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Adaptation of Nontraditional Control Techniques to Nonlinear Micro and

Macro Mechanical Systems

Mohammed F. Daqaq

(ABSTRACT)

We investigate the implementation of nontraditional open-loop and closed-loop control tech-

niques to systems at the micro and macro scales. At the macro level, we consider a quay-side

container crane. It is known that the United States relies on ocean transportation for 95% of

cargo tonnage that moves in and out of the country. Each year over six million loaded marine

containers enter U.S. ports. Current growth predictions indicate that container cargo will

quadruple in the next twenty years. To cope with this rapid growth, we develop a novel open-

loop input-shaping control technique to mitigate payload oscillations on quay-side container

cranes. The proposed approach is suitable for automated crane operations, does not require

any alterations to the existing crane structure, uses the maximum crane capabilities, and is

based on an accurate two-dimensional four-bar-mechanism model of a container crane. The

shaped commands are based on a nonlinear approximation of the two-dimensional model

frequency and, unlike traditional input-shaping techniques, our approach can account for

large hoisting operations. For operator-in-the-loop crane operations, we develop a closed-

loop nonlinear delayed-position feedback controller. Key features of this controller are that

it: does not require major modifications to the existing crane structure, accounts for motion

inversion delays, rejects external disturbances, and is superimposed on the crane operator

commands. To validate the controllers, we construct a 1:10 scale model of a 65-ton quay-

side container crane. The facility consists of a 7-meter track, 3.5-meter hoisting cables, a

trolley, a traverse motor, two hoisting motors, and a 50-pound payload. Using this setup, we

demonstrated the effectiveness of the controllers in mitigating payload oscillations in both

of the open-loop and closed-loop modes of operation.

At the micro level, we consider a micro optical device known as the torsional micromirror.

This device has a tremendous number of industrial and consumer market applications in-



cluding optical switching, light scanning, digital displays, etc. To analyze this device, we

develop a comprehensive model of an electrically actuated torsional mirror. Using a Galerkin

expansion, we develop a reduced-order model of the mirror and verify it against experimental

data. We investigate the accuracy of representing the mirror using a two-degrees-of-freedom

lumped-mass model. We conclude that, under normal operating conditions, the statics and

dynamics of the mirror can be accurately represented by the simplified lumped-mass system.

We utilize the lumped-mass model to study and analyze the nonlinear dynamics of torsional

micromirrors subjected to combined DC and resonant AC excitations. The analysis is aimed

at enhancing the performance of micromirrors used for scanning applications by providing

better insight into the effects of system parameters on the microscanner’s optimal design

and performance. Examining the characteristics of the mirror response, we found that, for

a certain DC voltage range, a two-to-one internal resonance might be activated between the

first two modes. Due to this internal resonance, the mirror exhibits complex dynamic behav-

ior. This behavior results in undesirable vibrations that can be detrimental to the scanner

performance.

Torsional micromirrors are currently being implemented to provide all-optical switching in

fiber optic networks. Traditional switching techniques are based on converting the optical

signal into electrical signal and back into optical signal before it can be switched into another

fiber. This reduces the rate of data transfer substantially. To realize fast all-optical switching,

we enhance the transient dynamic characteristics and performance of torsional micromirrors

by developing a novel technique for preshaping the voltage commands applied to activate

the mirror. This new approach is the first to effectively account for inherent nonlinearities,

damping effects, and the energy of the significant higher modes. Using this technique, we

are able to realize very fast switching operations with minimal settling time and almost zero

overshoot.
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Chapter 1

Introduction

This dissertation is divided into two major topics that deal with modeling, dynamics, and

effective control of systems at the micro and macro scale. We consider a quay-side container

crane as an example at the macro level and an optical micro device known as a torsional

micromirror as an example at the micro level. In analyzing both topics, we follow similar

guidelines. We start by developing a comprehensive model of the system at hand. We care-

fully analyze the model and use it to study the linear and nonlinear dynamics of the system.

Based on this careful analysis, we develop a reduced-order model that captures the significant

dynamics of the system. We utilize the resulting reduced-order model to develop effective

control techniques that enhance the dynamic characteristics of each system.

In this Chapter, we present a general overview of quay-side container cranes and the latest

advances in the modeling, dynamics, and control of cranes. Afterwards, we provide a general

description of torsional micromirrors and their applications in optics. We shed some light on

the major contributions and advances in the field of optical switching and present the major

contributions and the outline of this dissertation.

1



Mohammed F. Daqaq Chapter 1. Introduction 2

1.1 Quay-Side Container Cranes

1.1.1 Modeling of Cranes

Cranes play a very important role in transportation and construction. As a result, there

is an increasing demand on faster, bigger, and more efficient cranes to guarantee fast turn-

around time, while meeting safety requirements. A crane consists of two main parts: a

support mechanism (girder, jib, or a boom) and a hoisting mechanism, traditionally hoisting

or multihoisting cables that are connected to a trolley or the boom tip at one side and to a

hook or a spreader bar on the other side. The support mechanism delivers the payload to the

target point, and the hoisting mechanism raises and lowers the payload to avoid obstacles in

the path and deposit the payload at the target point.

A particularly important type of cranes is that of a quay-side container crane, Fig. 1.1,

which is used to transfer payloads (containers) from ships to shore and vise versa. In this

case, the supporting mechanism consists of a trolley moving along a girder, and the hoisting

mechanism consists of four hoisting cables that are attached on one side to the trolley and

on the other end to a spreader bar, which grabs containers. A special case of quay-side

container cranes is that of a gantry or an overhead crane. Gantry cranes are much smaller

than container cranes and have a similar support mechanism. The hoisting mechanism

however is significantly different, it consists of one cable attached to the trolley at one side

and to a hook, which grabs payloads on the other side.

Traditionally, a gantry crane is modeled as a simple pendulum with a rigid or flexible hoisting

cable and a lumped mass at the end of the cable. The two most commonly used modeling

approaches for gantry cranes are the lumped-mass and distributed-mass models. In the

distributed-mass model, the hoisting cable is modeled as a distributed mass and the hook

and payload are lumped as a point mass, which is applied as a boundary condition to

this system. d’Andrea-Novel et al. [1, 2] and d’Andrea-Novel and Boustany [3] used the

distributed-mass model. They ignored the inertia of the payload and modeled the cable
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Figure 1.1: Typical quay-side container crane.

as a perfectly flexible, inextensible body using the wave equation. Others [4–6] extended

the model to include the inertia of the payload by changing the boundary conditions at the

payload end. However, the most widely used approach for crane modeling is the lumped-

mass approach. The hoisting line is treated as a massless rigid link, and the payload is

lumped with the hook and modeled as a point mass.

In the case of quay-side container cranes, the model is significantly different and therefore

can not be modeled as a simple pendulum. The cables are hoisted from four different points

on a trolley and are attached on the payload side to four points on a spreader bar, which

lifts containers. The only accurate model available for quay-side container cranes is that of

Masoud et al. [7] and Nayfeh [8]. They introduced a two-dimensional four-bar-mechanism

model of a container crane. They considered the payload as a rigid body attached to two

rigid massless links representing two of the four suspension cables. Using the geometry of the

crane, the model was further simplified to a double pendulum with a kinematic constraint

between the angles of both links of the pendulum.
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1.1.2 Control of Cranes

Control of suspended objects, such as cranes, has seen mounting research interest since the

early 1960’s. Inertial forces on the payload due to crane commanded trajectories or operators

commands can cause the payload to experience large sway oscillations. To avoid exciting

these oscillations, crane operators resort to slowing down the operations so that oscillations

do not cause safety concerns and possible damage of the payload. However, slowing down

operations increases the cost of loading and unloading containers.

The level of control of payload oscillations varies according to the application at hand. In

some applications, oscillations are acceptable while the payload is on its way to target, while

the settling time and residual oscillations are kept very small to allow for accurate payload

positioning. In other applications, such as nuclear reactors, or where the space around the

crane is populated, the safety requirements are very strict. Thus large oscillations are not

acceptable during and at the end of a transfer maneuver.

To achieve fast payload transfer operations while meeting the requirement of minimum os-

cillations during and at the end of the transfer maneuvers. Researchers have developed and

implemented various control algorithms especially on gantry cranes. Next, we present a

review of the major advances in this field.

Input-shaping control

One widely used open-loop control technique is input shaping [9]. For a long time, input

shaping has been successfully implemented to improve the dynamic behavior of various

systems at the macro scale. This technique uses a sequence of unique impulses to generate

the desired input. When these impulses are convolved with the original input to the system,

they result in zero residual vibrations. The magnitudes and time locations of the impulses

are obtained by solving a set of vibration constraint equations derived from the response

of the system to these impulses. In the frequency domain, input shaping has the effect of
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producing zeros near the poles of the original system. The effectiveness of input shaping

comes from the fact that it does not require any alterations to the original structure of the

device or the installation of any additional mechanical and electronic components. It also

uses the maximum system capabilities and usually generates smooth motion profiles.

Input-shaping technology is well established for linear systems. The technique uses estimates

of the system’s frequency and damping ratio to shape the input commands. Command shap-

ing arguably started when Smith [9] proposed a method called the “Posicast Control” to move

a plant without exciting its resonant frequency. His algorithm was based on shaping the in-

put by dividing a single-step input into two equal impulses delayed in time by half the period

of the system frequency. Singer [10] revolutionized the technique when he formalized input

shaping into a mathematical theory. Using the general formula for the linear response of a

system to a sequence of impulses, he developed a mathematical expression for the magnitude

of the residual vibrations as a function of the impulses’ amplitudes and locations (known as

the shaper parameters). He then chose the shaper parameters to drive the magnitude of the

residual vibrations to zero. This shaper is called the zero-vibration (ZV) shaper.

To realize more robustness to errors in the frequency and damping estimates, Singer and

Seering [11] proposed a technique known as the zero-vibration derivative (ZVD) shaper.

This technique uses the derivatives of the residual vibrations with respect to the frequency

and damping as additional constraints, which are solved simultaneously with the residual

vibration expression. Although, this technique was proven useful for very small frequency

and damping variations, it did not provide an effective alternative to shape input commands

for linear time-variant (LTV) systems where the frequency and/or damping vary significantly.

In addition, this technique requires more and more impulses to be convolved with the original

input to produce more zeros in the frequency domain, which drastically increases the shaped

input duration, resulting in a longer shaper, and therefore a slower device operation.

Singhose [12], on the other hand, obtained more robustness by developing the extra insen-

sitive (EI) shaper. This shaper specifies a tolerance limit on the residual vibration and
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releases the zero residual vibration constraint. Using this technique robustness to errors in

the frequency and damping can be achieved, but with nonzero residual oscillations.

Others [11, 13, 14] extended the application of input-shaping theory to suppress vibrations

of a multimode linear system with single or multiple actuators. Their idea was to develop a

shaped command for each mode separately and then convolve these commands to achieve a

longer but effective shaper.

For nonlinear systems, where the frequency varies with the input magnitude, a general the-

ory of input shaping has not been developed. Smith et al. [15] studied the implementation

of input shaping to a general single-degree-of-freedom nonlinear system. Based on the total

energy of the system, he used a semi-analytical approach to calculate the locations and am-

plitudes of the impulses. His technique, though very promising, failed to effectively account

for damping losses.

In many demonstrations, input shaping was used to control suspended objects, in general,

and gantry cranes, in particular. Alsop et al. [16] were among the first to propose a crane

controller based on input shaping. The controller was used to automate ore unloader by

accelerating the trolley in steps of constant acceleration then killing the acceleration when

the payload reaches zero-oscillation angle (after multiples of a full period). The trolley

then coasts at constant speed along the path for a period of time necessary to complete

the transfer maneuver. A replicate of the acceleration procedure is used in the deceleration

stage. The switching times for the acceleration and deceleration steps were calculated using

an iterative computer procedure. Alsop et al. used a linear frequency approximation of a

simple pendulum model. Their results demonstrated very little residual oscillations, while

transient oscillation angles were the order of 10◦ during the acceleration/deceleration stages.

Nonlinear frequency approximation of a simple pendulum was also used to improve the per-

formance of the single-step (SS) controller [17, 18]. Numerical simulations demonstrated

that an acceleration profile based on the nonlinear frequency approximation can dampen the

residual oscillations two orders of magnitude more than that based on a linear frequency ap-
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proximation. The enhanced performance was most pronounced for longer coasting distances

and higher accelerations.

Alzinger and Brozovic [19] showed that a double-step (DS) acceleration/deceleration profile

results in a significant reduction in the travel time over a one-step acceleration profile. Testing

on an actual crane has shown that the DS acceleration profile can deliver both faster travel

and minimal payload oscillations at the target point.

Starr [20] used a symmetric DS acceleration/deceleration shaped profile to transport a sus-

pended object with minimal oscillations. A linear approximation of the period of the payload

is used to calculate the switching times and to generate an analytical expression for the ac-

celeration profile. This work was later extended by employing a nonlinear approximation of

the payload frequency to generate SS and DS symmetric acceleration profiles [21].

The performance of traditional input-shaping techniques is very sensitive to changes in sys-

tem parameters, time delays, and external disturbances, and they require “highly accurate

values of the system parameters” to achieve satisfactory system response [22]. While a good

design can minimize the controller’s sensitivity to modeling errors, it is much harder to

alleviate the controller’s sensitivity to changes in the hoisting cable length.

Kress et al. [23] showed analytically that input shaping is equivalent to a notch filter ap-

plied to a general input signal and centered around the natural frequency of the payload.

They applied a second-order robust notch filter to shape the acceleration input. Numerical

simulation and experimental verification of this strategy on an actual bidirectional gantry

crane, moving at an arbitrary step acceleration and changing cable length at a very slow

constant speed, showed that the strategy was able to suppress residual payload oscillations.

They extended this work by developing a command shaping notch filter to reduce payload

oscillation on rotary cranes excited by the operator commands. It was reported that, in

general, there was no guarantee that applying such filter to the operator’s speed commands

would result in excitation terms having the desired frequency content, and that it only works

for low-speed and acceleration commands [24]. Parker et al. [25] experimentally verified the
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numerical simulation results.

Singer et al. [22] applied the ZVD shaper to gantry cranes. They found that, for relatively

small trolley velocity and acceleration, the ZVD shaper was capable of reducing the sensitiv-

ity of the shaper to small-length variations (25% of the initial length). However, it was noted

that, although input shaping became more robust to changes in the frequency and damping,

the proposed technique resulted in considerably slower operations since more impulses were

included in the input.

Singhose et al. [26] developed four different input-shaping controllers. They reported that

the best controller produced a reduction of 73% in transient oscillations over the time-

optimal rigid-body commands. However, they noted that “transient deflection with shaping

increases with hoist distance, but not as severely as the residual oscillations”. The numerical

simulations showed that “the percentage in reduction with shaping is dependent on system

parameters”. As a result, the four controllers suffered degradation in performance when

applied to crane maneuvers that involved hoisting.

Singhose et al. [27] studied the effect of hoisting on the input-shaping control of gantry

cranes by comparing the sensitivity of five different shapers to changes in the cable length.

They found that the shapers were more robust when based on the average frequency of

the payload oscillations during the transfer maneuver. However, the residual oscillations

increased significantly as the hoist distance was increased, but were within acceptable values

for small hoisting distances (25% of the initial cable length).

Most of the literature dealt with the problem of developing shapers for gantry cranes where

the system has a single hoisting line and can be modeled as a simple pendulum. Hoisting

or lowering in that case is usually less than 25% of the initial cable length, and the trolley

traverse motion, velocity, and acceleration are very small when compared to quay-side con-

tainer cranes. In addition, in the case of container cranes where the crane operator moves

with the trolley, one can not use the traditional techniques to increase the robustness of the

shaper. Convolving many impulses to the input command will not only increase the travel
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time drastically, but will also generate successive steps of acceleration and deceleration of

the trolley, which usually result in motion discomfort for the crane operator.

For container cranes, the hoisting operations are usually larger than 50% of the initial cable

length and the trolley has large velocities and accelerations to enable more than 50 m of

payload traverse motion in very small amount of time. Under these circumstances, the

available input-shaping techniques will suffer significant degradation in performance and

therefore can not be applied to effectively control the oscillations of containers on quay-side

cranes.

Feedback control

There is a vast amount of research on linear, optimal, adaptive, and nonlinear feedback

control techniques for gantry cranes. Here, we shed some light on the major contributions in

these areas. A more complete review of the literature on the dynamics and control of gantry

cranes can be found in [28].

Hazlerigg [29] was the first to implement a feedback control strategy to gantry cranes. He

used a compensator to dampen out payload oscillations. His technique was capable of effec-

tively controlling payload oscillations at the payload natural frequency, but, due to control

spill over, it introduced oscillations at higher frequencies.

A two-phase control strategy was proposed by Ohnishi et al. [30]. The first phase is a linear

feedback controller that stabilizes the payload around its equilibrium position. The second

phase is an input shaper that decelerates the trolley to a complete stop. This strategy was

capable of minimizing residual oscillations, but was 30% slower than uncontrolled maneuvers.

Ridout [31] used a PID controller to eliminate residual oscillations for constant cable-length

operations. Experimental results showed good performance at constant cable lengths, but

large oscillations were obtained for maneuvers involving large hoisting operations.

A hybrid controller was first proposed by Virkkunen and Marttinen [32]. A shaped profile
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was used to drive the trolley all the way to the target point. At the target, a Linear

Quadratic Regulator (LQR) was used to eliminate any residual oscillations resulting from

the unmodeled dynamics and/or any external disturbances. The controller was successful in

suppressing residual oscillations.

Caron et al. [33] generated optimal trolley trajectories that result in minimum transient

and residual payload oscillations. A PI tracker was then used to track these paths. A

numerical investigation showed that this technique was capable of producing minimal residual

oscillations, but could not reject external disturbances.

Using a linearized time-varying model of the crane, Moustafa [34] designed a feedback con-

troller to suppress payload oscillations due to trolley motion and cable hoisting. Numerical

simulations showed that this method was capable of producing very small payload oscilla-

tions, but it resulted in a large trolley overshoot.

Lee et al. [35] implemented a control strategy consisting of a combination of PI and PD

controllers to suppress payload oscillations on gantry cranes. The PI controller tracks the

trolley position and the PD controller dampens payload oscillations. The control technique

was tested experimentally and found to be effective in minimizing both transient and residual

oscillations of the payload for constant cable-length maneuvers.

In an application to quay-side container cranes, Yong et al. [36, 37] developed a state feedback

controller for a rail-mounted quay-side crane. They proposed a novel technique to measure

the sway angle. This technique is based on mounting an inclinometer on the top surface of the

spreader bar, and using the geometry of the crane and angle relations to recover the actual

sway angle. Although, the sway-angle measurement was based on the actual geometry of the

crane, the authors used a simple-pendulum model to express the dynamics of the payload

and verified the results experimentally using a single-cable rubber-tired gantry crane.

Nonlinear control techniques were also implemented to suppress payload oscillations on

gantry cranes. In one demonstration, Zinober [38] used the sliding-mode technique to min-

imize the travel time and payload oscillations. The technique is not sensitive to changes in
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cable length and payload mass, and it is capable of rejecting external disturbances. How-

ever, numerical simulations showed that the travel time is 10% longer than the time-optimal

rigid-body trajectory.

DeSantis and Krau [39] used the sliding-mode technique to control the in-plane and out-of-

plane payload oscillations in a bidirectional gantry crane. They compared the performance

of the controller to traditional linear feedback control techniques. They found that the non-

linear controller is more capable of coping with changes in the system frequency, unmodeled

dynamics, and external disturbances. On the other hand, the linear feedback technique was

less sensitive to time delays.

Yu et al. [40] used a perturbation analysis to separate the slow and fast dynamics of a

gantry crane. Two PD controllers were incorporated into the system. The first is a motion

tracking controller to track a predefined trolley motion profile and the second is a fast-input

controller to suppress payload oscillations. Due to the approach used to develop the model,

this technique is only effective when the payload mass is an order of magnitude larger than

that of the trolley.

Researchers [41–44] extensively studied the possibility of using time delay to control mechan-

ical systems. It has been noted that systems with time delays exhibit interesting complex

responses. Time delay has the capability of stabilizing or destabilizing dynamic systems.

For this reason, they have been used as simple switches to control the behavior of systems,

either by damping out the oscillations or creating chaotic responses which are sometimes

desirable to secure communication signals [45].

Cheng and Chen [46] proposed a control strategy which employs time-delay control and

feedback linearization to move a crane along a predefined path and to eliminate residual

oscillations. Their results showed that the strategy is capable of delivering the payload to

its target with minimal transient oscillations and almost no residual oscillations.

Masoud et al. [7] and Nayfeh [8] introduced a two-dimensional four-bar-mechanism model

of a container crane. They approximated the model with a constrained double pendulum
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to find a linear frequency approximation of the payload oscillation. The resulting frequency

was then used to find the delay and gain of a nonlinear delayed-position feedback controller.

The resulting controller was applied to the full crane model. The controller proved to be very

effective in suppressing the transient and residual oscillations of containers at large trolley

speeds and accelerations. The controller is insensitive to changes in the cable length and can

reject external disturbances without a large control effort. More importantly the controller

can augment any time delays in the system to the time delay required to generate the control

input.

Nayfeh et al. [47] numerically compared the delayed-position feedback controller to PID and

LQR controllers. They found that the controller based on time-delay was more effective

in suppressing payload oscillations especially for fast maneuvers that include large hoisting

operations.

Unlike input-shaping techniques, a well designed feedback controller has the ability to reject

external disturbances and is more robust to changes in the cable length. Linear feedback

controllers however suffer significant degradation in the performance at large trolley speeds

and usually require alterations to the crane structure. More importantly, due to the control

effort, feedback controllers do not use the maximum crane capabilities in terms of the crane

speed and acceleration, which results in slower operations. Unlike small gantry or overhead

cranes, the operator cabin is installed on the trolley in quay-side cranes to allow for safe

loading and unloading operations, therefore the trolley motion profile directly affects the

operator. Feedback controllers usually result in motion profiles that can cause operator

discomfort, which sometimes suspended their implementation on quay-side container cranes.
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1.2 MOEMS-Based Torsional Mirrors

1.2.1 Overview of Torsional Micromirrors

The development of easy and cheap microfabrication techniques led to mounting research

into the development of various microdevices. These devices are characterized by their light

weight, small size, and low-energy consumption, which made them very attractive substitutes

for large components in tremendous industrial, military, medical, automotive, space and

consumer market applications. The development of such devices also opened a number of

new research areas into their implementation in many systems, including airbag systems,

vehicle security systems, active suspension, sports training devices, earthquake detection,

tanks, airplanes, shock and tilt sensing, micropumps, optical switches, energy harvesting,

and head-mounted displays.

Microdevices are usually actuated using simple input signals. These signals (magnetic,

piezoelectric, electrostatic, thermal, etc.) are used to drive the device to a desired static

configuration (e.g., micro-switches, optical crossconnects, thermal biomorphs, etc.) or to

continuously excite the device to achieve a certain dynamic behavior (e.g., micro-resonators,

micro-scanners, filters, etc.). A deep understanding of the behavior of these devices in re-

sponse to these simple input signals is necessary to provide designers with insight into the

proper choice of the design parameters. This results in a better response and maximum

performance capabilities as well as reduction in the time and cost associated with the trial-

and-error process that is currently used to design microsystems. However, the understanding

of the behavior of systems at the micro scale is not a trivial problem. Their operations usu-

ally involve coupled-energy domains, where electrostatics, fluidics, thermodynamics, and

dynamics are inherently coupled in complex manners that require interacting CAD solvers

to simulate their performance.

Currently, Micro-Opto-Electromechanical Systems (MOEMS) is one of the fastest growing

areas in the micro industry. These systems consist of two main components: an electronic
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component, which provides the actuation signal and is fabricated using integrated circuit

(IC) technology; and a mechanical component, which represents the moving parts of the

device and is usually micromachined on a silicon wafer. To realize the optical characteristics

of these devices, a very reflective surface, usually very thin metal aluminum or gold sheets, is

attached to the moving mechanical components. These systems are used in the micro-optical

industry, where the devices are used to steer, reflect, or modulate light, depending on the

application at hand.

Torsional micromirrors, Fig. 1.2 (with permission from Computer Optics, Inc. [48]), is the

most famous and widely used MOEMS device. A micromirror consists of two identical

microbeams fixed on one side and connected to a rigid plate (the mirror) on the other side.

Two electrodes mounted beneath the mirror are used to rotate the mirror in either direction

by supplying a voltage to the corresponding electrode.

Figure 1.2: A microscopic view of a gold-plated torsional micromirror.

Torsional micromirrors are used for optical switching in fiber-optic networks [49–51], Fig. 1.3

(with permission from Glimmerglass, Inc. [52]). Optical networking depends on the devel-

opment of optical switching technologies capable of transferring large volumes of data at

high speed. The process of data transfer requires the light waves carrying the data to switch
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from one fiber to another in order to reach their destination. If no switching occurs, each

optical fiber is capable of transferring data in the range of hundreds of Gigabits per seconds

[53]. Old switching techniques were based on converting optical signals to electrical signals

and then back again to optical signals before they could be switched to another fiber. This

optical-electrical conversion reduces the speed of data transmission substantially and causes

data “traffic jams”. After the development of the DWDM (Dense Wavelength Division Mul-

tiplexing) that allowed the growth of fiber-optic networks bandwidths, the search for better

optical-switching techniques became a necessity.

