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ABSTRACT

Application of composite materials to structures has presented the need for engineering analysis
and modeling to understand the failure mechanisms. Unfortunately, composite materials,
especialy in atubular geometry, present a situation where it is difficult to generate simple stress
states that allow for the characterization of the ply-level properties. The present work focuses on
calculating the mechanical characteristics, both on a global and local level, for composite
laminate tubes. Global responses to axisymmetric test corditions (axia tension, torsion, and
internal pressure) are measured on sections of the material. New analysis techniques are
developed to use the global responses to calculate the ply level properties for tubular composite
structures. Error analyses are performed to illustrate the sensitivity of the nonlinear regression
methods to error in the experimental data. Ideal test matrices are proposed to provide the best
data sets for improved accuracy of the property estimates. With these values, the stress and strain
states can be calculated through the thickness of the material, enabling the application of failure

criteria, and the calculation of failure envelopes.
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1 Introduction

Utilization of materials for any application requires knowledge of the mechanical properties,
more specifically the engineering material constants describing the elastic behavior of the
material. For isotropic materials, only three independent engineering constants (E, G or n, and
a) are needed to describe the elastic response of the material to mechanical and thermal loads.
With the advent of more advanced composite materials, many of which cannot be described as
isotropic, more constants are needed to describe the behavior. For most composite materials, 12
engineering constants (E;, B, Es, Gi2, Gi3, Gz, N12, M3, Np3, a1, a2, and a3) are required.
Measuring these values requires the testing of numerous samples with several different test
procedures. These procedures are designed to generate a constant or nearly constant state of
stress throughout the material, reducing the number of elastic constants needed to describe the
deformation for the given loading condition to the smallest number possible. Thisis usualy
done by using ssmple geometries, usually planar samples, to measure 1 to 3 engineering
constants simultaneoudly (as in an longitudinal modulus test — Ez, ni2, and ny3 can be measured
simultaneoudly). In anideal situation, with the proper test matrix and procedures, all the
material constants can be calculated, given enough tests and sample materials.

A problem arises if the situation is not ideal, and, for example, the samples cannot be made
into planar geometries. With a change in geometry from planar to cylindrical, the behavior
cannot be described by using afew elastic constants at atime. For a composite tube (a
laminated, anisotropic system), |oad/displacement relations become geometrically nonlinear,
turning nearly all displacements into a function of severa elastic constants. It becomes difficult,
if not impossible, to produce a loading condition that will generate a simple stress state, which
can be described by a small number of elastic constants. Characterization of the mechanical
response is limited to the response of the structure as a whole, and not that of the constituent
materia (ply-level properties of the composite).

With thermoset and thermoplastic composite materials, the properties are generally well
documented. The use of “prepreg” materials allows for the fabrication of test samples from the
same materia as the tubular part. The problem arises when the fabrication method does not

allow for the development of traditional test samples to characterize the material, asis the case
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with many new ceramic matrix composite materials. Recent work at the Materials Response
Group at Virginia Tech has been on characterizing several composite materials fabricated with
new procedures that were developed for tubular samples that do not have planar counterparts for
characterization [1-5]. The projects have been complicated by the fact that the materials are
fabricated in tubular geometries, with each tube being in a separate “batch”, posing the
possibility of different properties for each sample. Moreover, the properties through the
thickness and sometimes in the plane of the surface may not be constant, i.e., the materials may
be point-wise non-uniform. The processes were not able to fabricate identical materials to
characterize the elastic properties, and the global response would not provide enough
information to develop accurate models for use in later applications.

The problem has been further complicated by alack of literature reporting on methods to
characterize the elastic properties of composite materialsin tubular geometries. There exists a

large discrepancy in the approaches and procedures.

1.1 Objectives

There are three primary objectives for this dissertation. They address the need for
experimental and analytical methods for characterizing the mechanical properties of composite
tubes.

1. Develop an experimental test matrix to measur ethe mechanical characteristics of
compostetubes. By this, it isintended that the global response (response of the tube as a
whole) of the sample be determined by a series of tests. Axial tension, compression, torsion,
and internal pressure tests were chosen to characterize the material, both in elastic response
and for strength.

2. Develop/refinean analysisfor calculating the ply-level propertiesfor the composite
from the data found by thefirst objective. Currently, no systematic method exists for
calculating the ply-level engineering constants (Ex, Ez, Ez, Gi2, 12, 13, and nys) for a
composite tube. A method, initially utilized with limited success, has been modified, and

used to calculate the engineering constants from the results of the first objective.



3. Determinefailure modesand calculatefailureenvelopesfor thismaterial . With the
values from the second objective, the stress and strain in the material can be calculated at the
failure loads measured from the results of the first objective. With the state of stress at

failure known for different loading conditions, failure envelopes can be cal cul ated.

1.2 Materials

The focus of thiswork is on characterizing the elastic response of different composite tubes.
There are three composite materials and one control sample used in this investigation. The first
material is a candidate hot gas filter supplied by McDermott Technologies, Inc. of Lynchburg,
Virginia. The second materia is an alumina fiber reinforced silicon carbide (SiC) composite
material supplied by Oak Ridge National Laboratory (ORNL). The third composite materia is a
silicon carbide reinforced silicon carbide composite from Honeywell Advanced Composites, of
Wilmington, Delaware. The control sample is an AlSI Type 304 stainless steel, chosen because
its properties are well documented and should be similar to the properties of the silicon carbide
materials.

In the following sections the background and fabrication procedures of the different
materials will be explored. The McDermott material is not a structural composite material and
has a specific application, so alittle more background is given. The ORNL tubes were
developed in a scale up of a new fabrication technique for ceramic composite materials, and sent
to Virginia Tech for characterization of the mechanical properties. The description will focus
less on potentia applications but more on the fabrication and testing. A limited background will
be given on the tubes from Honeywell since the materials were donated and much of the

fabrication information is proprietary.

1.2.1 McDermott Technologies Hot Gasfilter

An effort by the Department of Energy to improve efficiency and reduce emissions of
fossil fuel based power plants has focused on development of improved plant design and
technology. One area of thisemphasisis directed at replacing the multiple processes currently
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used to remove particulate from hot gas streams. Coa combustion generates large amounts of
particulate from the noncombustible constituents and incomplete combustion products. These
particulates must be removed to prevent excess wear on the gas turbines and to meet
environmental emission standards.

Recent advances in the design of Pressurized Fluidized Bed Combustion (PFBC) and
Integrated Gasification Combined Cycle (IGCC) technologies have utilized hot gas filters to
remove particulate. It is believed the improvements will lead to operating efficiencies in excess
of 50%, compared to 35% for conventional technologies. Increasesin efficiency and economic
savings will be due to the introduction of new combustion processes and plant designs that use
hot gas filters. The filters would work in conjunction with or in place of conventional particulate
removal systems, such as high efficiency cyclones and el ectrostatic precipitators, to remove
particulate from the hot gas stream and meet environmental emission standards [6-20]. Benefits
of the filters are: higher operating temperatures and efficiency, lower downstream particul ate
concentrations (especially at the smaller particle sizes), the resulting reduction in wear on
downstream components, a reduction in complexity for hot gas cleaning, and reduced
maintenance of plant components[6,8-12].  Currently, multiple high efficiency cyclones
remove greater than 98% of the particulate, but they cause a drop in pressure and cannot operate
at optimum temperature ranges. The small amount of particulate that is not removed erodes and
fouls the blades in the turbines and other downstream components, requiring the use of less
efficient, more damage tolerant equipment. The new designs use the hot gas filters directly in
the hot gas stream, operating at higher temperatures and showing a lower pressure drop that in
the conventional design. The filters remove more particulate (>99.8%), eliminating the need for
cyclones or electrostatic precipitators, and alowing for the use of high efficiency turbines. A
schematic of the Power Systems Development Facility (PSDF), located in Wilsonville, AL, with
four different filtration units utilizing hot gas candle filtersis shown in Figure 1-1 and Figure 1-2
[12]. On the left side of Figure 1-1, coal and limestone are fed into a crusher and sent to the two
parts of the facility. The upper branch is a second generation PFBC, while the lower branch isa
gasification system. Each branch uses hot gas filters to remove particul ate from the different hot
gas streams.  Figure 1-2 contains the schematic of the hot gas filtration units (highlighted regions
in Figure 1-1). The hot gas from the combustion of the fuel (coa or other fossil fuels) enters
through the side of the housing, passes through the filter from the outer surface to inner region,
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depositing any particulate, and exits the top of the assembly. As the deposit, or cake, thickens,
the filter begins to clog, reducing the airflow. Periodic cleaning is required to maintain capacity.
A back pulse cleaning cycle, which consists of a pulse of air forced through the filter in reverse,
is used when the airflow through the filters falls below a set level. The pulse breaks the
particul ate cake formation, as seen in schematic diagram located in Figure 1-3. The particulate

materia falls to the bottom of the unit, and is removed.
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In-service conditions for the filters are listed in Table 1-1. The ranges in the particle size and
dust loading are due to different designs or operating conditions. Some designs use a cyclone
prior to the filtration to reduce the frequency of filter cleaning cycles. It is uncertain if this will
be used in the plant designs, since some research points to improved performance without the
cyclone. The cyclone removes the larger particulate, leaving the finer particles for the filter.
The smaller particulate imbeds in the filter more and develops a cake that is more difficult to

remove, decreasing the effectiveness of the cleaning cycles.

Table1-1. Operating Condition for Hot GasFilter[8,9]

Temperature Pressure Dust Loading Mean Particle | Pressure Drop
(C) (MPa) (Ppm) Size (im) (kPa)
650 to 900 098to1.1 500 to 18000 1.3t022 28-41




Current materials and designs of the filters should allow for long operating lives, but
application of these materials to actual service conditions has lead to some premature failures.
Due to the difficulty in observing the filters in-service, many of the reasons for failure of the
materials are attributed to conditions that are an educated guess as to actual conditions at failure.
A maority of the failures in the literature have been attributed to plant upset conditions -
variations, some very rapid and extreme, in the plant conditions. The startup of the combustors
and turbine trip conditions result in large pressure and temperature gradients, and have been
attributed to failure of the materials [10,11].

Failures during normal plant conditions have been attributed to thermal shock resulting
from the back pulse cleaning cycles and ash bridging. The air pulse used in the cleaning cycleis
cooler than the hot gas stream (in some cases the air is near ambient temperatures). The very
rapid influx of the cool gas generates large thermal gradients within the filter. Many monolithic
filters do not survive this event, while the composite materials usually fair better. The cleaning
of the filtersis an important process to the operation of the plant. It is needed to maintain proper
airflow and to maintain the filters. Without proper or complete cleaning, the cake builds and can
break the filters. A number of reasons for this breakage have been proposed in the literature.
The most common observed condition is ash bridging, where incomplete cleaning of the filters
leads to an ash buildup, which eventually connects two adjacent filters. This connection places
added stresses on the filters, breaking them from the tube sheet near the flange. In some cases,
the filters were bent by the ash bridge and ultimately broken while in other conditions falling
sections of ash buildup were blamed for breaking the filters.

Application of the filters to test facilities has yielded excellent filtration performance, but
they have experienced several mechanical failures. These failures have been attributed to
excessive stresses induced during plant upset conditions, thermal shock, and insufficient strength
for certain in-service conditions. In order to improve the design of the materials and develop
methods for life predictions, the baseline material properties need to be measured. With
composite tubes, there is no way to measure the engineering constants directly, due to the

complexity of the geometry. This body of work was developed to address these issues.



1.2.2 Fabrication of the M cDer mott Technologies Hot Gas Filter

The candidate design from McDermott Technologies, Inc. (MTI), of Lynchburg, VA, is
an advanced oxide-oxide ceramic composite. It consists of two different aluminum oxide fibers
wound and deposited around a round mandrel and bonded together to form a highly porous
structure. The structural component is Nextel 610 fibers (>99% alumina) wound onto a porous
mandrel while chopped a Saffil fiber (95 — 97% alumina, 3 5% silica) dlurry is applied. The
water from the slurry is removed by applying a vacuum to the mandrel, drawing it through the
green structure. The two components are bonded together by an alumina bond agent deposited
using sol-gel processing. The reaction process is as follows:

AIOOH ® g- AL,O,® d- ALO,® q- ALO,® a- AlQ, (1.2
The oxyhydroxide of aluminum, or boehmite, transforms to alumina between 450 and 580C1C.
This deposits alumina throughout the filter, bonding the Saffil and Nextel fibers, imparting some
structural integrity. Thefina product istypically afilter 1.5 m in length, 5 cm inner diameter

and 6 cm outer diameter, with an approximate porosity of 70% [11]. The average dimensions of

the McDermott samples are in Table 1-11.

Tablel-11. Dimensionsof the M cDermott Technologieshot gasfilter samples

Sample | Thermal wall Outer Inner Cross-sectional | Polar Moment
Exposures | Thickness | Diamter | Diameter Area of Inertia
(mm) (mm) (mm) (mn) (mm®)
7-2-28 0 4.85 59.41 49.80 831.80 6.24E+05
7-5-13 103 4.93 58.96 49.11 836.52 6.16E+05
7-6-12 104 5.06 59.41 49.29 863.95 6.44E+05
7-6-16 105 5.39 59.98 49.19 924.76 6.96E+05

Inspection of the tubes revealed that the outer surface winding angles were not +45°. The
outer fiber tows were closer to £50°. The reason for the change in the winding angles was found

in the thesis by George [21]. When afilament winding procedure is programmed using constant

winding parameters, namely the transverse movement rate, X', and the mandrel rotation rate, q’,

9



adjustments are not made for the change in thickness for each added layer. For the first layer of
the composite the rates were chosen so that the transverse length is equal to the circumferential
length of fiber, which will give a+45° structure. With each layer the radius is increased,
changing the circumferential length of fiber per unit time. Thisisillustrated in Figure 1-4, which
isa2-D projection of the surface of the tube, with Rq being an arc length of the circumference

and X being distance along the axis.
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Figurel-4. Relationship for ply angle and winding parameters

From this, the winding angle, f , is:

f =tan™ @Q_) (1.2
xC¢ g
For a +45° winding angle, the transverse rate is equal to the product of the initial radius, R, and
the rotation rate:
x¢= Rq ¢ (1.3)
By combining these two, an expression can be found for the winding angle as a function of the

radius for a +45° structure.

L,8R0
f=tan"c—+ (1.4)
eR o
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Measuring the angles of the tows from the etchings of the inner and outer surfaces of the
McDermott filters confirms this behavior. The inner surfaces were found to be +45°, while the
outer surfaces were ~+50°, which matches the calculated value of £50.5°.

Several samples of the McDermott filters were characterized. The initial work was to
determine the effect of the back pulse cleaning cycle on the mechanical properties of the
material. To simulate the cleaning cycle' s thermal shock event, the samples were placed in a
furnace, operating at 870°C, and exposed to an ambient temperature air pulse. The samples
tested were in the as-fabricated condition as well as after being subjected to 1, 10, and 100

thousand cleaning cycles.

1.2.3 Al,04/SIC Tube from ORNL

The materials from Oak Ridge National Laboratory are part of a project aimed at developing
advanced ceramic composite materials for use in high temperature applications for future fossil
fuel based power plants. Fabrication of these materials has proved to be difficult and costly, so
research is being performed to develop new fabrication procedures. One such fabrication
technique is chemica vapor infiltration (CV1) in which the matrix material is deposited into the
fiber performs. This allows for the formation of several different matrix and fiber systems
without requiring the high processing temperatures seen in other processes. Unfortunately,
standard CVI procedures require infiltration times that can be too long to be considered
economically feasible.

Development of new processes has resulted in greatly reduced infiltration times,
overcoming many of the problems of previous CV1 techniques. The previous methods, such as
isothermal/isobaric CVI, rely upon diffusion processes to deposit the matrix material. Low
deposition rates were used to prevent large density gradients caused by the outer surfaces
becoming fully dense, and not permitting infiltration to the inner portions. This resultsin long
deposition times or high porosity. Researchers at Oak Ridge National Laboratory (ORNL) have
developed a new method to overcome the problems of long process times or large density
gradients [22-25]. The forced flow-thermal gradient process (FCVI) utilizes atemperature

gradient to change the deposition rates from the inner preform to the outer surface. The
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deposition times are reduced from a period of weeks to that of only hours, allowing the
formation of nearly dense composites without density gradients.

The process has been used to fabricate planar samples, and it has been scaled-up to
produce samples with a tubular geometry. To determine the effectiveness of the process, the
completed materials have been sent out for material characterization. Much of the previous
mechanical testing of composites made using the FCV1 technique has been limited to relatively
small planar samples. These test methods include flexure tests and some limited axial testing
[26-28]. With the larger sample size and different sample geometry, different tests need to be
performed to characterize the mechanical properties of tubular samples. The Materials Response
Group at Virginia Tech has performed testing on previous tubes supplied by ORNL and Babcock
and Wilcox (now McDermott Technologies, Inc., Lynchburg, VA) [29-31]. That work focused
on the mechanical properties of Nicalon/SIC and alumina/alumina ceramic composites of various
designs and lay-ups. The materials were fabricated by different methods, ranging from using
forced flow CVI for the Nicalon/SiC [31] to sol-gel processing to deposit an alumina matrix for
the alumina/alumina materials [29,30] The mechanical properties for these materias are listed in
Table 1-111.

Tablel1-111. Reported propertiesfrom previous tubesamples

Material Axia Stiffness| Shear Stiffness | Axial Strength | Shear Strength
Tension (GPa) (GPa) (MPa) (MPa)
Nicalon/SiC
Braided tube 127
Nicalon/SiC
Cloth wrapped 205 94
Almax/Al,03 54-61 41-43 41.4,44.5 56.54

1231 Fabrication

The composite tubes used in this investigation were fabricated using the forced- flow,
thermal gradient chemical vapor infiltration technique developed at Oak Ridge [22-24]. The
preforms consisted of eight to ten Nextel 610 (Nextel 312 for sample CV1-1173) braided sleeves
stretched over a polyethylene mandrel. The green preform was infiltrated with a small amount of

Borden Durite resin to provide some structural support prior to the silicon carbide infiltration.

12



The preform was compressed by aluminum tube sections and allowed to cure. The cured
preform was trimmed to a 35.5-cm length prior to the SIC infiltration viathe FCVI process. The
FCVI process temperature was 1200°C with a gas flow rate of 5 dm of hydrogen and 1 sm of
methyltrichlorosilane. The samples achieved 80 to 90% of theoretical densities in about 36
hours. Once processing was completed, the ends of the samples were removed to leave a 30-cm
long sample. The final tube properties are listed in Table 1-1V. It should be noted that in this
study, no fugitive carbon layer was deliberately deposited to improve composite toughness. A
small amount may be present from the decomposition of the resin used to rigidize the preform,

though none was observed in the initial inspection of the tubes.

Tablel-1V. Propertiesof the Nextel/SiC composite tubes

CVI 1173 || CVI 1216 | CVI 1219
Process Time(hour s) 36 43 36
Density (g/cm”) 3.00 2.88 3.08
% Theoretical Density 87 81.8 80.3
Fiber Type Nextel 312 | Nextel 610 | Nextel 610
Fiber Volume Fraction (%) 50 375 322
Number of layers 10 10 8

A cross section of the CVI-1173 tube can be seenin Figure 1-5. The light gray layer on
the inner surface is a SIC layer deposited during the FCV1 process. This layer was lessthan 1
mm thick at the ends of the tube, and approached 4 mm in thickness in some cross sections taken

near the middle of the sample.
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Figurel-5: Crosssection of sampleCVI 1173
This change in dimension creates problems in accurately calculating the stress in the material.
The cross sectional area and polar moment of inertia used in this study were calculated from the
average values of the outer diameter and tube thickness at each end of the sample. The average
dimensions for the samples are in Table 1-V. The changes in the dimensions of Sample CVI
1219, shown in the last two columns, are due to changes made to the sample during testing. An
excess layer of SIC was deposited on the inner surface, and, when the material strength exceeded
the load capacity of the MTS system, it was returned ORNL and the SIC layer was removed.
The wall thickness values for the sample after milling exhibits large variations, which is due to

the inner surface not being concentric with the outer.

Table1-V. Dimensionsof the samples

In mm CVI 1173-1| CVI 11732 CVI 1216 | CVI 1219 | CVI 1219
(as-received) | (after milling)
Outer Diameter | 59.7+0.2 | 59.7+0.2 | 59.3+0.06 | 59.2+0.1 59.140.2
Thickness 6.9+0.7 6.8+04 | 7.6+0.6 7.9+1.8 4.8+0.4
Inner Diameter 45.8 46.1 43.9 434 49.7
(12‘.2?12) 11.48 11.24 13.09 14.99 8.14
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1.2.4 SIC/SIC Tube from Honeywell

The material donated by Honeywell is a SIC/SIC composite materia utilizing Ceramic Grade
Nicalon fibers to reinforce an enhanced SIC matrix deposited by chemical vapor infiltration [32].
A layer of pyrocarbon was deposited on the interface to improve the composite toughness and
damage tolerance. The geometry and mechanical properties arein Table 1-VI and Table 1-V1I.
Three samples, each roughly 11.4 cm (4.5 in) in length, were cut from the same tube of material,

and were sent to Virginia Tech for testing.

Tablel-VI. Geometry of the Honeywell SIC/SIC material

Outer Diameter (mm) 57.78 Thickness (mm) 3.70
Inner Diameter (mm) 50.39 Area (mm?°) 2543.19
Density 23glcc Polar Moment of Inertia |/ 5o 95
(mm’)
Number of Plies 6 woven plies Fiber Vol. Fraction 0.37
Orientation [0/90] 5 Harness Satin Weave

Tablel1-VII. Typical Room Temperature Propertiesof the Honeywell SIC/SiC material

Axial Stiffness, E 138 GPa (20 Msi)
Transverse Tensile Strength, Sy | 59 MPa (8.5 ksi)
Ultimate Tensile Strength, UTS || 228 MPa (33 ksi)

Failure Strain 0.39%

1.25 AISI Type 304 Stainless Steel (Control)

To test the capabilities of the analysis for a simplest case scenario, a stainless steel control
tube was subjected to the same tests as the other materials. The material was chosen since its
properties are well documented in the literature, it exhibits stiffness greater than that expected for
most of the materials tested, and it can be expected to exhibit (near) isotropic properties. The
well-documented, isotropic properties are important to the analyses developed in the later
portions of this work, allowing for its use as a good control sample. The high stiffness of the
material is significant for the internal pressure test methods developed in the next section. It
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allows for testing at high pressures, which would be needed to fail the composite materials. The
properties from the material supplier arelisted in Table 1-V1I1 through Table 1-X [33].

Table1-VIIl. Chemical composition of AlISI Type 304 Steel

AlSI Type 304 Weight % Range
Composition Minimum | Maximum
Fe 66.345 74
Cr 18 20
Ni 8 105
Mn -- 2
Si -- 1
C -- 0.08
P -- 0.045
S -- 0.03

Tablel-1X. Mechanical propertiesof AlSI Type 304 Steel

Tensile Modulus, E 193-200 GPa | 28.565 Msi
Shear Modulus, G 86 GPa 12.47 Msi
Yield Strength, 6, 215 MPa 31.175

Tensile Strength, Guts 505 MPa 73.225
Elongation, emax 70%

Table1-X. Geometry of the control sampletube

Average Outer Diameter 2.366+0.01in | 60.1+0.23 mm
Thickness, t 0.11+0.0 2.79+0.0 mm
Cross Sectional Area, A 0.78irf 5.03e-4 nt
Polar Moment of Inertia, J 0.99in’ 4.14e-7 nf

1.3 Geometric Conventions

For the remainder of this body of work certain orientations and raming conventions will be
used. The focus of this work is on composite tubes; therefore, the cylindrical coordinate system
will be used to describe the geometry, asillustrated in Figure 1-6. Due to the different levels of

this analysis, there will be two different classifications. the global and material levels. The
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global leve refers to the response of the tube as a whole, without the differentiation for the
composite structure, and will be labeled with x, r, and/or . For example, the axial stiffness of
the material is calculated as the axial force divided by the cross sectional area of the tube and the
axial strain response (labeled E;). It does not consider any of the composite material structure or
orientation, but is intended to describe how the tube responds as awhole. The second
classification, the material level, will be used to describe the response on the individual ply level.
Thiswill be affected by the orientation and ply number for the composite, and will be used for
the composite analyses. The material will be described with a 1, 2 and/or 3 direction, with 1
being along the fibers, 2 perpendicular to the fibers (but in plane of the ply), and 3 perpendicular
to the ply.

Figurel-6. Global Coordinate System
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3

Figurel-7. Material Coordinate System

1.4 Sedlection of Test Methods

Much of the background of this work has aready been described in previous works by the
author and others in the Materials Response Group at Virginia Tech [1-5, 21, 29-31]. The focus
of thiswork is to develop a series of procedures and analyses to gain the most insight into the
ply-level material properties of alaminated composite tube. The initial procedures were
developed for characterizing the properties of the McDermott filter materials. The materials
from Oak Ridge National Laboratory and Honeywell came later, but were composite tubes and
could be characterized by the same methods with some minor modifications and improvements
to the procedures, to accommodate the vastly different material properties of the samples.

For the candle filters, there are several different test programs to determine the different
candidate materials and designs for use in the next generation power facilities. A few
investigators have performed tests on the materials to determine which are the best for these
applications. Papersby Singh, et al., and Alvin, et al., have reported work that characterized the
performance in terms of property retention after thermal shock conditions and actual service
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exposure [34-36]. Little of the literature has focused on the mechanical properties of filter
materials. Many have used a variety of experimental procedures to obtain qualitative
information about the material, with fewer measuring quantitative results. Tests, such as C-ring
and O-ring tension and compression, have been performed without being able to evaluate any
material properties from the results. The O-ring and C-ring tests apply alarge, complex state of
stress to a small section of the material — making analysis difficult. Several sources performed
these tests to characterize changes in the bulk properties with exposure to thermal shock or high
temperature exposure. Other tests have been performed that alow for some smplifying
assumptionsin the analysis. Internal pressure tests, using either a pressurized bladder or
compressed elastomer plugs, have been used to find some modulus and strength values. These
analyses do not account for the composite structure to calculate the material values. Finaly, a
few researchers have used sonic and ultrasonic time of flight measurements to obtain values for
the axial modulus of the structures. These measur ements use the relationship between stiffness
and wave velocity to calculate stiffness values from time of flight measurements for sound
waves.

The test methods used in the present work were chosen to generate axisymmetric load
conditions which would allow for comparison of the results to an elasticity theory model. The
analysis by George has been improved and employed to find estimates of the ply-level properties

[21]. Because of this, procedures that generate axisymmetric load conditions were employed.

1.5 Analytical models

A thesis by George addressed the need for an analysis that would calculate the ply level
properties from the global response of the composite tube [21]. The work developed a nonlinear
regression routine that would find the best elastic constants to fit the experimentally observed
strain results. The model used expressions derived using elasticity theory to calculate the
stresses and strains for a given axisymmetric load condition. The derivation of this work was
done by Rousseau and Hyer [37,38]. The work is for the genera case, where the layers of the
composite are orthotropic. For afew specia conditions, there are certain solutions that cause the
equations describing the material behavior to fail. In thefirst part of this section the general

solution will be detailed, with the two degenerate conditions explained thereafter.
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1.5.1 General Elasticity Solution (“ Forward” Solution)

The derivation illustrated is from the work by Rousseau, et al [37,38]. The following
expressions can be used to calculate the stresses, strains and displacements for a composite
cylinder under axisymmetric loading conditions (axia tension, compression, torsion, internal and
external pressure, and uniform temperature change — singly or in combination). By applying the
strain-displacement relations to the displacement equations, the different strain components can
be calculated through the thickness of the tube. The strain values are related to the stress values
by the constitutive equations.

Displacement Equations — u = axial displacement, v = tangential displacement and w = radial
displacement

u(x) =e’x

V(X,r) =g°xr

w(r) = Ar' +Ar ' +Ge°r +Wo°r? + YrDT

| = =22 (1.5)

Strain-Displacement Equations
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which for the general case expand to:

Constitutive Equations

e =l Ar' t- 1 Ar ' T+ Ge® +2Wg°r +Y DT
e, =Ar T+ AT+ G +W°r +Y DT

—_ [0}
Sx __e (17)
qr —
ng =
9q =0°
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g\gq 3 €Cz Cz Caz O 0 Csz @geq H
és, @_2513 Cs Cz 0 O 6363@% U (1.8)
é 0=g = = 1&g, U '
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& er (:30 0 0 645 655 0 ugg”ﬂ
8.0 & = = c o8
a 6 Cx Cx 0 0 Cef™™

At this point the expressions for stress, strain and displacement can be derived in terms of

the transformed material stiffness matrix (G, ), €°, f, A1 and Az, Since the elastic properties and

geometric considerations are known for a given structure, the C ; values can be calculated for

each ply. The remaining unknown terms - €°, @, A; and A, — need to be found using the

boundary conditions. For alaminated structure composed of N layers, there will be 2N+2
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unknowns—e°, &, N A1’s, and N A's. The first boundary condition is a relation between the
applied axial force and the axial stress. For atube in axial tension, the applied axia force, Fy,
must be equal to the sum of the integrals of the axial stress through the thickness. The same
applies to a tube with an applied torque, Ty, the sum of the integrals of the shear stress multiplied
by the radial position must equal the applied torque. The expressions for these boundary
conditions are:
F = ZpéN_ (‘Sk s Wrar

3‘1 " (1.9)

T,=2 ka:lQlt xq ¥ ar

This gives two equations towards the 2N+2 unknowns. Two more come from the pressurized

cylinder condition. The pressure at the inner and outer surfaces must be equal and opposite to

the applied pressures. These can be equated as:
-p=s(R)
- =5/ (R)

where p; and p, are in the applied internal and external pressures, R and R, are the inner and

(1.10)

outer radii, and the superscript on the stress expression is the layer of the material. The last two

requirements for the tube are that of continuity of traction and displacements at ply interfaces, or:

W () =Wt (i
k( ) M( ) (1.11)
Sr( )(rk):Sr( )(rk)
This gives the last 2(N-1) equations needed to solve for the unknowns. Simultaneously solving
the above equations will give the 2N+2 unknowns for the displacement, strain and stress

equations.

1.5.2 Degenerate Solutions

By examining Equation (1.5), there are two conditions that cause zero to appear in the

denominator in the expression for A, namely the conditions where C,, =C,, or C,, =4C,,. The
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first of these conditions occurs when the materia is isotropic or transversely isotropic with a0
degree orientation. The second condition has not been associated with an easily explained
physical situation, but isincluded for completeness. In both of the degenerate conditions, the

expressions for both u and v remain the same as before, but that for w changes [39].

For the case of C,, =C,, (6=1), w becomes:

w(r) = Ar' + Ar " +Ge°rin(r) +Wg°r >+Y DTriIn(r)

(1.12)

_a&a (C,- Coa,

5
C,

For thecase of C,, = 4C,, (é=2), w becomes:

w(r) = Ar' +Ar " +Ge°r +Wg°r3(4in(r) - 1) + YrDT

(1.13)

A more detailed derivation of these expressions can be found in Appendix A. Since the value of

é varies from ply to ply, the choice of the expression for w, and the resultant expressions for the
boundary conditions, must be made for each layer.
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1.6 Inverse Solution

The elasticity or Forward Solution cal culates the stresses and strains generated by an
applied load given the elastic properties of the materials. Thisis a useful model, but it requires
the knowledge of the in-plane and some out-of-plane constants. Complete sets of these values
are not krown for many materials and are, in genera, difficult to calculate. An added
complication is encountered for tubular materials that do not have a planar counterpart for
determining the elastic constants, which was the case for the materials used in this body of work.
Both the MTI filter and ORNL materials were fabricated in processes designed for tubular
geometry, therefore creating planar samples for testing was not possible. For these laminate
structures with varied ply orientations, the geometric effects do not allow for the generation of a
simple stress state to estimate the material stiffnesses. A methodology was developed by George
to calculate the properties from the tubular samples by nonlinear regression analysis of the strain
data[12]. Inthisbody of work the analysisis called the Inverse solution to the elasticity theory
derived by Hyer and Rousseau [37,38]. Thisis not a closed form solution for calculating the
material properties, but is an analysis that relies on nonlinear regression techniquesto calculate a
set of material parameters that minimize an error function. A simple schematic of the method is
located in Figure 1-8. The analysis uses the Forward solution, as the core of the program. The
user inputs the geometric properties needed to describe the sample. The start or “guess’ values
for the materia properties are entered, as are the experimentally recorded strain and loads. It
should be noted that the applied loads (axia force, axial torque, and internal pressure) are
entered and not the calculated stresses (axia stress and shear stress). With this information, the
forward solution calculates a predicted strain response at the same load levels as the
experimental results. The difference between the measured and calculated values is determined.
The error function, the sum of squared errors, is minimized through a number of iterations until a
minimum is found or the program exceeds set parameters. The termination of the procedures
relies upon declared convergence criteria, basically a series of values or conditions that
determine whether a solution has been found or that a reasonable amount of time or iterations has
been exceeded.
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Figure 1-8. Schematic of nonlinear regression analysis
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The method employed in the thesis by George is termed a Newtonian method, which

utilizes the partial derivatives to calculate an incremental step. The equation for the step values,
b, are:
E“'=E‘+b
b=(373)" 3t (1.14)
f,=(e™ - ™)
where E are the different elastic constants (Ex, Ez, Es, Gi2, 12, Ni3, and ny3), the superscript k is

the interation count, f ; is the difference between each of the calculated and measured strain
values, and Jis the Jacobian matrix:

ol 0
s g
J=é i . i (1.15)
o,
gTE, nxg

wheref isthe difference between the observed and predicted values, defined in (1.14). Thesize

of thef vector depends upon the number of different loading conditions and number of different

strain measurements. For this work, the value N in the Jacobian is set to be three times the

number of different loading conditions, since there are three strain values used per load (ey, g,

O«). Thederivative values are approximated, since deriving the exact expressions would be

exceedingly complicated to implement into computer codes. The values are approximated by:
Tw, f-f;

X = T (1.16)

wheref * arethef values calculated with the X; (X; = E) changed to X;(1+h), and his asmall
value (h<<1).
With each iteration, the procedure evaluates whether the new values are decreasing the

error function, or
SSE( X)) < SE(XX) (1.17)
If the error decreases, the values are incremented by the step values, and the process proceeds to

the next iteration. If the error is not decreased, the program begins a routine the decreases the
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size of the step values, such as, the step sizeis cut in half until a decrease is achieved. A set
number of repeats is usualy set, after which, the program declares alocal minimum since a small
step does not decrease the error, and terminates.

The program by George was tested using strain data generated by the Forward Solution
and input into the Inversion program with erroneous start values. After severa iterations, the
program found the correct values for the elastic constants, minimizing the error function.
Attempts to apply this procedure to experimental results met with limited success. Only axia
tension and torsion were used to generate the strain data sets. Due to the limited amount of data
and the requirement that the system be overdefined (more data points than unknown values — a
condition needed for any regression work), two of the Poisson ratios were set to be constant
since there was insufficient data to optimize all values. The number of experimental data points
fell to 6, limiting the number of variables to 5.

Initial work using Newtonian methods to search for a minimum was problematic. Asthe
analysis neared a solution, the step values would become large, sending the solution to an
undesirable set of values. To validate the Newtonian method and to investigate the unusual
behavior, a second minimization approach has been used to minimize the error function. The
Nelder-Mead Downhill Simplex method was employed [40-42]. A simplex can be thought of as
a shape with N+1 vertices, where N is the dimension of the problem (N variables —for a2-D
problem, the simplex would be atriangle). The Nelder-Mead method eval uates the function at
each vertex, and it would move the simplex away from larger values by reflecting, extending,
contracting, or shrinking. A schematic of this behavior for a 2 variable system isillustrated in
Figure 1-9 and Table 1-X1 [41]. The smplex moves in adownhill fashion, in that it moves from
the high values to the lower ones, changing its shape to move more efficiently towards a
minimum. It istermed a“direct” method in that it does not use derivatives of the objective
function as the Newton method does. This provides advantages in that it would not be adversely
affected by the topography of the solution, such as large gradients. It is not an efficient process,
requiring a large number of iterations to locate a minimum, but is easily handled by a PC —
usually taking only a few seconds to afew minutes. This was on the same order as the
Newtonian method, if not quicker, but used more iterations (severa thousand for NM vs. less
than 100 for the Newtonian method). The difference in efficiency between this method and
gradient methods is in the operation. The Nelder-Mead method moves to decreasing values by
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moving away from higher values rather than moving in a straight line towards a minimum. The
algorithm for the Nelder-Mead method was taken from Numerical Recipes [42, pages 408-412],

and applied to minimize the sum of squared errors from the Forward Solution.

Figurel-9. Schematic of the Nelder-Mead Simplex Method for two variables. A)
Potentid actionsof thesimplex (Table 1-XI). B) Movement of thesimplex through 2-D
space.

Table1-XI. Thedifferent potential actionsof the Nelder-M ead method for the simplex
illustratedin Figure1-9 A.

Starting Simplex Action Resulting Simplex
Reflect BCE
Reflect and Extend BCF
ABC Contract BCG
Reflect and Contract BCH
Shrink A'B'C

Another advantage of the Nelder-Mead method is the ease of which constraints can be
applied to minimize undesirable minimums from being found [40,41]. A simple constraint isto

require all elastic constants to be positive and within acceptable bounds (solutions exist
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containing negative values or, say, Poisson’s ratios much larger than 1). If during the execution
of the program, a vertex lands on a value violating a constraint, the associated error value is
made very large (very large means larger than any other error value). Thiswill cause the
simplex to move away from that value, and toward more meaningful solutions.

The development of these procedures allows for an added benefit in characterizing the
strength of the materials under multi-axial stress conditions. The testing of composite tubes
allows for the generation of complex stress states without the need for different orientations of
the composite laminates by application of differing levels of axial load, torque, and internal
pressure. The added benefit of no edge effects, as seen in planar coupons, should allow better
characterization of different failure conditions. The elastic solution described allows for the
calculation of the stress state in the material at all points through the thickness. It is not expected
that the results in this research will allow for research to be done on multi-axial failure theory or
even the calculation of failure envelopes for the different materials tested, due to an insufficient
number of available sample failures, but it does provide a framework that would alow for both
of these if more data could be obtained. The test procedures will alow for the generation of
complex load states, and the analysis should determine the elastic properties of the material. The
elasticity model will alow for the calculation of the stress states for the materials at each of the
failure levels.
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2 Experimental Procedures

As was noted in the first section, the goal of this work is to gain as much information as
possible about the mechanical properties of composite tubes from a few tests. The procedures
were chosen so that they would generate an axisymmetric load condition, so that the data could
be used in a nortlinear regression analysis. Due to the different properties of each materia and
some improvements made as the testing was conducted, there are differences in the procedures

used for each sample, which will be described in this section.
2.1 Test Facilities

All the tests described were performed using MTS servohydraulic load frames. System
control and the load profiles used the TESTSTAR Il software from MTS. The initial tests
conducted on the MTI materials used an external data acquisition system. A computer with an 8-
channel data acquisition board was used to record six channels from the sample, and 2 (load and
displacement) channels from the MTS controller. Later tests utilized aMTS frame with
extended data acquisition capabilities, allowing for the recording of all the pertinent information
(up to 14 external channels plus al internal load and displacement readings) during the tests by
the TESTSTAR Il software. This was advantageous since now all the controls and data were
handled internally, greatly ssmplifying testing.

For the samples that fit directly into the frame (ORNL and the control samples), special
collets were used to grip the samples. Due to the large size of the samples, two 63.5 mm (2.400
in) round collets were developed to grip directly on the outer surface of the sample. For other
samples that either couldn’t support the large compressive stresses in the collets or would not fit,
different load fixtures were developed to transfer load from the frame to the sample. These were
designed to fit into the 38.1 mm (1.500 in.) round collets from MTS.
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2.2 Test Procedures

During the testing of the different materials, three different procedures were used for the
axial tests (axial tension, compression and torsion), while only one was used for the internal
pressure tests. Most were made to accommodate the different material properties of the different
specimens, but the changes in the axial procedures for the material from Honeywell was due to
improved data acquisition accommodations. The specifics of the procedures and rationale

behind the changes are listed in the following sections.

221 MTI Hot GasFilter Axial Tests

Due to the low strength of the material, other methods, such as gripping the sample in the
MTS grips, was hot possible. Due to the large number of samples expected from MTI, a fixture
that would be interchangeable from sample to sample was needed. To accommodate this, the
MTI materials were pin loaded for the axial and torque tests, and used a test fixture to transfer
the load from the MTS frame to the pins placed through the ends of the tube. The axial samples
were 18.5 cm (7.25 inches) in length with a pin spacing of ~12 cm (5 inches). A schematic of
the axial test samplesisin Figure 2-1. The effects of the pinholes and concentrated load points
were removed by potting the end in epoxy. Thislocaly strengthened the material and distributed
the load from the pin. Initially, the end plug used a bonded ceramic foam plug to distribute the
load away from the pins, with the hope of doing tests at elevated temperaures. During some of
the early strength tests, failure occurred by cracks propagating from the pinhole and winding
around the sample. The plug was not removing the stress concentrations at the hole, so the ends
were cast in epoxy. With the new configuration, the sample experienced gage section failures.

To cast the ends, the outer surface was wrapped in plastic to prevent leaking, and filled
with the liquid epoxy to a level even with the loading pins. The epoxy hardened level with the
top of the pin, with a small amount of wicking into the sample (as can be seen as the dark region
on the sample above the pin level in Figure 2-1). Dissection of failed samples revealed the
epoxy permeated only as far asis visible on the outer surface (no permeation into the gage
section). This gave an approximate gage section of 10cm (4 in).
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Figure2-1. McDermott filter axial test sample.

Strain measurements were made using both extensometers and strain gage rosettes. The
axial stiffness calculations were based on extensometer measurements, while the rosettes were
used for the shear strain values. Strain gage data were on the order of 15% differ than the
extensometer measurements for the axial tensile strain, and is believed to be due to the adhesive
permeating and locally reinforcing the matrix. It has been shown that the axial stiffness is
predominantly controlled by the matrix properties, while the torsional stiffness is more closely
related to that of the reinforcing fiber properties (and experiences little to no influence from the
local reinforcement) [2]. This is expected since the materia is a +45° woven structure, which
would allow the fibers to bear the applied torque. The load ranges for elastic testing were +445N
(x100 Ib) in tension/compression and + 22.5N-m (x200in-1b) in torque. The tests were run under
load control, at a rate of 45 N/sec (10 Ib/sec) in tension, and a rate of 2.5 N-m/sec (20 in-Ib/sec)
for the torsion tests. The tensile strength tests were run in displacement control at a rate of 0.64
mm/sec (0.025 in/sec) to a maximum range of 6.4 mm (0.25 in.) for the early samples, and a

maximum range of 25 mm (1 in.) for the later tests.
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2.2.2 Al,04/SIC from ORNL and Control Sample Axial Tests

The test procedures for the ORNL and Control samples were identical. Both materials
exhibited sufficient strength to survive direct gripping into the MTS collets. In order for the
samples to fit, the outer diameter needed to be 2.400+0.001 inches (tolerance listed for the MTS
grips). Both materials were smaller than 2.4 inches, so the outer surfaces were coated with
epoxy and machined down to tolerance. The initial tests with the SiIC samples revealed that the
material, if left unsupported, would be damaged by the grip pressure and cause grip induced
faillures. In order to provide some support steel inserts were made that closely matched the inner
surface of the materials (Figure 2-3). With the inserts bonded in place by epoxy, the outer
surface could be built up with the potting epoxy and machined to tolerance. This procedure was

repeated for the remaining SIC materials from ORNL and the steel control sample.

Figure2-2. Sample CVI 1216 axial sample
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Figure2-3. Schematic of ORNL and Control axial samples

2.2.3 Honeywell Axial Tests

The samples from Honeywell were tested with a different approach from the other
materials. The diameter of this material was sufficient to allow access to the inner surfaces for
strain gaging, which provides more information for the analyses used later in thiswork. This
precluded the other approaches to loading the samples, since they would not allow the wires
from the strain gages to exit the sample and reach data acquisition boards. In order to allow
access to the inner surfaces, caps were made to fit on each end of the materials, as shown in
Figure 2-4 through Figure 2-6. The fixtures had a groove cut into each end that would fit the
sample and a small gap for an epoxy layer. Approximately seven to ten thousandths of an inch
was allowed on each side of the sample for the epoxy layer. Four holes drilled through the end
caps allowed the strain gage lead wires to exit the sample. Shims were used to center the tube in
the caps when the epoxy was placed in the sample, to assure a uniform epoxy thickness. Figure

2-7 contains photographs of a sample from Honeywell.
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Figure2-5. Cut-away of the Honeywdll fixture
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Top View Side View

Figure2-6. Photographs of the Honeywell fixture

Figure2-7. Honeywell axial sample mounted in loading fixture
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2.2.4 Internal PressureTesting

Interna pressure testing is a common method used for characterizing composite tubes [1-
4,34-36,44]. The method generates stress in the materia primarily in the hoop direction of the
sample. This provides more information onthe properties of the material when used with axial
tests. In this work, the compressed rubber plug technique as described in Singh, et al, was
utilized for the internal pressure tests [34,35]. A schematic of the test isfound in Figure 2-8.
Poisson expansion resulting from compression of a rubber plug generates pressure on the inner
surface.

Compression
Platen
Composite —»
Ring

Elastomer "

Plug

/Y

Figure2-8: Schematic of internal pressuretest with a cut-away

The pressure generated at the inner surface of the sample is related to the applied stress in the
material. To anayze this Situation we start with the Hooke's Law expression for the strain in
the x direction (the axis of the cylinder), and simplify by applying two conditions: s, =s , inthis

axisymmetric condition where &, is the internal pressure to the sample [43, pages 383-384].
Using these conditions in the Hooke' s Law expression

eX:Eigsx-n(sr+sq)g (2.1)

P
we obtain
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e, :Ei[s - s ] (2.2)

P

For the internal pressure test, s, = -P;, which allows for the internal pressure calculation:

Ee,-S,

R= (23)

p

Where P; is the internal pressure, sy, Ep, & and np are the compressive stress, Y oung's modulus,
axial strain, and Poisson’ s ratio for the plug material. This expression is derived from an
elasticity solution for an isotropic, linear elastic material. For an incompressible, linear elastic
material (i = 0.5), the expression in Equation (2.3) simplifies to:

P=Eg-s, (2.9)
or

P=st-s (2.5

X X

where s ©isthe elagtic stress for agiven e (Ee for linear elastic materials under small

deformations). It is important to note that due to the large deformations used for these tests (30 to
60% strain, on average), the engineering values for stress and strain are no longer correct, and
true stress and strain values should be used for this procedure. These values are found from the

engineering stress and strain values by:

e = In(1+

2 =s ((1+:)) 26)
where s and € arethetrue stress and strain and s and e are the engineering stress and strain
[45, page 162] A plot of the stress-strain behavior of Dow Corning Silastic silicone rubber for a
compression test isincluded in Figure 2-9. The two lines are the engineering and true stress
strain curves. Linear regression analysis of the true stress/strain values yields a slope of 2.05
MPa (298 psi) and an R > 0.99. Finding the Y oung’'s modulusin this way yields a different
stress strain relation:
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=S -Sd+e) 2.7)
€ In(l+e)
or
SXE :M (2.8)
1+e,

By combining Equation (2.5) and (2.8), the expression for calculating the pressure from
the stress measurements for the internal pressure test procedure is:
E In(1+e
P= M -s, (2.9
1+e,

The sy value is the applied stress to the plug and & is the engineering strain.
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Figure2-9. Compressivestress/strain curvefor the Silastic plug. Thecurved lineisthe
enginerring stress/strain and the other lineisthetruestress/strain plot with a best-fit line.
The equation beside the best-fit lineisitsslopeand R? value.
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If the elastomer used for the plug isincompressible (i.e. has a Poisson’ s ratio of 0.5), and
the test begins with the plug in intimate contact with the inner surface of the sample, a
hydrostatic state is generated with the application of pressure. By this, the internal pressure
would equal the stress generated by the applied axia force. For the tests performed in this work,
the plug diameter was smaller than the inner diameter of the sample. This required a certain
stress state in the material for contact to be made with the inner surface. By using Equations
(2.5) and (2.8), the contact stress can be subtracted out to leave the pressure value.

Other research has been conducted independently on this procedure, using similar
procedures and materials at Oak Ridge National Laboratory (46). Instead of viewing the Silastic
materials as a linear elastic material, hyperelastic theory is used to describe the material
response. This theory accounts for the nonlinear stress/strain behavior exhibited during large
deformations of elastomeric compounds. There are several equations used to describe the
behavior, but, for the Silastic compound, the Mooney-Rivlin equations are adequate to describe

the deformation. The resulting expression to describe the deformation is:

s :2? i lizgg%l +% (2.10)

[SEe)

where s° is the stress value using the original cross sectional area, C; and C, are constants fit to
the data of an unconstrained compression test, and é=1+3a[47, pages 309-312]. Again, the
pressure term is calculated by subtracting the contact stress value from the measured axia stress,
as shown in Equation(2.5).

To verify if this method is accurate in determining the internal pressure, the stainless steel
control sample was used since it alows for the calculation of the pressure by different methods.
For the test, four strain gage rosettes were placed around the sample recording the hoop strain so
the pressure could be calculated from the equations for a Lamé cylinder solution [43, pages 68-
71]. Theinternal pressure was calculated using the linear elastic and hyperelastic equations, and
they were checked by a pressure value found using a Lamé cylinder. The hoop stress at the outer

surface by the Lamé cylinder solution is:
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5 =i (2.11)

wherer; and r, are the inner and outer radii and P, is the internal pressure. Rearranging (2.11) to

solve for the pressure value gives:

with Esbeing the Y oung’s modulus of the steel and ey is the hoop strain. Figure 2-10 shows the

pressure as a function of time during the test. The three values are nearly superimposed onto

each other.
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Figure2-10. Resultsfrom theinternal pressuretest for the control sample. Thedifferent

linesrepresent the pressurevaluesfound usingthe Linear Elastic, Hyper-Elastic and Lame
cylinder solutions
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2241 Internal PressureTestsfor the McDer mott Filters

For the MTI materials, the tests were conducted using a Dow Silastic T-2 silicon rubber
cylinder. The Silagtic liquid was cast into cylinders that were nearly the same height as the
sample and dlightly smaller than the inner diameter. This allowed for the initial contact between
the compressed plug and the inner surface to occur when the plug was shorter than the sample, in
order to prevent early failure in the tube due to edge effects. The tests were conducted with a
layer of lubricant between the elastomer plug and the sample to prevent frictional loading of the
sample during the compression. This condition would create a biaxial loading condition that
couldn’'t be accounted for in the analysis of the material properties. Due to the porous nature of
the MTI materias, the lubricant layer was sandwiched between to polymer sheets (Saran Wrap).
This sandwich prevented the lubricant from penetrating the material and potentially affecting the
tests. That sample did not exhibit any movement during the tests (this is not the case for all
materials, asis described in the next section). Figure 2-11 isof aMTI sample during an interna
pressure test. The sample is positioned with the plug being the same length of the sample, but is
slightly smaller than the inner diameter. This positioning allows the plug to be slightly shorter
than the sample when contact is made, preventing the loads to be generated at the edge of the
sample, where edge effects would affect the outcome of the test by a premature failure that
would not be indicative of the material strength.

Figure2-11. Internal pressuretest for the McDer mott filter
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2.2.4.2 Internal Pressure Testsfor the ORNL, Honeywell, and Control Samples

The elastomer compound used for these tests was Dow Corning Silastic silicone rubber
(Silastic T-2). Initia work with this material was unsuccessful, due to the material failing by
shearing out around the compression platens at high pressures. Later attempts used a urethane
rubber compound, which exhibited better shear properties. Difficulties arose with accurately
predicting the pressure generated due to the nonlinear elastic and viscoelastic properties of the
urethane. The Silastic compounds were re-examined and found to exhibit linear elastic behavior
with no appreciable viscoelastic effects. The compression platens were made to match the inner
diameter of the sample more closely, which eliminated problems with the shear deformations and
failure of the plug.

A high-pressure lubricant is applied to the plug, plunger, and inner surface of the sample
to minimize compressive loads generated by friction and generate a more uniform internal
pressure. After each test, the plug and sample are inspected for any damage associated with the
test. To date, the tests have not been run to a level sufficient to damage the SIC composites, or to
yield the steel. By improving the fit of the compression platen to the inner surface of the sample
should allow for increased pressure ranges. This would keep the stress in the plug to a true
hydrostatic compressive stress, instead of the unpressurized area around the edges where the
large shear stresses develop. The presence of the gap for the experiments in this study was due
to the roughness of the inner surface for many of the samples. Because of this, the platens were
made smaller than the inner diameter to prevent contact with the sample during the test. The
platens used in this study were either plexiglass (for the MTI samples) or aluminum, so that if
contact was made the platen material was softer than that of the sample and would not damage it.
Again, the plugs were cast dightly longer than the sample with a smaller diameter, so that when
the plug made contact with the sample, it would be shorter and not apply load directly to the
edges. For these materials, a small frame was made to hold the samples in place so that the

platens would be positioned properly to prevent loading to the edges of the samples
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2.3 Data Reduction

With samples of this geometry, off-axis loading is a problem that has to be considered.
Small sample misalignments can generate significant stress/strain variations around the sample.
To remove the elastic contributions of the bending, strain was measured at four, equally spaced
locations around the sample. By averaging the strain values, the variations created by off-axis
loading may be removed. Figure 2-12 is a schematic of the variations to the strain values due to

the bending contributions.
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Figure2-12. Schematic of the elastic off-axisloading responsefor thetubes.

Due to the number of strain measurements, at times all the channels could not be read
simultaneously, so the tests were repeated with changes made to the location of the extensometer
or active strain gage. When it was time to reduce the strain data, the data from the different
locations would not be directly comparable since the load profiles would vary due to system
noise and control. To change the data to the same load profile, the individual stress/strain curves
were fitted using a 4™ to 6" order polynomial regression line (6™ order is the highest order fit
available in Microsoft Excel), depending on which best represented the data. Once the data were
represented it could be calculated at the same values for averaging. When al the data could be
recorded simultaneously, the values could be averaged without having to represent the data with
best-fit lines. An example of thisisin Figure 2-15 and Figure 2-16. The offset of the average
line is due to the amplifiers for the strain gages being “zeroed” with a small load applied to the
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sample. Due to the off-axis conditions and low loads for the filter materias, it was difficult to
have this value equal zero. To correct this, the intercept value was dropped, shifting the data

back to a line passing through the origin.
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Figure2-13. Axial tension resultsfrom 4 locationson the sample
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Figure2-15. Axial strain measurementsfrom the four gages around a M cDer mott filter
sample.
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Figure2-16. The averaged valuesfor theaxial strain valuesin Figure2-15

46



2.3.1 Property calculation

With the data reduced to the average value for each strain component, values for the
stiffnesses can be calculated. For each material, the global stiffness values were calculated using
the nominal stressfield, which is the applied load divided by the area for axial
tension/compression, and shear stress at the outer surface divided by the measured shear strain
for the axial torsion tests. The shear stress value was calculated by the expression for torsion of

acylinder:

(2.13)

wheret isthe shear stress, T is the applied torque, J is the polar moment of inertia for a cylinder,
and r, and r; are the outer and inner radii.

