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Abstract: Quantitative precipitation estimation (QPE) remains a key area of uncertainty in hydrological
modeling and prediction, particularly in small, urban watersheds, which respond rapidly to precipitation
and can experience significant spatial variability in rainfall fields. Few studies have compared QPE
methods in small, urban watersheds, and studies that have examined this topic only compared model
results on an event basis using a small number of storms. This study sought to compare the efficacy of
multiple QPE methods when simulating discharge in a small, urban watershed on a continuous basis
using an operational hydrologic model and QPE forcings. The research distributed hydrologic model
(RDHM) was used to model a basin in Roanoke, Virginia, USA, forced with QPEs from four methods:
mean field bias (MFB) correction of radar data, kriging of rain gauge data, uncorrected radar data, and
a basin-uniform estimate from a single gauge inside the watershed. Based on comparisons between
simulated and observed discharge at the basin outlet for a six-month period in 2018, simulations forced
with the uncorrected radar QPE had the highest accuracy, as measured by root mean squared error
(RMSE) and peak flow relative error, despite systematic underprediction of the mean areal precipitation
(MAP). Simulations forced with MFB-corrected radar data consistently and significantly overpredicted
discharge, but had the highest accuracy in predicting the timing of peak flows.
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1. Introduction

Precipitation is a key driver in the hydrologic cycle and associated modeling efforts. There have
been significant advances in simulating runoff flow rate and volume due to higher resolution digital
elevation models and land cover rasters (e.g., [1–3]), better mapping and incorporation of storm
sewer networks (e.g., [4,5]), improved computational efficiency, and a wider variety of hydrology and
hydraulic (H&H) models from which to choose. However, quantitative precipitation estimation (QPE)
remains a key component of model uncertainty, regardless of the resolution of the remaining model
components. QPE uncertainty is exacerbated in areas with orographic or convective precipitation due to
heterogeneity in rainfall spatiotemporal distribution [6,7]. Some studies have shown that even small,
fragmented urbanized areas can cause significant increases and/or decreases in precipitation due to
impacts on temperature and wind [8,9]. With growing urbanization and climatic changes increasing
the frequency and magnitude of hydrologic extremes [10], the ability of QPEs to simulate and predict
hydrologic response accurately at high spatiotemporal resolutions is becoming increasingly important.

Accurate, high-resolution rainfall data are required to reduce the error in hydrologic models,
particularly those in small to mid-sized, urban watersheds. Several factors drive the need for high-resolution
data: first is the small size, high variability in land cover, and rapid runoff response of urban catchments,
and second is the potential for rainfall to vary significantly in space and time at small scales [6,11,12].
Relatively small variability in spatiotemporal rainfall distributions have resulted in large errors in predicted
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streamflow, with estimated rainfall identified as the biggest contributor to error in modeling, rather than
land-based parameters [13].

In an effort to improve the accuracy of QPEs and associated hydrologic simulations, many studies
have compared multiple methods of precipitation estimation (e.g., gauge only, radar only, gauge-radar
hybrid) for streamflow prediction, and all have found that a hybrid approach yields the most accurate
streamflow predictions [14–19]. However, these studies have primarily occurred under one or more of
the following conditions: large (>1000 km2) or rural watersheds, varying degrees of gauge coverage
(sometimes sparse), or using spatiotemporal resolutions too coarse for urban hydrology (e.g., 1 h,
4 km). Hence, the results may not be applicable to small, urban watersheds.