Since optical fibres have a very small core diameter, usually between 2 and 10 micrometers,

micromirrors were the best alternate solution for optical switching problems, their small size

and light weight allow for easy implementation in fiber networks. In addition, micromirrors

are capable of transmitting data only by reflecting light beams without converting light

into electricity. This substantially increases the speed of optical switching and, therefore,

increases the ability of fiber networks to handle data at any bandwidth.

Figure 1.3: A schematic illustrating an array of micromirrors switching light between different

fibers.
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In optical switching applications, the micromirror needs to satisfy three requirements. The

first is the realization of a precise orientation, which stems from the fact that unprecise

mirror tilt angles might cause light beams to miss the small fiber core, especially if the

distance between the micromirror and the fiber is increased, and hence might cause loss of

data during switching. The second requirement is related to the dynamic response of the

mirror to the step voltages used to actuate the mirror. In this aspect, the mirror is required

to have minimal overshoot and settling time, which are necessary for minimizing the time

between two successive switching operations. Finally, the magnitude of the step voltage

required to drive the micromirror to the desired tilt angle needs to be minimal to minimize

the power requirements of the electric circuits.

Torsional micromirrors are also implemented in projection displays [54]. Traditional projec-

tion displays are based on either Cathode-Ray Tubes (CRT), active matrix Liquid Crystal

Displays (LCD), or Liquid Crystal Light Valves (LCLV). All of these technologies suffer

either from performance or limitation problems. CRT and LCD suffer from stability and

uniformity problems as well as limitations in their ability to produce high-brightness im-

ages. Although LCLVs were produced to overcome these shortcomings, they still suffer from

stability problems and are very large and expensive.

To overcome these shortcomings, Texas Instruments used torsional micromirrors to produce

the Digital Micro Device (DMD) [55, 56], Fig. 1.4 (with permission from Texas Instru-

ments. [57]). The micromirror in this case serves as an electrostatically actuated light switch

that reflects light from a light source through a lens to a screen. This technique has proved

to be capable of producing stable, high-brightness images.



Mohammed F. Daqaq Chapter 1. Introduction 17

Figure 1.4: An array of DMDs used for switching light in digital displays.

Unlike optical switching techniques, where maintaining precise micromirror orientation is a

big issue, precise tilt angles are guaranteed in DMDs. This stems from the fact that DMD

operations do not require variable tilt angles. DMDs have only two positions: an on-position

in which the pixel corresponding to the mirror appears bright, and an off-position in which

the pixel corresponding to the mirror appears dark. These two positions are maintained

using mechanical stoppers at each side of the mirror. A very important issue however is to

minimize the voltage requirements. This is especially important in this case because each

DMD forms only one pixel on a big screen that usually consists of millions of pixels.

The fast response of the micromirror and its ability to achieve large scanning angles by

resonant electrostatic actuation makes it an appealing substitute for traditional scanning

techniques. As a result, it has been successfully implemented in resonant optical microscan-

ners [58]. To achieve large rotation angles while minimizing the voltage requirements, the

micromirror is excited at its resonance frequency and then used to reflect and steer a laser

beam along a surface. The laser beam is then reflected from the surface to be collected and

analyzed through a photo detector. Resonant scanning mirrors are used in a variety of other

applications, including laser printing, confocal microscopy, and scanning video displays.

Torsional micromirrors were also successfully introduced as a modulator and a reflector to
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generate a pulse in a Q-switched fiber laser [59]. In such applications, the micromirror is

excited at high frequency to modulate and produce a very high-power laser beam. It has been

proven that this process is able to significantly reduce the size of the cavity and produce a

laser pulse peek power that is 100 times higher than continuous pulse emission. Micromirrors

have also proven useful in many other applications that include neural networks [60], phase

modulating filters, optical computing [61], electrophotographic printers, and folded spectrum

analyzers [62].

1.2.2 Review of Major Advances in the Literature

Statics and dynamics of torsional micromirrors

The analysis of the static behavior and the pull-in instability have occupied most of the

literature available on torsional micromirrors. Various numerical and analytical techniques

were introduced to investigate the pull-in phenomenon. A simple approach was introduced

by Osterberg [63] for analyzing the static performance of a 1-DOF torsional micromirror.

He used the parallel-plate approximation to estimate the electrostatic torque and an ef-

fective linear spring coefficient to estimate the mechanical stiffness. Although his model

yielded rapid calculations his results showed 20% deviations from experimentally measured

quantities. Hornbeck [64], on the other hand, developed an analytical expression for the

electrostatic torque based on the solution of the Laplace equation between two semi-infinite

tilted plates. Then he numerically solved for the mirror tilt angle at a given voltage and

gradually increased the voltage until the pull-in point is reached. This numerical approach

is extremely accurate, but requires successive numerical solutions of a complex nonlinear

algebraic equation.

Degani et al.[65] studied the static pull-in characteristics of a torsional square-plate micromir-

ror. Using a 1-DOF model consisting of a lumped mass attached to two torsional springs

representing the suspension beams, he derived a polynomial algebraic equation for the pull-in
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voltage and pull-in angle. This equation was then used to estimate the pull-in parameters of

two microfabricated mirrors with two different suspension configurations. For both cases, a

comparison between the pull-in parameters obtained experimentally and theoretically using

the model showed less than 1% deviation.

Nemirovisky and Degani [66] developed an analytical methodology to find the pull-in pa-

rameters in electrostatic actuators. The model depends on the analytical expression of the

actuator capacitance and the mechanical potential energy. Using this model, they investi-

gated the effect of fringing field capacitance, parasitic capacitance, and trapped charges on

the pull-in parameters. Several case studies, including a torsional micromirror, were easily

analyzed using this analytical approach. Degani and Nemirovisky [67] used this analytical

approach to develop a very accurate polynomial expression to calculate the pull-in parame-

ters of a 1-DOF rectangular torsion-based actuator. The results of this analytical polynomial

expression showed excellent agreement with a finite element/boundary element (FEM/BEM)

simulations provided by MEMCAD4.8 Cosolve tool. Hah et al. [68] used the same approach

to develop an analytical model for the pull-in parameters of a 1-DOF torsional micromirror

and vertical comb-driven micromirrors. The analytical results were in excellent agreement

with the experimental findings.

The influence of the electrode dimensions on the pull-in parameters of a torsional micromir-

ror was studied by Zhang et al. [69, 70]. They developed a model of a 1-DOF torsional

micromirror based on the parallel-plate capacitor approximation and used it to investigate

the pull-in phenomenon. The numerical simulations were compared to experimental findings

and the results were in good agreement.

Xiao et al. [71] proposed a design methodology for a 1-DOF torsional microactuator. The

design approach is based on the analytical expressions for the pull-in voltage and pull-in

angle. The scheme uses the pull-in angle, the maximum allowed operation voltage, and the

width and length of the micromirror as inputs, and calculates the beam width, length, and

depth, the gap distance, the electrode length, and the mirror natural frequency.
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To increase the pull-in angle and extend the travel range of a 1-DOF torsional micromirror,

Guardia et al. [72] proposed a methodology based on charge actuation. This methodology

proved to be capable of almost doubling the rotation angle of the micromirror, but suffered

significant degradation in performance due to the existence of parasitic charges. In addition,

this technique showed a very steep decent to pull-in, which limits its practical applications.

Wetzel and Strozewski [73] were among the first to study the dynamic characteristics of

a 1-DOF torsional micromirror. Treating the mirror as a lumped mass attached to two

torsional springs representing the suspension beams, they developed a dynamical model of

a micromirror used as a spatial light modulator. They numerically examined the dynamic

response of the mirror and observed its transient and steady-state response. The numerical

simulations were in good agreement with the experimental results.

Camon and Larnaudi [74] experimentally investigated the static and dynamic response of a

1-DOF torsional model of a micromirror. They studied the effect of electrode orientation

on the static response of the mirror and found that, instead of using planar electrodes, one

can vertically incline the electrodes at a certain angle and obtain significantly larger rotation

angles for the same driving voltage. Experimentally, they were among the first to report a

nonlinear softening behavior in the response. This softening behavior was more pronounced

for higher voltages.

Sattler et al. [75] investigated the dynamic behavior of a 1-DOF torsional micromirror

using both charge and voltage controlled analyses. They reported that the charge controlled

analysis is not of a practical use since it shows a steep decent towards pull-in. They analyzed

the transient dynamics of a micromirror under step voltage excitations and showed that,

due to the effect of the mirror inertia, dynamic pull-in occurs at a voltage lower than that

predicted by the static analysis.

Degani and Nemirovsky [76] were the first to model the pull-in parameters of a micractuator

using a 2-DOF lumped-mass model. The effect of bending was included, and an analytical

approach for the calculation of the pull-in parameters was introduced. The equations used
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to determine the pull-in parameters were analytically derived utilizing the fact that the total

energy of the actuator exhibits a maxima at pull-in. Two case studies were analyzed and the

results were in excellent agreement with a finite difference and FEM/BEM simulations pro-

vided by MEMCAD4.8. Huang et al. [77] utilized this approach to study the static behavior

of a 2-DOF torsional micromirror. They derived the equations governing the response of the

mirror to a DC voltage and studied the effect of electrode size and position on the pull-in

parameters. They found that the simulations are in good agreement with the experimental

results.

Zhao et al. [78] considered the coupling effect between torsion and bending and developed

an analytical model to study the dynamic characteristics of a 2-DOF torsional micromirror.

They treated the mirror as a lumped mass attached to two springs. The springs represent

the torsional and bending stiffnesses of the suspension beams. They numerically simulated

the dynamic response of the mirror to step and pure AC voltage excitations. The numerical

simulations were in good agreement with the results obtained using ANSYS.

Control of torsional micromirrors

For optical switching applications, the micromirror has to achieve the desired static con-

figuration with enhanced transient dynamic characteristics. Towards that end, torsional

micromirrors are often redesigned [79]. However, this approach can be costly, time con-

suming, and usually results in more complex devices. Consequently, the research has been

directed towards various control techniques, which can be used to alter the input actuation

signals to achieve the desired mirror response.

In general, the actuation signals can be controlled using either a closed-loop or an open-

loop control technique. A well-designed closed-loop controller is generally more robust to

errors in parameter estimates, does not require a very accurate model of the system, and

can account for external disturbances, thus achieving a better and more stable response than

the open-loop controllers. However, its application to systems at the micro scale is usually
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very cumbersome and costly. Feedback measurements at the micro scale are very hard and

require very accurate sensing techniques, especially because the signal-to-noise (SNR) ratio

is very low. Even though the application of current sensing techniques at the laboratory level

is hard but not impossible, their actual implementation on real systems at a large scale for

manufacturing purposes is very costly and sometimes impossible using available technologies.

For these reasons, a carefully designed open-loop control algorithm, such as input shaping,

can be the best alternative.

Input shaping was not applied to torsional micromirrors. However, traditional shaping tech-

niques were applied to a couple of systems at the microscale. In one demonstration, Borovic

et al. [80] applied a variation of the ZV shaper to voltage commands used to excite a comb

driven variable optical attenuator. The electrostatic field in their model is a linear function of

the states. In this case, the device frequency is constant and traditional shaping techniques

are expected to have excellent performance. One drawback of the work, however, is that

the mathematical model and hence the shaped commands ignored the significant effects of

higher modes, thereby resulting in some residual oscillations in the experiments.

In another demonstration, Popa et al. [81] developed a ZVD shaper for the input voltage

applied to a thermal biomorph MEMS actuator. The shaper parameters were obtained

using a simple discrete model. The shaper was then applied to a third-order Finite- Element

Analysis (FEA) data used to model the system dynamics. The simulations showed excellent

results when the shaper is applied to the discretized model, but some residual oscillations

existed when the shaper was applied to the FEA model due to modeling errors and ignored

nonlinearities.

Some feedback control algorithms were successfully applied at the laboratory level to enhance

the transient dynamic characteristics of torsional micromirrors. Chiou et al. [82] proposed a

control algorithm in which they divided the large-single electrode into multiple independent

small electrodes. The small electrodes were then activated independently to achieve different

voltage-angle relations. The advantage of the proposed technique is that, by switching
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between different electrode patterns, one can achieve a quasilinear voltage-angle relation

rather than the highly nonlinear voltage-angle relation resulting from a single electrode.

Using this multiple electrostatic control configuration, they implemented a closed-loop fuzzy

control algorithm capable of reducing the settling time by up to three times.

A closed-loop adaptive control technique was proposed by Liao et al. [83]. The proposed

controller is capable of compensating for parameter variations and modeling uncertainties.

To obtain feedback measurements, the authors proposed a differential capacitance approach

in which the difference between the capacitance of the right and left electrode is used to

measure the actual tilt angle of the mirror. The authors compared this controller to a

traditional PID control technique and found that adaptive control realizes faster settling

times and less tilt-angle overshoot.

Sane et al. [84] implemented a sliding-mode control algorithm with a first-order sliding func-

tion to a two-axis gimballed torsional micromirror. The proposed technique is implemented

using a Position Sensing Diode (PSD) for feedback tilt-angle measurements. The robustness

of the controller was analyzed and it was found that the controller is robust to variations in

the mirror frequency and quality factor.

1.3 Dissertation Contributions

We divide the contributions of this dissertation into the following two major parts:

1. Quay-side container cranes:

• Adapt input-shaping techniques to minimize payload oscillations on large quay-

side container cranes. Unlike previous input-shaping controllers, which were based

on a simple-pendulum model of the crane, the new technique is based on an

accurate four-bar-mechanism model of the container crane and uses a nonlinear

approximation of the model oscillation frequency.
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• Develop a novel technique to calculate the shaper parameters used to generate

an input command, which accounts for large hoisting operations with minimum

residual oscillations. This approach uses a graphical representation of the phase

plane that represents the response of the payload to a DS acceleration command.

Our approach is more efficient than the ZVD shaper and can be extended to other

LTV systems.

• Develop a hybrid controller to increase the robustness of input commands to

errors in the estimated system parameters and to enable external disturbance

rejection. The proposed controller augments the shaped commands with a non-

linear delayed-position feedback controller at the end of the transfer maneuver.

This approach maximizes the controller effectiveness. The smooth shaped com-

mands use the maximum crane capabilities to transfer the payload to the target

point with minimum residual oscillations, and the feedback controller eliminates

any remaining residual oscillations resulting from external disturbances and/or

unmodeled dynamics.

• Design and build a 1:10 scale model of a 65-ton quay-side container crane. We

use the experimental facility as a test bed to verify the theoretical models and to

test the developed controllers.

2. Torsional micromirrors:

• Develop a comprehensive model of a torsional micromirror subjected to electric

excitations.

• Develop a reduced-order model using a Galerkin expansion and verify it against

experimental data. The model

– accurately represents the static configuration of the mirror when subjected

to DC excitations.

– captures the significant dynamics of the mirror response when subjected to

AC excitations.



Mohammed F. Daqaq Chapter 1. Introduction 25

• Investigate the accuracy of representing the statics and significant dynamics of

the mirror using a 2-DOF lumped-mass model.

• Study the effects of the micromirror dimensions and electrode parameters on the

pull-in instability and the natural frequencies of the mirror.

• Study the nonlinear dynamics of torsional micromirrors subjected to combined DC

and resonant AC excitations. This analysis is necessary to provide better insight

into the design of microscanners for faster operations and better performance.

• Analyze the effects of nonlinear interactions on the steady-state response of mi-

cromirrors and investigate possible techniques to avoid undesirable internal reso-

nances.

• Develop a new technique for preshaping input commands to enhance the transient

dynamic characteristics and performance of optical microswitches. This novel

approach is the first to

– effectively account for nonlinearities that cause voltage-frequency dependence.

– account for damping effects and the energy of the significant higher modes.

The new technique can be easily adapted to shape input commands applied to

other nonlinear micro and macro systems. Using this approach, we were able to

realize fast mirror switching operations with almost zero overshoot.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter 2, we present a two-

dimensional four-bar-mechanism model of a quay-side container crane. Using the geometry

of the crane, we simplify the model into a constrained double-pendulum model that captures

the significant dynamics of the system. We then use the simplified model to develop an

approximate analytical expression for the model nonlinear frequency.
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In Chapter 3, we use the analytical expression of the frequency to develop a SS input-shaping

controller for fixed cable-length crane operations. We then develop a hybrid controller to

increase the robustness of input commands to errors in the estimated system parameters and

to enable external disturbance rejection. Finally, we develop a technique to design shaped

commands that can account for large hoisting operations with minimum residual oscillations.

In Chapter 4, we present a brief description of a 1:10 scale model of a 65-ton quay-side

container crane that we designed and built at Virginia Tech. We use the experimental setup

to validate the theoretical models and implement the controllers using both of the open-loop

input-shaping mode and the operator-in-the-loop closed-loop mode.

In Chapter 5, we develop a comprehensive model of a torsional micromirror . We first provide

a general overview of the device, then we use Laplace’s equation to derive an expression for

the electrostatic energy. Using the resulting expression, we write the Lagrangian of the

system and carry out a Galerkin expansion to develop a reduced-order model that captures

the static and dynamic response of the mirror.

In Chapter 6, we define the linear eigenvalue problem and solve for the natural frequencies

and associated mode shapes of the mirror. Based on the obtained results, we show that one

can treat the mirror as a lumped mass attached to two springs representing the suspension

beams.

In Chapter 7, we study the nonlinear dynamics of the micromirror. Using the method of

multiple scales, we obtain a second-order nonlinear analytical approximation of the mirror

steady-state response to combined DC and resonant AC excitations. In Chapter 8, we extend

the nonlinear analysis to account for modal interactions.

In Chapter 9, we develop a new technique for preshaping input commands to enhance

the transient dynamic characteristics and performance of optical microswitches. Finally,

in Chapter 10, we present the conclusions and some recommendations for future work.



Chapter 2

Mathematical Modeling of Quay-Side

Container Cranes

In this chapter, we develop a four-bar mechanism to model the actual hoisting mechanism

of the quay-side container crane. This model is further simplified to a double-pendulum

model with a kinematic constraint between the angles of both links of the pendulum. The

simplified model is used for the purpose of controller design, however, numerical simulations

are performed on the full model of the crane. For the purpose of comparison with input-

shaping controllers developed using a simple-pendulum model, a nonlinear version of the

traditional simple pendulum model is used.

2.1 Four-Bar-Mechanism Model

Figure 2.1 shows a two-dimensional side projection of a quay-side container crane. This

four-bar mechanism is developed to model the actual dynamics of the crane. The container

is grabbed using a spreader bar, which is then hoisted from the trolley by means of four

cables, two of which are shown. The cables are spaced a distance d at the trolley and a

27
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Figure 2.1: A schematic model of a container crane.

distance w at the spreader bar. The hoisting cables in the model are considered as rigid

massless links with variable lengths. The specific equations of these holonomic constraints

are

Φ(q, t) =


 (x + R sin θ − 1

2
w cos θ − f + 1

2
d)2 + (y −R cos θ − 1

2
w sin θ)2 − L2

(x + R sin θ + 1
2
w cos θ − f − 1

2
d)2 + (y −R cos θ + 1

2
w sin θ)2 − L2


 = 0

(2.1)

where q = [x, y, θ]T is the generalized coordinate vector, which represents the three degrees

of freedom of consideration.

Using Lagrange multipliers, one can write the set of differential-algebraic equations DAE’s [85]

as 
 M ΦT

q

Φq 0





 q̈

Λ


 =


 QA

Γ


 (2.2)

where M = diag[m,m, mk̄2] is the inertia matrix, m is the mass of the payload and the



Mohammed F. Daqaq Chapter 2. Mathematical Modeling of Cranes 29

Figure 2.2: A schematic of a constrained double-pendulum model of a container crane.

spreader bar, k̄ is the combined radius of gyration of the payload and spreader bar about point

Q, QA = [0,−mg, 0]T is the generalized applied force vector, Λ is the Lagrange multipliers

vector, and

Γ = −(Φqq̇)q − 2Φqtq̇− Φtt, Φq =
∂Φ

∂q
, Φtt =

∂2Φ

∂t2
, Φqt =

∂

∂t
(
∂Φ

∂q
).

(2.3)

2.2 Simplified Model

To better understand the dynamics of the system and to derive an analytical expression for

the system frequency, which is essential to the controller design, we simplify the four-bar-

mechanism model to a double-pendulum system with a variable length cable l, a fixed length

link R, and a kinematic constraint relating the angles φ and θ, as shown in Fig. 2.2.

In Fig. 2.1, point O is the mid point between points A and D, and point P is the midpoint
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between points B and C. The closing constraints of the loop ABPO are

l sin φ− 1

2
w cos θ +

1

2
d = L sin φ1 (2.4)

l cos φ− 1

2
w sin θ = L cos φ1 (2.5)

Similarly, the closing constraints of the loop ODCP can be written as

l sin φ +
1

2
w cos θ − 1

2
d = L sin φ2 (2.6)

l cos φ +
1

2
w sin θ = L cos φ2 (2.7)

Squaring and adding Equations (2.4) and (2.5) and squaring and adding Equations (2.6)

and (2.7), we can eliminate L, φ1, and φ2 from the resulting equations and obtain the

following relations:

θ = −φ + arcsin

(
d

w
sin φ

)
(2.8)

l =

√
L2 − 1

4
(d2 + w2 − 2dw cos θ) (2.9)

Equation (2.8) represents the kinematic constraint between the angles φ and θ. The position

vector to the center of mass of the payload of the constrained double pendulum is

r = (f + l sin φ−R sin θ)i− (l cos φ + R cos θ)j (2.10)

Using Equation (2.10), we write the kinetic and potential energies of the constrained double

pendulum as

T =
1

2
ml2φ̇2 +

1

2
m(k̄2 + R2)θ̇2 +

1

2
mḟ 2 −mRlφ̇θ̇ cos(φ + θ) + mlφ̇ḟ cos φ−mRθ̇ḟ cos θ

(2.11)

V = −mg(l cos φ + R cos θ) (2.12)

Substituting the constraints (2.8) and (2.9) into Equations (2.11) and (2.12) results in the

elimination of θ from the energy of the system. To derive the equation of motion that

describes the time variation of φ, we use the Euler-Lagrange equation given by

d

dt

(
∂L
∂φ̇

)
− ∂L

∂φ
= 0 (2.13)
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Figure 2.3: A schematic of a simple-pendulum model of a container crane.

where L = T−V . Substituting Equations (2.11) and (2.12) into Equation (2.13) results in the

full nonlinear equation of motion for the simplified system. Due to the lengthy expressions in

the resulting equation, we only show expansions for special cases as necessary in the analysis.

2.3 Simple-Pendulum Model

An accurate model for gantry cranes is that of a simple pendulum attached to a moving

cart, Fig. 2.3. The equation of motion for this model can be written as

θ̈ +
2L̇

L
θ̇ + η cos θ + Ω2

◦ sin θ = 0 (2.14)

where η = f̈/L is the normalized trolley acceleration and Ω◦ =
√

g/L is the linear frequency

of the pendulum.

2.4 Nonlinear Frequency Approximation

To examine the effect of the frequency approximation on the system dynamics, we derive

a nonlinear approximation of the frequency of the crane model for fixed-length operations.
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We compare the numerical solution of the full equations of motion (2.2) to the analytical

solution based on a linear and a nonlinear frequency approximation of the simplified model.

To that end, we expand the equation of motion of the simplified model in a Taylor series up

to cubic terms.

φ̈ + ω2
◦φ + c1φ

2φ̈ + c1φφ̇2 − c2ξφ
2 − c3φ

3 + c4ξ = 0 (2.15)

where

ω◦ =

√
g(k3

2 + 2k4 + k1
2k3R)

k3Γ0

,

c1 =
1

Γ0

[
4k4

2

k3
2 +

2k1(3 + 2k1)k5R

k3

,

+ (k1(1 + k1)
2 − 6k2)k3R− 2(k4 − 3k1k2R

2) + 6k̄2k1k2

]
,

c2 =
k3[k3 + 6k4 + R(6k2 − k1

3)]

2Γ0

,

c3 = g
12k4 − 24k2

3k5 + k2
3 + k4

1k3R− 24k1k2k3R

6k3Γ0

,

c4 =
k3(k3 − k1R)

Γ0

,

ξ =
f̈

k3

,

Γ0 = k̄2k1
2 + (k3 − k1R)2.

and

k1 =
d− w

w
, k2 =

d(d2 − w2)

6w3
,

k3 =

√
L2 − 1

4
(d− w)2, k4 =

dw

8
,

k5 =
dw(d2 − 4L2 + dw + w2)

24((d− w)2 − 4L2)2
.