The results for the internal pressure tests can be presented in two fashions, relating to
either the pressure or estimated hoop stress. The pressure values are straight forward in that they
relate the changes in the strain to that of the change in pressure. The hoop stress values are
termed estimates since they are calculated from the internal pressure value through a Lamé
cylinder model [43, pages 68-71]. The model used is for a homogeneous, isotropic material,
which is inconsistent with the samples used in this study. The hoop stress values from this

model are given by:

S, =—— (2.14)

Linear regression of the experimental data was used to calculate the stiffness values. A line with
two degrees of freedom (y=mx+b) was used to remove the offset values created by not having
the zero for the strain gage amplifiers match the zero for the load cells (Figure 2-16 does not pass
through the origin). Once adope valueis found, the offset value was discarded, shifting the

resulting response back through the origin.
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3 Experimental Results

The mechanical characteristics of the materials were measured using the procedures detailed
in the previous section. Reported values will be those of the axial, shear, and hoop stiffness
(estimated from the internal pressure tests). The slopes of the other strain terms will be included,
since they are important to the analysis developed in the following section The values are given
with the standard deviation on the significant stress directions except for the internal pressure test
results since the test is run only once on a sample (except for ORNL CVI 1219 — one repeat was
performed). Tensle strength values are reported for the McDermott filter materials and some of
the ORNL samples. The strength of one of the ORNL samples and the Honeywell material
exceeded the capacity of the equipment or loading fixtures, so the plots are given with the largest
load condition reached. The internal pressure burst values are only for the McDermott filters,
since the elastomer plug experienced shear failures at pressures below the strength of the sample
for the other materials. The plots for each of the internal pressure tests are for the largest
pressure reached. Many exhibit nonlinear behavior that is attributed to either the plug failure

process or frictional loading of the sample.
3.1 McDermott Technologies Candle Filter

Typical stress strain curves for axia tension and torsion of the McDermott filters are
shown in Figure 3-1 and Figure 3-2. The axia and hoop strain linesin Figure 3-2 exhibit alarge
deviation from linearity between zero and 200 kPa. This nonlinearity is due to the pin loading
fixture shifting as the load is applied, and this behavior was seen in several of the tests. It
contaminates the data and renders the slope values meaningless, but was easily overcome by
removing those values from the data set. By doing this, a good fit could be found, as can be seen
in the low scatter in the axial and torsiona stiffness results in Table 3-1, and plotted in Figure 3-3
and Figure 3-4. The average stiffness and standard deviation results are the calculated from the
values from repeated tests on the same sample. The average slopes of the different strain

comporents are listed in Table 3-11 (important for use in the nonlinear regression analysis).
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Figure3-1. Typical axial tension/compression test resultsfor M cDermott filter
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Figure3-2. Typical torsion test result for the McDer mott filter
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Table3-1. Axial and shear stiffnessfor the M cDer mott filter samples

TubeID | Cycles Tens"(‘éit;f”ess STD DEV. % Shear( gg;‘;”& STD DEV. %
7-2-283[ 0 3.300+0.055 1.669 7.581+0.183 2.420
7-2-284| 0 3.378+0.074 2.183 7.855+0.216 2.755
7-513-C| 10° 3.441+0.004 0.125 - -
7-513-E| 10° | 3.324+0.101 3.033 7.853+0.084 1.064
7-5-13-NH| 10° | 3.504+0.064 1.820 6.970 -
7-6-12-A || 10 | 4.323+0.102 2.364 7.516+0.179 2.378
7-6-12-C| 10* | 3.498+0.039 1.127 8.661+0.127 1.469
7-6-12-E| 10 | 3.458+0.012 0.358 7.961+0.122 1.533
7-6-12-NH| 10* 3.244 - 8.567+0.081 0.950
7-6-16-C| 10° | 3.848+0.061 1.574 9.428+0.106 1.124
7-6-16A || 10° | 3.260+0.029 0.895 8.986+0.058 0.642

Table3-11. Slopesof thestrain responsesfor different loading conditions— average values
for strain gagedata

Sample Axial Strain | Hoop Strain | Shear Strain Pois@_on’s
GPa GPa GPa ratio
7-6-12
Axial Stress 4.45 -8.07 -224.46 0.55
Shear Stress 285.15 -430.01 9.04
Internal Pressure -1.13 1.26 29.24 111
7-6-16
Axial Stress 4.40 -8.53 162.80 0.52
Shear Stress -272.96 748.69 8.16
Internal Pressure -1.07 1.26 -89.67 118
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Figure3-4. Torsional stiffnessafter exposureto simulated back pulses
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Neither the axial stiffness nor the shear stiffness are adversely affected by repeated thermal
shock of the simulated back pulse cleaning cycles. The variations in the torsional stiffness are
probably batch-induced variations as suggested by the way the data are clustered (each tubeis an
independent “batch” — and only one tube was subjected to the different thermal cycling). A plot
of the effect of the back pulse cleaning cycle on the tensile strength is in Figure 3-5. The figure
contains data for the samples that experienced gage section failures with exposure to the 1 to 100
thousand cycle samples. The data for the as-fabricated tubes were not included since it used the

ceramic foam end plug, which exhibited crack initiation from the pin holes (not a gage section
failure).
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Figure3-5. Tensllestrength with back pulse exposure. Thesquaredata point isthe sample
that was not exposed to high temperature.

The decrease in tensile strength is on the order of 20%, but with the small number of
samples that experienced gage section failure and significant scatter in the results, it is difficult to
attribute this to changes in the material. No changes in the failure mode were observed. Failure
begins with the formation of a shear band that follows a fiber tow around the sample. The fiber
tows remain intact with the majority of the deformation occurring in the matrix material

(schematic illustration in the results for the internal pressure test - Figure 3-12). Occasionaly,
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the shear band would lead to a large crack that would permeate through the wall of the tube, but
would be bridged by the transverse tows, which would remain intact. This was common in the
materials that exhibited failure due to crack initiation at the loading pin. For most failures, the
damage was more evenly dispersed throughout the material, as seen in Figure 3-7. The load-
grain curve for the tensile strength test for Sample 7-6-16-C is found in Figure 3-6. The strain
values plotted are calculated using the displacement measured by the MTS frame, since the strain
gage values are not useful past the initial failure event. The gage length was 10.2 cm with a fina
displacement of 2.54 cm (25% strain).

Load (KN)
H
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I U T T T T T 1

-0.05 g5 0 0.05 01 0.15 0.2 0.25 0.3
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Figure3-6. Tensilestrength plot for Sample 7-6-16-C. Samplestrain iscalculated using a
gagelengthof 10.2cm.

A photograph of the failed sasmpleisin Figure 3-7. The fiber tows are intact with the matrix
materia having failed.
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Figure3-7. Sample 7-6-16-C after tensile strength test.

3.1.1 Internal Pressure Tests

A plot of the strain response during an internal pressure test for the McDermott filtersis
in Figure 3-8. The sample length used for these experiments was 7.6 cm, since below this
sample length the burst pressure decreases significantly with decreasesin length. When
compared to a 25 cm sample pressurized using a water-filled bladder, this procedure yields
comparable results, as can be seen in Figure 3-9 [36]. This may be expected since the material is
extremely porous, and requires a certain length to remove the edge effects. By exploring the
values for the 7.6 cm samples, the effect of back pulse exposure is negligible, as shown in Figure
3-10.

Slopes of the strain response arein Table 3-111. The values are the dopes of the
pressure/strain plots, as seen in Figure 3-8. Included is the estimate of the hoop stiffness found
using the Lamé equation described in the Materials and Procedures section. It is higher than the

observed values for the axial stiffness. For a £45° laminate, one would expect the axial stiffness

54



and hoop stiffness to be the same by symmetry, but the McDermott materials exhibited a
variation in the winding angle, and the fibers are oriented at 50 degrees on the outer surface.
Due to this, one would expect the hoop stiffness to be higher than the axial.

Table3-111. Slopesof the pressure/strain response and the Lamé cylinder estimate of the
hoop stiffness

Sample | Axial Strain | Hoop Strain | Shear Strain | Hoop Strain/Hoop Stress
GPa GPa GPa GPa
7-6-12 -1.13 1.26 29.24 5.53
7-6-16 -1.07 1.26 -89.67 5.19
1.4 -
&
3
o
x — AVG AX
— AVG Hoop
— AVG Shear
-0.0015 -0.001 -0.0005 D 0.0005 0.001
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Figure3-8. Typical internal pressuretest for the McDer mott filters
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The material does not exhibit a significant change due to the simulated service
conditions. As in the axial tension tests, the material did not exhibit catastrophic failure, but
underwent a gradual increase in damage throughout the sample. There were no preferred failure
gtes or large amounts of crack initiation and propagation. A burst sample at different points of

an internal pressure burst test is seen in Figure 3-11.

Figure3-11. Failureof filter duringan internal pressureburst test. A and B) Shear band
formation C) Large scale deformation

Shear
Band
Fiber Tows

Figure3-12. Schematic of shear band evolution. Normal tow structure (Ieft) and shear
band deformation (right).
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Figure 3-11A shows the sample in the early stages of failure. A shear band has formed and is
located along the tows at the end of the arrows. In Figure 3-11B, the shear band has become
more prominent. The surface tows can be seen as they change orientation and debond from the
filter. This behavior is described in the schematic deformations in Figure 3-12. The fiber
structure on the right is the undeformed filter structure. Once strength of the material is
exceeded, the structure deforms in a region between to adjacent fiber tows. The fiber tows
remain intact, while the matrix material begins to crumble and fall off, and can be seen lying
around the sample. Figure 3-11C is the same sample at large-scale deformation. The fiber tows

are till intact, but are subject to large displacements and have debonded from the surface.

3.2 Fossl SIC/SIC materials

Typical axia stress/strain curves for the tubes from ORNL are located in Figure 3-13 (axial
tension/compression) and Figure 3-14 (axia torsion), with the measured mechanical properties
listed in Table 3-1V. The two sets of elastic valueslisted for both CVI 1216 and 1219 are due to
the changes made in the samples after the first series of tests, where neither sample failed in
tension. For both samples, the SIC layer on the inner surface of the tube was relatively thick (on
the order of 4-mm thick for CVI 1219), increasing the cross-sectional area, thereby decreasing
the stress in the material during testing. Due to this, the strength of the sample exceeded the load
capacity of the MTS system (246 kN). The steel inserts were removed by burning off the epoxy
layer by placing the sample in afurnace at 400°C for 1 hour. The power was turned off, and the
system was allowed to cool over night before the sample was removed. The epoxy burned off
leaving the samples coated in charred epoxy resin and soot, but free of the inserts. The SIC layer
on CVI 1216 was too thin for effective machining without damaging the sample, so it was
repotted and returned to testing.
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Figure3-14. Typical torsion test for sample CVI 1219
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CVI 1219 was returned to ORNL, and the SIC layer was machined off the inner surface. For
Sample CVI1 1216 — AR isfor As-Received and AHT isfor After Heat Treatment. For Sample
CVI 1219 — AR isfor As-Received and AM for After-Milling.

Table 3-1V: Mechanical Propertiesof the Nextel/SiC compositetubes

TubeID | Axial Stiffness | Torsional Stiffness | Poisson Tensile Strength
(GPq) (GPa) Ratio (MPa)

1173-1 | 172.5:09 66.1:2.1 0.25 311

11732 | 1652:06 65.7+0.1 0.24 68.1

1216 AR| 1681211 62.8:1.0 0.20 >1715
/1&? 167.5+4.6 80.17+1.2 027 |>197.4 Axid + 43.5 Shear
1A2é9 142.1+0.9 65.1+0.5 0.31 >137
1A2|\1/|9 148.8+1.3 67.3+0.5 0.52 200.2

The axia stiffnessfor CVI 1216 was not affected by the thermal exposure to remove the
epoxy, while the torsional stiffness increased by 28%. The torsiona tests have been repeated,
with little variation in the observed modulus. Investigation into what structural changes may
have occurred has not been conducted at this point. The properties for CVI 1219 increased
dightly with the removal of the SiC inner coating.

The stresg/strain curves for the tensile strength tests of the CVI 1173 samples are in
Figure 3-15. The tensle strength values for the two 1173 samples are not indicative of the
material since both exhibited grip induced failures. Both 1173 samples exhibited a small amount
of nonlinear behavior, as can be seen in the departure from the CVI 1216 line. The fracture
surface exhibited some fiber pullout, as can be seen in Figure 3-21. CVI 1219 failed in the gage
section, and the tensile strength plot isin Figure 3-16. An extension of the linear behavior of the
materia is included to illustrate the nonlinear behavior. The value is believed to be lower than
what would be expected for the material, since the sample was changed by the machining

process. The inner and outer surfaces were not concentric, creating wall thickness variations
around the sample.
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Figure3-16. Tensile Strength Plot for CVI 1219.
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During the testing of samples 1216 and 1219 AR, the load profile reached the system
limit before failure. The values listed are the largest nominal stress values applied before the
246kN (55 kip) limit or prior to slippage of the sample. In order to test CVI 1216 and 1219, the
grip pressure was boosted to 38 MPa, from the normal setting of 20 MPa, to prevent dipping at
the higher loads. For CVI 1216 AHT, the load profile was atered so that torque would be
applied when the axial load limit was reached. The load profile for CVI 1216 isin Figure 3-17.
The axial force reaches 246 kN and an applied torque of 1422 N-m before the sample slipped out
of the grips of the MTS frame. Later attempts to repeat the test to a higher level failed due to

wear on the epoxy grip surface.
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Figure3-17. Load Profilefor CVI 1216

Figure 3-18 and Figure 3-19 are of the strain response to the different sections of the loading
profile. Figure 3-18 has the pure tension results, while 2-8 contains the result for the torque

ramp with a constant 246 kN axial load.
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Figure3-19. Strainresponsefor thetorqueramp with 246kN load —sampledid not fail
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Photographs of the failed of samples CVI 1173-1 and CVI 1219 are in Figure 3-20
through Figure 3-23. The first three images show the grip-induced failure of the CVI 1173-1.
The failure originated in the region above the grip area, as can be seen in Figure 3-20 and Figure

3-21. Figure 3-22 and Figure 3-23 are of CVI 1219. All the samples exhibited fiber pullout,
while CVI 1219 had delamination and pullout (highlighted in Figure 3-22).
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Figure3-21: Fractured tensilestrength specimen CVI 1173-1

Delamination

Figure3-22. Sample CVI 1219 with large amountsof fiber pullout and delamination

Figure3-23. Sample CVI 1219 failure surface with pullout
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3.2.1 Internal Pressure Tests Results

The results of the internal pressuretestsarein Table 3-V. The values are the slopes
found by linear regression for the data, as shown in Figure 3-24 (Pressure/strain). The strains
become nonlinear between 10 and 12 MPa due to frictional loading and shear failure of the plug.
The slope values were found by fitting the data below 8 MPa, to avoid the nonlinear affects.
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Figure3-24. Measured strain vs. internal pressurefor an internal pressuretest —the
nonlinear behavior above 10 MPaisdueto plugfailure.

Table3-V. Slopesof the best-fit datafor CVI 1219

AVG Values Axial (GPa) | Hoop (GPa) | Shear (GPa) || Poisson’sratio

Pressure/Strain | _g550:1.21 | 11.75:0.72 | 94.51+7.20 0.18
Hoop Stress/Strain | _343 89 6171 496.17 0.17
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3.3 Honeywell Sample

Typical strain response plots for the axia tension and torsion tests for the Honeywell
materials are in Figure 3-25 and Figure 3-26. A plot of the strain response of the internal
pressure test is found in Figure 3-27. The axial and shear strain components exhibit nonlinear
behavior and become more negative throughout the test. The nonlinear response is believed to
be due to frictional loading by the plug at the higher pressures. By taking the slope of the data at
low loads, the affects of the loading are avoided, and the performance of the material due to pure
internal pressure can be recorded. The elastic properties for the Honeywell materials arein
Table 3-VI.

Table3-VI. Elastic propertiesfor the Honeywell materials

Vaue Axia Strain | Hoop Strain || Shear Strain | Poisson’s
(GPa) (GPa) (GPa) Ratio
AXidl SITess | 155 15,1 97 | 114107 1.5%10° 0.12
(Inner)
Axid Stress 133.04+0.77 -888 412 0.15
(Outer)
Shear Stress 16.2*10° -23.9*10° 48.40+0.32
(Inner)
Shear Stress -55.2*10° 2.2¥10° 48.40+0.25
(Outer)
Pressure 712 20.26 -504 -0.03
Hoop Stress 4.5%10° 128.87 -3.2¥10° -0.03
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Figure3-25. Typical Axial tension test for the SIC/SiC tubes from Honeywell
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Figure3-26. Typical torsion responsefor the SIC/SiC tube from Honeywell
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0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

Strain
Figure3-27. Internal pressuretest for Honeywell material
The plot of the tensile strength test isin Figure 3-28. The materia exhibits a near perfect
bilinear behavior due to the 90-degree plies failing in transverse tension around 80 MPa. The

test ran to a maximum of 144 MPa, when the epoxy bond in the loading fixture (see Figure 2-5)

failed and the sample pulled out (not allowing for measurement of the ultimate tensile strength).
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Figure3-28. Tensilestrength test for the Honeywell sample. The sampledid not fail — at
the maximum load the sample pulled out to theloading fixture

3.4 Control Sample

The elastic response of the steel tube to the different test conditionsislisted in Table 3-VII,
with the typical stress/strain plotsin Figure 3-29 through Figure 3-31. The axia and hoop
moduli are within the range listed for this material (193-200 GPa). The shear modulus is below
the published value of 86 GPa, but the measured value follows the predicted value for an
isotropic material, giving some doubt about the published value.

G=—C _=754GPa (3.1)

- 2(1+n)
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Table3-VII. Slopesof thestrain responsesfor the control material

Stress (MPa)

Load Condition || Axial Strain (GPa) Ho?g;)ran She(a(;lfta)raln Poisson’s Ratio
Axial Stress 192.1+2.2 -700 -255¢10° | 0.274+0.005
Shear Stress 21.2*10° -9.73*10° | 73.5+0.6 --

Pressure -104.32 21.01 -147.54 0.20
Hoop Stress -968 194.95 -1.37%10° 0.20
25

-0.00015 -0.0001

0.00005 0.0001  0.00015
— AVG Ax
— AV G Hoop
— AV G Shear
-25 -
Strain

Figure3-29. Axial tension test for AlSlI Type 304 steel
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Figure3-30. Axial torsion test resultsfor AlSl Type 304 steel
6 -
—AVGAX
— AV G Hoop
—AVG Shear
-1.00E- -5.00E- 0.0JE+0 5.00E-05 1.00E-04 1.50E-04 2.00E-04 2.50E-04 3.00E-04
o4 o -1

Strain

Figure3-31. Internal pressureresultsfor AlSI Type 304 steel
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3.5 Discussion of Experimental Results

The first objective for this work was to develop experimental procedures to measure the
mechanical properties of the composite tubes from several different sources. The procedures
chosen were selected since they would subject the sample to a near-constant stress state over the
entire gage section. This provides better insight into the properties than several of the other tests
proposed in the literature, such as the O-ring or C-ring tests. The strains are measurable and
(ideally) uniform throughout the gage section, allowing for more accurate determination of the
material properties.

The axia tension/compression and torsion tests were straightforward in their experimental
procedures. Complications arose due to sample misalignment, but could be compensated for
with the use of 4 gages around the sample. By averaging the values, the bending contributions
were removed and accurate measurement of the tube stiffness could be obtained. The different
methods for loading the samples were successful in transferring load from the MTS frame to the
samples. The pin loading approach for the filter materials is not ideal, since there were several
faillures due to the pinholes in the samples. The low strength of the material prevented the use of
the other loading approaches, but once the end was potted in epoxy, it experienced gage section
failures. The two other approaches, directly gripping the sample and the end caps, were more
desirable. Sample misalignment was reduced for both methods to that measured in the filter
materials. The end caps used for the Honeywell material worked very well, in that the
misalignment was reduced, if not completely removed. The one drawback was the bond failure
that prevented the measurement of the ultimate tensile strength. This was due to the fact that the
depth of the groove was not machined to the specifications in the diagram. The groove could
only be milled to between 7 and 10 mm in depth due to the small width. With a deeper channe,
it islikely that the fixture would survive past the tensile strength of the sample.

Vaues for the axia strength were found for the McDermott filter materials, but not for the
Honeywell or ORNL materials. Sample CVI 1219 failed in axia tension after the silicon carbide
coating on the inner surface was removed. The strength of the material is expected to be higher
than the measured value due to the presence of thickness variations. The milling process
removed some of the composite material from the inner surface, cutting into the woven layers,

and possibly inducing damage within the material, which would be expected to reduce strength.
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Even though the ultimate strength could not be measured for the Honeywell material, the strain
response reveal s the transverse strength of the composite to be around 80 MPa.

The procedures for the internal pressure tests were devel oped during this research. This
work was done independently of the research at ORNL that developed similar methods. The
internal pressure results are in agreement with the values calculated from the hoop response of
the control sample, and supported by the results from the axial tests for the McDermott and
Honeywell samples. The hoop stiffness values are similar to thee axia stiffness values, as would
be expected from the symmetry of the materia (or isotropy for the control). The oxide/SIC
composites from ORNL did not exhibit this behavior. Severa factors may contribute to the
deviation, but damage incurred during other tests and due to the removal of the SiC layer are
more likely. The samples had been used for testing with the urethane plugs. Pressures estimated
to be in excess of 10 MPa were applied to these materials. It isuncertain if any matrix cracking
was present due to the previous loading or machining process to remove the SIC layer (which
was removed from the internal pressure test sample as well). Both of these factors would
decrease the stiffness, due to the increased compliance of the cracked material.

The responses of the materials at low pressures were in agreement with what is to be
expected. Thisis not necessarily the case at higher pressures. The strain responses for many of
the samples exhibited deviations from linearity, as can be seen in the axial and shear strain
responses in Figure 3-27. These are not believed to be due to damage in the material, but more
from frictional loading of the sample. Selecting a better high-pressure lubricant can reduce this
problem. Also, the tests were not conducted to pressures sufficient to fail the materials. The
Silastic plug would shear out around the compression platens prior to failure of the material. A
compression platen that more closely matches the inner diameter of the test sample should
alleviate this problem, since it would generate a pure, or at least, nearly pure hydrostatic load
condition. The large shear stresses would not be present without the spacing between the platen
and the sample. A better fitting platen was not developed in this work since the surface
roughness of the samples required some space to prevent the platen from directly loading the

sample in compression.
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4 Forward and I nver se Solutions

As was described in the Introduction, a nonlinear regression technigque has been utilized
to calculate estimates of the elastic constants for an orthotropic composite tube. The work by
George was successful in minimizing the error in data sets calculated by the Forward solution,
but was not able to find good estimates for the elastic properties for experimental data sets.

Since that work, severa aterations have been made to the original idea, adding functionality to
the analysis, in the hopes of improving its usefulness. Also, a separate optimization analysis was
developed that works the same problem with a different approach. Instead of using a Newtonian
or gradient-based regression technique, this new method utilizes the Nelder-Mead simplex
method.

The changes to the analysis from the work of George and the new methods utilized will be
described in this section. They will be validated by smulated test data found using the Forward
solution. Each of the methods developed for this work will be given a data set of accurate strain
values, and allowed to search for a solution given the same set of start values, which are
significantly different from the solution set. The analysis will be applied to the experimental
data and the results will be given. To understand the influence of error on the final solutions, the
more efficient methods will be givenstrain data sets with random error introduced. Thiswill
allow for the effects of different forms of error on the experimental data to be illustrated, and
give some information of the level of accuracy needed in experimental result for these methods
to find an accurate inverse solution. Also, the variations of the strain response due to changesin
the individual elastic constants are investigated to determine which tests are the most effectivein
generating the most useful data sets.

Extensions of the research methods proposed in this body of work are the development and
application of suitable multi-axial failure theories and increasing the scope of the analysis to find
thermal and hygroscopic expansion constants. The experimental results provide information on
the elastic properties and strength under several different loading conditions. The Forward
solution alows for the calculation of the stress state through the thickness for the failure loads.
With enough variation in the failure conditions, sufficient data would be available to calculate

failure envelopes for these materias. A brief framework and example of applying a multiaxial
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failure criterion will be given using the results from the McDermott filter data, since it was the

only material with failures under different loading conditions (Pi, Fx, Fx+Tx).
4.1 Inverse Solution

The first alteration made to the analysis was the use of the LevenbergMarquardt
compromise to stabilize the performance of the nonlinear regression analysis. Thisisa smell
change to the operation of the Newtonian method, which decreases sensitivity to poorly formed
Jacobian matrices. The next change was to the value being optimized. The original program
optimized the elastic properties, where as a new approach aters the values of the stiffness matrix
(Cjj) directly, reducing the nonlinearity of the system of equations. Another added feature allows
for the user to reduce the number of active parameters (E; values) from the seven to any value
desired. Thisissignificant since it allows for any number of variables to be set constant while
the remaining values are optimized. The final change was to increase the amount of data
available to the analysis by alowing data from the inner surface to be included.

The method used to change the E or C;; values is a Newtonian or gradient method. For the
Newtonian methods, the changes to the elastic constants are calculated using the error vector, O,
and the Jacobian matrix, J.

X=X +(373)IF (4.1)
where X is the variable (E or Cjj), X1 is the new, adjusted value, X' is the previous value, and f
is the difference between the measured and predicted strain value. This method requires that the
gradient is defined and continuous at all points, and that the Jacobian matrix is well formed (nort
singular and not ill conditioned or collinear).

A problem with this method arises with a near singular Jacobian matrix due to
collinearity in the data. The step value can become extremely large, causing the parameters to go
into an undesirable region of parameter space. The LevenbergMarquardt compromise was
developed to reduce the sensitivity of the analysis to this condition [48, pages 80-81, and 49,
pages 624-627]. Diagonalizing the inverted section of (4.1) by adding a small value stabilizes
the matrix and reduces sengitivity to abrupt changes in the gradients. There are several methods
for changing the matrix, but the method employed in this research changes (4.1) to:
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X=X +(373+kD)JF 4.2)
Where D is the diagonal values of the J'J matrix and k is a scaling factor (chosen so k<<1). This
is the Marquardt method, where the diagonal terms are multiplied by afactor of (1+k). The
increment values range from the origina Newtonian step value (k=0), to what would be the step
value for the method of steepest descent (k[J[J). The steepest descent uses infinitely small steps
calculated from each gradient, allowing for the most direct path to a minimum, but is not feasible
due to the increased number of computations for the small steps. The flow chart for the program
using the Levenberg-Marquardt compromise is found in Figure 4-1.

With the addition of the scaling term k, the problem has become more complex since now
this term must be maintained. The size of the k value must be changed to maintain the best
optimization step size. Ask increases, the step size decreases, and conversely, as k decreases,
the step size increases. The method employed in this analysis is not computationally efficient,
but it is efficient in choosing the best step value. It evaluates the error function for three
different k values (step sizes) and chooses the step that results in the largest decrease. This
roughly triples the number of evaluations of the error function, increasing the computation time
and decreasing efficiency. Theinitial k value is chosen to be small (k=0.0001), and the first step
iscaculated. To take the next step, three values are chosen for k; k/10, k, and 10k, and the error
functions are evaluated. The step that produces the smallest error is chosen for the step. If the
smallest error of the three steps is not smaller than the previous error value, then the program
goes into an interval-reducing scheme (seen in the lower right portion of Figure 4-1). The vaue
of k ismultiplied by ten (k, 10k, 100k), reducing the step size, and is repeated (10k, 100k, 1000k,
etc...) until the step reduces the error function. If the value of k exceeds a set large value, the
program stops, and the data inspected to see if it isaloca minimum or a bad set of values.
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Another addition to the program is the ability to optimize on the elastic constants (Ez, E,
Es...) or on the stiffness matrix values (Cjj). Thisissignificant in that it reduces the nonlinearity

of the equations by removing the nonlinear conversion from E to Cj;, as can be seenin (4.3).

_1-n,n
11‘% C :n32 NNy
23 23 E1E3D
+
C= % — 1-npy
n +n3£1 " EED (43)
C13 = ﬁ C:44 = Gza
1n ;] G =G,
C = EiT:DSl Ces = Gr
D= 1- NNy - N5 - Nayg- 2121”32”13

E EE;
The more terms that can be removed from the nonlinear aspects of the problem, the better the
linear step value will improve the estimates. In the first several steps of the Forward solution
(Step 21in Figure 4-1), the elastic constants are used to calculate the stiffness values (Cjj). Since
there is only one set of stiffness values for the material, they can be used for the optimization
values. Thisisnot possible for the transformed stiffness matrices since they are dependant upon
the geometry of the each layer and not just the material constants (for an N ply composite — 1 set

of Gjj vaues but up to N sets of C; values). The disadvantage of optimizing the stiffness matrix

isthat it precludes another process where the number of constants being optimized is reduced
from the seven original values to a set input by the user ranging from 1 to 7 active parameters.

A concern with this analysisis the small amount of data available to optimize seven
elastic parameters. Early results with this process would find some reproducible solutions, but
the out-of-plane values would return far outside acceptable ranges. These variations are due to
the experimental error in the limited data sets. There are two possible ways to handle the limited
data sets; one is to reduce the number of variables, and the other is to increase the amount of
data. By decreasing the number of active parameters, or fixing certain elastic constants to set
values and optimizing on the remaining values, the user can control variables that tend to

unredlistic values, and find values for the others. An example of this would be to set the out-of-
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plane values to be constant and optimize on the remaining in-plane values. To reduce the active
parameters, the input data includes the number of active parameters and information on the
values. With this information the Jacobian matrix is reduced in size, including the terms
applying to the active values. The program operates in the same fashion, but only increments the
variables defined as active, leaving the other terms constant and equal to the start value. The
routines for making these changes can be found in the Jacobian routines found in the source
codes in the Appendices.

The second method is to increase the amount of data available to the analysis. One
means of thisisto input values for the strain response from the inner surface of the sample. This
increases the total amount of data by doubling the measurements for each test. It will reduce the
number of possible solutions, since the values need to predict the strain response on the two
surfaces. Also, it should give more information on the out-of-plane properties from the internal
pressure tests, since the largest out-of-plane stress state is at the inner surface. The limitation of
actually measuring the strain of the inner surface accurately with pressure applied is beyond this
work. The elastomer compression method does not allow for these measurements.

The selection of convergence criteriais important to the success of the analysis. A
balance must be made between declaring convergence and terminating the program, and
allowing the system to find a true minimum. If the criteria are chosen too loosely, the program
declares a minimum before a true minimum is found. Conversely, we wish to stop the analysis
from wasting computation time making insignificant changes to the estimates or cortinuing
when the estimates are well outside acceptable values. Severa convergence criteria are
employed to determine convergence or to prevent the system from running for excessive periods
of time. From the flow chart in Figure 4-1, there are three locations for terminating the
procedure; if k becomes too large, the analysis exceeds a fixed number of iterations, or if the
solution meets the convergence criteria. The user of the program sets the maximum number of
iterations, so that program terminates if no solution has been found in a reasonable amount of
time. Thisis not a convergence criterion, since it does not inspect the dataitself, but merely
prevents the program from running for extended periods of time unchecked. There are two main
criteria employed in this program to check for significant change in the estimates of the elastic
properties. Thefirgt is that the program continues as long as one of active elastic constants

changes by more that 0.01% over 5 iterations, and the second is if the scaling factor, k, exceeds a
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set large value. Usually, when k becomes large (k>10°), the step sizes become small enough that

the program hits the other criterion, in that the changes to the active parameters become very

small. If the criterion is not reached, the step sizes are very large, indicating the potential that the

solution has entered an undesirable section of parameter space. The program stops and reports

which criterion was reached, which allows for the user to inspect the solution, and choose a

suitable course of action (i.e. determine if a genuine solution has been found or to change the

guess values and repeat the analysis).

41.1 Verification of Inversion Methods

To verify if the different methods calculate the best elastic properties, test runs were

conducted using each. A fictitious sample was created using the typical vaues for an S-2

Glass/Epoxy composite (50, page 14). The properties and geometry values are in Table 4-1 and

Table4-11. The Forward solution was used to calculate the strains for a basic set of load

conditions, listed in Table4-111. The vaues of the |loads were chosen to be similar to those seen

in experiments. The calculated strain response, listed in Table 4-1V, are listed for the different

loading conditions and surfaces (I=inner or O=outer).

Table4-1. Elastic Constantsfor a S-2/Epoxy composite

Elastic Properties GPa (Msi)
= 43.5(6.31)
E 11.5(1.67)
Es 11.5(1.67)
G 3.45(0.5)
npy 0.27
ni3 04
Ny 04

Table4-11. Geometric Constantsfor two fictitiouscompositetubes

TubelID Inner Ra_di us Outer Ra_di us Number of Plies Orientation Ply Thic_kness mm
mm (in) mm (in) (in)
1 25.4(1.0) 27.9(11) 20 [45/-45]10 0.127 (0.005)
2 25.4(1.0) 27.9(1.1) 20 [0/90]10 0.127 (0.005)
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Table4-111.

L oading Conditions for the tubes

P Fx Ty
Load# | \paksi) || kN (1bf) | N-m (in-Ibf
1 10 (1.45) 0 0
2 0 5 (1125) 0
3 0 0 100 (885)
4 0 5(1125) | 100 (885)
5 10(1.45) | 5(1125) | 100 (885)

Table4-1V. Strain responsefor thetubesusing theloading conditionsfrom Table4-111

Tubel Tube?2
Load # || Surface & & O & & Oq
1 O -5.5713E-03 | 8.4283E-03 | -5.9773E-06 | -3.348E-04 | 3.440E-03 | -1.177E-18
2 0 1.0406E-03 | -6.4180E-04 | 2.0183E-06 | 4.251E-04 | -5.393E-05 [ 2.215E-20
3 0 1.4434E-06 | -4.2934E-07 | 7.4009E-04 | 1.584E-20 | -9.157E-20 | 2.671E-03
4 0 1.0421E-03 | -6.4223E-04 | 7.4211E-04 | 4.251E-04 | -5.393E-05 | 2.671E-03
5 O -4.5292E-03 | 7.7860E-03 | 7.3613E-04 [ 9.022E-05 | 3.386E-03 | 2.671E-03
1 I -5.5713E-03 | 9.4626E-03 | -5.4339E-06 | -3.348E-04 | 3.977E-03 | -1.070E-18
2 I 1.0406E-03 | -6.8795E-04 | 1.8348E-06 | 4.251E-04 | -4.135E-05 [ 2.014E-20
3 I 1.4434E-06 | -5.2785E-07 | 6.7281E-04 | 1.584E-20 | -1.039E-19 [ 2.428E-03
4 I 1.0421E-03 | -6.8848E-04 | 6.7464E-04 | 4.251E-04 | -4.135E-05 | 2.428E-03
5 I -4.5292E-03 | 8.7741E-03 | 6.6921E-04 | 9.022E-05 | 3.935E-03 | 2.428E-03

The first check of the analysesisto input a perfect data set (one with no error included in

the 5 significant digits listed above) and give bad start values. The results for the different
optimization methods given the same start values are listed in Table 4-V and Table4-VI. The

different methods are the Levenberg-Marquardt compromise (LM) and the Nelder-Mead simplex
method (NM) optimizing the stiffness matrix values (Cjj) and the elastic constants, (Ej). Plots of

the Sum of Square Errors (SSE) at each iteration are located in Figure 4-2 and Figure 4-3. The
values of the SSE are on alogarithmic scale, starting at an initial value between 10 and 10°3,

and plateau at the solution at 10*°.
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Table4-V. Resultsfor Tubel. LM —Levenberg-Marquardt, NM — Nelder-M ead

Properties Start LM —C;j; LM-E NM - Cj NM - E;
E;, (GPa) 6.90 43.61 43.61 46.20 46.75
E; (GPa) 3.45 11.40 11.40 8.48 7.93
E; (GPa) 3.45 11.52 11.52 8.00 10.89
G2 (GPa) 0.69 3.45 3.45 3.45 3.45

Ny 0.3 0.273 0.273 0.357 0.385
N3 0.3 0.402 0.402 0.443 0.627
No3 0.3 0.398 0.398 0.257 0.171
Final SSE 5.98E-15 5.98E-15 1.34E-11 2.18E-11
Iterations 14 62
Computation time 1.04 Minutes 3.1 minutes 8.8 minutes 44 seconds

Table4-VI. Resultsfor Tube 2, LM —Levenberg-M arquardt, NM — Nelder -M ead

Properties Start LM -C; LM-F NM - Gj NM - E;
E; (GPa) 6.90 42.42 43.86 27.92 47.64
E, (GPa) 345 12.66 11.14 27.24 7.38
E; (GPa) 345 11.52 11.49 10.83 6.09
G, (GPa) 0.69 3.45 345 3.45 343

N1y 0.3 0.246 0.279 0.114 0.365
Ni3 0.3 0.385 0.402 0.640 -0.002
Ny3 0.3 0.421 0.395 0.195 1.054
Final SSE 1.53E-15 1.53E-15 5.37E-12 4.65E-08
Iterations 14 15

Computation time 60 seconds 1.21 minutes 50 seconds 8.4 minutes
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Figure4-2. Sum of SquareErrorsfor Tubelfor thetwo different Newtonian methods.
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Figure4-3. Sum of Square Errorsfor Tube 2 for thetwo different Newtonian methods.

Upon inspection of the results, the two Newtonian methods are more accurate, finding the
estimates of the elastic constants to within afew percent of the true values (the accuracy can be
increased by including a larger number of significant digits in the strain data— as can be seenin
the two LM-C;; linesin Figure 4-2 — one contains 5 significant digits and found a minimum at
10" and the other has 6 digits and terminated with afinal SSE of 101"). The Nelder-Mead
methods improved the values, but not to the same level as the other two approaches.

An interesting side effect of this analysis was found using both of the optimization
methods; a second solution exists for the Tube 2 geometry. For the LevenbergMarquardt
compromise on the elastic constants, a second solution to the problem was found by changing the
start values (Table 4-VI1). With the [0/90] structure of the tube, a second solution is an average
of the B and E;, values. It has the same residual error, meaning without knowing the correct
answer, it would be impossible to determine which solution is the correct with some other

information to differentiate them.



Table4-VII. Thetwo solutionsfor Tube 2 found using different start values

Properties Start 1 LM-E Start 2 LM-E
E; (GPa) 6.90 42.42 6.90 27.92
E; (GPa) 3.45 12.66 6.90 27.44
E; (GPa) 3.45 11.52 6.90 11.38
G, (GPa) 0.69 3.45 0.69 3.45

Nio 0.3 0.246 0.2 0.112891
Ni3 0.3 0.385 0.3 0.171464
No3 0.3 0.421 0.3 0.674271
Final SSE 1.53E-15 1.53E-15
Iterations 14 15
Computation time 60 seconds 1.2 minutes

4.2 Application to Experimental Results

The data described in Section 2 of this paper has been reduced for input into the analysis
by fitting the linear elastic portions of the data with a best-fit line. The slopes of the data were
used to calculate the strain response at the maximum load ranges for each of the tests. The same
numbers of data points were included from each test, so the results would not be biased towards
one set of data.

There is a discrepancy between the model used and the experimental composite samples.
The model was designed to describe the deformations in a laminated structure composed of
orthotropic layers of various orientations. The experimental samples are alaminated structure
with woven plies, which do not behave in a consistent fashion to unidirectional plies. To
approximate the behavior of the woven plies, each layer is modeled as two cross-ply layers.

Different data sets were created from each of the different materials tested. The inputs for
each of the optimization techniques will be listed (geometric input values), and the output
solutions. Tables of the start and output values with final error are given, and graphs of the
solutions will be presented to illustrate the fit to the experimental results.

Selection of start values is important for the operation of the analysis. Poor start values
can cause the program to converge to an incorrect solution, or at least cause the system to waste
time in searching for values. A good estimate of the elastic propertiesis aways the best start
value, since the closer the start is to the solution, the more likely it isto find it. This seems
obvious— if one already has a good idea of the properties, this analysisisn't necessary. This
procedure has the capability of starting with bad start values and finding the right solution, but
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the further away the start, the greater the possibility that the solution that is found is an aternate
solution — as was seen with the results for Tube 2 in Table 4-VII. Experience with start values
seems to indicate that conservative estimates work better. That is to say that starting smaller
than the probable solution appears to work better than picking values known to be larger. The
percentage change between using smaller or larger values of the material constantsis best
illustrated by examining their behavior. The difference value is found by subtracting the new
strain response from that of the original, or:

S 1
e‘exp _ e'calc ® eAe><p _ 1- 4.4
et @ e Tl = (4.4

where e is the strain value, exp and calc refer to the experimental and calculated values, and E
are the elastic properties. Since both the experimental strain and the stress values are constant,
the change in the strain response should follow a (1-1/X) behavior (as shown in Equation (4.4)).
Consequently, the sum of square errors should be proportional to (1-1/X)2. Sinceall the
independent variations to the different material values would be too numerous to include in this
report, a plot of the variation of the SSE as a function of a constant times all of the material
properties if found in Figure 4-4. The plot of the (1-1/X)? line is not to scale, but shown to
illustrate the similar behavior. The small variations to the error values above one would be
susceptible to change by the introduction of error in the measured values, and could result in the
formation of alocal minimathat is not the ideal solution. The large variations to the values
below one would be more tolerant of error effects, leading to a better chance of finding a
minimum.

For each of the experimental results, severa start values will be used for each material,
and will include a set of values smaller than the anticipated values and a set of “good” estimates.
The small values are found by simply choosing a number sufficiently smaller than the expected
values, anywhere from afew percent to orders of magnitude, depending on the performance of
the analysis. The good values are any value that can be considered a decent estimate of the
expected value. For the unknown properties of the composite materials, micromechanics models

will be used to calculate an estimate from the constituent properties.
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Figure4-4. Theerror function for Thick Tube 2 plotted against the value of the multiplier
on theelastic properties (2 =2*Ei, i=1..7).

4.2.1 McDermott TechnologiesHot Gas Filter

The geometric input values for the McDermott filter material are in Table 4-VIIIl. The
winding angle variations follow the expression derived in the Introduction, and are calculated at
every layer interfacid radius. The experimental load and strain response values are listed in
Table 4-1X. The values were calculated from the average responses of all the tests, and since
they are linear, only one value from each test is needed (the model passes through the origin
giving a second point for alinear response).
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Table4-VIIl. Geometricinputsfor MTI

Inner radius- cm (in) 2.46 (0.968)
Outer radius- cm (in) 3.00(1.18)
Number of Layers 36
Layer Thickness-cm (in) 0.015 (0.006)
Orientation 45°to 50°

Table4-1X. Experimental Applied Loadsand Measured Strainsfor theMTI materials

L oads Strain
P, R Axial Load || Torque & & Oq
(MPa) [ (kPa) (kN) (N-m)
0 690 0 0 -0.00064 | 0.000546 | -7.69E-06
0 0 0.445 0 0.00011 | -5.65E-05 | 2.96E-06
0 0 0 11.3 | -1.78E-06 | 6.51E-07 | 5.97E-05

The Levenberg-Marquardt method optimizing the E values was used to find the best-fit eastic
properties; the three different start values used are listed in Table 4-X. Thefirst isa small start
value, where the values should be smaller than the expected properties. The second is a set of

start values calculated from a micromechanics approach developed by Huang [3,51]. The final
set is found with the out-of-plane values set as constants. Plots of the experimentally observed

strain response versus the predicted strain response for Solution Set #1 are in Figure 4-5 through
Figure 4-7.

Table4-X. Solutionsfor the M cDer mott Hot GasFilter 7-6-16 with 10° simulated back-
pulsecleaning cycles.

Setl

Set 2 Set 3
Properties Input Output Input Output Input Output
GPa (Ms)
=] 0.69(0.1) | 26.75 (3.88) | 29.65 (4.3) | 26.75 (3.88) | 29.65 (4.30) | 35.03 (5.08)
E 0.07(0.01) | 8.62(1.25) | 2.30(0.333) | 8.62(1.25) | 2.30(0.333) | 10.62 (1.54)
Es 0.07 (0.01) | 0.10(0.015) | 2.30(0.333) | 0.10(0.015) | 0.42(0.061) | 0.42 (0.061)
Gz 0.28 (0.04) | 1.26(0.183) | 1.15(0.167) | 1.26 (0.183) | 1.15(0.167) | 1.14 (0.165)
Nip 0.2 0.149 0.01 0.149 0.15 0.699
Ni3 0.15 -26.2 0.01 -26.2 0.01 0.01
Ny3 0.1 132 0.01 132 0.01 0.01
Error (SSE) 3.66E-5 1.34E-11 9.21E-9 1.34E-11 2.67E-9 9.70E-10
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Figure4-5. Axial tension test response— experimental data arerepresented by data points
and the model predictionsarelines
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Figure4-6. Internal pressure test response—experimental data arerepresented by data
pointsand themodel predictionsarelines
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Figure4-7. Axial torsion test response—experimental data arerepresented by data points
and the model predictionsarelines
The best-fit values accurately describe the response of the materia, in that the lines for

each of the strain values are very close to the experimental data points. The values for the in-

plane responses are good, but the out-of-plane values are outside expected ranges.

4.2.2 ORNL Al,04/SIC Tubes

The geometric inputs for CVI 1219 arein Table 4-XI. The experimental inputs, loads
and strains, are in Table 4-XI11.
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Table4-XI. Geometricinputsfor CVI 1219

Inner radius- cm (in) 2.5(0.98)
Outer radius - cm (in) 2.95 (1.16)
Number of Layers 16
Layer Thickness- cm (in) [ 0.47 (0.187)
Orientation +45

Table4-XI11. Experimental Applied Loadsand Measured Strains

Loads Strain
P R Axial Load || Torque
(MPa) || (MPa) (kN) (N-m) & & Ya

0 4.14 0 0 -6.2E-05 | 0.000337 | 4.63E-05
0 6.21 0 0 -9.4E-05 | 0.000506 | 6.94E-05
0 0 -22.2 0 -0.00018 | 9.51E-05 | -6.64E-07
0 0 222 0 1.84E-04 | -9.51E-05| 6.64E-07
0 0 0 -215 || -4.44E-06 | 3.99E-06 | -1.56E-04
0 0 0 215 4.44E-06 | -3.99E-06 | 1.56E-04

The results for different sets of start valuesarein Table4-XIIl. Thevauesin Set 1 are
rough estimates of the measured stiffness values listed in Table 3-1V and Table 3-V, while those

in Set 2 are rough estimates calculated using micromechanics models for E; and E;:

E =V/E; +(1- V;)E, (4.5)

1_- M M
E, E, +EfJ\Tf+(1-JVf)Em 49

where E and E, are the modulus of the fiber and the matrix and V; is the fiber volume fraction
[39]. The modulus values used for the SIC and the Nextel 610 fiber are 414 and 372 GPal,
respectively, and a fiber volume fraction of 0.32 was used. The input values used in Set 3 were
solutions from the Nelder-Mead approach using the values from Set 1 as start values. As can be

seen, the Nelder-Mead solution is not a minima, since the Newtonian method found a different
sat of values.

1 Values taken from reports on the 3M website
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Table4-XIl1l. Input and output valuesfor CVI 1219

Setl Set2 Set3
Properties Input Output Input Output Input Output
GPa(Msi)
E: 172 (25.0) 208 (30.1) 414 (60.0) 175 (25.5) 199 (28.8) | 254 (36.9)
E 76 (11.0) 108 (15.7) 276 (40.0) | 141 (20.4) 53(7.67) | 59 (8.59)
Es 69(10.0) | 4964(720.0) | 276 (40.0) | 1855(269.0) | 77 (11.2) | 155(22.5)
Gio 62 (9.0) 65 (9.49) 131 (19.0) 66 (9.55) 33(4.84) | 62(9.02
N 0.15 0.27 0.1 021 -0.01 0.38
Ni3 0.15 -0.13 0.15 -0.07 0.23 -0.67
Nx 0.25 0.13 0.25 0.07 0.63 0.58
Error (SSE) 7.66E-09 7.59E-09 8.27E-09

The output values are different for each set of starting values. The only value that is

consistent is the shear modulus value. The other in-plane values (1-2 values) are calculated with
arange of values that are acceptable, while the out-of-plane values are not. The through-
thickness stiffness (Es) ranges in value from 155 GPa to 4964 GPa (22.5 Msi to 720 Msi), while

the two Poisson’ sratios (n13 and n3) range from —0.67 to 0.58. These values are well outside the

expected ranges for these values (Es [0 E; and n12[0n;3), and at this time no start values have been

found that return al values in the expected ranges. Thisis not indicative that analysis has failed

to minimize the error function. Figure 4-8 through Figure 4-10 are the graphs of the

experimental data plotted with the calculated results. In each graph, the experimental strain

measurements are plotted as data points, while the model predictions are the lines. In all cases

the model matches the data very closely, with the possible exception of the shear strain valuesin

Figure 4-10.
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4.2.3 Honeywell SIC/SIC Tubes

The geometric inputs for the Honeywell tubes are in Table 4-XIV. The applied loads and
strain responses arein Table 4-XV. Unlike the data for the McDermott filters and the ORNL

tubes, the responses include data from the inner surface and combined load conditions (Fx and

TX).

Table4-X1V. Geometricinputsfor the Honeywell tubes

Inner radius- cm (in) 2.51(0.99)
Outer radius-cm (in) 2.90(1.14)
Number of Layers 24
Layer Thickness- cm (in) || 0.015 (0.006)
Orientation [0/90]
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Table4-XV. Experimental Applied L oadsand Measured Strainsfor the Honeywell

materials
Loads Strain

P, P, Axial Load || Torque Surface

(MPa) || (MPa) (kN) (N-m) & % %a

0.0 | 34475 0.00 0.0 0 4.841E-06 | 1.702E-04 | -6.836E-06
0.0 0.0 4.48 0.0 0 5.310E-05 | -7.955E-06 | -1.715E-05
0.0 0.0 0.00 113.0 0 -1.283E-07 | -3.173E-06 | 1.463E-04
0.0 0.0 4.48 0.0 i 5.166E-05 | -6.477E-06 | -4.582E-06
0.0 0.0 0.00 113.0 i 3.793E-10 | -2570E-07 | 1.270E-04
0.0 0.0 2.23 56.2 ) 2.609E-05 | -4.160E-06 | 7.231E-05
0.0 0.0 -2.26 -56.0 0 -2.543E-05 | 3.541E-06 | -7.445E-05
0.0 0.0 2.27 -55.8 0 2.693E-05 | -4.049E-06 | -7.371E-05
0.0 0.0 -2.24 56.1 0 -2.744E-05 | 4.484E-06 | 7.210E-05
0.0 0.0 2.23 55.9 i 2.788E-05 | -5.629E-06 | -6.044E-05
0.0 0.0 -2.24 56.3 i -2.991E-05 | 6.486E-06 | 6.172E-05
0.0 0.0 2.27 56.5 i 2.187E-05 | 2.139E-07 | 6.636E-05
0.0 0.0 -2.22 55.4 i -2.549E-05 | 1.750E-06 | -6.428E-05

The results for the three sets of start values are listed in Table 4-XVI1. Aswas seen in the results

for Tube 2, there exist two different solutions. Set 2 and 3 find similar solutions, where the Set 1

values for E; and E; are the average of those in Set 2.

Table4-XVI. Resultsfor the Honeywell tubes

Setl Set 2 Set 3
Properties Input Output Input Output Input Output
GPa (Ms)
=] 137.90 (20.0) | 134.45(19.5) | 206.85(30.0) | 199.27(28.9) | 2.07(0.3) | 201.33(29.2)
E, 137.90(20.0) | 129.63(18.8) | 68.95 (10.0) | 67.09 (9.73) | 0.69(0.1) | 73.78 (10.7)
E; 137.90 (20.0) | 373.02 (54.1) | 68.95 (10.0) | 436.45(6.33) | 0.69(0.1) | 181.34(26.3)
G2 48.27 (7.0) 84.12 (12.2) 62.06 (9.0) 82.74 (12.0) | 0.62(0.09) | 84.12 (12.2)
Nip 0.2 0.048 0.1 0.085 0.1 0.101
Ni3 0.29 0.600 0.25 0.676 0.25 1.053
Na3 0.29 0.596 0.25 0.396 0.25 0.658
Error (SSE) 5.09E-08 5.10E-08 5.09E-08

The out-of-plane values again are outside of expected ranges, but are not outrageously so, as for
the McDermott ORNL materials. The analysis was repeated setting the out-of-plane values as
constants (number of active parameters (NAP) = 4), with E; set approximately equal to E, from
the Set 2 solution and the Poisson ratios set to 0.2 and 0.5.
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Table4-XVII

. Resultsfor Honeywell tubes. Set 1 NAP =7, Set 2 and 3 NAP=4 (In-plane

valuesonly)
Setl Set 2 Set 3
Properties Input Output Input Output Input Output
GPa (Msi)
=1 206.9 (30.0) | 199.3 (28.9) | 206.9 (30.0) | 250.3 (36.3) | 206.9 (30.0) | 245.5 (35.6)
= 68.95 (10.0) | 66.33 (9.62) | 68.95 (10.0) | 2.75(0.399) | 68.95 (10.0) | 17.24 (2.5)
= 68.95 (10.0) | 413.0 (60.0) | 68.95 (10.0) | 68.95 (10.0) | 68.95 (10.0) | 68.95 (10.0)
G2 84.12 (12.2) | 84.12 (12.2) | 84.12 (12.2) | 84.12 (12.2) | 84.12 (12.2) | 84.12 (12.2)
Ny, 0.1 0.086 0.1 2.217 0.1 0.37
Ni3 0.2 0.694 0.2 0.200 0.5 0.50
Ny3 0.2 0.404 0.2 0.200 0.5 0.50
Error (SSE) 5.09E-08 5.10E-08 5.09E-08

With the reduction of active parameters, the out-of-plane properties are set as constants and the
remaining values are optimized. By examining the solutions for Set 2 and Set 3, one notices the

in-plane values change to compensate for the lack of contribution from the out- of-plane values.

4.2.4 Control Sample

The geometric inputs for the control sample are in Table 4-XV11I. The experimental |oad
conditions and strain response isin Table 4-X1X. Aswith the Honeywell material, the
experimental results contain combined axial load and torque, giving more information for the
analysis, but without access to the inner surface, the strain response is only from the outer

surface.