Radar-derived QPEs are a useful tool for urban hydrology because of their capacity to capture
the spatial variability of rainfall fields [20]. Unlike the point measurements of gauges, radar provides
spatially-distributed QPEs at varying resolutions. In the U.S., the National Weather Service (NWS)
Next-Generation Radar (NEXRAD) network offers a variety of S-band, dual-polarization (dual-pol)
radar products, from base reflectivity to gauge-corrected national mosaics. However, as the degree of
processing and bias correction increases, the spatiotemporal resolution of the radar QPE decreases.
The 1-h and 4-km resolution of products such as NEXRAD Stage III/IV or Multisensor Precipitation
Estimator (MPE) is too coarse for urban H&H modeling, which requires a resolution of at least 5 min
and 1 km [21–23]. Consequentially, a higher resolution, but non-gauge corrected radar QPE is one of
the few choices for modeling small, urban watersheds. Within the NEXRAD framework, the Level III
dataset fulfills this role. The Level III dataset contains a variety of products at varying resolutions
(e.g., instantaneous rainfall intensity, one-hour accumulations, storm velocity, direction, hydrometeor
type, etc.). A Level III dataset exists for each NWS radar site, and a publicly-available archive goes back
to the late 1990s. Late in the first decade of the Twenty-First Century, dual-polarization upgrades to all
NWS radars were completed, which significantly improved radar accuracy over single-polarization.
For this study, the instantaneous precipitation rates, also known as digital precipitation rates (DPR),
were used from an NWS radar site (ID: KFCX) located approximately 40 km southwest of Roanoke.
DPR is generated through an empirical formula (i.e., rainfall-reflectivity relationships) that converts
reflectivity to a precipitation rate and has not been corrected with gauge data. However, DPR is
available at a very high resolution: 600 m and ~3–5 min when in precipitation mode (~20 min when
in clear air mode). Given the irregular time interval of the DPR dataset, temporal standardization
(e.g., uniform 5-min time steps) is required before bias correction or model input.

Few studies have compared the differences in hydrologic simulations of small, urban watersheds
forced with various QPE products (e.g., gauge network, uncorrected radar, gauge-radar hybrid).
Such studies [7,11,21,24,25] have generally performed advanced geostatistical merging techniques on radar
and gauge data (e.g., conditional merging, Bayesian merging, error variance minimization). These studies
have found marginal to moderate improvement over less complex correction techniques such as kriging
and/or mean field bias (MFB) correction, but significant improvement over uncorrected radar.

Previous studies have relied on hydrologic and hydraulic (H&H) models calibrated with rain gauge
data, run on an event basis. Further, only a small number of storms were examined in each study,
typically between four and 10 events. In comparing various QPE forcings, use of an uncalibrated model,
run on a continuous basis, could be preferable since this may prevent calibration bias (e.g., towards
a gauge-centric QPE if gauges are used in calibration) and would evaluate QPEs under a greater variety of
hydrometeorological conditions. Additionally, use of an operational model and forcings has the potential
to be later adapted for flash flood forecasting, warnings, etc., in urban areas at a high spatiotemporal
resolution. Thus far, no study has evaluated hydrologic models of small, urban watersheds forced with
Next-Generation Radar (NEXRAD) dual-pol Level III data.

Applying the research distributed hydrology model (RDHM) [26] in an urban setting, where
high-resolution hydrologic prediction is needed, provides insight into the utility of using a model for
small urban hydrology that was specifically developed as an operational model for larger, natural
watersheds, typically with coarser spatial resolutions. The RDHM release includes a set of a priori,
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physically-based, gridded parameters that spans the conterminous United States (CONUS), making
calibration optional. This is an attractive option given the likelihood that calibration against one of the
model forcing precipitation datasets used in the study would bias experimental results. Observed
streamflow from a United States Geological Survey (USGS) gauge provided discharge measurements at
the basin’s outlet. USGS measured discharge values are used as the basis for experimental comparisons
resulting from the various precipitation forcings.

The goal of this paper is to compare the efficacy of various gauge and radar QPE methods for
hydrologic prediction in a small urban watershed in Roanoke, Virginia, on a continuous basis using
an operational, uncalibrated H&H model. Specifically of interest is the evaluation of high-resolution
dual-pol Level III radar data due to their wide availability and long-term archive. A continuous record
of 5-min, 300-m rainfall fields using four different QPE forcings was created for a six-month period
during 2018. The QPE methods used include kriging of rain gauge data, MFB correction of NWS
radar data, uncorrected radar data, and a basin-uniform rainfall depth based on a single gauge inside
the watershed. The study region, QPE methods, and hydrologic model are described in Section 2.
QPE and model results are presented in Section 3. The discussion occurs in Section 4, and conclusions
are made in Section 5.