For simplicity, we expanded the equations around an equilibrium position defined by φ =

0 rather than expanding around the actual equilibrium position corresponding to a given

trolley acceleration ξ. This approximation holds for small oscillation angles, and will set an

acceleration limit beyond which the accuracy of the analysis starts to deteriorate as we will

show later in this section.
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To find a nonlinear frequency approximation, we use the method of multiple scales [86]. First

we scale Equation (2.15) by introducing a bookkeeping parameter ε, which is set to one at

the end of this analysis, and scale ξ and θ at order ε; that is,

φ = εφ, ξ = εξ. (2.16)

Substituting the scaled parameters into Equation (2.15) yields

φ̈ + ω◦2φ = −c4ξ − ε2(c1φ
2φ̈ + c1φφ̇2 − c2ξφ

2 + c3φ
3) (2.17)

The time dependence is expanded in terms of the multiple time scales as follows

d

dt
= D0 + εD1 + ε2D2 + O(ε3)

d2

dt2 = D2
0 + 2εD0D1 + ε2D2

1 + 2ε2D0D2 + O(ε3)

(2.18)

where Tn = εnt and Dn = ∂
∂Tn

. We then seek a solution in the form

φ(T0, T1, T2) = φ0(T0, T1, T2) + εφ1(T0, T1, T2) + ε2φ2(T0, T1, T2) + O(ε3) (2.19)

Substituting Equations (2.18) and (2.19) into Equation (2.17) and equating coefficients of

like powers of ε, we obtain

O(ε) : D2
0φ0 + ω2

◦φ0 = −c4ξ

(2.20a)

O(ε2) : D2
0φ1 + ω2

◦φ1 = −2D0D1φ0

(2.20b)

O(ε3) : D2
0φ2 + ω2

◦φ2 =− 2D0D1φ1 − 2D0D2φ0 −D2
1φ0 − c2ξφ

2
0

− c1φ0(D0φ0)
2 − c1φ

2
0D

2
0φ0 − c3φ

3
0

(2.20c)

The solution of Equation (2.20a) can be expressed as

φ0(T0, T1, T2) = A(T1, T2)e
iω◦T0 − c4ξ

ω2
0

+ cc (2.21)
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where A is a complex-valued function. Substituting Equation (2.21) into Equation (2.20b)

and eliminating the terms that lead to secular terms, we obtain

D1A = 0 ⇒ A = A(T2) (2.22)

Now, substituting Equations (2.21) and (2.22) into Equation (2.20c) and eliminating the

terms that lead to secular terms, we obtain the solvability condition

−2iω◦
∂A

∂T2

+
ξ2c4

ω2◦
(c1c4 − 3

c3c4

ω2◦
− 2c2)A + (2ω2

◦c1 − 3c3)A
2Ā = 0 (2.23)

Introducing the polar transformation

A =
1

2
a(T2)e

iβ(T2) (2.24)

into Equation (2.23) and separating real and imaginary parts, we obtain the following two

modulation equations:

∂a

∂T2

= 0 (2.25)

∂β

∂T2

=
ξ2

2ω3◦

[
2c2c4 − 3c3c

2
4

ω2◦
− c1c

2
4

]
− a2

4

[
3c3

2ω◦
+ c1ω◦

]
(2.26)

Solving Equations (2.25) and (2.26) we get the following approximate solution of Equa-

tion (2.17):

φ = a cos(ωt + β0)− c4ξ

ω2◦
(2.27)

where

ω = ω◦

[
1− a2

(
3c3

8ω2◦
+

c1

4

)
+

ξ2

2ω4◦

(−3c3c
2
4

2ω2◦
+ 2c2c4 − c1c

2
4

)]
(2.28)

is the nonlinear frequency approximation of the simplified model.

We tested the resulting approximation against a numerical solution of the full nonlinear

equations of motion (2.2) for different values of ξ. The results showed that this approximation

holds for ξ ≤ 0.1 s−2. As we explained earlier, this is due to linearizing around φ = 0 rather
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than the actual equilibrium position. This value sets a limit above which the nonlinear

solution starts to deteriorate. However, container cranes normally operate at lower values of

ξ (0.015 s−2-0.03 s−2). Figure 2.4 shows that the numerical integration and the multiple scale

approximate solution closely match, while the linear frequency approximate solution quickly

drifts away from the numerical solution as a result of the inaccurate frequency approximation.

Using Equation (2.14), we follow the same procedure to obtain the following nonlinear fre-

quency approximation of the simple pendulum:

Ω = Ω◦

(
1− a2

16
+

η2

4Ω4◦

)
(2.29)
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Figure 2.4: Payload sway angle for the constrained double-pendulum model of a container

crane. The results are obtained for L = 17.5 m, R = 2.5 m, ξ = 0.1 s−2, φ0 = 0, and φ̇0 = 0.



Chapter 3

Control of Container Cranes

In this chapter, we adapt input-shaping techniques to minimize payload oscillations on large

quay-side container cranes. Unlike previous input-shaping controllers, which were based on

a simple-pendulum model of the crane, the new techniques are based on an accurate four-bar-

mechanism model of the container crane and use the nonlinear approximation of the model

frequency obtained in Chapter 2. Furthermore, we develop a novel technique to calculate

the shaper parameters used to generate input acceleration commands that can produce fast

transfer operations which account for large hoisting and/or lowering maneuvers with minimal

residual oscillations.

3.1 Constant Cable-Length Operations

A bang-off-bang or SS input-shaping controller, Fig. 3.1, works by generating an acceleration

profile designed to cancel only its own oscillations. The controller is used to perform a transfer

maneuver that produces zero residual oscillations.

For constant cable length L the response of the payload to an accelerating, decelerating, or

coasting trolley (assuming the daping is very small) is illustrated in the phase portrait shown

36
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Figure 3.1: A schematic drawing showing the SS acceleration profile.

in Fig. 3.2. The figure shows that the solution is periodic with the payload exhibiting a limit

cycle behavior. The center of the resulting limit cycle along the φ-axis is determined by the

amplitude and sign of the associated fixed point.

Assuming that the cable length is known, the controller determines the magnitude of the

constant acceleration f̈ and the switching times t1, t2, and t3 to reach the target point

with zero residual oscillations. First the trolley accelerates for the period of a half swing

cycle ∆ta = Ta/2, where Ta is the period of the sway oscillation in the acceleration stage.

The acceleration is then switched off for a period of time necessary to accomplish the load

transfer, this period is called the coast stage. To bring the load into complete stop a negative

acceleration is applied taking into account any known system inversion delays.

By design the coast time must be an odd multiple of half the period Tc of the sway oscillation

in the coast stage. The coast time ∆tc depends also on the maximum acceleration achievable
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Figure 3.2: Phase portrait describing the dynamics of the crane payload for constant cable

length.

by the trolley drives. Thus, we can define the coast time as

∆tc =
2n + 1

2
Tc, n = 0, 1, 2, 3, ... (3.1)

where n is known as the number of coasting cycles. To account for motion inversion delays

τs, n should be chosen such that ∆tc is greater than τs, in other words

n ≥ 1

2

(
2τs

Tc

− 1

)
(3.2)

Here n is rounded up to the nearest integer including zero. The total distance traveled by

the trolley in a full maneuver S derived from Fig. 3.1 is

S = f̈(∆ta)
2 + f̈(∆ta)(∆tc) (3.3)

Using the normalized acceleration ξ = f̈/k3 and ∆ta = Ta/2 and substituting Equation (3.1)

into Equation (3.3), the normalized travel distance δ = S/k3 is

δ =
1

4
ξT 2

a +
2n + 1

4
ξTaTc (3.4)
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To adapt the input-shaping controller to the constrained double pendulum, the nonlinear

frequency approximation, Equation (2.28), is used. Assuming zero initial conditions, we

solve Equation (2.27) for a and then substitute back into Equation (2.28) to obtain

Ta =
2π

ω◦

[
1 +

ξ2

2ω4◦

(
2c2c4 − 15c3c

2
4

4ω2◦
− 3c1c

2
4

2

)]−1

(3.5)

The period in the coast mode can be obtained by setting ξ equal to zero and substituting

a = −2c4ξ/ω
2
◦ into Equation (2.28). To find a which represents the amplitude of oscillation

in the coast mode, we substitute ωt + β0 = π into Equation (2.27) and obtain

Tc =
2π

ω◦

[
1− 4ξ2c2

4

ω4◦

(
c1

4
+

3c3

8ω2◦

)]−1

(3.6)

Now, we can summarize the controller algorithm as follows:

• Using the linear approximation for the coasting period Tc, determine the minimum

number of coast cycles n.

• Solve Equation (3.4) for ξ and compare it with ξmax, where ξmax is the minimum of

two values: the maximum acceleration that the trolley drives can provide and the

maximum acceleration above which the nonlinear solution starts to deteriorate, which

in this case is equal to (0.1 s−2). If ξ is greater than ξmax, increment n up by one and

recompute a new ξ.

• Compute the switching times t1, t2, and t3 according to the following equations:

t1 =
Ta

2
, t2 = t1 +

2n + 1

2
Tc, t3 = t2 + t1 (3.7)

The generation of a shaped acceleration profile for a simple pendulum model follows the same

procedure. However, in Equation (3.4), we substitute δ = S
L

and use η rather than ξ. Assum-

ing zero initial conditions, Equation (2.29) is used to calculate the nonlinear approximation

of the periods in the bang and coat stages. The results are

Ta =
2π

Ω◦

(
1 +

3η2

16Ω4◦

)−1

(3.8)
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Tc =
2π

Ω◦

(
1− η2

4Ω4◦

)−1

(3.9)

3.1.1 Numerical Simulations

To verify the accuracy of the obtained nonlinear frequency approximation of the simplified

model, we generated shaped acceleration profiles based on the linear and nonlinear frequency

approximations of the constrained double-pendulum model and applied them to the simpli-

fied model. Figure 3.3 (a) shows the shaped acceleration profiles for the linear and nonlinear

cases. Figure 3.3 (b) illustrates that the magnitude of the residual oscillations associated

with the linearly shaped acceleration profile are approximately 10 cm, while those associ-

ated with the nonlinearly-shaped profile are almost equal to zero. The simulations are based

on typical dimensions of a 65-ton quay-side container crane: R = 2.5 m, d = 2.825 m,

w = 1.4125 m, and S = 50 m. To generate the shaped profiles we also assume that n=1

(Tc ≤ τs ≤ 2Tc).
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(b) Payload sway.

Figure 3.3: Sway response of a constrained double pendulum model of a container crane

to shaped operator commands. Results are obtained for L = 17.5 m. LDP refers to linear

frequency approximation of the double pendulum, and NDP refers to a nonlinear frequency

approximation of the double pendulum.
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We generate three acceleration profiles to drive the payload a distance of 50 m for a constant

cable-length maneuver (L = 17.5 m). The shaped acceleration profiles are based on the non-

linear frequency approximation of a simple pendulum and the linear and nonlinear frequency

approximations of the simplified model. The results shown in Fig. 3.4 demonstrate that the

shaped profile based on a simple pendulum does not reduce the residual oscillations. On the

contrary, this shaped profile amplifies the residual oscillations to magnitudes that are even

larger than the transient oscillations. On the other hand, the acceleration profiles based

on the linear and nonlinear frequency approximations of the simplified model reduce the

residual oscillations significantly. Furthermore, the nonlinearly shaped acceleration profile

results in almost zero residual oscillations. This result has critical implications. Besides the

fact that a simple pendulum model can not be used to model a quay-side container crane,

the results demonstrate that the simplified model is a very accurate representation of the

four-bar-mechanism model. This is obvious from the fact that, even at large trolley accel-

erations, a nonlinear approximation of the simplified model frequency results in almost zero

residual oscillations on the full model.
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(a) Shaped operator commands.
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(b) Payload sway.

Figure 3.4: Sway response of the full model of the container crane to shaped operator

commands. Results are obtained for L = 17.5 m. NSP refers to a nonlinear frequency

approximation of a simple pendulum.
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Figure 3.5: Sensitivity of the SS input-shaping controller to variations in the cable length:

Sway response of the full model of the container crane to the shaped operator commands

shown in Fig. 3.4(a).

Figure 3.5 demonstrates the sensitivity of the input-shaping controller to changes in the

system parameters. The nonlinearly shaped acceleration profile shown in Figure 3.4 (a) is

applied to the full model while varying the length of the hoisting cables. Simulations show

that a change of 1.0 m in the cables length causes significant degradation in the controller

performance.

3.2 Delayed-Position Feedback

To overcome the problem of the input-shaping controller sensitivity and to eliminate the

residual oscillations, we apply a delayed-position feedback controller at the end of the trans-

fer maneuver. The choice of delayed-position feedback controller is based on its ability to

handle systems with inherent time delays. The controller can incorporate these delays in

its parametric delay. Moreover, this controller was proven to have better performance than

linear feedback and optimal controllers [47].

A number of factors were considered for applying a feedback controller only at the end of the
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transfer maneuver. A significant factor is reducing the power required to perform a transfer

maneuver with minimal residual oscillations. This stems from the fact that, for large sway

angles, feedback control systems may require input accelerations that are beyond the normal

operating accelerations, which may overload the trolley motors during the acceleration and

deceleration stages. When applied at the end of a transfer maneuver performed using a

shaped acceleration profile, feedback controllers require lower accelerations. This is due to the

fact that a well-designed input-shaping controller is expected to produce significant reduction

in the residual payload oscillations. Unlike feedback controllers, shaped commands can be

designed to use the maximum crane capabilities and therefore result in faster operations.

Moreover, feedback controllers produce continuously changing acceleration profiles, which

affects the crane operator performance and comfort. Therefore, applying an efficient feedback

controller only at the end of the transfer maneuver for a very short period of time eliminates

excessive trolley motion. Thus maintaining comfortable working conditions for the crane

operator.

The delayed-position feedback controller creates damping in the system by adding a delayed

feedback component to the operator commands to the trolley drives. This component is

proportional to the swing angle of the hoist line. The controller takes the following general

form:

f = f◦ + k̂ sin φτd
(3.10)

where k̂ is the feedback gain, τd is the delay time, f◦ is the operator input, and φτd
= φ(t−τd).

To study the linear stability of the controller and to make a proper choice of the gain-delay

combination, we substitute Equation (3.10) into Equation (2.15) and add a linear damping

term to account for the damping in the system. Assuming that the operator input is slowly

varying and keeping only linear terms yields

φ̈ + ω2
◦φ + 2µφ̇ +

k̂

k3

(φ̈τd
+ 2µφ̇τd

) = 0 (3.11)

where µ is a linear damping coefficient. Now we seek an exponentially damped solution of
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Equation (3.11) in the form

φ = ceσt cos(ωt + ψ) (3.12)

where c, σ, ω, and ψ are real constants. Substituting Equation (3.12) into Equation (3.11)

and setting each of the coefficients of cos(ωt+ψ) and sin(ωt+ψ) equal to zero independently,

we obtain the following two equations:

K(σ2 + 2µσ − ω2) sin(ωτd)− 2Kω(µ + σ) cos(ωτd)− 2ω(σ + µ)eστd = 0 (3.13)

K(σ2 + 2µσ − ω2) cos(ωτd) + 2Kω(µ + σ) sin(ωτd) + (σ2 + 2µσ − ω2 + ω2
◦)e

στd = 0 (3.14)

where k̂/k3 = K. The stability of the system depends on the value of the parameter σ.

The system is asymptotically stable for σ < 0 and unstable for σ > 0. To determine the

boundaries of linear stability and instability we set σ equals to zero in Equations (3.13)

and (3.14) and obtain

Kω2 sin(ωτd) + 2Kµ cos(ωτd) + 2µω = 0 (3.15)

2Kωµ sin(ωτd)− ω2(1 + K cos(ωτd)) + ω2
◦ = 0 (3.16)

Equations (3.15) and (3.16) can be normalized by dividing them by ω2
◦, and setting the time

delay τd proportional to the linear period of oscillation T = 2π/ω◦. This yields

Kλ2 sin(2πλγ) + 2Kνλ cos(2πλγ) + 2νλ = 0 (3.17)

2Kνλ sin(2πλγ)− λ2(1 + K cos(2πλγ)) + 1 = 0 (3.18)

where λ = ω/ω◦, γ = τd/T , and ν = µ/ω◦. Manipulating Equations (3.17) and (3.18), we

determine K and γ as functions of λ; the result is

K(λ) = −
√

4ν2 + λ2(λ2 + 4ν2 − 1)2

λ(λ2 + 4ν2)
(3.19)

γ(λ) =
1

2πλ

[
arctan

2ν

λ(λ2 + 4ν2 − 1)
+ jπ

]
j = 0, 1, 2, ... (3.20)

The stability boundaries are determined by varying λ in Equations (3.19) and (3.20) and

solving for K and γ. Figure 3.6 shows the stable and the unstable regions as predicted by the
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Figure 3.6: A stability plot of the delayed position-feedback controller for a relative damping

ν = 0.0033. The shaded areas represent the pockets of stability.

linear theory. Any gain-delay combination that lies inside the shaded areas of Fig. 3.6 leads

to an asymptotically stable response. It is worth mentioning that there is infinite number of

stability pockets, which decrease in size as the time delay of the controller τd increases. To

determine the magnitude σ of the damping factor resulting from each gain-delay combination,

we vary τd and K in Equation (3.13) and (3.14) and calculate σ. Figure 3.7 shows a contour

plot for σ in the first pocket of stability.

Figure 3.7: A contour plot of the damping as a function of the gain K and the delay τd,

where τd is given in terms of the natural period of the uncontrolled system. The darker the

areas are the higher the damping is.
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(b) Payload sway.

Figure 3.8: Sway response of the full model of the container crane with input-shaping (IS)

and combination of IS and feedback (FB) controllers. Results are obtained for L = 16.5 m.

To demonstrate the performance of the hybrid controller, a shaped acceleration profile based

on the nonlinear frequency approximation of the simplified model designed for a 17.5 m cable

is applied to transfer a container positioned 16.5 m below the trolley a distance of 50 m.

Figure 3.8 shows that the shaped command alone results in a residual sway of approximately

1.25 m, while a combination of input shaping and delayed-position feedback suppresses the

residual sway to a magnitude less than 0.05 m within 4.5 s of the end of the transfer

maneuver. The controller’s gain-delay combination used in the simulations is K = 0.4 and

τd = 0.28 T .

3.3 Variable-Length Operations

To better understand the dynamics of the system for operations that include hoisting, we

linearize the equations of motion of the simplified model and obtain the following equation:

φ̈ + 2µ(t)φ̇ + ω2
◦(t)φ +

µ

2L̇
f̈ = 0 (3.21)
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(a) L̇ > 0 (b) L̇ < 0

Figure 3.9: Phase portraits describing the dynamics of the crane payload.

where

ω◦(t) =

√
g(L + α2R)− αdRL̈

w

L2 − 2αRL + α2(k̄2 + R2)

µ(t) =
L̇(L− αR)

L2 − 2αRL + α2(k̄2 + R2)

α =
d− w

w

(3.22)

In the above linear approximation, we assume that l ≈ L. This assumption is justified,

because, for small angles of oscillation, it yields less than 0.5% error in calculating the

length l based on typical values of d, w, and L for container cranes.

Analyzing the dynamics involved in Equation (3.21) forms the basis for designing an effective

input-shaping controller for maneuvers that involve large hoisting operations. First, we find

the equilibrium solution of Equation (3.21) by letting φ̇ = φ̈ = 0 and obtaining

φL = − L− αR

g(L + α2R)− αdRL̈
w

f̈ (3.23)

For constant cable length and trolley acceleration, φL is constant and the dynamics of the

payload is given in Fig. ?? (assuming the damping is very small). However, for operations
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that include hoisting, the dynamic behavior of the payload is qualitatively different. The

variation of L causes the equilibrium solution described by Equation (3.23) to vary along

the φ-axis. If L increases, the magnitude of φL increases and vise versa. This equilibrium

solution is known as a non-stationary fixed point. Moreover, in the case of hoisting L̇ 6= 0

and hence the term including φ̇ in Equation (3.21) is no longer equal to zero. This term

acts as a damping term with the sign of L̇ determining the type of damping. Therefore,

the equilibrium solution of (3.21) is no longer a marginally stable center. The stability

of this equilibrium solution is now determined by the sign of L̇. For a positive L̇, the

damping is positive and the equilibrium solution is a stable focus (sink). On the other

hand, for a negative L̇, the damping is negative and the equilibrium solution is an unstable

focus (source). The qualitative dynamic behavior of the payload around the non-stationary

equilibrium solution is illustrated in Fig. 3.9 (b) and (c).

To design an effective input-shaping controller for variable-length operations, we use a vari-

ation of the SS acceleration profile. This profile is shown in Fig. 3.10 and is called a DS

acceleration profile. Unlike the SS shaper, a well- designed DS shaper results in zero oscilla-

tions at the end of both of the acceleration and deceleration stages. This is very important

since it minimizes the effects of damping and nonlinearities on the payload dynamics [87].

In a DS profile, the trolley accelerates at a constant rate amax for time ta1 , after which the

trolley coasts at a constant velocity until time tc1 . The trolley then accelerates again with

the same acceleration until time ta2 where the acceleration phase is concluded. Afterwards,

the trolley coasts until time T , then decelerates in two steps similar to the acceleration stage.

A shaped DS acceleration profile similar to the one shown in Fig. 3.10 uses the maximum

system capabilities to achieve the required transfer maneuver with minimal transient and

residual oscillations. To generate the required profile, the controller calculates the switching

times such that the payload dynamics follow the phase portrait shown in Fig. 3.11. Ideally,

this phase portrait drives the dynamics of the payload to end at the equilibrium point at the

center of the phase portrait rather than a limit cycle around it.
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To determine the switching times for this phase portrait, the trolley acceleration profile must

satisfy two sets of constraints. The first set includes the dynamic constraints that involve

the amplitudes of the response at the beginning and at the end of each acceleration step and

the physical constraints on the crane motors.

To derive the dynamic constraints, we obtain an approximate homogeneous solution of Equa-

tion (3.21). For typical crane operations, L̇ and L̈ are small quantities, hence µ(t) and ω◦(t)

are slowly varying when compared to the fast dynamics of φ. As a result, one can use the

WKB theorem [86] to obtain an approximate solution of Equation (3.21). Towards that end,

we introduce the transformation

φ(t) = P (t)U(t) (3.24)

into the homogeneous part of Equation (3.21) and obtain

P̈U + 2U̇ Ṗ + ÜP + 2µ(t)(ṖU + U̇P ) + ω2
◦(t)PU = 0 (3.25)

We set the coefficients of U̇ equal to zero to obtain

Ṗ = −µ(t)P ⇒ P = c1e
− R µ(t)dt (3.26)

Substituting Equation (3.26) back into Equation (3.25), yields

Ü + q(t)U(t) = 0 (3.27)

Figure 3.10: Typical acceleration profile of a DS input-shaping controller.
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Figure 3.11: Graphical representation of the controller phase portrait.

where

q(t) = ω2
◦(t)− µ2(t)− µ̇(t)

Since q(t) is slowly varying, we can introduce the transformation τ = εt in Equation (3.27),

here ε is a small dimensionless parameter. This yields

d2U

dτ 2
+ λ2q(τ)U = 0 (3.28)

where λ = ε−1. Using the WBK theorem and the fact that λ
∫ √

q dτ = ελ
∫ √

q dt =
∫ √

q dt,

the solution of Equation (3.28) can be written as

U ≈ q−1/4

{
e1 cos

[ ∫ √
q dt

]
+ e2 sin

[ ∫ √
q dt

]}
(3.29)

where e1 and e2 are constants obtained using the initial conditions. Using Equation (3.24)

and (3.26), we can write the approximate solution of Equation (3.21) as

φ ≈ q−1/4e−
R

µ(t) dt

{
e1 cos

[ ∫ √
q dt

]
+ e2 sin

[ ∫ √
q dt

]}
(3.30)
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For typical hoist speeds and accelerations of quay-side cranes (L̇ ≤ 2 m/s, L̈ ≤ 0.5 m/s2),

our simulations reveal that the approximate solution leads to very acceptable results. The

controller design however does not use the total approximate solution, we only use the fact

that the amplitude of the response is exponentially damped.

Over each acceleration or coasting step, we use an average value for the damping µ. There-

fore, the amplitude of the response say χ at any time t can be related to the initial amplitude

say χi at time ti by

χ = χie
µavg(t−ti) (3.31)

where

µavg =
1

t− ti

t∫

ti

µ(τ) dτ (3.32)

where τ is a dummy variable. In the first acceleration step, the trolley accelerates so that

the new equilibrium solution is at point B, which is assumed to be stationary for typical

crane parameters and operating range of the hoisting cable. The response then follows the

path p1 through a phase angle α1 to point A. The amplitude of the response at that point is

b1 = beµavgta1 (3.33)

The second acceleration step tc1 to ta2 is designed to force the response of the system to

home at the origin of the phase portrait at the end of this acceleration step. The system

response follows the path p2 through the phase angle α2. Going back in time, the starting

amplitude of oscillation of the second acceleration step at point C has to satisfy

b2 = be−µavg(ta2−tc1 ) (3.34)

To guarantee the continuity of the response, points A and C are required to fall on the same

coasting path pc. This can be represented by the following relation:

c2 = c1e
µavg(tc1−ta1 ) (3.35)

A fourth dynamic constraint is derived from the physical constraints on the velocity and

acceleration achievable by the trolley motors. This constraint can be enforced by restricting
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the acceleration time so that the trolley velocity does not exceed the maximum achievable

velocity by the trolley motors.

vmax = amax(ta1 + ta2 − tc1) (3.36)

The second set of constraints are geometric constraints which are derived directly from the

graphical representation of the controller phase portrait, Fig. 3.11. Graphically, the coasting

phase is split into two consecutive stages: β1 and β2. The first phase ends when the response

crosses the zero velocity axis on the phase portrait at time to. Considering the upper triangle

OAB, and using the geometric laws of sines and cosines, the following geometric constraints

are obtained:

c2
1 = b2 + b2

1 − 2bb1 cos α1 (3.37)

c1 = b1
sin α1

sin β1

(3.38)

Similarly, considering the lower triangle OCB, two other geometric constraints are derived

c2
2 = b2 + b2

2 − 2bb2 cos α2 (3.39)

c2 = b2
sin α2

sin β2

(3.40)

The phase angles of the controlled performance in the acceleration and coasting phases can

be related to the system frequencies and switching times by the following equations

α1 =

ta1∫

0

ωadt (3.41)

α2 =

ta2∫

tc1

ωadt (3.42)

β1 =

to∫

ta1

ωcdt (3.43)

β2 =

tc1∫

to

ωcdt (3.44)
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where ωa and ωc are the frequency of payload oscillations in the accelerations and coasting

stages, respectively. When a linear frequency approximation is used, ωa= ωc=ω◦.