Table4-XVIIl. Geometricinputsfor the Control Sample

Inner radius- cm (in) 2.73(1.07)

Outer radius- cm (in) | 3.00 (1.18)
Number of Layers 1

Layer Thickness- cm (in) || 0.28 (0.11)
Orientation 0
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Table4-X1X. Experimental Applied Loadsand Measured Strainsfor the Control Sample

Loads Strain
P, P, Axia Load | Torque || Surface & & Oq
(MPa) | (MPa) (kN) (N-m)

0.0 | 2758.0 0.00 0.0 0] -2.692E-05 | 1.281E-04 | 1.267E-05
0.0 0.0 44.35 0.0 0 4.601E-04 | -1.284E-04 | -1.036E-05
0.0 0.0 0.00 418.1 0 -1.769E-06 | -1.320E-06 | 4.194E-04
0.0 0.0 448 55.7 o] 4.468E-05 | -1.277E-05 | 5.353E-05
0.0 0.0 3.37 112.5 0 3.333E-05 | -1.026E-05 | 1.094E-04
0.0 0.0 451 112.5 0 4,495E-05 | -1.355E-05 | 1.093E-04
0.0 0.0 452 -112.5 o] 4,556E-05 | -1.256E-05 | -1.124E-04
0.0 0.0 8.92 112.8 0 9.073E-05 | -2.253E-05 | 1.136E-04
0.0 0.0 -8.91 -113.2 0 -9.119E-05 | 2.761E-05 | -1.098E-04
0.0 0.0 -8.93 111.8 o] -9.119E-05 | 2.662E-05 | 1.128E-04
0.0 0.0 8.96 -112.0 0 9.124E-05 | -2.167E-05 | -1.092E-04

With the isotropy (or at least near-isotropy) of the metal, estimates of the properties were
entered for Set 1. For the second data set, the out-of-plane values were set to be constant, and

the process repeated.
Table4-XX. Resultsfor the control sample Set 1 NAP =7, Set 2 NAP=4 (In-plane values
only).
Set 1 Set 2

Properties

GPa (Ms) Input Output Input Output
E 186.2 (27.0) | 190.85(27.7) | 186.17 (27.0) | 190.99 (27.7)
E 172.38(25.0) | 194.44(28.2) | 172.38(25.0) | 199.96 (29.0)
Es 172.38 (25.0) | -4467.27 (-648) | 193.06 (28.0) | 193.06 (28.0)
Giz 68.95 (10.0) | 72.81(10.6) | 68.95(10.0) | 73.09 (10.6)
Nip 0.25 0.273 0.25 0.272584
Ni3 0.3 1.066 0.27 0.27
Nos 0.3 6.575E+09 0.27 0.27

Error (SSE) 4.165E-10 4.70E-10

4.3 Error Senditivity

Aswith any regression analysis, linear or nonlinear, the quality of the estimates for the
variables depends upon the quality and quantity of the data. When the data have a large amount
of error or scatter, it is advantageous to increase the amount of data to improve the fit. For the
experimental work done here, there is a limit to the amount of data due to the limits of the model

and experimental procedures. To illustrate the effects of different forms of error on the

97



regression analysis, smulations using the elasticity model were developed, and the strain results
adjusted to illustrate two different forms of error. Oneis called a proportional error, whichisa
straight percentage variation to the strain. The second will be the addition of afixed level of
error, which adversely affects the smaller strain measurements more than the large values. This
is analogous to signal noise affects for the different measurements employed. For both
conditions the RAND() function from Microsoft Excel will be utilized to calculate the error
value. It generates aflat distribution between 0 and 1 (all values between 1 and 0 have the same
probability).

This does not address severa other forms of error that could be expected in the
experimental data. This assumes that all the tests used to generate the results are perfectly done.
Thisisto say thet al tests generate the exact same amount of error in the data, and it is
distributed randomly throughout all the values. For the axial tension and torsion tests thisis
probably not a bad assumption since they are performed at the same time using the same MTS
system controls, but it might not be applicable to the internal pressure tests. The pressure
calculated by the elastomer plug method here matches the data well for the control sample, but
with the rougher surfaces of the composite materials there is probably a small axial load
generated. The load would change the axial and hoop strain results, biasing the data.

A bonus to the recording of the data was the use of 4 rosettes to record the stain. This
was primarily to remove elastic bending contributions due to specimen misalignment, but has the
added benefit of reducing several sources of experimental error. Random noise and orientation
variations will be reduced since the stains are the average of four gages. Another method of
reducing experimental error is the averaging of the slopes for the repeated tests on each sample.
For each test, the data are recorded, a best-fit line is found and the lope is recorded, and the

slopes are averaged.

4.3.1 Proportional Error

Aswas described earlier, a proportionate error was included to test for sengitivity to error.
This generated an error such that all strains were within fixed percentage range of the correct
strain values. Microsoft Excel worksheets were used to tabulate the data, and the random
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number function, RAND, was used to generate the distribution. Since the RAND function is a
distribution between 0 and 1, by shifting the values by 1-2RAND, as seen in Equation (4.7), will
give anew distribution from 1 to —1. Thiswill alow for the median value to correspond to the
original strain value, and the distribution to be between the percentage factor, %d, or [e(1- d) £ €'
£ e(1+d)].

et=e(1+%d (L- 2RAND)) (4.7)
Error values of 0.1, 1, and 10% will be used for thisillustration, and are listed in Table 4-XXI
through Table 4-XXVI. The range for the percentage error should be excess of what could be
seen in experimental results (0.1% is better than what can be expected and 10% is the accepted
upper limit). In each table are the load condition (see Table 4-111), the surface of the readings,
the altered strain values, and the percentage change from the valuesin Table 4-1V.

Table4-XXI. Strain valuesfor Tube 1 with 0.1% random error

Strain Values Percent Change to Original
Surface e & Oq € (Y Gq

-5.573E-03 | 8.433E-03 | -5.982E-06 | -0.028 | -0.058 | -0.086
1.041E-03 | -6.421E-04 | 2.017E-06 | -0.035 | -0.051 | 0.082
1.443E-06 | -4.296E-07 | 7.403E-04 | 0.013 | -0.054 [ -0.030
1.042E-03 | -6.424E-04 | 7.426E-04 | -0.010 | -0.032 [ -0.065
-4.532E-03 | 7.785E-03 | 7.366E-04 | -0.069 [ 0.010 | -0.058
-5.569E-03 | 9.470E-03 | -5.437E-06 | 0.036 [ -0.075 | -0.052
1.041E-03 | -6.877E-04 | 1.836E-06 | -0.068 | 0.038 | -0.061
1.444E-06 | -5.277E-07 | 6.724E-04 | -0.064 | 0.019 [ 0.065
1.042E-03 | -6.884E-04 | 6.749E-04 | 0.038 | 0.010 | -0.042
-4.528E-03 | 8.776E-03 | 6.698E-04 | 0.020 | -0.025 | -0.084

o

,_
mhwmpmhwmpé
—|=|=|-[—]o|o|o]|o

Table4-XXII. Strain valuesfor Tube 1 with 1.0% random error

Strain Values Percent Change to Original
Surface e & Oq € (Y Gq

-5.582E-03 | 8.399E-03 [ -5.979E-06 | -0.196 [ 0.345 | -0.031
1.035E-03 [ -6.367E-04 | 2.023E-06 | 0.503 | 0.793 | -0.227
1.431E-06 | -4.303E-07 | 7.435E-04 | 0.824 | -0.225 | -0.459
1.040E-03 | -6.406E-04 | 7.369E-04 | 0.239 | 0.254 | 0.703
-4.564E-03 | 7.813E-03 | 7.367E-04 | -0.762 | -0.348 | -0.080
-5.540E-03 | 9.505E-03 | -5.400E-06 | 0.557 [ -0.449 | 0.632
1.033E-03 | -6.914E-04 | 1.848E-06 | 0.687 | -0.495 [ -0.726
1.436E-06 | -5.245E-07 | 6.689E-04 | 0.510 | 0.637 | 0.574
1.032E-03 | -6.838E-04 | 6.745E-04 | 0.930 | 0.673 | 0.016
-4.515E-03 | 8.690E-03 | 6.759E-04 | 0.304 | 0.959 | -0.994

o

,_
mhwmpmhwmpé
—|=|=|-|—]o|o|o]|o
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Table4-XXI1I. Strain valuesfor Tube 1 with 10.0% random error

Strain Values Percent Changeto Original
Load | Surface e (=Y Gq e & Gq

1 0 -6.023E-03 | 8.225E-03 | -5.873E-06 | -8.105 | 2.412 | 1.743
2 0 1.102E-03 | -6.014E-04 | 1.956E-06 | -5.932 | 6.293 | 3.111
3 0 1.576E-06 | -4.638E-07 | 7.649E-04 | -9.210 | -8.022 | -3.357
4 0 1.079E-03 | -6.520E-04 | 7.638E-04 | -3.570 | -1.514 | -2.920
5 0 -4.947E-03 | 8.304E-03 | 7.105E-04 [ -9.230 | -6.648 | 3.475
1 i -5.025E-03 | 9.161E-03 | -5.698E-06 [ 9.803 | 3.191 | -4.852
2 i 1.054E-03 | -7.058E-04 | 1.901E-06 | -1.294 | -2.505 | -3.596
3 i 1.429E-06 | -4.803E-07 | 6.396E-04 | 0.996 | 9.012 | 4.932
4 i 1.094E-03 | -7.318E-04 | 6.897E-04 | -5.025 | -6.297 | -2.236
5 i -4.407E-03 | 8.825E-03 | 6.310E-04 [ 2.704 | -0.583 | 5.708

Table4-XXIV. Strain valuesfor Tube2with 0.1% random error

Strain Values Percent Changeto Original
Load | Surface e (<Y Oq € €& Gq

1 0 -3.351E-04 | 3.438E-03 | -1.177E-18 [ -0.082 | 0.041 | 0.000
2 0 4.250E-04 | -5.391E-05 | 2.216E-20 | 0.004 | 0.043 | -0.017
3 0 1.586E-20 [ -9.148E-20 | 2.672E-03 | -0.098 | 0.095 [ -0.029
4 0 4.252E-04 | -5.396E-05 | 2.672E-03 | -0.021 | -0.057 | -0.046
5 0 9.027E-05 | 3.384E-03 | 2.673E-03 | -0.052 | 0.042 | -0.093
1 i -3.351E-04 | 3.980E-03 | -1.070E-18 [ -0.065 | -0.095 | 0.021
2 i 4.247E-04 | -4.136E-05 | 2.016E-20 | 0.085 | -0.030 | -0.084
3 i 1.586E-20 [ -1.040E-19 | 2.429E-03 | -0.089 | -0.088 | -0.031
4 i 4.251E-04 | -4.137E-05 | 2.426E-03 | -0.002 | -0.065 | 0.083
5 i 9.023E-05 | 3.935E-03 | 2.429E-03 | -0.008 [ 0.022 | -0.031

Table4-XXV. Strain valuesfor Tube 2 with 1.0% random error

Strain Values Percent Change to Original
Load | Surface e & Oq € €& Gq

1 0 -3.364E-04 | 3.422E-03 | -1.177E-18 | -0452 [ 0.503 | 0.039
2 0 4.248E-04 | -5.445E-05 | 2.215E-20 | 0.054 | -0.968 | 0.034
3 0 1.572E-20 | -9.080E-20 | 2.660E-03 | 0.747 | 0.833 | 0.402
4 0 4.219E-04 | -5.361E-05 | 2.680E-03 | 0.753 | 0.594 | -0.353
5 0 8.948E-05 | 3411E-03 | 2.696E-03 | 0.821 | -0.732 | -0.951
1 i -3.368E-04 | 3.947E-03 | -1.072E-18 | -0.585 [ 0.748 | -0.161
2 i 4.222E-04 | -4.112E-05 | 2.029E-20 | 0.678 | 0.550 | -0.728
3 i 1.588E-20 [ -1.048E-19 | 2.440E-03 | -0.239 | -0.877 | -0.498
4 i 4.221E-04 | -4.165E-05 | 2.432E-03 | 0.687 | -0.720 | -0.172
5 i 8.944E-05 | 3.931E-03 | 2.420E-03 | 0.863 | 0.108 | 0.315
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Table4-XXVI. Strain valuesfor Tube 2 with 10.0% random error

Strain Values Percent Changeto Original
Load | Surface e (=Y Gq e & Gq

1 0 -3.564E-04 | 3.126E-03 | -1.123E-18 | -6.448 | 9.124 | 4.558
2 0 4.350E-04 | -4.862E-05 | 2.284E-20 | -2.334 | 9.856 | -3.101
3 0 1.597E-20 | -8.885E-20 | 2.875E-03 | -0.799 | 2.969 | -7.651
4 0 4.038E-04 | -5.851E-05 | 2.632E-03 | 5.008 | -8.488 | 1.469
5 0 8.173E-05 | 3.242E-03 | 2.693E-03 | 9.408 [ 4.232 | -0.821
1 i -3.446E-04 | 4.284E-03 | -1.083E-18 | -2.917 | -7.727 | -1.260
2 i 4.523E-04 | -4.330E-05 | 1.972E-20 | -6.411 | -4.730 | 2.072
3 i 1.676E-20 | -1.074E-19 | 2.609E-03 | -5.808 | -3.369 | -7.473
4 i 3.986E-04 | -3.955E-05 | 2.480E-03 | 6.234 | 4.352 | -2.163
5 i 8.194E-05 | 3.846E-03 | 2.242E-03 | 9.178 | 2.269 | 7.675

For each of the error values, the strains are input with the same starting values used in Table 4-V
and Table 4-VI. The number of iterations was limited to 1000 (except for one run of Tube 2
data)

Table4-XXVII. Effect of thedifferent formsof Error on the property estimateusing LM -

Ei
Correct Values Tube 1 Tube 2
GPa 0.10% 1.0% 10.0% 0.10% 1.0% 10.0%
E, 43.51 43.71 12.62 0.14 43.99 44.06 Singular
E 11.51 11.31 42.06 48.27 10.96 11.24 Matrix
= 11.51 15.17 4.08 0.01 10.89 1.46
G 3.45 3.45 3.45 3.45 3.45 3.44
12 0.27 0.278 0.069 -0.006 0.284 0.241
i3 0.40 0.437 -0.368 -3.466 0.469 -2.132
{53 0.40 0.426 0.831 -9.072 0.338 2.184
Final SSE 454E-11 | 1.21E-08 9.79E-07 | 1.67E-11 | 1.96E-09
Iterations 11 67 1000 (max) 15 15
Time (minutes) 1.17 341 61.42 1.28 115
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Table4-XXVIII. Effect of thedifferent formsof error on the property estimatesusing LM -

Cij
Correct Tubel Tube 2
Values 0.10% 1.0% 10.0% 0.10% 1.0% 10.0%
E 43.51 43.71 12.62 -2.62 41.85 64.05 -140.66
E 11.51 11.31 42.06 51.64 13.24 -1.28 197.89
E 11.51 15.17 4.08 -0.35 10.89 -0.34 -36.96
G 3.45 3.45 3.45 3.45 3.45 3.44 3.39
? 0.27 0.278 0.069 -0.006 0.235 -2.427 0.021
i3 0.40 0.437 -0.368 -3.487 0.441 3.230 1.993
i3 0.40 0.426 0.831 -1.380 0.376 2.016 1.205
Final SSE 4.54E-11 | 1.21E-08 | 9.79E-07 || 1.67E-11 | 1.96E-09 | 2.08E-07
Iterations 16 17 18 48 319 1500 (max)
Time (minutes) 1.15 1.34 1.19 2.5 13.14 60.6

The values of the final solution quickly deviate from the correct values with the
introduction of error in the data. Since this data are a random distribution around the correct
value, alarger data sets should remove this error, as can be seen in Table 4-XXIX. A data set of
100 different load conditions (formed using the same method as for the smaller sets of 10 loading
conditions) was input into the analysis and given the same start values. The solutions are more
accurate, and will continue to improve as the data set is increased.

Table4-XXIX. Inversion resultsusing a larger data set, 100 L oading Conditions—LM -E;

Correct Tubel
Values 0.10% 1.0% 10.0%
E; 43.51 43.78 46.27 15.31
E 11.51 11.24 8.48 38.41
E; 11.51 13.51 7.72 2.28
Gy, 3.45 3.45 3.45 3.42
i1 0.27 0.277265 0.367 0.063
|’—13 0.40 0.455982 0.358 -1.00
{53 0.40 0.359598 0.370 1.64
Final SSE 2.02E-09 | 1.97E-07 | 1.89E-05
Iterations 21 60 4
Time (minutes) 14.8 324 35.7

4.3.2 Additiveor NoiseError

A more redlistic form of error would be noiseintroduced in the readings of the strain and

load from the strain gage amplifiers or load cells. Thistype of error wouldn’t be proportional to
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the incoming signal, but a type that would affect the smaller measurements more than the large.
To smulate this, the strain values will be shifted by adding a small, random value, instead of by
multiplying by a percentage term as used in the previous section. This value will be a much
larger percentage change to small values but a smaller change to the larger values, as random
noise would do to experimental measurements. The RAND function was used to generate a
random scaling factor such that the range would be [e- d £ €' £ e+d] or:

et=e +d (1- 2RAND) (4.8)

The values for deltawill range from 1*10°® to 1*10#, or 1 to 100 microstrain. The new strain
data sets are listed in Table 4-X XX through Table 4-XXXV. The percentage change from the
original data, as listed in Table4-1V, isusually small except for the conditions that contain a

near-zero strain component (i.e. shear strain in axia tension).

Table4-XXX. Strain valuesfor Tube 1 withd=10°

Strain Values Percent Change to Original
Load | Surface e & Oqg € [N Oq
1 0 -5.571E-03 | 8.428E-03 | -6.333E-06 | 0.010 0.000 | -5.943
2 0 1.041E-03 | -6.425E-04 | 2.822E-06 | -0.082 | -0.102 -39.8
3 0 1.415E-06 | -1.345E-06 | 7.409E-04 1.950 -213.4 -0.109
4 0 1.043E-03 | -6.423E-04 | 7.428E-04 | -0.086 | -0.010 | -0.096
5 0 -4.529E-03 | 7.786E-03 | 7.362E-04 | 0.013 -0.003 | -0.015
1 i -5.571E-03 | 9.463E-03 | -5.607E-06 | 0.005 -0.003 | -3.189
2 i 1.040E-03 | -6.877E-04 | 8.371E-07 | 0.049 0.037 54.4
3 i 1.944E-06 | -3.566E-07 | 6.723E-04 -34.7 32.4 0.070
4 i 1.042E-03 | -6.894E-04 | 6.750E-04 | 0.024 | -0.126 | -0.058
5 i -4.529E-03 | 8.774E-03 | 6.682E-04 | -0.002 0.002 0.149
Table4-XXXI. Strain valuesfor Tube 1 withd=10°
Strain Values Percent Changeto Original
Load | Suface | e & dg & & Oq
1 0 -5.562E-03 | 8.435E-03 | -3.532E-06 | 0.171 | -0.079 40.9
2 0 1.034E-03 | -6.415E-04 | 1.888E-06 | 0.628 0.055 6.462
3 0 -3.610E-06 | 4.890E-06 | 7.395E-04 | 350.1 | 1239.0 | 0.085
4 0 1.044E-03 | -6.448E-04 | 7.515E-04 | -0.191 | -0.405 | -1.263
5 0 -4.528E-03 | 7.783E-03 | 7.280E-04 | 0.029 0.038 1.101
1 i -5.577E-03 | 9.464E-03 | -2.675E-06 | -0.096 | -0.018 50.77
2 i 1.048E-03 | -6.864E-04 | -3.269E-06 | -0.757 | 0.231 278.2
3 i 9.853E-06 | 3.122E-06 | 6.769E-04 | -582.6 | 691.5 | -0.612
4 i 1.048E-03 | -6.977E-04 | 6.833E-04 | -0.553 | -1.344 | -1.277
5 i -4.533E-03 | 8.771E-03 | 6.625E-04 | -0.090 [ 0.036 0.999
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Table4-XXXII1. Strain values for Tube 1 withd=10%

Strain Vaues Percent Change to Original
Load | Surface e & Oq € €& Gq
1 0 -5.541E-03 | 8.432E-03 | 7.869E-05 0.540 -0.041 1416.4
2 0 9.698E-04 | -5.523E-04 | -2.938E-05 | 6.805 13.95 | 15555
3 0 3.643E-05 | -4.908E-05 [ 7.329E-04 | -2423.8 | -11330.8 | 0.977
4 0 9.637E-04 | -6.350E-04 | 8.355E-04 | 7.519 1.128 | -12.583
5 0 -4.477E-03 | 7.695E-03 | 8.080E-04 | 1.155 1.168 -9.763
1 i -5.599E-03 | 9.384E-03 | -9.803E-05 | -0.489 0.833 | -1704.0
2 i 1.040E-03 | -6.701E-04 | 3.606E-05 | 0.060 2.594 | -1865.5
3 i -8.301E-05 | -7.084E-05 | 7.105E-04 | 5851.1 | -13320.3 | -5.597
4 i 1.007E-03 | -6.218E-04 | 7.476E-04 3.337 9.689 -10.81
5 i -4.542E-03 | 8.832E-03 | 6.870E-04 | -0.279 -0.657 -2.660
Table4-XXXII1. Strain valuesfor Tube 2 withd=10°
Strain Values Percent Change to Original
Load | Surface e & Oq € €& Oq
1 0 -3.349E-04 | 3.441E-03 | -3.161E-07 0.00 -0.02 -2.69E+13
2 0 4.260E-04 | -5.463E-05 | 6.046E-07 -0.22 -1.29 -2.73E+15
3 o] -4.929E-07 | 1.057E-07 | 2.670E-03 | 3.11E+15 | 1.15E+14 0.01
4 0 4.253E-04 | -5.472E-05 | 2.672E-03 -0.06 -1.47 -0.04
5 0 9.051E-05 | 3.386E-03 | 2.671E-03 -0.32 0.00 -0.01
1 [ -3.340E-04 | 3.976E-03 | -8.325E-07 0.25 0.01 -7.78E+13
2 i 4.257E-04 | -4.166E-05 | -2.519E-07 -0.14 -0.76 1.25E+15
3 i 1.271E-07 | -6.901E-07 | 2.428E-03 | -8.02E+14 | -6.64E+14 -0.01
4 i 4.249E-04 | -4.160E-05 | 2.428E-03 0.04 -0.61 0.00
5 [ 9.049E-05 | 3.935E-03 | 2.429E-03 -0.30 0.01 -0.04
Table4-XXXIV. Strain valuesfor Tube 2 withd=10"
Strain Values Percent Change to Original
Load | Surface e & Oq € €& Gq
1 0 -3.327E-04 | 3.449E-03 | 5.931E-06 0.63 -0.26 5.04E+14
2 0 4.315E-04 | -5.254E-05 | 4.454E-06 -1.51 2.58 -2.01E+16
3 0 -7.945E-06 | 5.296E-06 | 2.669E-03 | 5.02E+16 [ 5.78E+15 0.08
4 0 4.170E-04 | -5.864E-05 | 2.671E-03 1.90 -8.73 -0.01
5 0 9.945E-05 | 3.383E-03 [ 2.674E-03 -10.23 0.07 -0.11
1 i -3.294E-04 | 3.976E-03 | -8.699E-06 1.63 0.02 -8.13E+14
2 i 4.220E-04 | -3.992E-05 | -3.899E-06 0.72 3.46 1.94E+16
3 i 3.641E-06 | 1.310E-06 | 2.434E-03 [ -2.30E+16 | 1.26E+15 -0.26
4 i 4.312E-04 | -3.150E-05 | 2.427E-03 -1.45 23.81 0.04
5 i 9.766E-05 | 3.933E-03 | 2.425E-03 -8.24 0.05 0.13
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Table4-XXXV. Strain valuesfor Tube 2 withd=10*

Strain Values Percent Change to Original
Load | Surface e & Gq e €& Gq

1 0 -2.886E-04 | 3.523E-03 | -6.711E-05 13.81 -2.41 -5.70E+15
2 0 3.411E-04 | 3.899E-05 [ -8.576E-05 19.76 172.29 3.87E+17
3 0 -3.790E-05 | 6.313E-05 | 2.641E-03 [ 2.39E+17 | 6.89E+16 113

4 0 4.682E-04 | -1.161E-04 | 2.762E-03 -10.14 -115.34 -3.42

5 0 1.824E-04 | 3.378E-03 | 2.669E-03 [ -102.13 0.22 0.05

1 [ -2.429E-04 | 4.056E-03 | -7.699E-05 27.47 -2.00 -7.20E+15
2 [ 4.626E-04 | -7.879E-05 | -5.107E-05 -8.82 -90.55 2.54E+17
3 [ 5.289E-05 | -7.744E-05 | 2.499E-03 | -3.34E+17 | -7.45E+16 -2.94

4 [ 3.394E-04 | -2.317E-05 | 2.378E-03 20.15 43.97 2.05

5 [ 1.580E-04 | 3.980E-03 | 2.423E-03 -75.09 -1.12 0.19

Table4-XXXVI. Theeffectsof thedifferent levelsof error on the estimatesusing LM -E;

Correct Tube 1 Tube 2
Values || 1.00E-06 |[ 1.00E-05 ][ 1.00E-04 |[ 1.00E-06 |[ 1.00E-05 || 1.00E-04
E [ 4351 45.02 48.40 0.32 43.99 [ Singular [ 52.06
E | 1151 9.86 5.72 27.58 10.96 M atrix 2.30
E | 1151 11.72 12.96 0.70 16.00 80.67
Go | 345 3.45 345 3.46 345 343
in| 027 0.316 0.549 0.075 0.287 1.166
[i; ] 040 0.392 0.165 -0.623 0.721 0.802
is | 040 0.400 0.547 4.747 0.164 0.171
Final SSE | 7.24E-12 | 8.25E-10 | 8.15E-08 || 6.27E-12 8.85E-08
lterations 18 1 1000 13 315
Time (minutes)||  1.45 1.07 41.97 1.20 13.67

Table4-XXXVII. Theeffectsof thedifferent levelsof error on theestimatesusing LM -Cj;

Correct Tube 1l Tube 2
Values | 1.00E-06 || 1.00E-05 || 1.00E-04 || 1.00E-06 || 1.00E-05 | 1.00E-04
E; 43.51 45.02 48.40 -26.06 37.92 48.40 -26.06
E 11.51 9.86 5.72 80.67 17.31 5.72 80.67
Es 11.51 11.72 12.96 451 15.86 12.96 4,51
G 3.45 3.45 3.45 3.46 3.45 3.45 3.46
i12 0.27 0.316 0.549 0.050 0.182 0.549 0.050
i—13 0.40 0.392 0.165 -1.285 0.616 0.165 -1.285
i o3 0.40 0.400 0.547 1.742 0.272 0.547 1.742
Final SSE 7.24E-12 | 8.25E-10 | 8.14E-08 || 6.27E-12 | 8.25E-10 | 8.14E-08
Iterations 18 15 18 76 44 18
Time (minutes) 1.45 1.16 1.38 3.64 2.24 1.38
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Table4-XXXVIII Solutionsfound using larger data sets (100 L oad Conditions) Using LM -

Ei
Correct Tubel
Values || 1.00E-06 || 1.00E-05 || 1.00E-04
E 43,51 43.73 44.06 26.55
E 11.51 11.28 10.89 28.75
E 11.51 1152 10.62 3.85
G, 3.45 3.45 345 345
(i, o027 0.276 0.286445 | 0.106
i 13 0.40 0.406 0.422087 1.10
i 23 0.40 0.394 0.382472 | -0.454
Final SSE || 2.054E-10 | 9.94E-09 | 9.21E-07
Iterations 22 16 47
Time (minutes) 16.1 12.96 25.2

The effects of the different types of error in the data are insignificant for the small error
amount and severe for the larger two, in some cases causing the estimates to grow so large that
they caused the program to crash. However, the effects of random error will be decreased with
increasing data set sizes, as can be seen in the improved estimates in Table 4-XXXVIII. With an
increasing amount of data, the random distributions average out to a more correct value,

increasing the accuracy of the estimate.

4.3.3 Effect of error on estimating the di fferent constants

While the data used in the previous section contained error randomly distributed in a
range with the median being the accurate value, experimental data may contain error that bias the
data such that the average is no longer accurate. The effects of the bias would cause the solution
to change from the true values. Larger data sets would not improve the fina solutions, since the
data itself is no longer consistent with the desired result. By investigating the different
experimental results and those from the simulated error effects, one can notice that the different
constants are more or less sensitive to error. That is, the out-of-plane values begin to vary with
the introduction of a small amount of error, while the in plane propertiesare, by comparison,
relatively unaffected. It would be beneficial to estimate the scale of the contribution of each

variable, and its variations, to the strain response of the tube. To accomplish this task, the
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elasticity solution was used to calculate the strain response for the two tube geometries listed in
Table 4-11, but with an added set of geometries of tubes with awall thickness two and a half
times thicker, aslisted in Table 4-XXXI1X. Table4-XL contains the different load profiles for
the tubes, which have been shifted to generate the same stress state at the outer surface for a

more direct comparison of the strain responses.

Table4-XXXIX. Geometry of thefour different composite ssimulations

Tube D Inner R‘T’ld' us | Outer Rgd| us Numper Orientation || Ply Thickness mm (in)
mm (in) mm (in) of Plies
Thin1 25.4(1.0) 27.9(1.1) 20 [45/-45];0 0.127 (0.005)
Thick 1 25.4(1.0) 31.75 (1.25) 20 [45/-45];0 0.3125 (0.0125)
Thin2 25.4(1.0) 27.9(11) 20 [0/90]10 0.127 (0.005)
Thick 2 25.4(1.0) 31.75 (1.25) 20 [0/90110 0.3125 (0.0125)

Table4-XL. Applied loadsfor each tube—thick val ues calculated to generate the same
stressstateasfor thethin tubes

Po P Fx TX Po P Fx Tx
MPa | MPa | kN N-m || MPa | MPa kN N-m
0.0 | 345 | 0.00 0.0 0.0 | 923 0.00 0.0
0.0 | 0.0 | 44.80 0.0 0.0 0.0 | 120.00 0.0
0.0 | 0.0 0.00 | 1130.0f 0.0 0.0 0.00 | 3088.4
0.0 | 0.0 | 44.80 | 1130.0| 0.0 0.0 | 120.00 | 3088.4
0.0 | 345 ]| 44.80( 1130.0| 0.0 | 92.3 | 120.00 | 3088.4

QW IN|F

For each of the four tubes listed, the strain profiles were calculated for the original elastic
properties, and repeated with each constant individually reduced by 50% (tables for each of the
variations are in Appendix B). This should illustrate the contribution of each constant, and give
an idea of the sensitivity of the strain measurements needed to find accurate estimates. Each of
the tables contains the differences between the strain values found using the normal material
properties and those with the reduced properties. The resulting percentage changeis listed to
give agage for the significance of the variation. It isimportant to look at both values, since in
many cases the largest percentage changes are on strains that are too small to be measured

experimentaly.
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Table4-XL1. Strain responsefor thedifferent loading conditionsfor Thin Tube 1

Standard Response
Load || Surface Axial Hoop Shear
1 I -1.92E-02 | 3.26E-02 | -1.87E-05
1 o] -1.92E-02 | 2.91E-02 | -2.06E-05
2 I 9.25E-03 | -6.12E-03 | 1.63E-05
2 0 9.25E-03 | -5.70E-03 | 1.79E-05
3 I 1.63E-05 | -5.96E-06 | 7.60E-03
3 0 1.63E-05 | -4.85E-06 | 8.36E-03
4 I 9.27E-03 | -6.12E-03 | 7.62E-03
4 o} 9.27E-03 | -5.71E-03 | 8.38E-03
5 I -9.95E-03 | 2.65E-02 | 7.60E-03
5 0 -9.95E-03 | 2.34E-02 | 8.36E-03

Table4-XLII. Strain deviation from the Standard Responsefor thethin Tube 1 with E;=

E./2
Surface Percentage Change from Standard Deviation from Standard
Load Axial Hoop Shear Axial Hoop Shear
1 | -15.65 10.22 -76.25 -3.01E-03 | -3.33E-03 [ -1.43E-05
1 0] -15.65 9.42 -76.25 -3.01E-03 | -2.74E-03 | -1.57E-05
2 | 9.41 -15.65 -33.42 -8.71E-04 | -9.57E-04 | 5.45E-06
2 0 9.41 -13.74 -33.42 -8.71E-04 | -7.84E-04 | 6.00E-06
3 I -33.42 -76.25 76.65 5.45E-06 | -4.55E-06 | -5.83E-03
3 0 -33.42 -77.11 76.65 5.45E-06 | -3.74E-06 | -6.41E-03
4 | 9.34 -15.71 76.42 -8.65E-04 | -9.62E-04 | -5.82E-03
4 o] 9.34 -13.79 76.42 -8.65E-04 | -7.87E-04 | -6.40E-03
5 I -38.94 16.20 76.80 -3.87E-03 | -4.29E-03 | -5.84E-03
5 0 -38.94 15.10 76.79 -3.87E-03 | -3.53E-03 [ -6.42E-03
Table4-XLIII. Strain deviation from the Standard Response for thethin Tubel with
E3: E3/ 2
Surface Percentage Change from Standard Deviation from Standard
Load Axial Hoop Shear Axial Hoop Shear
1 I 0.00 0.29 10.98 -9.00E-07 | -9.37E-05 | 2.06E-06
1 0 0.00 -0.15 10.98 -9.00E-07 | 4.31E-05 | 2.26E-06
2 I 0.00 0.00 -0.05 -1.00E-08 | -2.60E-07 | 7.90E-09
2 o} 0.00 0.00 -0.05 -1.00E-08 | 2.40E-07 | 8.80E-09
3 I -0.05 10.98 0.00 7.90E-09 | 6.55E-07 | -3.00E-08
3 0 -0.05 -12.87 0.00 7.90E-09 | -6.24E-07 | -3.00E-08
4 | 0.00 0.01 0.00 0.00E+00 | 4.00E-07 | -2.00E-08
4 0 0.00 -0.01 0.00 0.00E+00 | -3.80E-07 | -2.00E-08
5 | -0.01 0.35 -0.03 -8.20E-07 | -9.33E-05 | 2.04E-06
5 0 -0.01 -0.18 -0.03 -8.20E-07 | 4.27E-05 | 2.24E-06
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The out-of-plane elastic constants, B, n13, and ny3, do not contribute significantly for the
thin materials. A 50% drop in any of these resultsin a 5% change, at best, to the observed strain
response for all the measurable strain components. Some of the values listed Table 4-XLI11
illustrate a percentage change of greater than 5%, but inspecting the difference value reveals
these are changes too small to measure (10°° strain or smaller). For the value of Es, the change
does not alter any of the measurable strain components by even 1%. Even for the thicker
materials, which should be influenced by the out-of- plane properties more than the thin, these
variations only grow to range between 1 and 5%. By comparison, the in-plane properties are
more responsive. The changes in many of the strain responses are on the order of 30 to 75% for
a50% decrease in the E; value, and this behavior is similar for the other in-plane constants.

These results represent the changes due to a 50% drop in the elastic properties, and they
can not be assumed to be symmetric about the value. The valueslisted in Table 4-XLIV and
Table 4-XLV show the changes in the strain response for changes in E from Es/2 to 2* E; (-50%
to +100%). The variations are not symmetric, and agree with the (1-1/X) behavior in that the
larger values do not ater the response as greatly as the smaller values do. The largest effect of
being within arange of -50 to +200% of the accurate value is seen as a variation of only 3.61%
to —1.83% change in the hoop strain response on the inner surface of an internal pressure test

(which is the largest observable change).

Table4-XLI1V. Strain deviation from the Standard Responsefor the Thick Tube 2 with

Es=E3/2
Surface Percentage Change from Standard Deviation from Standard
Load Axial Hoop Shear Axial Hoop Shear
1 I 0.65 3.61 -0.29 5.79E-06 | -6.14E-04 | -1.09E-20
1 0 0.65 -1.94 -0.29 5.79E-06 | 2.29E-04 | -1.37E-20
2 I 0.00 0.65 -0.03 -3.00E-08 | 1.84E-06 | 5.40E-23
2 0 0.00 -0.27 -0.03 -3.00E-08 | -1.46E-06 | 6.70E-23
3 I -0.03 -0.29 0.00 5.50E-23 | -3.56E-21 | 0.00E+00
3 o} -0.03 0.32 0.00 5.50E-23 | 2.90E-21 | 0.00E+00
4 I 0.00 0.65 0.00 -3.00E-08 | 1.84E-06 | 0.00E+00
4 0 0.00 -0.27 0.00 -3.00E-08 | -1.46E-06 | 0.00E+00
5 I -0.20 3.66 0.00 5.76E-06 | -6.13E-04 | 0.00E+00
5 0 -0.20 -2.02 0.00 5.76E-06 | 2.27E-04 | 0.00E+00
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Table4-XLV. Strain deviation from the Standard Responsefor the Thick Tube 2 with

Es=2*E3
Surface Percentage Change from Standard Deviation from Standard
Load Axial Hoop Shear Axial Hoop Shear
1 I -0.33 -1.83 0.15 -2.95E-06 | 3.11E-04 | 5.56E-21
1 0 -0.33 0.99 0.15 -2.95E-06 | -1.17E-04 | 6.96E-21
2 I 0.00 -0.33 0.02 1.00E-08 | -9.39E-07 | -2.70E-23
2 o} 0.00 0.14 0.02 1.00E-08 | 7.44E-07 | -3.40E-23
3 I 0.02 0.15 0.00 -2.70E-23 | 1.81E-21 | 0.00E+00
3 0 0.02 -0.16 0.00 -2.70E-23 | -1.48E-21 | 0.00E+00
4 I 0.00 -0.33 0.00 1.00E-08 | -9.39E-07 | 0.00E+00
4 0 0.00 0.14 0.00 1.00E-08 | 7.44E-07 | 0.00E+00
5 I 0.10 -1.85 0.00 -2.94E-06 | 3.10E-04 | 0.00E+00
5 0 0.10 1.03 0.00 -2.94E-06 | -1.16E-04 | 0.00E+00

The plot of the sensitivity of the tube response to changes in the elastic propertiesis

illustrated in Figure 4-11. Thisisthe plot of the hoop strain variation for a combined loading

condition (#5) for the Thick Tube 2 sample, and it was chosen since it gives the largest variation

in al the strain responses. The variations to in-plane values cause a large change in the strain

response, while the out-of-plane property, E; in this case, only creates large variations as the

value tends to zero.
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Figure4-11. Effect on theHoop Strain response by variationsto E1 and E3 for the Thick
Tube 2 Load Condition 5 (Pi, Fx, Tx simultaneously).
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By switching the axes and zooming in on the origin of Figure4-11, asseenin Figure
4-12, the plot illustrates the range of the elastic values that describe a given strain response
within an error range. For an accuracy of +5%, the variation of the in-plane values is roughly
symmetric about the origin, and small. This illustrates that the in-plane values can be calculated
with decent accuracy given small but non-trivial amount of error, since a small range of the in-
plane elastic constant describe that range of the strain value. The out-of-plane properties do not
exhibit the same behavior. They are not symmetric about the origin and exhibit large variations
in values for small amounts of error. This requires a very high degree of accuracy to find an
accurate estimate of the elastic constant value, since variation range of +1 to 2% can result in

property variation range well in excess of 100%.
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Figure4-12. Variation in the pr opertiesgiven error in thestrain values

These graphs give arange of values that fall within a small percentage variation of the
measured strain response.  This evaluates the variation of only one value at a time with in-plane
strain measurements, but it gives insight into appropriate test selection. By choosing tests that

result in responses for the out-of-plane properties similar to the in-plane values in Figure 4-13, a
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test matrix can be created that will yield better results for all the elastic constants. There are no
significant responses for the out-of-plane values using the test matrix and strain values described
in the experimental procedures. By changing the test matrix to include internal and external
pressure with measured values for radial strain, the E; contribution is significant, as can be seen
in Figure 4-14 (in this, the plots for the hoop strain from Figure 4-11 are included to give a

reference), and would allow for improved calculation of E; and the other out-of-plane values.

—8—E1 - Outer Surface

—E2 - Outer Surface

——(G12 - Outer Surface
E3 - Outer Surface

Percent Change in the Strain Respons

WO 400

Percent Variation in Elastic Property

Figure4-13. Variation to the strain responseswith changesto the elastic properties. All
values arefor the hoop strain response toload condition #5, except the shear modulusline
isfor theshear strain response.
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— E3- Hoop Strain
—E1 - Hoop Strain
200 - —®—E3 - Radial Strain

200 E”QO 400

Percent Variation in Strain Response

Percent Variation in Elastic Property

Figure4-14. Variation in thestrain response with changesto the elastic propertiesfor
Thick Tube?2. TheE3linewith thelargeresponseisfor aloading condition of combined
internal and external pressure.

4.4 Discussion of the Analytical Results

Four different approaches to optimizing the elastic properties for a set of experimentally
observed strain values have been illustrated. The Nelder-Mead routines used for this research
were easily implemented, but they were not as accurate in finding the minimum of the error
function. The Newtonian methods found the minimum with good accuracy when given data sets
free from error.  Both methods were usualy able to find solutions in less than five minutes, but
there were exceptions where calculations ran substantialy longer. The computation time for the
LM-C;; program was shorter than that of the LM-E program, since the LM-C;; program was
more efficient and took fewer steps to find aminimum. The analyses performed on many of the
simulations and experimental were performed using the LM-E; code for reproducibility when the
number of active parameters was reduced.

The presence of a second solution that accurately describes the strain data for the Tube 2
geometry presents an undesirable situation. Without extra knowledge or other criteria, no means

is available to distinguish which solution contains the true values. Thisis possible with other
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tube structures, but it is believed that this ply lay- up should be avoided. The symmetry of the
lay-up isidentical to the loading conditions, so that for each condition a pure loading condition is
generated (axial tension —al 0° plies are in perfect longitudinal tension and the 90° plies are in
transversetension — for torsion tests al plies are in the same state of stress — internal pressure is
the same as the axia tension just rotated by 90°). While the symmetry of the £45° presents the
same condition, the loading conditions are not simple as that for of [0/90] lay-up. The changein
the stress state from the [0/90] to the [+£45] lay- up appears to be sufficient to remove the second
solution. When the values of the second solution for Tube 2 are entered as the start values for
Tube 1 the program still calculates the best estimates to be the correct values. It is unknown at
this point if there are other solutions within acceptable property ranges for the geometries used
for thiswork, but it is clear that the [0/90] structure is not ideal for sample geometries for this
procedure.

Application of the optimization methods to the experimental results illustrates the need for
better experimental accuracy and a larger test matrix. The out-of-plane estimates were well
outside acceptable ranges for most of the experimental results, and most of the values varied with
different start values. This variation precludes declaring the solutions for all of the elastic
constants as the true values. The small data sets for the McDermott filter and ORNL tubes are
not the best for calculating the values. Larger data sets should be used for this method, since
with more data points the sensitivity of the optimization method to random error is decreased.
Data from the inner surface should aso be included, again to increase the amount of data for the
analysis and require the solution to meet the strain response at both surfaces. The results for the
Honeywell material and the control sample are closer to acceptable data values giving some
credence to the larger data sets work better (and that the changes to the experimental procedures
were improvements). The in-plane results for the steel sample are within afew percent of the
accepted values, but the ou-of-plane values are clearly wrong. The results for the Honeywell
sample exhibit two solutions, as was seen with the Tube 2 example. The in-plane properties
exhibit small variation in the different solutions, giving the impression that they may be close to
the accurate values.

The ability for the user to change the number of active parameters is attractive, but has its
drawbacks. The good quality of being able to set the out-of-plane response to constant values

and alowing the minimum to be found using only the in-plane constants is offset by the large
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variations this can cause in the results. As with the control sample, the elastic constants for the
material were calculated with good accuracy when the out-of-plane values were removed from
the program. This was not the case for the Honeywell material. The change by reducing the
active parameters caused large changes in the elastic constants. For the control sample, the out-
of-plane constants were chosen with good accuracy by the isotropy of the sample, keeping them
consistent with the expected results. The values for the Honeywell material, these values were
not known, so if the values are inconsistent with the true properties then the data could cause
significant variation in the in-plane values.

Investigations into the effects of error on the different value estimates illustrated that the
in-plane values are more tolerant of error in the strain data than the out-of-plane values.
Inspection of the strain variations for the test matrix used for thiswork proved that the level of
accuracy needed to accurately describe the out-of-plane values is beyond the level of
experimental procedure. Different test methods are needed, and the capability to measure the
radial strain response is necessary to accurately determine all the elastic constants. The radial
strain needs to be recorded, since in each of the tests to date, the out-of-plane values are
indirectly measured by observing the in-plane strain response.  This indirect measurement
requires a high level of accuracy to calculate the out-of-plane values. A test of combined
internal and external pressure generates aradial stress condition that would allow for the direct
observation of the out-of-plane values.

Up to this point, this discussion has focused on creating a good set of data to minimize the
sengitivity to the experimental error, but little has been done to document whether an apparently
good solution is“good”. Thisis presented since the “bad” solutions are easily identifiable since
the values are outside acceptable values, but what of the solutions that are not so outrageously
incorrect. All of the constants will be altered by error in the data, but with a proper test matrix,
including the radial strain meaurement, the variations to the engineering values will be of the
same magnitude as the experimental error (<10%) instead of the large variations seen in this
work. Aswith the materials used in this research, in many cases it may not be possible to check
the values against published values (the material has truly unknown properties), so methods to
verify the results are needed. There are a few methods to check for a good solution which can be
described here and a few that will have to be developed in later work. The easiest check of the

data is to predict the strain response to a new load condition (one that was not entered into the
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analysis). If the prediction is accurate, it is likely that the estimated elastic parameters are good.
Another means of checking the solution is to inspect the stress and strain profiles predicted for
the different loading conditions. Nontypical responses would give indication to a poor solution.
Both of these methods are qualitative in nature, in that they do not give a numerical measurement
of the quality of the fit, but merely provide an illustration of good versus bad values. Further
statistical analyses are needed to generate standard deviations or confidence intervals on the
estimates.

4.5 Application to Failure Envelopes

A useful aspect of the models used in this approach are the multi-axial stress states that
are present during testing, and the ability to control and model them through the thickness of the
materials. The presents a useful means to conduct failure analysis of the materials, with
controlled application of multi-axial stress states.

Unfortunately, of all the materials tested for this body of work, only the McDermott
candle filters failed in sufficient number to perform this analysis. The other materials did not fail
in all test procedures; therefore not generating failure loads in different loading conditions. This
is problematic since the material properties for the McDermott materials have only been
calculated by the inversion technique developed here, and the out- of-plane values are well
outside acceptable values. This does not defeat the effectiveness of this research, but merely
shows that without more data to reduce error in the values or published results to compare
againgt, the error is unknown and believed to be significant. This section of the work is
performed more for illustrative purposes than to determine the failure properties of the material.
This example is merely to illustrate that with a complete test matrix to characterize the elastic
properties, and a sufficient number of samples to fail under a wide variety of combined load
conditions, the failure envelope could be calculated.

The failure events observed in the McDermott materials can be generaly cast into two
different forms: shear band formation and large single crack formation. The large crack
formation was observed in samples that failed due to crack initiation at the loading pins, and is
not believed to be indicative of the materials strength. The shear band formation was visible in
all the internal pressure failures and tensile failures, and it will be used as the failure mechanism.

116



Aswas illustrated earlier, the fiber tows do not fail, but it is the matrix material between fiber
tows that is responsible for the failure. For thisillustration, a Tsai-Hill criterion will be used to
describe the failure properties of the McDermott Technologies filter material. The failure will be
assumed to be near the outer surface since the outer surface contained more of the bond agent,
and should be the strongest area of the material. Also, this allows for smplification to an in-
plane failure criterion, since the stress in the 3-direction is zero at the outer surface. The Tsa-

Hill criterion for in-plane failuresis:

2 2 2
S; _SiS, +Sz +t£

X 2 x 2 W SZ = 1 (49)
where X, Y and S are the axial, transverse and shear strength, respectively [47, pages 314-316,
52, pages 76-80]. For this smple mode and with limited data, the values of X and Y will not be
changed for different tensile and compressive strengths, or Xt=Xc=X and YT=Yc=Y. The
values of the failure stresses are low and the tensile strength of the fiber tows should be large, so

the criterion can be simplified to:

2 2
% + ts—lg : (4.10)
for matrix controlled failure. The ply-level stresses at failure are calculated by entering the
values for the elastic constants found using the analysis (listed in Table 4-XLVI) and the failure
loading conditions into the Forward solution. The stress valuesin Table 4-XLVII are for the

stress value at the outer surface, since it is assumed that is the location where failure occurs.

Table4-XLVI. Theelastic propertiesof the McDer mott filter material

Set 3
Properties - GPa
E 35.0
E 10.6
= 0.42
G 114
N2 0.70
N13 0.01
No3 0.01
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Table4-XLVII. Theexperimental failureloadsand resulting stress states at the outer
surface of the M cDer mott filter

Applied L oad Stress Generated at Outer Surface

Po | Pi(MPa) | Fx (KN) | Tx (N-m) || 61 (MPa) | 6 o(MPa) | 61o(MPa) | 6 3 (MPa)
0.00 0.00 2.56 0.00 1.04 2.02 2.66 -1.5E-17
0.00 0.00 3.50 0.00 1.42 2.76 3.64 -2E-16
0.00 1.05 0.00 0.00 2.35 -0.54 -4.34 5.85E-17
0.00 1.14 0.00 0.00 2.54 -0.58 -4.68 6.87E-17
0.00 1.13 0.00 0.00 2.51 -0.57 -4.63 2.66E-16
0.00 0.00 348 -44.45 3.88 3.26 3.35 3.36E-16

Enough data exists to apply the ply-level stresses and the Tsai-Hill criterion to calculate the
valuesfor Y and S. A nonlinear regression routine in the MathCAD software was used to find
the best parameters to fit the model. The results are in Table 4-XLVIII are for the solution to

both Equation (4.9) and (4.10). The plot of the surface of the failure envelope with the
experimental stressesis found in Figure 4-15.

Table4-XLVIII. Tsai-Hill strength valuesfor the M cDer mott filter

2Variables(Y and S) | 3Variables (X, Y,and S)
X (MPa) - 1.04E+05
Y (MPa) 4.27 4.25
S(MPa) 4.55 4.56
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— Tsai-Hill Envelope

@ Axid Tension
B Internal Pressure
® Bijaxial (Tensionand Torsion) S12 (MPa)

Figure4-15. Tsai-Hill failureenvelopefor the M cDer mott filter

This demonstration of calculating a failure envelope was made with large assumptions and is not
intended to represent the failure performance of the McDermott filter material. It has been
included since the method is a direct extension of this research and provided a powerful tool for
characterizing not only the elastic properties but also the strength of the material under multiaxial

stress conditions.
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5 Summary and Conclusions

This body of work has addressed each of the three research objectives listed in the
Introduction. Experimental procedures have been developed, the regression analysis has
been improved and sensitivity of the method has documented, and a framework for
developing failure analyses in composite tubes has been presented. In this section, a brief
summary of each of the major sections is given, and the final conclusions of this thesis

are presented. A few ideas are presented in the Future Work section.
5.1 Summary of Experimental Results

Experimental procedures were developed for characterizing the elastic response
and the strength of composite tubes. Different loading fixtures were developed for
applying different axisymmetric load conditions to the axial samples. The fixture used
for the Honeywell sample generated the smplest stress state since it was not exposed to
the large compressive stresses by the MTS collets as was the case for the ORNL
materials, or the effects of the stress concentrations found in the MTI filters. The failure
of the fixture at loads below the ultimate tensile strength of the sample can be overcome
by increasing the depth of the groove, thereby increasing the epoxy bond area and
strength. The internal pressure test procedure developed here is sufficient for testing
composite materials for internal pressure results. The method did not generate sufficient
pressure to fail the SIC ceramics, but it is believed that improved fit between the
compression platen and the inner surface of the sample will increase the pressure limit to

that exceeding the strength of the samples.
5.2 Summary of Nonlinear Regression Analysis

Severa improvements to the original programs developed by George have been
implemented. The new analyses can process more data from each test and are more

stable in operation. The Newtonian and Nelder-Mead Simplex methods reduce the error
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in aset of initial guesses, and output a set of estimates of the material properties that best
describe the data The Newtonian methods are more accurate for this application than the
Nelder-Mead Simplex methods. The Levenberg-Marquardt method of optimizing the
elastic constants has been applied to the experimental results. The best-fit values are
varied, and many of the out-of-plane responses are returned outside acceptable ranges.
This behavior is attributed to limited data set sizes, which increase the sensitivity to
experimental error and biases in the data. By examining the effects of the variation of
individual elastic constants on the strain response, illustrations of the change to the
different strain responses for variations to the in-plane and out- of-plane constants have
been developed. The plotsiillustrate that the procedures devel oped in the experimental
section require an unattainable level of accuracy to determine the out-of- plane constants.
The results indicate that recording the radial strain response is necessary for this
procedure to work for al the values.

5.3 Conclusions

In the attempt to address the three objectives stated for this dissertation, a series of

conclusions were found for the experimental and analytical methodol ogies presented:

1. The elastomer compression method for internal pressure testing is successful.
The pressure calculated matches that observed in the control samples, and is
supported by the experimental results for the composite tubes. It is not ideal for
use for generating data for the inversion techniques since it does not allow access
to the inner surface and a small axial compressive stress is present (which would
introduce an unpredicted change in the strain data— essentially error).

2. A test matrix must include axial tension, torsion, and internal pressure, at a
minimum, to calculate values for the elastic constants, but using only these values
requires extreme accuracy in the load and strain measurements.

3. The[0/90] architecture should be avoided for use in the experimental samples. A

second “false” solution exists that perfectly describes the strain response.
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4. The Newtonian regression methods were more accurate than the Nelder-Mead
Simplex method for calculating the material property estimates.

5. Larger data sets are more tolerant of random error in the experimental results.

6. Out-of-plane property prediction will improve with the direct measurement of
out-of-plane responses. The methods used in this work only estimate the out-of-
plane values from the in-plane responses. This means including radial strain
values, and ideally, a combined state of internal and external pressure.

7. A recommended test matrix includes internal and external pressure, axial tension,
compression, and axial torsion with the ability to apply those singly and in
combination while recording axial, hoop, radial, and shear strain from both
surfaces. Thiswould give an ideal test data set for characterizing all seven of the

elastic constants.

5.4 Future Work

There have been severa areasin this research where future work is needed to
develop these methods to the point of being a useful tool to the engineer. Thefirst isthe
testing of the proposed test matrix where strain measurements (axial, hoop, radial, and
shear) can be made on both surfaces for a tube subjected to axia tension, torsion, and
internal and external pressure. Unfortunately, executing thet test matrix was not possible
during this research. The thickness change or radial strain measurement procedures
would have to be developed and applied to the samples under the test matrix conditions.
The other major development to this work requires developing methods for quantifying
error in the solution values for an unknown material. This work has shown methods
believed to reduce the sensitivity of the analysis so that the results have asimilar level of
error as the data, but it does not relate any information on the scatter in the values.
Methods for calculating the standard deviation for the estimates given error levelsin the
data would be beneficial.

A number of logical extensions of this work could be easily pursued with small

changes to the analyses and experimental procedures. A test matrix with all the different
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axisymmetric load conditions and measurement of the four strain components can be
used to optimize not only the elastic constants but also the thermal and hygroscopic
expansion constants. The thermal and hygroscopic expansion conditions fall within the
axisymmetric conditions required of the elasticity model and analysis aslong as they are
performed so that they are uniform for the entire sample. A simple change to the
eguations in the computer program would allow for the system to optimize on the seven

elastic, three thermal, and three hygroscopic properties.
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7 Appendix A — Elasticity Solutions

The work by Hyer and Rousseau derived the general solution for a composite tube
consisting of orthotropic material layers. The displacement equations are the solution for
a composite tube, consisting of orthotropic layers oriented at an angle to the axis of the

tube, subjected to axisymmetric loading conditions. The general solution is given as.

u(x) =e°x
v(X,r) =g°xr
w(r) = Ar' +Ar ' +Ger +Wy°r? + YrDT

=[S 7.1
& o

By examination of the equations for the G, W, and Y terms, two conditions create a

condition where the denominator goes to zero, namely when C,,=C,, (I =1) and

C,,=4C,, (I =2). For both of these conditions, a degenerate solution can be found by

starting with the Equilibrium condition equations.

TS, 1M, +ﬂth+}txr:0

™% r g I r

M+E&_+1ﬂ_+gt =0 (7_2)

% r9q T r ™

Tt +£ﬂtq +ﬂs, 4SS -8,

™% r9q qr r

=0
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The constraints imposed by the axisymmetric conditions and boundary equations, the
Equilibrium equations simplify to:

9+ 5t =0 7.3
g (7.3)
I8 4s-Sq g

qr r

The strain displacement relations and constitutive equations are needed to trandlate the

displacements to strains and stresses that can be used to solve the equations.