2. Materials and Methods

2.1. Study Area

This study examines the Lick Run watershed (~19.4 km2), a tributary of the Roanoke River located
in Roanoke, Virginia, U.S. (Figure 1). The watershed is approximately 35% impervious and subject to
a variety of land uses [27]. Located in a mountain valley, the Roanoke-metropolitan area has a history
of frequent flooding, resulting in property damage and sometimes death. Much of the basin is served
by the city’s municipal separate storm sewer system (MS4). In the study area, the average distance
between rain gauges is ~6.5 km, and the gauge density in the Lick Run basin is 1 gauge per 9.7 km2.
A USGS stream gauge provides high accuracy, near real-time measurements of discharge at the basin’s
outlet every five minutes.
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Figure 1. (a) Regional view of study area, including DEM, Lick Run watershed, KFCX radar site, rain
gauges, and stream gauge (co-located with one rain gauge at the basin outlet). (b) Large-scale view of
the study area. The last four digits of the gauge ID are shown for USGS gauges. National Weather
Service (NWS) gauge marked by Automated Surface Observation System (ASOS) ID.
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2.2. QPE Datasets

Multiple agencies operate platforms with both real-time access to and long-term archives of rain
gauge and other hydrometeorological data. Two of the most commonly-used networks in the U.S.
are the National Water Information Service (NWIS) operated by the United States Geological Survey
(USGS) and the Automated Surface Observation System (ASOS) operated jointly by the National
Weather Service (NWS), the Department of Defense (DOD), and the Federal Aviation Administration
(FAA). In Roanoke, Virginia, the USGS recently installed a network of nine rain gauges that provide
fairly good coverage of the metropolitan area. These gauges became operational at the beginning of
March 2018. The ASOS gauge (ID: KROA) located at the Roanoke airport has an archive going back
to 1948. Full gauge identifiers and corresponding abbreviations are shown in Table A1. Gauge data
were used to create three of the four QPE datasets: rainfall fields derived by kriging 5-min incremental
depths measured at all 10 rain gauges, MFB-corrected 5-min incremental depths, and a basin-uniform
estimate based on the measured 5-min depth at the KROA gauge. Level III instantaneous precipitation
rates from the KFCX radar near Roanoke were used to create two of the four QPE datasets: uncorrected
5-min incremental depths and MFB-corrected 5-min depths.

2.3. QPE Processing

Among gauge-based estimates, there is a variety of methods for spatial interpolation between
gauges. Two such methods—ordinary kriging and inverse distance weighting—have generally been
shown to yield the most accurate rainfall estimates [28,29]. Kriging is a sophisticated method of spatial
interpolation and generally performs well in areas where orographic effects on rainfall are present.
Kriging involves creation of a variogram, or the relationship between distance and variance between
points in a topological dataset, which is then used to estimate values between points.

Mean field bias (MFB) correction is perhaps the most common and easiest method for bias
correction of radar rainfall data. MFB correction involves calculation of the ratio of average rainfall
depth measured by selected gauges to the average depth determined by radar at the gauge location(s)
(Equation (1)).

β =
1
n
∑n

i=1 Pg−i
1
n
∑n

i=1 Pur−i
=

∑n
i=1 Pg−i∑n
i=1 Pur−i

(1)

where:

β = mean field bias
Pg−i = precipitation depth at gauge i measured by the rain gauge (mm)
Pur−i = precipitation depth at gauge i measured by uncorrected radar (mm)
n = number of gauges

The MFB ratio can be calculated on any time scale (e.g., 1 day, 1 h, 5-min), using incremental
depth measurements of the selected time scale. Once calculated, the ratios are applied to the entire
uncorrected radar rainfall field at each time step (Equation (2)).

Pcr−t = Pur−t × βt (2)

where:

Pcr−t = corrected radar rainfall depth field at time t (mm)
Pur−t = uncorrected radar rainfall depth field at time t (mm)
Bt = MFB ratio at time t