To reduce the above eight constraint equations into four equations in terms of only the

unknown switching times ta1 , to, tc1 , and ta2 , we substitute Equations (3.33), (3.38), (3.41),

and (3.43) into Equation (3.37) and obtain

e
(2

ta1R
0

µdt)
sin2(

ta1∫
0

ωadt)

sin2(
to∫

ta1

ωcdt)

= 1 + e
(2

ta1R
0

µdt) − 2e
(

ta1R
0

µdt)
cos

( ta1∫

0

ωadt

)
(3.45)

Similarly, we substitute Equations (3.34), (3.40), (3.42), and (3.44) into Equation (3.39),

and obtain

e
(−2

ta1R
tc1

µdt)
sin2(

ta2∫
tc1

ωadt)

sin2(
tc1∫
to

ωcdt)

= 1 + e
(−2

ta1R
tc1

µdt)

− 2e
(−

ta1R
tc1

µdt)

cos

( ta2∫

tc1

ωadt

)
(3.46)

We also substitute Equations (3.33), (3.38), (3.34), (3.40), and (3.41)-(3.44) into Equation

(3.35) and obtain

e
(−

ta1R
0

µdt)
sin(

ta2∫
tc1

ωadt)

sin(
tc1∫
to

ωcdt)

=

sin(
ta1∫
0

ωadt)

sin(
to∫

ta1

ωcdt)

(3.47)

The final four constraint equations (3.36) and (3.45)-(3.47) are then numerically solved for

the switching times of the controller. The same approach is used for both the acceleration

and deceleration stages. The trolley coasting time between the acceleration and deceleration

stages T is determined by the total travel distance of the trolley.
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3.3.1 Numerical Simulations

Using the linear frequency approximation Equation (3.22), a shaped double-step acceleration

profile is generated for a fixed cable-length transfer operation as shown in Fig 3.12(a). The

resulting profile is then applied to the full equations of motion (2.2), and the phase portrait

of the payload response is shown in Fig. 3.12(b). It is clear that even for large trolley input

acceleration (a = 1 m/s2), the shaped acceleration produced a payload response with almost

zero residual oscillations.
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Figure 3.12: Sway response of a container crane to shaped operator commands: L = 32.5 m

and S = 50 m.

This point is also illustrated in Fig. 3.13 where we show a comparison between the perfor-

mance of the DS controller using the linear and nonlinear frequency approximations. The

amplitude of the residual oscillations obtained with a linear frequency approximation is

larger than that obtained with a nonlinear approximation. However, in contrast with the SS

controller where the difference is large and cannot be tolerated, the difference here is very

small and can be neglected. This is due to the fact that using the DS profile, the period

over which large oscillations occur is so short that frequency approximation do not produce

significant deviation from the desired system dynamics.
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Figure 3.13: Residual oscillations of the payload resulting from a DS input-shaping controller:

L = 32.5 m and S = 50 m.

To illustrate the effectiveness of the new approach for variable cable-length operations, three

simulations are presented to demonstrate a hoisting up, lowering, and a combined hoisting

up and lowering maneuvers. In the first simulation, the payload is transferred 50 m. During

the transfer operation the payload is hoisted up 15 m starting from a position 35 m below

the trolley with an acceleration of 0.75 m/s2, after the hoist acceleration is concluded in the

first two seconds, the trolley starts to accelerate with a maximum acceleration of 0.5 m/s2 to

reach a maximum velocity of 3 m/s, Fig. 3.14(a). The payload motion trajectory is shown

in Fig. 3.14(b), and the controller switching times are listed in Table 3.1. The total transfer

Table 3.1: Switching times of the controller for a hoisting maneuver from Li to Lf .

Li (m) Lf (m) ta1 (sec) to (sec) tc1 (sec) ta2 (sec)

35 20 2.5762 3.6751 3.9538 7.3777

20 20 3.0000 3.1859 3.3717 6.3717

20 25 3.3145 3.4186 3.9776 6.6632

20 35 3.4601 3.6677 4.7279 7.2678

operation is conducted in 25.6 seconds. The maximum oscillation amplitude is 12.2 mm after

the acceleration stage and 15.4 mm at the end of the transfer maneuver. Figures 3.14(c)



Mohammed F. Daqaq Chapter 3. Control of Container Cranes 56

and 3.14(d) show the payload oscillation and the phase portrait of the system dynamics

throughout the transfer maneuver.
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Figure 3.14: A transfer operation involving a 15 m hoisting.
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In the second simulation, the payload is transferred 50 m starting from a position 20 m below

the trolley. During the transfer operation the payload is lowered 15 m with an acceleration
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Figure 3.15: A transfer operation involving a 15 m lowering.
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of 0.75 m/s2, Fig. 3.15(a). The payload motion trajectory is shown in Fig. 3.15(b). The

controller performance is shown in Figs. 3.15(c) and 3.15(d). The total transfer operation
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Figure 3.16: A transfer operation involving a 15 m hoisting and a 5 m lowering.
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is concluded in 26.3 seconds. The amplitude of the resulting payload oscillations is 12.5 mm

after the acceleration stage and 11.4 mm at the end of the transfer maneuver.

In the third simulation, the payload is transferred 50 m starting from a position 35 m below

the trolley. During the transfer operation the payload is hoisted up 15 m and then lowered

5 m, Fig. 3.16(b). The system performance is shown in Fig. 3.16(c) and 3.16(d). The

total transfer operation is concluded in 28 seconds. The amplitude of the resulting payload

oscillations is 15.4 mm after the acceleration stage and 25 mm at the end of the transfer

maneuver.



Chapter 4

Experimental Validation of the

Controllers

In this chapter, we provide a brief description of a 1:10 scale model of a 65-ton quay-side

container crane that we built to validate the theoretical models and test the controllers. We

first validate the input-shaping controller that we designed in Chapter 3 for automated crane

operations. Then, we illustrate the robustness and effectiveness of the delayed-position feed-

back controller through operator-in-the-loop experiments.

4.1 Experimental Setup

To validate the theory and the computer simulations, we built a 1:10 scale model of a 65-

ton quay-side container crane, as shown in Fig. 4.1. The support mechanism consists of

two 7 m aluminum tracks that are supported by 10 aluminum L-shaped supports. The

supports are attached to the ceiling by twenty 5/8′′ steel threaded rods. The trolley shown

in Fig. 4.2 is assembled, mounted on the tracks, and actuated to move in either direction

using a BM500E DC brushless rotary servomotor. The motor has a 4000 rpm rated speed,

60
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Figure 4.1: A 1:10 scale model of a 65-ton quay-side container crane.

510 N.m continuous torque, and 1.5 hp rated power. To achieve the required trolley speed

and torque, the motor is mounted on a 1:5 ratio gear box.

The hoist mechanism consists of four steel cables connected to four aluminium pulleys at

the trolley and to four points on the spreader bar. The spreader bar is attached to a 1:10

scale model of a 10 ft by 10 ft by 20 ft container. The four pulleys are actuated to rotate
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in either direction using two BM500E DC brushless rotary servomotors. To achieve the

required speed and torque, the two motors are mounted on two 1:35 ratio gearboxes. The

rated capabilities and critical dimensions of the scaled model are available in Table 4.1.

Figure 4.2: Assembled trolley of a 1:10 scale model of a 65-ton quay-side container crane.

Each motor is connected to a Velocity/Torque amplifier. The amplifier reads a differential

+/-10 volts signal and commutates the motor using a sine wave current command. The

commutation is achieved using a quadrature encoder mounted on the motor shaft. The

input signal can be either a velocity or a torque command. In our application, we used the

velocity input mode.

Two quadrature high precision optical encoders are mounted on two cables at each side of

the trolley. The encoders are used to read the in-plane angle of the payload hoisting cables.

The average of both readings is used to avoid any errors that might result from the container
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Table 4.1: Rated capabilities and critical dimensions of the experimental setup.

Trolley velocity 1 m/s

Hoist velocity 1 m/s

Trolley acceleration 0.5 m/s2

Hoist acceleration 0.5 m/s2

Distance between hoisting cables at the trolley (d) 0.28 m

Distance between hoisting cables at the spreader bar (w) 0.14 m

Usable track length (S) 5 m

Distance between the center of gravity of the payload

and the top of the spreader bar (R)
0.25 m

Maximum hoist distance 2.5 m

twist.

A data acquisition board is added to a 450 MHz desktop computer. The board has 8

channels of analog input, 8 channels of analog output, 8 encoder counters, and 32 channels

of digital inputs/outputs. The board was used to sample the optical encoders data and to

communicate with the amplifiers and the safety limit switches. A C++ code was developed

to sample the data registers of the acquisition board, drive the amplifiers of the traverse and

hoist motors, and communicate with the user interface devices. Two joysticks are used to

simulate the operator-in-the-loop scenarios.

For safety concerns, a C++ code was used to calculate the trolley position on the tracks. If

the trolley is within a certain distance from either end of the tracks, the current supplied to

the traverse motor decreases gradually causing the trolley to decelerate and stop. A number

of limit switches are mounted on each end of the track to ensure safety in case of code failure.

These switches disable the amplifiers, causing the trolley to decelerate under its own inertia.

To drive the trolley to complete stop, hydraulic dampers and air springs are installed at both

ends of the track.
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4.2 Experimental Validation of Input-Shaping Control

Two experiments were conducted to validate the input-shaping control technique that we

proposed for automated crane operations. There are two performance measures for the

controller. The first is that the controller incorporates the maximum crane capabilities

listed in Table 4.1. This guarantees the conclusion of the transfer operation in minimal time.

The second is that the magnitude of the residual oscillations is less than 5 mm in magnitude

at the end of the transfer maneuver.
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Figure 4.3: A 5 m payload transfer operation involving a 1.5 m lowering.
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In the first experiment, the payload is transferred 5 m. During the transfer operation the

payload is lowered 1.5 m starting from a position 2 m below the trolley with an acceleration

of 0.5 m/s2. The payload motion trajectory is shown in Fig. 4.3(a). The trolley starts to

accelerate with a maximum acceleration of 0.5 m/s2 to reach a maximum velocity of 1 m/s,

Fig. 4.3(b). The total transfer operation is conducted in 8.4 seconds. The resulting residual

oscillations magnitude is less than 4 mm at the end of the acceleration stage and less than

4.5 mm at the end of the transfer maneuver. Figure 4.3(c) illustrates the payload sway

throughout the transfer maneuver.
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Figure 4.4: A 5 m payload transfer operation involving a 1.5 m hoisting then 1.5 m lowering.
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In the second experiment, the payload is transferred 5 m. During the transfer operation

the payload is first hoisted 1.5 m starting from a position 3.5 m below the trolley then

lowered 1.5 m starting form a position 2 m below the trolley. The payload motion trajectory

is shown in Fig. 4.4(a). The trolley starts to accelerate with a maximum acceleration of

0.5 m/s2 to reach a maximum velocity of 1 m/s and the payload is hoisted and lowered

with a maximum acceleration of 0.5 m/s2 to reach a maximum speed of 1 m/s, Fig. 4.4(b).

The total transfer operation is conducted in 9.2 seconds. The maximum residual oscillations

magnitude is less than 4.2 mm at the end of the acceleration stage and less than 4.5 mm at

the end of the transfer maneuver. Figure 4.4(c) illustrates the payload sway throughout the

transfer maneuver.

Many other automated crane experiments were conducted. These experiments involved

different hoisting and lowering maneuvers. In all cases, the maximum crane capabilities

were incorporated and the residual vibrations were less than 5 mm in magnitude, which

demonstrates the effectiveness of the controller.

4.3 Experimental Validation of Delayed-Position Feed-

back Control

For operator-in-the-loop crane operations, input-shaping controllers do not provide an al-

ternative. These controllers require predefined trolley and payload paths, which are not

available if the operator was to operate the crane using the crane joysticks. Therefore, we

use the delayed-position feedback controller analyzed in Chapter 3 to stabilize the payload

for random trolley input commands and hoisting operations. The input commands were

augmented with the controller feedback signal without interfering with the actual operator

input.

To demonstrate the effectiveness and robustness of the controller, we conducted two exper-
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iments. In the first experiment, an operator randomly moved the trolley along the crane

tracks while performing random hoisting and lowering operations without switching on the

controller. In the second experiment, the operator repeated the process but with the con-

troller switched on. For safety concerns, because the payload sway can be dangerously large

without control, we limited the trolley and hoist velocities to half the maximum crane ca-

pabilities in the first experiment, whereas we used the maximum capabilities of the crane in

the second experiment.
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Figure 4.5: Uncontrolled operator-in-the-loop operation of the container crane. Only half of

the maximum crane capabilities were used in this experiment.
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In the first experiment, the crane operator arbitrarily moved the trolley three times back

and forth, Fig. 4.5(a). At the same time he hoisted and lowered the payload two times

Fig. 4.5(b). As these maneuvers were conducted, the payload sway increased to dangerously

large magnitudes up to 0.25 m as shown in Fig. 4.5(c). This is equivalent to almost 2.5 m

sway on a full scale container crane. These sustained large oscillations existed even for the

periods when the trolley is not moving. In fact, it is obvious in Fig. 4.5(a), that the crane
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Figure 4.6: Controlled operator-in-the-loop operation of the container crane. Maximum

crane capabilities were used in this experiment.
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operator tried to minimize these sustained oscillations by manually making the trolley track

the payload using small steps in the trolley motion. However, with all of the effort and

experience, these oscillations can still be large and dangerous and significantly increase the

payload transfer time.

In the second experiment, the controller was switched on and the delayed feedback signal

was added to the operator input. The operator moved the trolley four times back and forth

on the track, Fig. 4.6(a), while simultaneously hoisting and lowering the payload four times,

Fig. 4.6(b). Although, the experiment was conducted using the maximum velocity of the

crane, the controller kept the payload oscillations minimal, as shown in Fig. 4.6(c). In fact,

at the end of each acceleration or deceleration step, the controller was capable of driving the

oscillations of the payload to less than 5 mm in less than 4 s.



Chapter 5

Modeling of Torsional Micromirrors

In this chapter, we develop a comprehensive model of a torsional micromirror subjected to

electric excitations. First, we provide a general overview of the device, then we use Laplace’s

equation to derive an expression for the electrostatic energy. Using the resulting expression,

we write the Lagrangian of the system and carry out a Galerkin expansion to develop a

reduced-order model that captures the static and dynamic responses of the mirror.

5.1 The Micromirror

We consider the micromirror device shown in Fig. 5.1. This device was proposed by [69, 70].

It consists of two identical microbeams of length l, width w, and thickness h. The beams

are fixed on one side and connected to a rigid rectangular plate (the mirror) on the other

side. The mirror has a length Lm, width a, and thickness h. Beneath the micromirror there

are two electrodes each of length b and width c = (a2 − a1)/2. The perpendicular distance

between the undeformed position of the mirror and the electrodes is denoted as d. The whole

microstructure is etched out of a silicon substrate that has a density ρ, a Young’s modulus

E, and a modulus of rigidity G.

70
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(a) Perspective view

(b) Cross-sectional view

Figure 5.1: Schematic diagram of a micromirror.

The mirror is activated to rotate in either direction by supplying a voltage V (τ) to the

corresponding electrode. This results in an electrostatic potential between the electrode and

the mirror, which generates an electrostatic pressure P on the lower surface of the mirror, and

hence produces a downward electrostatic force Fe and an electrostatic moment Me around
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the suspension point. Consequently, the microbeams undergo simultaneous and distributed

torsion θ̂(x, τ) and deflection û(x, τ) and the micromirror rotates an angle θ̂m(τ) and deflects

a distance ûm(τ).

5.2 Electrostatic Actuation

Assuming that the mirror is infinitely long (thereby adopting the parallel-plate theory and

neglecting non-uniformity in the electrostatic field due to fringing effects towards the ends),

the electrostatic potential between the mirror and each of the electrodes can be represented

by Laplace’s equation with appropriate boundary conditions. In the cylindrical coordinates

(r, φ, z), the electrostatic potential (Φ) is governed by

d2Φ(φ)

dφ2
= 0

Φ(0) = 0, Φ(θ̂m) = V

(5.1)

whose solution can be expressed as

Φ(φ) =
V

θ̂m

φ (5.2)

The electrostatic field E is given by

E = −∇Φ = − V

rθ̂m

φ̂ (5.3)

where φ̂ is the unit vector in the direction of φ. The electrostatic charge density on the

mirror can be written as

ρ = ε0E =
ε0V

rθ̂m

(5.4)

where ε0 is the dielectric constant of air. The resulting capacitance between the mirror and

the bottom electrodes is

C =
1

V

∫
ρdA =

ε0

θ̂m

b∫

0

r2∫

r1

1

r
drdz

=
ε0b

θ̂m

ln
r2

r1

(5.5)
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where r1 and r2 are defined in Fig. 5.1(b) and can be further expressed as

r1 =
d− ûm

tan θ̂m

− a2

2
, r2 =

d− ûm

tan θ̂m

− a1

2
(5.6)

Substituting Equation (5.6) into Equation (5.5), we obtain

C =
ε0b

θ̂m

ln

[d− ûm − 1

2
a1 tan θ̂m

d− ûm − 1

2
a2 tan θ̂m

]
(5.7)

The total potential energy of the electrostatic force is given by

Ue = −1

2
CV 2 = − ε0b

2θ̂m

V 2 ln

[d− ûm − 1

2
a1 tan θ̂m

d− ûm − 1

2
a2 tan θ̂m

]
(5.8)

Using Equation (5.8), we can derive the total electrostatic force and moment as follows:

Fe = − ∂Ue

∂ûm

=
ε0b

2θ̂m

V 2

[
1

d− ûm − 1

2
a2 tan θ̂m

− 1

d− ûm − 1

2
a1 tan θ̂m

]
(5.9a)

Me = −∂Ue

∂θ̂m

=
ε0b

2
V 2

{
1

θ̂m

[ 1

2
a2 sec2 θ̂m

d− ûm − 1

2
a2 tan θ̂m

−
1

2
a1 sec2 θ̂m

d− ûm − 1

2
a1 tan θ̂m

]

+
1

θ̂2
m

ln

[d− ûm − 1

2
a2 tan θ̂m

d− ûm − 1

2
a1 tan θ̂m

]}
(5.9b)

For small rotation angles, one can assume that (sin θ ≈ θ, cos θ ≈ 1), which further simplifies

the expressions for the electrostatic force and moment to

Fe =
ε0b

2θ̂m

V 2

[
1

d− ûm − 1

2
a2θ̂m

− 1

d− ûm − 1

2
a1θ̂m

]
(5.10a)

Me =
ε0b

2θ̂2
m

V 2

{
d− ûm

d− ûm − 1

2
a2θ̂m

− d− ûm

d− ûm − 1

2
a1θ̂m

+ ln

[d− ûm − 1

2
a2θ̂m

d− ûm − 1

2
a1θ̂m

]}
(5.10b)
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Next we nondimensionlize Equations (5.10a) and (5.10b) to obtain

Fe =
ε0b

2dθcrθm

V 2

[
1

1− um − βθm

− 1

1− um − αθm

]
(5.11a)

Me =
ε0b

2θ2
crθ

2
m

V 2

{
βθm

1− um − βθm

− αθm

1− um − αθm

+ ln

[
1− um − βθm

1− um − αθm

]}
(5.11b)

where

α =
a1

a
, β =

a2

a
, θcr =

2d

a
, θ =

θ̂

θcr

, u =
û

d
.

(5.12)

The expressions for the electrostatic force and moment have a removable singularity at

θm = 0. To avoid computational overflows, we take the limits of Equations (5.11a) and

(5.11b) and obtain

Fe =
ε0bV

2

2dθcr

β − α

(1− um)2
(5.13a)

Me =
ε0bV

2

4θ2
cr

β2 − α2

(1− um)2
(5.13b)

5.3 Reduced-Order Model

To generate a compact model of the device under electrostatic excitations, we develop a

reduced-order model that describes the statics and dynamics of the micromirror. We treat

the micromirror as a rigid plate and write the Lagrangian of the system as

L = Tb + Tm − Ub − Um − Ue (5.14)

where (Tb, Ub) and (Tm, Um) are the kinetic and potential energies of the two suspension

beams and the micromirror plate, respectively. The system kinetic energy can be expressed

as

Tb =
1

2
Ibzz

2l∫

0

θ̂2
τ dz +

1

2
m

2l∫

0

û2
τ dz

Tm =
1

2
Imzz θ̂

2
mτ +

1

2
Mû2

mτ

(5.15)
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where Ibzz = 1
12

ρhw(h2 + w2) is the mass moment of inertia of the suspension beams per

unit length around the z-axis, Imzz = 1
12

ρahLm(h2 +a2) is the mass moment of inertia of the

mirror around the z-axis, m = ρwh is the mass of the beam per unit length, and M = ρhLma

is the mass of the plate. The subscripts τ and z denote partial derivatives of the variables û

and θ̂; that is (¤τ = ∂¤
∂τ

,¤zτ = ∂2¤
∂z∂τ

, . . .).

The potential energies Ub and Um can be expressed as

Ub =
1

2
GJb

2l∫

0

θ̂2
z dz +

1

2
EIby

2l∫

0

û2
zz dz

Um = −Mgûm

(5.16)

where Jb = 16w4

3

[
1− 192(w/h)

π5

∑∞
n=0

1
(2n+1)5

tanh (2n+1)5

2(w/h)

]
is the polar moment of inertia of the

suspension beams that accounts for cross-sectional warping effects, and Iby = 1
12

wh3 is the

area moment of inertia of the suspension beams around the y-axis. Next, we substitute

Equations (5.8), (5.15), and (5.16) into Equation (5.14) and nondimensionalize the time τ

and space z independent variables and obtain

L =

1∫

0

θ2
t dξ + γ1

1∫

0

u2
t dξ −

1∫

0

θ2
ξ dξ − γ2

1∫

0

u2
ξξ dξ

+ γ3θ
2
mt + γ4u

2
mt + γ5um +

γ6

θm

ln

[
1− um − αθm

1− um − βθm

] (5.17)

where

ξ =
z

2l
, τ =

t

T
, γ1 =

12d2

θ2
cr(h

2 + w2)
,

γ2 =
Eh3wd2

48GJbl2θ2
cr

, γ3 =
aLm(h2 + a2)

2lw(h2 + w2)
, γ4 =

6Lmad2

wl(h2 + w2)θ2
cr

,

γ5 =
4ρhaLmgdl

GJbθ2
cr

, γ6 =
2ε0bV

2l

GJbθ3
cr

.

are dimensionless quantities and

T 2 =
ρwhl2(h2 + w2)

3GJb

is a time scale. To generate the reduced-order model, we carry out a Galerkin expansion of

the rotation θ and deflection u in the Lagrangian. To this end, we assume that the temporal
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and spatial variations of the rotation and deflection can be separated and written in the form

θ(ξ, t) =
∞∑
i=1

pi(t)ψi(ξ)

u(ξ, t) =
∞∑
i=1

qi(t)ϕi(ξ)

(5.18)

where the pi and qi are the generalized coordinates corresponding to the basis sets ψi and

ϕi of the rotation angle θ and the deflection u, respectively. We choose them to be the

orthonormal eigenfunctions of the free torsional vibrations of a clamped-clamped beam and

the bending vibrations of a clamped-clamped beam with a concentrated mass at its middle.

The basis set used to represent θ is given by the following eigenvalue problem:

d2ψ

dξ2
+

Ibzω
2

GJb

ψ = 0, ψ(0) = 0, ψ(1) = 0. (5.19)

Hence,

ψi(ξ) =
√

2 sin(iπξ), i = 1, 2, 3, . . . (5.20)

The basis set used to represent u is derived from the free transverse vibrations of a clamped-

clamped beam with a concentrated mass at the middle of the beam; that is,

d4ϕ1

dξ4
− k4ϕ1 = 0,

d4ϕ2

dξ4
− k4ϕ2 = 0,

ϕ1(0) = 0, ϕ′1(0) = 0,

ϕ2(1) = 0, ϕ′2(1) = 0,

ϕ1(
1
2
) = ϕ2(

1
2
), ϕ′1(

1
2
) = ϕ′2(

1
2
),

ϕ′′1(
1
2
) = ϕ′′2(

1
2
), ϕ′′′1 (1

2
) + mrk

4ϕ1(
1
2
) = ϕ′′′2 (1

2
).