_Tu _ldw . o
& T " r &g r &

w flu 9w

=— =4 — 74
€, r O w+w (7.4)
e :M :ﬂ-}-lﬂ_u
"o * o x rvg

After several steps of work in Hyer and Rousseau, it was found that:

u=-eyx
(7.5)
v =g°xr

The degenerate conditions arise from the expression used to find w(r):

IS, Se7Sa g (7.6)

qr r
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The vauesfor s, and sq are:

S, = é13e>( + C_:23eq + C_:?Ber + 6369)@ (7 7)
s,=Ce,+Cre +Cxe +C,g,, |

which expand to:

dw

s, =Cpe + Gy + Cpymm + Cogr
r dr
; (7.8)
S, =Gy +@¥+523d—vrv+5269°r

Collecting for w, the expression for the general solution is:

—~ agl’w 1ldwd = w /= = V.o, ,-CL0,
SCq? T g CZZF:(CZG' 2C,)g e = Baex (7:9)

r

which islisted in Equation (7.1). Inthefirst of the two degenerate conditions, | =1, the
expression becomes:

_ — N\, O o
sga e Ty (O ZCelo e (719

which solves to:
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W(r) = Ar' +Ar " +Ge°rIn(r) +Wg°r > +Y DTrin(r)

| =, |22 =1

(7.11)

The second degenerate condition is:

2 P —~ _ —~
— ag‘w 1ldw WO=(526-2636)9°+8 12r 13

— —_ ° 7.12
338dr2 rdr r’y x (7.12)

Q| ©

which solves to:
wr) = Ar' +Ar ' - Ge°r +Wg°r2(4in(r) - 1) + YrDT

G=¢ - Gy (7.13)

With these expressions, the different programs used to calculate the stress and strain

responses check the value of | and use the appropriate expressions.
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8 Appendix B — Elastic Response for Varied Elastic
Properties

After the analysisis run on data sets with error incorporated, certain properties
seem less sensitive to error. The in plane values usually came back with small amounts
variation in comparison to the out of plane properties. To investigate this and the effect
that thickness may play on the calculations, the strain responses for four different tube
geometries will be calculated with different variations of elastic properties. In each
condition asingle elastic constant will be reduced to one- haf of its origina value. The
strain response to the same loading conditions will illustrate the sensitivity to error for
that value by illustrating the level of accuracy needed to get within 50% of the correct
value. Two of the geometries have been atered to increase the wall thickness of the
material. To keep the loads in similar ranges, the loads have been scaled to generate the
same stress state in the material, as the thinner samples experienced.

Table8-1. Elastic Constantsfor the composite material

Elastic Properties | GPa (Msi)
E:1 43.5(6.31)
E> 11.5(1.67)
Es 11.5(1.67)
G 3.45 (0.5)
Nnp 0.27
Ni3 0.4
No3 04

Table8-11. Geometry of thefour different composite smulations

Tube D Inner Ra_1d|us Outer R§d|us Number of Plies || Orientation || Ply Thickness mm (in)
mm (in) mm (in)
Thin1 25.4 (1.0 27.9(1.1) 20 [45/-45]19 0.127 (0.005)
Thick 1 254 (1.0 31.75 (1.25) 20 [45/-45]49 0.3125 (0.0125)
Thin2 25.4 (1.0 27.9(1.1) 20 [0/90]19 0.127 (0.005)
Thick 2 25.4 (1.0 31.75 (1.25) 20 [0/90]19 0.3125 (0.0125)
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Table8-111. Applied loadsfor each t ube—thick values calculated to generatethe
samestressstateasfor thethin tubes

Thin Tube L oading Conditions Thick Tube Loading Conditions
Po & Fx TX Po Pi Fx TX
Load Case psi psi | bf In-Ibf psi psi | bf In-1bf
1 0 5000 0 0 0 13393 0 0
2 0 0 10000 0 0 0 26786 0
3 0 0 0 10000 0 0 0 27331
4 0 0 10000 10000 0 0 26786 27331
5 0 5000 10000 10000 0 13393 26786 27331

8.1 Thin Tubel

Table8-1V. Strain Responsefor thedifferent loading conditionsfor Thin Tube 1

Standard Response

Load | Surface Axia Hoop Shear
1 I -1.92E-02 | 3.26E-02 | -1.87E-05
1 0 -1.92E-02 | 2.91E-02 | -2.06E-05
2 I 9.25E-03 | -6.12E-03 | 1.63E-05
2 0 9.25E-03 | -5.70E-03 | 1.79E-05
3 I 1.63E-05 | -5.96E-06 | 7.60E-03
3 0 1.63E-05 | -4.85E-06 | 8.36E-03
4 I 9.27E-03 | -6.12E-03 | 7.62E-03
4 0 9.27E-03 | -5.71E-03 | 8.38E-03
5 I -9.95E-03 | 2.65E-02 | 7.60E-03
5 0 -9.95E-03 | 2.34E-02 | 8.36E-03

Table8-V. Strain deviation from the Standard Responsefor E1/2

E1/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 I -15.65 10.22 -76.25 -3.01E-03 | -3.33E-03 | -1.43E-05
1 0 -15.65 9.42 -76.25 -3.01E-03 | -2.74E-03 | -1.57E-05
2 I 9.41 -15.65 -33.42 -8.71E-04 | -9.57E-04 | 5.45E-06
2 0 9.41 -13.74 -33.42 -8.71E-04 | -7.84E-04 | 6.00E-06
3 I -33.42 -76.25 76.65 5.45E-06 | -4.55E-06 | -5.83E-03
3 0 -33.42 -77.11 76.65 5.45E-06 | -3.74E-06 | -6.41E-03
4 I 9.34 -15.71 76.42 -8.65E-04 | -9.62E-04 | -5.82E-03
4 0 9.34 -13.79 76.42 -8.65E-04 | -7.87E-04 | -6.40E-03
5 I -38.94 16.20 76.80 -3.87E-03 | -4.29E-03 | -5.84E-03
5 0 -38.94 15.10 76.79 -3.87E-03 | -3.53E-03 | -6.42E-03
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Table8-VI. Strain deviation from the Standard Responsefor E2/2

E2/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axia Hoop Shear
1 | -5.37 3.42 0.13 -1.03E-03 | -1.12E-03 | 2.37E-08
1 0 -5.37 3.31 0.13 -1.03E-03 | -9.61E-04 | 2.60E-08
2 I 3.28 -5.37 32.35 -3.03E-04 | -3.29E-04 | -5.28E-06
2 0 3.28 -4.85 32.35 -3.03E-04 | -2.77E-04 | -5.80E-06
3 I 32.35 0.13 6.78 -1.07E-05 | 4.56E-06 | 5.31E-03
3 0 32.35 4.09 6.78 -5.28E-06 | 1.99E-07 | -5.67E-04
4 | 3.33 -5.37 6.83 -3.09E-04 | -3.29E-04 | -5.21E-04
4 0 3.33 -4.85 6.83 -3.09E-04 | -2.77E-04 | -5.73E-04
5 | -13.49 5.45 6.85 -1.34E-03 | -1.45E-03 | -5.21E-04
5 0 -13.49 5.30 6.85 -1.34E-03 | -1.24E-03 | -5.73E-04

Table8-VII. Strain deviation from the Standard Responsefor E3/2

E3/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axia Hoop Shear
1 I 0.00 0.29 10.98 -9.00E-07 | -9.37E-05 | 2.06E-06
1 0 0.00 -0.15 10.98 -9.00E-07 | 4.31E-05 | 2.26E-06
2 I 0.00 0.00 -0.05 -1.00E-08 | -2.60E-07 | 7.90E-09
2 0 0.00 0.00 -0.05 -1.00E-08 | 2.40E-07 | 8.80E-09
3 I -0.05 10.98 0.00 7.90E-09 | 6.55E-07 | -3.00E-08
3 0 -0.05 -12.87 0.00 7.90E-09 | -6.24E-07 | -3.00E-08
4 | 0.00 0.01 0.00 0.00E+00 | 4.00E-07 | -2.00E-08
4 0 0.00 -0.01 0.00 0.00E+00 | -3.80E-07 | -2.00E-08
5 I -0.01 0.35 -0.03 -8.20E-07 | -9.33E-05 | 2.04E-06
5 0 -0.01 -0.18 -0.03 -8.20E-07 | 4.27E-05 | 2.24E-06

Table8-VIIl. Strain deviation from the Standard Response for G12/2

G12/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 | 129.81 80.22 197.32 2.49E-02 | -2.62E-02 | 3.70E-05
1 0 129.81 81.88 197.32 2.49E-02 | -2.38E-02 | 4.07E-05
2 | 81.77 129.81 68.75 -7.56E-03 | 7.94E-03 | -1.12E-05
2 0 81.77 126.51 68.75 -7.56E-03 | 7.22E-03 | -1.23E-05
3 | 68.75 197.32 0.00 -1.12E-05 | 1.18E-05 | -2.00E-08
3 0 68.75 220.56 0.00 -1.12E-05 | 1.07E-05 | -2.00E-08
4 | 81.75 129.88 0.15 -7.57E-03 | 7.95E-03 | -1.12E-05
4 0 81.75 126.59 0.15 -7.57E-03 | 7.23E-03 | -1.23E-05
5 | 174.60 68.76 -0.34 1.74E-02 | -1.82E-02 | 2.57E-05
5 0 174.60 70.95 -0.34 1.74E-02 | -1.66E-02 | 2.83E-05
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Table8-1X. Strain deviation from the Standard Response for nul12/2

Nul2/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I -1.95 1.19 -9.23 -3.74E-04 | -3.88E-04 | -1.73E-06
1 0 -1.95 1.25 -9.23 -3.74E-04 | -3.64E-04 | -1.90E-06
2 I 1.25 -1.95 -2.70 -1.16E-04 | -1.19E-04 | 4.41E-07
2 0 1.25 -1.96 -2.70 -1.16E-04 | -1.12E-04 | 4.85E-07
3 I -2.70 -9.23 -4.60 4.41E-07 | -5.51E-07 | 3.50E-04
3 0 -2.70 -9.15 -4.60 4.41E-07 | -4.44E-07 | 3.85E-04
4 I 1.24 -1.96 -4.60 -1.15E-04 | -1.20E-04 | 3.50E-04
4 0 1.24 -1.96 -4.60 -1.15E-04 | -1.12E-04 | 3.85E-04
5 I -4.92 1.92 -4.59 -4.90E-04 | -5.08E-04 | 3.49E-04
5 0 -4.92 2.04 -4.59 -4.90E-04 | -4.76E-04 | 3.83E-04

Table8-X.. Strain deviation from the Standard

Response for nul3/2

Nul3/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 0.29 -0.38 21.69 5.55E-05 | 1.25E-04 | 4.06E-06
1 0 0.29 0.00 21.69 5.55E-05 | 4.00E-07 | 4.47E-06
2 I 0.00 0.29 3.32 4.50E-07 | 1.77E-05 | -5.41E-07
2 0 0.00 -0.30 3.32 4.50E-07 | -1.71E-05 | -5.95E-07
3 I 3.32 21.69 0.00 -5.49E-07 | 6.39E-07 | 3.00E-08
3 0 3.32 25.18 0.00 -5.41E-07 | 1.22E-06 | 0.00E+00
4 I 0.00 0.31 0.01 -1.00E-07 | 1.90E-05 | -5.40E-07
4 0 0.00 -0.28 0.01 -1.00E-07 | -1.59E-05 | -5.90E-07
5 I 0.56 -0.54 -0.05 5.55E-05 | 1.44E-04 | 3.52E-06
5 0 0.56 0.07 -0.05 5.55E-05 | -1.55E-05 | 3.87E-06

Table8-XI. Strain deviation from the Standard Response for nu23/2

Nu23/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 0.34 -0.43 -32.85 6.57E-05 | 1.40E-04 | -6.16E-06
1 0 0.34 -0.01 -32.85 6.57E-05 | 4.10E-06 | -6.77E-06
2 I -0.01 0.34 3.93 5.30E-07 | 2.09E-05 | -6.41E-07
2 0 -0.01 -0.36 3.93 5.30E-07 [ -2.03E-05 | -7.05E-07
3 I 3.93 -32.85 0.00 -6.41E-07 | -1.96E-06 | -1.00E-08
3 0 3.93 -44.37 0.00 -6.41E-07 | -2.15E-06 | -2.00E-08
4 I 0.00 0.31 0.01 -1.10E-07 | 1.90E-05 | -6.50E-07
4 0 0.00 -0.39 0.01 -1.10E-07 | -2.25E-05 | -7.10E-07
5 I 0.66 -0.60 0.09 6.56E-05 | 1.59E-04 | -6.81E-06
5 0 0.66 0.08 0.09 6.56E-05 | -1.84E-05 | -7.49E-06
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8.2 Thick Tubel

Table8-XI1. Strain Responsefor the different loading conditionsfor Thick Tube 1

Standard Response
Load Surface Axial Hoop Shear
1 I -2.01E-02 | 3.85E-02 -4.58E-05
1 0 -2.01E-02 | 2.90E-02 -5.73E-05
2 I 9.24E-03 | -6.41E-03 3.51E-05
2 0 9.24E-03 | -5.45E-03 4.39E-05
3 I 3.58E-05 | -1.49E-05 6.69E-03
3 0 3.58E-05 | -9.17E-06 8.36E-03
4 I 9.27E-03 | -6.43E-03 6.73E-03
4 0 9.27E-03 | -5.46E-03 8.41E-03
5 I -1.09E-02 | 3.21E-02 6.68E-03
5 0 -1.09E-02 | 2.36E-02 8.35E-03

Table8-XIl1l. Strain deviation from the Standard Response for E1/2

E1/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 I -16.82 11.31 -75.74 -3.39E-03 | -4.36E-03 | -3.47E-05
1 0 -16.82 9.56 -75.74 -3.39E-03 | -2.78E-03 | -4.34E-05
2 I 9.52 -16.82 -33.32 -8.79E-04 | -1.08E-03 | 1.17E-05
2 0 9.52 -12.38 -33.32 -8.79E-04 | -6.75E-04 | 1.46E-05
3 I -33.32 -75.74 76.65 1.19E-05 | -1.13E-05 | -5.13E-03
3 0 -33.32 -77.80 76.65 1.19E-05 | -7.13E-06 | -6.41E-03
4 I 9.35 -16.96 76.08 -8.67E-04 | -1.09E-03 | -5.12E-03
4 0 9.35 -12.49 76.08 -8.67E-04 | -6.82E-04 | -6.40E-03
5 I -39.17 16.97 77.12 -4.26E-03 | -5.45E-03 | -5.15E-03
5 0 -39.17 14.66 77.12 -4.26E-03 | -3.46E-03 | -6.44E-03

Table8-XIV. Strain deviation from the Standard Response for E2/2

E2/2 Percentage Change from Standard Deviation from Standard

L oad Surface Axial Hoop Shear Axia Hoop Shear
1 I -5.67 3.51 -1.82 -1.14E-03 | -1.35E-03 | -8.34E-07
1 0 -5.67 3.46 -1.82 -1.14E-03 | -1.01E-03 | -1.04E-06
2 I 3.33 -5.67 32.48 -3.07E-04 | -3.63E-04 | -1.14E-05
2 0 3.33 -4.47 32.48 -3.07E-04 | -2.44E-04 | -1.42E-05
3 I 32.48 -1.82 6.78 -2.36E-05 | 1.10E-05 [ 4.67E-03
3 0 32.48 7.66 6.78 -1.16E-05 | 7.02E-07 | -5.67E-04
4 I 3.44 -5.66 6.91 -3.19E-04 | -3.63E-04 | -4.65E-04
4 0 3.44 -4.45 6.91 -3.19E-04 | -2.43E-04 | -5.81E-04
5 I -13.44 5.35 6.97 -1.46E-03 | -1.72E-03 | -4.66E-04
5 0 -13.44 5.30 6.97 -1.46E-03 | -1.25E-03 | -5.82E-04
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Table8-XV. Strain deviation from the Standard Responsefor E3/2

E3/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 | -0.05 1.48 23.05 -1.10E-05 | -5.72E-04 | 1.06E-05
1 0 -0.05 -0.80 23.05 -1.10E-05 | 2.33E-04 | 1.32E-05
2 I 0.00 -0.05 -0.26 -1.10E-07 | -3.48E-06 | 9.14E-08
2 0 0.00 0.05 -0.26 -1.10E-07 | 2.96E-06 | 1.14E-07
3 I -0.26 23.05 0.00 9.33E-08 | 3.43E-06 | -1.30E-07
3 0 -0.26 -33.50 0.00 9.33E-08 | -3.07E-06 | -1.60E-07
4 I 0.00 0.00 0.00 -2.00E-08 | -5.00E-08 | -3.00E-08
4 0 0.00 0.00 0.00 -2.00E-08 | -1.20E-07 | -4.00E-08
5 | -0.10 1.78 -0.16 -1.09E-05 | -5.72E-04 | 1.05E-05
5 0 -0.10 -0.99 -0.16 -1.09E-05 | 2.32E-04 | 1.32E-05

Table8-XVI. Strain deviation from the Standard Responsefor G12/2

G12/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 131.21 76.96 183.99 2.64E-02 | -2.97E-02 | 8.43E-05
1 0 131.21 81.77 183.99 2.64E-02 | -2.37E-02 | 1.05E-04
2 | 81.15 131.21 68.15 -7.50E-03 | 8.41E-03 | -2.39E-05
2 0 81.15 123.52 68.15 -7.50E-03 | 6.74E-03 | -2.99E-05
3 I 68.15 183.99 0.00 -2.44E-05 | 2.74E-05 | -8.00E-08
3 0 68.15 239.19 0.00 -2.44E-05 | 2.19E-05 | -1.00E-07
4 I 81.10 131.33 0.36 -7.52E-03 | 8.44E-03 | -2.40E-05
4 0 81.10 123.72 0.36 -7.52E-03 | 6.76E-03 | -3.00E-05
5 I 173.98 66.08 -0.90 1.89E-02 | -2.12E-02 | 6.03E-05
5 0 173.98 72.05 -0.90 1.89E-02 | -1.70E-02 | 7.54E-05

Table8-XVII. Strain deviation from the Standard Response for nu12/2

Nul2/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I -1.93 1.11 -9.24 -3.88E-04 | -4.29E-04 | -4.24E-06
1 0 -1.93 1.28 -9.24 -3.88E-04 | -3.70E-04 | -5.29E-06
2 I 1.26 -1.93 -2.68 -1.17E-04 | -1.24E-04 | 9.40E-07
2 0 1.26 -1.96 -2.68 -1.17E-04 | -1.07E-04 | 1.18E-06
3 I -2.68 -9.24 -4.60 9.59E-07 | -1.38E-06 | 3.08E-04
3 0 -2.68 -9.05 -4.60 9.59E-07 | -8.30E-07 | 3.85E-04
4 I 1.25 -1.95 -4.59 -1.16E-04 | -1.25E-04 | 3.09E-04
4 0 1.25 -1.97 -4.59 -1.16E-04 | -1.07E-04 | 3.86E-04
5 I -4.64 1.72 -4.56 -5.04E-04 | -5.53E-04 | 3.05E-04
5 0 -4.64 2.03 -4.56 -5.04E-04 | -4.78E-04 | 3.81E-04
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Table8-XVIII. Strain deviation from the Standard Response for nul3/2

Nul3/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 0.66 -0.91 19.86 1.32E-04 | 3.49E-04 | 9.10E-06
1 0 0.66 -0.01 19.86 1.32E-04 | 2.00E-06 | 1.14E-05
2 I -0.03 0.66 3.30 2.44E-06 | 4.20E-05 | -1.16E-06
2 0 -0.03 -0.72 3.30 2.44E-06 | -3.91E-05 | -1.45E-06
3 I 3.30 19.86 0.00 -1.27E-06 | -4.74E-07 | 1.40E-07
3 0 3.30 28.20 0.00 -1.18E-06 | 2.59E-06 | 1.00E-08
4 I -0.01 0.70 0.02 1.25E-06 | 4.50E-05 | -1.15E-06
4 0 -0.01 -0.67 0.02 1.25E-06 | -3.65E-05 | -1.43E-06
5 I 1.23 -1.23 -0.12 1.33E-04 | 3.94E-04 | 7.95E-06
5 0 1.23 0.15 -0.12 1.33E-04 | -3.45E-05 | 9.95E-06

Table8-X1X. Strain deviation from the Standard Response for nu23/2

Nu23/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 0.77 -0.95 -26.95 1.55E-04 | 3.66E-04 | -1.24E-05
1 0 0.77 -0.08 -26.95 1.55E-04 | 2.22E-05 | -1.54E-05
2 I -0.03 0.77 3.88 2.90E-06 | 4.94E-05 | -1.36E-06
2 0 -0.03 -0.85 3.88 2.90E-06 | -4.61E-05 | -1.70E-06
3 I 3.88 -26.95 0.00 -1.39E-06 | -4.01E-06 | -6.00E-08
3 0 3.88 -54.52 0.00 -1.39E-06 | -5.00E-06 | -7.00E-08
4 I -0.02 0.71 0.02 1.50E-06 | 4.54E-05 | -1.42E-06
4 0 -0.02 -0.94 0.02 1.50E-06 | -5.11E-05 | -1.77E-06
5 I 1.44 -1.28 0.21 1.57E-04 | 4.11E-04 | -1.38E-05
5 0 1.44 0.12 0.21 1.57E-04 | -2.90E-05 | -1.72E-05

83 Thin Tube?2

Table8-XX. Strain Responsefor thedifferent loading conditionsfor Thin Tube 2

Standard Response

Load Surface Axial Hoop Shear
1 I -1.15E-03 | 1.37E-02 -3.69E-18
1 0 -1.15E-03 | 1.19E-02 -4.06E-18
2 I 3.78E-03 | -3.68E-04 1.79E-19
2 0 3.78E-03 | -4.79E-04 1.97E-19
3 I 1.79E-19 | -1.17E-18 2.74E-02
3 0 1.79E-19 | -1.03E-18 3.02E-02
4 I 3.78E-03 | -3.68E-04 2.74E-02
4 0 3.78E-03 | -4.79E-04 3.02E-02
5 I 2.62E-03 | 1.33E-02 2.74E-02
5 0 2.62E-03 | 1.14E-02 3.02E-02
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Table8-XXI. Strain deviation from the Standard Response for E1/2

E1/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 199.01 64.84 -38.38 2.30E-03 | -8.89E-03 | -1.42E-18
1 0 199.01 65.71 -38.38 2.30E-03 | -7.79E-03 | -1.56E-18
2 I 65.59 199.01 24.48 -2.48E-03 | 7.31E-04 | -4.38E-20
2 0 65.59 156.79 24.48 -2.48E-03 | 7.52E-04 | -4.82E-20
3 I 24.48 -38.38 0.00 -4.38E-20 | -4.51E-19 | 0.00E+00
3 0 24.48 -38.00 0.00 -4.38E-20 | -3.93E-19 | 0.00E+00
4 I 65.59 199.01 0.00 -2.48E-03 | 7.31E-04 | 0.00E+00
4 0 65.59 156.79 0.00 -2.48E-03 | 7.52E-04 | 0.00E+00
5 I 6.87 61.15 0.00 -1.80E-04 | -8.16E-03 | 0.00E+00
5 0 6.87 61.87 0.00 -1.80E-04 | -7.04E-03 | 0.00E+00

Table8-XXII. Strain deviation from the Standard Response for E2/2

E2/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 I -49.44 11.83 14.89 -5.71E-04 | -1.62E-03 | 5.49E-19
1 0 -49.44 11.97 14.89 -5.71E-04 | -1.42E-03 | 6.04E-19
2 I 11.84 -49.44 -107.62 -4.47E-04 | -1.82E-04 | 1.93E-19
2 0 11.84 -29.83 -107.62 -4.47E-04 | -1.43E-04 | 2.12E-19
3 I -107.62 14.89 0.00 2.36E-19 | 6.26E-19 | 0.00E+00
3 0 -107.62 14.11 0.00 1.93E-19 | 1.46E-19 | 0.00E+00
4 I 11.84 -49.44 0.00 -4.47E-04 | -1.82E-04 | 0.00E+00
4 0 11.84 -29.83 0.00 -4.47E-04 | -1.43E-04 | 0.00E+00
5 I 38.80 13.52 0.00 -1.02E-03 | -1.80E-03 | 0.00E+00
5 0 38.80 13.73 0.00 -1.02E-03 | -1.56E-03 | 0.00E+00

Table8-XXIIl. Strain deviation from the Standard Response for E3/2

E3/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 0.05 0.72 -0.03 5.70E-07 | -9.92E-05 | -1.14E-21
1 0 0.05 -0.36 -0.03 5.70E-07 | 4.29E-05 | -1.25E-21
2 I 0.00 0.05 0.00 0.00E+00 | 1.81E-07 | 3.00E-24
2 0 0.00 -0.03 0.00 0.00E+00 | -1.60E-07 | 4.00E-24
3 I 0.00 -0.03 0.00 3.00E-24 | -3.60E-22 | 0.00E+00
3 0 0.00 0.03 0.00 3.00E-24 | 3.30E-22 | 0.00E+00
4 I 0.00 0.05 0.00 0.00E+00 | 1.81E-07 | 0.00E+00
4 0 0.00 -0.03 0.00 0.00E+00 | -1.60E-07 | 0.00E+00
5 I -0.02 0.74 0.00 5.70E-07 [ -9.91E-05 | 0.00E+00
5 0 -0.02 -0.38 0.00 5.70E-07 | 4.27E-05 | 0.00E+00
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Table8-XXI1V. Strain deviation from the Standard Responsefor G12/2

G12/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 0.00 0.00 121.90 0.00E+00 | 0.00E+00 | 4.50E-18
1 0 0.00 0.00 121.90 0.00E+00 | 0.00E+00 | 4.95E-18
2 I 0.00 0.00 237.55 0.00E+00 | 0.00E+00 | -4.25E-19
2 0 0.00 0.00 237.55 0.00E+00 | 0.00E+00 | -4.68E-19
3 I 237.55 121.90 100.00 -4.25E-19 | 1.43E-18 | -2.74E-02
3 0 237.55 122.62 100.00 -4.25E-19 | 1.27E-18 | -3.02E-02
4 I 0.00 0.00 100.00 0.00E+00 | 0.00E+00 | -2.74E-02
4 0 0.00 0.00 100.00 0.00E+00 | 0.00E+00 | -3.02E-02
5 I 0.00 0.00 100.00 0.00E+00 | 0.00E+00 | -2.74E-02
5 0 0.00 0.00 100.00 0.00E+00 | 0.00E+00 | -3.02E-02

Table8-XXV. Strain deviation from the Standard Response for nu12/2

Nul2/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I -60.20 0.39 3.29 -6.95E-04 | -5.31E-05 | 1.21E-19
1 0 -60.20 0.51 3.29 -6.95E-04 | -5.99E-05 | 1.34E-19
2 I 0.50 -60.20 -7.45 -1.90E-05 | -2.21E-04 | 1.33E-20
2 0 0.50 -42.66 -7.45 -1.90E-05 | -2.04E-04 | 1.47E-20
3 I -7.45 3.29 0.00 1.33E-20 | 3.87E-20 | 0.00E+00
3 0 -7.45 3.23 0.00 1.33E-20 | 3.34E-20 | 0.00E+00
4 I 0.50 -60.20 0.00 -1.90E-05 | -2.21E-04 | 0.00E+00
4 0 0.50 -42.66 0.00 -1.90E-05 | -2.04E-04 | 0.00E+00
5 I 27.22 2.06 0.00 -7.14E-04 | -2.74E-04 | 0.00E+00
5 0 27.22 2.32 0.00 -7.14E-04 | -2.64E-04 | 0.00E+00

Table8-XXVI. Strain deviation from the Standard Response for nul3/2

Nul3/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 5.30 -0.87 0.28 6.12E-05 | 1.19E-04 | 1.04E-20
1 0 5.30 0.04 0.28 6.12E-05 | -4.20E-06 | 1.15E-20
2 I 0.01 5.30 -0.15 -2.60E-07 | 1.95E-05 | 2.69E-22
2 0 0.01 -3.24 -0.15 -2.60E-07 | -1.55E-05 | 2.96E-22
3 I -0.15 0.28 0.00 2.66E-22 | 3.67E-21 | 0.00E+00
3 0 -0.15 -0.29 0.00 2.69E-22 | -3.05E-21 | 0.00E+00
4 I 0.01 5.30 0.00 -2.60E-07 | 1.95E-05 | 0.00E+00
4 0 0.01 -3.24 0.00 -2.60E-07 | -1.55E-05 | 0.00E+00
5 I -2.32 -1.04 0.00 6.09E-05 | 1.39E-04 | 0.00E+00
5 0 -2.32 0.17 0.00 6.09E-05 | -1.97E-05 | 0.00E+00
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Table8-XXVII. Strain deviation from the Standard Response for nu23/2

Nu23/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 5.76 -1.07 -1.05 6.65E-05 | 1.47E-04 | -3.88E-20
1 0 5.76 -0.09 -1.05 6.65E-05 | 1.04E-05 | -4.27E-20
2 I 0.01 5.76 -0.24 -3.10E-07 | 2.12E-05 | 4.23E-22
2 0 0.01 -4.22 -0.24 -3.10E-07 | -2.02E-05 | 4.65E-22
3 I -0.24 -1.05 0.00 4.23E-22 | -1.24E-20 | 0.00E+00
3 0 -0.24 1.13 0.00 4.23E-22 | 1.17E-20 | 0.00E+00
4 I 0.01 5.76 0.00 -3.10E-07 | 2.12E-05 | 0.00E+00
4 0 0.01 -4.22 0.00 -3.10E-07 | -2.02E-05 | 0.00E+00
5 I -2.52 -1.26 0.00 6.62E-05 | 1.68E-04 | 0.00E+00
5 0 -2.52 0.09 0.00 6.62E-05 | -9.80E-06 | 0.00E+00

8.4 Thick Tube?2

Table8-XXVIII. Strain Responsefor the different loading conditionsfor Thick

Table8-XXIX. Strain deviation from the Standard Response for E1/2

Tube?2
Standard Response
Load Surface Axial Hoop Shear
1 I -8.89E-04 | 1.70E-02 -3.72E-18
1 0 -8.89E-04 | 1.18E-02 -4.65E-18
2 I 3.78E-03 | -2.83E-04 1.70E-19
2 0 3.78E-03 | -5.45E-04 2.13E-19
3 I 1.74E-19 | -1.21E-18 2.41E-02
3 0 1.74E-19 | -9.02E-19 3.02E-02
4 I 3.78E-03 | -2.83E-04 2.41E-02
4 0 3.78E-03 | -5.45E-04 3.02E-02
5 I 2.89E-03 | 1.67E-02 2.41E-02
5 0 2.89E-03 | 1.13E-02 3.02E-02

E1/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 253.58 62.63 -38.64 2.25E-03 | -1.07E-02 | -1.44E-18
1 0 253.58 66.40 -38.64 2.25E-03 | -7.83E-03 | -1.80E-18
2 I 65.48 253.58 23.05 -2.48E-03 | 7.17E-04 | -3.92E-20
2 0 65.48 140.49 23.05 -2.48E-03 | 7.65E-04 | -4.91E-20
3 I 23.05 -38.64 0.00 -4.00E-20 | -4.67E-19 | 0.00E+00
3 0 23.05 -37.84 0.00 -4.00E-20 | -3.41E-19 | 0.00E+00
4 I 65.48 253.58 0.00 -2.48E-03 | 7.17E-04 | 0.00E+00
4 0 65.48 140.49 0.00 -2.48E-03 | 7.65E-04 | 0.00E+00
5 I 7.72 59.40 0.00 -2.23E-04 | -9.94E-03 | 0.00E+00
5 0 7.72 62.81 0.00 -2.23E-04 | -7.07E-03 | 0.00E+00
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Table8-XXX. Strain deviation from the Standard Response for E2/2

E2/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axia Hoop Shear
1 | -75.36 11.39 15.54 -6.70E-04 | -1.94E-03 | 5.78E-19
1 0 -75.36 12.48 15.54 -6.70E-04 | -1.47E-03 | 7.23E-19
2 | 11.89 -75.36 -105.22 -450E-04 | -2.13E-04 | 1.79E-19
2 0 11.89 -22.26 -105.22 -450E-04 | -1.21E-04 | 2.24E-19
3 | -105.22 15.54 0.00 2.23E-19 | 6.55E-19 | 0.00E+00
3 0 -105.22 13.57 0.00 1.83E-19 | 1.22E-19 | 0.00E+00
4 | 11.89 -75.36 0.00 -4.50E-04 | -2.13E-04 | 0.00E+00
4 0 11.89 -22.26 0.00 -4.50E-04 | -1.21E-04 | 0.00E+00
5 | 38.68 12.85 0.00 -1.12E-03 | -2.15E-03 | 0.00E+00
5 0 38.68 14.16 0.00 -1.12E-03 | -1.59E-03 | 0.00E+00

Table8-XXXI. Strain deviation from the Standard Response for E3/2

E3/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axia Hoop Shear
1 | 0.65 3.61 -0.29 5.79E-06 | -6.14E-04 | -1.09E-20
1 0 0.65 -1.94 -0.29 5.79E-06 | 2.29E-04 | -1.37E-20
2 I 0.00 0.65 -0.03 -3.00E-08 | 1.84E-06 | 5.40E-23
2 0 0.00 -0.27 -0.03 -3.00E-08 | -1.46E-06 | 6.70E-23
3 I -0.03 -0.29 0.00 5.50E-23 | -3.56E-21 | 0.00E+00
3 0 -0.03 0.32 0.00 5.50E-23 | 2.90E-21 | 0.00E+00
4 I 0.00 0.65 0.00 -3.00E-08 | 1.84E-06 | 0.00E+00
4 0 0.00 -0.27 0.00 -3.00E-08 | -1.46E-06 | 0.00E+00
5 I -0.20 3.66 0.00 5.76E-06 | -6.13E-04 | 0.00E+00
5 0 -0.20 -2.02 0.00 5.76E-06 | 2.27E-04 | 0.00E+00

Table8-XXXII. Strain deviation from the Standard Response for G12/2

G12/2 Percentage Change from Standard Deviation from Standard

Load Surface Axial Hoop Shear Axial Hoop Shear
1 | 0.00 0.00 121.47 0.00E+00 | 0.00E+00 | 4.52E-18
1 0 0.00 0.00 121.47 0.00E+00 | 0.00E+00 | 5.65E-18
2 | 0.00 0.00 235.49 0.00E+00 | 0.00E+00 | -4.01E-19
2 0 0.00 0.00 235.49 0.00E+00 | 0.00E+00 | -5.01E-19
3 | 235.49 121.47 100.00 -4.09E-19 | 1.47E-18 | -2.41E-02
3 0 235.49 123.14 100.00 -4.09E-19 | 1.11E-18 | -3.02E-02
4 | 0.00 0.00 100.00 0.00E+00 | 0.00E+00 | -2.41E-02
4 0 0.00 0.00 100.00 0.00E+00 | 0.00E+00 | -3.02E-02
5 | 0.00 0.00 100.00 0.00E+00 | 0.00E+00 | -2.41E-02
5 0 0.00 0.00 100.00 0.00E+00 | 0.00E+00 | -3.02E-02
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Table8-XXXIIl. Strain deviation from the Standard Response for nul2/2

Nul2/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I -82.83 0.23 3.31 -7.36E-04 | -3.96E-05 | 1.23E-19
1 0 -82.83 0.51 3.31 -7.36E-04 | -6.06E-05 | 1.54E-19
2 I 0.50 -82.83 -7.04 -1.89E-05 | -2.34E-04 | 1.20E-20
2 0 0.50 -35.79 -7.04 -1.89E-05 | -1.95E-04 | 1.50E-20
3 I -7.04 3.31 0.00 1.22E-20 | 4.00E-20 | 0.00E+00
3 0 -7.04 3.15 0.00 1.22E-20 | 2.84E-20 | 0.00E+00
4 I 0.50 -82.83 0.00 -1.89E-05 | -2.34E-04 | 0.00E+00
4 0 0.50 -35.79 0.00 -1.89E-05 | -1.95E-04 | 0.00E+00
5 I 26.09 1.64 0.00 -7.55E-04 | -2.74E-04 | 0.00E+00
5 0 26.09 2.27 0.00 -7.55E-04 | -2.55E-04 | 0.00E+00

Table8-XXXIV. Strain deviation from the St andard Response for nul3/2

Nul3/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 16.81 -1.91 0.62 1.49E-04 | 3.25E-04 | 2.32E-20
1 0 16.81 0.12 0.62 1.49E-04 | -1.46E-05 | 2.90E-20
2 I 0.03 16.81 -0.64 -1.06E-06 | 4.76E-05 | 1.08E-21
2 0 0.03 -6.37 -0.64 -1.06E-06 | -3.47E-05 | 1.35E-21
3 I -0.64 0.62 0.00 1.05E-21 | 1.11E-20 | 0.00E+00
3 0 -0.64 -0.74 0.00 1.11E-21 | -6.66E-21 | 0.00E+00
4 I 0.03 16.81 0.00 -1.06E-06 | 4.76E-05 | 0.00E+00
4 0 0.03 -6.37 0.00 -1.06E-06 | -3.47E-05 | 0.00E+00
5 I -5.12 -2.23 0.00 1.48E-04 | 3.73E-04 | 0.00E+00
5 0 -5.12 0.44 0.00 1.48E-04 | -4.93E-05 | 0.00E+00

Table8-XXXV. Strain deviation from the Standard Response for nu23/2

Nu23/2 Percentage Change from Standard Deviation from Standard
Load Surface Axial Hoop Shear Axial Hoop Shear
1 I 18.26 -2.20 -2.32 1.62E-04 | 3.75E-04 | -8.63E-20
1 0 18.26 -0.25 -2.32 1.62E-04 | 2.99E-05 | -1.08E-19
2 I 0.03 18.26 -0.97 -1.23E-06 | 5.17E-05 | 1.65E-21
2 0 0.03 -8.30 -0.97 -1.23E-06 | -4.52E-05 | 2.07E-21
3 I -0.97 -2.32 0.00 1.69E-21 | -2.80E-20 | 0.00E+00
3 0 -0.97 2.79 0.00 1.69E-21 | 2.52E-20 | 0.00E+00
4 I 0.03 18.26 0.00 -1.23E-06 | 5.17E-05 | 0.00E+00
4 0 0.03 -8.30 0.00 -1.23E-06 | -4.52E-05 | 0.00E+00
5 I -5.56 -2.55 0.00 1.61E-04 | 4.27E-04 | 0.00E+00
5 0 -5.56 0.14 0.00 1.61E-04 | -1.53E-05 | 0.00E+00

144




9 Appendix C. Levenberg-Marquardt Inversion — Cij

Here is the source code for the Inversion code using the Levenberg Marquardt compromise to optimize the Cij values. Included are
the C source codes for all the files. Files included:

R/
°e

Inversion.cpp
Inversion.h
Elastic_Solution.cpp
Elastic_Solution.h
Data_Input.cpp
Data Input.h
Matrix.cpp

Matrix.h
Jacobian.cpp
Jacobian.h

X3

S

X3

*

R/
°e

X/
°

X3

*

7 o )
LXK i X4

K/
A X4

9.1 Inversion.cpp

/1 lInversion Program-> |nversion.cpp

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

#i ncl ude "Data_l nput. h"
#include "El astic_Sol uti on. h"
#i ncl ude "I nversion.h"

#i ncl ude "jacobi an. h"

#i ncl ude <tinme. h>
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voi d main()
{
i nt count, convergence, i;
int mtnum mat[K];
double E[5][10], Enew 7], Eout[7], C[5][7], PHI[ND], SSE, B[NAP], Cij[Maxlteration][7];
doubl e radii[K+1], theta[ K], Loads[num oads][4], Exp_Strain[num oads][3], Calculated_Strain[3],
C _Strai n[ num oads] [ 3], duration;
double C original[7], SSEm n=1.0, E original[7], *del, delta;
char position[num oads];
of stream CijFile;
clock t start, finish;
of stream SSEFi | e;

SSEFi | e. open( " SSE. dat ") ;
CijFile.open("Cij.dat");
del ta= 0. 0001;

del =&del t a;

start = cl ock();

// STEP 1. Read in all data

mat num = Input (E, C, mat, radii, theta, Loads, Exp_Strain, position);

/1 Check for an inversion, search for a mninmum or mapping of initial SSE values (nuch quicker than search)
for (int a=0;a<7;at+)
{
C original[a]
E original [ a]

}

/****************************************************************************************/

/!l STEP 2. Show initial results
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CijFile << "Initial Values:"<<endl;

CijFile << endl << "E Val ues: "<< endl;
CijFile << "\nEl"<< "\t"<< E[0][0O] <<"\t";
CijFile << "\nE2"<< "\t"<< E[O0][1] <<"\t";
CijFile << "\nE3"<< "\t"<< E[0O][2] <<"\t";
CijFile << "\nGl2"<< "\t"<< E[0][3]<<"\t";
jFile << "\nnul2"<< "\t"<< E[O][4] <<"\t";
jFile << "\nnul3"<< "\t"<< E[O][5] <<"\t";
jFile << "\nnu23"<< "\t"<< E[O][6] <<"\t";

<< "\n\nCij Val ues:"<<endl;

<< "\ nCll"<< "\t"<< C[0][0O] <<"\1t";

<< "\ nCl2"<< "\t"<< C[O][1] <<"\t "

<< "\ nCl3"<< "\t"<< C0][2] <<"\t "

<< "\nC22"<< "\t"<< C[O][3]<<"\ 1"

<< "\ nC23"<< "\t'"<< 0] [4] <<"\ "

<< "\ nC33"<< "\t"<< CO][5]<<"\t";

<< "\ nC66"<< "\t"<< C]0][6] <<"\t"<<endl;

00000000 000

T TTTTTITITTT

® D®®D®DdD®DCDMD

Calc_Increnment(E, C, matnum mat, radii, theta, Loads, Exp_Strain, position, PH , B, &SSE, del);

cout << endl << "\nlnitial SSE = " <<SSE;
cout << endl << "Acceptable Error Value = "<< Acceptable << endl;
CijFile << endl << "\nlnitial SSE = " <<SSE;

SSEFile <<"Initial SSE for Guess Val ues\t"<<SSE<<endl ;
SSEFi |l e <<"\n0O\t"<< SSE<<"\t"<<*del;

// STEP 3. Mnimze the error function and return information on the type of solution reached

convergence = Mnimze(E, C, matnum mat, Cj, radii, theta, Loads,Exp_Strain, position, PH, B,
&SSE, &count, SSEFil e, del);
/-k
if (convergence==4)
{
*del =0;
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convergence = Mnimze(E, C, matnum mat, Cj, radii, theta, Loads, Exp_Strain, position, PH,
B, &SSE, &count, SSEFil e, del);

}
*/
/1 STEP 4. G ve information on convergence conditions

swi tch(convergence)

{
case 0: cout<<"\nSingular nmatrix encountered"<<endl;
break;
case 1: cout<< endl <<"Local m ninum encountered"<< endl;
br eak;
case 2: cout<< endl <<"Exceded Maxi mum i nterations"<< endl;
break;
case 3. cout<< endl <<"SSE sufficiently small"<< endl;
break;
case 4. cout<<endl <<"Insignificant change to val ues"<< endl;
break;
case 5: cout << endl <<"Did not Converge"<< endl;
br eak;
}

/1 STEP 5. Qutput final val ues
i f (convergence! =0)
{
cout<< "\nFinal SSE Value = " << SSE << endl;
cout << "\ nNunber of iterations = "<< count+1<< endl;
CjFile << "\ nNumber of iterations = \t"<< count+1<< endl;
CijFile << endl << "Final Cij Values:"<< endl;

CijFile << "\nCll"<< "\t"<< C[0O][0] <<"\t";
CijFile << "\nCl2"<< "\t"<< C[O][1] <<"\t ",
CjFile << "\nCl3"<< "\t"<< C[0][2] <<"\t";
CjFile << "\nC22"<< "\t"<< C[O][3] <<"\t";
CjFile << "\nC23"<< "\t"<< C[0][4] <<"\t";
CjFile << "\nC33"<< "\t"<< C[O][5] <<"\t";
CjFile << "\nCB6"<< "\t"<< C[O][6] <<"\t";
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C_to_E(&C0][0]), & Enew{0]));

CijFile << endl <<endl << "Fi nal E Val ues: "<< end|
CijFile << "\nEl"<< "\t"<< Enewf 0] <<"\t";
CijFile << "\nE2"<< "\t"<< Enewf 1] <<"\t";
CijFile << "\nE3"<< "\t"<< Enewf 2] <<"\t";
CijFile << "\nGl2"<< "\t"<< Enewf 3] <<"\t";
CijFile << "\nnul2"<< "\t"<< Enew 4] <<"\t";
CijFile << "\nnul3"<< "\t"<< Enew 5] <<"\t";
CijFile << "\nnu23"<< "\t"<< Enew 6] <<"\t";

CijFile <<"\nFinal SSE = \t" << SSE<< endl <<end|
for(i=0;i<7;i++)
E[O][i]=Enewi];
}

el se

{
}

[/l Calculate the strain response for the solution values and output in table for easy plotting

CijFile<<"\nSingular Matrix\n";

CijFile<<"\nCal cul ated Strains for the Final Values";

CijFile<<"\nLoads\t\t\t\t\t"<<"Measured Strains\t\t\t\t"<<"Cal cul ated Strains\n";

CijFile<<"Pol\t"<<"Pil\t"<<"Fx\t"<<"Tx\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t"
<<"\t Surface\n";

for(i=0 ; i<num oads ; i++)

{

El astic_Solution(C, E, matnum mat, radii, theta, & Loads[i][0]), Calculated_Strain,
position[i]);

for(int j=0;j<3;j++)
C Strain[i][j]=Cal culated_Strain[j];
for(j=0;j<4;j++)
CijFile<<Loads[i][]j]<<"\t";
CjFile<<"\t";

149



for(j=0;j<3;j++)
CjFile<<kExp_Strain[i][j]<<"\t";
CijFile<<"\t";
for(j=0;j<3;j++)
CijFile<<C Strain[i][j]<<"\t";
CijFile<<"\t"<<position[i]<<endl

}
// Calculates tinme used to find solution
finish = clock();

duration = (double)(finish - start)/CLOCKS PER_SEC;
i f(duration>60.0)

{
dur ati on=dur ati on/ 60. O;
cout << "\nCalculation Tine: "<<duration<< " mnutes."<< endl
}
el se
{
cout << "\nCalculation Tine: "<<duration<< " seconds."<< endl
}
for(i=0;i<count+1;i++)
{

CijFile <<"\nlteration #\t"<<i+l<<endl
CjFile << "\nCll"<< "\t"<< Cij[i][0]<<"\t";

ile << "\nCl2"<< "\t"<< Gij[i][1]<<"\t":
ile << "\nCL3"<< "\t"<< i1[2] <<"\t";
[ << "\ nC22"<< "\t"<< 1[3] <<\t ",

i

i][4] <<"\t";
i][5] <<"\t";
i]1[6] <<"\t"<<endl

<< "\ nC33"<< "\t"<<

Gjl
e Gijl
e << "\nC23"<< "\t"<< Gij[
e Gijl
e << "\nCB6"<< "\t"<< Cij[

Cto E(&Cij[il[0]), & Eout[O0]));

CijFile << "\nEl"<< "\t"<< Eout[O0] <<"\t";
CijFile << "\nE2"<< "\t"<< Eout[1] <<"\t";
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CijFile << "\nE3"<< "\t"<< Eout[2]<<"\t";
CijFile << "\nGl2"<< "\t"<< Eout[3]<<"\t";
CjFile << "\nnul2"<< "\t"<< Eout[4]<<"\t";
CijFile << "\nnul3"<< "\t"<< Eout[5]<<"\t";
CijFile << "\nnu23"<< "\t"<< Eout[6]<<"\t"<<endl
}
CijFile.close();
}
e e e e

/*Cal c_lI ncrement cal cul ates the error value PH and SSE as well as the increnmental step value for Cij
*/
int Calc_lncrenment(double E[][10], double C[][7], int matnum int mat[], double radii[], double thetal],
doubl e Loads[][4], double Exp_Strain[][3], char position[], double PH[], double B[], double *SunSquareErr,
doubl e *del)
{

i nt indx[NAP],i,crash=0;

doubl e J[ ND] [ NAP], JtJ[ NAP] [ NAP];

*Sunquar eErr = 0. 0;
for (i=0;i<NAP;i ++)
{

for(int jj=0; jj<NAP;jj++)

JJ[i][jj] = 0.0;

}
for(i=0;i<ND;i++)

PHI[i] = 0.0;
Phi Sub(E, C, matnum mat, radii,theta, Loads, Exp_Strain, position, PHI);

for(i=0;i<ND;i++)
*SunsSquar eErr += pow(PHI[i], 2); /I Cal culate the Sum of Square Errors

Jacobian(E, C, matnum mat, radii, theta, Loads, Exp_Strain, position, J);

//Calculate ([J]t[I])A(-1)[I]t{PH}
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for(i=0;i<NAP;i++) [ [J1t[J]

{
for(int j=0;j<NAP;j++)
{
for(int 1i=0;ii<ND;ii++)
} JUILIN0G] += J[iiJ[i]=3[ii]ljl;

}
/I Levenber g- Mar quar dt (JtJ+del ta*D)
for(i=0;i<NAP;i ++)
JtI[i][i] *=(1.0 + *del);

for(i=0;i<NAP;i ++) [TTITt{PH}
{
B[i] = 0.0;
for (int j=0;j<ND;j++)
Bli] -=3[j1[i]1*PHI]];

}
/1 SysScal e(&(JtJ[0][0]), B, NAP) ;
crash = LUDeconposition(&JtJ[O][0]), NAP,indx,i);
i f(crash!=0)
{
cout <<"\nSingular Matrix"<<endl;
*SunSquar eErr = 1. 0;

return 1;
}
LUBackSub(&(JtJ[ 0] [0]), NAP, i ndx, B);
return O;
}
I R e i i T

//Function to mnimnmze error and apply convergence criteria
int Mnimze(double E[][10], double C[][7], int matnum int mat[], double Cij[][7], double radii[], double

theta[], double Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *sse,
int *counter, ofstream SSEFil e, double *del)

{

int crash_big, crash_small, crash_del,i,j,flag, count=0;
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double CNew{ 5][ 7],
doubl e SSE de
doubl e CNew_big[5][7],
SSEnew = 1000000;
SSEol d = 1000000;

fl ag=0;

m ni mrum=0. 0001

del _orig = *del

CNew2[ 5] [ 7]

CNew_smal | [ 5] [ 7],

cout<<"\nlteration\t"<<"SSE"<<"\tdelta";

//***********[kfi ne the new C Val ues************

for(i=0;i<matnumi ++)

, SSEnew, SSEol d, del
=0.0, SSE big=0.0,SSE small1=0.0, B big[7],

_orig,

{
for(j=0;j<7;j++)
{
CNew[ i ][j]=C[i][]j];
CNew2[i][j1=C[i][j];
CNew_smal I [i][j]=Cli][j];
CNew big[i][j1=Ci][jl;
}
[ *****x**x**x Check sol ution near convergencex******x*
/* i f(*del ==0)
{
crash_del = Calc_lncrenent(E, C, matnum nmat, radii
B, &SSE del, del);
if (crash_del!=0)
{
cout <<"Si ngul ar Matrix at solution";
return 1;
}

SSEol d=SSE_del ;
for (i=0;i<7;i++)
{

}

CNew{ O] [i ]+=B[i];
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del t abi g,
B small[7],
_ol d=0.0, SSE_big_ol d=0.0, SSE_smal |

t het a,

deltasmal |,
rati o[ 7],

Loads,

m ni mun
max=0. 0, SSE rati o;
_ol d=0. 0;
Exp_Strain, position,

PHI ,



crash_del = Calc_Increment(E, CNew, matnum mat, radii, theta, Loads, Exp_Strain, position
PHI, B, &SSE del, del);

}
*/
for (int iteration=0;iteration <Maxlteration;iteration++)
{
*counter=iteration;
/1 count +=1;
/1 i f(count==10)//periodically perturb del to make sure it is optim zing
/1 {
/1 *del / =10000;
/1 count =0;
/1 }

[[****xxxxxxxxCq|l cul ate error function and correction to val ues****x**%&xxxx*

del t abi g=*del *10;
del tasmal | =*del / 10;
del __orig = *del

/1 Most efficient step size delta*10, 1, 0.1
[[****xxxxxkxxxCql culate three different B values for the different delta val ues*****x**%xxxx

crash_del = Calc_Increnent(E, C, matnum mat, radii, theta, Loads, Exp_Strain, position, PHI
B, &SSE del, del);
crash_big = Calc_Increnent(E, C, matnum mat, radii, theta, Loads, Exp_Strain, position, PHI
B bi g, &SSE big, &deltabig);
crash_small = Calc_lncrenent(E, C, matnum mat, radii, theta, Loads, Exp_Strain, position, PH,

B small, &SSE snall, &deltasnmall);

SSEol d=SSE_del ; /lall SSE values are the sanme here - sanme C values input, only the B
val ues change

i f ( SSEol d<=Accept abl e)
{
*sse = SSEol d;
SSEFi |l e << endl <<iteration+l<<"\t"<<SSEol d<<"\t"<<*del
cout <<end| <<SSEol d;
return 3;
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}

if ((crash_del != 0)&&(crash_big !=0)&&(crash_small !=0))
{
*sse = 1.0;
return O;
}
for(i=0;i<7;i++)
CNew{ O] [ ] =C[O][i]+B[i];
ratio[i]=B[i];
CNew big[O] [i]=C[O][i]+B_big[i];
CNew smal I [O][i]=C[O][i]+B_small[i];

}

if ((CNew 0] [3]==CNew{O0][5])]|]|(CNew O] [3]==4*CNew[O][5]))
CNew 0] [ 5] +=1;

if ((CNew_ big[0][3]==CNew big[0][5])]|](CNew big[0][3]==4*CNew big[0][5]))
CNew_bi g[ 0] [ 5] +=1;

if ((CNew_small[0][3]==CNew_small[O][5])]|(CNew_small[0][3]==4*CNew_small[0][5]))
CNew_smal | [ 0] [ 5] +=1;

crash_del = Calc_lncrenent(E, CNew, matnum nmmt, radii, theta, Loads, Exp_Strain, position,
PHI , B, &SSE del, del);

crash_big = Calc_lncrenent(E, CNew_big, matnum nmat, radii, theta, Loads, Exp_Strain, position,
PHI , B, &SSE big, &deltabig);

crash_small = Calc_lncrenent(E, CNew small, matnum mat, radii, theta, Loads, Exp_Strain,
position, PH, B, &SSE small, &deltasmall);

/*

if ((crash_del != 0)&&(crash_big !=0)&&(crash_small !=0))
{
*sse = 1.0;
return O;
}
for(i=0;i<7;i++)
{
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i f(CNew 0] [i]<=0.0)
{
SSE del = 1le23;

}
i f(CNew_big[0][i]<=0.0)
{

}
i f (CNew_smal | [ 0] [i]<=0.0)

SSE _big = 1e23;

SSE smal |l = 1e23;

}

SSEnew= SSE_del ;

*/

i f((SSE_bi g<SSE_del ) &&( SSE_bi g<SSE_snal | ))
{

*del *=10;

