐍𝐍𝑙𝑙𝑙𝑙
(1)(𝑛𝑛𝑛𝑛𝐫𝐫)

�, 

(S21) 

where we have made use of the symmetry relationships 𝜋𝜋𝑙𝑙𝑚𝑚(𝜋𝜋 − 𝜃𝜃,𝜑𝜑) = (−1)𝑙𝑙+𝑚𝑚 𝜋𝜋𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑) and 
𝜏𝜏𝑙𝑙𝑚𝑚(𝜋𝜋 − 𝜃𝜃,𝜑𝜑) = (−1)𝑙𝑙+𝑚𝑚+1 𝜏𝜏𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑). Finally, we combine Eqs. S6, S17, S20, and S21 to obtain: 

 𝐄𝐄𝑆𝑆𝑆𝑆 =  [𝛼𝛼 𝛽𝛽] �𝐹𝐹
00 𝐹𝐹01

𝐹𝐹10 𝐹𝐹11
� �𝐌𝐌

(1)(𝑛𝑛𝑛𝑛𝐫𝐫)
𝐍𝐍(1)(𝑛𝑛𝑛𝑛𝐫𝐫)

�, (S22) 

where 

 

𝐹𝐹𝑙𝑙𝑙𝑙;𝑙𝑙′𝑚𝑚′
𝑝𝑝𝑝𝑝 = 𝐹𝐹𝑙𝑙𝑙𝑙′𝑚𝑚

𝑝𝑝𝑝𝑝

=  −(−1)𝑚𝑚 𝑖𝑖−𝑙𝑙−𝑙𝑙′+𝑝𝑝+𝑞𝑞 � sin𝜃𝜃 𝑑𝑑𝑑𝑑𝑒𝑒−2𝑖𝑖𝑛𝑛1𝑘𝑘𝑘𝑘 cos𝜃𝜃�(−1)𝑝𝑝𝑅𝑅𝑠𝑠(𝜃𝜃)𝜉𝜉𝑙𝑙𝑙𝑙
𝑝𝑝 (𝜃𝜃)𝜉𝜉𝑙𝑙′𝑚𝑚

𝑞𝑞 (𝜃𝜃)
𝜋𝜋

𝜋𝜋
2+𝑖𝑖∞

 

                                                                                            + (−1)𝑞𝑞𝑅𝑅𝑝𝑝(𝜃𝜃)𝜉𝜉𝑙𝑙𝑙𝑙
𝑝𝑝 (𝜃𝜃)𝜉𝜉𝑙𝑙′𝑚𝑚

𝑞𝑞 (𝜃𝜃)� 

(S23) 
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where we are using the notation that 𝜏𝜏𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑) = 𝜉𝜉𝑙𝑙𝑙𝑙0 (𝜃𝜃)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, 𝜋𝜋𝑙𝑙𝑚𝑚(𝜃𝜃, 0) = 𝜉𝜉𝑙𝑙𝑙𝑙1 (𝜃𝜃)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖, and �0 = 1
1 = 0

. In 

obtaining Eq. S23, we were able to evaluate the integral over 𝜑𝜑, which is ∫ exp[𝑖𝑖(𝑚𝑚−𝑚𝑚′)𝜑𝜑] =2𝜋𝜋
0

2𝜋𝜋𝛿𝛿𝑚𝑚,𝑚𝑚′. In other words, different values of 𝑚𝑚 do not couple, so that 𝐹𝐹𝑙𝑙𝑙𝑙;𝑙𝑙′𝑚𝑚′
𝑝𝑝𝑝𝑝 = 0 unless 𝑚𝑚′ = 𝑚𝑚. The 

contour integrals in Eq. S23 can be performed on the real axis by noting that they are of the form 

 � 𝑓𝑓(cos𝜃𝜃)
𝜋𝜋

𝜋𝜋
2+𝑖𝑖∞

𝑒𝑒−2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 cos𝜃𝜃 sin𝜃𝜃 𝑑𝑑𝑑𝑑 =
𝑒𝑒2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
� 𝑓𝑓 �

𝑥𝑥
2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

− 1� 𝑒𝑒−𝑥𝑥
∞

0

𝑑𝑑𝑑𝑑, (S24) 

which permits numerical integration. 