(5.21)

where k4 = (ρwhω2)/(EIbz) and mr = M/(2ρwhl) is the mass ratio. The solution of

Equations (5.21) can be expressed as

ϕi(ξ) =





ϕi1(ξ) = C1 sin kiξ + C2 cos kiξ + C3 cosh kiξ + C4 sinh kiξ ξ ≤ 1
2
,

ϕi2(ξ) = C5 sin kiξ + C6 cos kiξ + C7 cosh kiξ + C8 sinh kiξ ξ > 1
2
.

i = 1, 2, . . .

(5.22)
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where (C1, C2, . . . , C8) are constants. Substituting Equation (5.22) into Equation (5.21)

yields eight homogeneous algebraic equations in the unknown constants. Setting the deter-

minant of these equations equal to zero yields the characteristic equation

2(1− cos k cosh k) + mrk[sin k cosh k cosh2 k

2
− cos k sinh k cos2 k

2

+ cos k cosh k(sin
k

2
cosh

k

2
− cos

k

2
sinh

k

2
)

+ cos k sinh k(cos
k

2
cosh

k

2
− sin

k

2
sinh

k

2
)

− sin k cosh k(cos
k

2
cosh

k

2
+ sin

k

2
sinh

k

2
)

+ sin k sinh k(sin
k

2
cosh

k

2
+ cos

k

2
sinh

k

2
)

− sin k sinh k(cos
k

2
sin

k

2
+ cosh

k

2
sinh

k

2
)

+ cos
k

2
sinh

k

2
− sin

k

2
cosh

k

2
] = 0

(5.23)

The eigenfunction are normalized according to

1∫

0

ϕi(ξ)ϕj(ξ) = δij (5.24)

where δ is the Kronecker delta. For the basis sets, we have

1∫

0

ψ′iψ
′
j dξ = Λijδij,

1∫

0

ϕ′′i ϕ
′′
j dξ = Υijδij

(5.25)

Having defined the basis sets ψi(ξ) and ϕi(ξ), we substitute Equations (5.18) and (5.25) into

Equation (5.17) and obtain

L =
∞∑
i=1

{
ṗ2

i + γ1q̇
2
i − γ2q

2
i Υii − p2

i Λii + γ5qiϕi(
1
2
)

}
+

∞∑
i=1

∞∑
j=1

{
γ3ṗiṗjψi(

1
2
)ψj(

1
2
)

+ γ4q̇iq̇jϕi(
1
2
)ϕj(

1
2
)

}
+

γ6
∞∑
i=1

piψi(
1
2
)
ln

[1−
∞∑
i=1

(qiϕi(
1
2
) + αpiψi(

1
2
))

1−
∞∑
i=1

(qiϕi(
1
2
) + βpiψi(

1
2
))

] (5.26)
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Then, using Euler-Lagrange equations, the equations of motion can be expressed as

p̈i + γ3

∞∑
j=1

p̈jψi(
1
2
)ψj(

1
2
) + piΛii =

γ6ψj(
1
2
)

2
∞∑

j=1

pjψj(
1
2
)

{
β

1−
∞∑

j=1

(qjϕj(
1
2
) + βpjψj(

1
2
))

− α

1−
∞∑

j=1

(qjϕj(
1
2
) + αpjψj(

1
2
))

+
1

2
∞∑

j=1

pjψj(
1
2
)
ln

[1−
∞∑

j=1

(qjϕj(
1
2
) + βpjψj(

1
2
))

1−
∞∑

j=1

(qjϕj(
1
2
) + αpjψj(

1
2
))

]} (5.27)

γ1q̈i + γ4

∞∑
j=1

q̈jϕi(
1
2
)ϕj(

1
2
) + γ2qiΥii − 1

2
γ5ϕi(

1
2
) =

γ6ϕi(
1
2
)

2
∞∑

j=1

pjψj(
1
2
)

[
1

1−
∞∑

j=1

(qjϕj(
1
2
) + βpjψj(

1
2
))
− 1

1−
∞∑

j=1

(qjϕj(
1
2
) + αpjψj(

1
2
))

]
(5.28)

We can truncate the basis sets up to n and m basis functions for the torsion and deflection

and rewrite Equations (5.27) and (5.28) in the following matrix form:




1 + γ3ψ1(
1
2
)ψ1(

1
2
) γ3ψ1(

1
2
)ψ2(

1
2
) . . . γ3ψ1(

1
2
)ψn(1

2
)

γ3ψ1(
1
2
)ψ2(

1
2
) 1 + γ3ψ2(

1
2
)ψ2(

1
2
) . . . γ3ψ2(

1
2
)ψn(1

2
)

... γ3ψ2(
1
2
)ψn−1(

1
2
)

. . .
...

γ3ψ1(
1
2
)ψn(1

2
) γ3ψ2(

1
2
)ψn(1

2
) . . . 1 + γ3ψn(1

2
)ψn(1

2
)







p̈1

p̈2

...

p̈n




+




Λ11 . . . 0 0
... Λ22 0 0

0 0
. . .

...

0 0 . . . Λnn







p1

p2

...

pn




=
1

2
γ6Fp




ψ1(
1
2
)

ψ2(
1
2
)

...

ψn(1
2
)




(5.29)
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γ1 + γ4ϕ1(
1
2
)ϕ1(

1
2
) γ4ϕ1(

1
2
)ϕ2(

1
2
) . . . γ4ϕ1(

1
2
)ϕm(1

2
)

γ4ϕ1(
1
2
)ϕ2(

1
2
) γ1 + γ4ϕ2(

1
2
)ϕ2(

1
2
) . . . γ4ϕ2(

1
2
)ϕm(1

2
)

... γ4ϕ2(
1
2
)ϕm−1(

1
2
)

. . .
...

γ4ϕ1(
1
2
)ϕm(1

2
) γ4ϕ2(

1
2
)ϕm(1

2
) . . . γ1 + γ4ϕm(1

2
)ϕm(1

2
)







q̈1

q̈2

...

q̈m




+

γ2




Υ11 . . . 0 0
... Υ22 0 0

0 0
. . .

...

0 0 . . . Υmm







q1

q2

...

qm




= (
γ6

2
Fq +

γ5

2
)




ϕ1(
1
2
)

ϕ2(
1
2
)

...

ϕm(1
2
)




(5.30)

where

Fp =
1

n∑
j=1

pjψj(
1
2
)

{
β

1−
m∑

j=1

qjϕj(
1
2
)− β

n∑
j=1

pjψj(
1
2
)
− α

1−
m∑

j=1

qjϕj(
1
2
)− α

n∑
j=1

pjψj(
1
2
)

+
1

n∑
j=1

pjψj(
1
2
)
ln

[1−
m∑

j=1

qjϕj(
1
2
)− β

n∑
j=1

pjψj(
1
2
)

1−
m∑

j=1

qjϕj(
1
2
)− α

n∑
j=1

pjψj(
1
2
)

]}

Fq =
1

n∑
j=1

pjψj(
1
2
)

[
1

1−
m∑

j=1

qjϕj(
1
2
)− β

n∑
j=1

pjψj(
1
2
)
− 1

1−
m∑

j=1

qjϕj(
1
2
)− α

n∑
j=1

pjψj(
1
2
)

]



Chapter 6

Static Response of Torsional

Micromirrors

Using Euler-Bernoulli beam theory, we derive two equations that are solved numerically for

the exact equilibrium position of the mirror. We use the resulting equations to validate

the reduced-order model. We show that the static response obtained using the reduced-order

model agrees with available experimental data. Based on the reduced-order model, we derive

an expression to determine the pull-in parameters of the mirror. We find that the pull-in

parameters obtained using this expression are in excellent agreement with the experimental

data.

6.1 Exact Static Solution

In the absence of time variations, the Lagrangian, Equation (5.17), reduces to

Ls = −2

1/2∫

0

θ2
ξ dξ − 2γ2

1/2∫

0

u2
ξξ dξ + γ5um +

γ6

θm

ln

[
1− um − αθm

1− um − βθm

]
(6.1)

To develop an expression for the exact static solution, we follow the Euler-Bernoulli beam

80
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theory. The deflection and torsion of the beam satisfy the following problems:

d4u

dξ4
= 0, u(0) = 0,

du

dξ
(0) = 0, u

(
1

2

)
= um,

du

dξ

(
1

2

)
=

l

d
Θm. (6.2)

d2θ

dξ2
= 0, θ(0) = 0, θ

(
1

2

)
= θm. (6.3)

where Θm is the slope at the end of the beam. Solving Equations (6.2) and (6.3) for u(ξ)

and θ(ξ), respectively, we obtain

u(ξ) = 8

(
l

d
Θm − 2umd

)
ξ3 + 8

(
3um − l

d
Θm

)
ξ2 (6.4)

θ(ξ) = 2θmξ (6.5)

Substituting Equations (6.4) and (6.5) into Equation (6.1) yields

Ls = −4θ2
m − γ2(192u2

m − 192
l

d
umΘm + 64

l2

d2
Θ2

m) + γ5um +
γ6

θm

ln

[
1− um − αθm

1− um − βθm

]
(6.6)

In our case, the plate is assumed to be rigid, symmetric about the y-axis, and subjected to

symmetric electrostatic forces. As a result, the plate does not rotate around the y-axis; that

is, Θm = 0. Consequently, the expression for the total strain energy reduces to

Ls = −4θ2
m − 192γ2u

2
m + γ5um +

γ6

θm

ln

[
1− um − αθm

1− um − βθm

]
(6.7)

For static equilibrium, the Lagrangian Ls exhibits a local extremum. Therefore, the deriv-

atives of the total energy with respect to the two degrees of freedom um and θm vanish.

Hence,

F =




∂Ls

∂um

∂Ls

∂θm


 =


 Fe + Mg − 24EIby um

l3

Me − 2GJbθm

l


 = 0 (6.8)

where Me and Fe are given by Equations (5.11a) and (5.11b). For a given voltage V , Equa-

tions (6.8) are solved numerically for the mirror deflection um and rotation angle θm. The

results are then substituted into Equations (6.4) and (6.5) to obtain the static equilibrium

of the suspension beams.
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Figure 6.1: Variation of the equilibria with the driving voltage V .

6.2 Static Pull-in

For a given voltage V , solving Equations (6.8) yields two equilibrium states as shown in

Fig. 6.1. The smaller equilibrium position is stable, whereas the larger equilibrium position

is unstable. When V is gradually increased, the stable equilibrium increases slowly, and the

unstable equilibrium decreases. At a certain voltage, they collide and disappear in a saddle-

node bifurcation. As V is increased further no equilibrium solutions exist. This causes

the mirror to abruptly collapse to the nearest of the fixed electrodes. This phenomenon is

known as pull-in or snap down. At pull-in the applied voltage V , the rotation angle θ, and

the deflection u are referred to as pull-in voltage Vp, pull-in angle θp, and pull-in deflection up,

respectively. The pull-in parameters are usually used to define a safe operation regime, where

the micromirror can smoothly and continuously deflect to a certain equilibrium position.

Moreover, Vp gives an estimate of the voltage required to achieve the maximum deflection

state. Therefore, Vp is always kept as low as possible to minimize the voltage requirement.

Many researchers addressed the problem of pull-in [63–67, 70, 76]. They developed methods

and derived expressions to determine the pull-in parameters. An approach developed by [76]



Mohammed F. Daqaq Chapter 6. Static Response of Torsional Micromirrors 83

utilizes the fact that the applied voltage V has a local maximum at pull-in, see Fig. 6.1.

Therefore, to determine the pull in parameters, one can maximize the vector function F de-

fined by Equation (6.8) using implicit function optimization techniques. The local maximum

of F is satisfied when

|∇F| =
∣∣∣∣∣∣

∂2UT

∂u2
∂2UT

∂u∂θ

∂2UT

∂θ∂u
∂2UT

∂θ2

∣∣∣∣∣∣
= 0 (6.9)

Solving Equations (6.8) and (6.9) simultaneously, one can determine the pull-in parameters.

This step is very critical in the micromirror design procedure because it allows the designer

to optimize the micromirror dimensions and hence obtain a proper choice of the pull-in

parameters.

There is a significant amount of research on the parameters affecting pull-in. In general,

there are only three main nondimensional parameters that affect the pull-in state. The first

two are related to the electrodes dimensions and positions with respect to the mirror, namely

α and β, and the third is the ratio of the effective bending to the effective torsional stiffness,

which we define as

κ =
3EIbya

2

GJbl2
(6.10)

As κ is increased, the effective bending resistance increases, and therefore the micromirror

tends to have greater resistance to bending motions and the pull-in voltage increases. The

effects of the electrode geometric parameters α, the location of the inner side of the electrodes,

and β, the location of the outer side of the electrodes, are shown in Figs. 6.2 and 6.3 for

κ = 110 and κ = 4, respectively.

As β is increased for κ = 110, Fig. 6.2, the pull-in rotation angle θp, deflection up, and

voltage Vp decrease. This is due to the fact that the larger β is, for a fixed α, the larger the

electrostatic energy is relative to the mechanical restoring force, which results in faster pull-

in. As α is increased, for a fixed β, the size of the electrode is decreased and the pull-in voltage

is increased as shown in Fig. 6.2 (c). Whereas the electrostatic energy depends linearly on

the area of the electrode, it depends quadratically on the voltage. As a result, increasing the

voltage to account for the decrease in the area of the electrode leads to a faster increase in
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the electrostatic energy to the extent it dominates the mechanical restoring force and hence

leads to a lower pull-in rotation angle and deflection, Figs. 6.2 (a) and (b). Furthermore,

increasing α moves the center of the electrode away from the mirror rotation axis. As a

result, the proportion of the electrostatic moment to the electrostatic force increases. This

leads to a relatively smaller drop in the pull-in rotation angle Fig. 6.2 (a) than the drop in

the deflection Fig. 6.2 (b).
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Figure 6.2: Variation of the pull-in parameters with the electrode size and position α and β

when κ = 110.
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For κ = 4, the bending and torsional stiffnesses are of the same order of magnitude and the

rotation angle and deflection are also of the same order of magnitude, as shown in Fig. 6.3.

The larger deflection in this case, compared to κ = 110, makes the overall gap between the

electrode and the mirror larger for the same rotation angle θ. As a result the electrostatic

force dominates the mechanical restoring force, resulting in an increase in the pull-in voltage

Vp, the rotation angle θp, and pull-in deflection up.

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

β

θ
p

α = 0.00
α = 0.15
α = 0.30

(a) Pull-in rotation angle.

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

β

u
p

α = 0.00
α = 0.15
α = 0.30

(b) Pull-in deflection.

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

β

V
p

[V
]

α = 0.00
α = 0.15
α = 0.30

(c) Pull-in voltage.

Figure 6.3: Variation of the pull-in parameters with the electrode size and position α and β

when κ = 4.
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As β is increased, the area of the electrode increases and the pull-in voltage Vp and deflection

θp decrease. On the other hand, as α and β are increased, the center of the electrode moves

away from the axis of rotation, leading to an increase in the proportion of the electrostatic

moment to the electrostatic force. As a result, for the same deflection u, the rotation angle

θ increases.

Since many micromirror applications require accurate torsional motions and no deflections,

these findings are interesting. For example, digital projection devices (the Digital Light

Processor) and microoptical switching devices suffer significant degradation in performance

due to undesirable deflection motions. Therefore, an efficient micromirror design minimizes

the mirror deflection. Although a large value of κ can minimize bending motions, it signif-

icantly increases the pull-in voltage Vp, see Fig. 6.2(c) and Fig. 6.3(c). This is a significant

disadvantage. These complex parameter interactions require thorough optimization analysis.

6.3 Validation of the Reduced-Order Model

In this section, we validate the proposed reduced-order model by comparing its results to the

exact static solution and to available experiments. We start by setting the time derivatives

in Equations (5.29) and (5.30) equal to zero and obtaining




Λ11p1

Λ22p2

...

Λnnpn




=
1

2
γ6Fp




ψ1(
1
2
)

ψ2(
1
2
)

...

ψn(1
2
)




(6.11)




Υ11q1

Υ22q2

...

Υmmqm




=
1

2γ2

(γ6Fq + γ5)




ϕ1(
1
2
)

ϕ2(
1
2
)

...

ϕm(1
2
)




(6.12)



Mohammed F. Daqaq Chapter 6. Static Response of Torsional Micromirrors 87

We increase the number of spatial modes (n,m) gradually and solve Equations (6.11) and (6.12)

for (p1, p2, . . . , pn) and (q1, q2, . . . , qm) until the solution converges. Unless otherwise stated,

the parameters of the mirror and electrodes used in the numerical simulations are shown in

Table 6.1. The spatial mode shapes are obtained from Equations (5.20) and (5.22), where we

choose only the odd mode shapes since the even mode shapes do not contribute to the result-

ing equilibrium position. Figures 6.4 and 6.5 show convergence of the equilibrium solutions

obtained using the reduced-order model to the exact solution obtained using Equations (6.8).

The results of the reduced-order model converge to the exact stable and unstable branches

using 9 torsional modes and 3 bending modes (n = 9,m = 3).

Table 6.1: Numerical values for the parameters of the micromirror and electrodes.

Properties

Modulus of elasticity, E[GPa] 170

Modulus of elasticity, G[GPa] 66

Density, ρ[kg/m3] 2330

Dielectric constant of air, ε0[F/m] 8.85× 10−12

Dimensions

Mirror width, a[µm] 100

Mirror length, Lm[µm] 100

Beam length, l[µm] 65

Beam width, w[µm] 1.55

Beam thickness, h[µm] 1.50

Electrode length, b[µm] 100

Electrode parameter, α 0.06

Electrode parameter, β 0.84

Gap height, d[µm] 2.75

Figure 6.6 shows the equilibrium rotation angle θ and deflection u of one of the suspension

beams obtained when a voltage V = 10 V is applied to one of the electrodes. There is

good agreement between the results obtained with the reduced-order model and the exact

solution, Equations (6.4) and (6.5).
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The pull-in parameters for the reduced-order model can be determined using a methodology

similar to that used for the exact solution. Let us first define
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Figure 6.4: Comparison of the mirror rotation angle θm obtained from the reduced-order

model to the exact solution.
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Figure 6.5: Comparison of the mirror deflection um obtained from the reduced-order model

to the exact solution.
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Figure 6.6: Comparison between the static deformation of one of the suspension beams

obtained with the reduced-order model and the exact static solution for V = 10 V.
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...

...

...
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2
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(6.13)

Because the voltage V has a local maximum at pull-in, we let

|∇P| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂P1

∂p1
. . . ∂P1

∂pn

∂P1

∂q1
. . . ∂P1

∂qm

∂P2

∂p1
. . . ∂P2

∂pn

∂P2

∂q1
. . . ∂P2

∂qm

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

∂Pn+m

∂p1
. . . ∂Pn+m

∂pn

∂Pn+m

∂q1
. . . ∂Pn+m

∂qm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (6.14)

Equation (6.14) is solved simultaneously with Equations (6.11) and (6.12) for the pull in

voltage Vp and the pull-in generalized coordinates (pp1, pp2, ..., ppn, qp1, qp2..., qpn). These co-

ordinates are then used to evaluate the pull-in rotation angle and deflection as

θp =
n∑

i=1

ppiψi(
1
2
)

up =
m∑

i=1

qpiϕi(
1
2
)

(6.15)

In Table 6.2, We compare the pull-in parameters obtained using the reduced-order model to

those obtained using the exact model, Equations (6.8) and (6.9).

Table 6.2: Pull-in parameters obtained using the exact solution and the reduced-order model.
Vp θp up

Exact solution 17.74 0.418593 0.0797966
Reduced order model 17.83 0.420137 0.0790955

% error 0.5% 0.36% 0.87%
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Figure 6.7: Variation of the mirror rotation angle with the driving voltage V .

Table 6.3: Numerical values for the parameters of the micromirror and electrodes used in

the experiment of Degani et al. [65]

Properties

Modulus of elasticity, E[GPa] 131

Modulus of elasticity, G[GPa] 73

Density, ρ[kg/m3] 2330

Dielectric constant of air, ε0[F/m] 8.85× 10−12

Dimensions

Mirror width, a[µm] 700

Mirror length, Lm[µm] 1300

Beam length, l[µm] 400

Beam width, w[µm] 31

Beam thickness, h[µm] 14

Electrode length, b[µm] 1300

Electrode parameter, α 0.614

Electrode parameter, β 0.975

Gap height, d[µm] 4.55
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Figure 6.7 shows a comparison among the exact solution, the reduced-order model, and

experimental results obtained by Degani et al. [65]. The parameters of the mirror used in

the experiment are listed in Table 6.3. A comparison among the pull-in parameters is also

shown in Table 6.4.

It is worth mentioning that, for the static analysis, the reduced-order model does not simplify

the problem. It is much easier to determine the static behavior using the exact solution.

However, the accuracy of the reduced-order model in determining the static position of the

micromirror as well as the suspension beams validates the model.

Table 6.4: Pull-in parameters obtained using the exact approach, the reduced-order model

(n = 9, m = 3), and experimentally by Degani et al. [65]
Vp θp up

Exact solution 11.49 0.379211 0.0213189
Reduced order model 11.55 0.378462 0.0219582
Experimental results 11.50 0.385 N/A



Chapter 7

Natural Frequencies and Mode

Shapes of Torsional Micromirrors

This chapter deals with finding the natural frequencies and mode shapes of the micromirror

for voltage values ranging from zero to pull-in. We define the linear eigenvalue problem

and solve for the natural frequencies and the associated mode shapes. We show that the

natural frequencies of the higher modes are two orders of magnitude larger than the first two

natural frequencies. Further, at zero voltage, the eigenfunctions associated with the lowest

two modes are the first torsion and bending modes of the suspension beams. Based on these

results, we propose treating the mirror as a lumped mass attached to two springs representing

the suspension beams. We compare the first two eigenfrequencies obtained using the lumped-

mass model to those obtained using the reduced-order model and find excellent agreement

over the whole voltage range.
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7.1 Eigenvalue Problem

In this section, we study the dynamics of the micromirror shown in Fig. 5.1 around its

equilibrium position. We let

pi = pis + pid i = 1, 2, . . . , n

qi = qis + qid i = 1, 2, . . . , m
(7.1)

where the subscript s denotes the static part of the response, and the subscript d denotes the

dynamic part. To obtain the linear eigenvalue problem, we linearize the governing equations

around the static equilibrium position (p1s, p2s, . . . , pns, q1s, q2s, . . . , qms). To this end, we

substitute Equations (7.1) into Equations (5.29) and (5.30), drop the higher-order terms,

use Equations (6.11) and (6.12), and obtain

M Ẍ +K X = F X (7.2)

where

M =




1 + γ3ψ1(1
2)ψ1(1

2) . . . γ3ψ1(1
2)ψn(1

2) 0 . . . 0
...

. . .
... 0 . . . 0

γ3ψ1(1
2)ψn(1

2) . . . 1 + γ3ψn(1
2)ψn(1

2) 0 . . . 0

0 . . . 0 γ1 + γ4ϕ1(1
2)ϕ1(1

2) . . . γ4ϕ1(1
2)ϕm(1

2)

0 . . . 0
...

. . .
...

0 . . . 0 γ4ϕ1(1
2)ϕm(1

2) . . . γ1 + γ4ϕm(1
2)ϕm(1

2)




X =




p1d

...

pnd

q1d

...

qmd




K =




Λ11 0 0 0 . . . 0

0
. . . 0 0 . . . 0

0 . . . Λnn 0 . . . 0

0 . . . 0 γ2Υ11 0 0

0 . . . 0 0
. . . 0

0 . . . 0 0 . . . γ2Υmm
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∣∣∣∣
pi=pis,qi=qis

Next, we assume that the solution has the form

X = Aie
iωit (7.3)

Substituting Equation (7.3) into Equation (7.2), we obtain

(K− F−M ω2
i )Ai = 0 (7.4)

For a nontrivial solution, we set

|K− F−M ω2
i | = 0 (7.5)

The characteristic equation (7.5) is solved numerically for the eigenfrequencies ωi correspond-

ing to the static configuration (p1s, p2s, . . . , pns, q1s , q2s, . . . , pms). They are then substituted

into Equation (7.4) to obtain the corresponding eigenvectors Ai.

7.1.1 Natural Frequencies

We solved Equation (7.5) numerically for the natural frequencies for voltage values ranging

from zero to pull-in Vp. To determine the number of spatial mode shapes necessary for

convergence, we gradually increased the number of modes (n,m) until the addition of new

mode shapes did not contribute within a specified tolerance to the resulting eigenfrequencies

over the whole voltage range. In our case, the solution converged when the number of

torsional modes n = 8 and the number of bending modes m = 3.
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At zero voltage γ6 = 0, and the eigenvalue problem uncouples into two parts corresponding to

torsion and bending. Solution of the uncoupled eigenvalue problems reveals that the lowest

eigenvalue is associated with torsion, the next two eigenvalues are associated with bending,

the fourth, fifth, and sixth are associated with torsion, the seventh is associated with bending,

etc. For all other voltages, the solution of Equation (7.5) shows that these modes maintain

their relative ordering. Figures. 7.1-7.3 show the first five natural frequencies as well as

the convergence results of the first two frequencies. As the applied voltage is increased,

the first and second natural frequencies decrease sharply, reflecting the system approach to

pull-in. However, the third, fourth, and fifth frequencies do not change appreciably. At the

pull-in voltage, the first natural frequency ω1 passes through zero, which indicates a dynamic

instability.
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Figure 7.1: First nondimensional natural frequency ω1.
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Figure 7.2: Second nondimensional natural frequency ω2.
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7.1.2 Mode Shapes

We use Equation (7.4) to calculate the eigenvectors Ai corresponding to the eigenfrequencies

ωi . The resulting eigenfunction is determined using the following relation:

Ψi = Di

(
ψ1 ψ2 . . . ψn ϕ1 ϕ2 . . . ϕm

)




Ai1

Ai2

Ai3

...