For this study, the mean field bias correction process involved correction of the Level III NEXRAD
data using the 10 rain gauges in the study area. First, using Linux bash scripting and GRASS GIS
7.4 [30], the irregular time series of Level III instantaneous intensity raster grids were interpolated
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to a 1-min resolution. These 1-min intensity rasters were then used to calculate 5-min depth rasters,
resulting in the uncorrected radar QPE (Figure 2).
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a corresponding time series of 5-min incremental depths (Figures 3–5). Over the 6-month study period,
each NWIS gauge was typically missing slightly less than two days of data in total or ~1% of the entire
period (Table A2). For each NWIS gauge, R was used to create a placeholder data frame with a 5-min
time step that covered the entire study period. A separate data frame that held the downloaded NWIS
gauge data and had missing data periods was joined to the placeholder data frame; any null values
(missing data) in the resulting data frame were replaced with zero values. Missing data were not
observed for the KROA gauge. However, since the KROA gauge had an irregular time series (typically
a 5-min resolution, but not consistently), the incremental depths were temporally interpolated to
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during the interpolation process. Similarly, since the Level III DPR radar data also had an irregular
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For MFB correction, a sample of the uncorrected radar (uncorr.) estimated precipitation depth
was taken every five minutes at each gauge location for the study period. MFB ratios were calculated
every five minutes from the sampled radar depths and gauge depths. MFB ratios of infinity (Inf.),
“not a number” (NaN), or 0 (resulting from #/0, 0/0, or 0/#, respectively) were replaced with 1. The MFB
ratios were then applied to the archive of 5-min, uncorrected radar rainfall fields, creating a new set of
corrected rainfall fields (Figure 3). A final bash script was used to re-project the rasters spatially to
the Hydrologic Rainfall Analysis Project (HRAP) projection [32] and convert the ASCII radar grids to
XMRG files prior to model input. XMRG is a binary file format commonly used by NWS and required
for RDHM input [33].

The 5-min incremental (inc.) gauge data were spatially interpolated by kriging using the autoKrige
function in the automap R library [34]. autoKrige automatically determines which model to use for
variogram fitting (e.g., spherical, Gaussian, exponential) based on the given point data, then uses the
resulting variogram to perform kriging. The resulting rainfall fields were then reprojected to HRAP
and converted to XMRG files (Figure 4).

Creation of the single-gauge, uniform-basin QPE simply involved using the 5-min incremental
depths from the KROA gauge time series to create a series of rasters populated with the gauge depth
at each time step (Figure 5).

All of the QPE products were created at a resolution of 600 m to match the native resolution of the
original Level III radar data, but were later re-sampled to 300 m before RDHM input to match the model
resolution. In total, an archive of high-resolution data was created for the four QPE products (kriging,
MFB corrected radar, uncorrected radar, and single gauge) spanning from 1 May 2018–31 October 2018,
a period during which approximately two-thirds of the total annual precipitation occurred.

2.4. Research Distributed Hydrologic Model

The National Weather Service (NWS) Hydrology Laboratory previously developed a distributed
H&H model called the Research Distributed Hydrologic Model (RDHM), which is one of the models
used for hydrologic forecasting in various NWS River Forecasting Centers (RFCs). Principal model
components include Sacramento-Soil Moisture Accounting (SAC-SMA), rutpix overland and channel
routing (kinematic wave), and SNOW-17 for snow operations. RDHM comes with a set of a priori
SAC-SMA parameters that have been developed for the entire conterminous United States (CONUS)
and were derived using soil and land cover data from the Soil Survey Geographic Database (SSURGO)
and National Land Cover Dataset (NLCD), respectively. Similarly, a CONUS-wide set of rutpix
parameters is provided based on elevation data originally at a 400-m resolution [26]. However,
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the parameters, forcings, and resolution are typically derived and operated at a coarse scale, most
commonly a 1 HRAP grid (nominally ~4 km). Model initialization is generally recommended and
typically involves a 1-year or more warm-up simulation to determine initial model states for the study
period. Calibration is also recommended, but is not possible in ungauged watersheds. The a priori
parameters are therefore a useful tool for modeling in ungauged watersheds and aid in the calibration
process for gauged watersheds [35].

For this study, a warm up simulation was run from 1 January 2017–31 December 2018 using
precipitation and 2-m air temperature data from NASA’s Land Data Assimilation Systems (NLDAS).
NLDAS provides real-time and historic land surface states, surface water fluxes, and energy fluxes at
an hourly, 1/8-degree resolution. NLDAS variables originate from station-, remote-, and model-based data.
The NLDAS precipitation data used in this study were derived from parameter-elevation regressions on
independent slopes model (PRISM) adjusted daily gauge measurements resampled to an hourly scale
using NEXRAD Stage II radar data. Most of the atmospheric variables in NLDAS, 2-m air temperature
included, come from the North American Regional Reanalysis (NARR) [36]. From this historical
simulation, the model states (e.g., channel depth, flow rate, soil water content, etc.) at the beginning of
each month were used as the initial states for each monthly simulation (May–November 2018) forced with
the high-resolution QPE datasets. RDHM was operated at a 1/16 HRAP grid resolution (approximately
300 m) due to the small size of the watershed and was run uncalibrated to avoid introducing bias towards
one of the QPE methods. Simulated discharge at the basin’s outlet from each of the precipitation forcings
was compared to observed discharge measured by the USGS stream gauge.