Since 𝐄𝐄𝐼𝐼 and 𝐄𝐄𝑅𝑅 are both plane waves, we will treat them as a single field: 

 𝐄𝐄𝐼𝐼 + 𝐄𝐄𝑅𝑅 = [𝑃𝑃 𝑄𝑄] �𝐌𝐌
(1)(𝑛𝑛𝑛𝑛𝐫𝐫)

𝐍𝐍(1)(𝑛𝑛𝑛𝑛𝐫𝐫)
�. (S25) 

Again using Eqs. S14 and S15 and the same symmetry properties as in Eq. S21, we find that  

 

𝑃𝑃𝑙𝑙𝑙𝑙(𝛽𝛽) = �
𝑖𝑖𝑙𝑙𝜏𝜏𝑙𝑙𝑚𝑚(𝛽𝛽, 0) � (−1)𝑙𝑙+𝑚𝑚 − 𝑒𝑒2𝑖𝑖𝑛𝑛1𝑘𝑘𝑘𝑘 cos𝛽𝛽𝑅𝑅𝑠𝑠(𝛽𝛽)� ,         s-pol

𝑖𝑖𝑙𝑙𝜋𝜋𝑙𝑙𝑚𝑚(𝛽𝛽, 0) � −(−1)𝑙𝑙+𝑚𝑚 − 𝑒𝑒2𝑖𝑖𝑛𝑛1𝑘𝑘𝑘𝑘 cos𝛽𝛽𝑅𝑅𝑝𝑝(𝛽𝛽)� ,   p-pol
 

𝑄𝑄𝑙𝑙𝑙𝑙(𝛽𝛽) = �
𝑖𝑖𝑙𝑙+1𝜋𝜋𝑙𝑙𝑚𝑚(𝛽𝛽, 0) �(−1)𝑙𝑙+𝑚𝑚 + 𝑒𝑒2𝑖𝑖𝑛𝑛1𝑘𝑘𝑘𝑘 cos𝛽𝛽𝑅𝑅𝑠𝑠(𝛽𝛽)� ,   s-pol

𝑖𝑖𝑙𝑙+1𝜏𝜏𝑙𝑙𝑚𝑚(𝛽𝛽, 0) � (−1)𝑙𝑙+𝑚𝑚 − 𝑒𝑒2𝑖𝑖𝑛𝑛1𝑘𝑘𝑘𝑘 cos𝛽𝛽𝑅𝑅𝑝𝑝(𝛽𝛽)� ,   p-pol
 

(S26) 

Note that we have here applied the 𝜋𝜋 − 𝜃𝜃 → 𝜃𝜃 transformation to  𝐄𝐄𝐼𝐼 since its wave vector has a polar 
angle 𝜃𝜃𝑘𝑘 =  𝜋𝜋 − 𝛽𝛽, whereas the polar angle of 𝐄𝐄𝑅𝑅’s wave vector equals the angle of incidence 𝛽𝛽. 

The coefficients of 𝐄𝐄𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐄𝐄𝐼𝐼 + 𝐄𝐄𝑅𝑅 + 𝐄𝐄𝑆𝑆𝑆𝑆 can then be written as 

 [𝑎𝑎 𝑏𝑏] = [𝑃𝑃 𝑄𝑄] + [𝛼𝛼 𝛽𝛽] �𝐹𝐹
00 𝐹𝐹01

𝐹𝐹10 𝐹𝐹11
�, (S27) 

which combined with Eq. S8 gives us 

 [𝛼𝛼 𝛽𝛽] �𝒯𝒯0−1 − �𝐹𝐹
00 𝐹𝐹01

𝐹𝐹10 𝐹𝐹11
�� = [𝑃𝑃 𝑄𝑄], (S28) 

where 𝒯𝒯0 = �𝑢𝑢 0
0 𝑣𝑣� is the Mie scattering matrix given in Eqs. S9 and S10. 
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This means that the T-matrix can be found by matrix inversion: 