...

Ai(n+m)




(7.6)

where the Ai1 through Ai(n+m) are the elements of the eigenvector Ai and Di is an arbitrary

constant that is determined using the following normalization:

1∫

0

Ψ2
i dξ = 1 i = 1, 2, . . . , n + m. (7.7)

Next, we show the evolution of the first four eigenfunctions as the voltage V is increased. Due

to symmetry, we only show the eigenfunctions of the left suspension beam. Figure 7.4 shows

the evolution of the first eigenfunction Ψ1. At zero voltage, the eigenfunction Ψ1 is purely

torsional. As the voltage V is increased, coupling between the torsion and bending starts,

and the eigenfunction develops a bending component, which starts to grow. This coupling

is due to the electrostatic field and is more pronounced for higher voltages. This coupling

transfers energy from torsion, in torsion dominant modes, to bending and vice versa.

Similarly, as shown in Fig. 7.5, at zero voltage the eigenfunction Ψ2 is purely bending.

However, as the voltage is increased, coupling between bending and torsion appears and

increases gradually, resulting in the appearance and growth of a torsion component of this

eigenfunction. Figures 7.6 and 7.7 show the third and fourth eigenfunctions Ψ3 and Ψ4,

respectively. We note that as the voltage is increased all the way to pull-in, the eigenfunctions

remain unchanged and no coupling occurs between torsion and bending.
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Figure 7.4: Evolution of the first eigenfunction Ψ1 with voltage.
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Figure 7.5: Evolution of the second eigenfunction Ψ2 with voltage.
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Figure 7.6: Evolution of the third eigenfunction Ψ3 with voltage.
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Figure 7.7: Evolution of the fourth eigenfunction Ψ4 with voltage.

7.2 Lumped-Mass Model

The eigenvalue problem indicates that the natural frequencies of the higher modes are two

orders of magnitude larger than the first two natural frequencies. Further, at zero voltage, the

eigenfunctions associated with the lowest two modes are the first torsion and bending modes

of the suspension beams. Unless the micromirror is excited at extremely high frequencies,

the higher modes are not expected to either capture or transfer energy to the lower frequency

modes [88]. Therefore, one can safely assume that, under normal operating conditions, the

mirror will respond only in the first two modes. This is a critical finding because it implies

that one can treat the micromirror as a lumped mass attached to two springs representing

the suspension beams, see Fig. 7.8. The first spring is a torsional spring with stiffness

k11 = 2GJp

l
, and the second is a bending spring with stiffness k22 =

24EIby

l3
. The equations of

motion for the mirror can therefore be reduced to

 m11 0

0 m22





 θ̈

ü


 +


 µ1 0

0 µ2





 θ̇

u̇


 +


 k11 0

0 k22





 θ

u


 =




Me

θcr

Fe+Mg
d


 (7.8)

where

m11 =
Imzz

T 2
m22 =

M

T 2
µ1 = 2ζ1

√
k11m11 µ2 = 2ζ2

√
k22m22
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Here, ζ1 and ζ2 are the linear modal damping ratios associated with torsion and bending, re-

spectively. Figure 7.9 shows a comparison between the first two natural frequencies obtained

using the reduced-order model and those obtained using the lumped-mass model. The figure

shows good agreement between the lumped-mass model and the results obtained using the

reduced-order model.

Figure 7.8: Schematic of a lumped-mass model of the micromirror.
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Figure 7.9: Comparison between the first two natural frequencies obtained using the lumped-

mass model and the reduced-order model.
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7.3 Sensitivity of the Natural Frequencies to the Elec-

trode Dimensions

To examine the sensitivity of the first two natural frequencies of the micromirror to changes

in the electrode size and position, we plot ω1 and ω2 for three values of α = 0, 0.15, and 0.3

(Fig. 7.10), as well as three values of β = 0.70, 0.85, and 1 (Fig. 7.11).
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Figure 7.10: The first and second natural frequencies for α = 0, 0.15, and 0.3.
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Figure 7.11: The first and second natural frequencies for β = 0.7, 0.85, and 1.
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The results show that changing the electrode size, whether through changing α or β, changes

the balance between the electrostatic energy and the mechanical energy stored in the sus-

pension beams. Decreasing α or increasing β increases the electrode size and hence increases

the negative linear stiffness associated with the electrostatic force and moment. This, in

turn, causes the first two natural frequencies to drop faster to pull-in as shown in Figs. 7.10

and 7.11.

It can also be seen from Fig. 7.10 that the second natural frequency is more sensitive to

changes in α than the first natural frequency. This stems from the fact that the second

natural frequency is associated with bending, as a result it responds to changes in the

electrode size. On the other hand, the first natural frequency responds to changes in both

the electrode size and center with respect to the axis of rotation. Decreasing α increases the

electrode size but decreases the distance from the electrode center to the axis of rotation

and hence the moment arm. Therefore, it significantly impacts the electrostatic force but

has minimal effect on the electrostatic moment.

On the other hand changing β, which defines the position of the outer side of the electrode,

has a significant impact on both of the first and second natural frequencies. This results

from the fact that increasing β increases both of the size of the electrode and the moment

arm and therefore significantly affects the electrostatic force and moment.



Chapter 8

Response of Torsional Micromirrors

to Primary Resonance Excitations

Away from Internal Resonances

For light scanning applications, torsional micromirrors or microscanners are excited at their

natural frequencies to realize large steady-state scanning angles. Usually, a bias DC voltage

is also applied to scan around a desired nonzero tilt angle. As a result, a deep understanding

of the mirrors response to a combination of DC and AC primary resonance excitations is

necessary. Towards that end, we use the method of multiple scales to obtain a second-order

nonlinear approximation of the mirror steady-state response. We find that the response

of the mirror exhibits a softening-type behavior that increases as the magnitude of the DC

component increases. For the given mirror dimensions and electrode parameters, we identify

a region of two-to-one internal resonance between the first two modes. The response of the

mirror in that region is treated in details in Chapter 9.
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8.1 Primary Resonance Excitation of the First Mode

In this section, we analyze the response of the micromirror to electric excitations consist-

ing of a DC component Vdc and an AC component Vac cos(Ωt), where Ω is approximately

equal to the natural frequency ω1 of the first mode corresponding to Vdc. This analysis is

aimed at providing a better understanding of the nonlinear steady-state response of torsional

micromirrors used for scanning applications.

We start by expressing the response in the form

θ = θs + θδ

u = us + uδ

(8.1)

where the subscript s denotes the static part, and the subscript δ denotes the dynamic

part. Substituting Equations (8.1) into Equation (7.8), noting that us and θs satisfy Equa-

tions (6.8), and expanding the electrostatic force and moment in Taylor series keeping only

terms up to third order in θδ and uδ, we obtain

m11θ̈δ + µ1θ̇δ + k11θδ = Γ1V
2(α11+α12θδ + α13uδ + α14θδuδ + α15θ

2
δ + α16u

2
δ + α17θδu

2
δ

+α18θ
2
duδ + α19θ

3
δ + α110u

3
δ)

m22üδ + µ2u̇δ + k22uδ = Γ2V
2(α21+α22θδ + α23uδ + α24θδuδ + α25θ

2
δ + α26u

2
δ + α27θδu

2
δ

+α28θ
2
δuδ + α29θ

3
δ + α210u

3
δ)

(8.2)

where

Γ1 =
εb

2θ3
cr

, Γ2 =
εb

2d2θcr

. (8.3)

and the αij are the coefficients resulting from the Taylor series expansions. We scale the de-

pendent variables such that the effect of the nonlinearity balances the effects of the damping

and AC excitation. In other words, we let

V = Vdc + ε3Vac cos(Ωt), µ1 = ε2µ1, µ2 = ε2µ2, Ω = ω1 + ε2σ. (8.4)
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where ε is a small nondimensional bookkeeping parameter and σ is a detuning parameter.

The time dependence t is expanded in terms of multiple time scales [86] as

d

dt
=D0 + εD1 + ε2D2 + . . .

d2

dt2
=D2

0 + 2εD0D1 + ε2D1 + 2ε2D0D2 + . . .

(8.5)

where t = εnTn and Dn = ∂
∂Tn

. We seek a solution of Equations (8.2) in the form

θδ = εθ0(T0, T1, T2) + ε2θ1(T0, T1, T2) + ε3θ2(T0, T1, T2) + . . .

uδ = εu0(T0, T1, T2) + ε2u1(T0, T1, T2) + ε3u2(T0, T1, T2) + . . .
(8.6)

Substituting Equations (8.4)-(8.6) into Equations (8.2) and equating coefficients of like pow-

ers of ε, we obtain

O(ε) :

m11D
2
0θ0 + (k11 − V 2

dcΓ1α12)θ0 − V 2
dcΓ1α13u0 = 0

m22D
2
0u0 + (k22 − V 2

dcΓ2α23)u0 − V 2
dcΓ2α22θ0 = 0

(8.7a)

O(ε2) :

m11D
2
0θ1 + (k11 − V 2

dcΓ1α12)θ1 − V 2
dcΓ1α13u1 = −2m11D0D1θ0

+ V 2
dcΓ1(α15θ

2
0 + α14θ0u0 + α16u

2
0)

m22D
2
0u1 + (k22 − V 2

dcΓ2α23)u1 − V 2
dcΓ2α22θ1 = −2m22D0D1u0

+ V 2
dcΓ2(α25θ

2
0 + α24θ0u0 + α26u

2
0)

(8.7b)
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O(ε3) :

m11D
2
0θ2+

(
k11 − V 2

dcΓ1α12

)
θ2 − V 2

dcΓ1α13u2 = −µ1D0θ0 −m11(2D0D1θ1 −D2
1θ0 − 2D0D2θ0)

+ VdcVacα11Γ1

(
e−iT0ε2σ−iT0ω1 + eiT0ε2σ+iT0ω1

)
+ V 2

dcΓ1(α19θ
3
0 + 2α15θ0θ1

+ α18θ
2
0u0 + α14θ1u0 + α17θ0u

2
0 + α110u

3
0 + α14θ0u1 + 2α16u0u1)

m22D
2
0u2+

(
k22 − V 2

dcΓ2α23

)
u2 − V 2

dcΓ2α22θ2 = −µ2D0u0 −m22(2D0D1u1 −D2
1u0 − 2D0D2θ0)

+ VdcVacα21Γ1

(
e−iT0ε2σ−iT0ω1 + eiT0ε2σ+iT0ω1

)
+ V 2

dcΓ2(α29θ
3
0 + 2α25θ0θ1

+ α28θ
2
0u0 + α24θ1u0 + α27θ0u

2
0 + α210u

3
0 + α24θ0u1 + 2α26u0u1))

(8.7c)

Equations (8.7a) constitute a system of two linearly coupled differential equations with con-

stant coefficients. Their solution can be written as

 θ0

u0


 =


 1

k1


 A1(T1, T2)e

iω1T0 +


 1

k2


 A2(T1, T2)e

iω2T0 + cc (8.8)

where cc stands for the complex conjugate of the preceding term. The eigenfrequencies ω1

and ω2 are obtained from the solution of the following characteristic equation

D(ω) = ω4 + Bω2 + C = 0 (8.9)

where

B =
1

m11m22

[
V 2

dc(Γ1α12m22 + Γ2α23m11)− k11m22 − k22m11

]
,

C =
1

m11m22

[
V 4

dcΓ1Γ2(α23α12 − α13α22)− V 2
dc(k11Γ2α23 + k22Γ1α12) + k11k22

]
.

and

kn =
α22Γ2V

2
dc

k22 − V 2
dcα23Γ2 −m22ω2

n

, n = 1, 2.

Substituting Equation (8.8) into Equation (8.7b) yields
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m11D
2
0θ1 + (k11 − V 2

dcΓ1α12)θ1 − V 2
dcΓ1α13u1 = −2im11ω1D1A1e

iω1T0 − 2im22ω2D1A2e
iω2T0

+ b11A
2
1(T1, T2)e

2iω1T0 + b12A
2
2(T1, T2)e

2iω2T0

+ b13A1(T1, T2)A2(T1, T2)e
i(ω1+ω2)T0

+ b14A1(T1, T2)Ā2(T1, T2)e
i(ω1−ω2)T0

+ b151A1(T1, T2)Ā1(T1, T2)

+ b152A2(T1, T2)Ā2(T1, T2) + cc

m22D
2
0u1 + (k22 − V 2

dcΓ2α23)u1 − V 2
dcΓ2α22θ1 = −2im11k1ω1D1A1e

iω1T0 − 2im22ω2k2D1A2e
iω2T0

+ b21A
2
1(T1, T2)e

2iω1T0 + b22A
2
2(T1, T2)e

2iω2T0

+ b23A1(T1, T2)A2(T1, T2)e
i(ω1+ω2)T0

+ b24A1(T1, T2)Ā2(T1, T2)e
i(ω1−ω2)T0

+ b251A1(T1, T2)Ā1(T1, T2)

+ b252A2(T1, T2)Ā2(T1, T2) + cc

(8.10)

where Ān is the complex conjugate of An and

bn1 = V 2
dcΓn(k1αn4 + αn5 + k2

1αn6),

bn2 = V 2
dcΓn(k2αn4 + αn5 + k2

2αn6),

bn3 = V 2
dcΓn((k1 + k2)αn4 + 2αn5 + 2k1k2αn6),

bn4 = bn3, b15n = 2b1n, b25n = 2b2n, n = 1, 2.

(8.11)

The forcing terms proportional to e±iω1T0 and e±iω2T0 will produce secular terms in θ1 and

u1. To eliminate these secular terms and hence determine the solvability conditions, we seek

a particular solution free of secular terms in the form

θ1 = P1e
iω1T0 + P2e

iω2T0 , u1 = Q1e
iω1T0 + Q2e

iω2T0 (8.12)

Substituting Equations (8.12) into Equations (8.10) and equating the coefficients of each of
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eiω1T0 and eiω2T0 on both sides of the equations, we obtain


 ∆1(ω1) −α13Γ1V

2
dc

−α22Γ2V
2
dc ∆2(ω1)





 P1

Q1


 =


 −2im11ω1D1A1

−2im11k1ω1D1A1





 ∆1(ω2) −α13Γ1V

2
dc

−α22Γ2V
2
dc ∆2(ω2)





 P2

Q2


 =


 −2im22ω2D1A2

−2im22k2ω2D1A2




(8.13)

where

∆1(ω) = k11 − α12V
2
dc −m11ω

2, ∆2(ω) = k22 − α23V
2
dc −m22ω

2. (8.14)

Because each set of Equations (8.13) constitutes a system of two inhomogeneous algebraic

equations whose homogeneous parts have a nontrivial solution according to Equation (8.8),

their solvability conditions can be written as

∣∣∣∣∣∣
∆1(ω1) −2im11ω1D1A1

−α22Γ2V
2
dc −2im11k1ω1D1A1

∣∣∣∣∣∣
= 0

∣∣∣∣∣∣
∆1(ω2) −2im22ω2D1A2

−α22Γ2V
2
dc −2im22k2ω2D1A2

∣∣∣∣∣∣
= 0

(8.15)

These two conditions lead to

D1A1 = 0 =⇒ A1 = A1(T2), D1A2 = 0 =⇒ A2 = A2(T2). (8.16)

Then the particular solution of Equation (8.10) can be written as

θ1 =c11A
2
1(T2)e

2iω1T0 + c12A
2
2(T2)e

2iω2T0 + c13A1(T2)A2(T2)e
i(ω1+ω2)T0

+c14A1(T2)Ā2(T1)e
i(ω1−ω2)T0 + c151A1(T2)Ā1(T2) + c152A2(T2)Ā2(T2) + cc

u1 =c21A
2
1(T2)e

2iω1T0 + c22A
2
2(T2)e

2iω2T0 + c23A1(T2)A2(T2)e
i(ω1+ω2)T0

+c24A1(T2)Ā2(T1)e
i(ω1−ω2)T0 + c251A1(T2)Ā1(T2) + c252A2(T2)Ā2(T2) + cc

(8.17)
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where

c1n =
bn2[D(2ωn) + ∆1(2ωn)∆2(2ωn)] + bn1∆2(2ωn)Γ2α22V

2
dc

V 2
dcα22Γ2D(2ωn)

,

c2n =
bn1Γ2α22V

2
dc + bn2∆1(2ωn)

D(2ωn)
,

c13 =
b23D(ω1 + ω2) + ∆2(ω1 + ω2)(Γ2α22b13V

2
dc + b23∆1(ω1 + ω2)

2)

V 2
dcα22Γ2D(ω1 + ω2)

,

c14 =
b24D(ω1 − ω2) + ∆2(ω1 − ω2)(Γ2α22b14V

2
dc + b24∆1(ω1 − ω2)

2)

V 2
dcα22Γ2D(ω1 − ω2)

,

c23 =
Γ2α22b13V

2
dc + b23∆1(ω1 + ω2)

2

D(ω1 + ω2)
,

c24 =
Γ2α22b14V

2
dc + b24∆1(ω1 − ω2)

2

D(ω1 − ω2)
,

c15n =
b15n∆2(0) + α13Γ1V

2
dcb25n

D(0)
,

c25n = −b15n∆1(0)− α22Γ2V
2
dcb15n

D(0)
, n = 1, 2.

(8.18)

In a similar fashion, we substitute Equations (8.8), (8.16), and (8.17) into Equation (8.7c),

eliminate the terms that produce secular terms by enforcing the solvability conditions, and

obtain the following two first-order-ordinary-differential equations for A1 and A2:

2iω1Λ11D2A1 = iω1Λ12A1 + Λ13Vace
iσT2 + Λ14A

2
1Ā1 + Λ15A1A2Ā2

2iω2Λ21D2A2 = iω2Λ22A2 + Λ24A
2
2Ā2 + Λ25A2A1Ā1

(8.19)

where

Λn1 = knm22∆1(ωn)− α22Γ2m11V
2
dc, Λn2 = knµ2∆1(ωn)− α22Γ2µ1V

2
dc,

Λn3 = Vdc(Γ2α21∆1(ωn)− α22α11Γ1Γ2V
2
dc),

Λ14 = −V 2
dc(∆1(ω1)Z2 − Γ2α22V

2
dcZ1), Λ24 = −V 2

dc(∆1(ω1)Z̃2 − Γ2α22V
2
dcZ̃1),

Λ15 = −V 2
dc(∆1(ω1)Y2 − Γ2α22V

2
dcY1), Λ25 = −V 2

dc(∆1(ω1)Ỹ2 − Γ2α22V
2
dcỸ1).

(8.20)
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and

Zn = Γn[2c151(αn4 + 2αn5) + 2c251(αn4 + 2k1αn6) + 3(k3
1αn10 + k2

1αn7 + k1αn8 + αn9)],

Z̃n = Γn[2c152(αn4 + 2αn5) + 2c252(αn4 + 2k2αn6) + 3(k3
2αn10 + k2

2αn7 + k2αn8 + αn9)],

Yn = Γn[αn4(c23 + 2c152 + 2c151k1 + k2c13) + αn5(2c22 + 4c152) + αn6(2c23k2 + 4c252k1)

+ αn7(2k
2
2 + 4k2k1) + αn8(4k2 + 2k1) + 6αn9 + αn10(6k

2
2k1)],

Ỹn = Γn[αn4(c23 + 2c251 + 2c151k2 + k1c13) + αn5(2c13 + 4c151) + αn6(2c23k1 + 4c251k2)

+ αn7(2k
1
2 + 4k1k2) + αn8(4k1 + 2k2) + 6αn9 + αn10(6k

2
1k2)], n = 1, 2.

(8.21)

We express A1 and A2 in the polar form

An =
1

2
aneiβn , n = 1, 2. (8.22)

where an and βn are real, then substitute Equations (8.22) into Equations (8.19), separate

Equations (8.19) into real and imaginary parts and obtain the following four modulation

equations:

2ω1Λ11a
′
1 = ω1Λ12a1 + 2Λ13Vac sin(γ)

2ω1Λ11a1(γ
′ − σa1) = −1

4
(8Λ13Vac cos(γ) + Λ14a

3
1 + Λ15a1a

2
2)

2Λ21a
′
2 = Λ22a2

2ω2Λ21a2β
′
2 = −1

4
(Λ24a

3
1 + Λ25a2a

2
1)

(8.23)

where the primes indicate derivatives with respect to T2, and γ = σT2 − β1.

We analyze the long-time dynamics of the micromirror by studying the equilibrium solutions

of Equations (8.23). To realize clear images, the micromirror or the microscanner is designed

to scan periodically. Therefore, we concentrate our analysis on the equilibrium solutions of

the modulation equations and their stability. For positive modal damping Λ22/Λ21 < 0,

therefore a2 goes to zero as T2 goes to infinity and hence as t goes to infinity. As a result,

Equations (8.23) reduce to
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2ω1Λ11a
′
1 = ω1Λ12a1 + 2Λ13Vac sin(γ)

2ω1Λ11a1(γ
′ − σ) = −1

4
(8Λ13Vac cos(γ) + Λ14a

3
1)

a2 = 0

(8.24)

We obtain the equilibrium solutions by setting the time derivatives equal to zero in Equa-

tions (8.24) and obtaining

−ω1Λ12

2Λ13

a1 = Vac sin(γ)

ω1Λ11σ

Λ13

a1 − Λ14

8Λ13

a3
1 = Vac cos(γ)

a2 = 0

(8.25)

Squaring and adding Equations (8.25) yields

ω2
1Λ

2
12

4Λ2
13

a2
1 +

[
ω1Λ11

Λ13

σa1 − Λ14

8Λ13

a3
1

]2

− V 2
ac = 0 (8.26)

Using Equation (8.26), one can analyze variation of the response amplitude with the fre-

quency detuning parameter σ and the applied AC voltage Vac.

8.2 Stability of the Equilibrium Solutions

The stability of the equilibrium solutions is determined by finding the eigenvalues of the

Jacobian matrix of the modulation equations evaluated at this equilibrium solution. If all

of the eigenvalues associated with the equilibrium solution have negative real parts then the

solution is asymptotically stable. Otherwise, if one eigenvalue has a positive real part then,

the solution is unstable. Following Nayfeh [89], we determine an analytical condition for the

stability of the resulting equilibrium solutions. To this end, we let

a1 = a0 + ad γ = γ0 + γd (8.27)
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Substituting Equations (8.27) into Equations (8.24), expanding the result for small ad and

γd, noting that a0 and γ0 satisfy the right-hand sides of Equations (8.24), and keeping only

linear terms in ad and γd, we obtain


 a′d

γ′d


 =




Λ12

2Λ11

Λ13

ω1Λ11
cos γ0

− Λ14

4ω1Λ11
a0 + Λ13

ω1Λ11a2
0
cos γ0

Λ13

ω1Λ11a0
sin γ0





 ad

γd


 (8.28)

Substituting for cos γ0 and sin γ0 using Equations (8.25), we obtain


 a′d

γ′d


 =




Λ12

2Λ11
−a0

(
σ + Λ14

8ω1Λ11a2
0

)

1
a0

(
σ + 3Λ14

8ω1Λ11
a2

0

)
Λ12

2Λ11





 ad

γd


 (8.29)

The stability of an equilibrium solution depends on the eigenvalues of the coefficient matrix of

Equation (8.30). For asymptotically stable solutions, the two eigenvalues must have negative

real parts. These eigenvalues λ can be determined from
∣∣∣∣∣∣∣∣

Λ12

2Λ11
− λ −a0

(
σ + Λ14

8ω1Λ11a2
0

)

1
a0

(
σ + 3Λ14

8ω1Λ11
a2

0

)
Λ12

2Λ11
− λ

∣∣∣∣∣∣∣∣
= 0 (8.30)

Expanding the determinant yields

λ2 − Λ12

Λ11

λ +
Λ2

12

4Λ2
11

+

(
σ +

Λ14

8ω1Λ11a2
0

)(
σ +

3Λ14

8ω1Λ11

a2
0

)
= 0 (8.31)

Hence, an equilibrium solution is asymptotically stable when

Λ2
12

4Λ2
11

+

(
σ +

Λ14

8ω1Λ11a2
0

)(
σ +

3Λ14

8ω1Λ11

a2
0

)
> 0 (8.32)

8.3 Numerical Results

Using Equations (8.26) and (8.32), we study variation of the first mode amplitude a1 with the

excitation frequency detuning parameter σ for different DC voltages Vdc and a fixed excitation

amplitude Vac = 0.2 V. Figure 8.1 illustrates that, as the DC voltage is increased, the
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effective nonlinearity increases, and the curves bend towards the left, indicating a softening-

type behavior. The softening nonlinearity results in multiple stable solutions at excitation

frequencies very close but less than the natural frequency of the first mode. Operating the

mirror in that region can cause abrupt jumps in the mirror response, thereby deteriorating the

scanner performance. This softening nonlinearity of the mirror is also clear in Fig. 8.2, which

indicates that the effective nonlinearity is always negative for all values of Vdc through pull-in.