Although gridded estimates of other hydrologic variables were generated from the RDHM
simulations, including soil moisture, surface/subsurface flow, soil temperature, etc., these variables
were not evaluated. This is due to the lack of observed data at the needed spatiotemporal resolution
for meaningful comparisons. Furthermore, the study’s emphasis was on hydrologic prediction for
flood monitoring in small urban watersheds, not a detailed evaluation of the RDHM.

3. Results

3.1. QPE Products

Multiple QPE products were generated at a 5-min, 600-m resolution for model input, including:
uncorrected Level III radar data, MFB-corrected Level III radar data, kriged rain gauge data (10 gauges),
and a watershed uniform depth based on measurements at the KROA rain gauge. Figure 6 shows
a comparison of gauge and radar 5-min incremental depths before (a) and after (b) MFB correction.
MFB correction appears to result in overestimation for the upper range of corrected radar rainfall
depths (Figure 6b), resulting in overestimation of predicted discharge for simulations forced with
MFB-corrected radar data.

From the 5-min incremental depths, cumulative depths were calculated over the study period for
gauge, uncorrected radar, and MFB corrected radar QPEs at each gauge location (Figure 7).

Mean areal precipitation (MAP) over the Lick Run basin was calculated by RDHM during each
simulation along with the discharge time series. From the incremental MAP, the cumulative MAP was
calculated for each month (Figure 8).

In order to evaluate discharge overprediction by certain high-resolution QPE methods (e.g.,
MFB correction and kriging), the cumulative MAP from NLDAS and the KROA gauge between the
beginning of 2017 and the end of 2018 was calculated and compared (Figure 9). The cumulative MAP
from KROA and NLDAS was 2612 mm and 2447 mm, respectively; a difference of 165 mm.

For the six-month study period in 2018, cumulative precipitation between NLDAS and each
gauge in the network was calculated and compared (Figure 10). NLDAS had the lowest cumulative
depths over the study period and appeared to underpredict for larger storm events. Note that the final
difference in cumulative precipitation between the KROA gauge and NLDAS is different in Figures 9
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and 10. This was due to the different time frames over which cumulative precipitation was calculated
and was exaggerated due to differing y-axis scales.
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3.2. Model Results

From the uncalibrated historical simulation, a time series of predicted discharge at the basin outlet
was generated by RDHM, then compared with USGS stream gauge measurements at the same location
(Figure 11).

The saved model states from this historical simulation were used as warm start values for the
monthly simulations forced with each of the four high-resolution QPEs (Figure 12).

Figure 13 shows the largest flow events from each month of the high-resolution simulations.
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Figure 13. High-resolution (5-min, ~300 m) simulation predicted flow compared to measured discharge
for the biggest flow events each month.

Since the monthly simulations were conducted on a continuous basis, the root mean squared error
(RMSE) was calculated hourly rather than on an event basis. Similarly, RMSE values calculated during
baseflow periods were removed. Here, baseflow was defined as anything less than 0.3 cubic meters
per second (cms), and any hourly RMSE values less than 0.3 cms were removed. Figure 14 shows the
hourly RMSE values for each QPE forcing by month.

Relative error in peak flow (REPQ) was analyzed by QPE forcing for each month by extracting
the peaks for any flow event that surpassed 1 cms (Figure 15). The peak time error (PTE) for these
events was also summarized (Figure 16). The number of flow events analyzed each month (n) ranged
from 4–9.
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Forty (40) flow events above 1 cms occurred between 1 May 2018 and 1 November 2018. A summary
of RMSE, REPQ, and PTE is shown in Table 1.

Table 1. Predicted discharge skill summary by QPE forcing.