SSEnew= SSE_bi g;

for(i=0;i<7;i++)

CNew O] [i]=CNew big[O0][i];
ratio[i]=B big[i];

}
i f ((SSE_snal | <SSE_del ) &&( SSE_smal | <SSE_bi g) )

{
*del / =10;
SSEnew= SSE snal | ;
for(i=0;i<7;i++)

CNew[ O] [i]=CNew_snmal I [0][i];

ratio[i]=B small[i];

}

//1f value is below the threshold | eve
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i f (SSEnew<=Acceptable)//if error is below an acceptable value - quit

{
for(i=0;i<7;i++)
C[O][i] = CNew O] [i];
Cij[iteration][i] = CNewmO][i];
}
*sse = SSEnew;
SSEFi | e <<endl <<iteration+l<<"\t"<<SSEnew<<"\t"<<*del;
cout <<end| <<SSEnew,
return 3;
}

[ x*xxxxxxxxjf the revision reduces SSE - take step***x*x*x*xx*
i f( SSEnew<=SSEol d)

{
max=0. 0;
for(i=0;i<7;i++)
{

C[O][i] = CNew O] [i];
Cij[iteration][i] = CNewO][i];
ratio[i]/=CNewO][i]; /1 Checking the size of the steps
i f(max<ratiof[i]) //take the | argest
max=ratio[i];
}
SSE rati o = SSEnew SSEol d;
SSEol d = SSEnew;
*sse = SSEnew;

if((max<=mininmum)//||((1-SSE_ratio)<=m ni nun))

{
flag+=1;
}
el se
{
fl ag=0;
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}
i f(flag>4)
return 4;

[[x**x*xxxxxxxif not - Change Delta to see if it helps - repeat until it is or quit****x*xkx¥x
el se

whi | e ( SSEnew>SSEol d)

{
*del *=10;
cout <<"\ nChanging Delta Value - del = "<<*del

//***********Tryi ng SOITEt h| ng**********
del t abi g=*del *10;
del tasmal | =*del / 10;
del _orig = *del

crash_del = Calc_lncrenent(E, C, matnum mat, radii, theta, Loads, Exp_Strain,
position, PH, B, &SSE del, del);

crash_big = Calc_lIncrenent(E, C, matnum mat, radii, theta, Loads, Exp_Strain
position, PH, B _big, &SSE big, &deltabig);

crash_small = Calc_Increnment(E, C, matnum mat, radii, theta, Loads, Exp_Strain,

position, PH, B small, &SSE small, &deltasnall);

if ((crash_del !'= 0)||(crash_big !'=0)]||(crash_small !=0))
{

*sse = 1.0;

return O,
}

for(i=0;i<7;i++)

CNew O] [i]=C[O] [i]+B[i];
CNew_big[O][i]=C[O][i]+B_big[i];
CNew smal I [O][i]=C[O][i]+B_small[i];
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crash_del = Calc_lncrenent(E, CNew, matnum mat, radii, theta, Loads, Exp_Strain
position, PH, B, &SSE del, del);

crash_big = Calc_Increnent(E, CNew big, matnum mat, radii, theta, Loads,
Exp_Strain, position, PH, B, &SSE big, &deltabig);

crash_small = Calc_lncrenment(E, CNew small, matnum nmat, radii, theta, Loads,

Exp_Strain, position, PH, B, &SSE snall, &deltasnall);

if ((crash_del !'= 0)|]|(crash_big !'=0)]||(crash_small !=0))
{

*sse = 1.0;
return O;
}
SSEnew= SSE_del ;
/* for(i=0;i<7;i++)
i f(CNew 0] [i]<=0.0)
{
SSE del = 1e23;

}
i f(CNew_big[O0][i]<=0.0)

{
SSE _big = 1e23;
}
i f(CNew snmal I [0][i]<=0.0)
SSE smal | = 1e23;
}
}
*/
i f ((SSE_bi g<SSE_del ) &&( SSE_bi g<SSE_snal | ))
{

SSEnew= SSE_bi g;
for(i=0;i<7;i++)
CNew O] [i ] =CNew_bi g[ O] [i];
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}
i f ((SSE_smal | <SSE_del ) &&( SSE_smal | <SSE_bi g))
SSEnew= SSE _smal | ;
for(i=0;i<7;i++)
CNew[ O] [i]=CNew smal I [O][i];

}

[[****xxx*x*xxxCheck new val ues now that delta is increased

i f(SSEnew<SSEold) //if SSE is reduced after a interval halving - nake changes

{
for(i=0;i<7;i++)
C[O][i] = CNew O] [i];
Cij[iteration][i] = CO][i];
}
SSEol d = SSEnew,
*sse = SSEnew,
}
if (*del >1000) //after several interval halving steps
{
*sse = SSEol d;
SSEFi | e <<endl <<iteration+l<<"\t"<<SSEol d<<"\t"<<*del;
cout <<endl <<SSEol d;
for(i=0;i<7;i++)
Cij[iteration][i] = CO0][i];
return 1;
}

}

cout <<endl <<iteration<<"\t"<<*sse<<"\t"<<*del;
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SSEFi | e <<endl <<iteration+l<<"\t"<<*sse<<"\t"<<*del;
cout <<endl <<iteration+l<<"\t"<<*sse<<"\t"<<*del;

}

*sse = SSEnew;
SSEFi | e. cl ose();
return 2;

}

/*************************************************************************************/

/1 This function converts the Cj Values back to E1, E2, E3, Gl2, nul2, nul3, nu23

void C to_E(double *c, double *Eval ues)

{

double S[4][4], col[4], CijMmtrix[4][4];
int i, j, indx[4], d=1;

/I Need to build the Cij matrix
for(i=0;i<4;i++)

{
col[i]=0.0;
for(j=0;j<4;j++)
{
Cijmatrix[i][j]=0.0;
S[il[j] = 0.0;
}
Cijmatrix[0][0] = c[0]; //Cl11
Cijmatrix[0][1] = c[1]; //C12
Cijmatrix[1][0] = c[1]; //cC21
Cijmatrix[0][2] = c[2]; //C13
Cijmatrix[2][0] = c[2]; //C31
Cijmatrix[1]1[1] = c[3]; //C22
Cijmatrix[1][2] = c[4]; //C23
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GijMatrix[2][1] = c[4]; //C32
GijMatrix[2][2] = c[5]; //C33
GjMatrix[3][3] = c[6]; //C66

/llnvert the Cij Matrix to get the Sij Matrix

LUDeconposi tion(&CijMatrix[0][0], 4,indx,d);
for(j=0;j<4;j++)

for(i=0;i<4;i++)
col[i] = 0.0;
col[j] = 1.0;
LUBackSub(&(CijMatrix[0][0]), 4,indx, &ol [0]);
for(i=0;i<4;i++)
S[i][jl=col[i];

}
[/l Cal culate E values fromthe Sij Val ues
Eval ues[0] = 1.0/S[0][0];
Eval ues[ 1] 1.0/ 9[1][1];
Eval ues[ 2] 1.0/9[2][2];
Eval ues[ 3] 1.0/ 9[3][3];

Eval ues| 4]
Eval ues|[ 5]
Eval ues| 6]

-S[0][1] *Eval ues[ 0] ;
-S[0][ 2] *Eval ues[ 0] ;
-S[1][ 2] *Eval ues[ 1];

9.2 Inversion.h

/ /1 nversion.h

/!l Header file for the Inverse Sol ution

/1 Modify the needed information for each different material run
#i ncl ude <mat h. h>

#i ncl ude <fstream h>
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#define K 10 /I Nunber of plies in the conposite |ay-up

#define KK 2*K+2 /I Nunber of equations for Elastic Solution

#define dT O /| Tenperature change for thermal strains and stresses

#define Pi acos(-1) // Define P

#defi ne num oads 3 /I Nunber of | oad conditions applied (1 Fx + 1 Tx + 1 Pi = 3 'l TREQU RED!!!)
#define NAP 7 /I Nunber of active paraneters (nunber of paraneters being optimzed - 7 Cij
val ues)

#define ND 3*num oads //Nunber of data points (nunber of strain points given - 3 strains per |oad
appl i ed)

#define Acceptable le-015 /1 Convergence Criteria - SSE value that is sufficiently smal

#define Maxlteration 100 /I Nurmber of iterations before quitting

int Calc_lncrement(double E[][10], double C[][7],int matnum int mat[], double radii[], double theta[],
doubl e Loads[][4], double Exp_Strain[][3], char position[], double PH [], double B[], double *SunSquareErr,
doubl e *del);

int Mnimze(double E[][10], double C[][7],int matnum int mat[], double Cij[][7], double radii[], double
theta[], double Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *SSE
int *count, ofstream SSEFile, double *del);

//void Cal c_SSE(double E[][10], double C[][7], int matnum int mat[], double radii[], double theta[],
doubl e Loads[][4], double Exp_Strain[][3], char position[], double PH [], double *SumSquareErr);

void C to_E(double *c, double *Eval ues);

9.3 Elastic Solution.cpp

/1 Elastic_Solution.cpp

#i ncl ude "El astic_Sol ution. h"
#i ncl ude <i ostream h>

#i ncl ude <fstream h>

void El astic_Sol ution(double C[][7], double E[][10], int matnum int nmat[], double r[], double th[], double
*| oad, double Calc_Strain[], char strainposition)
{

int i=0,indx[KK];

| ong theErr=0;

double sc[K|][4][5], bc[KJ[3], L[K], cbn{K][4][4], et[K][4];
doubl e A[ KK] [ KK], B[KK];
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Cbar(C, th, E, matnum mat, cbm et); /[l Transformations to create the cbar matrix

stress(cbm et, L, bc, sc); /I Rel ations between strain, displacenent and stress

mat _stack(cbm sc, L, bc, r, load, A B); //Creates matrix to solve for constants Eo, Go, Al's and

A2' s
SysScal e(& A[0][0]), B, KK); /1 Scaling to increase nunerical accuracy
for (int jj=0;jj<KK jj++)
indx[jj] = 0;
LUDeconposition(& A[0][0]), KK, indx,i); [/ performs PA=LU for LUBackSub
LUBackSub( & A[ 0][0]), KK, i ndx, B); /1 Sol ves system PAx=PB (returns x in B)
} output(B, r, L, bc, Calc_Strain, strainposition);//Returns cal cul ated strains

//************************************************************

//***********I nt er nal Subroutl nes*****************************

voi d Cbar(double C[][7], double theta[], double E[][10], int matnum int nmat[], double cbn][4]][4],
et[][4])
{

//c-bar matri x function

int i,j,k,p;
doubl e m=0. 0, n=0. O;
for(i=0;ic<K;i++)
for(j=0;j<4;j++)
for(k=0; k<4; k++)
cbn{i][j][k]=0.0;

for(i=0;ic<K;i++)
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m = cos(theta[i]);
n =sin(thetali]);
p:

cbnfi][0][0]
confi][0][1]
cbnfi][0][2]
cbnfi][0][3]
confi][1][1]
confi][1][2]
confi][1][3]
confi][2][2]
confi][2][3]
confi][3][3]

for(j =1; j<4 ;

mat[i]; //allows for the different material |ayers

Cp][0]*pow(m 4) + (2*pow(n¥n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*pown, 4);
pow(m*n, 2)*(C[p][0] + Cp][3] - 4*Cp][6]) + C(p][1]*(powmm4) + pow(n, 4));
Cpl[2]*mm+ C[p][4]*n*n;
mn*(Clp][O] *mm - C([p][3]*n*n - (Cp][1] + 2*Cp][6])*(mm- n*n));
A p][0] *pow(n, 4) + (2*pow(n¥n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*powmm 4);
Cpl[2]*n*n + C[p][4] *ntm
g[fn]‘fg][p][o]*n*n - dpll3]*mm+ (C[p][1] + 2*C[p][6])*(m'm- n*n));

p ;
mn*(Clpl[2] - C[p][4]);
(Cpl[0] + Cp][3] - 2*Cp][1])*pow(n*n,2) + Cp][6]*pow((n'm- n*n),2);

j )

for(k = 0; k<j ; k++)
cbhnfi][jl[k] = cbmi][K][j]; [//stacks symretric terns

et[i][0] = (E[p]l[7]*mm+ E[p][8]*n*n)*dT; /1X thermal strain
et[i][1] = (E[p][7]*n*n + E[p][8]*ntm *dT; /I THETA thermal strain
et[i][2] = E[p][9]*dT; /IR thermal strain

et[i][3] = 2*mn*(E[p][7] - E[p][8])*dT; /1 X- THETA thermal strain

}

voi d stress(double cbn{][4][4],double et[][4],double L[], double bc[][3],double sc[][4][5])

{

//stress coefficients

short i,j;
doubl e zz=0;
int a;
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- cbhnfi][1][1]);

for(i=0; i<K ; i++)
{
a=0,
L[i] = sqrt(fabs(cbri][1][2] / cbnri]l[2][2]));
/1 cout <<"\nL["<<i<<"]J\t"<<L[i];
if(L[i]==1.0)
a =1;
if(L[i]==2.0)
a=2;
swi tch(a)
{
case 1: //lsotropic and Transversely Isotropic Condition cbn{i][1][1] = cbni][2]]2]
{
be[i][0] = (cbn{i][O][1] - cbn{i][O][2])/(2*cbnfi][2][2]);
/1 Gamma
be[i][1] = (cbn{i][1][3] - 2*cbn{i][2][3])/(4*cbn{i][2][2]
/1 Orega
be[i][2] = 1/(2*cbnli][2][2]);
/] Psi

zz=(cbn{i][0][2]-cbn{i][O][1])*et[i][O]+(cbn{i][1][2]-cbn{i][1][1])*et[i][1];
zz += (cbnli][2][2]-cbnfi][1][2])*et[i][2]+(cbn{i][2][3]-cbnfi][1][3])*et[i][3];

be[i][2] *= zz;

for(j = 0; j<4 ; j+4+)

{

sc[i][j][4] = - et[i][O]*cbnli][O][]
sc[i][j]1[4] -= et[i][2]*cbnli][2][]]
/1j=0: SI GVAX coefficients :1last
/1j=1. SIGVAtheta coefficients :Iast
[1]j=2: S| GVAr coefficients :1last
/1]j=3: TAUx-theta coefficients :Iast
/1 1 ast
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+ et[i
i ndx=0-
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}
br eak;
case 2:
{
/1 Ps
}
br eak;
defaul t:
/| Gamma
/1 Orega
[/ Psi

be[i][0]
be[i][1]
be[i][2]

(cbnfi][0][1]
(cbnfi][1][3]

- cbn{i][0]
- 2*cbn{i]]

// Causes the b[i][1l] termto blowp in default equations

[2])/(3*cbn{i][2][2]);
2][3])/(16*cbnfi][2][2]);

1/ (3*cbn{i][2][2]);

/1 Ganma
/1 Orega

zz=(cbn{i][0][2]-cbn{i][O][1])*et[i][O]+(cbnli][1][2]-cbn{i][1][1])*et[i][1];
zz += (cbnli][2][2]-cbnli][1][2])*et[i][2]+(cbni][2][3]-cbnfi][1][3])*et[i][3];

be[i][2] *= zz;

for(j = 0;

{

sc[i][j][4] = - et[i][O]*cbn{i][O][j] - et[i][1]* Cb”{l][lﬂ

j<4 ; j++)

sc[i][j][4] -= et[i][2]*cbn{i][2][j] + et[i][3]*cbnli][]
[1j=0: SI GVAX
/1j=1. SI GVAt het a
[1]j=2: S| GVAr
/1]j=3: TAUx-theta

/1

be[i][0]
be[i][1]

be[i][2]

(cbnfi][0][1]
(cbnfi][1][3]

coefficients :last indx=0-> coeff of

/1 The General Solution for the Conposite Cylinder nodel
- cbnfi][0][2]) / (cbr{i][2][2] - cbn{i][1][1]);
- 2 * cbhnfi][2][3]) / (4 * cbn{i][2][2]

1/ (cbnfi][2][2] - cbn{i][1][1]);
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coefficients :last indx=1-> coeff of (GD R)
coefficients :last indx=2->
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:last i ndx=4-> const ant
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zz=(cbn{i][0][2]-cbn{i][O][1])*et[i][O]+(cbn{i][1][2]-cbn{i][1][1])*et[i][1];
zz += (cbnli][2][2]-cbnli][1][2])*et[i][2]+(cbni][2][3]-cbnfi][1][3])*et[i][3];

bcl[i][2] *= zz;

for(j =0; j<4 j++)
{
SCLITITLO) = cbul 1] [O1[j] + be[1][0]*(conti] (1] [}] + cbui][2](}]):
sc[i][j][1] = cbnfi][j][3] + be[i][1]*(cbn{i][1][j] + 2*cbn{i][2][j]);
sc[iT[j]1[2] = cbn{i][1][j] + L[i] * cbn{i][2][j];
sc[i][j][3] = cbnfi][1][j] - L[i] * cbnli][2][]];
sc[i][j][4] = be[i][2]*(cbnli][1][]] +Cbn1I][2][J])-_et[I][0] chnli][O][j];
scli][jl1[4] += -et[i][1]*cbnfi][1][j] - et[i][2]*cbnli][2][]]
et[i][3]*cbnfi][j][3];
/1]=0: S| GVAX coefficients :last indx=0-> coeff of Eo
/1j=1. SIGVAtheta coefficients :last indx=1-> coeff of (Go R)
[1]j=2: S| GVAr coefficients :last indx=2-> coeff of Al RM(L-1)
/1]j=3: TAUx-theta coefficients :last indx=3-> coeff of A2 R*(-L-1)
/1 :last indx=4-> const ant
}
}
}
}
}
voi d mat _stack(double cbn[][4][4],double sc[][4][5], double L[], double bc[][3], double r[], double *Ioad,

doubl e A[][KK], double B[])
{

[/ subroutine for stacking the conponents of the |inear system Ax=B

short i, j, ic;
double ro,ri,r2, ro2, r3, ro3, r4, ro4, blt2, b2t2;
int a;
for(i = 0; i<KK ; i++)
B[i] = 0.0;
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for(j =0; j
} Alil[i] = 0.

<KK ; j++)

0;

/I next two | oops stack elenents associated with the integrated B.C

b1t 2
b2t 2

0;
0,

for(i = 0; i<K ;i++)

L[i] = sqrt(fabs(cbnfi][1][1] / cbnli][2][2]));

{

a=0;

//set up ternms for switching for the degenerate cases
if(L[i]==1.0)

a = 1,

i f(L[i]==2.0)

a=2;

/ldefine radii terms for ease of programm ng and debuggi ng

r
ro
r2
ro2
ro3

r3 = pow(rli

riil;
rii+1];
pow(r[i

ro4 = powm(r[i+1],4);

r4 = pow(r[i

swi tch(a)

{

case 1:

{

1.2);

pow(r[i+1],2);
pow(r[i+1],3);

1.3);
1.4);

AL0] [ 0]
AL 0] [ 0]
AL0] [ 0]

ALO][1]

+= 0.5*(ro2-r2)*(cbn{i][0][0]);
+= 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*bc[i][0]*cbn{i][O][1];
+= 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*bc[i][0]*cbn[i][O0][2];

+= (cbn{iJ[O][3]+bc[i][1]*(cbnfi][O][1]+2*cbn{i][0][2]))*(ro3-r3)/3.0;
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A[1][0] += (cbn{i][0][3]*(ro3-r3))/3.0
A[1][0] += (((1.0/3.0)-1og(ri))*cbn{i][1][3]+((-2.0/3.0)-
log(ri))*cbn{i][2][3])*bc[i][0]*r3/3.0
A[1][0] += ((log(ro)-
(1.0/3.0))*cbn{i][1][3]+((2.0/3.0)+ og(ro))*cbm{i][2][3])*bc[i][0]*ro3/3.0
A[1][1] += (cbnfi][3][3]+bc[i][1]*(cbnfi][1][3]+2*cbn{i][2][3]))*(ro4-r4)/4.0

b1t2 += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*cbn{i][0][1]*bc[i][2];
b1t2 += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*cbn{i][0][2]*bc[i][2];
bit2 += (sc[i][O0][4]*( ro2 - r2)) | 2.0;

b2t2 += ((3.0*l og(ro)-
1.0)*cbn{i][1]1[3]1+(3.0*log(ro)+2.0)*cbn{i][2][3])*ro3*bc[i][2]/9.0;
b2t2 -= ((3.0*log(ri)-
1.0)*cbn{i][1]1[3]+(3.0*log(ri)+2.0)*cbn{i][2][3])*r3*bc[i][2]/9.0;
b2t2 += (sc[i][3][4]*( ro3 - r3)) [/ 3.0;
}

br eak;
case 2:
{
A[0][0O] += (cbnfi][O][O]+bc[i][O]*(cbn{i][O][1]+cbn{i][0][2]))*(ro2-r2)/2.0;
A[O][1] += (((4.0*log(ro)-7.0/3.0)*ro3-(4.0*log(ri)-
7.0/3.0)*r3)*cbn{i][0][1] *bc[i][1])/3.0;
A[O][1] += (((4.0*1og(ro)-1.0/3.0)*ro3-(4.0*log(ri)-
1.0/3.0)*r3)*2*cbn{i][0][2] *bc[i][1])/3.0;
A[O][1] += (ro3-r3)*cbnfi][0][3]/3.0;

A[1][0] += (cbn[i][O][3]+bc[i][O]*(cbmi][2][3]+cbn]i][2][3]))*(ro3-r3)/3.0;
Al 1][1] += (rod4-r4)*cbnm{i][3][3]/4.0+((log(ro)-

0.5)*cbn{i][1][3]+2*l og(ro)*cbn{i][2][3])*bc[i][1]*ro4,;
A[1][1] -= ((0.5-log(ri))*cbnli][1][3]-2*log(ri)*cbn{i][2][3])*bc[i][1]*r4;

blt2 += (cbni

10011 1] +cbn{i]1[0][2])*(ro2-r2)*(bc[i][2])/2.0;
blt2 += (sc[i][0][4]*

11
[4]1*( ro2 - r2)) [ 2.0;
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ternms

b2t2 += (cbn{i][1][3]+cbmi][2][3])*(ro3-r3)*bc[i][2]/3.0
b2t2 += (sc[i][3][4]*( ro3 - r3)) / 3.0;

}

br eak;

defaul t:

{//A0][i] = Fx Conditions A[1][i] = Tx Conditions
A[0][0O] += (sc[i][O][O]*( ro2 - r2)) [ 2.0;
A[1]1[0] += (sc[i][3][O]*( ro3 - r3)) / 3.0;
A[0][1] += (sc[i]l[O][2]*( ro3 - r3)) [/ 3.0;
A[11[1] += (sc[i][3][1]*( rod4 - rd4)) | 4.0;

bit2 += (sc[i][O0][4]*( ro2 - r2)) | 2.0;

b2t2 += (sc[i][3][4]*( ro3 - r3)) [/ 3.0;
}
br eak;
}
}
ic = 0;
for(i = 2; i<(KK-1) ; i += 2)
{ i C++;

/lset up ternms for switching for the degenerate cases
a=0;
if(L[ic-1]==1.0)
a = 1;
if(L[ic-1]==2.0)
a = 2;

/l/define radii ternms for ease of programm ng and debuggi ng

ri =rf[ic-1];
ro=rfic];
r2 = powrf[ic-1], 2);

ro2 = pow(r[icl,2);
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ro3 = pow(rfic],3);

c-1],3);

c-11,4);

A[O][i] = (cbnfic-1][0][1]+cbn{ic-1][0][2])*(r2-ro02)/2.0;
A[O][i+1] = (log(ro)-log(ri))*(cbnic-1][0][2]-cbnfic-1][0]1[2]);//check 2*cbniic-

3.0;

A[1][i] = (ro3-r3)*(cbn{ic-1][1][3]+cbn{ic-1][2][3])/
1);

A[1][i+1] = (ro-ri)*(cbn{ic-1][1][3]-cbnfic-1][2][3

A[O][i] = (cbnfic-1][0][1]+2*cbn{ic-1][0]]
A[O][i+1] = (2.0*cbn{i][0][2]-cbn{i][0][1]
A[1][i] = (cbnfic-1][1][3]+2*cbnfic-1][2][
A[1][i+1] = (cbnfic-1][1][3]-2*cbn{ic-1][2

*(ro3-r3)/3.0;
(1.0/ro) - (1.0/ri));
*(ro4-r4)/ 4,

]

2
)
3
103])*(log(ro)-log(ri));

1)
*(
1)
[3

A[O][i] = sc[ic-1][0][2]*(powWroO, 21+L[ic-1]) - pow(ri, 21+L[ic-1])

) | (1+L[ic-1]);
A[O][i+1] = sc[ic-1][O0][3]*(powmro, 1-L[ic-1]) - pow(ri, 21-L[ic-1]) ) /

(21-L[ic-
Al 1][i] = sc[ic-1][3][2]*(pow(ro, 2+L[ic-1]) - pow(ri, 2+L[ic-1]) ) [/ (2+L[ic-1]);
Al 1][i+1] = sc[ic-1][3][3]*(powro, 2-L[ic-1]) - pow(ri, 2-L[ic-1]) ) / (2-L[ic-

r3 = pow(rli
ro4 = pow(rlic],4);
r4a = pow(r[i
switch(a)
{
case 1:
{
1][0][2]
}
br eak;
case 2.
{
}
br eak;
defaul t:
{
1]);
1]);
}
br eak;
}

}
/1 Appl i ed Loads
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B[ 0]
B[ 1]

/I next | oop
ic =0
for(i
{

1J[12][2]*(lo

=(cbnfic][0]

1J12][2]

(load[2] / (2 * Pi)) - bit2;
(load[3] / (2 * Pi)) - b2t2;

stacks the el enents associated with the interface conditions wi]J(r) = wWi+1](r) and sigma-r

= 2; i<(KK-3) ; i += 2)

/lset up ternms for switching for the degenerate cases

a=0;

i f(L[ic]==1.0)
a = 1;

i f(L[ic]==2.0)
a=2;

i c++;

switch(a)

{

case 1:

/1 The sigma r conditions
A[i]1[0] = (cbnfic-1][0][2] +bc[ic-1][0]*(cbnm{ic-1][1][2]*log(r[ic])+cbnfic-
g(rlicl)+1)));
. ALT]LO] - . . .
[2] +bc[ic][O]*(cbn{ic][1][2]*log(r[ic])+cbnfic][2][2]*(log(r[ic])+1)));
Ali1[1] = ((cbnmic-11[1][2]+2*cbnic-1]1[2][2])*bc[ic-1][1]+cbnic-1][2][3])*r[ic];
Ali][1] -=((cbrfic][1][2]+2*cbnlic][2][2])*bc[ic][1]+cbn{ic][2][3])*r[ic];

Ali][i] =(cbn{ic-1][1][2]+cbnr{ic-1][2][2]) ;
ALi][i+1] = (cbm{ic-1][1][2]-cbnfic-1][2][2])*pow(r[ic],-2);//check2*cbniic-

AT +2]
ALi][i +3]

-(cbnfic][1][2] +cbnfic][2][2]);
-(cbnfic][1]1[2]-cbmic][2][2])*powmr[ic],-2);//check2*cbn]ic-1][2]]2]

/1 The w(r) conditions
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Ali +1][0] =(bcl[ic-1][0]-bc[ic][0])*r[ic]*log(r[ic]);
Ali +1][1] =(bc[ic-1][1]-bec[ic][1])*r[ic]*r[ic];

Ali+1]1[i] =r[ic];

Ali+1][i+1] = 1.0/r[ic];
Ali +1][i+2] = -r[ic];
Ali+1][1+3] = -1.0/r[ic];

// The thermal contributions

Bl[i] = (cbnfic][1][2]*log(r[ic])+cbnfic][2][2]*(log(r[ic])+1))*bc[ic][2];

Bl[i] -= (cbnmfic-1][1][2]*log(r[ic])+cbnmfic-1][2][2]*(log(r[ic])+1))*bc[ic-1][2];
B[i] += sc[ic][2][4] - sc[ic-1][2][4];

B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]*log(r[ic]);

br eak;
case 2.

/1 The sigma r conditions

A[i][0] = (cbnfic-1][0][2]+bc[ic-1][0]*(cbmic-1][1][2]+cbnmfic-1][2][2]));

AL ][0] -=(cbnfic][O][2]+bc[ic][O]*(cbniic][1][2]+cbniic][2][2]));

Ali][1] = (cbm{ic-1][2][3]+bc[ic-1][2]*(cbnic-1][1][2]*(4.0*log(r[ic])-
1)+2.0*cbn{ic-1][2][2]*(4.0*log(r[ic])+1.0)))*r[ic];

A[i][1] -=(cbm{ic][2][3]+bc[ic]l[1]*(cbmic][1][2]*(4.0*log(r[ic])-
1)+2.0*cbnm{ic][2][2]*(4.0*log(r[ic])+1.0)))*r[ic];

ALTT[i] =(cbnfic-1][1][2] +2*cbnfic-1][2][2])*r[ic] ;

Alil[i+1] = (cbnfic-1][1][2]-2*cbn{ic-1][2][2])*pow(r[ic],-3);
Ali][i+2] = -(cbn{ic][1][2]+2*cbnfic][2][2])*r[ic];
Ali][i+3] = -(cbnfic][1][2]-2*cbnr{ic][2][2])*pow(r[ic],-3);

/1 The w(r) conditions
A[i +1]1[0] =(bc[ic-1][0]-bc[ic][O])*r[ic]*log(r[ic]);
A[i +1]1[1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic];

Ali+1][i] =rlic];
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A[i+1][i+1] = 1.0/r[ic];
AT +1][1+2] = -r[ic];
Ali+1][1+3] = -1.0/r[ic];

// The thermal contributions

B[i] = (cbn{ic][1][2] + cbnfic][2][2])*bc[ic][2]-(cbmic-1][1][2] + chbniic-
1][2][2])*bc[ic-1][2];

Bli] += sc[ic][2][4] - sc[ic-1][2][4];

B[i+1] = ( bec[ic][2] - be[ic-1][2] ) * r[ic];

}
br eak;
defaul t:

{
A[i][0] = sc[ic-1][2][0] - sc[ic][2][0]; /leo terns
Ali]1[1] = ( sc[ic-2][2][1] - sc[ic]l[2][2] ) * r[ic]; [//go terms
Ali + 1][0] = ( be[ic-1][0] - be[ic][O] ) * r[ic];
Ali + 1][1] = ( be[ic-1][1] - be[ic][1] ) * r[ic]*r[ic];
Ali][i] = scl[ic-1][2][2] * pow(r[ic], (L[ic-1] - 1) );
Ali][i+1] = sc[ic-1][2][3] * pow(r[ic], (-L[ic-1] - 1) );
Ali][1+2] = -sc[ic][2][2] * pow(r[ic], (L[ic] - 1) );
AlP][1+3] = -sc[ic][2][3] * powm(r[ic], (-L[ic] - 1) );
Ali+1][i] = powmr[ic], L[ic-1] );
Ali+1][i+1] = powm(r[ic], -L[ic-1] );
Ali+1][i+2] = -powmr[ic], L[ic] );
AT +1][1+3] = -pow(r[ic], -L[ic] );
Bli] = sc[ic][2][4] - sc[ic-1][2][4];
Bl[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic];

}

br eak;

175



}

/I next lines stack the matrix el enents associated with the pressure B.C

/1 The inner surface pressure conditions

a=0;
/lset up ternms for switching for the degenerate cases
i f(L[O]==1.0)

a = 1;
i f(L[0]==2.0)

a=2,
switch(a)
{
case 1:

{

A[KK-2][0] =

(cbnf 0] [0] [2] +bc[ 0] [O] *(cbn{ O] [1] [2]*1 og(r[0O])+cbn{ 0] [2][2]*(log(r[0])+1)));

A[KK-2][1] = ((cbn{O][1][2] +2*cbn{O][2][2])*bc[O][1] +cbn{O][2][3])*r[O];
A[KK-2][2] = (cbn{O][1][2]+cbn{0][2][2]);
AL KK-2][3] = (cbnfO][1][2]-cbnfO][2][2])*pow(r[O],-2);
B[KK-2] = -load[1] - (cbnfO][1][2]*log(r[O])+cbn{O][2][2]*(log(r[0])+1))*bc[O][2] -
sc[0][2][4]; }
br eak;
case 2:
{
A[KK-2][0] = (cbn{0][O][2]+bc[O][O0]*(cbn{O][1][2]+cbn{O][2][2]));
A[KK-2][1] = (cbnfO][1][2]*(4*I 0og(r[O])-
1) +2*cbn{ 0] [2][2] *(4*1 0g(r[0O])+1))*bc[O][1]*r[O];
A[KK-2][2] = (cbn{O][1][2]+2*cbn{O0][2][2])*r[O];
A[KK-2][3] = (cbnf0][1][2]-2*cbn{0][2][2])*pow(r[O],-3);
B[KK-2] = -load[1] - (cbnfO][1][2]+cbn{0][2][2])*bc[O][2] - sc[O][2][4];
}
br eak;
defaul t:
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AL KK-2][0] = sc[O0][2][O];
A[KK-2][1] = sc[O][2][1] * r[O];
A[KK-2][2] = sc[O][2][2] * pow(r[O], (L[O] - 1) );
AL KK-2][3] = sc[O][2][3] * pow(r[O], (-L[O] - 1) );
B[KK-2] = -load[1] - sc[0][2][4];

}

break;

/1 The outer surface pressure conditions
a=0;
//set up terns for switching for the degenerate cases
i f(L[K-1]==1.0)

a = 1,
i f(L[K-1]==2.0)
a=2;
switch(a)
{
case 1:
{
A[KK-2]1[0] = (cbn{ K-1][0][2] +bc[K-1][0]*(cbn K-1]1[1][2]*I og(r[K]) +cbn| K-
11[2]1[2]*(1og(r[K])+1)));
AL KK-2][1] = ((cbnK-1][1][2] +2*cbn{ K-1][2][2])*bc[K-1][1] +cbn{ K-1][2][3])*r[K];
A[KK-2][2] = (cbn{K-1][1][2] +cbn{K-1][2][2]);
A[KK-2][3] = (cbn{K-1][1][2]-cbn{ K-1][2][2])*powm(r[K],-2);
B[KK-2] = -load[0] - (cbnm K-1][1][2]*log(r[K])+cbm K-1]1[2][2]*(log(r[K])+1))*bc[K-
1]1[2]- SC[K-1][2][;1];
br eak;
case 2:
{
A[KK-2][0] = (cbn{K-1][0][2] +bc[K-1][O] *(cbn{ K-1][1][2]+cbn{K-1][2][2]));
AlKK-2111] = (cbnm K-1][1][2]*(4*l og(r[K])-1)+2*cbn] K-
11[2][2]*(4*1og(r[K])+1))*bc[K-1][1] *r[K];
A[KK-2][2] = (cbn{K-1][1][2]+2*cbn{ K-1][2][2])*r[K];
A[KK-2][3] = (cbn{K-1][1][2]-2*cbn{K-1][2][2])*powm(r[K],-3);
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B[KK-2] = -10ad[0] - (cbn{K-1][1][2]+cbr{K-1][2][2])*bc[K-1][2]- sc[K-1][2][4]:

}
br eak;
defaul t:

{
A[KK-1][0] = sc[K-1][2][0];
AlKK-11[1] = sc[K-1][2][1] * r[K];
Al KK-1][KK-2] = sc[K-1][2][2] * powm(r[K], ( L[K-1] - 1) );
Al KK-1][KK-1] = sc[K-1][2][3] * powm(r[K], ( -L[K-1] - 1) );
B[KK-1] = -load[0] - sc[K-1][2][4];

}

br eak;

}
}
voi d out put (double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition)

{
doubl e ex=0.0, eo0=0.0, gx0=0.0, w=0.0, Rc;
int a, i;

for (int ab=0; ab<3; ab++)

{

Cal c_Strai n[ ab] =0. 0;
}
//1nner or Quter Surface Strains?
if(strainposition =="i"'||strainposition=="1")
{

i =0;

Rc=r[0];
}
else /[//Quter Surface is the Default condition
{

Re=r[K];
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i =K-1;
}

a=0;

if(L[i]==1.0)
a = 1,

if(L[i]==2.0)
a=2;

switch (a)

{

case 1: /l1sotropic or Transversely |sotropic

{
+ be[i][2]*1 og(Rc);

w = bc[i][0]*Rc*l og(Rc)*x[0] + bc[i][1]*x[1]*Rc*Rc + x[2*(i)+2]*Rc + x[2*(i)+3]/Rc

ex = x[0]; /1 Ex: Epsilon x
eo = w Rc; /1 Eo: Epsilon theta
gxo = X[ 1] *Rc; /1 Gxo: Gamma x-theta
}
br eak;
case 2: [Ibc[i][1l] =0
{

w = bc[i][0]*Rc*x[0] + bc[i][1l]*x[1]*powmM Rc, 2)*(4*log(Rc)-1) + x[2*(i)+2]*pow Rc,
LEiT) + x[2*(i)+3]*powm(Re, -L[i]) + bc[i][2]*Rc;

ex = x[0]; /1 Ex: Epsilon x
eo = w Rc; /1 Eo: Epsilon theta
gxo = X[ 1] *Rc; /1 &xo: Gamma x-theta
}
br eak;
defaul t: /I General Case
{

w = bc[i][0]*Rc*x[0] + bc[i][1l]*X[1]*Rc*Rc + x[2*(i)+2]*powm(Rc, L[i]) +
x[2*(i)+3] *powm Rc, -L[i]) + bcl[i][2]*Re;

ex = x[0]; /1 Ex: Epsilon x
eo = w Rc; /1 Eo: Epsilon theta
gxo = X[ 1] *Rc; /1 &xo: Gamma x-theta
}
br eak;
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Cal c_Strain[ 0]
Cal c_Strain[ 1]
Cal c_Strain[ 2]

ex; //Epsilon X
eo; //Epsilon Y
gxo; //Epsilon XY

}
9.4 Elastic Solution.h

/1 Elastic_Solution.h

#i ncl ude "l nversion. h"
#i nclude "matri x. h"

#i ncl ude <i ostream h>
#i ncl ude <fstream h>

/*******************************/

/*routines internal to CCM/

/*******************************/
void Elastic_Solution(double C[][7], double E[][10], int matnum int mat[], double r[], double theta[],

doubl e *l oad, double Calc_Strain[], char strainposition);
voi d Cbar(double C[][7], double theta[], double E[][10], int matnum int mat[], double cbn{][4][4], double

et[][4]);
voi d stress(double cbn{][4][4], double et[][4], double L[], double bc[][3], double sc[][4][5]);
void mat _stack(double cbn[][4][4], double sc[][4][5], double L[], double bc[][3], double r[], double *|oad,

double A[][KK], double B[]);
voi d out put (double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition);

9.5 Data Input.cpp

// Data_l nput. cpp
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#i ncl ude "Data_Il nput.h"

ifstreaminputfile, |oadfile,expstrain; //Data file containing input data (material properties,
geonetry, | oads)
of stream tracki ng; //Data files for data output and internediate val ues

int Input(double E[][10], double C[][7], int mat[], double radii[], double theta[], double Loads[][4],
doubl e Exp_Strain[][3], char position[])

{

i nputfile.open("lCEinput.dat"); /1 1Input.dat contains initial guess E's, and geonetry

| oadfil e. open(" | CELOADS. dat") ; /1 | oads.dat contains all |oading conditions (nust alter
num oads val ue in Inversion.h)

expstrain.open("ICEstrain.dat");// expstrain.dat contains all the measured strain val ues (ex, ey,
gxy) for each load condition (num oad # of sets)

tracki ng. open("tracki ng.dat"); /1 Opening Data files for output and tracking of val ues

doubl e tenp;
char dat atype
int i,j,mtval, matnum

/1 First input value nmust be the nunmber of material |ayers
i nputfile>>mat num

for (mat val =0; mat val <mat num mat val ++)

{

i nputfil e>>dat at ype;

[11f the first value in the input fileis 'C then reads in Cij values
if((datatype == "C )| | (datatype=="¢c'))
{

for(i=0;i<7;i++)

i nputfile>Cmatval ][i];
for(i=7;i<10;i ++)

inputfile>>E[matval][i]; //reads in the thermal coefficients
Cto E(& Cmatval][0]), & E[matval][0]));
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[11f "E' - Reads in Elastic Mduli (E1,E2, E3, G12, nul2, nul3, nu23, al, a2, a3) I N ORDER!!!

if((datatype == "E' )| | (datatype=="e"'))
{

for(i=0; i<10; i++)
inputfile >> E[matval ][i];
Cwvatri x(E, C, mat num ; /1 Cal culates the Cij val ues

}

//Reads in all surface radi
for(j=0; j<K+l; j++)
inputfile >> radii[j];

// Reads in each ply angle (degrees) and converts to radi ans
for(i=0; i<K;, i++)

{
inputfile >> tenp;
theta[i] = tenp * (Pi/180.0);
inputfile >> mat[i];
}
/I Reads in all |oad and experinmental strain val ues
for (i=0; i<num oads; i ++) [/ V11T LOAD CONDI TI ONS!!I'!
CONDI TI ONS!'!
{
expstrai n>>position[i]; /1 position[i] =i or o for inner or
strains
for(j=0; j<4; j++) /! Loads[0] = External Pressure
exp_strain[][0] = e-x
| oadfile >> Loads[i][]j]; /1 Loads[1] = Internal Pressure
exp_strain[][1l] = e-y
for(int k=0; k<3; k++) /1l Loads[2] = Axial Load
exp_strain[][2] = gamma-xy
expstrain>> Exp_Strain[i][Kk]; // Loads[3] = Torsional Load
}
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/I Wites al

| oadfile.close();

expstrain.close();

tracking. cl ose();

cout << endl

return mat nun

voi d Qut put _data(double E[][10],int

doubl e Exp_Strain[][3],

{

tracki ng << "Tube properties entered:"

//Prints Elastic Mduli

for(int

{
tracki
t racki
t racki
t racki
t racki
t racki
t racki
t racki
tracki
tracki
t racki

}

tracki ng <<"\n\nTube geonetry entered:\n";

for(i=0;
{

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng

i <K;

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

i ++)

char position[],

mat num i nt
double (]

data and stiffness values to the tracking file
Qut put _dat a(E, mat num mat,radii,theta, Loads,
i nputfile.close();

Exp_Strain,

<< endl

(E1, E2, E3, G12, nul2, nul3, nu23, al, a2, a3)

i =0; i <mat nunyi ++)

"\'nMaterial #"<<i+1;
"\nE1l =\t"<<E[i][0];
"\nE2 =\t"<<E[i][1];
"\nE3 =\t"<<E[i][2];

"\nGl2 =\t"<<E[i][3];
"\nnul2 =\t"<<E[i][4];
"\ nnul3d =\t"<<E[i][5];
"\'nnu23 =\t"<<E[i][6];
"\ nal pha-1
"\ nal pha- 2
"\ nal pha-3

=\tU<<E[i][7];
=\t"<<E[i][8];
=\t "<<E[i][ 9] <<endl <<end]I
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//Close the data files

doubl e thetal],

doubl e Loads[][4],



tracking << "Ri and Ro of ply #" << i+l<< "\t"<<radii[i]<<"\t\t"<<radii[i+1]<<"\t\tAngle"<<
"\t"<< theta[i]*(180/Pi)<<"\tMaterial #\ t"<<mat[i]+1l<<endl
}
for(int ii=0;ii<num oads;ii++)
{
/1 Printing out the Load conditions to the tracking file
tracki ng << "\ nLoad Set #"<< ii +1<<endl
tracki ng << "\ nLoadi ng Conditions and Measured Strains:" << endl
tracking << "Axial Load = \t" << Loads[ii][2] << endl
tracking << "Torque = \t" << Loads[ii][3] << endl
tracking << "Internal Pressure = \t" << Loads[ii][1] << endl
tracking << "External Pressure = \t" << Loads[ii][0] << endl

[/ Printing out the Measured Strain values for each applied |oad condition
tracking << "\ nSurface = ";
if (position[ii]=="i"||position[ii]=="1")
tracking << "\tlnner Surface Strains";
else if (position[ii]l]=="0"]||position[ii]=="0)
tracking << "\tCQuter Surface Strains";
el se
tracking << "\tINVALID Response!";
tracking << "\nAxial Strain (ex) =\t" << Exp_Strain[ii][0] << endl
tracking << "Hoop Strain (ey) =\t" << Exp_Strain[ii][1l] << endl
tracking << "Shear Strain (gxy) =\t" << Exp_Strain[ii][2] << endl
}
tracking << "\n\nlnitial Cij Values:
for(i=0;i<mtnuni++)

{

<< endl

tracking << "\nMaterial #"<<i+1

tracking << "\nCl1l = \t"<<Ci][0];
tracking << "\nCl2 = \t"<<(i][1];
tracking << "\nCl3 = \t"<<Ci][2];
tracking << "\nC22 = \t"<<Ci][3];
tracking << "\nC23 = \t"<<(i][4];
tracking << "\nC33 = \t"<<(i][5];

tracking << "\ nC66 \t"<<(C[i]][6] <<endl <<endl
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tracki ng << endl

}
}
/1l Calcualtes the C Matrix Values fromthe i nput data
I e R R

void Cvatrix(double E[][10], double C[][7], int matnum //c matri x subroutine
{

doubl e v;

for(int i=0;i<matnumi ++)

{
. v = (1- E[i][4] *(E[i][4] * E[i][1] / E[i][0] + 2 * E[i][6] * E[i][5] * E[i][2] / E[i][0]) -
E[i][5] * E[i][5] * E[i][2] / E[i][O] - E[i][6] * E[i][6] * E[i][2] / E[i][1]);
cilfo] = (1 - Eil[6] * E[i][6] * E[i][2] / E[i][1]) * E[i][O] / v; Il cll
Cil[1] = (E[i][4] + E[i][5] * E[i][6] * E[i][2] / E[i][1]) * E[i][1] / v; Il cl12
Cill2] = (E[i][5] + E[i][4] * E[i][6]) * E[i][2] / v; Il c13
ail[3] = (1 - E[i][5] * E[i][5] * E[i][2] / E[i][O]) * E[i][1] / v; Il c22
cdil[4] = (E[i][6] + E[i][4] * E[i][5] * E[i][1] / E[i][O]) * E[i][2] / v; Il c23
Cli][5] = (1 - E[i][4] * E[i][4] * E[i][1] / E[i][0O]) * E[i]l[2] [/ v; /'l ¢33
Cc[i][6] = E[i][3]; /] c66
v=0. 0;

}

9.6 Data Input.h
/1 Data Input.h

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>
#i ncl ude "l nversion. h"
#i ncl ude <fstream h>
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int Input(double E[][10], double C[][7], int mat[], double radii[], double theta[], double Loads[][4],
doubl e Exp_Strain[][3], char position[]);

voi d Qutput_data(double E[][10], int matnum int mat[], double radii[], double theta[], double Loads[][4],
doubl e Exp_Strain[][3], char position[], double C[][7]);

void Cwvatrix(double E[][10], double C[][7], int matval); //c matrix subroutine

9.7 Matrix.cpp

#i ncl ude "Matri x. h"

#i ncl ude <mat h. h>

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
[/ Matrix.cpp

voi d SysScal e(doubl e *A double *B,int n)

i nt LUDeconposition (double *A int n,int *indx,int d)
voi d LUBackSub (double *A,int n,int *indx, double *B)

| ong Gauss(doubl e *A, doubl e *B, double *X int n)

9.8 Matrix.h

/I Matrix. h

#i ncl ude <mat h. h>
#i ncl ude "l nversion. h"
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The foll owi ng subroutines have been omtted due to copyright considerations. The
appropriate subroutines can be found in Nunmerical Recipes (sections on LU Deconposition
and Backsubstitution).

voi d SysScal e(doubl e *A double *B,int n);

int LUDeconposition (double *A int n,int *indx,int d);
voi d LUBackSub (double *A int n,int *indx, double *B);
| ong Gauss(doubl e *A, doubl e *B, double *X,int n);

9.9 Jacobian.cpp

#i ncl ude <fstream h>
#i ncl ude "jacobi an. h"
#i ncl ude "El astic_Sol ution. h"

/1 Jacobi an. cpp

voi d Jacobi an(doubl e E[][10],double C[][7], int matnum int mat[], double r[], double th[], double
| oad[][4],double Exp_Strain[][3], char position[], double jaco[][NAP])
{

int i,j;

doubl e h=0. 00001

double Ctenmp[5][7];

doubl e PHI m nus[ ND], PHI pl us[ NDJ ;

for (i=0;i <matnunyi ++)
{
for(j=0; j<7; j++)
Cemp[i][i] = C[i][j];
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for(i=0; i<NAP; i++)

{
Ctenp[O][i] = C[O][i]*(1-h);
Phi Sub(E, Ctenp, matnum mat, r, th, |load, Exp_Strain, position, PHImnus);

Ctenp[O][i] = CJO][i]*(1+h);

Phi Sub(E, Ctenp, matnum mat, r, th, |load, Exp_Strain, position, PHI plus);

Ctenp[O][i] = CO0][i];
for(j=0; j<ND; j++)
jaco[j][i] = (PHiplus[j] - PHiminus[j])/(2 * h* CO0][i]);

}

voi d Phi Sub(doubl e E[][10],double C[][7], int matnum int mat[], double r[], double th[], double
| oad[][ 4], double Exp_Strain[][3], char position[], double PH[])

doubl e Calc_Strain[3];

for(int i=0 ; i<num oads ; i++)
{
El astic_Solution(C, E, matnum mat, r, th, &load[i][0]), Calc_Strain, position[i]);
PHI [i*3] = Exp_Strain[i][0] - Calc_Strain[0]; /1 Ex
PHI [i*3+1] = Exp_Strain[i][1] - Calc_Strain[1]; /'l Ey
PHI [i*3+2] = Exp_Strain[i][2] - Calc_Strain[2]; /'l Gxy
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9.10 Jacobhian.h

/1 Jacobi an. h

#include "lInversion.h" //for the parameters NAP, ND, et cE

voi d Jacobi an(doubl e E[][10],double C[][7],int matnum int mat[], double r[],double th[], double
el oad[][4], double Exp_Strain[][3], char position[], double jaco[][NAP]);

voi d Phi Sub(double E[][10],double C[][7], int matnum int mat[], double r[], double th[], double
el oad[][4], doubl e Exp_Strain[][3], char position[], double PH [ND]);

9.11 Input Files

9.11.1 A typical load program
Po Pi  Fx Tx

0 400 0 0
0 0 9900 O
0 0 0 3700

9.11.2 A typical strain file

Surface  ex eq oxq

o] -2.692E-05 0. 000128074 1.26742E- 05
o} 0. 000460103 -0.000128363 -1. 03551E- 05
o} -1. 76911E- 06 -1. 32018E- 06 0. 000419356
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9.11.3 A typical input file

Nunber of different materials

Type of material data (c for Cij, e for Ei)
. 67463e+007 Ei or Cj Values

. 67463e+007

. 40486e+007

. 3941e+006

24

24

24

CTE s

. 979084646
. 990834146
. 002583646
. 014333146
. 026082646
. 037832146
. 049581646
. 061331146
. 073080646 Interfacial radi
. 084830146
. 096579646
. 108329146
. 120078646
. 131828146
. 143577646
. 155327146
.167076646

PRPPRPPRPPRPRPRRPPRPRPRPPRPRPRPPPRPOO00O000O00UINWW®D K
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45
-45
45
-45
45
-45
45
-45
45
-45
45
-45
45
-45
45
-45

eNeololoNoloNeololeololNelNoloNelNoNe]

I ndi vi dua

ply orientations and ply materia
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10 Appendix C. Levenberg-Marquardt Inversion — E;

Here is the source code for the Inversion code using the LevenbergMarquardt compromise to optimize the E values. Included are the
C source codes for all thefiles. Filesincluded:

R/
°e

Inversion.cpp
Inverson.h
Elastic_Solution.cpp
Elastic_Solution.h
Data_Input.cpp
Data Input.h
Matrix.cpp

Matrix.h
Jacobian.cpp
Jacobian.h

X3

S

X3

*

R/
°e

X/
°

X3

*

7 o )
LXK i X4

K/
A X4

10.1 Inversion.cpp

/1 1nversion Program-> |nversion.cpp

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

#i ncl ude "Data_Il nput.h"

#i ncl ude "El astic_Sol ution. h"
#i ncl ude "l nversion.h"

#i ncl ude "jacobi an. h"
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#i ncl ude <tine.h>

voi d main()

{

int count, convergence, i;

int mtnum mat[K], P[7];

doubl e E[5][10], PHI[ND], SSE, B[NAP], Ei[Maxlteration+l1l][7];

doubl e radii[K+1], theta[ K], Loads[num oads][4], Exp_Strain[num oads][3], Calculated_Strain[3];
doubl e SSEm n=1.0, *del, delta, duration, C_Strain[num oads][3];

char position[num oads];

ofstream EiFile;

clock t start, finish;

of stream SSEFi | e;

SSEFi | e. open( " SSE. dat ") ;
Ei Fil e. open("Ei out put.dat");

del ta= 0. 0001;
del =&del t a;

start = cl ock();
// STEP 1. Read in all data

mat num = Input (E, P, mat, radii, theta, Loads, Exp_Strain, position);

/****************************************************************************************/

/] STEP 2. Show initial results

EiFile << "Initial Values:"<<endl
Ei File << endl << "E Val ues: "<< endl

EiFile << "\nEl"<< "\t"<< E[0][0]<<"\t";
EiFile << "\nE2"<< "\t"<< E[0][1] <<"\t":
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EiFile << "\nE3"<< "\t"<< E[0][2]<<"\t";

EiFile << "\nGl2"<< "\t"<< E[O][3] <<"\t";
EiFile << "\nnul2'"<< "\t"<< E[0][4] <<"\t";
EiFile << "\nnul3"<< "\t"<< E[O0][5] <<"\t";
EiFile << "\nnu23"<< "\t"<< E[0][6] <<"\t";

Calc_Increnment(E, P, matnum nmat, radii, theta, Loads, Exp_Strain, position, PH, B, &SSE, del);

cout << endl << "\nlnitial SSE = " <<SSE
cout << endl << "Acceptable Error Value = "<< Acceptable << endl
EiFile << endl << "\nlnitial SSE = " <<SSE

SSEFile <<"Initial SSE for Guess Val ues\t"<<SSE<<endl
SSEFi | e <<"\n0O\t"<< SSE<<"\t"<<*del

/1 STEP 3. Mnimze the error function and return information on the type of solution reached

convergence = Mnimze(E, P, matnum mat, E, radii, theta, Loads, Exp_Strain, position, PH , B
&SSE, &count, SSEFil e, del);
/*
if (convergence==4)
{
*del =0;
convergence = Mnimze(E, C, matnum mat, Cj, radii, theta, Loads, Exp_Strain, position, PH
B, &SSE, &ount, SSEFil e, del);
}
*/

/1 STEP 4. G ve information on convergence conditions

swi t ch(convergence)

{
case 0: cout<<"\nSingular matrix encountered"<<endl
br eak;
case 1: cout<< endl <<"Local m ni mum encount ered"<< endl
br eak;
case 2: cout<< endl <<"Exceded Maxi mum interations"<< endl
br eak;

case 3: cout<< endl <<"SSE sufficiently small"<< endl

194



case 4:

br eak;

br eak;

case 5: cout << endl<<"Did not Converge"<< endl

/1 STEP 5. CQutput fina

br eak;

i f (convergence! =0)

Fi | e<<"\ nSi ngul ar

{
cout <<
cout <<
EiFile
EiFile
EiFile
EiFile
EiFile
EiFile
EiFile
EiFile
EiFile
EiFile
EiFile