 𝒯𝒯 = ��𝑢𝑢
−1 0
0 𝑣𝑣−1

� − �𝐹𝐹
00 𝐹𝐹01

𝐹𝐹10 𝐹𝐹11
��
−1

, (S29) 

which relates 𝐄𝐄𝐼𝐼 + 𝐄𝐄𝑅𝑅 to 𝐄𝐄𝑆𝑆. As discussed below, 𝐄𝐄𝑆𝑆𝑆𝑆 can then be calculated from 𝐄𝐄𝑆𝑆 to find the total 
scattered field 𝐄𝐄𝑆𝑆𝑆𝑆𝑆𝑆. The method can be adapted for other shapes by replacing 𝒯𝒯0 in Eq. S28 with the 
appropriate single particle T-matrix. 

S1.5 Scattering cross sections 
In the far field, outward-traveling multipole waves can be written as spherical waves modulated by a 
VSH: 

 
𝐌𝐌𝑙𝑙𝑙𝑙

(3)(𝑛𝑛𝑛𝑛𝐫𝐫)
𝑟𝑟→∞
�⎯� (−𝑖𝑖)𝑙𝑙

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑛𝑛𝑘𝑘𝑟𝑟
𝚽𝚽𝑙𝑙
𝑚𝑚(𝐞𝐞�𝑟𝑟) , 

𝐍𝐍𝑙𝑙𝑙𝑙
(3)(𝑛𝑛𝑛𝑛𝐫𝐫)

𝑟𝑟→∞
�⎯� 𝑖𝑖(−𝑖𝑖)𝑙𝑙

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝚿𝚿𝑙𝑙
𝑚𝑚(𝐞𝐞�𝑟𝑟) . 

(S30) 

 

The scattered field 𝐄𝐄𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐄𝐄𝑆𝑆 + 𝐄𝐄𝑆𝑆𝑆𝑆 , and while 𝐄𝐄𝑆𝑆 is expressed in terms of the outgoing SVWFs, our 
expression (Eq. S22) for 𝐄𝐄𝑆𝑆𝑆𝑆 is in terms of the travelling SVWFs 𝐌𝐌𝑙𝑙𝑙𝑙

(1) and 𝐍𝐍𝑙𝑙𝑙𝑙
(1) which do not satisfy the 

radiation condition at infinity, and for which Eq. S30 therefore is not valid. However, Bobbert and 
Vlieger7 showed that in the far-field in direction 𝛽𝛽, 𝐄𝐄𝑆𝑆𝑆𝑆 can be approximated as a spherical wave 
originating from the mirror image of the sphere as reflected by the film surface, and modulated by the 
reflection coefficient 𝑅𝑅𝜎𝜎(𝛽𝛽). We then obtain that in the far field 

 𝐄𝐄𝑆𝑆𝑆𝑆𝑆𝑆(𝐫𝐫)
𝑟𝑟→∞
�⎯�   𝐅𝐅(𝐞𝐞�𝑟𝑟) ⋅

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
= (−𝑖𝑖)𝑙𝑙[𝛼𝛼 𝛽𝛽] � 𝚽𝚽

(𝐞𝐞�𝑟𝑟) + 𝚽𝚽(𝐑𝐑)(𝐞𝐞�𝑟𝑟) ⋅ 𝑒𝑒2𝑖𝑖𝑛𝑛1𝑘𝑘𝑘𝑘 cos𝛽𝛽

𝑖𝑖𝚿𝚿(𝐞𝐞�𝑟𝑟) + 𝑖𝑖𝚿𝚿(𝐑𝐑)(𝐞𝐞�𝑟𝑟) ⋅ 𝑒𝑒2𝑖𝑖𝑛𝑛1𝑘𝑘𝑘𝑘 cos𝛽𝛽
� ⋅
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
. (S31) 

 

Fucile et al.9 points out that this approach amounts to neglecting the effect of some fields that 
propagate along the surface, and offer an exact method based on mathematical translation the SVWFs. 
In our system, such waves are known as surface plasmon polaritons (SPPs) and can be quite important. 
However, the coupling to SPPs is fairly inefficient at the wavelengths around the resonances we are 
interested in, and also varies slowly with wavelength. For these reasons, it should have only a minor 
impact on the shape of the calculated extinction spectra, and accordingly we have not implemented the 
Fucile’s more computationally costly approach here.  