Metric
QPE

MFB Kriging Single Gauge Uncorr. Radar

Hourly RMSE (cms)

Mean 2.69 1.54 1.71 1.10
Median 0.94 0.95 0.94 0.70

Minimum 0.3 0.3 0.3 0.30
Maximum 368 26.3 22.5 12.6

REPQ (%)

Mean 131 61.2 64.1 −3.4
Median 110 45.5 40.9 −21.4

Minimum −92.7 −78.3 −97.6 −93.2
Maximum 519 382 441 176

PTE (hours)

Mean 1.65 3.66 3.61 2.61
Median 2.08 3.08 2.75 3

Minimum −27.3 −0.5 −0.33 −27.3
Maximum 10.8 9.67 23.5 9.25

4. Discussion

The RDHM simulations yielded interesting and counterintuitive results: the uncorrected radar
QPE forcing resulted in the most accurate discharge predictions, rather than the more sophisticated
methods of kriging and MFB correction. Regarding predicted discharge magnitude, the simulations
forced with uncorrected radar data had the lowest error as measured by hourly RMSE and peak flow
relative error. The kriging and single-gauge QPE forcings resulted in moderately worse and relatively
similar performance statistics; while the MFB-corrected radar QPE led to significantly worse results,
caused by severe and consistent overprediction. In terms of peak timing, the MFB forcing performed
moderately better than the remaining QPE methods, all of which had similar aggregate results.

As expected, the uncorrected radar systematically underpredicted. Less expected was the overprediction
of the three other QPE forcings (MFB, kriging, single gauge). There are several possible explanations
for the overestimation of the three QPE forcings: model parameterization, QPE methodology, and/or
model initialization.

Here, model parameterization refers to the a priori SAC-SMA and rutpix routing parameters
based on soil, land cover, and elevation data. Potentially, the resolution of the datasets from which
the parameters were derived and/or the resolution of the resulting parameter grids (one HRAP grid
resolution) was too coarse for small, urban watersheds. Alternatively, mechanisms in the parameter
derivation process led to parameters which caused overestimated discharge predictions. One or both
of these rationales would explain the performance statistics of the uncorrected radar: even though
radar data that have not been gauge corrected are well known to unpredict precipitation, discharge
overestimation attributed to RDHM parameterization may increase the predicted flow such that the
uncorrected radar forcing had the highest skill. Re-derivation of model parameters using higher
resolution data and/or producing higher resolution parameter grids may mitigate this overestimation.

Besides model parameterization, another potential source of overestimation is the QPE methodology
used to create the various precipitation forcings. Potentially, even a gauge density of ~6.5 km is too
coarse for small, urban watersheds. Similarly, single-gauge coverage for a ~19.4 km2 watershed appears
to be inadequate. Both of these possibilities would support prior studies’ recommendations of QPE
resolution on the order of 1 km [20–23].

There are several potential sources of error for the MFB-corrected QPE. One possibility is random
error associated with the MFB correction process. Much of the systematic bias was removed during
the MFB process, but significant random error persisted, likely due to the small time scale (5-min) of
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the correction process (Figure 6). This supports prior findings [20,37] that a longer time scale is needed
for MFB correction to remove random errors, but the time scale cannot be so long such that the drop
size distribution (DSD) changes. Changes in DSD are a particular concern for short, intense convective
storms common during summer months, where storm durations are likely to be sub-hourly and DSD
can change over the course of several minutes. Further, while the MFB process provided relatively
good correction of the radar data at each gauge location (Figure 7), precipitation overprediction may
have resulted from spatial variability in field bias between gauges. This suggests that even at small
spatial scales, using the mean of the field bias does not provide adequate correction, necessitating
a spatially-varied correction method. One example of this occurred in early September 2018: gauge and
radar depths inside the watershed were zero or negligible, but moderate, and trace depths for gauge
and radar estimates, respectively, at gauge location(s) outside the watershed resulted in very high MFB
ratios, such that the MAP inside the basin was erroneously and highly inflated. This phenomenon can
be seen in the several high incremental MFB MAP values during September 2018 in Figure 8 and the
resulting impact on predicted discharge, as well as cumulative MAP. This also suggests that an outlier
threshold is required for MFB correction.

A third possible source of overestimation may be the saved model states from the historical
simulation that were used as warm start values for the monthly simulations. The coarse resolution of
the NLDAS forcings (13.5-km, 1-h) may not be adequate for estimating model states (e.g., soil moisture)
in small, urban watersheds. Similarly, a finer model resolution (e.g., 30 m instead of 300 m) may
improve performance at the cost of increased model run time.