}

el se

{ .
E

}

/1 Cal culate the strain response for the solution values and out put

"\ nFi nal SSE Val ue
of

"\ nNumber

val ues

" << SSE << endl

iterations = "<< count +1<< endl|

cout <<endl <<"I nsigni fi cant change to val ues"<< endl

<< "\'nNunber of iterations = \t"<< count+1l<< endl
<< endl << "Final Cj

<< endl <<endl << "Fi na

Val ues: " << endl

<< "\nEl"<< "\t"<< E[0][0] <<"\t";
<< "\nE2"<< "\t"<< E[O][1] <<"\E ",

<< "\ nE3"<< "\t"<< E[O][2] <<"\t "

<< "\ nGl2"<< "\t"<< EO][3] <<"\t "
<< "\ nnul2"<< "\t"<< E[0][4] <<"\t";
<< "\ nnul3"<< "\t"<< E[O0][5]<<"\t";
<< "\ nnu23"<< "\t"<< E[0][6] <<"\t";

<<"\ nFi na

SSE = \t"

<< SSE<< endl| <<endI

Matri x\ n";
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Ei Fil e<<"\nCal cul ated Strains for the Final Values";

Ei File<<"\nLoads\t\t\t\t\t"<<"Measured Strains\t\t\t\t"<<"Cal cul ated Strains\n";

Ei File<<"PolMt"<<"Pi\t"<<"BEx\t"<<"Tx\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t"<
<"\tSurface\n";

for(i=0 ; i<num oads ; i++)

{
El astic_Solution(E, matnum mat, radii, theta, &Loads[i][0]), Calculated Strain, position[i]);

for(int j=0;j<3;j++)

C Strain[i][j]=Cal culated_Strain[j];
for(j=0;j<4;j++)

Ei Fil e<<Loads[i][j]<<"\t";
Ei File<<"\t";
for(j=0;j<3;j++)

Ei Fil e<<Exp_Strain[i][j]<<"\t";
Ei File<<"\t";
for(j=0;j<3;j++)

Ei File<<C Strain[i][j]<<"\t";
Ei Fil e<<"\t"<<position[i]<<endl

}
/] Calculates tinme used to find sol ution
finish = clock();

duration = (double)(finish - start)/CLOCKS PER_SEC,
i f(duration>60.0)

{
dur ati on=dur ati on/ 60. 0;
cout << "\nCalculation Tinme: \t"<<duration<< "\t mnutes."<< endl
EiFile << "\nCalculation Tinme: \t"<<duration<< "\t m nutes."<< endl
}
el se
{

cout << "\nCalculation Tine: \t"<<duration<< "\tseconds."<< endl
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EiFile << "\ nCal cul ation Tinme: \t"<<duration<< "\tseconds."<< endl

}

Ei File<<"\n\nlteration"<<"\tEl"<<"\tE2"<<"\tE3"<<"\tGl2"<<"\tnul2" <<"\t nul3" <<"\t nu23" <<endl
for(i=0;i<count+1;i++)

{

EiFile <<i

EiFile <<"\t"<< Ei[i][0];
EiFile <<"\t"<< Ei[i][1];
EiFile <<"\t"<< Ei[i][2];
EiFile <<"\t"<< Ei[i][3];
EiFile <<"\t"<< Ei[i][4];
EiFile <<"\t"<< E[i][5];
EiFile <<"\t"<< Ei[i][6]<<endl

}

Ei File.close();

/*Cal c_lI ncrement cal culates the error value PH and SSE as well as the increnental step value for Cij
*/
int Calc_Increment(double E[][10], int P[], int matnum int mat[], double radii[], double theta[], double
Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *SunfSquareErr, double
*del)
{

int indx[NAP], i, crash=0;

doubl e J[ ND] [ NAP], JtJ[ NAP] [ NAP];

*SunSquar eErr = 0. 0;
for (i=0;i<NAP;i ++)

{
for(int jj=0; jj<NAP;jj++)
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JtJ[i][ij] = 0.0;
}
for(i=0;i<ND;i++)
PHI[i] = 0.0;
Phi Sub(E, matnum mat, radii,theta, Loads, Exp_Strain, position, PHI);

for(i=0;i<ND;i++)
*Sunsquar eErr += pow(PHI[i], 2); /I Cal cul ate the Sum of Square Errors

Jacobi an(E, P, matnum mat, radii, theta, Loads, Exp_Strain, position, J);

/ICalculate ([J]t[JI])~(-1)[I]t{PHI}

for(i=0;i<NAP;i++) [ [3]t[J]
{
for(int j=0;j<NAP; | ++)
{
for(int ii=0;ii<ND;ii++)
} JUILPLj] += J[ii ][ ]=3[iiT[i];

}
/I Levenber g- Mar quar dt (JtJ+del ta*D)
for(i=0;i<NAP;i ++)
JtI[i][i] *=(1.0 + *del);

for(i=0;i<NAP;i ++) [TTITt{PH }
{
B[i] = 0.0;
for (int j=0;j<ND;j++)
} Bli] -=J[j1[i]1*PHI]];
/1 SysScal e(&(JtJ[0][0]), B, NAP);
crash = LUDeconposition(&JtJ[0][0]), NAP,indx,i);
i f(crash! =0)
{
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cout <<"\nSingular Matrix"<<endl
*SunquareErr = 1.0;

return 1;
}
LUBackSub(&(JtJ[0][0]), NAP, i ndx, B);
return O;
}
I e R T i I

/I Function to minimze error and apply convergence criteria
int Mnimze(double E[][10], int P[], int matnum int mat[], double E[][7], double radii[], double
theta[], double Loads[][4], double Exp_Strain[][3], char position[], double PH [], double B[], double *sse,
int *counter, ofstream SSEFil e, double *del)
{
int crash_big, crash_small, crash_del,i,j,flag, count=0;
doubl e ENew 5][ 10], ENew2[5][10], SSEnew, SSEol d, del _orig, deltabig, deltasmall, nm ninmm
doubl e SSE_del =0. 0, SSE_bi g=0. 0, SSE_snml | =0.0, B _big[7], B_small[7], ratio[7], max=0.0, SSE rati o;
doubl e ENew_bi g[ 5] [ 10], ENew_smal | [ 5] [ 10], SSE_del _ol d=0. 0, SSE_bi g_ol d=0. 0, SSE_smal | _ol d=0. 0;

SSEnew = 1000000;
SSEol d = 1000000;
fl ag=0;

m ni mrum=0. 0001
del _orig = *del

cout<<"\nlteration\t"<<"SSE"<<"\tdelta";

//***********Defi ne the neW E Val ues************
for(i=0;i<matnunti ++)
{
for(j=0;j<10;]j++)

ENew{i][j]=E[i][j];
ENew2[i][j]=E[i][j];
ENew smal | [i J[j]1=E[i]1[j];
ENew _bi g[iJ[j]1=E[i][i];
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}

for(i=0;i<7;i++)

Ei[O][i]=E[O][i];

[[*xx*xx%kxxCheck sol ution near convergencex**x**xx*

Exp_Strai n,

/* i f(*del ==0)
{
crash_del = Calc_lIncrenent(E, C, matnum mat, radii, theta, Loads, Exp_Strain,
B, &SSE del, del);
if (crash_del! =0)
{
cout <<"Singul ar Matrix at solution";
return 1,
}
SSEol d=SSE_del ;
for (i=0;i<7;i++)
{
CNewW O] [i]+=B[i];
}
crash_del = Calc_lncrenent(E, CNew, matnum mat, radii, theta, Loads,
PH , B, &SSE del, del);
}
*/
for (int iteration=1;iteration <Maxlteration+l;iteration++)
{
*counter=iteration;
/1 count +=1;
/1 i f(count==10)//periodically perturb del to make sure it is optim zing
/1 {
/1 *del / =10000;
/1 count =0;
/1 }

[ [ ****xxxxkxxxCq| cul ate error

del t abi g=*del *10;
del tasmal | =*del / 10;
del _orig = *del
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/I Most efficient step size delta*10, 1, 0.1
[[****xxxxxxxxxCgl cul ate three different B values for the different delta val ues*****x***xxxx

crash_del = Calc_Increnent(E, P, matnum mat, radii, theta, Loads, Exp_Strain, position, PHI,
B, &SSE del, del);

crash_big = Calc_Increnent(E, P, matnum mat, radii, theta, Loads, Exp_Strain, position, PH,
B bi g, &SSE big, &deltabig);

crash_small = Calc_lncrenent(E, P, matnum mat, radii, theta, Loads, Exp_Strain, position, PH,

B small, &SSE snall, &deltasnall);

SSEol d=SSE_del ; /lall SSE values are the sane here - same C values input, only the B
val ues change

i f ( SSEol d<=Accept abl e)

{
*sse = SSEol d;
SSEFi | e << endl <<iteration<<"\t"<<SSEol d<<"\t"<<*del ;
cout <<end| <<SSEol d;
return 3;
}
if ((crash_del '= 0)&&(crash_big !=0)&&(crash_small !=0))
{
*sse = 1.0;
return O;
}

for(i=0;i<NAP;i ++)

ENew{ O] [P[i J]=E[O] [P[i]]+B[i];
ratio[i]=B[i];
ENew bi g[O][P[i]]=E[O][P[i]]+B _big[i];
ENew smal | [O][P[i]]1=E[O][P[i]]+B_small[i];
}
crash_del = Calc_lncrenent(ENew, P, matnum nmat, radii, theta, Loads, Exp_Strain, position,

PHI, B, &SSE_del, del);
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crash_big = Calc_lncrenent (ENew big, P, matnum nmat, radii, theta, Loads, Exp_Strain, position,
PHI , B, &SSE big, &deltabig);

crash_small = Cal c_l ncrenent (ENew small, P, matnum mat, radii, theta, Loads, Exp_Strain,
position, PH, B, &SSE small, &deltasmall);

if ((crash_del != 0)&&(crash_big !=0)&&(crash_small !=0))
{

*sse = 1.0;

return O,

}

SSEnew= SSE del ;

i f((SSE_bi g<SSE _del ) &&( SSE_bi g<SSE_smal | ))
{

*del *=10;

SSEnew= SSE_bi g;

for(i=0;i<NAP;i ++)

ENew{ O] [ P[i]]=ENew _big[O][P[i]];
ratio[i]=B _big[i];

}
i f((SSE_snual | <SSE_del ) &&( SSE_snal | <SSE_bi g))

{
*del / =10;
SSEnew= SSE snal | ;
for(i=0;i<NAP;i++)
ENew{ O] [P[i]] =ENew_smal | [O][P[i]];
ratio[i]=B small[i];

}

//1f value is below the threshold | evel
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i f (SSEnew<=Acceptable)//if error is below an acceptable value - quit

{
for(i=0;i<7;i++)
E[O][i] = ENew[ O] [i];
Ei[iteration][i] = ENewW{O][i];
}
*sse = SSEnew;
SSEFi | e <<endl <<iteration<<"\t"<<SSEnew<<"\t"<<*del;
cout <<end| <<SSEnew,
return 3;
}

[[FxxFxxkxx%k]f fhe revision reduces SSE - take stepr**x**x*x*xx
i f ( SSEnew<=SSEol d)
{
max=0. 0;
for(i=0;i<7;i++)
Ei[iteration][i] = ENewW{O][i];
for(i=0;i<NAP;i ++)

E[O][P[i]] = ENewOJ[P[i]];
ratio[i]/=ENewO][P[i]]; /| Checking the size of the steps
i f(max<ratiof[i]) //take the | argest
max=ratio[i];
}
SSE rati o = SSEnew SSEol d;
SSEol d = SSEnew,
*sse = SSEnew;

if((max<=m ninmum)//|]|((1-SSE_ratio)<=m ni mum)

{

flag+=1;
}
el se
{

fl ag=0;
}
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if(flag>5 )

SSEFi | e <<endl <<iteration<<"\t"<<SSEnew<"\t"<<*del;
return 4;

}
}
[[***x**xxxxxxxif not - Change Delta to see if it helps
el se

repeat until it IS Or quit*xxxxxxxxxx

whi | e ( SSEnew>SSEol d)
{
*del *=10;
cout <<"\ nChangi ng Delta Value - del = "<<*del;

del t abi g=*del *10;
del tasmal | =*del / 10;
del _orig = *del;

crash_del = Calc_lncrenent(E, P, matnum mat, radii, theta, Loads, Exp_Strain,
position, PH, B, &SSE del, del);

crash_big = Calc_Increnent(E, P, matnum mat, radii, theta, Loads, Exp_Strain,
position, PHI, B big, &SSE big, &deltabig);

crash_small = Calc_lncrenent(E, P, matnum mat, radii, theta, Loads, Exp_Strain,
position, PH, B small, &SSE small, &deltasnall);

if ((crash_del !'=0)]||(crash_big !'=0)]||(crash_small !=0))
{

*sse = 1.0;

return O;

for(i=0;i<NAP;i ++)

{
ENew{ O] [P[i]]=E[O] [P[i]]+B[i];
ENew bi g[O][P[i]]=E[O][P[i]]+B _big[i];
ENew smal I [O][P[i]]1=E[O][P[i]]+B_small[i];
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crash_del = Calc_Increnent(ENew, P, matnum mat, radii, theta, Loads, Exp_Strain,
position, PH, B, &SSE del, del);

crash_big = Calc_lncrenent (ENew big, P, matnum nmat, radii, theta, Loads,
Exp_Strain, position, PH, B, &SSE big, &deltabig);

crash_small = Calc_l ncrenent (ENew small, P, matnum nmat, radii, theta, Loads,

Exp_Strain, position, PH, B, &SSE snall, &deltasnall);

if ((crash_del !'= 0)|]|(crash_big !'=0)]||(crash_small !=0))
{

*sse = 1.0;
return O;

}

SSEnew= SSE_del ;

i f ((SSE_bi g<SSE_del ) &&( SSE_bi g<SSE_snal | ))
SSEnew= SSE bi g;
for(i=0;i<NAP;i++)
ENew{ O] [ P[i]] =ENew_bi g[O][P[i]];

}
i f((SSE_snual | <SSE_del ) &&( SSE_snal | <SSE_bi g))

{
SSEnew= SSE_smal | ;
for(i=0;i<NAP;i++)
ENew{ O] [P[i]] =ENew_smal | [O][P[i]];
}

[ [ ****xxxx*xxxCheck new val ues now that delta is increased

i f(SSEnew<SSEol d) //if SSE is reduced after a interval halving - nake changes
{

for(i=0;i<7;i++)
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E[O][i] = ENewO][i];
Ei[iteration][i] = E[O][i];

SSEol d = SSEnew;
*sse = SSEnew;

if (*del >100000000) //after several interval halving steps
{

*sse = SSEol d;

SSEFi | e <<endl <<iteration<<"\t"<<SSEol d<<"\t"<<*del;

cout <<endl| <<SSEol d;
for(i=0;i<7;i++)

Ei[iteration][i] = E[O][i];
return 1;

}

cout <<endl <<iteration<<"\t"<<*sse<<"\t"<<*del;
for(i=0;i<7;i++)

E[O][i] = ENew{ O] [i];
Ei[iteration][i] = E[O][i];
}
}

SSEFi | e <<endl <<iteration<<"\t"<<*sse<<"\t"<<*del;
cout <<endl <<iteration<<"\t"<<*sse<<"\t"<<*del;

}

*sse = SSEnew;
SSEFi | e. cl ose();
return 2;

}

/*************************************************************************************/

/1 This function converts the Cj Values back to E1, E2, E3, Gl2, nul2, nul3, nu23
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void C to_E(double *c, double *Eval ues)

{

doubl e §[ 4]
[

4], col[4], CijMtrix[4][4];
int i, j, =

[
ndx[ 4], d=1;

/I Need to build the Cij matrix
for(i=0;i<4;i++)

{
col[i]=0.0;
for(j=0;j<4;j++)
{
CijMatrix[i][j]=0.0;
S[il[j] = 0.0;
}
CijMatrix[0][0] = c[0]; //Cl1
CijMatrix[0][1] = c[1]; //Cl2
CijMatrix[1][0] = c[1]; //C21
CijMatrix[0][2] = c[2]; //C13
CijMatrix[2][0] = c[2]; //C31
CijMatrix[1][1] = c[3]; //C22
CijMatrix[1][2] = c[4]; //C23
CijMatrix[2][1] = c[4]; //C32
CijMatrix[2][2] = c[5]; //C33
CijMatrix[3][3] = c[6]; //C66

[llnvert the Cij Matrix to get the Sij Mtrix

LUDeconposi tion(&CijMatrix[0][0], 4,indx,d);
for(j=0;j<4;j++)

for(i=0;i<4;i++)

col[i] = 0.0;
col[j] = 1.0;
LUBackSub(&(CijMatrix[0][0]), 4,indx, &ol[0]);
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/1 Ca

for(i=0;i<4;i++)
} S[i][j]l=col[i];

culate E values fromthe Sij Val ues

Eval ues|[ 0]
Eval ues|[ 1]
Eval ues| 2]

1.0/ S[0][0];
1.0/S[1][1];
1.0/9[2][2];

Eval ues[ 3] 1.0/9[3][3];
Eval ues| 4] -S[0][1] *Eval ues[ 0] ;
Eval ues] 5] -S[0][ 2] *Eval ues[ 0] ;

Eval ues|[ 6] -S[1][ 2] *Eval ues[ 1] ;

10.2 Inversion.h

//1nversion.h

/1l Header file for the Inverse Sol ution
/1 Modify the needed information for each different material run

#i ncl ude <math. h>

#i ncl ude <fstream h>

#define K 20 /I Nunber of plies in the conposite |ay-up

#define KK 2*K+2 /I Nunber of equations for Elastic Solution

#define dT O /| Tenperature change for thermal strains and stresses

#define Pi acos(-1) // Define P

#defi ne num oads 100 /I Nunber of | oad conditions applied (1 Fx + 1 Tx + 1 Pi = 3 'l REQU RED!!!)
#define NAP 7 /I Nunber of active paraneters (nunber of paraneters being optimzed -
val ues)

#define ND 3*num oads //Nunber of data points (nunmber of strain points given - 3 strains per |oad
appl i ed)

#define Acceptable 1le-030 /1 Convergence Criteria - SSE value that is sufficiently small

#defi ne Maxlteration 1000 /I Nurmber of iterations before quitting
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int Calc_Increment(double E[][10], int P[], int matnum int mat[], double radii[], double theta[], double
Loads[][4], double Exp_Strain[][3], char position[], double PH[], double B[], double *SunSquareErr, double
*del );

int Mnimze(double E[][10], int P[], int matnum int mat[], double Cij[][7], double radii[], double
theta[], double Loads[][4], double Exp_Strain[][3], char position[], double PHI[], double B[], double *SSE
int *count, ofstream SSEFile, double *del);

10.3 Elastic Solution.cpp

[/ Levenberg- Marquardt Ei -- Elastic_Solution.cpp
#i ncl ude "El astic_Sol ution. h"

#i ncl ude <i ostream h>

#i ncl ude <fstream h>

void Elastic_Solution(double E[][10], int matnum int nmat[], double r[], double th[], double *l|oad, double
Calc_Strain[], char strainposition)

{

int i=0, j, k, indx[KK];
| ong theErr=0;
doubl e sc[K][4][5], bc[KI[3], L[K], cbn[KI[4][4], et[KI[4], (*pO)I[7];
doubl e A[KK][KK], B[KK], Cmatrix[5][7];
for(j=0;]j<matnumj ++)

for(k=0; k<7; k++)

Cmatrix[j][k]=0.0;

pC=Cmatri x;
Cvatrix(E, pC, matnum ;
Cbar (pC, th, E, matnum mat, cbm et); [/ Transformations to create the cbar matrix

stress(cbm et, L, bc, sc); /'l Rel ati ons between strain, displacenent and stress
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mat _stack(cbm sc, L, bc, r, load, A B); //Creates matrix to solve for constants Eo, Go, Al's and

A2's
SysScal e(& A[0][0]), B, KK); /1 Scaling to increase nunerical accuracy
for (int jj=0;jj<KK jj++)
indx[jj] = 0;
t heErr =LUDeconposition(& A[0][0]), KK, indx,i); [l perforns PA=LU for LUBackSub
i f(theErr!=0)
{
cout <<"\ nSi ngular Matrix!!!!\n";
//put in output file for A matrix
}
LUBackSub( & A[ 0][0]), KK, i ndx, B); /1 Sol ves system PAXx=PB (returns x in B)
output (B, r, L, bc, Calc_Strain, strainposition);//Returns cal cul ated strains
}

//************************************************************

//***********I nt er nal Subroutl nes*****************************

/1l Calcualtes the C Matrix Values fromthe input data
I e i i T
void CMvatrix(double E[][10], double (*C[7], int matnum) //c matrix subroutine

{
doubl e v;
for(int i=0;i<matnumi ++)

{
| v = (1 - E[i][4] *(E[i][4] * E[i][1] / E[i][0] + 2 * E[i][6] * E[i][5] * E[i][2] / E[i][0]) -
E[i]1[5] * E[i]1[5] * E[i][2] / E[i][0] - E[i][6] * E[i][6] * E[i][2] / E[i][1]);

ailfol = (1 - Efijfe] * Efijre] » Efijf2] / Ei][1) * Ei][0] / v; Il cl1
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ailf1] = (e[i][4] + E[i][5] =~ E[i][6] * E[i][2] / E[i][1]) * E[i][1] / v; Il c12
aill2] = (E[i][5] + E[i][4] * E[i][6]) * E[i][2] / v; Il c13
qill3] = (1 - Ei][5] * E[i][5] * E[i][2] / E[i][O]) * E[i][1] / v; Il c22
aill4] = (E[i][6] + E[i][4] * E[i][5] * E[i][1] / E[i][O]) * E[i][2] / v; /'l c23
cill5] = (1 - E[i][4] * E[i][4] * E[i][1] / E[i][0]) * E[i][2] / v; /'l ¢33
cil[e] = Ei]l[3]; /1l c66

v=0.0

voi d Cbar(double (*C)[7], double theta[], double E[][10], int matnum int mat[], double cbni{][4][4], double
et[][4])
{

//c-bar matri x function

int i,j,k, p;
doubl e nme0. 0, n=0. O;

for(i=0;i<K;i++)
for(j=0;j<4;j++)
for (k=0; k<4; k++)
cbnli][j][k]=0.0;

for(i=0;ic<K;i++)
{
m
n

cos(thetali]);
sin(thetali]);

p =mt[i]; //allows for the different material |ayers

cbnfi][0][0]
confi][0][1]
cbnfi][0][2]
cbnfi][0][3]
confi][1][1]
confi][1][2]

Cp][0]*pow(m 4) + (2*pow(n¥n,2))*(C[p][1] + 2*C[p][6]) + Cp][3]*pow(n,4);
pow(mn, 2)*(C[p][0] + C[p][3] - 4*Cp][6]) + C(p][1]*(powmm4) + pow(n, 4));
Cpl[2]*mm+ C[p][4]*n*n;

mn*(Clp][O] *m*'m - C([p][3]*n*n - (Cp][1] + 2*Cp][6])*(mm- n*n));

A p][0] *pow(n, 4) + (2*pow(ntn,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*powmm4);
Apll2]*n*n + C[p][4] *ntm
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confi][1][3]
confi][2][2]
confi][2][3]
confi][3][3]

gn;fg][p][ol*n*n - Cpl[3]*mm+ (C[p][1] + 2*C[p][6])*(mm- n*n));

p ;

nmn*(Cp]l[2] - C[p][4]);

(Clpll0] + Cp][3] - 2*C[p][1])*pow(n¥n,2) + Cp][6]*pow(nm - n*n),2);

for(j =1; j<4 ; j++)
for(k = 0; k<j ; k++)
cbn{i][jl[Kk] = cbnmi][K][j]; [//stacks symetric terms

et[i][0] = (E[p][7]*nt*m + E[p][8]*n*n)*dT,; [1X thermal strain
et[i][1] = (E[p]l[7]1*n*n + E[p][8]*mm*dT,; /I THETA thermal strain
et[i][2] = E[p][9]*dT; /IR thermal strain
et[i][3] = 2*ntn*(E[p][7] - E[p][8])*dT; /] X-THETA thermal strain
}
}
voi d stress(double cbn{][4][4],double et[][4],double L[], double bc[][3],double sc[][4][5])
{
/lstress coefficients
short i,j;
doubl e zz=0;
int a;

for(i=0; i<K ; i++)

{
a=0;
L[i] = sqrt(fabs(cbri][1]1[2] / cbnfi]l[2][2]));
/1 cout <<"\nL["<<i<<"]\t"<<L[i];
if(L[i]==1.0)
a = 1;
if(L[i]==2.0)
a=2;
swi tch(a)
{
case 1: //lsotropic and Transversely Isotropic Condition cbnfi][1][1] = cbn{i][2]][2]
{
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be[i][0] = (cbn{i][O][1] - cbn{i][O0][2])/(2*cbn{i][2][2]);
/1 Gamma

be[i][1] = (cbni][1][3] - 2*cbn{i][2][3])/(4*cbn{i][2][2] - cbnli][1][1]);
/] Onmega

be[i][2] = 1/(2*cbnli][2][2]);

/1 Ps
zz=(cbnli][O0][2]-cbnfi][O][1])*et[i][O]+(cbn{i][1][2]-cbn{i][1][1])*et[i][1];
zz += (cbn{i][2][2]-cbnfi][1][2])*et[i][2] +(cbn{i][2][3]-cbn{i][1][3])*et[i][3];
bc[il[2] *= zz;
for(j =0; j<4; j+4)

{
sc[i][j][4] = - et[i][O]*cbn{i][O][j] - et[i][1]*cbnli][1][]];
sc[i][j]1[4] -= et[i][2]*cbn{i][2][j] + et[i][3]" Cbn{I][J][B];
/1] =0: Sl GVAX coefficients :last indx=0-> coeff of
/[1j=1: SIGWAtheta coefficients :last indx=1-> coeff of (Gb R)
[1j=2: SI GVAr coefficients :last indx=2-> coeff of Al R*(L-1)
[1j=3: TAUx-theta coefficients :last indx=3-> coeff of A2 RM(-L-1)
/1 :last indx=4-> constant
}
}
br eak;
case 2: [//Causes the b[i][1] termto blowup in default equations

{
be[i][0] = (cbn{i][O][1] - cbn{i][O0][2])/(3*cbn{i][2][2]); /1 Ganma
be[i][1] = (cbnli][1][3] - 2*cbn{i][2][3])/(16*cbn{i][2][2]); /1 Orega
be[i][2] = 1/(3*cbnli][2][2]);

/] Psi

zz=(cbn{i][0][2]-cbn{i][O][1])*et[i][O]+(cbn{i][1][2]-cbn{i][1][1])*et[i][1];
zz += (cbnli][2][2]-cbnli][1][2])>*et[i][2]+(cbn{i][2][3]-cbnfi][1][3])*et[i][3];

bc[i][2] *= zz;

for(j =0; j<4 ; j++)
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SC[I][ 1[4] = - et[i][O]*cbnli][O][j] - et[i][1]*cbn{i][1][]];
sc[i][jI[4] -= et[i][2]*cbn{i][2][j] + et[i][3]*cbnli][j][3];
/1] =0: Sl GVAX coefficients :last indx=0-> coeff of Eo
/1j=1: SIGVAtheta coefficients :last indx=1-> coeff of (Go R)
[1]j=2: S| GVAr coefficients :last indx=2-> coeff of Al RM(L-1)
/1j=3: TAUx-theta coefficients :Iast i ndx=3-> coeff of A2 RM(-L-1)
/1 :last indx=4-> const ant
}
}
br eak;
default: //The General Solution for the Conposite Cylinder nodel
{
be[i][0] = (cbn{i][O0][1] - cbn{i][O][2]) / (cbnfi][2][2] - cbn{i][1][1]);
/1 Gamma
be[i][1] = (cbn{i][1][3] - 2 * cbn{i][2][3]) / (4 * cbnfi][2][2] - cbn{i][1][1]);
/1 Orega
be[i][2] =1/ (cbnli][2][2] - cbnli][1][1]);
/] Psi

zz=(cbn{i][0][2]-cbn{i][O][1])*et[i][O]+(cbn{i][1][2]-cbn{i][1][1])*et[i][1];
zz += (cbnli][2][2]-cbnfi][1][2])*et[i][2]+(cbn{i][2][3]-cbnfi][1][3])*et[i][3];

be[i][2] *= zz;

for(j = 0; j<4 ; j+4+)

{
sc[i][j][0] = cbn{i][0][j] + be[i][0]*(cbni][1][j] + confi][2][j]);
sc[i]1[j1[1] = cbn{i][j][3] + be[i][1]*(cbn{i][1][j] + 2*cbn{i][2][]]);
sc[i]1[j1[2] =cbn{i][1][j] + L[i] * cbni][2][j]:
sc[i1[j1[3] =cbnfil[2][j] - L[i] * cbn{il[2][]]; | | |
sc[i1[j1[4] = be[i][2]*(cbn{i][1][j] + cbn{i][2][j])- et[i]1[0]*cbn{i][0][j];
sc[i1[j1[4] += -et[i][1]*cbn{i][1][j] - et[i][2]*cbni][2][]] -

et[i][3]*cbn{i][j][3];
/1] =0: Sl GVAX coefficients :last indx=0-> coeff of Eo
/[1j=1: SIGWAtheta coefficients :last indx=1-> coeff of (Go R
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[1j=2: SI GVAr coefficients :last indx=2-> coeff of Al R*(L-1)
[1j=3: TAUx-theta coefficients :last indx=3-> coeff of A2 RM(-L-1)
11 :last indx=4-> constant

void mat_stack(doubl e cbn{][4][4],double sc[][4][5], double L[], double bc[][3], double r[], double *Ioad,
double A[][KK], double B[])

/I'subroutine for stacking the conponents of the |inear system Ax=B

short i, j, ic;
double ro,ri,r2, ro2, r3, ro3, r4, ro4, blt2, b2t2;
int a;
for(i = 0; i<KK ; i++) [linitialize [A],{B}
{
B[i] = 0.0;
for(j = 0; j<KK; j++)
Ali]l[j] = 0.0;
}
/I next two | oops stack el enents associated with the integrated B.C
bit2 = 0;
b2t2 = 0;
for(i = 0; i<K ;i++)

L[i] = sqgrt(fabs(cbn{i][1][1] / cbnfi]l[2]][2]));
a=0;
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/lset up ternms for switching for the degenerate cases

if(L[i]==1.0)

a = 1;
if(L[i]==2.0)

a=2;
/l/define radii ternms for ease of programm ng and debuggi ng
ri =rf[i];
ro = r[i+1];
r2 = pow(r[i],2);
ro2 = pow(r[i+1], 2);
ro3 = pow(r[i+1], 3);
r3 = pow(r[i],3);

ro4 = powm(r[i+1],4);
r4 = pow(r(il, 4);

switch(a)
{
case 1:
{
A[0][O0] += 0.5*(ro2-r2)*(cbn{i][0][0]);
Al0][0] += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*bc[i][0]*cbn{i][O0][1];
A[O][0] += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*bc[i][0]*cbmi][0][2];

A[O0][1] += (cbn{i][O][3]+bc[i][2]*(cbn{i][O][1]+2*cbn{i][0][2]))*(ro3-r3)/3.0;

A[1][0] += (cbn{i][O0][3]*(ro3-r3))/3.0;

A[1][0] += (((1.0/3.0)-1og(ri))*cbm{i][1][3]+((-2.0/3.0)-
log(ri))*cbn{i][2][3])*bc[i][0]*r3/3.0;

A[1][0] += ((log(ro)-
(1.0/3.0))*cbn{i][1][3]+((2.0/3.0)+ og(ro))*cbn{i][2][3])*bc[i][O

A[1][1] += (cbn{i][3][3]+bc[i][1]*(cbnii]

]*ro3/3.0;
[1][3]+2*cbm[i][2][3]))*(ro4-r4)/4.0

bit2 += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5*r2)*cbn{i][0][1]*bc[i][2];
bit2 += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*cbn{i][0][2]*bc[i][2];
blt2 += (sc[i][0][4]*( ro2 - r2)) [/ 2.0;
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b2t2 += ((3.0*1 og(ro)-
1.0)*cbn{i][2][3]+(3.0*log(ro)+2.0)*cbn{i][2][3])*ro3*bc[i][2]/9.0;
b2t2 -= ((3.0*log(ri)-
1.0)*cbn{i][2][3]+(3.0*log(ri)+2.0)*cbn{i][2][3])*r3*bc[i][2]/9.0;
b2t2 += (sc[i][3][4]*( ro3 - r3)) [/ 3.0;
}

br eak;
case 2:

{

A[O][0] += (cbnfi][O][O] +bc[i][O]*(cbn{i][O][1]+cbn{i][0][2]))*(ro2-r2)/2.0;

A[O][1] += (((4.0*1og(ro)-7.0/3.0)*ro3-(4.0*log(ri)-
7.0/3.0)*r3)*cbn{i][0][1] *bc[i][1])/3.0;

AlO][1] += (((4.0*log(ro)-1.0/3.0)*ro3-(4.0*l og(ri)-
1.0/3.0)*r3)*2*cbn{i][0][2] *bc[i][1])/3.0;

A[0][1] += (ro3-r3)*cbn{i][0][3]/3.0

A[1][0] += (cbnfi][O0][3]+bc[i][O]*(cbn{i][1][3]+cbni][2][3]))*(ro3-r3)/3.0;

A[1][1] += (rod4-r4)*cbnli][3][3]/4.0+((log(ro)-
0.5)*cbn{i][1][3]+2*log(ro)*cbn{i][2][3])*bc[i][1]*ro4;

A[1][1] -= ((0.5-Tog(ri))*cbnfi][1]1[3]-2*1og(ri)*cbn{i][2][3])*bc[i][1]*r4,;

blt2 += (cbni

1101 [ 1] +cbm{i]1[0][2])*(ro2-r2)*(bc[i][2])/2.0:;
blt2 += (sc[i][0][4]*

11
[4]*( ro2 - r2)) [ 2.0;

b2t2 += (cbnm{i][1][3]+cbni][2][3])*(ro3-r3)*bc[i][2]/3.0;
b2t2 += (sc[i][3][4]*( ro3 - r3)) [/ 3.0;

}

br eak;

defaul t:

{/1A[O0][i] = Fx Conditions A[1][i] = Tx Conditions
A[O][0] += (sc[i][O][O]*( ro2 - r2)) [/ 2.0;
A[11[0] += (sc[i][3][0]*( ro3 - r3)) / 3.0;
A[O][1] += (sc[i][O][2]*( ro3 - r3)) [/ 3.0;
Al11[1] += (sc[i][3][2]*( rod4 - r4)) | 4.0;

blt2 += (sc[i][0][4]*( ro2 - r2)) / 2.0;
terns
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b2t2 += (sc[i][3][4]*( ro3 - r3)) / 3.0;

}
br eak;
}
}
ic = 0;
for(i = 2; i<(KK-1) ; i += 2)
{ i C++;

//set up terns for switching for the degenerate cases
a=0;
i f(L[ic-1]==1.0)
a = 1;
i f(L[ic-1]==2.0)
a = 2;

/ldefine radii terms for ease of programm ng and debuggi ng
ri

ro
r2

riic-1];

riic];
pow(r[ic-1],2);
ro2 pow(r[ic], 2);
ro3 pow(r[ic], 3);
r3 = powrf[ic-1], 3);
ro4 = powm(r[ic]l,4);
r4 = pow(r[ic-1], 4);

switch(a)
f:ase 1:
{ A[O][i] = (cbnfic-1][0][1]+cbn{ic-1][0][2])*(r2-r02)/2.0;
ALO][i+1] = (log(ro)-log(ri))*(cbnfic-1][0][1]-cbnfic-1][0][2]);//check 2*cbnic-
1]1[0][ 2] A[1][i] = (ro3-r3)*(cbnfic-1][1][3] +cbnfic-1][2][3])/3.0:
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/1 Appl i ed Loads
(load[2] / (2 * Pi)) - blt2;
(load[3] / (2 * Pi)) - b2t2;

1]);

1]);
}
B[ O]
B[ 1]

A[1][i+1] = (ro-ri)*(cbnfic-1][1][3]-cbnfic-1][2][3]);

A[O][i] = (cbnfic-1][0][1]+2*cbn{ic-1][0][2])*(ro3-r3)/3.0
A[O][i+1] = (2.0%cbn{i][0][2]-cbn{i][0][1])*((1.0/r0) - (1.0/ri))
A[1][i] = (cbnfic-1][1][3]+2*cbnfic-1][2][3])*(ro4-r4)/4;

A[1][i+1] = (cbn{ic-1][1][3]-2*cbn{ic-1][2][3])*(log(ro)-1og(ri)):

A[O][i] = sc[ic-1][0][2]*(powWro, 1+L[ic-1]) - pow(ri, d+L[ic-1]) ) [/ (1+L[ic-1]);
A[O][i+1] = sc[ic-1][0][3]*(powWro, 1-L[ic-1]) - pow(ri, 21-L[ic-1]) ) / (1-L[ic-

A[1][i] = sc[ic-1][3][2]*(powmro, 2+L[ic-1]) - pow(ri, 2+L[ic-1])

(2+L[ic-1]);
A[1][i+1] = sc[ic-1][3][3]*(powm(ro, 2-L[ic-1]) - pow(ri, 2-L[ic-1] /

(2-L[ic-

— —

/
)

/I next |oop stacks the elenments associated with the interface conditions wWi]J(r) = wi+1](r) and sigma-r

ic = 0;
for(i = 2;

{

i <(KK-3) ; i += 2)

/lset up ternms for switching for the degenerate cases

i f(L[ic]==1.0)
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switch(a)

i f(L[ic]==2.0)

/1 The sigma r conditions
A[i][0] = (cbnfic-1][0][2]+bc[ic-1][0]*(cbmfic-21][1][2]*log(r[ic])+cbnfic-

1r2112]*(log(rfic])+1)));

ALT][O] -

=(cbnfic][0][2] +bc[ic][O]*(cbnfic][1][2]*Iog(r[ic])+cbn{ic][2][2]*(log(r[ic])+1)));

1J12]12]

Ali1[1] = ((cbnfic-1][1][2]+2*cbn{ic-1][2][2])*bc[ic-1][1]+cbric-1][2][3])*r[ic];
ALi][1] -=((cbnfic][1][2]+2*cbn{ic][2][2])*bc[ic][1]+cbnmlic][2][3])*r[ic];

Ali][i] =(cbn{ic-1][1][2]+cbnr{ic-1][2][2]) ;
Ali][i+1] = (cbmic-1][1][2]-cbmic-1][2][2])*pow(r[ic],-2);//check2*cbnfic-

AL T[T +2]
ALi][i +3]

-(cbnfic][1][2] +cbnlic][2][2]);
-(cbnfic][1]1[2]-cbnic][2][2])*powmr[ic],-2);//check2*cbn]ic-1][2]]2]

/1 The w(r) conditions
A[i +1]1[0] =(bc[ic-1][0]-bc[ic][O])*r[ic]*log(r[ic]);
A[i +1]1[1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic];

Ali+1][i] =rlic];

Ali+1][i+1] = 1.0/r[ic];
Ali+1][i+2] = -r[ic];
Ali+1][i+3] = -1.0/r[ic];

// The thermal contributions

Bl[i] = (cbnfic][1][2]*log(r[ic])+cbnfic][2][2]*(log(r[ic])+1))*bc[ic][2];

B[i] -= (cbnmic-1][1][2]*log(r[ic])+cbnfic-1]1[2][2]*(log(r[ic])+1))*bc[ic-1][2];
B[i] += scl[ic][2][4] - scl[ic-1][2][4];
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B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]*log(r[ic]);
br eak;

case 2:

/1 The sigma r conditions

A[i]1[0] = (cbnfic-1][0][2] +bc[ic-1][0]*(cbn{ic-21][1][2]+cbn{ic-1][2][2]));

ALT][0] -=(cbnfic][0][2]+bc[ic][O]*(cbn{ic][1][2]+cbnf{ic][2][2]));

Ali]1[1] = (cbnfic-1][2][3]+bc[ic-1][2]*(cbmic-21][1]1[2]*(4.0*log(r[ic])-
1)+2.0*cbnfic-1][2][2]*(4.0%log(r[ic])+1.0)))*r[ic];

Ali1]1[1] -=(cbnfic][2][3]+bc[ic][1]*(cbnfic][2][2]*(4.0*log(r[ic])-
1)+2.0*cbnfic][2][2]*(4.0*log(r[ic])+1.0)))*r[ic];

ALTT[i] =(cbnfic-1][1][2] +2*cbnfic-1][2][2])*r[ic] ;

Ali1[i+1] = (cbnfic-1][1][2]-2*cbn{ic-1][2][2])*pow(r[ic],-3);
Ali][i+2] = -(cbnlic][1][2]+2*cbn{ic][2][2])*r[ic];
ALiT[i+3] = -(cbnlic][1][2]-2*cbn{ic][2][2])*pow(r[ic],-3);

/1 The w(r) conditions
Ali+1][0] =(bc[ic-1][0]-bc[ic][O])*r[ic]*log(r[ic]);
Ali +1]1[1] =(bc[ic-1][1]-bc[ic][2])*r[ic]*r[ic];

Ali+1]1[i] =r[ic];

Ali+1][i+1] = 1.0/r[ic];
A[i +1][1+2] = -r[ic];
Ali+1][i+3] = -1.0/r[ic];

// The thermal contributions

Bl[i] = (cbnmic][1][2] + cbnfic][2][2])*bc[ic][2]-(cbmic-1][1][2] + cbnfic-
1][2][2])*bec[ic-1][2];

Bl[i] += sc[ic][2][4] - scl[ic-1][2][4];

Bl[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic];

br eak;
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defaul t:

{
A[i][0] = sc[ic-1][2][0] - sc[ic][2][0]; /leo terns
Ali]l[1] = ( scl[ic-1][2][1] - sc[ic][2][1] ) * r[ic]; [//go terms
Ali + 1][0] = ( bc[ic-1][0] - bc[ic][O] ) * r[ic];
Ali + 1][1] = ( becl[ic-1][1] - be[ic][1] ) * r[ic]l*r[ic];
Ali][i] =sc[ic-1][2][2] * pow(r[ic], (L[ic-1] - 1) );
Ali][i+1] = sc[ic-1][2][3] * pow(r[ic], (-L[ic-1] - 1) );
Ali][i+2] = -sc[ic][2][2] * powmr[ic], (L[ic] - 1) );
A[i][i+3] = -sc[ic][2][3] * powmr[ic], (-L[ic] - 1) );
Ali+1][i1] = powmr[ic], L[ic-1] );
Ali+1][i+1] = powm(r[ic], -L[ic-1] );
Ali+1][1+2] = -pow(r[ic], L[ic] );
Ali+1][1+3] = -pow(r[ic], -L[ic] );
B[i] = sc[ic][2][4] - sc[ic-1][2][4];
B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic];
}
br eak;

}
/I next lines stack the matrix elenments associated with the pressure B.C.

/1 The inner surface pressure conditions
a=0;
//set up terns for switching for the degenerate cases
i f(L[O]==1.0)
a = 1;
i f(L[O]==2.0)
a=2;
switch(a)
{

case 1:
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{
Al KK- 2]

[0] =
(cbn{O0][0][2] +bc[O] [O] *(cbnf O] [1][2]*l 0og(r[O])+cbn{ O] [2][2]*(log(r] ])+1)))
A[KK-2][1] = ((cbn{O][1][2] +2*cbn{ O] [2][2])*bc[O] [1] +cbn{O][2][3])*r[O];
A[KK-2][2] = (cbnfO][1][2]+cbn{0][2][2]);
A[KK-2][3] = (cbnfO][1][2]-cbnf0O][2][2])*pow(r[O],-2);
B[KK-2] = -load[1] - (cbnfO][1][2]*log(r[O])+cbn{O][2][2]*(log(r[O])+1))*bc[O][2] -
sc[0][2][4]; }
br eak;
case 2:
{
A[KK-2][0] = (cbn{O0][0O][2]+bc[O][O]*(cbn{O][1][2]+cbn{O][2][2]));
A[KK-2][1] = (cbnfO][1][2]*(4*Iog(r[O])-
1) +2*cbn{ 0] [2][2] *(4*1 og(r[0O])+1))*bc[O] [1] *r[O];
A[KK-2][2] = (cbn{O][1][2]+2*cbn{0][2][2])*r[O];
A[KK-2][3] = (cbnf0][1][2]-2*cbn{0][2][2])*pow(r[O],-3);
B[KK-2] = -load[1] - (cbnm{O][1][2]+cbn{O][2][2])*bc[O][2] - sc[O][2][4];
}
br eak;
defaul t:
{
A[KK-2][0] = sc[0][2][0O];
A[KK-2][1] = sc[O][2][1] * r[O];
A[KK-2][2] = sc[O][2][2] * pow(r[O], (L[O] - 1) );
A[KK-2][3] = sc[O][2][3] * pow(r[O], (-L[O] - 1) );
B[KK-2] = -load[1l] - sc[O0][2][4];
}
br eak;

/1 The outer surface pressure conditions
a=0;
/lset up ternms for switching for the degenerate cases
i f(L[K-1]==1.0)
a = 1,
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i f (L[ K-1] ==2. 0)

a=2;
switch(a)
{
case 1:
{
A[KK-2]1[0] = (cbn K-1][0][2] +bc[K-1][0]*(cbn K-1]1[1][2]*I og(r[K]) +cbn] K-
11[2][2]*(log(r[K])+1)));
A[KK-2][1] = ((cbn]K-1][1][2] +2*cbn{ K-1][2][2])*bc[K-1][1] +cbn{ K-1][2][3])*r[K];
A[KK-2][2] = (cbn{K-1][1][2] +cbn{K-1][2][2]);
A[KK-2][3] = (cbn{K-1][1][2]-cbn{K-1][2][2])*powm(r[K], -2);
B[KK-2] = -load[0] - (cbn K-1][1][2]*l og(r[K])+cbn{ K-1][2][2]*(log(r[K])+1))*bc[K-
1][2]- SC[K-l][Z][;l];
br eak;
case 2:
{
A[KK-2][0] = (cbn{K-1][0][2] +bc[K-1][O] *(cbn{ K-1][1][2]+cbn{K-1][2][2]));
A[KK-2]111] = (cbnm{ K-1][1]1[2]*(4*log(r[K])-1)+2*cbn] K-
1]02][2]*(4*1og(r[K])+1))*bc[K-1][1] *r[K];
AlKK-2][2] = (cbn{K-1][1][2] +2*cbn{ K-1][2][2])*r[K];
Al KK-2][3] = (cbn{K-1][1][2]-2*cbn{ K-1][2][2])*powm(r[K],-3);
B[KK-2] = -load[0] - (cbnm K-1][1][2] +cbn K-1]1[2][2])*bc[K-1][2]- sc[K-1][2][4];
}
br eak;
defaul t:
{
Al KK-1]10] :sc[K 11[2][0];
A[KK-1][1] = sc[K-1][2][1] * r[K];
Al KK- 1] [ KK- 2] =SC[K 1[2][2] * pom(r[K], ( L[K-1] - 1) );
Al KK-1][KK-1] = sc[K-1]1[2][3] * powmr[K], ( -L[K-1] - 1) );
B[KK-1] = -load[0] - sc[K-1][2][4];
}
br eak;
}
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}
voi d out put (double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition)

{
doubl e ex=0.0, eo0=0.0, gx0=0.0, w=0.0, Rc;
int a, i;

for (int ab=0; ab<3; ab++)

{
Cal c_Strai n[ ab] =0. 0;
}
/1l nner or Quter Surface Strains?
if(strainposition =="i'||strainposition=="1")
{
i =0;
Rc=r[0];
else //CQuter Surface is the Default condition
{
Re=r[K];
i =K-1;
}
a=0;
if(L[i]==1.0
a = 1;
if(L[i]==2.0)
a=2,
switch (a)
{
case 1: /l1sotropic or Transversely |sotropic
{
/1 w = bc[i][0]*Rc*l og(Rc) *x[0] + bc[i][1]*x[1]*Rc*Rc + x[2*(i)+2]*Rc + x[2*(i)+3]/Rc

+ be[i][2]*Rc*l og(Rc);
ex = x[0]; /1 Ex: Epsilon x
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eo = bc[i][0]*log(Rc)*x[0] + be[i][2]*X[1]*Rc + x[2*(i)+2] + x[2*(i)+3]/(Rc*Rc) +
be[i][2]*1 og(Re);

11 eo = W Rc; /1 Eo: Epsilon theta
gxo = X[ 1] *Rc; /'l Gxo: Gamma x-theta
}
br eak;
case 2: [lbc[i][1l] =0
{
/1 w = bc[i][0]*Rc*x[0] + bc[i][1l]*x[1]*poWmM Rc, 2)*(4*l og(Rc)-1) + x[2*(i)+2]*pow Rc,
LEiT) + x[2*(i)+3]*powm(Re, -L[i]) + bc[i][2]*Rc;
ex = x[0]; /1 Ex: Epsilon x

eo = bc[i][0]*x[0] + bc[i][1]*x[1]*Rc*(4*1og(Re)-1) + x[2*(i)+2]*pow(Re, L[i]-1) +
x[2*(i)+3] *powm(Re, -L[i]-1) + be[i][2];
/1

eo = w Rc; /1 Eo: Epsilon theta
gxo = X[ 1] *Rc; /1 &xo: Ganmma x-theta
}
br eak;
defaul t: /I General Case
{
/1 w = bc[i][0]*Rc*x[0] + bc[i][1]*x[1]*Rc*Rc + x[2*(i)+2]*pow(Rc, L[i]) +
x[2*(i)+3]*powm Rc, -L[i]) + bc[i][2]*Re;
ex = x[0]; /'l Ex: Epsilon x

eo = bc[i][0]*x[0] + bec[i][1]*X[1]*Rc + x[2*(i)+2]*powm(Rc, L[i]-1) +
x[2¥(i)+3] *pow(Re, -L[i]-1) + be[i][2];

/1 eo = w Rc; /1l Eo: Epsilon theta
gxo = X[ 1] *Rc; /1 &xo: Ganmma x-theta
}
br eak;
}
/1 Epsilon X
Calc_Strain[0] = ex;
/1 Epsilon Y
Calc_Strain[1l] = eo;
/1 Epsilon XY
Cal c_Strain[2] = gxo;
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}
10.4 Elastic_Solution.h

/1 Elastic_Sol ution.h

#i ncl ude "l nversion. h"
#i ncl ude "matri x. h"

#i ncl ude <i ostream h>
#i ncl ude <fstream h>

/*******************************/

/*routines internal to CCM/

/*******************************/

void Elastic_Solution(double E[][10], int matnum int mat[], double r[], double theta[], double *Ioad,
double Calc_Strain[], char strainposition);

voi d Cbar(double (*C)[7], double theta[], double E[][10], int matnum int mat[], double cbn{][4][4], double
et[]1[4]);

void stress(double cbn{][4][4], double et[][4], double L[], double bc[][3], double sc[][4][5]);

void mat _stack(double cbn{][4][4], double sc[][4][5], double L[], double bc[][3], double r[], double *Ioad,
double A[][KK], double B[]);

voi d out put (double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition);
void Cvatrix(double E[][10], double (*C[7], int matval); //c matri x subroutine

10.5 Data_Input.cpp

// Data_l nput. cpp

#i ncl ude "Data_Il nput.h"
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ifstreaminputfile, |oadfile, expstrain; /I Data file containing input data (material properties,

geonetry, | oads)
of stream tracki ng; /I Data files for data output and internmedi ate val ues

int Input(double E[][10], int P[], int mat[], double radii[], double theta[], double Loads[][4], double
Exp_Strain[][3], char position[])

i nputfile.open("Testinput.dat"); /1 Input.dat contains initial guess E's, and geonetry

| cadfil e.open("Test LOADS. dat"); /1l loads.dat contains all |oading conditions (nust alter
num oads val ue in Inversion.h)

expstrain.open("Teststrain.dat");// expstrain.dat contains all the measured strain values (ex, ey,
gxy) for each load condition (num oad # of sets)

t racki ng. open("tracking.dat"); /'l Opening Data files for output and tracking of val ues

doubl e tenp;
int i,j,mtval, matnum
/1 First input value nust be the nunber of material |ayers

i nputfile>>mat num

/1 Read in the Active Parameters (start at 0 to 6)
for(i=0;i<NAP;i ++)
{
i nputfile>>P[i]; /1l Active Parameter |ist
}
for ( mat val =0; mat val <mat num mat val ++)
{

for(i=0; i<10; i++)
inputfile >> E[matval ][i];

}

//Reads in all surface radi
for(j=0; j<K+l; j++)
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inputfile >> radii[j];

// Reads in each ply angle (degrees) and converts to radi ans
for(i=0; i<K; i++)

{
inputfile >> tenp;
theta[i] = tenp * (Pi/180.0);
inputfile > mat[i];
}
//Reads in all |oad and experinental strain val ues
for (i=0; i<num oads; i++) /1 V11T LOAD CONDI TI ONS!!'!'! ' STRAIN
CONDI Tl ONS! !
{
expstrai n>>position[i]; /1 position[i] =i or o for inner or outer surface
strains
for(j=0; j<4; j++) /1l Loads[0] = External Pressure
exp_strain[][0] = e-x
| oadfile >> Loads[i][]j]; // Loads[1] = Internal Pressure
exp_strain[][1l] = e-y
for(int k=0; k<3; k++) /'l Loads[2] = Axial Load
exp_strain[][2] = gamma-xy
expstrain>> Exp_Strain[i][Kk]; // Loads[3] = Torsional Load
}

/IWites all data and stiffness values to the tracking file
Qut put _data(E, P, matnum nat,radii,theta, Loads, Exp_Strain, position);
inputfile.close();
| oadfile.close(); /1 Close the data files
expstrain.close();
tracki ng. cl ose();

cout << endl
return matnum
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voi d Qutput_data(double E[][10], int P[], int matnum int mat[],

Loads[][ 4],
{

doubl e Exp_Strain[][3], char position[])

tracki ng << "Tube properties entered:" << endl

/IPrints Elastic Mduli (E1, E2, E3, Gl2, nul2, nul3, nu23, al, a2, a3)
for(int i=0;i<matnumi ++)

{

tracking << "\ nMaterial #"<<i+1
tracking << "\ nEl =\t"<<E[i][O0];
tracking << "\nE2 =\t"<<E[i][1];
tracking << "\nE3 =\t"<<E[i][2];
tracking << "\nGl2 =\t"<<E[i][3];
tracking << "\nnul2 =\t"<<E[i][4];
tracking << "\nnul3 =\t"<<E[i][5];
tracking << "\nnu23 =\t"<<E[i][6];
tracking << "\nal pha-1 =\t"<<E[i][7];
tracking << "\nalpha-2 =\t"<<E[i][8];
tracki ng << "\ nal pha-3 =\t"<<E[i][ 9] <<endl <<endl

/1l Print the Active Value |ist
for(i=0;i<NAP;i++)

{

tracking << "\ nActive Value #\t"<<i+1
switch(P[i])
{

case 0: tracking << "\tEl";
br eak;

case 1: tracking << "\tE2";
br eak;

case 2: tracking << "\tE3";
break;

case 3. tracking << "\tGl2";
break;

case 4: tracking << "\tnul2";
break;

case 5: tracking << "\tnul3"
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break;

case 6: tracking << "\tnu23"
br eak;

}

}

tracki ng <<"\n\nTube geonetry entered:\n";
for(i=0; i<K; i++)