The experiments detailed in the paper measure the extinction of the reflected light due to absorption 
and scattering by the spheres located near the surface. As pointed out by Johnson,3 the optical theorem 
yields that for our situation, the scattering cross section is 

 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 = −
4𝜋𝜋
𝑘𝑘2

Re{𝐄𝐄𝑅𝑅0∗ ⋅ 𝐅𝐅(𝜃𝜃 = 𝛽𝛽,𝜑𝜑 = 0)}, (S32) 

 

where 𝐄𝐄𝑅𝑅0∗  is the complex conjugate of the amplitude of the reflected plane wave 𝐄𝐄𝑅𝑅, and 𝐅𝐅(𝛽𝛽, 0) is the 
scattering amplitude as defined by Eq. S31, taken in the direction of propagation of 𝐄𝐄𝑅𝑅. 
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𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 calculated in this fashion only approximates the situation in our case, as it requires that 𝑑𝑑 ≥ 𝑎𝑎, 
which is not true for spheres that are partially embedded in the PEM film. We are however able to carry 
out the calculation for the extremal cases of the sphere resting on the PEM film (corresponding to 𝑑𝑑 =
𝑎𝑎) and the sphere being fully immersed in the film (corresponding to taking 𝑛𝑛1 = 𝑛𝑛2 and using 𝛽𝛽′ as 
defined following Eq. S19 as the angle of incidence). As discussed in the next section, this uncertainty in 
index distribution leads to systematic uncertainties in our measurements of 𝑑𝑑. However, it does not 
generate significant relative errors, and so has little effect on our conclusions. 

S2 Model validation 
In this section we will detail a few additional ways we can validate our numerical model that 
complement the discussion in the main paper, and that will put some constraints on the film index of 
refraction. This in turn will allow us to better define systematic errors in the gap distances 𝑑𝑑 to the 
extent these are due to a poorly determined film index of refraction. 

The accuracy of the implementation of the model laid out in the previous section is first of all validated 
by Fig. 6 in the main paper, which shows good agreement between our model and both the model and 
experimental data presented in Ciracì et al.,10 without invoking any adjustable parameters. However, 
since the films we use differ from those in that work, we still need to figure out the correct values for 
the indices of refractions 𝑛𝑛1 and 𝑛𝑛2 of the film respectively to the side of and below the gold 
nanospheres. In the main paper, we have chosen to take 𝑛𝑛2 = 1.45, which is consistent with the index 
of refraction obtained by Rubner et al.,11 which treats precisely the kind of pH-responsive films we are 
working with here, and with our own ellipsometry measurements. Ciracì, on the other hand, specifies a 
much higher index of refraction of 1.80 for their films. While PAH/PSS PEMs assembled at near neutral 
pH values should have higher index of refraction than our films, 1.80 is implausibly high, with multiple 
groups finding values in the range of 1.45 – 1.55, even for dried films.12-15 But according to Ciracì, their 
high value of 𝑛𝑛2 is required to obtain a good fit to their data. This is likely a result of the assumption that 
their gold particles ride on top of the films without any embedding or compression. Since 𝑑𝑑 increases 
with 𝑛𝑛2 for a given spectrum, such an assumption, if it is incorrect, will lead to an overestimation of 𝑛𝑛2. 