Figure 8.2 also shows that the effective nonlinearity is very small and hence has minimal effect

on the response for small values of Vdc. However, as Vdc increases, the effective nonlinearity

increases slightly initially and significantly near pull-in. In the vicinity of Vdc = 13.2 V, the

effective nonlinearity has a discontinuity and the single-mode perturbation analysis fails to

provide an accurate solution due to the existence of a two-to-one internal resonance between

the first two modes (ω2 ≈ 2ω1). The internal resonance is manifested by the presence of

small divisor terms in the second-order expansion; it is treated in details in the next Chapter.

Figure 8.3 shows variation of the response amplitude a1 with the frequency detuning para-

meter σ for different values of Vac and a fixed value of the DC voltage Vdc = 15 V. As the

AC voltage Vac is increased, the response amplitude a1 increases, and the frequency-response

curves bend more towards the left, indicating an increased influence of the softening nonlin-

earity. This is also clear in Fig. 8.4 where we study the evolution of the response amplitude

a1 with the applied AC voltage Vac for a DC voltage Vdc = 15 V and a detuning parameter

σ = −0.00025. As Vac is gradually increased, the response amplitude slowly increases until

it reaches a critical value Vac ≈ 0.33 V. At this critical voltage, a saddle-node bifurcation

occurs, at which a jump to the closest stable solution takes place with an accompanying

sudden increase in a1, after which a1 continues to increase slowly. If the process is reversed,

a1 decreases slowly until a saddle-node bifurcation occurs at Vac ≈ 0.21 V, where a1 jumps to

the the closest stable solution, and the amplitude of the mirror response decreases suddenly.

A further decrease in Vac results in a gradual decrease in the response amplitude.

To examine the effect of the electrode parameters on the nonlinear behavior of the micromir-

ror, we plot in Fig. 8.5 the effective nonlinearity for different electrode parameters α and



Mohammed F. Daqaq Chapter 8. Response to Primary Resonance Excitations 115

−5 0 5

x 10
−4

0

0.1

0.2

0.3

0.4

σ

a
1

Vdc = 15[V ]

Vdc = 10[V ]

Vdc = 5[V ]

Figure 8.1: Frequency-response curves for Vac = 0.2 V and a quality factor Q = 50. The

dashed lines (- - -) represent unstable solutions.

β. In addition to the previously shown increase in the negative linear stiffness associated

with the electrostatic force and moment, the effective nonlinear stiffness also increases, which

results in a significant increase in the effective softening nonlinearity. In agreement with the
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Figure 8.2: Magnitude of the effective nonlinearity associated with the first mode.
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linear analysis, the softening effective nonlinearity is more sensitive to changes in β than to

changes in α. This stems from two factors. First, the first natural frequency ω1 is more

sensitive to changes in β than to changes in α. Hence, Fig. 7.11 shows that when β is chang-
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Figure 8.3: Frequency-response curves for Vdc = 15 V and Q = 50. The dashed lines (- - -)

represent unstable solutions.
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Figure 8.4: Force-response curve for Vdc = 15 V, σ = −0.00025, and Q = 50. The dashed

lines (- - -) represent unstable solutions.
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ed, the pull-in parameters change significantly by either causing the DC voltage to become

really close to or far away from the pull-in voltage Vp. The other reason is that the moment

arm associated with β is much larger than that associated with α.
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(a) Variation of α, β = 0.85.
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(b) Variation of β, α = 0.05.

Figure 8.5: Sensitivity of the nonlinear response to changes in the electrodes dimensions α

and β: Vac = 0.2 V and Q = 50.



Chapter 9

Nonlinear Interactions in Torsional

Micromirrors

In the previous chapter, we treated the general nonlinear response of the mirror to primary

resonant excitations. We found that, due to the existence of small divisor terms in the

second-order expansion, the effective nonlinearity is discontinuous at a certain DC voltage.

This discontinuity occurs because of the nearness of the second-mode frequency to twice the

first-mode frequency; that is, ω2 ≈ 2ω1. In this chapter, we use the method of multiple scales

to obtain a second-order nonlinear analytical solution for the steady-state response of the

mirror taking into account the two-to-one internal resonance. We first treat the case where

the excitation frequency is near the first-mode frequency; that is, Ω ≈ ω1. Then we treat

the case where the excitation frequency is near the second-mode frequency; that is, Ω ≈ ω2.

We analyze the stability of the response and compare the analytical results to numerical

solutions obtained by long-time integration of the equations of motion. We find that, due to

the internal resonance, the mirror exhibits complex dynamic behavior. This behavior results

in undesirable vibrations that can be detrimental to the mirror performance.

118



Mohammed F. Daqaq Chapter 9. Nonlinear Interactions in Torsional Micromirrors 119

9.1 Primary Resonance Excitation of the First Mode

(Ω ≈ ω1)

The nonlinear solution obtained in the previous chapter does not account for modal interac-

tions in the mirror response. In Fig. 9.1, we show variation of the first two natural frequencies

of the mirror with the applied DC voltage Vdc. Clearly, the frequency of the second mode

ω2 is equal to twice the frequency of the first mode ω1 at Vdc ≈ 13.2 V. Hence, a two-to-one

internal resonance might be activated between the two modes. Using the method of multiple

scales, we determine a second-order nonlinear approximation that accounts for the internal

resonance. To this end, we scale the parameters as follows:

V = Vdc + ε2Vac cos(Ωt), µ1 = εµ1, µ2 = εµ2, Ω = ω1 + εσ1, ω2 = 2ω1 + εσ2

(9.1)

where ε is a small nondimensional bookkeeping parameter, and σ1 and σ2 are detuning

parameters used to express the nearness of Ω to ω1 and ω2 to 2ω1, respectively. Following

steps similar to those used in the previous chapter, we obtain the following problems
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Figure 9.1: Variation of the mirror first two natural frequencies with Vdc.
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O(ε) :

m11D
2
0θ0 + (k11 − V 2

dcΓ1α12)θ0 − V 2
dcΓ1α13u0 = 0

m22D
2
0u0 + (k22 − V 2

dcΓ2α23)u0 − V 2
dcΓ2α22θ0 = 0

(9.2a)

O(ε2) :

m11D
2
0θ1 + (k11 − V 2

dcΓ1α12)θ1 − V 2
dcΓ1α13u1 = −µ1D0θ0 − 2m11D0D1θ0

+ V 2
dcΓ1(α15θ

2
0 + α14θ0u0 + α16u

2
0) + VacVdcΓ1α11(e

iΩT0 + e−iΩT0)

m22D
2
0u1 + (k22 − V 2

dcΓ2α23)u1 − V 2
dcΓ2α22θ1 = −µ2D0u0 − 2m22D0D1u0

+ V 2
dcΓ2(α25θ

2
0 + α24θ0u0 + α26u

2
0) + VacVdcΓ2α21(e

iΩT0 + e−iΩT0)

(9.2b)

O(ε3) :

m11D
2
0θ2 +

(
k11 − V 2

dcΓ1α12

)
θ2 − V 2

dcΓ1α13u2 = −µ1(D0θ1 + D1θ0)−m11(2D0D1θ1 + D2
1θ0

+ 2D0D2θ0) + VdcVacΓ1(α12θ0 + α13u0)
(
eiΩT0 + e−iΩT0

)
+ V 2

dcΓ1(α19θ
3
0 + 2α15θ0θ1

+ α18θ
2
0u0 + α14θ1u0 + α17θ0u

2
0 + α110u

3
0 + α14θ0u1 + 2α16u0u1)

m22D
2
0u2 +

(
k22 − V 2

dcΓ2α23

)
u2 − V 2

dcΓ2α22θ2 = −µ2(D0u0 + D1u0)−m22(2D0D1u1 + D2
1u0

+ 2D0D2u0) + VdcVacΓ2(α22θ0 + α23u0)
(
eiΩT0 + e−iΩT0

)
+ V 2

dcΓ2(α29θ
3
0 + 2α25θ0θ1

+ α28θ
2
0u0 + α24θ1u0 + α27θ0u

2
0 + α210u

3
0 + α24θ0u1 + 2α26u0u1)

(9.2c)

The solution of Equation (9.2a) is given in Equation (8.8). Substituting Equation (8.8) into

Equation (9.2b) yields
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m11D
2
0θ1 + (k11 − V 2

dcΓ1α12)θ1 − V 2
dcΓ1α13u1 = −iµ1(A1ω1e

iω1T0 + A2ω2e
iω2T0)

− 2im11ω1e
iω1T0D1A1 − 2im22ω2e

iω2T0D1A2

+ b11A
2
1(T1, T2)e

2iω1T0 + b12A
2
2(T1, T2)e

2iω2T0

+ b13A1(T1, T2)A2(T1, T2)e
i(ω1+ω2)T0

+ b14A1(T1, T2)Ā2(T1, T2)e
i(ω1−ω2)T0

+ b151A1(T1, T2)Ā1(T1, T2)

+ b152A2(T1, T2)Ā2(T1, T2) + α11VdcVace
iΩT0 + cc

(9.3a)

m22D
2
0u1 + (k22 − V 2

dcΓ2α23)u1 − V 2
dcΓ2α22θ1 = −iµ2(k1A1ω1e

iω1T0 + k2A2ω2e
iω2T0)

− 2im11k1ω1e
iω1T0D1A1 − 2im22ω2k2e

iω2T0D1A2

+ b21A
2
1(T1, T2)e

2iω1T0 + b22A
2
2(T1, T2)e

2iω2T0

+ b23A1(T1, T2)A2(T1, T2)e
i(ω1+ω2)T0

+ b24A1(T1, T2)Ā2(T1, T2)e
i(ω1−ω2)T0

+ b251A1(T1, T2)Ā1(T1, T2)

+ b252A2(T1, T2)Ā2(T1, T2) + α21VdcVace
iΩT0 + cc

(9.3b)

where the coefficients bij are given in Equation (8.11). The terms proportional to e±iω1T0

and e±iω2T0 produce secular terms in θ1 and u1. Elimination of these terms on the right-hand

side of Equations (9.3a) and 9.3b) yields the solvability conditions

2iω1Λ11D1A1 = iω1Λ12A1 + VacΛ13e
iσ1T1 + Λ14Ā1A2e

iσ2T1

2iω2Λ21D1A2 = iω2Λ22A2 + Λ24A
2
1e
−iσ2T1

(9.4)

where Λn1, Λn2, and Λ13 are given in Equation (8.20) and

Λ14 = 2Λ24 = b13V
2
dcΓ2α22 − b23∆1(ω1)
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We substitute for D1A1 and D1A2 back into Equation (9.3a) and (9.3b). Then we write the

complete nonsecular solution of the second-order equations as

θ1 =B1(T1, T2)e
iω1T0 + B2(T1, T2)e

iω2T0 + c12A
2
2e

2iω2T0 + c13A1A2e
i(ω1+ω2)T0

+c151A1Ā1 + c152A2Ā2 + cc

u1 =k1B1(T1, T2)e
iω1T0 + k2B2(T1, T2)e

iω2T0 + c22A
2
2e

2iω2T0 + c23A1A2e
i(ω1+ω2)T0

+c251A1Ā1 + c252A2Ā2 + cc

(9.5)

where cc stands for the complex-conjugate of the preceding terms. The first two terms

in Equation (9.5) correspond to the homogeneous solution, whereas the remaining terms

represent the particular solutions. The temporal functions B1 and B2 are defined at the

next level, and the coefficients cn2, cn3, cn51, and cn52 are given in Equation (8.18).

Substituting Equations (8.8) and (9.5) into Equation (9.2c), and eliminating the terms that

lead to secular terms, we obtain

−2iω1Λ11(D1B1 + D2A1)−Λ11D
2
1A1 − Λ12D1A1 = iω1Λ12B1 + Λ̂13VacA2e

i(σ2−σ1)T1

+Λ14(A2B̄1 + B2Ā1)e
iσ2T1 + Λ̂15Ā1A

2
1 + Λ̂16A1A2Ā2

−2iω2Λ21(D1B2 + D2A2)−Λ21D
2
1A2 − Λ22D1A2 = iω2Λ22B2 + Λ̂23VacA1e

i(σ1−σ2)T1

+Λ̂25Ā2A
2
2 + Λ̂26A1Ā1A2

(9.6)

where

Λ̂13 = VdcΓ2[α22∆2(ω1)− k2Γ2α23∆1(ω1)],

Λ̂23 = VdcΓ2[α22∆2(ω2))− k1Γ2α23∆1(ω1)],

Λ̂15 = −V 2
dc(∆1(ω1)Z2 − Γ2α22V

2
dcZ1), Λ̂25 = −V 2

dc(∆1(ω1)Z̃2 − Γ2α22V
2
dcZ̃1),

Λ̂16 = −V 2
dc(∆1(ω1)Y2 − Γ2α22V

2
dcY1), Λ̂26 = −V 2

dc(∆1(ω1)Ỹ2 − Γ2α22V
2
dcỸ1).

and Zn, Z̃n, Yn, and Ỹn are given in Equation (8.21).

Following Nayfeh [90], we choose the functions B1 and B2 so as to eliminate D2
1A1 and D2

1A2

from Equations (9.6), this will ensure that Equations (9.6) are derivable from a Lagrangian.

These conditions lead to

D1[2iω1B1 + D1A1] = 0, D1[2iω2B2 + D1A2] = 0. (9.7)
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Integrating with respect to T1, we get

[2iω1B1 + D1A1] = c1(T2), [2iω2B2 + D1A2] = c2(T2). (9.8)

Note from Equations (9.4) that D1A1 and D1A2 are not functions of T2. Therefore, it is

necessary that c1(T2) = c2(T2) = 0, which yields

B1 =i
Λ12

4ω1Λ11

A1 + Vac
Λ13

4ω2
1Λ11

eiσ1T1 +
Λ14

4ω2
1Λ11

Ā1A2e
iσ2T1

B2 =i
Λ22

4ω2Λ21

A2 +
Λ24

4ω2
2Λ21

A2
1e
−iσ2T1

(9.9)

Substituting Equations (9.9) into Equations (9.6), we obtain

−2iω1Λ11D2A1 =
Λ2

12

4Λ11

A1 − iVac
Λ12Λ13

4ω1Λ11

eiσ1T1 + Vac

(
Λ̂13 +

Λ13Λ14

4ω2
1Λ11

)
A2e

i(σ2−σ1)T1

+ i
Λ22Λ24

2ω2Λ21

A2Ā1e
iσ2T1 +

(
Λ̂15 +

Λ24Λ14

4ω2
2Λ21

)
Ā1A

2
1 +

(
Λ̂16 +

Λ2
14

4ω2
1Λ11

)
A1A2Ā2

(9.10a)

−2iω2Λ21D2A2 =
Λ2

22

4Λ21

A2 − i
Λ22Λ24

4ω2Λ21

A2
1e
−iσ2T1 + Λ̂23VacA1e

i(σ1−σ2)T1 + Λ̂25Ā2A
2
2

+ Λ̂26A1Ā1A2

(9.10b)

Since the above equations should be derivable from a Lagrangian and a virtual work term, the

coefficient associated with A2Ā1 in Equation (9.10a) is twice the coefficient associated with

A2
1 in Equation (9.10b). Similarly, the coefficient associated with A1A2Ā2 in Equation (9.10a)

is equal to the coefficient associated with A2A1Ā1 in Equation (9.10b). To obtain the final

solution to second-order, we reconstitute the solution using the following equation:

dAn

dt
= εD1An + ε2D2An + ..., n = 1, 2. (9.11)

We substitute Equations (9.4), (9.10a), (9.10b) into Equation (9.11), set Tn = εnt, then set

ε equal to unity, and obtain the following reconstituted modulation equations:

−2iω1Λ11
dA1

dt
= (S12 + iS̄12)A1 + (S13 + iS̄13)Vace

iσ1t + S14VacA2e
i(σ2−σ1)t

+ (S15 + iS̄15)A2Ā1e
iσ2t + S16Ā1A

2
1 + S17A1A2Ā2

(9.12a)
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−2iω2Λ21
dA2

dt
= (S22 + iS̄22)A2 + (S25 + iS̄25)A

2
1e
−iσ2t + S24VacA1e

i(σ1−σ2)t

+ S26Ā2A
2
2 + S27A1Ā1A2

(9.12b)

where

Sn2 =
Λ2

n2

4Λn1

, S̄n2 = Λn2ωn,

Sn3 = Λn3, S̄n3 = −Λn2Λn3

4ωnΛn1

,

S14 =

(
Λ̂13 +

Λ13Λ14

4ω2
1Λ11

)
, S24 = Λ̂23,

S15 = 2S25 = 2Λ24, S̄15 = 2S̄25 =
Λ22Λ24

2ω2Λ21

,

S16 =

(
Λ̂15 +

Λ24Λ14

4ω2
2Λ21

)
, S26 = Λ̂25,

S17 = S27 =

(
Λ̂16 +

Λ2
14

4ω2
1Λ11

)
, n = 1, 2.

We illustrate the effect of neglecting the interaction between the two modes by showing

variation of the effective nonlinearity coefficient S16 with Vdc in Fig. 9.2. Using a single-mode

analysis results in a singularity at Vdc ≈ 13.2 V. This value of the DC voltage corresponds to

the two-to-one internal resonance between the first and second modes. As a result, neglecting

this interaction yields a qualitatively and quantitatively erroneous solution, which might hide

the actual dynamics of the mirror. It is also obvious that the effect of the singularity is not

limited to a narrow region around Vdc ≈ 13.2 V, but it extends over a wide range of the

applied DC voltage. Therefore, avoiding the operation in that region limits the operation

range of the microscanner. Next, we express the resulting modulation equations in terms of

real variables by introducing Equation (8.22) into Equations (9.12a) and (9.12b), separating

the real and imaginary parts and obtaining the following equations:

ω1Λ11ȧ1 = −1

2
S̄12a1 − Vac(S13 sin γ1 + S̄13 cos γ1) +

1

2
S14Vaca2 sin(γ1 − γ2)

− 1

4
a1a2(S15 sin γ2 + S̄15 cos γ2)

ω1Λ11a1(σ1 − γ̇1) =
1

2
S12a1 + Vac(S13 cos γ1 + S̄13 sin γ1)− 1

2
VacS14a2 cos(γ1 − γ2)

+
1

4
a1a2(S15 cos γ2 − S̄15 sin γ2) +

1

8
S16a

3
1 +

1

8
S17a1a

2
2

(9.13a)
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ω2Λ21ȧ2 = −1

2
S̄22a2 − 1

2
S24Vaca1 sin(γ1 − γ2) +

1

4
a2

1(S25 sin γ2 − S̄25 cos γ2)

ω2Λ21a2(γ̇2 − γ̇1 + 2σ1 − σ2) =
1

2
S22a2 +

1

2
VacS24a1 cos(γ1 − γ2) +

1

4
a2

1(S25 cos γ2 + S̄25 sin γ2)

+
1

8
S26a

3
2 +

1

8
S27a

2
1a2

(9.13b)

where

γ1 = σ1t− β1, γ2 = σ2t− 2β1 + β2.

The behavior of the mirror is characterized by the solution of the modulation equations.

When the modulation equations have an equilibrium solution, the response of the mirror is

periodic. On the other hand, when the modulation equations have a periodic solution, the

response of the mirror is either periodic or quasiperiodic, depending on the frequency of the

resulting limit cycle. If the frequency of the resulting limit cycle is commensurate with the

excitation frequency, the response is periodic, otherwise it is quasiperiodic.

When the modulation equations have a quasiperiodic solution, the response of the mirror

is quasiperiodic with higher number of independent frequencies. Finally, if the solution of
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S
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Single − Mode Analysis
Two − Mode Analysis

ω2 ≈ 2ω1

Figure 9.2: Variation of the effective nonlinearity coefficient S16 of the first mode with the
applied voltage Vdc.
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the modulation equations is chaotic, then the response of the microscanner is also chaotic.

To analyze the periodic response of the mirror, we study the equilibrium solutions of Equa-

tions (9.13). These equilibrium solutions are obtained by setting the time derivatives in

Equations (9.13) equal to zero and solving for the roots (a1, a2, γ1, γ2). As a control pa-

rameter is varied, the roots are found using a Newton-Raphson numerical technique. The

stability of the equilibrium solutions is determined by finding the eigenvalues of the Jacobian

matrix of the modulation equations evaluated at the root. If all of the eigenvalues associated

with a given solution have negative real parts, it is asymptotically stable. Otherwise, if one

or more eigenvalues have positive real parts, the solution is unstable.

Using Equation (8.22), we express the response of the mirror to second order as

θ(t) = θs +

(
1 +

S11

ω1

)
a1 cos(ω1t + β1) +

(
1 +

S21

ω2

)
a2 cos(ω2t + β2)

+
Λ14

8ω2
1Λ11

a1a2 cos[(ω1 + σ2)t + β2 − β1] +
1

2
c12a1a2 cos[(ω1 + ω2)t + β1 + β2]

+
Λ24

8ω2
2Λ21

a2
1 cos[(ω2 − σ2)t + 2β1] +

1

2
c11a

2
2 cos[2ω2t + 2β2] +

1

2
c13a

2
1 +

1

2
c14a1a2

+ Vac
S̄13

Λ12ω1

cos[(ω1 + σ1)t] + . . .

(9.14a)

u(t) = us + k1

(
1 +

S11

ω1

)
a1 cos(ω1t + β1) + k2

(
1 +

S21

ω2

)
a2 cos(ω2t + β2)

+ k1
Λ14

8ω2
1Λ11

a1a2 cos[(ω1 + σ2)t + β2 − β1] +
1

2
c22a1a2 cos[(ω1 + ω2)t + β1 + β2]

+ k2
Λ24

8ω2
2Λ21

a2
1 cos[(ω2 − σ2)t + 2β1] +

1

2
c21a

2
2 cos(2ω2t + 2β2) +

1

2
c23a

2
1 +

1

2
c24a1a2

+ k1Vac
S̄13

Λ12ω1

cos[(ω1 + σ1)t] + . . .

(9.14b)

To validate the analytical solution, we integrate Equations (7.8) numerically to obtain the

steady-state response of the mirror at the critical DC voltage Vdc = 13.21 V when the mirror

is excited near primary resonance of the first mode (σ1 = −0.0002) at Vac = 0.1 V. We

then compare the numerical results with those obtained analytically using Equations (9.14).
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Figure 9.3: Phase portrait of the mirror response at Vdc = 13.21 V when the mirror is excited

near primary resonance of the first mode (σ1 = −0.0002) at Vac = 0.1 V.

The phase portraits of the steady-state response of the micromirror in Fig. 9.3 demonstrate

excellent agreement between the numerical and analytical solutions.

We study variation of the amplitudes of the equilibrium solutions of Equations (9.13) (a1, a2)

with the excitation frequency detuning parameter σ1 for different values of Vdc. We fix

the value of the AC voltage at Vac = 0.1 V for all cases. To achieve large amplitudes,

microscanners are usually designed to operate at very large quality factors, therefore we

choose a quality factor Q = 250 for all cases. We denote stable equilibrium solutions by

solid lines and unstable ones by dashed or dotted lines.

For Vdc = 11 V, most of the energy is trapped in the first mode, as shown in Fig. 9.4 (a) and

(b). The influence of the second mode is extremely small, especially at σ1 = 0, as evident

from the time histories in Figs. 9.5 (a) and (b) . However, another small branch of solutions

appears at σ1 ≈ −0.00018, which indicates that the internal resonance is close to being

activated. As we discussed in the previous chapter, the frequency-response curve of the first

mode is bent to the left, indicating a softening-type nonlinearity.

As Vdc is increased towards the critical value Vdc ≈ 13.2 V, Figs. 9.4 (c) and (d), the frequency

response curves bend more towards the left, indicating that the effective softening nonline-



Mohammed F. Daqaq Chapter 9. Nonlinear Interactions in Torsional Micromirrors 128

−6 −4 −2 0 2 4

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

σ1

a
1

(a) Vdc = 11 V

−6 −4 −2 0 2 4

x 10
−4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

σ1

a
2

(b) Vdc = 11 V

−4 −2 0 2 4

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

σ1

a
1

H H

(c) Vdc = 13.2 V

−4 −2 0 2 4

x 10
−4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

σ1

a
2

H

H

(d) Vdc = 13.2 V

−6 −4 −2 0 2 4

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

σ1

a
1

(e) Vdc = 15 V

−6 −4 −2 0 2 4

x 10
−4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

σ1

a
2

(f) Vdc = 15 V

Figure 9.4: Variation of the amplitudes of the first and second modes with the driving

frequency detuning parameter σ1 when the first mode is excited near primary resonance at

Vac = 0.1 V. The letter H is used to denote Hopf bifurcations.