{
tracking << "Ri and Ro of ply #" << i+l<< "\t"<<radii[i]<<"\t\t"<<radii[i+1]<<"\t\tAngle"<<
"\t"<< theta[i]*(180/Pi)<<"\tMaterial # t"<<mat[i] +1l<<endl|
}
for(int ii=0;ii<nun oads;ii++)
{
/1 Printing out the Load conditions to the tracking file
tracki ng << "\ nLoad Set #"<< ii +1<<endl
tracki ng << "\ nLoadi ng Conditions and Measured Strains:"'
tracking << "Axial Load = \t" << Loads[ii][2] << endl
tracking << "Torque = \t" << Loads[ii][3] << endl
tracking << "Internal Pressure = \t" << Loads[ii][1] << endl
tracking << "External Pressure = \t" << Loads[ii][0] << endl

<< endl

/[IPrinting out the Measured Strain values for each applied |oad condition
tracking << "\ nSurface = ";
if (position[ii]=="i"||position[ii]=="1")
tracking << "\tlnner Surface Strains";
else if (position[ii]l]=="0"||position[ii]=="0)
tracking << "\tCQuter Surface Strains";
el se
tracking << "\tINVALID Response!";
tracking << "\nAxial Strain (ex) =\t" << Exp_Strain[ii][0] << endl
tracking << "Hoop Strain (ey) =\t" << Exp_Strain[ii][1l] << endl
tracking << "Shear Strain (gxy) =\t" << Exp_Strain[ii][2] << endl
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10.6 Data Input.h

/1 Data Input.h

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>
#i ncl ude "Il nversion. h"
#i ncl ude <fstream h>

int Input(double E[][10], int P[], int mat[], double radii[], double theta[], double Loads[][4], double
Exp_Strain[][3], char position[]);

voi d Qutput_data(double E[][10], int P[], int matnum int mat[], double radii[], double theta[], double
Loads[][4], double Exp_Strain[][3], char position[]);

10.7 Matrix.cpp

#i ncl ude "Matri x. h"

#i ncl ude <mat h. h>

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
[/ Matrix.cpp

voi d SysScal e(doubl e *A double *B,int n)

The foll ow ng subroutines have been omtted due to copyright considerations. The
appropriate subroutines can be found in Nunerical Recipes (sections on LU Deconposition
and Backsubstitution).
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i nt LUDecomnposition (double *A, int
voi d LUBackSub (double *A/int n,int
| ong Gauss(doubl e *A, doubl e *B, double *X int n)

n,int

10.8 Matrix.h

[/ Matrix. h

#i ncl ude <mat h. h>
#i ncl ude "I nversion. h"

voi d SysScal e(doubl e *A double *B,int
i nt LUDeconposition (double *A int
voi d LUBackSub (double *A int n,int
| ong Gauss(doubl e *A, doubl e *B, double *X int

n);

n,int *indx,int

n);

10.9 Jacobian.cpp

#i ncl ude <fstream h>
#i ncl ude "jacobi an. h"
#include "El astic_Sol uti on. h"

/| Jacobi an. cpp

voi d Jacobi an(doubl e E[][10], int
| oad[][4],double Exp_Strain[][3],
{

i nt mat num
position[],

P[],
char

int i,j;
doubl e h=0. 00001

*indx,int d)
*i ndx, doubl e *B)

d);

*i ndx, doubl e *B);

int mat[], double r[],double th[], double
doubl e jaco[][ NAP])
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doubl e Etenp[5][10];
doubl e PHI mi nus[ ND], PHI pl us[ ND];

for(i=0;i<mtnuni++)

{
for(j=0; j<10; j++)
} Etenp[il[j] = E[il[j];
for(i=0; i<NAP; i++)
{

Etenp[O] [P[i]] = E[O][P[i]]*(1-h);
Phi Sub(Etenp, matnum mat, r, th, load, Exp_Strain, position, PH m nus);

Etenp[O] [P[i]] = E[O][P[i]]*(1+h);

Phi Sub(Etenp, matnum mat, r, th, load, Exp_Strain, position, PHIplus);

Etemp[O][P[i]] = E[O][P[i]];
for(j=0; j<ND;, j++)
jaco[j][i] = (PH plus[j] - PHIminus[j])/(2 * h * E[O][P[i]]);
}

voi d Phi Sub(double E[][10], int matnum int mat[], double r[],double th[], double | oad[][4], double
Exp_Strain[][3], char position[], double PH[])

{
double Calc_Strain[3];
for(int i=0 ; i<num oads ; i++)
{

El astic_Solution(E, matnum mat, r, th, & load[i][0]), Calc_Strain, position[i]);
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PHI [i*3] = Exp_Strain[i][0] - Calc_Strain[0]; /1 Ex
PHI [i*3+1] = Exp_Strain[i][1] - Calc_Strain[1]; /'l Ey
PHI [i*3+2] = Exp_Strain[i][2] - Calc_Strain[2]; /'l Gxy

10.10 Jacobian.h

/1 Jacobi an. h

#include "Inversion.h" //for the parameters NAP, ND, et cE

voi d Jacobi an(double E[][10],int P[], int matnum int mat[], double r[],double th[], double
el oad[ ][ 4], double Exp_Strain[][3], char position[], double jaco[][NAP]);

voi d Phi Sub(double E[][10], int matnum int mat[], double r[],double th[], double eload[][4], double
Exp_Strain[][3], char position[], double PH[ND]);

10.11 Input Files

10.11.1 A typical load program
Po Pi Fx Tx

0 400 0 0
0 0 9900 O
0 0 0 3700
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10.11.2 A typical strain file

Surface  ex eq oxq

o} -2.692E-05 0. 000128074 1.26742E- 05
o} 0. 000460103 -0. 000128363 -1. 03551E-05
o] -1.76911E- 06 -1.32018E- 06 0. 000419356

10.11.3 A typical input file

Data file Description

1 Nunber of different materials
0 Active Paraneters
1

2

3

4

5

6

1.03633e+008 Guess Values for material properties (E1, E2, E3, etc — Not Cij)
6. 56901e+007

1. 35229e+009

1.22377e+007

0. 0220688

0. 276952

0.20983

0 CTE s

0

0

0.991833333 Interfacial Radi
0.997901042

1. 00396875

1.010036458
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OCOVOWOWOWORRRRRERRRRRRRRRERERREPREPRERERRERR
O o o o

O©OWOWO VYoV
o o [@Ne] o

. 016104167
. 022171875
. 028239583
. 034307292
. 040375

. 046442708
. 052510417
. 058578125
. 064645833
. 070713542
. 07678125
. 082848958
. 088916667
. 094984375
. 101052083
. 107119792
. 1131875

. 119255208
. 125322917
. 131390625
. 137458333

[eNoNeoloNeolololoNoNoNoNoloNelNoNe e

Ply Orientation and Materia
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11 Appendix E. Nelder-Mead Simplex Method

Here is the source code for the Nelder Mead Simplex method for minimization of the error function for the composite tube model

X3

*

Inversion.cpp
Inversion.h
Elastic_Solution.cpp
Elastic_Solution.h
Data_Input.cpp
Data_Input.h
Matrix.cpp

Matrix.h
Jacobian.cpp
Jacobian.h

R/
°e

X3

S

X3

*

R/
°e

X/
SO X4

R/

*

7 o )
LXK i X4

11.1 Inversion.cpp

/1 lnversion Program-> | nversion.cpp

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

#i ncl ude "Data_Il nput. h"

#i ncl ude "El astic_Sol ution. h"
#i ncl ude "I nversion. h"

#i ncl ude "jacobi an. h"

#i ncl ude <tine. h>
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voi d main()
{
int count, i,j,ndinm7,finished=0;
int mtnum mat[K];
double E[5][10], C[5][7], Etenp[5][10], C Strain[num oads][3], Cal cul ated_Strain[3];
doubl e radii[K+1], theta[ K], Loads[num oads][4], Exp_Strain[num oads][3];
doubl e SSEni n=1.0, duration
double P[8][7], tolerance, Y[8], (*pP)[7],(*pE)[10], (*pO)[7];
char position[ num oads];
of stream CijFile;
clock_t start, finish;
i fstream I nput P;

| nput P. open("PMatri x. dat");
CijFile.open("Cij.dat");

t ol erance=1le- 8;
start = clock(); //Starts the tinmer for time of calculation

/] STEP 1. Read in all data

mat num = Input (E, C, mat, radii, theta, Loads, Exp_Strain, position);
/I Reads in the values for Cij and E - in case of nultiple layers - changes C[0][i] val ues
//the rest are constant throughout all cal cul ations

// Read in the 8 sets of start val ues

for(i=0;i<8;i++)
{

for(j=0;j<7;j++)

| nput P>>P[i][j]; /1 The eight initial start values (E val ues)
}
//Cal cul ate the SSE val ues for each of the start val ues

for(i=0;i<mtnuni++)
{

for(j=0;j<10;]j++)
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Etenp[i][j]1=E[i][j];

[/ check input values to nmake sure it works

CijFile<<"\n\nVertex\t"<<"SSE\t"<<"Cl1\t"<<"Cl2\t"<<"CL3\t"<<"C22\t"<<"C23\t"<<" C33\t " <<" C66" <<endl ;
for (i=0;i<8;i++)

{
for(j=0;j<7;j++)
Etemp[O] [j]1=P[i][]j];
E to_C(Etenp, C, mat num ;
Y[i]=Cal c_SSE(Etenp, C, matnum mat, radii, theta, Loads, Exp_Strain, position);
cout <<Y[i]<<endl;
CjFile<<i<<"\t"<<VY[i];
for(j=0;j<7;j++)
CjFile<<"\t"<<C[i][j];
CijFile<<endl;
}

CijFile<<"Vertex\t"<<"SSE\t"<<"EI\t"<<"E2\t"<<"E3\t"<<"Gl2\t"<<"nul2\t"<<"nul3\t"<<"nu23"<<endl ;
for (i=0;i<8;i++)

{
CjFile<<i<<"\t"<<Y[i];
for(j=0;j<7;j++)
CjFile<<"\t"<<Pli]l[j];
CijFil e<<endl;
}

/1 Run Nel der-Mead Si npl ex M nim zation method

pP=P;
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fini shed=anoeba(pP, Y, ndim tolerance, &count, E, C, matnummat,radii, theta, Loads, Exp_Strain
position);

i f(finished!=0)
{
}

/1 Qut put final val ues

cout << "\ nNunber of iterations = "<< count +1<< endl
CijFile << "\nlterations = \t"<< count +1<< endl|

for(i=0;i<8;i++)

{

for(j=0;j<7;j++)
Etemp[ O] [j]1=PL[i][j];

CijFile << "\nFinal Cij Values:"<< "\t\t\tFinal E Values:"<< endl;
E to_C(Etenp, C, mat num ;
CijFile << "\nCll"<< "\t"<< (C[i][0] <<"\t\t"<<"El\t"<< P[i]][0O];
CijFile << "\nCl2"<< "\t"<< C[i][1]<<"\VtVt"<<"E2\t"<< P[i][1];
CijFile << "\nCl3"<< "\t"<< (Ci][2]<<"\Vt\t"<<"E3\t"<< P[i][2];
CijFile << "\nC22"<< "\t"<< (i][3]<<"\Vt\t"<<"Gl2\t"<< P[i][3];
CjFile << "\nC23"<< "\t"<< Ci][4]<<"\t\t"<<"nul2\t"<< P[i][4];
CijFile << "\nC33"<< "\t"<< C[i][5]<<"\Vt\t"<<"nul3\t"<< P[i][5];
CjFile << "\nCB6"<< "\t"<< C[i][6]<<"\t\t"<<"nu23\t"<< P[i][6];
cout<< "\ nFinal SSE Value =" << Y[i] << endl
CijFile<< "\nFinal SSE Value =" << Y[i] << endl

}

CijFile<<"\n\nVertex\t"<<"SSE\t"<<"CLI\t"<<"CL2\t"<<"C13\t"<<"C22\t " <<" C23\t " <<" C33\t " <<" C66" <<endl
for (i=0;i<8;i++)

{
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cout <<Y[i] <<endl

CjFile<<i<<"\t"<<Y[i];

for(j=0;j<7;j++)

CjFile<<"\t"<<C[i][j];

Cij Fil e<<endl
}
CijFile<<"Vertex\t"<<"SSE\t"<<"EI\t"<<"E2\t"<<"E3\t"<<"Gl2\t"<<"nul2\t"<<"nul3\t" <<"nu23" <<end|
for (i=0;i<8;i++)

{
CjFile<<i<<"\t"<<Y[i];
for(j=0;j<7;j++)
CjFile<<"\t"<<Pli]l[j];
CijFil e<<endl
}

/Il Calculate the strain response for the solution values and output in table for easy plotting

for(i=0;i<7;i++)
E[O][i]=P[O][i];

E to C(E, C, mat num ;

CijFile<<"\n\nCal cul ated Strains for the Final Values";

CijFile<<"\nLoads\t\t\t\t\t"<<"Measured Strains\t\t\t\t"<<"Cal cul ated Strains\n";

CjFile<<"Po\t"<<"Pilt"<<"Fx\t"<<"Tx\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t\t"<<"Ax\t"<<"Hoop\t"<<"Shear\t"
<<"\t Surface\n";

for( i=0 ; i<numoads ; i++)

{

El astic_Solution(C, E, matnum mat, radii, theta, & Loads[i][0]), Calculated_Strain,
position[i]);

for(int j=0;j<3;j++)
C Strain[i][j]=Cal culated_Strain[j];
for(j=0;j<4;j++)
CijFile<<Loads[i][]j]<<"\t";
CjFile<<"\t";
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for(j=0;j<3;j++)
CjFile<<kExp_Strain[i][j]<<"\t";
CijFile<<"\t";
for(j=0;j<3;j++)
CijFile<<C Strain[i][j]<<"\t";
CijFile<<"\t"<<position[i]<<endl;

}
// Calculates tinme used to find solution
finish = clock();

duration = (double)(finish - start)/CLOCKS PER_SEC;
i f(duration>60.0)

{
dur ati on=dur ati on/ 60. O;
cout << "\nCalculation Tine: "<<duration<< " mnutes."<< endl;
CijFile << "\nCal culation Tine: "<<duration<< " ninutes."<< endl;
}
el se
{
cout << "\nCalculation Tinme: "<<duration<< " seconds."<< endl;
CijFile << "\nCal culation Tine: "<<duration<< " seconds."<< endl;

switch (finished)
{

case O:

{

cout <<"\ nLocal M ni mrum Found\ n";
br eak;

}

case 2:

{

cout <<"\ nMaxi mum |l terations\n";
return,;
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}

CijFile.close();

/*Cal c_lI ncrement cal cul ates the error value PH and SSE as well as the increnental step value for Cij
*/

doubl e Cal c_SSE(doubl e E[][10], double C[][7], int matnum int mat[], double radii[], double theta[],
doubl e Loads[][4], double Exp_Strain[][3], char position[])

{
int i;
doubl e SSE, PHI[ND];
SSE = 0. 0;
for(i=0;i<ND;i++)
PH [i] = 0.0;
Phi Sub(E, C, matnum nat, radii,theta, Loads, Exp_Strain, position, PH);
for(i=0;i<ND;i++)
SSE += pow(PHI[i], 2); /I Cal cul ate the Sum of Square Errors
return SSE;
}
e i e

/*************************************************************************************/

/1 This function converts the Cj Values back to E1, E2, E3, Gl2, nul2, nul3, nu23

void C_to_E(double *c, double *Eval ues)
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doubl e S[4][4], col[4], GijMatrix[4][4];
int i, j, indx[4], d=1

/I Need to build the Cij matrix
for(i=0;i<4;i++)

{
col[i]=0.0;
for(j=0;j<4;j++)
{
Cijmatrix[i][j]=0.0;
S[il[j] = 0.0;
}
CijMatrix[0][0] = c[0O]; //Cl11
CijMatrix[0][1] = c[1]; //C12
CijMatrix[1][0] = c[1]; //C21
Cijmatrix[0][2] = c[2]; //C13
Cijmatrix[2][0] = c[2]; //C31
Cijmatrix[1]1[1] = c[3]; //C22
CijMatrix[1][2] = c[4]; //C23
CijMatrix[2][1] = c[4]; //C32
CijMatrix[2][2] = c[5]; //C33
CijMatrix[3][3] = c[6]; //C66

/[llnvert the Cij Matrix to get the Sij Matrix

LUDecomposi tion(&CijMatrix[0][0], 4,indx,d);
for(j=0;j<4;j++)

for(i=0;i<4;i++)
col[i] = 0.0;
col[j] = 1.0;
LUBackSub(&(CijMatrix[0][0]), 4,indx, &ol [0]);
for(i=0;i<4;i++)
S[i][jl=col[i];
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}

/] Cal cul ate E values fromthe Sij Val ues

Eval ues|[ 0]
Eval ues|[ 1]
Eval ues| 2]
Eval ues| 3]
Eval ues| 4]
Eval ues|[ 5]
Eval ues| 6]

1.0/ 9[0][0];
1.0/ 9[1][1];
1.0/9[2][2];
1.0/ 9[3][3];
-S[0][1] *Eval ues[ 0] ;
-S[0][ 2] *Eval ues[ 0] ;
-S[1][ 2] *Eval ues[ 1];

}

void E to_C(double (*e)[10], double (*c)[7], int matnun) //c matrix subroutine
{

doubl e v;

for(int i=0;i<matnumi ++)

{
_ v.=(1- e[i][4] *(e[i][4] * e[i][1] / e[i][0] + 2 * e[il[6] * e[i][5] * e[i][2] / e[i][0O]) -
e[i][5] * e[i][5] * e[i][2] / e[i][O] - e[i][6] * e[i][6] * e[i][2] / e[i][1]);

c[i][O] = (1 - e[i][6] * e[i][6] * e[i][2] / e[i][1]) * e[i][O] / v; Il cl1
c[i][1] = (e[i][4] + e[i]l[5] * e[i][6] * e[i]l[2] / e[i][1]) * e[i][1] / v; Il cl12
cl[i]f2] = (e[i][5] + e[i]l[4] * e[i]l[6]) * e[i]l[2] / v; Il ¢c13
c[i][3] = (1 - e[i][5] * e[i][5] * e[i][2] / e[i][O]) * e[i][1] / v; Il c22
c[i][4] = (e[i][6] + e[i][4] * e[i][5] * e[i][1] / e[i][O]) * e[i][2] / v; Il c23
c[i][5] = (1 - e[i][4] * e[i]l[4] * e[i]l[1] / e[i]l[O]) * e[i]l[2] [/ v; !/l ¢33
c[i][6] = e[i][3]; !/l c66
v=0. 0;

}

}

The follow ng subroutines have been renoved due to copyright considerations. The
appropriate subroutines can be adapted fromthose in Nunmerical Recipes (Nelder-Mad
si mpl ex routines).
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void GET_PSUM (double (*p)[7], double *psum
voi d SWAP(doubl e *a, double *b)

i nt anoeba (double (*p)[7], double y[], int ndim double ftol, int *nfunk, double E[][10], double C[][7],
int matnum int nmat[], double radii[], double theta[], double Loads[][4], double Exp_Strain[][3], char
position[])

doubl e anmotry(double (*p)[7], double y[], double psun{], int ndim int ihi, double fac, double E][10],
double C[][7], int matnum int mat[], double radii[], double theta[], double Loads[][4], double
Exp_Strain[][3], char position[])

11.2 Inversion.h

//1nversion.h

/'l Header file for the Inverse Sol ution

/1 Modify the needed information for each different material run
#i ncl ude <mat h. h>

#incl ude <fstream h>

#define K 20 /I Nunber of plies in the conposite |ay-up

#defi ne KK 2*K+2 // Number of equations for Elastic Solution

#define dT O /| Tenperature change for thermal strains and stresses

#define Pi acos(-1) /1 Define P

#defi ne num oads 10 /I Nunber of | oad conditions applied (1 Fx + 1 Tx + 1 Pi = 3 'l 'REQU RED!!!)
#define NAP 7 /I Nunber of active paraneters (nunber of paraneters being optimzed - 7 Cij
val ues)

#define ND 3*num oads //Nunmber of data points (nunmber of strain points given - 3 strains per |oad
appl i ed)
#defi ne Acceptable 1le-030 [/ Convergence Criteria - SSE value that is sufficiently small
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#define Maxlteration 100 /I Nurmber of iterations before quitting

#define TINY 1.0e-12
#defi ne NMAX 20000

doubl e Cal c_SSE(double E[][10], double C[][7],int matnum int mat[], double radii[], double theta[], double
Loads[][4], double Exp_Strain[][3], char position[]);

void C to_E(double *c, double *Eval ues);

void E_to_C(double (*e)[10], double (*c)[7], int matnun);

i nt anopeba (double (*p)[7], double y[], int ndim double ftol, int *nfunk, double E[][10], double C[][7],
int matnum int mat[], double radii[], double theta[], double Loads[][4], double Exp_Strain[][3], char
position[]);

doubl e amotry(double (*p)[7], double y[], double psun{], int ndim int ihii, double fac, double E[][10],
double C[][7], int matnum int mat[], double radii[], double theta[], double Loads[][4], double
Exp_Strain[][3], char position[]);

void GET_PSUM (double (*p)[7], double *psum;

voi d SWAP(doubl e *a, double *b) ;

11.3 Elastic_Solution.cpp

/1 Elastic_Sol ution. cpp

#i ncl ude "El astic_Sol ution. h"
#i ncl ude <i ostream h>

#i ncl ude <fstream h>

voi d El astic_Sol ution(double C[][7], double E[][10], int matnum int mat[], double r[], double th[], double
*| oad, double Calc_Strain[], char strainposition)

{
int i=0,indx[KK];
| ong theErr=0;
double sc[K][4][5], bc[KI[3], L[K], cbn{K][4][4], et[K][4];
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doubl e Al KK][KK], B[KK]:

Cbar(C, th, E, matnum mt, cbm et);

stress(cbm et, L, bc, sc);

mat _stack(cbm sc, L, bc, r, load, A B); //Creates matrix to solve for

SysScal e(& A[0][0]), B, KK);

for (int jj=0;jj<KK;jj++)
indx[jj] = 0O;

LUDeconposi tion(& A[0][0]), KK, indx,i); /I perforns PA=LU for

LUBackSub( & A[ 0][0]), KK, i ndx, B);

LUBackSub

[/ Transformations to create the char matri x

/1 Scaling to increase numerical accuracy

/1 Sol ves system PAXx=PB (returns x in B)

output (B, r, L, bc, Calc_Strain, strainposition);//Returns cal cul ated strains

}

//************************************************************

//***********I nt er nal Subroutl nes*****************************

voi d Cbar(double C[][7], double theta[], double E[][10], int matnum
?t[][4])

//c-bar matri x function

int i,j,k, p;
doubl e nme0. 0, n=0. O;

for(i=0;ic<K;i++)
for(j=0;j<4;j++)
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i nt

mat[],

double cbn{][4][4],

/! Rel ations between strain, displacenment and stress

constants Eo, Go, Al's and

doubl e



for(k=0; k<4; k++)
con{i][j][k]=0.0;

for(i=0;i<K;i++)

{
m = cos(thetal[i]);
n = sin(thetali]);
p=mt[i]; //allows for the different material |ayers
cbn{i][0][0] = C[p][0]*powm(m4) + (2*pow(n¥n,2))*(Cp][1] + 2*Cp][6]) + Cp][3]*pown,4);
cbnfi][0][1] = pow(n*n,2)*(C[p][0] + C[p][3] - 4*C[p][6]) + C[p][1]*(powm m 4) + pow(n,4));
con{i][0][2] = C[p][2]*mm+ C[p][4]*n*n;
con{i][O][3] = mn*(C[p][O0]*mm- Cp][3]*n*n - (Cp][1] + 2*C[p][6])*(ntm- n*n));
chnfi][1][1] = C[p][0]*pow(n,4) + (2*powm(ntn,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*powm m 4);
chnfi][1][2] = Cpl[2]*n*n + C[p][4] *mm
confi][1][3] = mn*(C[p][0]*n*n - C[p][3]*mm+ (C[p][1] + 2*C[p][6])*(mm- n*n));
chnfi][2][2] = Cp][3];
chn{i][2][3] = mn*(Cp][2] - C[p][4]);
confi][3][3] = (C[p][O] + C[p][3] - 2*C[p][1])*pow(ntn,2) + C[p][6]*pow((nmm- n*n),2);
for(j =1, j<4 ; j++)
for(k = 0; k<j ; k++)
cbni][jl[Kk] = cbnmi][Kk][j]; [//stacks symetric terns
et[i][0] = (E[pP][7]*mm + E[p][8]*n*n)*dT; /11X thermal strain
et[i][1] = (E[pP][7]*n*n + E[p][8]*ntm *dT; /| THETA thermal strain
et[i][2] = E[p][9]*dT; /IR thermal strain
et[i][3] = 2*mn*(E[p][7] - E[p][8])*dT; /| X- THETA thermal strain
}

}

voi d stress(double cbn{][4][4],double et[][4],double L[], double bc[][3],double sc[][4][5])

{

//stress coefficients

short i,j;
doubl e zz=0;
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int a;

for(i=0; i<
{

K i++)

- cbnfi][1][1]);

a=0;
L[i] = sqgrt(fabs(cbnfi][1][1] / cbnfi][2][2]));
/1 cout <<"\nL["<<i<<"]\t"<<L[i];
if(L[i]==1.0)
a =1,
if(L[i]==2.0)
a=2,
switch(a)
{
case 1. //lsotropic and Transversely Isotropic Condition cbn{i][1][1] = cbni][2]]2]
{
be[i][0] = (cbn{i][O][1] - cbn{i][O][2])/(2*cbnfi][2][2]);
/I Gamma
be[i][1] = (cbn{i][1][3] - 2*cbnf{i][2][3])/(4*cbn{i][2][2]
/1 Orega
be[i][2] = 1/(2*cbnli][2][2]);
/1 Ps

zz=(cbn{i][0][2]-cbn{i][O][1])*et[i][O]+(cbn{i][1][2]-cbn{i][1][1])*et[i][1];
zz += (cbnli][2][2]-cbnfi][1][2])*et[i][2]+(cbn{i][2][3]-cbnfi][1][3])*et[i][3];

bc[i][2] *= zz;

for(j =0; j<4 ; j++)

{
sc[i][jl[4] = - et[i][O]*cbnf{i][O][]
sc[i][j]1[4] -= et[i][2]*cbnli][2][]]
/1] =0: S| GVAX coefficients :1last
/1j=1. SIGVAtheta coefficients :Iast
[1]j=2: S| GVAr coefficients :1last
/1]j=3: TAUx-theta coefficients :Iast
/1 1 ast
}
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}

br eak;
case 2: //Causes the b[i][1] termto blowp in default equations
{
be[i][0] = (cbn{i][O][1] - cbn{i][O][2])/(3*cbnfi][2][2]); /1 Ganma
be[i][1] = (cbn{i][1][3] - 2*cbnfi][2][3])/(16*cbn{i][2][2]); /1 Orega
be[i][2] = 1/(3*cbnli][2][2]);
/1 Psi
zz=(cbnfi][0][2]-cbn{i][O][1])*et[i][O] +(cbn{i][1][2]-cbnl{i][1][1])*et[i][1];
zz += (cbn{i][2][2]-cbnfi][1][2])*et[i][2]+(cbn{i][2][3]-cbn{i][1][3])*et[i][3];
bc[il[2] *= zz;
for(j =0; j<4; j++)
{
sc[i][j][4] = - et[i][O]*cbn{i][O][j] - et[i][1]*cbn{i][1][]];
sc[i][j]1[4] -= et[i][2]*cbn{i][2][j] + et[i][3]*cbnli][j][3];
/1] =0: Sl GVAX coefficients :last indx=0-> coeff of Eo
[1j=1: SIGWAtheta coefficients :last indx=1-> coeff of (Go R
/1j=2: SI GWAr coefficients :last indx=2-> coeff of AL R'(L-1)
[1j=3: TAUx-theta coefficients :last indx=3-> coeff of A2 RM(-L-1)
/1 :last i ndx=4-> constant
}
}
br eak;
default: //The General Solution for the Conposite Cylinder nopdel
{
be[i][0] = (cbnl{i][O0][1] - cbn{i][0][2]) / (cbnfi][2][2] - cbn{i][1][1]);
/I Gamma
be[i][1] = (cbn{i][1][3] - 2 * cbn{i][2][3]) / (4 * cbnfi][2][2] - cbn{i][1][1]);
/1 Orega
be[i][2] =1/ (cbnli][2][2] - cbn{i][1][1]);
/1 Psi

zz=(cbn{i][0][2]-cbn{i][O][1])*et[i][O]+(cbn{i][1][2]-cbn{i][1][1])*et[i][1];
zz += (cbnli][2][2]-cbnli][1][2])*et[i][2]+(cbni][2][3]-cbnfi][1][3])*et[i][3];
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et[i][3]*cbnli][j][3];

voi d mat _stack(double cbn][4][4],double sc[][4][5],

double A[]1[KK], double

/Isubroutine for stacking the conponents of the |inear system Ax=B

short i, j, ic;
double ro,ri,r2
int a;
for(i = 0; i<KK;
{
B[i] = 0.0;
for(j = 0;

be[i][2] *= zz;

for(j =0; j<4; j++)

{
sc[i][j][0] = cbn{i][O][j] + be[i][O]*(cbnfi
sc[i][j][1] = cbnli][j][3] + bc[i][1]*(cbnfi
sc[i][j][2] = cbnli][1][j] + L[i] * cbn{i][2
sc[i][j][3] = cbnfi][1][j] - L[i] * cbnfi][2
sc[i][j][4 :bC[I][Z]*(Cbn{I][ll[J] + cbnfi
sc[i][j][4] += -et[i][1]*cbn{i][1][j] - et[i
/1j=0: SI GVAX coefficients :last indx=0-
/1j=1: SIGVAtheta coefficients :last indx=1-
[1]j=2: S| GVAr coefficients :last indx=2-
/1]j=3: TAUx-theta coefficients :last indx=3-
/1 :last i ndx=4-

B[1)

ro2,

i ++)

r3,

j <KK ;

j+)

ro3,

ra,

double L[],

ro4, blt2, b2t2;

/linitialize [Al,{B}
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double bc[][3],

10j] + cbnli]l[2][j]);
}[ j1 + 2%cbnfi][2][j]);
l;
2]1[j])- et[i][O0]*cbn{i][O][]];
21 *cbn{i][2][j] -
coeff of Eo
coeff of (Go R)
coeff of Al RM(L-1)
coeff of A2 RM(-L-1)
const ant
double r[], double *Ioad,



AlTT[i] = 0.

0;

/I next two | oops stack el ements associated with the integrated B.C.

L[i] = sqrt(fabs(cbnfi][1][1] / cbn{i]l[2][2]));

//set up terms for switching for the degenerate cases

/ldefine radii terms for ease of programm ng and debuggi ng

blt2 = O;
b2t2 = O;
for(i = 0; i<K ;i++)
a=0;
if(L[i]==1.0)
a =1,
if(L[i]==2.0)
a=2;
ri =rf[il;
ro = r[i+1];
r2z = powrfil],2);
ro2 = pow(r[i+1], 2);
ro3 = pow(r[i+1], 3);
r3 = pow(r[i], 3);
ro4d = pow(r[i+1],4);
r4 = pow(r[i], 4);
switch(a)
{
case 1:
{
A[0] [ O]
A[0] [ O]
AL0] [ 0]
AL0] [1]
A[1][0]

+= 0.5*(ro2-r2)*(cbnfi][0][0]);

+= 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*bc[i][0]*cbn{i][O][1];

+= 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*bc[i][0]*cbn[i][O0][2];

+= (cbn{i]J[O][3]+bc[i][1]*(cbnfi][O][1]+2*cbn{i][0][2]))*(ro3-r3)/3.0;

+= (cbn{i][0][3]*(ro3-r3))/3.0;

255



A[1][0] += (((1.0/3.0)-1og(ri))*cbnm{i][1][3]+((-2.0/3.0)-
log(ri))*cbn{i][2][3])*bc[i][0]*r3/3.0
A[1][0] += ((log(ro)-
(1.0/3.0))*cbn{i][1][3]+((2.0/3.0)+ og(ro))*cbn{i][2][3])*bc[i][O
A[1][1] += (cbn{i][3][3]+bc[i][1]*(cbnii]

]*ro3/3.0;
[1][3]+2*cbm[i][2][3]))*(ro4-r4)/4.0

bit2 += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5*r2)*cbn{i][0][1]*bc[i][2];
bit2 += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*cbn{i][0][2]*bc[i][2];
blt2 += (sc[i][0][4]*( ro2 - r2)) [/ 2.0;

b2t2 += ((3.0*1 og(ro)-
1.0)*cbni][1]1[3]1+(3.0*log(ro)+2.0)*cbn{i][2][3])*ro3*bc[i][2]/9.0;
b2t2 -= ((3.0*log(ri)-
1.0)*cbn{i][1]1[3]+(3.0*log(ri)+2.0)*cbn{i][2][3])*r3*bc[i][2]/9.0;
b2t2 += (sc[i][3][4]*( ro3 - r3)) [/ 3.0;
}

br eak;
case 2:
{
A[0][O] += (cbnfi][O][O]+bc[i][O]*(cbn{i][O][1]+cbn{i][0O][2]))*(ro2-r2)/2.0;
AlO][1] += (((4.0*log(ro)-7.0/3.0)*ro3-(4.0*l og(ri)-
7.0/3.0)*r3)*cbn{i][0][1] *bc[i][1])/3.0;
A[O][1] += (((4.0*1og(ro)-1.0/3.0)*ro3-(4.0*log(ri)-
1.0/3.0)*r3)*2*cbn{i][0][2] *bc[i][1])/3.0;
A[0][1] += (ro3-r3)*cbn{i][0][3]/3.0

A[1][0] += (cbn{i][O][3]+bc[i][0]*(cbn{i][1][3]+cbn{i][2][3]))*(ro3-r3)/3.0
A[1][1] += (ro4-r4)*cbnfi][3][3]/4.0+((log(ro)-

0.5)*cbn{i][1][3]+2*l og(ro)*cbn{i][2][3])*bc[i][1]*ro4;
Al1][1] -= ((0.5-Tog(ri))*cbnfi][1][3]-2*Iog(ri)*cbn{i][2][3])*bc[i][1]*r4;

blt2 += (cbnii]

[0][1] +cbn{i][0][2])*(ro2-r2)*(bc[i][2])/2.0;
blt2 += (sc[i][0

0]
1[41*( ro2 - r2)) / 2.0;

b2t2 += (cbn{i][1][3]+cbn{i][2][3])*(ro3-r3)*bc[i][2]/3.0;
b2t2 += (sc[i][3][4]*( ro3 - r3)) / 3.0;
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}

br eak;
defaul t:
{/TA[0][i] = Fx Conditions A[1][i] = Tx Conditions
A[O][0] += (sc[i][O][O]*( ro2 - r2)) [/ 2.0; /le terms
A[1]1[0] += (sc[i][3][O]*( ro3 - r3)) / 3.0;
A[O][1] += (sc[i][O][2]*( ro3 - r3)) / 3.0; /g terms
Al11[1] += (sc[i][3][2]*( rod4 - r4)) | 4.0;
blt2 += (sc[i][0][4]*( ro2 - r2)) [/ 2.0; /1therm
terns
b2t2 += (sc[i][3][4]*( ro3 - r3)) / 3.0;
}
br eak;
}
}
ic = 0;
for(i = 2; i<(KK-1) ; i += 2)
{ i C++;

/lset up ternms for switching for the degenerate cases
a=0;
i f(L[ic-1]==1.0)
a =1,
if(L[ic-1]==2.0)
a = 2

//define radii terns for ease of progranm ng and debuggi ng

ri =rf[ic-1];
ro=rfic];
r2 = powrfic-1], 2);

ro2 = pow(r[icl,2);
ro3 = pow(r[ic],3);
r3 = powrf[ic-1], 3);
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ro4 = powm(r[ic]l,4);
r4 = pow(r[ic-1], 4);

switch(a)
{
case 1:

{

}

br eak;
case 2:

{

}

br eak;
defaul t:

{

}

br eak;
}

/1 Appl i ed Loads

1][0][2]
1]);
11);
}
B[ 0]
B[ 1]

(load[2] /
(1oad[3] /

A[O][i] = (cbn{ic-1][0][2]+cbnm{ic-1][0][2])*(r2-ro02)/2.0;
A[O][i+1] = (log(ro)-log(ri))*(cbmic-1][0][1]-cbnfic-1][0][2]);//check 2*cbnfic-

A[1][i] = (ro3-r3)*(cbn{ic-1][1][3]+cbnfic-1][2][3])/3.0;
A[1][i+1] = (ro-ri)*(cbmic-1][1][3]-cbnfic-1][2][3]);

A[O][i] = (cbnfic-1][0][1]+2*cbn{ic-1][0][2])*(ro03-r3)/3.0;
A[O][i+1] = (2.0%cbn{i][0][2]-cbn{i][0][1])*((1.0/r0) - (1.0/ri));
A[1][i] = (cbnfic-1][1][3]+2*cbnfic-1][2]1[3])*(ro4-r4)/4;
A[1][i+1] = (cbn{ic-1][1][3]-2*cbn{ic-1]1[2][3])*(1og(ro)-1og(ri));

A[O][i] = sc[ic-1][0][2]*(powWroO, d+L[ic-1]) - pow(ri, 21+L[ic-1])

(1+L[ic-1]);
A[O][i+1] = sc[ic-1][O0][3]*(powro, 21-L[ic-1]) - pow(ri, 1-L[ic-1] /

(1-L[ic-

— —

/
)
A[1][i] = sc[ic-1][3][2]*(powmro, 2+L[ic-1]) - pow(ri, 2+L[ic-1])

) | (2+L[ic-1]);
Al1][i+1] = sc[ic-1][3][3]*(powro, 2-L[ic-1]) - pow(ri, 2-L[ic-1]) ) [/

(2-L[ic-

(2 * Pi)) - blt2;
(2 * Pi)) - b2t2;
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/I next |oop stacks the elenents associated with the interface conditions wWi]J(r) = wi+1](r) and sigma-r

ic = 0;
for(i = 2; i<(KK-3) ; i += 2)

{

/lset up ternms for switching for the degenerate cases

a=0;

i f(L[ic]==1.0)
a = 1;

if(L[ic]==2.0)
a=2;

i c++;

switch(a)

{

case 1:

/1 The sigma r conditions
A[i][0] = (cbm{ic-1][0][2]+bc[ic-1][0]*(cbmic-2][1][2]*log(r[ic])+cbnfic-

1J02][2]*(log(r[ic])+1)));

ALTT[O] -

=(cbnfic][0][2] +bc[ic][O]*(cbnfic][1][2]*Iog(r[ic])+cbn{ic][2][2]*(log(r[ic])+1)));

1J12][2]

ALi1[1] = ((cbmic-1][1][2]+2*cbrmic-1][2][2])*bc[ic-1][1]+cbmic-1][2][3])*r[ic];
ALT][1] -=((cbnfic][1][2]+2*cbn{ic][2][2])*bc[ic][1]+cbn{ic][2][3])*r[ic];

Ali][i] =(cbn{ic-1][1][2]+cbn{ic-1][2][2])
ALi][i+1] = (cbm{ic-1][1][2]-cbnfic-1][2][2])*pow(r[ic],-2);//check2*cbniic-

AT +2]
ALi][i +3]

-(cbnfic][1][2] +cbnfic][2][2]);
-(cbnfic][1]1[2]-cbmic][2][2])*powmr[ic],-2);//check2*cbn]ic-1][2]]2]

/1 The w(r) conditions
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Ali +1][0] =(bcl[ic-1][0]-bc[ic][0])*r[ic]*log(r[ic]);
Ali +1][1] =(bc[ic-1][1]-bec[ic][1])*r[ic]*r[ic];

Ali+1]1[i] =r[ic];

Ali+1][i+1] = 1.0/r[ic];
Ali +1][i+2] = -r[ic];
Ali+1][1+3] = -1.0/r[ic];

// The thermal contributions

Bl[i] = (cbnfic][1][2]*log(r[ic])+cbnfic][2][2]*(log(r[ic])+1))*bc[ic][2];

Bl[i] -= (cbnmfic-1][1][2]*log(r[ic])+cbnmfic-1][2][2]*(log(r[ic])+1))*bc[ic-1][2];
B[i] += sc[ic][2][4] - sc[ic-1][2][4];

B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic]*log(r[ic]);

br eak;
case 2.

/1 The sigma r conditions

A[i][0] = (cbnfic-1][0][2]+bc[ic-1][0]*(cbmic-1][1][2]+cbnmfic-1][2][2]));

AL ][0] -=(cbnfic][O][2]+bc[ic][O]*(cbniic][1][2]+cbniic][2][2]));

Ali][1] = (cbm{ic-1][2][3]+bc[ic-1][2]*(cbnic-1][1][2]*(4.0*log(r[ic])-
1)+2.0*cbn{ic-1][2][2]*(4.0*log(r[ic])+1.0)))*r[ic];

A[i][1] -=(cbm{ic][2][3]+bc[ic]l[1]*(cbmic][1][2]*(4.0*log(r[ic])-
1)+2.0*cbnm{ic][2][2]*(4.0*log(r[ic])+1.0)))*r[ic];

ALTT[i] =(cbnfic-1][1][2] +2*cbnfic-1][2][2])*r[ic] ;

Alil[i+1] = (cbnfic-1][1][2]-2*cbn{ic-1][2][2])*pow(r[ic],-3);
Ali][i+2] = -(cbn{ic][1][2]+2*cbnfic][2][2])*r[ic];
Ali][i+3] = -(cbnfic][1][2]-2*cbnr{ic][2][2])*pow(r[ic],-3);

/1 The w(r) conditions
A[i +1]1[0] =(bc[ic-1][0]-bc[ic][O])*r[ic]*log(r[ic]);
A[i +1]1[1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic];

Ali+1][i] =rlic];
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A[i+1][i+1] = 1.0/r[ic];
AT +1][1+2] = -r[ic];
Ali+1][1+3] = -1.0/r[ic];

// The thermal contributions

B[i] = (cbn{ic][1][2] + cbnfic][2][2])*bc[ic][2]-(cbmic-1][1][2] + chbniic-
1][2][2])*bc[ic-1][2];

Bli] += sc[ic][2][4] - sc[ic-1][2][4];

B[i+1] = ( bec[ic][2] - be[ic-1][2] ) * r[ic];

}
br eak;
defaul t:

{
A[i][0] = sc[ic-1][2][0] - sc[ic][2][0]; /leo terns
Ali]1[1] = ( sc[ic-2][2][1] - sc[ic]l[2][2] ) * r[ic]; [//go terms
Ali + 1][0] = ( be[ic-1][0] - be[ic][O] ) * r[ic];
Ali + 1][1] = ( be[ic-1][1] - be[ic][1] ) * r[ic]*r[ic];
Ali][i] = scl[ic-1][2][2] * pow(r[ic], (L[ic-1] - 1) );
Ali][i+1] = sc[ic-1][2][3] * pow(r[ic], (-L[ic-1] - 1) );
Ali][1+2] = -sc[ic][2][2] * pow(r[ic], (L[ic] - 1) );
AlP][1+3] = -sc[ic][2][3] * powm(r[ic], (-L[ic] - 1) );
Ali+1][i] = powmr[ic], L[ic-1] );
Ali+1][i+1] = powm(r[ic], -L[ic-1] );
Ali+1][i+2] = -powmr[ic], L[ic] );
AT +1][1+3] = -pow(r[ic], -L[ic] );
Bli] = sc[ic][2][4] - sc[ic-1][2][4];
Bl[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic];

}

br eak;
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}

/I next lines stack the matrix el enents associated with the pressure B.C

/1 The inner surface pressure conditions

a=0;
/lset up ternms for switching for the degenerate cases
i f(L[O]==1.0)

a = 1;
i f(L[0]==2.0)

a=2,
switch(a)
{
case 1:

{

A[KK-2][0] =

(cbnf 0] [0] [2] +bc[ 0] [O] *(cbn{ O] [1] [2]*1 og(r[0O])+cbn{ 0] [2][2]*(log(r[0])+1)));

A[KK-2][1] = ((cbn{O][1][2] +2*cbn{O][2][2])*bc[O][1] +cbn{O][2][3])*r[O];
A[KK-2][2] = (cbn{O][1][2]+cbn{0][2][2]);
AL KK-2][3] = (cbnfO][1][2]-cbnfO][2][2])*pow(r[O],-2);
B[KK-2] = -load[1] - (cbnfO][1][2]*log(r[O])+cbn{O][2][2]*(log(r[0])+1))*bc[O][2] -
sc[0][2][4]; }
br eak;
case 2:
{
A[KK-2][0] = (cbn{0][O][2]+bc[O][O0]*(cbn{O][1][2]+cbn{O][2][2]));
A[KK-2][1] = (cbnfO][1][2]*(4*I 0og(r[O])-
1) +2*cbn{ 0] [2][2] *(4*1 0g(r[0O])+1))*bc[O][1]*r[O];
A[KK-2][2] = (cbn{O][1][2]+2*cbn{O0][2][2])*r[O];
A[KK-2][3] = (cbnf0][1][2]-2*cbn{0][2][2])*pow(r[O],-3);
B[KK-2] = -load[1] - (cbnfO][1][2]+cbn{0][2][2])*bc[O][2] - sc[O][2][4];
}
br eak;
defaul t:
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AL KK-2][0] = sc[O0][2][O];
A[KK-2][1] = sc[O][2][1] * r[O];
A[KK-2][2] = sc[O][2][2] * pow(r[O], (L[O] - 1) );
AL KK-2][3] = sc[O][2][3] * pow(r[O], (-L[O] - 1) );
B[KK-2] = -load[1] - sc[0][2][4];

}

break;

/1 The outer surface pressure conditions
a=0;
//set up terns for switching for the degenerate cases
i f(L[K-1]==1.0)

a = 1,
i f(L[K-1]==2.0)
a=2;
switch(a)
{
case 1:
{
A[KK-2]1[0] = (cbn{ K-1][0][2] +bc[K-1][0]*(cbn K-1]1[1][2]*I og(r[K]) +cbn| K-
11[2]1[2]*(1og(r[K])+1)));
AL KK-2][1] = ((cbnK-1][1][2] +2*cbn{ K-1][2][2])*bc[K-1][1] +cbn{ K-1][2][3])*r[K];
A[KK-2][2] = (cbn{K-1][1][2] +cbn{K-1][2][2]);
A[KK-2][3] = (cbn{K-1][1][2]-cbn{ K-1][2][2])*powm(r[K],-2);
B[KK-2] = -load[0] - (cbnm K-1][1][2]*log(r[K])+cbm K-1]1[2][2]*(log(r[K])+1))*bc[K-
1]1[2]- SC[K-1][2][;1];
br eak;
case 2:
{
A[KK-2][0] = (cbn{K-1][0][2] +bc[K-1][O] *(cbn{ K-1][1][2]+cbn{K-1][2][2]));
AlKK-2111] = (cbnm K-1][1][2]*(4*l og(r[K])-1)+2*cbn] K-
11[2][2]*(4*1og(r[K])+1))*bc[K-1][1] *r[K];
A[KK-2][2] = (cbn{K-1][1][2]+2*cbn{ K-1][2][2])*r[K];
A[KK-2][3] = (cbn{K-1][1][2]-2*cbn{K-1][2][2])*powm(r[K],-3);
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B[KK-2] = -10ad[0] - (cbn{K-1][1][2]+cbr{K-1][2][2])*bc[K-1][2]- sc[K-1][2][4]:

}
br eak;
defaul t:

{
A[KK-1][0] = sc[K-1][2][0];
AlKK-11[1] = sc[K-1][2][1] * r[K];
Al KK-1][KK-2] = sc[K-1][2][2] * powm(r[K], ( L[K-1] - 1) );
Al KK-1][KK-1] = sc[K-1][2][3] * powm(r[K], ( -L[K-1] - 1) );
B[KK-1] = -load[0] - sc[K-1][2][4];

}

br eak;

}
}
voi d out put (double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition)

{
doubl e ex=0.0, eo0=0.0, gx0=0.0, w=0.0, Rc;
int a, i;

for (int ab=0; ab<3; ab++)

{

Cal c_Strai n[ ab] =0. 0;
}
//1nner or Quter Surface Strains?
if(strainposition =="i"'||strainposition=="1")
{

i =0;

Rc=r[0];
}
else /[//Quter Surface is the Default condition
{

Re=r[K];
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i =K-1;
}

a=0;

if(L[i]==1.0)
a = 1,

if(L[i]==2.0)
a=2;

switch (a)

{

case 1: /l1sotropic or Transversely |sotropic

{
+ be[i][2]*1 og(Rc);

w = bc[i][0]*Rc*l og(Rc)*x[0] + bc[i][1]*x[1]*Rc*Rc + x[2*(i)+2]*Rc + x[2*(i)+3]/Rc

ex = x[0]; /1 Ex: Epsilon x
eo = w Rc; /1 Eo: Epsilon theta
gxo = X[ 1] *Rc; /1 Gxo: Gamma x-theta
}
br eak;
case 2: [Ibc[i][1l] =0
{

w = bc[i][0]*Rc*x[0] + bc[i][1l]*x[1]*powmM Rc, 2)*(4*log(Rc)-1) + x[2*(i)+2]*pow Rc,
LEiT) + x[2*(i)+3]*powm(Re, -L[i]) + bc[i][2]*Rc;

ex = x[0]; /1 Ex: Epsilon x
eo = w Rc; /1 Eo: Epsilon theta
gxo = X[ 1] *Rc; /1 &xo: Gamma x-theta
}
br eak;
defaul t: /I General Case
{

w = bc[i][0]*Rc*x[0] + bc[i][1l]*X[1]*Rc*Rc + x[2*(i)+2]*powm(Rc, L[i]) +
x[2*(i)+3] *powm Rc, -L[i]) + bcl[i][2]*Re;

ex = x[0]; /1 Ex: Epsilon x
eo = w Rc; /1 Eo: Epsilon theta
gxo = X[ 1] *Rc; /1 &xo: Gamma x-theta
}
br eak;
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/1 Epsilon X
Calc_Strain[0] = ex;

/[l Epsilon Y
Calc_Strain[1l] = eo;

/1 Epsilon XY
Calc_Strain[2] = gxo

11.4 Elastic_Solution.h

/1 Elastic_Solution.h

#i ncl ude "I nversion. h"
#i ncl ude "matri x. h"

#i ncl ude <i ostream h>
#i ncl ude <fstream h>

/*******************************/

/*routines internal to CCM/

/*******************************/

void Elastic_Solution(double C[][7], double E[][10], int matnum int mat[], double r[], double theta[],
doubl e *l oad, double Calc_Strain[], char strainposition);

voi d Cbar(double C[][7], double theta[], double E[][10], int matnum int mat[], double cbn{][4][4], double
et[][4]);

voi d stress(double cbn{][4][4], double et[][4], double L[], double bc[][3], double sc[][4][5]);

voi d mat _stack(double cbn{][4][4], double sc[][4][5], double L[], double bc[][3], double r[], double *I|oad,
double A[][KK], double B[]);

voi d out put (double x[], double r[], double L[], double bc[][3], double Calc_Strain[], char strainposition);
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11.5 Data_Input.cpp

/1 Dat a_l nput . cpp
#i ncl ude "Data_Il nput.h"

ifstreaminputfile, loadfile,expstrain; /I Data file containing input data (material properties,
geonetry, | oads)

of stream tracki ng, outputfile; /I Data files for data output and internmedi ate val ues

i nt Input(double E[][10], double C[][7], int mat[], double radii[], double theta[], double Loads[][4],
doubl e Exp_Strain[][3], char position[])
{

i nputfile.open("Testinput.dat"); /1 Input.dat contains initial guess E's, and geonetry

| cadfil e. open("Test LOADS. dat"); /1l loads.dat contains all |oading conditions (nust alter
num oads val ue in Inversion.h)

expstrain.open("Teststrain.dat");// expstrain.dat contains all the nmeasured strain values (ex, ey,
gxy) for each load condition (num oad # of sets)

t racki ng. open("tracking.dat"); /'l Opening Data files for output and tracking of val ues

doubl e tenp;
char dat atype
int i,j,mtval, matnum
/1 First input value nmust be the nunber of material |ayers
i nputfil e>>mat num
for (mat val =0; nmat val <mat nunt mat val ++)
{

i nputfil e>>dat at ype;

[11f the first value in the input fileis 'C then reads in Cj values
if((datatype == "C )| | (datatype=="¢c'))
{
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for(i=0;i<7;i++)
inputfile>Cmatval][i];
for(i=7;i<10;i ++)

i nputfile>>E[matval][i]; //reads in the therm

Cto E(&Cmatval][0]), & E[matval][0])); [//calculates E's
}

/11f "E' - Reads in Elastic Mduli (E1, E2,E3, Gl2, nul2, nul3, nu23, al, a2,a3) | N ORDER!'!

if((datatype == "E' )| | (datatype=="¢€e'))

for(i=0; i<10; i++)
inputfile >> E[matval ][i];
Cwvatri x(E, C, mat num ; //Cal cul ates the Cij val ues

}

//Reads in all surface radi
for(j=0; j<K+l; |++)
inputfile >> radii[j];

// Reads in each ply angle (degrees) and converts to radi ans
for(i=0; i<K; i++)

{
inputfile >> tenp;
theta[i] = tenp * (Pi/180.0);
inputfile > mat[i];
}
/I Reads in all |oad and experinental strain val ues
for (i=0; i<num oads; i ++) [/ 1TTTLOAD CONDI TI ONS!!!
CONDI Tl ONS! !
{
expstrai n>>position[i]; /1 position[i] =i or
strains

for(j=0; j<4;, j++) /1l Loads[0] = Externa

exp_strain[][0] = e-x
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| oadfile >> Loads[i][]j];
exp_strain[][1l] = e-y
for(int k=0; k<3; k++)
exp_strain[][2] = ganma-Xxy

expstrain>> Exp_Strain[i][Kk]; // Loads[3] =
}

/IWites all data and stiffness values to the tracking file
Qut put _dat a(E, matnum mat,radii,theta, Loads, Exp_Strain
inputfile.close();
| oadfile.close();
expstrain.close();
tracki ng. cl ose();

cout << endl
return matnum

voi d CQut put_dat a(double E[][10],int
doubl e Exp_Strain[][3], char position[],

{

mat num i nt nmat
double (]

tracki ng << "Tube properties entered:" << endl
/[1Prints El ast
for(int i

{

¢ Moduli (EL, E2, E3, G12, nul2, nul3, nu23, al, a2, a3)
=0; i <mat num i ++)

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

t racki
tracki
tracki
t racki
t racki
t racki
t racki
t racki
t racki
t racki

"\ nvateri al #"<<i+1;
"\nE1l =\t"<<E[i][0];
"\nE2 =\t"<<E[i][1];
"\nE3 =\t"<<E[i][2];
"\nGl2 =\t"<<E[i][3];
"\nnul2 =\t"<<E[i][4];
"\nnul3d =\t"<<E[i][5];
"\nnu23 =\t"<<E[i][6];
"\'nal pha-1 =\t"<<E[i][7];
"\'nal pha-2 =\t"<<E[i][8];

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
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/1 Loads[1] =
/] Loads[2] =

Tor si ona

posi tion,

I nternal Pressure

Axi al Load

Load

0;