To determine appropriate indices of refraction for our film, and their consequence for the measured 
values of 𝑑𝑑, we will more closely examine two aspects of our data. First, we will treat the fits to the data 
points shown in Fig. 7 in the main paper, where gold nanospheres were deposited onto a single PAH 
layer that in turn was deposited on thiolated alkane acid SAMs of varying thicknesses. Second, we will 
examine a secondary feature visible in both our model and data, specifically a turnover in the identity of 
the main plasmon resonances for 𝑑𝑑 values around 10 nm. 

S2.1 SAM Thickness data 
Since our model is quite complicated, we will here make use of an observation by Hill et al.16 that the 
relationship between the plasmon resonance wavelength 𝜆𝜆𝑠𝑠𝑠𝑠 and 𝑑𝑑 is well modeled by a simple power 
law: 

 𝜆𝜆𝑠𝑠𝑠𝑠 ≈  𝜆𝜆0 ⋅ 𝑑𝑑𝛼𝛼 , 
 

(S33) 

Figure S2 replots the contents from Fig. 7 in the main paper, with a power law fit to the average model 
shown in green, corresponding to 𝜆𝜆0 = 880 nm and 𝛼𝛼 = −0.125. Clearly, the power law fit is quite good 
for 𝑑𝑑 < 20 nm, and excellent for 𝑑𝑑 < 8 nm. This approximation allows us to characterize each 
theoretical calculation and data fit with just two parameters, which in turn allows us to constrain our 
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model by separately fitting to the experimental data in Fig. 7 (or S2) and to the weighted numerical 
model applied in the main paper. Note that Eq. S33 is different from the so-called plasmon ruler 
equation,17, 18 and clearly is not accurate for large values of 𝑑𝑑. However, over the range under 
consideration here, the plasmon ruler equation is no more accurate a description of the data than Eq. 
S33, but is harder to use in the analysis that follows. Eq. S33 is also used in Ciracì et al.,10 and its use here 
thus allows for easy comparison of our results with those in that highly relevant paper. 

 

Fig. S2: Theoretical plots and experimental data for plasmon resonances in 80 nm gold 
nanospheres adsorbed onto a film consisting of a single monolayer of PAH on top of SAMs of 
varying thicknesses. The solid black line indicate the calculated plasmon resonance 
wavelength of the weighted numerical model used in the main paper, where it is presented in 
Fig. 7. The green dashed line is a power law fit to this model in the range of 𝑑𝑑 ≤ 7 nm, with 
𝜆𝜆0 = 878.5 nm, and 𝛼𝛼 = −0.1228. The magenta dotted line represents a model obtained by 
requiring that 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1.2 nm in all cases (see section S2.3 for discussion). Experimental data 
is indicated with black squares, for films assembled onto charged thiol SAMs of varying 
thickness (3 carbons, 11 carbons, and 16 carbons) or directly on the gold surface, under the 
assumption that 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.5 nm. 

Turning first to the experimental data, it should be fitted to the model 

 𝑦𝑦 = 𝛽𝛽0 + 𝛼𝛼 ln(𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑥𝑥), (S34) 

where the dependent variable 𝑦𝑦 = ln 𝜆𝜆𝑠𝑠𝑠𝑠, 𝛽𝛽0 = ln 𝜆𝜆0, and the independent variable 𝑥𝑥 is the known 
thicknesses of the thiol SAM films (0.0, 0.27, 1.22, and 1.9 nm). This model is nonlinear in 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, so to 
make progress, we take 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑑𝑑0 + 𝛿𝛿, and expand around a best-guess value for 𝑑𝑑0. The resulting 
model is 

 𝑦𝑦 = 𝛽𝛽0 + 𝛼𝛼 ln(𝑑𝑑0 + 𝑥𝑥) +
𝛽𝛽1

𝑥𝑥 + 𝑑𝑑0
+ 𝑂𝑂 ��

𝛽𝛽1
𝑥𝑥 + 𝑑𝑑0

�
2

�, (S35) 
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where the parameter 𝛽𝛽1 = 𝛼𝛼𝛼𝛼. The data can now be fit to Eq. S35 with standard linear regression. 
Unfortunately, over the limited range of SAM thicknesses available to us, this model is poorly 
conditioned, preventing us from determining all three parameters (𝛼𝛼,𝛽𝛽0, and 𝛽𝛽1) from a fit to the data. 
However, if we hold one parameter fixed, the two others can be determined with reasonable 
confidence. In other words, the best fit to the data establishes a functional relationship between the 
parameters, which is plotted in Figure as a solid black line in the 𝜆𝜆0-𝛼𝛼 plane. Each point on the line also 
corresponds to a specific value of 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, which is indicated by labelled ticks along the line. 