Generally, the MAP from the MFB QPE was consistently higher than the remaining QPE methods
and except for one or two exceptions was relatively close to the MAP from the kriging and single-gauge
QPEs. Conversely, the MAP from the uncorrected radar was consistently and significantly the lowest
of the four high-resolution QPEs. For three of six months, NLDAS had the lowest cumulative MAP,
but for the other three months, it had cumulative MAP similar to the kriging and single-gauge QPEs.
The cumulative MAP from NLDAS and the KROA gauge between 1 January 2017 and 1 January 2019
tracked closely, with a final difference of 165 mm. As an operational dataset, NLDAS is a reliable
QPE on hourly and daily time scales, which seems to confirm both the accuracy of the KROA gauge
(Figure 9) and the overprediction of the MFB-corrected QPE. However, it does appear that NLDAS
underpredicts as storm total precipitation depth increases (e.g., first rainfall event in Figure 10).

Several other findings regarding QPE temporal resolution, gauge density, and model calibration
can be posited from the study. Although overall cumulative MAP between NLDAS and several of
the high-resolution QPEs was similar, consistent underprediction of discharge when forced with
NLDAS suggests that hourly precipitation inputs are inadequate for modeling small, urban watersheds,
a finding echoed by prior research [20–23]. Similar results from the kriging and single-gauge QPEs
indicate that, for the gauge density and basin size of this study (one gauge per 9.7 km2 and 19.4 km2,
respectively), a single-gauge QPE (using a gauge inside the watershed) can provide results on-par
with estimates from kriging. While these two QPE products at the given density were not optimal
for RDHM, better performance may be achieved with other models. Calibration would improve model
skill; however, calibration would necessarily bias model results towards the QPE forcing used in
calibration, making comparisons between different QPE forcings tenuous.

The RDHM was not calibrated, so fast response hydrograph features were not captured well
(e.g., Figure 13, second flow event in the 2018-06 series). Additionally, the model does not have the
capability to model storm sewer infrastructure and does not account for detailed variations in channel
cross-section geometry. However, with better parameterization, calibration, and possibly a higher
model resolution, RDHM has the potential to predict peaks and volume skillfully, even in small, urban
watersheds. The relatively good performance of the uncorrected radar QPE with RDHM makes this
pairing an attractive option for high-resolution discharge simulations in small, gauged or ungauged
watersheds; especially considering that both the Level III dataset and the RDHM parameters have
coverage for the entire CONUS.
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5. Conclusions

Overall, this study examined various QPE methods for continuous, distributed hydrological
modeling in a small urban watershed using an operational H&H model. Of the four high-resolution
precipitation forcings used, the uncorrected Level III radar QPE resulted in the most accurate discharge
predictions from RDHM. This suggests that when paired with RDHM, the Level III dataset has the
potential for use in hydrologic modeling of small, urban watersheds, even without bias correction.
Model calibration is recommended.

Future studies that use RDHM in small urban watersheds should compare various parameter and
model resolutions, as well as uncalibrated versus calibrated simulations. Similarly, the effect of outlier
removal on MFB QPE simulation skill should be examined. Finally, more advanced bias correction
algorithms, such as those used in the Multi-Radar Multi-Sensor (MRMS) system [38], are needed at
finer spatial and temporal resolutions.
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Appendix A

Table A1 shows the full rain gauge identifier (ID) for each of the abbreviated IDs used in
various graphics.

Table A1. Full and abbreviated rain gauge IDs.

Full ID Abbreviated ID

371840079534900 4900
205551460 1460

371339079554400 4400
371459079560300 0300
371518079591700 1700
371520080015100 5100
371657080002800 2800
371709079580800 0800
371824080002600 2600

KROA KROA

Table A2 shows the missing data periods for each of the NWIS gauges.

Table A2. Missing data periods by gauge ID.

Gauge ID # of Missing 5-min
Periods

Total Missing
Time (hours)

Missing Observations as %
of Total Observations

0205551460 565 47.08 1.07%
371339079554400 558 46.50 1.05%
371459079560300 161 13.42 0.30%
371518079591700 570 47.50 1.08%
371520080015100 560 46.67 1.06%
371657080002800 562 46.83 1.06%
371709079580800 559 46.58 1.05%
371824080002600 558 46.50 1.05%
371840079534900 559 46.58 1.05%
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