//Close the data files

doubl e theta[], double Loads[][4],



tracking << "\ nal pha-3 =\t"<<E[i]][9]<<endl <<endl

}

tracki ng <<"\n\nTube geonetry entered:\n";
for(i=0; i<K; i++)

{
tracking << "Ri and Ro of ply #" << i+l<< "\t"<<radii[i]<<"\t\t"<<radii[i+1]<<"\t\tAngle"<<
"\t"<< theta[i]*(180/Pi)<<"\tMaterial #\ t"<<mat[i]+1l<<endl
}

for(int ii=0;ii<num oads;ii++)

/'l Printing out the Load conditions to the tracking file
tracking << "\ nLoad Set #"<< ii+1<<endl|
tracki ng << "\ nLoadi ng Conditions and Measured Strains:" << endl
tracking << "Axial Load = \t" << Loads[ii][2] << endl
tracking << "Torque = \t" << Loads[ii][3] << endl
tracking << "Internal Pressure = \t" << Loads[ii][1l] << endl
tracki ng << "External Pressure \'t" << Loads[ii][0] << endl

[IPrinting out the Measured Strain values for each applied | oad condition

tracking << "\nSurface = ";

if (position[ii]=="i"||position[ii]=="1")
tracking << "\tlnner Surface Strains";
else if (position[ii]=="0"|]|position[ii]=="0)

tracking << "\tCQuter Surface Strains";
el se
tracking << "\tINVALID Response!";
tracking << "\ nAxial Strain (ex) =\t" << Exp_Strain[ii][0] << endl
tracking << "Hoop Strain (ey) =\t" << Exp_Strain[ii][1l] << endl
tracking << "Shear Strain (gxy) =\t" << Exp_Strain[ii][2] << endl
}
tracking << "\n\nlnitial Cj Values:" << endl
for(i=0;i<mtnuni++)
{
tracking << "\nMaterial #"<<i+1
tracking << "\nCll = \t"<<C[i][0];
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tracking << "\nCl2 = \t"<<(C[i][1];
tracking << "\nCl13 = \t"<<Ci][2];
tracking << "\nC22 = \t"<<Ci][3];
tracking << "\nC23 = \t"<<Ci][4];
tracking << "\nC33 = \t"<<(i][5];

tracki ng << "\ nC66 \t"<<C[i]][ 6] <<endl <<endl

tracki ng << endl

}
}
/1 Calculates the C Matrix Values fromthe input data
L e e

void Cvatrix(double E[][10], double C[][7], int matnum //c matri x subroutine
{

doubl e v;

for(int i=0;i<matnumi ++)

{

v =(1- E[i][4] *(E[i][4] * E[i][1] / E[i][O] + 2 * E[i][6] * E[i][5] * E[i][2] / E[i][O]) -
E[i][5] * E[i][5] * E[i][2] / E[i][O0] - E[i][6] * E[i][6] * E[i][2] / E[i][1]);

Cfi][0] = (1 - E[i][6] * E[i][6] * E[i]l[2] / E[i][1]) * E[i][O] / v; Il ci11
Cli][1] = (E[i][4] + E[i][5] * E[i][6] * E[i]l[2] / E[i][1]) * E[i][1] / v; Il c12
Clil]l2] = (E[i][5] + E[i]l[4] * E[i][6]) * E[i][2] / v; Il ¢c13
C[i][3] = (1 - E[i][5] * E[i][5] * E[i][2] / E[i][O]) * E[i][1] / v, Il c22
Cli][4] = (E[i][6] + E[i][4] * E[i][5] * E[i][1] / E[i][O]) * E[i][2] / wv; Il c23
Cli][5] = (1 - E[i][4] * E[i][4] * E[i][1] / E[i][0O]) * E[i][2] / v; /'l ¢33
cilfe] = E[i][3]; Il c66
v=0. 0;

}
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11.6 Data Input.h

/1 Data lnput.h

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>
#i ncl ude "I nversion. h"
#i ncl ude <fstream h>

int Input(double E[][10], double C[][7], int mat[], double radii[], double theta[], double Loads[][4],
doubl e Exp_Strain[][3], char position[]);

voi d Qutput_data(double E[][10], int matnum int mat[], double radii[], double theta[], double Loads[][4],
doubl e Exp_Strain[][3], char position[], double C[][7]);

void Cwvatrix(double E[][10], double C[][7], int matval); /[lc matrix subroutine

11.7 Matrix.cpp

#i ncl ude "Matri x. h"

#i ncl ude <mat h. h>

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
/I Matrix.cpp

The foll owi ng subroutines have been omtted due to copyright considerations. The
appropriate subroutines can be found in Nunerical Recipes (sections on LU Deconposition
and Backsubstitution).
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voi d SysScal e(doubl e *A double *B,int n)

int LUDeconposition (double *A int n,int *indx,int d)
voi d LUBackSub (double *A,int n,int *indx, double *B)
| ong Gauss(doubl e *A, doubl e *B,double *X int n)

11.8 Matrix.h

/I Matrix.h

#i ncl ude <mat h. h>
#i ncl ude "I nversion. h"

voi d SysScal e(doubl e *A double *B,int n);

i nt LUDeconposition (double *A,int n,int *indx,int d);
voi d LUBackSub (double *A int n,int *indx, double *B);
| ong Gauss(doubl e *A, doubl e *B,double *X int n);

11.9 Jacobian.cpp

#i ncl ude <fstream h>
#i ncl ude "jacobi an. h"
#include "El astic_Sol ution. h"

/1 Jacobi an. cpp

voi d Phi Sub(double E[][10],double C[][7], int matnum int mat]
| oad[][ 4], double Exp_Strain[][3], char position[], double PHI|

double r[],double th[], double

— —

)
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doubl e Calc_Strain[3];

for(int i=0 ; i<num oads ; i++)

{

El astic_Solution(C, E, matnum mat, r, th, & load[i][0]), Calc_Strain, position[i]);

PHI [i*3] = Exp_Strain[i][0] - Calc_Strain[O0]; /'l Ex
PHI [i*3+1] = Exp_Strain[i][1l] - Calc_Strain[1]; /'l Ey
PHI [i*3+2] = Exp_Strain[i][2] - Calc_Strain[2]; /1 Gxy

11.10 Jacobian.h

/1 Jacobi an. h

#include "Inversion.h" //for the paraneters NAP, ND, et cE

voi d Jacobi an(double E[][10],double C[][7],int matnum int mat[], double r[], double th[], double
el oad[][4],double Exp_Strain[][3], char position[], double jaco[][NAP]);

voi d Phi Sub(double E[][10],double C[][7], int matnum int mat[], double r[], double th[], double
el oad[][4], double Exp_Strain[][3], char position[], double PH [ND]);

11.11 Pmatrix.dat
5. 09E+06
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WNRFRPPFPLPOOWO WNNPFRPPFRPODMD NWORr M~OA NNRFRPEFE OO

NNOO WO b~

. 07E+05
. 15E+05
. 21E+05
. 24E-01
. 89E-01
. 66E-01

. O5E+06
. 44E+05
. 32E+05
. 20E+05
. 94E- 02
. 44E-01
. 78E-01

. 7T0E+06
. 50E+05
. 15E+05
. 07E+05
. 06E-01
.42E-01
. 46E-01

. 19E+06
. 75E+05
. 29E+05
. 24E+05
.03E-01
.29E-01
. 55E-01

. 80E+06
. 03E+05
. 97E+05
. 54E+04
. 56E- 02
. 49E- 01
.47E-01
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. 39E+06
. 83E+05
. 95E+05
. 66E+04
. 55E- 02
. 77E-01
. 54E- 01

. 60E+06
. 91E+05
. 25E+05
. 08E+05
. 20E-01
. 99E-01
. 97E-01

. 39E+06
. 41E+05
. 97E+05
. 14E+04
. 24E-01
. 51E-01
. 38E-01
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12 Appendix E. Forward Solution

Here is the source code for the Forward Solution containing the degenerate solutions

X3

*

Forward_Solution.cpp
Forward_Solution.h
Elastic_Solution.cpp
Elastic_Solution.h
Data_Input.cpp

Data _Input.h
Matrix.cpp

Matrix.h

R/
°e

X3

S

X3

*

R/
°e

X/
SO X4

R/

*

K/
L X4

12.1 Forward_Solution.cpp
/'l First attenpt at witing a Forward Sol uti on Program

#i ncl ude <i ostream h>

#i ncl ude <i omani p. h>

#i ncl ude "Data_Il nput.h"

#i ncl ude "Forward_Sol ution. h"
#include "El astic_Sol uti on. h"
#incl ude <fstream h>

#i ncl ude <mat h. h>

void Profile(double cc[][7], double ee[][10], double rad[K+1], double th[K], int mat[matnun], double
BB[ KK], of stream responsexy, ofstreamresponsel?);

voi d main()

{
int i,mat[ K], theErr=0;
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doubl e E[ mat num [ 10], C[rmatnum [ 7], B[ KK];

doubl e radii[K+1l], theta[ K], Loads[num oads][4], Ep[6], EpX/6];
of stream strainfile;

of stream responsexy, responsel?2;

responsexy. open("responsexy. dat");
responsel2. open("responsel2. dat");
strainfile.open("strain.dat");

Input (E, radii, theta, mat, Loads); /I Reads the input file for all data val ues
Cvatri x(E, O ; [l Cal culates the Stiffness Matrix Val ues
Qut put _data(E, radii,theta, mt, Loads, C); /I'Wites all data and stiffness values to the screen

and tracking file
strainfile << "Loading Condition\n";

for(i=0;i<num oads;i ++)
{
theErr=El astic_Solution(C E , radii,theta, mat, (&Loads[i][0]), Ep, EpX, B);

if (theErr==1)
{
cout <<"Si ngul ar Matrix";
strainfil e<<"\nSi ngular Matrix\n";
}
strainfile << "\ nExternal Pressure\t"<<Loads[i][O];
strainfile << "\t\tAxial Strain"<<"\tHoop Strain"<<"\tShear Strain";
strainfile << "\ninternal Pressure\t"<<Loads[i][1]<<"\tlnner Surface
Strain\t"<<EpX[ 0] <<"\t"<< EpX[ 1] <<"\t"<<EpX[2];
strainfile << "\nAxial Force\t"<<Loads[i][2]<<"\tQuter Surface Strain\t"<<
EpX[ 3] <<"\t " <<EpX[ 4] <<"\t"<<EpX[ 5] ;

strainfile << "\ nTorque\t"<<Loads[i][3];
strainfile << endl

responsexy<<"Load Condition =\t"<<i
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responsexy<<"\tPo =\t"<<Loads[i][0]<<"\tPi =\t"<<Loads[i][1]<<"\tAxial Force
=\t"<<Loads[i][2] <<"\tTorque =\t"<<Loads[i][3];

responsel2<<"Load Condition =\t"<<i
responsel2<<"\tPo =\t"<<Loads[i][0] <<"\tPi =\t"<<Loads[i][1l]<<"\tAxial Force
=\t"<<Loads[i][2] <<"\tTorque = \t"<<Loads[i][3];

Profile(C, E radii,theta, mat, B, responsexy, responsel2);

strainfile.close();

//Calculate the stress/strain response through the tube wall thickness

responsexy. cl ose();
responsel2. cl ose();

}

void Profile(double cc[][7], double ee[][10], double rad[K+1], double th[K],int mat[], doubl e BB[KK],
of stream responsexy, ofstream responsel?2)

{

int i=0,j=0,a;

doubl e axstrain, axstress, hoopstrain, hoopstress, shearstrain, shearstress, radstrain, radstress,r
double sc[K][4][5],bc[KI[3], L[K], con{KI[4][4], et[K][4];

double el, e2, e3, gl2,sl1,s2,s3,s12, mn;

Cbar(cc, th, mat, ee, cbm et);

stress(cbm et, L, bc, sc);

responsexy<<"\nPly nunber"<<"\tRadi us"<<"\tAx Strain"<<"\tHoop Strain"<<"\tShear Strain"<<"\tRadia
Strain"<<"\t Ax Stress"<<"\tHoop Stress"<<"\tShear Stress"<<"\tRadial Stress"<<endl

responsel2<<"\nPly nunber"<<"\tRadius"<<"\t1l Strain"<<"\t2 Strain"<<"\t12 Strain"<<"\t3 Strain"<<"\t1l
Stress"<<"\t2 Stress"<<"\t12 Stress"<<"\t3 Stress"<<endl
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for (i=0;i<K;i++)
{
a=0;
if(L[i]==1.0)
a=1;
if(L[i]==2.0)
a=2;

for(j=0;j<5;j++)
{

/lincrements steps through each |ayer
r=rad[i]+*((rad[i+1]-rad[i])/4);
[ *x*xxxxxxxxxxchack bc[i][2] definitions - does it need to be nmult by r??2*x*x*x*xrxkkrkrkrx
switch(a)
{
case 1:
{
/1 Strain Response x-y coordinates
radstrain = (BB[2*i +2])-(BB[2*i +3] *powm(r, -
2))+bc[i][0]*BB[ O] *(log(r)+1)+2*bc[i][1]*BB[ 1] *r+bc[i][2]*(log(r)+1);
hoopstrain = (BB[ 2*i +2] ) +( BB[ 2*i +3] *pow(r, -
2))+bc[i][0]*BB[ O] *l og(r)+bc[i][1]*BB[1]*r+bc[i][2]*Iog(r);
axstrain = BB[O0];
shearstrain = BB[1] *r;
}
br eak;
case 2:
{
/] Strain Response x-y coordinates
radstrain = (2*BB[2*i +2] *r) - (2*BB[ 2*i +3] *pow(r, -
3))+bc[i][0]*BB[ 0] +bc[i][ 1] *BB[ 1] *2*r*(4*l og(r)+1)+bc[i][2];
hoopstrain = (BB[2*i +2] *r) +(BB[ 2*i +3] *pow(r, -
3))+bc[i][0]*BB[ 0] +bc[i][1]*BB[ 1] *r*(4*l og(r)-1)+bc[i][2];
axstrain = BB[O0];
shearstrain = BB[1] *r;
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br eak;
defaul t:
{
//Strain Response x-y coordi nates
radstrain = (L[i]*BB[2*i +2] *pow(r, L[i]-1))-(L[i]*BB[2*i +3]*powr,-L[i]-
1)) +bc[i][0] *BB[ O] +2*bc[i ][ 1] *BB[ 1] *r+bc[i][2];
hoopstrain = BB[ 2*i +2] *pow(r, L[i]-1)+BB[ 2*i +3] *pow(r,-L[i]-
1) +bc[i][0]*BB[ O] +bc[i][1] *BB[ 1] *r+bc[i][2];
axstrain = BB[O0];
shearstrain = BB[1] *r;
}

br eak;

}

/1 Stress Response x-y coordi nates

axstress = cbn{i][0][0]*(axstrain-et[i][0])+cbn{i][0][1]*(hoopstrain-
et[i][1])+cbnm{i][0][2]*(radstrain-et[i][2])+cbn[i][O][3]*(shearstrain-et[i][3]);

hoopstress =cbnfi][O0][1]*(axstrain-et[i][0])+cbnfi][1][1]*(hoopstrain-
et[i][2])+cbnfil[1][2]*(radstrain-et[i][2])+cbn{i][1][3]*(shearstrain-et[i][3]);

radstress = cbnfi][0][2]*(axstrain-et[i][0])+cbn{i][1][2]*(hoopstrain-
et[i][2])+cbn{i][2][2]*(radstrain-et[i][2])+cbn{i][2][3]*(shearstrain-et[i][3]);

shearstress = cbn{i][0][3]*(axstrain-et[i][0])+cbn{i][1][3]*(hoopstrain-
et[i]J[1])+cbnm{i][2][3]*(radstrain-et[i][2])+cbni][3][3]*(shearstrain-et[i][3]);

// Rotate to the material coordinates 1-2
mecos(th[i]);

n=sin(th[i]);

el = axstrai n*m*mthoopstrai n*n*n+shearstrai n*nfn;
e2 = axstrai n*n*n+hoopstrai n*n*m shearstrai n*nfn;
e3 = radstrain;

gl2 = 2*nmrn*(hoopstrai n-axstrain)+shearstrai n*(nmmn*n);

sl = axstress*ntmthoopstress*n*n+shearstress*ntn;
s2 = axstress*n*n+hoopstress*n*m shearstress*ntn;
s3 = radstress;

s12 = 2*n¥n*(hoopstress-axstress) +shearstress*(ntmn*n);
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[/ Qutput the data to a file

responsexy<<i +1<<"\t"<<r<<"\t"<<axstrai n<<"\t"<<hoopstrai n<<"\t"<<shearstrai n<<"\t"<<radstrai n<<"\t"<
<axstress<<"\t"<<hoopstress<<"\t"<<shearstress<<"\t"<<radstress<<end|

responsel2<<i +1<<"\t"<<r<<"\t"<<el<<"\t"<<e2<<"\1"<<gl2<<"\ 1" <<e3<<"\ 1" <<sl<<"\ 1" <<s2<<" \ 1 "<<s12<<"\ t
" <<s3<<endl|

}
}
responsexy <<endl <<endl
responsel?2 <<endl <<endl

12.2 Forward_Solution.h

// Header file for the Forward sol ution
/1 Modify the needed information for each different material run
#i ncl ude <mat h. h>

#define K 20 /I Nunber of plies in the conposite |ay-up

#define KK 2*K+2 /I Nunber of equations for Elastic Solution

#define h 0.0001 /1Size of difference used in approximte derivative

#define dT O /| Tenperature change for thermal strains and stresses
#define Pi acos(-1)

#def i ne num oads 50 /I Nurmber of | oad conditions

#define mat num 1 /I Nunber of different material conponents (for hybrid conposites)

12.3 Elastic_Solution.cpp

#i ncl ude "El astic_Sol ution. h"
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/! Forward Solution -- Elastic_Solution.cpp

int Elastic_Solution(double C[][7], double E[][10], double r[], double th[], int mat[], double *I|oad, double
Ep[], double EpX[], double B[])
{

int i=0,j,jj,k,indx[KK],flagl=0, flag2=0, num theErr=0;

double sc[K][4][5], bc[KI[3], L[K], cbn{K][4][4], et[K][4];

doubl e Amatri x[ KK] [ KK] ;

for(j=0;]j<KK;j++)
f or (k=0; k<KK; k++)
Amat ri x[j ][ k] =0. 0;

nunmeKK;
Cbar(C, th, mat,E, cbm et); /Il Transformations to create the cbar matrix
stress(cbm et, L, bc, sc); /! Rel ations between strain, displacenent

and stress

mat _stack(cbmsc, L, bc, r, load, & Amatrix[0]), B); //Creates matrix to solve for constants
Eo, Go, Al's and A2's

for(j=0;j<KK;j++) /1 Checks A for isotropic, single |ayer
condi tion of
{ /leither pure tension or pure
shear
i f(Amatrix[j][0]==0.0)
flagl+=1;
if(Amatrix[j][1]==0.0)
flag2+=1;
}
i f(flagl==KK-1) /llsotropic condition of pure shear - no
axial strain
{

for(j=0;j<KK;j++)
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for (k=0; k<KK- 1; k++)

{
Amatrix[j][k]l= Amatrix[j][k+1];
B[ k] =B[ k+1] ;

}

num=KK- 1;

i f(flag2==KK-1)
tension - no shear strain

{
for(j=0;j<KK;j++)
for(k=1; k<KK- 1; k++)
{
Amatrix[j]1[k]= Amatrix[j][k+1];
B[ k] =B[ k+1];
}
nunEKK- 1;
}

SysScal e( & Amatri x[0][0]), B, nun);

for (jj=0;jj<numjj++)
indx[jj] = O;

t heErr =LUDeconposition(& Amatri x[0][0]), numindx,i);

if (theErr!=0) return(thekrr);

LUBackSub( & Amat ri x[ 0] [0]), num i ndx, B);

if (flagl==KK-1)
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/I perforns PA=LU for LUBackSub

/1 Sol ves system PAXx=PB (returns x in B)



for(j=KK-1;j>0;j--)
B[j1=B[j-1];
B[ 0] =0;
}
if (flag2==KK-1)
{
for(j=KK-1;j>1;j--)
Blj1=B[j-1];
B[ 1] =0;
}

output(B, th, r, L, bc, Ep, l|oad, EpX); // Returns cal cul ated strains
return(thekrr);

}

//************************************************************

//***********I nt er nal Subroutl nes*****************************

voi d Cbar(double C[][7], double theta[], int mat[], double E[][10], double cbni][4][4], double et[][4])
/lc-bar matrix function

short i,j,Kk;

int p;

doubl e m=0. 0, n=0. 0;

for(i=0;ic<K;i++)

{
m = cos(thetal[i]);
n = sin(thetali]);
p=mt[i];

Cp][0]*pow(m 4) + (2*pow(n¥n,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*pow(n,4);
pow(m*n, 2)*(C[p][0] + C[p][3] - 4*Cp][6]) + Cp][1]*(powmm4) + pow(n,4));
Cpll2]*mm+ C[p][4]*n*n;

cbnfi][0][0]
confi][0][1]
confi][0][2]
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cbnfi][0][3]
confi][1][1]
confi][1][2]
confi][1][3]
confi][2][2]
confi][2][3]
confi][3][3]

for(j =1; j<4 ;

mn*(Clp][O] *m'm - C([p][3]*n*n - (Cp][1] + 2*Cp][6])*(mm- n*n));
A p][0] *pow(n, 4) + (2*pow(ntn,2))*(C[p][1] + 2*C[p][6]) + C[p][3]*powmm 4);
Cpl[2]*n*n + C[p][4] *ntm
gn;fg][p][o]*n*n - dpll3]*mm+ (C[p][1] + 2*C[p][6])*(m'm - n*n));

p ;
mn*(Cp]l[2] - C[p][4]);
(Cpl[0] + Cp][3] - 2*Cp][1])*pow(n*n,2) + C p][6]*pow((n'm- n*n),2);

j )

for(k = 0; k<j ; k++)
cbhnfi][jl[k] = cbmi][K][j]; [//stacks symretric terns

et[i][0] = (E[p]l[7]*mm+ E[p][8]*n*n)*dT; /1X thermal strain
et[i][1] = (E[p][7]*n*n + E[p][8]*ntm *dT; /I THETA thermal strain
et[i][2] = E[p][9]*dT; /IR thermal strain

et[i][3] = 2*mn*(E[p][7] - E[p][8])*dT; /1 X- THETA thermal strain

void stress(double cbn{][4][4],double et[][4],double L[], double bc[][3], double sc[][4][5])

/lstress coefficients with the added degenerate cases of L=1,2

{
short i,j;
doubl e zz=0;
int a;

for(i=0; i<K ; i++)
{

a=0;

L[i] = sqgrt(fabs(cbn{i][1][1] / cbnfi]l[2][2]));

if(L[i]==1.0)
a = 1,

if(L[i]==2.0)
a=2;
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switch(a)

{

case 1:

/| Gamma

/1 Orega

/1 Psi

case 2:

//1sotropic and Transversely Isotropic Condition cbnfi][1][1] = cbnfi][2]][2]

{
be[i][0] = (cbn{i][O][1] - cbn{i][O][2])/(2*cbnfi][2][2]);
be[i][1] = (cbn{i][1][3] - 2*cbn{i][2][3])/(4*cbn{i][2][2] - cbn{i][1][1]);
be[i][2] = 1/(2*cbnli][2][2]);

/] Psi
zz=(cbn{i][0][2]-cbnfi][O][1])*et[i][O]+(cbnli][1][2]-cbn{i][1][1])*et[i][1
zz += (cbnli][2][2]-cbnfi][1][2])*et[i][2] +(cbnfi][2][3]-cbn{i][1][3])*et[i
bec[i][2] *= zz;
for(j =0; j<4 ,; j++)

{
sc[i][j][4] = - et[i][O]*cbn{i][O][j] - et[i][1]*cbn{i][1][]];
sc[i][j][4] -= et[i][2]*cbnli][2][j] + et[i][3]" Cbrﬂl][J][S]:
/1j=0: SI GVAX coefficients :last indx=0-> coeff of
/1j=1: SIGVAtheta coefficients :last indx=1-> coeff of (Go R)
[1]j=2: S| GVAr coefficients :last indx=2-> coeff of Al RM(L-1)
[1j=3: TAUx-theta coefficients :last indx=3-> coeff of A2 RM(-L-1)
/1 :last i ndx=4-> const ant
}
}
br eak;
/] Causes the b[i][1l] termto blowp in default equations

{
be[i][0] = (cbn{i][O][1] - cbn{i][O][2])/(3*cbnfi][2][2]); /1 Ganma
be[i][1] = (cbn{i][1][3] - 2*cbn{i][2][3])/(16*cbn{i][2][2]); /1 Orega
be[i][2] = 1/(3*cbnli][2][2]);

|
1131

zz=(cbn{i][0][2]-cbn{i][O][1])*et[i][O]+(cbn{i][1][2]-cbn{i][1][1])*et[i][1];
zz += (cbnli][2][2]-cbnli][1][2])*et[i][2]+(cbni][2][3]-cbnfi][1][3])*et[i][3];

287



be[i][2] *= zz;

for(j = 0; j<4 ; j++)

{
sc[i][j][4] = - et[i][O]*cbn{i][O][j] - et[i][1]*cbnli][1][j];
sc[i][j]1[4] -= et[i][2]*cbn{i][2][j] + et[i][3]" Cbnil][J][S];
/1] =0: S| GVAX coefficients :last indx=0-> coeff of
/1j=1. SIGVAtheta coefficients :last indx=1-> coeff of (Go R)
[1j=2: SI GVAr coefficients :last indx=2-> coeff of Al R*(L-1)
[1j=3: TAUx-theta coefficients :last indx=3-> coeff of A2 RM(-L-1)
/1 :last indx=4-> constant

}

default: //The General Solution for the Conposite Cylinder nodel

}
br eak;
{
/| Gamma
/1 Orega
/| Psi

et[i][3]*cbnli][j][3];

be[i][0] = (cbn{i][O0][1] - cbnfi][0][2]) / (cbn{i][2][2] - cbnli][1][1]);
be[i][1] = (cbnfi][1]1[3] - 2 * cbn{i][2][3]) / (4 * cbn{i][2][2] - cbn{i][1][1]);
be[i][2] =1/ (cbnfi][2][2] - cbnli][1][1]);

zz=(cbn{i][0][2]-cbn{i][O][1])*et[i][O]+(cbn{i][1][2]-cbn{i][1][1])*et[i][1];
zz += (cbnli][2][2]-cbnli][1][2])*et[i][2]+(cbn{i][2][3]-cbnfi][1][3])*et[i][3];

be[i][2] *= zz;

for(j = 0; j<4 ; j++)

{
scl1]011[0] = con{i][0][j] + beli1[0]*(cbn{i][1][j] + cbrfil[21[j1):
sc[i1[j1[1] = cbn{i][j][3] + be[i][1]*(cbn{il[1][j] + 2*cbn{i][2][i]);
sc[i]1[i1[2] =cbn{i][1][j] + L[i] * cbnfi][2][j];
sc[i]1[j1[3] =cbn{i][1][j] - L[i] * cbn{i][2][j]; | | |
scli]1[1[4] = be[1]121*(ebrli1[4][]] + cbn{i][21[])- et[i1[0]*cbnfi][O][i]:
sc[i1[j1[4] += -et[i][1]*cbn{i][1][j] - et[i][2]*cbn{i][2][]] -
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/1] =0: Sl GVAX coefficients
/[1j=1: SIGVAtheta coefficients

[1]j=2: Sl GVAr coefficients
/1j=3: TAUx-theta coefficients
/1

void mat _stack(double cbn{][4][4], double sc[][4][5], double L[],

double (*A)[KK], double B[])

:last i ndx=0->
clast indx=1->
:last indx=2->
:last i ndx=3->
;1 ast i ndx=4->

/I'subroutine for stacking the conponents of the |inear system Ax=B

short i, j, ic;
double ro,ri,r2, ro2, r3, ro3, r4, ro4, blt2, b2t2;
int a;
for(i = 0; i<KK ; i++) [linitialize [A],{B}
{
B[i] = 0.0;
for(j = 0; j<KK; j++)
Ali]l[j] = 0.0;
}
/I next two | oops stack el enents associated with the integrated B.C
bit2 = 0;
b2t2 = 0;
for(i = 0; i<K ;i++)
{

L[i] = sqgrt(fabs(cbnfi][1][1] / cbnfil[2][2]));
a=0;
/lset up terms for switching for the degenerate cases
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doubl e bc[][3], double r[],
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if(L[i]==1.0)
a = 1,
if(L[i]==2.0)
a=2;

//define radii terms for ease of progranmm ng and debuggi ng

ri =rf[il;
ro = r[i+1];
r2 = pow(r[i], 2);

ro2 = pow(r[i+1], 2);
ro3 = pow(r[i+1], 3);
r3 = pow(r[i],3);
rod4 = pow(r[i+1],4);
r4 = pow(r[i],4);

swi tch(a)
{
case 1:
{
A[O][0] += 0.5*(ro2-r2)*(cbn{i][0][0]);
A[O][0] += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5)*r2)*bc[i][0]*cbn{i][0]]1];
Al0][0] += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5)*r2)*bc[i][0]*cbn{i][0][2];

A[O0][1] += (cbn{i][O][3]+bc[i][2]*(cbn{i][O][1]+2*cbn{i][0][2]))*(ro3-r3)/3.0;

A[1][0] += (cbn{i][0][3]*(ro3-r3))/3.0
A[1][0] += (((1.0/3.0)-1og(ri))*cbni][1][3]+((-2.0/3.0)-
log(ri))*cbn{i][2][3])*bc[i][0]*r3/3.0
A[1][0] += ((log(ro)-
(1.0/3.0))*cbn{i][1][3]+((2.0/3.0)+ og(ro))*cbrm{i][2][3])*bc[i][0]*ro3/3.0
A[1][1] += (cbn{i][3]1[3]+bc[i][21]*(cbnfi][1][3]+2*cbn{i][2][3]))*(ro4-r4)/4.0

bit2 += 0.5*((log(ro)-0.5)*ro2-(log(ri)-0.5*r2)*cbn{i][0][1]*bc[i][2];
bit2 += 0.5*((log(ro)+0.5)*ro2-(log(ri)+0.5) *r2)*cbn{i][0][2]*bc[i][2];
bit2 += (sc[i][O0][4]*( ro2 - r2)) [ 2.0;
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b2t2 += ((3.0*1 og(ro)-
1.0)*cbn{i][2][3]+(3.0*log(ro)+2.0)*cbn{i][2][3])*ro3*bc[i][2]/9.0;
b2t2 -= ((3.0*log(ri)-
1.0)*cbn{i][2][3]+(3.0*log(ri)+2.0)*cbn{i][2][3])*r3*bc[i][2]/9.0;
b2t2 += (sc[i][3][4]*( ro3 - r3)) [/ 3.0;
}

br eak;
case 2:

{

A[O][0] += (cbnfi][O][O] +bc[i][O]*(cbn{i][O][1]+cbn{i][0][2]))*(ro2-r2)/2.0;

A[O][1] += (((4.0*1og(ro)-7.0/3.0)*ro3-(4.0*log(ri)-
7.0/3.0)*r3)*cbn{i][0][1] *bc[i][1])/3.0;

AlO][1] += (((4.0*log(ro)-1.0/3.0)*ro3-(4.0*l og(ri)-
1.0/3.0)*r3)*2*cbn{i][0][2] *bc[i][1])/3.0;

A[0][1] += (ro3-r3)*cbn{i][0][3]/3.0

A[1][0] += (cbnfi][O0][3]+bc[i][O]*(cbn{i][1][3]+cbni][2][3]))*(ro3-r3)/3.0;

A[1][1] += (rod4-r4)*cbnli][3][3]/4.0+((log(ro)-
0.5)*cbn{i][1][3]+2*log(ro)*cbn{i][2][3])*bc[i][1]*ro4;

A[1][1] -= ((0.5-Tog(ri))*cbnfi][1]1[3]-2*1og(ri)*cbn{i][2][3])*bc[i][1]*r4,;

blt2 += (cbni

1101 [ 1] +cbm{i]1[0][2])*(ro2-r2)*(bc[i][2])/2.0:;
blt2 += (sc[i][0][4]*

11
[4]*( ro2 - r2)) [ 2.0;

b2t2 += (cbnm{i][1][3]+cbni][2][3])*(ro3-r3)*bc[i][2]/3.0;
b2t2 += (sc[i][3][4]*( ro3 - r3)) [/ 3.0;

}

br eak;

defaul t:

{/1A[O0][i] = Fx Conditions A[1][i] = Tx Conditions
A[O][0] += (sc[i][O][O]*( ro2 - r2)) [/ 2.0;
A[11[0] += (sc[i][3][0]*( ro3 - r3)) / 3.0;
A[O][1] += (sc[i][O][2]*( ro3 - r3)) [/ 3.0;
Al11[1] += (sc[i][3][2]*( rod4 - r4)) | 4.0;

blt2 += (sc[i][0][4]*( ro2 - r2)) / 2.0;
terns
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b2t2 += (sc[i][3][4]*( ro3 - r3)) / 3.0;

}
br eak;
}
}
ic = 0;
for(i = 2; i<(KK-1) ; i += 2)
{ i C++;

//set up terns for switching for the degenerate cases
a=0;
i f(L[ic-1]==1.0)
a = 1;
i f(L[ic-1]==2.0)
a = 2;

/ldefine radii terms for ease of programm ng and debuggi ng
ri

ro
r2

riic-1];

riic];
pow(r[ic-1],2);
ro2 pow(r[ic], 2);
ro3 pow(r[ic], 3);
r3 = powrf[ic-1], 3);
ro4 = powm(r[ic]l,4);
r4 = pow(r[ic-1], 4);

switch(a)
f:ase 1:
{ A[O][i] = (cbnfic-1][0][1]+cbn{ic-1][0][2])*(r2-r02)/2.0;
ALO][i+1] = (log(ro)-log(ri))*(cbnfic-1][0][1]-cbnfic-1][0][2]);//check 2*cbnic-
1]1[0][ 2] A[1][i] = (ro3-r3)*(cbnfic-1][1][3] +cbnfic-1][2][3])/3.0:
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br eak;
case 2:

}

br eak;
defaul t:

{
1]);

1]);
}

br eak;

}

}

/1 Appl i ed Loads
B[ 0] (load[2] [/
B[ 1] (load[ 3] /

/I next |oop stacks the

A[1][i+1] = (ro-ri)*(cbnfic-1][1][3]-cbnfic-1][2][3]);

A[O][i] = (cbnfic-1][0][1]+2*cbn{ic-1][0][2])*(ro3-r3)/3.0;
A[O][i+1] = (2.0%cbn{i][0][2]-cbn{i][0][1])*((1.0/r0) - (1.0/ri));
A[1][i] = (cbnfic-1][1][3]+2*cbnfic-1][2][3])*(ro4-r4)/4;

A[1][i+1] = (cbn{ic-1][1][3]-2*cbn{ic-1]1[2][3])*(1og(ro)-1og(ri));

A[O]J[i] = sc[ic-1][0][2]*(powWro, 1+L[ic-1]) - pow(ri, d+L[ic-1]) ) [/ (1+L[ic-1]);
A[O][i+1] = sc[ic-1][0][3]*(powWro, 1-L[ic-1]) - pow(ri, 21-L[ic-1]) ) / (1-L[ic-

Al1][i] = sc[ic-1][3][2]*(powro, 2+L[ic-1]) - pow(ri, 2+L[ic-1]) ) [/ (2+L[ic-1]);
Al 1][i+1] = sc[ic-1][3][3]*(powro, 2-L[ic-1]) - pow(ri, 2-L[ic-1]) ) / (2-L[ic-

(2 * Pi)) - blt2;
(2 * Pi)) - b2t2;

el enents associated with the interface conditions wi](r) = wi+1](r) and sigma-r

ic = 0;

for(i = 2; i<(KK-3) ; i += 2)

{
/lset up ternms for switching for the degenerate cases
a=0;
if(L[ic]==1.0)

a = 1;
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switch(a)

i f(L[ic]==2.0)

/1 The sigma r conditions
A[i][0] = (cbnfic-1][0][2]+bc[ic-1][O0]*(cbnmfic-1][1][2]*log(r[ic])+cbniic-

1J02][2)*(log(r[ic])+1)));

ALT][0]

=(cbnfic][0][2] +bc[ic][O]*(chbnfic][1][2]*Iog(r[ic])+chbn{ic][2][2]*(log(r[ic])+1)));

1J[2][2]

Ali1[1] = ((cbnfic-1]1[1][2]+2*cbn{ic-1][2][2])*bc[ic-1][1]+cbric-1][2][3])*r[ic];
ALi][1] -=((cbnfic][1][2]+2*cbn{ic][2][2])*bc[ic][1]+cbnmlic][2][3])*r[ic];

Ali][i] =(cbn{ic-1][1][2]+cbn{ic-1][2][2])
ALi1[i+1] = (cbm{ic-1][1][2]-cbric-1][2][2])*pow(r[ic],-2);//check2*cbnfic-

-(cbnfic][1][2] +cbnfic][2][2]);
-(cbnfic][1][2]-cbnfic]l[2][2])*powmr[ic],-2);//check2*cbn{ic-1][2]]2]

Ali][i+2] =
A[i][i+3] =
/1 The w(r) conditions

A[i +1]1[0] =(bc[ic-1][0]-bc[ic][O])*r[ic]*log(r[ic]);
A[i +1]1[1] =(bc[ic-1][1]-bc[ic][1])*r[ic]*r[ic];

Ali+1][i] =rlic];

Ali+1][i+1] = 1.0/r[ic];
Ali +1][i+2] = -r[ic];
A[i+1][i+3] = -1.0/r[ic];

// The thermal contributions

Bl[i] = (cbnfic][1][2]*log(r[ic])+cbnfic][2][2]*(log(r[ic])+1))*bc[ic][2];

Bl[i] -= (cbn{ic-1]J[1][2]*log(r[ic])+cbnfic-1][2][2]*(log(r[ic])+1))*bc[ic-1][2];
B[i] += sc[ic][2][4] - scl[ic-1][2][4];

B[i+1] = ( bc[ic][2] - bec[ic-1][2] ) * r[ic]*log(r[ic]);
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br eak;
case 2:

/1 The sigma r conditions

A[i][0] = (cbm{ic-1][0][2]+bc[ic-1][0]*(cbmic-2][1][2]+cbmic-1][2][2]));

ALT][0] -=(cbnfic][O][2]+bc[ic][O]*(cbn{ic][1][2]+cbnfic][2][2]));

A[i][1] = (cbnfic-1][2][3]+bc[ic-1][2]*(cbnic-1][1][2]*(4.0*log(r[ic])-
1)+2.0*cbnfic-1][2][2]*(4.0*log(r[ic])+1.0)))*r[ic];

Ali]1[1] -=(cbnfic][2][3]+bc[ic][1]*(cbnmfic][2][2]*(4.0*log(r[ic])-
1)+2.0*cbnfic][2][2]*(4.0*log(r[ic])+1.0)))*r[ic];

ALi1[i] =(cbnic-1][1][2]+2*cbn{ic-1][2][2])*r[ic] ;
Ali][i+1] = (cbnlic-1][1][2]-2*cbn{ic-1][2][2])*pow(r[ic],-3);
ALi1[i+2] = -(cbnfic][1][2]+2*cbn{ic][2][2])*r[ic];
ALIT[i+3] = -(cbnlic][1][2]-2*cbn{ic][2][2])*pow(r[ic],-3);

/1 The w(r) conditions
Ali+1][0] =(bc[ic-1][0]-bc[ic][O])*r[ic]*log(r[ic]);
A[i1+1][1] =(bc[ic-2][2]-bc[ic][2])*r[ic]*r[ic];

Ali+1]1[i] =r[ic];

Ali+1][i+1] = 1.0/r[ic];
A[i +1][i+2] = -r[ic];
Ali+1][i+3] = -1.0/r[ic];

// The thermal contributions
B[i] = (cbnfic][1][2] + cbnfic][2][2])*bc[ic][2]-(cbm{ic-21][1][2] + cbniic-
1][2][2])*bc[ic-1][2];
Bl[i] += sc[ic][2][4] - scl[ic-1][2][4];
B[i+1] = ( bc[ic][2] - bc[ic-1][2] ) * r[ic];
br eak;

defaul t:
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A[i][0] = sc[ic-1][2][0] - sc[ic][2][0]; /leo terns
Ai]1[1] = ( sc[ic-21[2][1] - sc[ic]l[2][2] ) * r[ic]; [//go terms

A[i + 1][0] = ( bc[ic-1][0] - bc[ic][O] ) * r[ic];

Ali + 1][1] = ( bc[ic-1][1] - be[ic][1] ) * r[ic]*r[ic];

ALTT[T] = sc[ic-1][2][2] * pow(r[ic], (L[ic-1] - 1) );

ALT][i+1] = sc[ic-1][2][3] * pow(r[ic], (-L[ic-1] - 1) );
Ali][i+2] = -sc[ic][2][2] * pow(r[ic], (L[ic] - 1) );
ALT][i+3] = -sc[ic][2][3] * pow(r[ic], (-L[ic] - 1) );

Ali+1][i] = powmr[ic], L[ic-1] );

Ali+1][i1+1] = powm(r[ic], -L[ic-1] );
Ali+1][1+2] = -pow(r[ic], L[ic] );
Ali+1][1+3] = -pow(r[ic], -L[ic] );

Bli] = sclic][2][4] - sc[ic-1][2][4];
Bli+1] = ( be[ic][2] - be[ic-1][2] ) * rlic];

br eak;

}
/I next lines stack the matrix elenments associated with the pressure B.C

/1 The inner surface pressure conditions
a=0;
/lset up terms for switching for the degenerate cases
i f(L[0]==1.0)
a = 1;
i f(L[0]==2.0)
a=2;
switch(a)
{

case 1:

AL KK-2][0] = (cbn{0][0][2]+bc[O][O]*(cbn{O][1][2]*1og(r[0O])+cbn{O][2][2]*(10g(r[0])+1)));
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ALKK-2][1] = ((cbn{O][1][2]+2*cbn{ O] [2][2])*bc[O][1]+cbn{O][2][3])*r[0O];

Al KK-2] [ 2] ;(Cbn{O][1][2]+Cbn10][2][2]);
A[KK-2][3] = (cbn{0][1][2]-cbn{0][2][2])*pow(r[O],-2);
B[KK-2] = -load[1] - (cbnfO][1][2]*log(r[O0])+cbnfO][2][2]*(10g(r[0])+1))*bc[O][2] -
sc[0][2][4];
break;
case 2:
{
A[KK-2][0] = (cbn{0][0][2]+bc[O][0]*(cbn{O][1][2]+cbn{0][2][2]));
ALKK-2][1] = (cbn{O][1][2]*(4*10og(r[0])-1)+2*cbn{O][2][2]*(4*l0og(r[0])+1))*bc[O][1]*r[O];
A[KK-2][2] = (cbn{O][1][2]+2*cbn{O][2][2])*r[O];
ALKK-2][3] = (cbn{0][1][2]-2*cbn{0][2][2])*pow(r[0O],-3);
B[KK-2] = -load[1] - (cbn{O][1][2]+cbn{O][2][2])*bc[O][2] - sc[O][2][4];
}
break;
defaul t:
{
A[KK-2][0] = sc[0][2][O];
A[KK-2][1] = sc[O][2][1] * r[O];
ALKK-2][2] = sc[O][2][2] * pow(r[O], (L[O] - 1) );
ALKK-2][3] = sc[O0][2][3] * pow(r[O], (-L[O] - 1) );
B[KK-2] = -load[1] - sc[0][2][4];
}
break;
}
/1 The outer surface pressure conditions
a=0;

/lset up ternms for switching for the degenerate cases
i f(L[K-1]==1.0)
a =1;
i f(L[K-1]==2.0)
a=2;
switch(a)

{
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case 1:

A[KK-2][0] = (cbn{K-1][0][2] +bc[K-1][O0]*(cbn K-21][1]1[2]*!1 og(r[K]) +cbnf K-
1]02][2]*(log(r[K])+1)));
A[KK-2][1] = ((cbn{K-1][1][2]+2*cbn{ K-1][2][2])*bc[K-1][1] +cbn{K-1][2][3])*r[K];
A[KK-2][2] = (cbn{K-1][1][2]+cbn{ K-1][2][2]);
A[KK-2][3] = (cbn{K-1][1][2]-cbn{K-1][2][2])*pow(r[K], -2);
B[KK-2] = -load[0] - (cbn K-1]1[1]1[2]*1 og(r[K])+cbn{K-1][2][2]*(log(r[K])+1))*bc[K-1][2]-
sc[K-1][2][4];
}
br eak;
case 2:
{
A[KK-2][0] = (cbn{K-1][0][2]+bc[K-1][O0]*(cbn{K-1][1][2] +cbn{K-1][2][2]));
AlKK-2111] = (cbm K-1]1[1][2]1*(4*log(r[K])-1)+2*cbn K-1][2][2]*(4*log(r[K])+1))*bc[ K-
[ *r[K];
A[KK-2][2] = (cbn{K-1][1][2]+2*cbn{ K-1][2][2])*r[K];
AL KK-2][3] = (cbn{K-1][1][2]-2*cbn{ K-1][2][2])*pow(r[K], -3);
B[KK-2] = -load[0] - (cbn K-1][1][2] +cbn{K-1][2][2])*bc[K-1][2]- sc[K-1][2][4];
}
br eak;
defaul t:
{
A[KK-1][0] = sc[K-1][2][0];
A[KK-11[1] = sc[K-1][2][1] * r[K];
A[KK-1][KK-2] = sc[K-1][2][2] * pow(r[K], ( L[K-1] - 1) );
A[KK-1][KK-1] = sc[K-1][2][3] * powm(r[K], ( -L[K-1] - 1) );
B[ KK-1] = -load[0] - sc[K-1][2][4];
}
br eak;

}
}
voi d out put (doubl e BB[], double th[], double rad[], double L[], double bc[][3], double Ep[], double *Ioad,
doubl e EpX[])
{
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int surface[2]={0,K-1},i,j,a;
doubl e radstrain, hoopstrain, axstrain, shearstrain, r

for (int ab=0; ab<6; ab++)
{
EpX[ ab] =0. 0;
Ep[ ab] =0. 0;
}
for (j=0;j<2;j++)
{

i =surface[j];

a=0,
if(L[i]==1.0)
a=1,
if(L[i]==2.0)
a=2;
if(j==1)
r=rad[i+1];
el se
r=rad[i];
[[x*xxxxxxxxxxcheck bc[i][2] definitions - does it need to be nmult by r??2*x*x*xxxkrkkkkrkrx
switch(a)
{
case 1:
{

/1 Strain Response x-y coordinates
radstrain = (BB[2*i +2])-(BB[2*i +3] *pow(r, -
2))+bc[i][0]1*BB[ O] *(l og(r)+1)+2*bc[i][1]*BB[1] *r+bc[i][2]*(log(r)+1);
hoopstrain = (BB[2*i +2] ) +(BB[ 2*i +3] *pow(r, -
2))+bc[i][0]1*BB[O] *l og(r)+bc[i][1] *BB[ 1] *r+bc[i][2]*]0g(r);
axstrain = BB[O0];
shearstrain = BB[1] *r;
}
br eak;
case 2:
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{

/1 Strain Response x-y coordinates
radstrain = (2*BB[ 2*i +2] *r) - (2*BB[ 2*i +3] *pow(r, -
3))+bc[i][0]*BB[ 0] +bc[i][ 1] *BB[ 1] *2*r*(4*l og(r)+1) +bc[i][2];
hoopstrain = (BB[2*i +2] *r) +(BB[ 2*i +3] *pow(r, -
3))+bc[i][0]*BB[ O] +bc[i][1]*BB[ 1] *r*(4*l og(r)-1)+bc[i][2];
axstrain = BB[O0];
shearstrain = BB[ 1] *r;
}
break;
defaul t:
{
//Strain Response x-y coordi nates
radstrain = (L[i]*BB[2*i +2] *pow(r, L[i]-1))-(L[i]*BB[2*i +3]*powr,-L[i]-
1)) +bc[i][0]*BB[ O] +2*bc[i ][ 1] *BB[ 1] *r+bc[i][2];
hoopstrain = BB[ 2*i +2] *pow(r, L[i]-1)+BB[ 2*i +3] *pow(r,-L[i]-
1) +bc[i][0]*BB[ O] +bc[i][1] *BB[ 1] *r+bc[i][2];
axstrain = BB[O0];
shearstrain = BB[1] *r;
}
br eak;
}
EpX[ 3*j ] =axstrai n;
EpX[ 3*j +1] =hoopstrai n;
EpX[ 3*j +2] =shear strai n;

12.4 Elastic_Solution.h

/1 Elastic_Sol ution.h

#i ncl ude "Forward_Sol ution. h"
#i nclude "matrix. h"
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#i ncl ude <i ostream h>
#i ncl ude <fstream h>

/*******************************/

/[*routines internal to CCM/

/**-k*-k**************************/

int Elastic_Solution(double C[][7], double E[][10], double r[], double theta[], int mat[], double *Ioad,
doubl e Ep[], double EpX], double B[]);

voi d Cbar(double C[][7], double theta[], int mat[], double E[][10], double cbn{][4][4], double et[][4]);
voi d stress(double cbn{][4][4], double et[][4], double L[], double bc[][3], double sc[][4][5]);

voi d mat _stack(double cbn[][4][4],double sc[][4][5], double L[], double bc[][3], double r[], double *Ioad,
doubl e (*A)[KK], double B[]);

voi d out put (double BB[], double theta[], double rad[], double L[], double bc[][3], double Ep[], double

*| oad, doubl e EpX[]);

12.5 Data_Input.cpp

/1 File for input and output of information to data files

#i ncl ude "Data_Il nput.h"

ifstreaminputfile, |oadfile; /I Data file containing input data (material properties, geonetry,
| oads)
of stream tracki ng, outputfile; /I Data files for data output and internmedi ate val ues

char *input, *|oad;
voi d I nput(double E[][10], double radii[], double theta[], int mat[], double Loads[num oads][4])
{

/1 Change for input from User

i nput = "Testinput.dat";
| oad = "Test LOADS. dat";

i nputfile.open(input);
| oadfil e. open(l oad);
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tracki ng. open("tracki ng.dat"); /1 Opening Data files for input, output and tracki ng of
val ues
out putfile.open("output.dat");

int i,j;
doubl e tenp;
for(i=0; i<matnunyi ++)
{
for( j=0; j<10; j++) /I Reads in Elastic Mdul

(E1, E2, E3, Gl2, nul2, nul3, nu23, al, a2, a3) | N ORDER!!
inputfile >> E[i][j];

}
for(j=0; j<K+1; |++) //Reads in all surface radi

inputfile >> radii[j];
for(i=0; i<K; i++) // Reads in each ply angle (degrees) and converts to

radi ans

{

inputfile >> tenp;

theta[i] = tenmp * (Pi/180);

inputfile >> mat[i]; // Reads in the material nunber information (0,1,2...)
}
for(i=0;i<num oads;i ++)
{ /1 '1I11TLOAD CONDI TI ONS!'!'!

for(j=0; j<4; j++) /1l Loads[0] = External Pressure

loadfile >> Loads[i][j]; // Loads[1] = Internal Pressure

} /! Loads[2] = Axial Load

// Loads[3] = Torsional Load

}

voi d Qutput_data(double E[][10], double radii[], double theta[], int mat[], double Loads[num oads][4],
double ]1[7])
{

tracki ng << "Tube properties entered:" << endl
for(int i=0;i<matnumi ++)
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tracking << "\n\nMaterial #"<<i+1
for(int j=0;j<10;j ++)
{

}

t racki ng<<endl| <<endl

tracking << "\nE["<<j<<"] =\t"<<E[i][j];
}
tracki ng <<"\nTube geonetry entered:\n";
for(i=0; i<K; i++)

{
tracking << "Ri and Ro of ply #" << i+l<< "\t"<<radii[i]<<"\t\t"<<radii[i+1l]<<"\t\tAngle"<<
"\t"<< theta[i]*(180/Pi)<<"\tMaterial #\t"<<mat[i]<<endl

}
for(i=0;i<num oads;i ++)
{
tracki ng << "\ nLoadi ng Conditions #"<<i+l<<":" << endl
tracking << "Axial Load = \t" << Loads[i][2] << endl
tracking << "Torque = \t" << Loads[i][3] << endl
tracking << "Internal Pressure = \t" << Loads[i][1l] << endl
tracking << "External Pressure = \t" << Loads[i][0] << endl <<endl
}

for (i=0;i<matnunyi ++)

tracki ng<<"\nCij Values for Material #"<<mat[i]<<endl
for (int j=0;j<7;j++)
tracking << "\nC"<<j<<"] = "<<(i][j];

tracki ng<< endl <<end|

}

tracki ng << endl
tracking. cl ose();

}

/1l Calcualtes the C Matrix Values fromthe input data
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void CMvatrix(double E[][10], double C[][7]) //c matrix subroutine

{
doubl e v;
for(int i=0;i<matnunyi++)
{
| v = (1- E[i][4] *(E[i][4] * E[i][1] / E[i][0] + 2 * E[i][6] * E[i][5] * E[i][2] / E[i][O]) -
E[i][5] * E[i][5] * E[i][2] / E[i][0] - E[i][6] * E[i][6] * E[i][2] / E[i][1]);
qai]fo] = (1 - Ei][6] * E[i][6] * E[i][2] / E[i][1]) * E[i][O] / v; Il c11
ailf1] = (e[i][4] + E[i][5] = E[i][6] * E[i][2] / E[i][1]) * E[i][1] / v; Il c12
ailf2] = (E[i][5] + E[i][4] * E[i][6]) * E[i][2] / v; Il c13
aill3] = (1 - Ei][5] * E[i][5] * E[i][2] / E[i][O]) * E[i][1] / v; Il c22
Clil[4] = (E[i][6] + E[i][4] * E[i][5] * E[i][1] / E[i][O]) * E[i]l[2] / v; Il ¢23
Clil[5] = (1 - E[i]l[4] * E[i][4] =* E[i][d] / E[i][0O]) * E[i]l[2] / v; /1l ¢33
cfiljre] = Eil[3]; Il c66
}
}

12.6 Data_Input.h

/1 Data Input.h

#incl ude <i ostream h>
#i ncl ude <i omani p. h>
#i ncl ude "Forward_Sol ution. h"
#i ncl ude <fstream h>

voi d I nput(double E[][10], double radii[], double theta[],int mat[], double Loads[num oads][4]);

voi d CQutput_data(double E[][10], double radii[], double theta[],int mat[], double Loads[num oads][4],
double C1[7]);

void CMatri x(double E[][10], double C[]1[7]); //c matrix subroutine

304



12.7 Matrix.cpp

#i ncl ude "Matri x. h"

#i ncl ude <mat h. h>

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>
[/ Matrix.cpp

The foll owi ng subroutines have been omtted due to copyright considerations. The

appropriate subroutines can be found in Nunerical Recipes (sections on LU Deconposition
and Backsubstitution).

voi d SysScal e(doubl e *A double *B,int n)
i nt LUDeconposition (double *A int n,int *indx,int d)

voi d LUBackSub (double *A int n,int *indx, double *B)
| ong Gauss(doubl e *A, doubl e *B, double *X int n)

12.8 Matrix.h

[/ Matrix.h

#i ncl ude <math. h>

voi d SysScal e(doubl e *A double *B,int n);

i nt LUDeconposition (double *A,int n,int *indx,int d);
voi d LUBackSub (double *A int n,int *indx, double *B);
| ong Gauss(doubl e *A, doubl e *B, double *X, int n)
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