 

Fig. S3: Plot of best fit values of the power law parameters 𝛼𝛼 and 𝜆𝜆0 obtained when fitting 
to the experimental data in Figure 7 and S2 (black solid line), and our numerical model 
(colored lines) under assumptions of various values of 𝑛𝑛1 and 𝑛𝑛2. The labelled ticks along 
the black line indicate the most likely values of 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for the measured films. 

Turning next to our numerical model, we assume that the nanoparticle diameter equals 80 nm to good 
accuracy, and so keep that parameter fixed, while varying 𝑛𝑛1 and 𝑛𝑛2. To cover the full range of plausible 
indices of refraction, we ran the calculations for values of 𝑛𝑛2 between 1.33 and 1.80, with the restriction 
that 1.33 ≤ 𝑛𝑛1 ≤ 𝑛𝑛2. Each simulation run was then fit to Eq. S33, yielding the values of 𝛼𝛼 and 𝜆𝜆0 that 
are plotted in Figure S3. We have restricted the fits to values of 0.7 nm ≤ 𝑑𝑑 ≤ 7 nm, both because 
𝜆𝜆𝑠𝑠𝑠𝑠(𝑑𝑑) most closely follows a power law in this region, and because it corresponds to the region of the 
fitted experimental data.   

From these fits, we can make two immediate observations about our model. First, all fits fall on or very 
close to a single line, even though 𝑛𝑛1 and 𝑛𝑛2 are two independently varied parameters. There is in other 
words a well-determined relationship between 𝛼𝛼 and 𝜆𝜆0 that appears to be largely independent of the 
distribution of indices of refraction around the nanosphere. Second, the possible values for 𝛼𝛼 fall within 
a narrow range between -0.120 and -0.125 for all realistic values of 𝑛𝑛1 and 𝑛𝑛2 applicable to our samples. 
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The relationship between 𝛼𝛼 and 𝜆𝜆0 prescribed by our model can to good approximation be written as 

 𝛼𝛼(𝜆𝜆0) ≈ −0.1187 − 2.470 ⋅ 10−5 ⋅ (𝜆𝜆0 − 800 𝑛𝑛𝑛𝑛) − 1.586 ⋅ 10−7 ⋅ (𝜆𝜆0 − 800 𝑛𝑛𝑛𝑛)2. (S36) 

Using this as a constraint on Eq. S34, the model becomes well conditioned, and we obtain that 𝛼𝛼 ≈
−0.1215, 𝜆𝜆0 ≈ 876.5 nm, and 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≈ 1.48 nm for the measured films. Unsurprisingly, this is very close 
to the intersection of the black and green curves in Figure S3, and also close to the power law 
parameters given in the caption of Figure S2 for the numerical model applied in the main paper. That 
choice of model is therefore validated by our analysis, which make only weak assumptions about the 
distribution of indices of refraction surrounding the nanosphere. 

The 1 𝜎𝜎 (68.3%) variance of the fit is 0.21 nm in 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, which is the parameter that interests us the most. 
The 2 𝜎𝜎 (95.4%) variance is 0.92 nm, but this places the values of 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 outside the limits of what is 
physically possible within the constraints of the model. Specifically, we know that neither 𝑛𝑛1 nor 𝑛𝑛2 can 
be less than 1.33, the index of refraction of pure water, and this slightly raises the lower bound for 
outside the limits of what is physically possible within the constraints of the model, to 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.50 ±
0.90 nm. Taking a step further, a reasonable upper bound for possible indices of refraction is 𝑛𝑛1 ≤ 1.45 
while 𝑛𝑛2 ≤ 1.60, and it is highly unlikely that 𝑛𝑛2 is any smaller than 1.39.11 With this, we obtain that 

𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.5+0.7
−0.4 nm.  

To summarize, we have that 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.48 ± 0.21 nm (or ±14%) with a 68% confidence, and 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
1.50 ± 0.90 nm (or ±60%) with 95% confidence. Taking into account our knowledge of PEM indices of 

refraction, the maximum errors are reduced to +0.7
−0.4  nm, or +46

−20 %. Since we are fitting to a power law, 

the same relative error (14%, 60%, etc) can be assumed for the model’s full range of validity.  

This is a systematic error that affects all our data. As pointed out in the main manuscript, the inaccuracy 
in measuring 𝜆𝜆𝑠𝑠𝑠𝑠 is in most cases no more than about ±5 nm or about 0.7%. From Eq. S33 we see that 

the relative error in our model approximately obeys Δ𝑑𝑑
𝑑𝑑

= 1
𝛼𝛼
Δ𝜆𝜆𝑠𝑠𝑠𝑠
𝜆𝜆𝑠𝑠𝑠𝑠

 , or about 6%. In addition, 

inhomogeneous broadening of the plasmon peak due to variations in 𝑑𝑑 within each sample may also 
contribute to variations in the plasmon peak position and are likely of a similar magnitude. All told, we 
estimate a conservative upper bound of ±10% random error in our data. If we compound both 
systematic and random error estimates, we find total errors of +48% and -23%. 

S2.2 Gap plasmon anti-crossing 
In addition to the plasmon resonance peak, the observed extinction spectra and our calculations both 
feature several secondary features. Many of these likely correspond to higher order modes and may 
therefore show heightened sensitivity to poorly controlled or unknown parameters, such as deviations 
from perfect sphericity and surface smoothness, making it hazardous to rely on them to draw 
conclusions about the system. However, we will here analyze one such feature—the anti-crossing 
behavior between two different gap plasmon modes that is seen to take place in both data and 
calculations for 𝑑𝑑 ∼ 10 nm—that is of first order importance to the gap distance measurement, and is 
fact mainly responsible for the deviations from a simple power law for 𝑑𝑑 < 20 nm seen if Figs. 7 and S2. 

In Fig. S4(a), we plot calculated extinction spectra as 𝑑𝑑 is varied between 2 and 20 nm in the particle on 
film (𝑛𝑛1 = 1.33,𝑛𝑛2 = 1.45) scenario. We can see very clearly that as the nanosphere is brought closer 
to the surface, the main gap plasmon resonance is gradually being supplanted by a second resonance 
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that emerges on its long wavelength flank, overtaking it in importance around 𝑑𝑑 ≈ 10 nm. As is shown 
in Fig. S4(b), the same effect is visible in the experimental data, where spectra corresponding to some of 
the same values 𝑑𝑑 as in Fig. S4(a) are plotted for comparison. The measured spectra appear shifted 
somewhat to longer wavelength due to the fact that we are fitting the peak position to an average of 
“on film” and “in film” (𝑛𝑛1 = 𝑛𝑛2 = 1.45) calculations, and are inhomogeneously broadened, but 
otherwise agree well with the calculated line shapes. The only modification we have made to these spectra 
is a simple scaling so that the peak height of calculated and measured spectra are the same. The scale 
factors used are indicated in the lower right corner of the plot in Fig. S4(b), and it is worth noting that they 
vary relatively little between spectra, likely reflecting a good uniformity in particle density from sample to 
sample. The observed anti-crossing occurs between two similar gap plasmon modes where, as shown in 
Fig S4(c), the bulk of the electromagnetic intensity is concentrated in the sphere-substrate gap region. 

Fig. S4: (a) Calculated extinction spectra showing the anti-crossing between gap plasmon 
modes in a sample with 𝑛𝑛1 = 1.33 and 𝑛𝑛2 = 1.45. (b) Selected spectra of the anti-crossing 
region labelled by value of 𝑑𝑑 derived from spectral peak positions. The spectra have been 
rescaled by the factors in the lower right corner of the plot. (c) The intensity plots show the 
intensity distributions for the two gap plasmon modes, calculated at the indicated 
wavelengths and sample conditions. (d) Plot of peak position for the two gap plasmon 
modes along with the joint fit used to model the data. The dominant mode at each value of 
𝑑𝑑 is plotted as a solid lines. 
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Both modes are predominantly composed of vector spherical harmonics with 𝑚𝑚 = 0 and |𝑚𝑚| = 1, but the 
short wavelength mode (at 625 nm in Fig. S4(c)) is dominated by |𝑚𝑚| = 1 harmonics, while the longer 
wavelength mode is mainly made up of 𝑚𝑚 = 0 harmonics. Since the latter are more concentrated along 
the vertical axis, the long wavelength gap plasmon is better able to concentrate the light within the gap, as 
is clear from the insets in Fig. S4(c). 

In Fig S4(d), we have plotted the peak resonance position of the two gap plasmon modes vs 𝑑𝑑 for the 
“on film” case. It is clear that power laws as in Eq. S33 are excellent models for both modes throughout 
the examined range. However, since noise and inhomogeneous broadening make it difficult to extract 
both peak positions simultaneously from the measured spectra, we have instead opted to fit the 
resonance to a single peak, with results in a joint fit that is indicated by the blue dashed line in Fig. S4(d). 
This joint fit is identical to the blue trace in Fig. 7 and results in the dip below the power law behavior 
evident in Fig. S2. 

 

Fig. S5: Plot of 𝑑𝑑 and 𝜆𝜆𝑠𝑠𝑠𝑠 at the gap plasmon crossover point calculated at various values of 
𝑛𝑛1and 𝑛𝑛2 and compared to the crossover position seen in the measured spectra. 

The similarities between the calculations and data in Fig S4(a) and (b) lend further credence to our 
model, but we can also use the anti-crossing to provide a more quantitative validation of the 
calculations. This is attempted in Fig S5, where we plot the calculated values of 𝑑𝑑 and 𝜆𝜆𝑠𝑠𝑠𝑠 (calculated 
through a joint fit) at the point of crossover between the two modes, which we take to occur when they 
have the same apparent peak height in the calculated spectra. This is done for the same set of index of 
refraction values as were used in Fig. S2. The crossover point as it appears in the data is shown with a 
±10 nm uncertainty as a beige vertical stripe. The model chosen in the paper is consistent with the 
observed crossover point, although so are a number of other index of refraction distributions. We can 
also use S5 to deduce a value of 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.75 nm ± 30%, which is thus deduced independently of but 
consistent with the result found in section S2.1. 

S2.3 Measuring 𝒅𝒅𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 
The plot in Fig. 15 of the main paper shows that the presence of a charged SAM below the PEM leads to 
an excess in polymer deposition in the films that we have designated by Category A and B. At least, that 
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is, if we believe our numerical model. By now, that model is fairly well validated, but it is nonetheless 
worthwhile to end this Supplement by pointing out what would be required of a model that confirms 
our naïve expectation that 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 should equal a constant that reflects the true thickness of the free 
SAM monolayer, or about 1.2 nm. Since Fig. 15 indicates a fairly well-defined relationship between 
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and the total measured 𝑑𝑑, we can in fact use our data to extract a model that conforms to the 
notion that 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 1.2 nm. This model is plotted above in Figure S2 as a dotted magenta trace. For 
thinner films, the observation even under the default model in the paper is that 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 1.2 nm, so in 
this region the two models do not differ substantially. However, for film thicknesses in excess of about 5 
nm, the difference becomes large, with the constant 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 model deviating substantially from a power 
law. This behavior is fundamentally in conflict with our model as well as all previously reported 
observations. We can therefore conclude that the excess polymer deposition we observe on the charged 
SAM films is real and not an artifact of an incorrect choice of modelling parameters. 
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