Mohammed F. Daqaq Chapter 9. Nonlinear Interactions in Torsional Micromirrors 129

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t

θ

(a) Vdc = 11 V

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.05

0

0.05

0.1

t

u

(b) Vdc = 11 V

0 0.5 1 1.5 2

x 10
5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t

θ

(c) Vdc = 13.2 V

0 0.5 1 1.5 2

x 10
5

−0.05

0

0.05

0.1

t

u

(d) Vdc = 13.2 V

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t

θ

(e) Vdc = 15 V

0 0.5 1 1.5 2 2.5 3

x 10
4

−0.05

0

0.05

0.1

t

u

(f) Vdc = 15V

Figure 9.5: Long-time histories of the micromirror responses for σ1 = 0 and Vac = 0.1 V.

arity increases as Vdc increases. Moreover, the second branch of the two-mode solution

becomes more significant and shifts towards σ1 = 0. A region of dynamic solutions appears

as a result of the equilibrium solutions of the modulation equations loosing stability via two
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Hopf bifurcations. This region extends between σ1 = 0 and σ1 = −0.00002, resulting in

an undesired quasiperiodic response of the scanner, as shown in Fig. 9.5 (c) and (d). This

quasiperiodic behavior causes undesired fluctuations in the amplitude of the steady-state

response of the scanner, which results in distorted images.

A further increase in Vdc, as shown in Figs. 9.4 (c) and (d), results in an increase in the

bending of the frequency-response curves towards the left and a shift in the second branch

of the solution towards the right and away from σ1 = 0. The effect of the second mode

becomes less important and it diminishes as Vdc is increased further. Figures. 9.5 (e) and (f)

illustrate the periodic nature of the mirror response.

9.2 Primary Resonance Excitation of the Second Mode

(Ω ≈ ω2)

In this case, we let Ω = ω2+εσ1 and follow steps similar to those used in the previous section

and obtain the following modulation equations:

ω1Λ11ȧ1 = −1

2
S̄12a1 − 1

2
S24Vaca1 sin γ1 − 1

4
a1a2(S15 sin γ2 + S̄15 cos γ2)

1

2
ω1Λ11a1(σ1 + σ2 − γ̇1) =

1

2
S12a1 +

1

2
S24Vaca1 cos γ1 +

1

4
a1a2(S15 cos γ2 − S̄15 sin γ2)

+
1

8
S16a

3
1 +

1

8
S17a1a

2
2

(9.15a)

ω2Λ21ȧ2 = −1

2
S̄22a2 − Vac(S23 sin γ2 + S̄23 cos γ2) +

1

4
a2

1(S25 sin γ2 − S̄25 cos γ2)

ω2Λ21a2(σ1 − γ̇2) =
1

2
S22a2 − Vac(S̄23 sin γ2 − S23 cos γ2) +

1

4
a2

1(S25 cos γ2 + S̄25 sin γ2)

+
1

8
S26a

3
2 +

1

8
S27a

2
1a2

(9.15b)
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where

γ1 = (σ1 + σ2)t− 2β1, γ2 = σ1t− β2.

In the case of primary resonance near the second mode, the equilibrium solutions of the

modulation equations are either a single-mode solution (0, a2), a two-mode solution (a1, a2),

or both simultaneously. In Fig. 9.6, we study variation of the response amplitude with the

driving frequency detuning parameter σ1. For Vdc = 11 V, the energy is trapped in the second

mode only, as shown in Fig. 9.6 (a) and (b). The solution of the modulation equations yields

only the single-mode solution (0, a2). Therefore, the nonlinear interaction can be neglected

and a single-mode perturbation solution is enough to accurately represent the dynamics of

the mirror. The long-time history of the response shown in Fig. 9.7 illustrates that the

second mode completely dominates the response of the mirror.

As Vdc approaches the critical values Vdc = 13.2 V, the single-mode solution looses stability

via two pitchfork bifurcations at σ1 = −0.000073 and σ1 = 0.000058, Fig. 9.6(c) and (d).

As a result, a two-peak branch of the two-mode solution appears in the frequency-response

curves in the vicinity of σ1 = 0. In this case, most of the system energy is transferred into

the indirectly excited first mode, and it is obvious that a single-mode solution is not enough

to represent the dynamics of the mirror. In Fig. 9.8, we show the long time-histories of

the response for different values of σ1. At σ1 = 0, there is only one two-mode solution,

where a1 is much larger than a2. The angular response of the mirror is periodic with the

first mode frequency being the dominant frequency, Fig. 9.8 (a). However, due to the linear

coupling, the bending response of the mirror is periodic with both frequencies appearing

in the response, Fig. 9.8 (b). At σ1 = −0.0004 both of the single-mode and two-mode

solutions coexist. Therefore, torsional oscillations of the mirror can be large and dominated

by the first-mode frequency, as shown in Fig. 9.8 (c), or very small and dominated by the

second-mode frequency as shown in Fig. 9.8 (d).
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Figure 9.6: Variation of the amplitudes of the first and second modes with the driving

frequency detuning parameter σ1 when the second mode is excited near primary resonance

at Vac = 0.1 V.
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Figure 9.7: Long-time histories of the micromirror response for Vdc = 11 V and Vac = 0.1 V.

As Vdc is increased beyond the critical-internal resonance value, we find that the two-mode

solution shifts towards the left, as shown in Figs. 9.6 (e) and (f), where the single-mode

solution looses stability via two pitchfork bifurcations at σ1 ≈ −0.0006 and σ1 ≈ −0.00055,

respectively. Therefore, a two-mode solution is still necessary to represent the actual dynam-

ics of the mirror. In Figs. 9.9 (a) and (b), we show long-time histories of the micromirror

response at σ1 = 0. At this value of σ1, the second mode dominates both of the torsional

and bending responses of the mirror, resulting in a very large bending response.

At σ1 = −0.0008, both of the single-mode and two-mode solutions coexist. In Figs. 9.9 (b)

and (c), we show the long-time histories of the two-mode solution. In this case, the torsional

response of the mirror is very large and dominated by the first-mode frequency, whereas, due

to linear coupling, both frequencies coexist in the bending response.

In Figs. 9.10 (a) and (b), we show variation of the response amplitudes with the driving AC

excitation Vac at the critical internal resonance voltage Vdc = 13.2 V. We excite the second

mode near primary resonance at the detuning value σ1 = −0.00002. For Vac ≤ 0.008 V only

a single-mode trivial solution exists. As Vac is increased, the single-mode trivial solution
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Figure 9.8: Long-time histories of the micromirror response for Vdc = 13.2 V and Vac = 0.1 V.
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Figure 9.9: Long-time histories of the micromirror response for Vdc = 15 V and Vac = 0.1 V.

looses stability through a subcritical pitchfork bifurcation at Vac ≈ 0.011 V. As a result,

the response jumps to a larger stable two-mode solution. As Vac is increased further, the

amplitude of the first mode increases, while the amplitude of the second mode decreases

slightly. Since, in our case, the quadratic and cubic nonlinearities are of the same order, no

saturation occurs, and the amplitude of the second mode starts to increase again until we

reach Vac ≈ 0.315 V. At this AC value, the stable two-mode solution experiences a saddle-

node bifurcation, and the response jumps to the nearest stable branch, which in this case

is another larger-amplitude two-mode solution. Increasing Vac beyond this point results in

a gradual decrease in the first-mode amplitude accompanied with a gradual increase in the
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second-mode amplitude.
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Figure 9.10: Variation of the amplitudes of the first and second modes with the AC excitation

voltage Vac when the second mode is excited near primary resonance at a detuning value

σ1 = −0.00002 and Vdc = 13.2 V.

9.3 Redesign of Microscanners to Avoid Internal Res-

onances

The numerical simulations shown in Section 9.1 reveal that the internal resonance can cause

serious degradation in the mirror performance. The quasiperiodic response of the scanner

which may take place when the mirror is excited at primary resonance of the first mode,

results in steady-state amplitude fluctuations that produce unclear images. On the other

hand, when the mirror is excited near primary resonance of the second mode, as shown in

Section 9.2, the second-mode amplitude does not saturate due to the considerable effects of

the cubic nonlinearities, resulting in large undesirable bending oscillations.

Due to the aforementioned reasons, the designer should avoid the internal resonance. An
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easy solution is to shorten the suspension beams to increase the second-mode frequency.

This stems from the fact that the bending stiffness of the beams is inversely proportional to

l3. However, a decrease in l is also accompanied with an increase in the torsional stiffness of

the suspension beams, which is inversely proportional to l. Hence, decreasing l results in a

significant increase in the voltage required to realize a desired tilt angle. For example, to avoid

the internal resonance, we decrease the length of the suspension beams from l = 65 µm to

l = 45 µm keeping all other mirror parameters constant. Associated with this 30.7% decrease

in the length of the suspension beams, the second-natural frequency increases significantly

and is at least 40% larger than twice the natural frequency of the first mode over the whole

voltage range, as shown in Fig. 9.11. However, as shown in Fig. 9.12, the pull-in voltage

Vp increases by 27.3%, and the pull-in angle also increases by 12% . Although, the increase

in the voltage is also associated with an increase in the tilt angle, the percentage by which

the voltage changes is more than twice the percentage by which the tilt angle increases.

Therefore, to achieve similar tilt angles larger voltage values are required.
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Figure 9.11: Variation of the first two natural frequencies of the mirror with the applied DC

voltage. Solid lines denote suspension beams of length l = 65µm and electrode parameters:

α = 0.06 and β = 0.84. Dashed lines denote beams of length l = 45µm and electrode

parameters: α = 0.06 and β = 0.84.
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Figure 9.12: Variation of the stable equilibria of the mirror tilt angle θm with the applied DC

voltage. Solid lines denote suspension beams of length l = 65µm and electrode parameters:

α = 0.06 and β = 0.84. Dashed lines denote beams of dimensions l = 45µm and electrode

parameters: α = 0.06 and β = 0.84.

Without significantly changing the natural frequencies, one can use the size and position

of the electrodes to decrease the voltage required to obtain a desired tilt angle and hence

produce a counter effect to shortening the suspension beams. In Chapters 5 and 6, we

discussed the effects of the electrode parameters on the pull-in voltage and the natural

frequencies of the mirror. We showed earlier that increasing β or α results in a significant

decrease in the pull-in voltage Vp without significant effects on the corresponding natural

frequencies. Therefore, in addition to shortening the beams from l = 65 µm to l = 45 µm,

we increase α from 0.06 to 0.20 and β from 0.84 to 1. Comparing Fig. 9.13 to Fig. 9.11

illustrates that, although the electrode parameters changed significantly, the same decrease

in the length is associated with almost the same change in the natural frequencies, hence

the second natural frequency increases significantly and is at least 40% larger than twice

the natural frequency of the first mode over the whole voltage range. However, Fig. 9.14

demonstrates that increasing α and β results in a significant decrease in the pull-in voltage.

Therefore, the pull-in voltage at l = 45 µm is now only 1.1% larger than that at l = 65 µm
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compared to 27.3% when the electrode parameters are kept constant.
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Figure 9.13: Variation of the first two natural frequencies of the mirror with the applied DC

voltage. Solid lines denote suspension beams of length l = 65µm and electrode parameters:

α = 0.06 and β = 0.84. Dashed lines denote beams of length l = 45µm and electrode

parameters: α = 0.2 and β = 1.0.
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Figure 9.14: Variation of the stable equilibria of the mirror tilt angle θm with the applied DC

voltage. Solid lines denote suspension beams of length l = 65µm and electrode parameters:

α = 0.06, and β = 0.84. Dashed lines denote beams of length l = 45µm and electrode

parameters: α = 0.20 and β = 1.0.



Chapter 10

Input-Shaping Control of Torsional

Micromirrors

In this chapter, we develop a new technique for preshaping input commands to control tor-

sional micromirrors. Since the electrostatic field is a nonlinear function of the states and

the input voltage, the frequency of the mirror response to a step input depends on the input

magnitude. As a result, traditional shaping techniques, which are based on linear theory, fail

to provide good performance over the whole input range. The technique we provide combines

the equations describing the static response of the mirror, a balance of energy argument, and

an approximate nonlinear analytical solution of the mirror response to preshape the voltage

commands. The shaped commands are then applied to drive the torsional micromirror to a

desired tilt angle with zero residual vibrations. Using this approach, fast mirror switching

operation with almost zero overshoot can be realized. This novel approach accounts for the

energy of the significant higher modes and can be used to shape input commands applied to

other nonlinear micro and macro systems.

140



Mohammed F. Daqaq Chapter 10. Input-Shaping Control of Torsional Micromirrors 141

10.1 Response of the Micromirror to Step Voltages

We start by seeking a first-order nonlinear analytical solution that describes the response of

the mirror to step voltages. We show later that, since the electrostatic energy is a nonlinear

function of the states, this analytical solution is an essential part of an effective shaper

design. Using Equation (8.8), a first-order nonlinear solution can be written as

θ(t) = θs + a1 cos(ω1t + β1) + a2 cos(ω2t + β2) + ...

u(t) = us + k1a1 cos(ω1t + β1) + k2a2 cos(ω2t + β2) + ...
(10.1)

where θs and us represent the static equilibrium position and are obtained using Equa-

tion (6.8); ω1, ω2, k1, and k2 are the natural frequencies and the associated eigenvectors

which are obtained using Equation (8.9); and a1, a2, β1, and β2 are the amplitudes and

phases of the response and are obtained using the following modulation equations:

2Λ11a
′
1 = Λ12a1

2ω1Λ11a1β
′
1 = −1

4
(Λ14a

3
1 + Λ15a1a

2
2)

2Λ21a
′
2 = Λ22a2

2ω2Λ21a2β
′
2 = −1

4
(Λ24a

3
2 + Λ25a2a

2
1)

(10.2)

Equations (10.2) are obtained by setting Vac equal to zero in Equations (8.23). The solution

of Equations (10.2) can be written as

a1 = a11e
Λ12
2Λ11

t
, a2 = a22e

Λ22
2Λ21

t
,

β1 = − 1

8ω1

(
Λ14a

2
11e

Λ12t
Λ11

Λ12

+
Λ15Λ21a

2
22e

Λ22t
Λ21

Λ11Λ22

)
+ β11,

β2 = − 1

8ω1

(
Λ24a

2
22e

Λ22t
Λ21

Λ22

+
Λ25Λ11a

2
11e

Λ12t
Λ11

Λ21Λ12

)
+ β22.

(10.3)

where a11, a22, β11, and β22 are constants that can be determined using initial conditions.

For very large quality factors, Λ12 = Λ22 ≈ 0, and the solution of Equations (10.2) reduces
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to

a1 = a11, a2 = a22,

β1 = − 1

8ω1Λ11

(Λ14a
2
11 + Λ15a

2
22)t + β11, β2 = − 1

8ω2Λ21

(Λ24a
2
11 + Λ25a

2
22)t + β22.

(10.4)

Equations (10.3) or Equations (10.4) are then substituted into Equations (10.1) to obtain a

first-order nonlinear approximate solution, which describes the response of the micromirror

to step voltages.

10.2 Controller Design

Time

V1

V2

Response to V1 + V2

Response to V1

tp

θd

Figure 10.1: A schematic of input shaping.

In this section, we consider the problem of designing a shaper to drive the mirror to a desired

tilt angle θd with zero vibrations. Figure 10.1 illustrates the application of two voltage

impulses to obtain zero residual vibrations at the desired tilt angle. The first impulse is

applied at t = 0 and has a magnitude V1, computed such that the maximum overshoot of

the response Mp is equal to θd. The time location of the second impulse is chosen at the
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peak time t = tp where the velocity of the response θ̇ is equal to zero. The magnitude of

the second impulse V2 is applied such that the new equilibrium position is at θd. Ideally, if

the magnitudes and locations of the impulses are chosen according to Fig. 10.1, the system

is guaranteed to have zero residual vibrations at θd. We note that, although this shaper

does not drive u to zero, it takes into account the effects of the deflection on the impulse

magnitudes and locations of the shaped commands as we show later.

For linear systems, Mp and tp are defined using simple analytical expressions [91]. Hence,

they can be easily used to compute V1 and V2 that achieve a desired θd with zero residual

vibrations. This idea forms the basis for the ZV and ZVD shapers’ design. However, when

systems exhibit a nonlinear behavior, the process is more complicated. The main reason is

that, for nonlinear systems, the frequency varies with the equilibrium position. Therefore,

there is no general analytical expression for Mp and tp, thus necessitating alternate techniques

to compute the shaper parameters.

To design a shaped command that takes the nonlinear effects into account, three parameters

should be selected, namely, V1, V2, and tp. The easiest unknown to obtain is the second

impulse magnitude V2. Knowing the desired tilt angle θd, which is the only input to our

control algorithm, one can compute V2 and the corresponding static deflection ud using

Equation (6.8).

Before explaining how to obtain the other two unknowns, we first provide a general expression

for obtaining the peak time of the response to a general step DC voltage. The peak time tp

corresponding to the maximum tilt angle realized during the mirror response can be obtained

by setting the time derivative of θ in Equation (10.1) equal to zero; that is,

dθ

dt

∣∣∣∣
tp

= 0. (10.5)

The above equation is transcendental and is solved numerically for tp. To obtain the fastest

mirror response, we seek the solution described by the nonzero minimal peak time. Figure

10.2 demonstrates the region for which the multiple-scales solution is necessary to obtain

more accurate values for tp. We compute tp for arbitrary step voltages over the mirror
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operation regime. We compare values obtained from three types of solution to the equations

in (7.8); a linear solution, a first-order nonlinear solution, and a numerical solution. Figure

10.2 illustrates that for Vdc ≤ 12.5 V, the solution obtained by linearizing the equations of

motion around the equilibria without considering the nonlinear effects is sufficient to realize

very accurate values for tp and hence the perturbation solution based on multiple scales

is not necessary. However, for Vdc ≥ 12.5 V through pull-in, the linear solution starts to

deteriorate and the nonlinear solution is necessary to provide accurate values for tp. It is

worth mentioning that we also computed tp using a second-order nonlinear approximation

and found that it does not provide much improvement over the first-order approximation.
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Figure 10.2: Variation of the peak time tp with the input step voltage Vdc

In contrast with linear systems, it turns out that V1 and tp can not be obtained independently.

The technique we provide combines balance of energy with the analytical approximate solu-

tion of Equations (10.1) and (10.5) in an iterative manner. To allow for better understanding

of the technique, we first treat mirrors with very large quality factors where the damping is

negligible. Then, we propose a technique that accounts for damping, and finally we generalize

the technique for mirrors with multiple successive switching positions.
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10.2.1 Input Shaping with Negligible Damping Effects

It is clear from Fig. 10.2 that the response frequency varies with the magnitude of the input

voltage. Therefore, the time location of the second impulse tp can not be obtained unless the

magnitude of the first impulse V1 is defined. We use an energy balance argument to obtain

V1. Since θ̇ is equal to zero at θd, we relate the total energy of the mirror at t = tp to the

total energy at t = 0 using the following energy equation:

1

2
k11θ

2
cr(θ

2
d−θ2

0)+
1

2
k22d

2(u2−u2
0)+

1

2
m22d

2(u̇2− u̇2
0)−

1

2
m11θ

2
crθ̇

2
0 +

1

2
V 2

1 (−C(tp)+C(0)) = 0

(10.6)

where C is the electrostatic capacitance and is given by Equation (5.5). If the mirror is

operating from rest, θ0, u0, θ̇0 are equal to zero at t = 0 and Equation (10.6) reduces to

1

2
k11θ

2
crθ

2
d +

1

2
k22d

2u2 +
1

2
m22d

2u̇2 +
1

2
V 2

1 (−C(tp) + C(0)) = 0. (10.7)

We note that u in Equation (10.7) is not equal to ud obtained using Equation (6.8). While ud

represents the equilibrium position corresponding to V2, u is the magnitude of the deflection

at tp. Hence, u̇ at tp is not necessarily equal to zero. To obtain u and u̇ at tp, it is necessary

to use the nonlinear approximate solution given by Equations (10.1), (10.4), and (10.5).

However, this solution is not defined unless V1 is obtained which in turn depends on u. This

implies that V1, u, and u̇ should be obtained simultaneously. To this end, we employ the

following iterative procedure:

1. Assume that u and u̇ are equal to zero.

2. Solve Equation (10.7) for V1.

3. Use the magnitude of the first impulse V1 to obtain a first-order nonlinear approximate

solution using Equations (10.1) and (10.4).

4. Use Equation (10.5) to obtain the peak time tp.

5. Obtain new values for u and u̇ at tp using Equations (10.1) and (10.4).
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6. Repeat the process until V1, u and u̇ converge.

Numerical simulations
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Figure 10.3: Response of the micromirror to shaped and unshaped voltages designed to drive

the mirror to θd = 0.15.

We first start by simulating two cases for mirrors without damping. These examples serve

to illustrate the effectiveness and convergence of the procedure for very large quality factors.

To avoid problems resulting form the two-to-one internal resonance, we choose a suspension
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Figure 10.4: Response of the micromirror to shaped and unshaped commands designed to

drive the mirror to θd = 0.35.

beam of length l = 45µm and electrode parameters α = 0.3 and β = 1. In the first case, we

shape a step voltage to drive the micromirror to a desired tilt angle θd = 0.15. We start by

calculating V1 assuming that u and u̇ are equal to zero. The value obtained from the first

iteration is V1 = 11.14 V. Within five iterations, the solution converges to V1 = 11.079 V,

as shown in Figure 10.3 (c). This value of V1 and the corresponding value of tp are then

used to shape the input, as shown in Figure 10.3 (b). The shaped and unshaped commands
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are applied to the mirror and the response is shown in Figure 10.3 (a). It is clear from the

figure that, for zero damping, the shaped commands are capable of driving the mirror to the

desired angle with zero residual vibrations.

In the second case, we repeat the same procedure. However, this time we choose θd = 0.35,

a tilt angle that is very close to pull-in. This illustrates the effectiveness of the procedure in

the nonlinear region. Figure 10.4 (a) illustrates that, unlike the unshaped command which

results in an unstable response, the shaped command is capable of realizing the desired tilt

angle with almost zero residual vibrations. In Fig. 10.4 (a), we also demonstrate the effect

of neglecting the higher modes on the shaper design. The figure illustrates that neglecting

the energy stored in bending results in erroneous values for V1 and tp, which results in large

residual oscillations. Therefore, even if the goal is to design a shaper for the dominant mode

when the amplitudes of the higher modes are very small and do not appear in the first mode,

the effect of the higher modes on the shaped command parameters can not be neglected.

10.2.2 Input Shaping with Large Damping Effects

Due to damping, energy is lost as the mirror moves form its initial position to θd. There-

fore, to find an accurate value for V1 and tp, we need to account for the energy losses in

Equation (10.6). An expression for the energy lost due to damping can be written as

EL =
1

2

tp∫

t0

µ1θ
2
crθ̇

2 dt +
1

2

tp∫

t0

µ2d
2u̇2 dt (10.8)

where µ1 and µ2 are modal damping terms and given in Equation (7.8). The total energy of

the mirror at t = tp can be related to the total energy at t = t0 using the following energy

balance equation:

1

2
k11θ

2
cr(θ

2
d−θ2

0)+
1

2
k22d

2(u2−u2
0)+

1

2
m22d

2(u̇2−u̇2
0)−

1

2
m11θ

2
crθ̇

2
0+

1

2
V 2

1 (−C(tp)+C(0))+EL = 0.

(10.9)

In a similar manner, we repeat the iterative procedure explained in the previous section. In
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addition to assuming that u and u̇ are equal to zero in the first step, we also assume EL

is equal to zero. Equation (10.9) is then solved for V1 and the resulting value is used to

obtain a first-order nonlinear approximate solution around an equilibrium position defined

by V1. Using Equation (10.5), tp is obtained. New values for u and u̇ at tp are then obtained

using Equations (10.1) and (10.3). The magnitude of the energy loss EL is obtained using

Equation (10.8). The new values are then used as initial guesses for the next iteration. The

process is repeated until V1, u, u̇ and EL converge.

Numerical simulations

Figure 10.5 (a) illustrates the response of the system to shaped and unshaped commands

applied to drive the mirror to θd = 0.3. Using a single impulse voltage destabilizes the mirror.

The shaped two impulse voltage, however, drives the mirror to the desired angle with less

than 0.9% overshoot. Figure 10.5 (c) illustrates that the iterative procedure converges within

8 iterations compared to 5 iterations when the system is undamped. The reason is that the

energy balance expression needs to compensate for EL in addition to u and u̇.

The same technique can be extended to mirrors with multiple successive switching positions.

The only difference in the process is that the final equilibrium position defined by θd and

ud is used as an initial condition for the next desired position. Figure (10.6) demonstrates

a mirror switching successively between three different tilt angles. The mirror first tilts to

θd = 0.2, then to 0.1, and finally to 0.25. During the switching operation, the maximum

mirror overshoot with shaping is Mp = 0.75% compared to Mp = 75% for the first step

without shaping. Before the mirror can switch to a new tilt angle, the mirror response

should settle within certain limits to allow for accurate switching. It is clear from Fig. 10.6

(a) that accurate and fast successive switching can be obtained with shaped voltages. On the

other hand, unshaped voltage commands can only achieve very slow successive switching.
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Figure 10.5: Response of the micromirror to shaped and unshaped commands designed to

drive the mirror to θd = 0.30. A quality factor Q = 5 is used in this simulation.



Mohammed F. Daqaq Chapter 10. Input-Shaping Control of Torsional Micromirrors 151

0 5000 10000 15000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

θ

Controlled Response
Uncontrolled Response

(a) Mirror Response

0 5000 10000 15000
0

5

10

15

20

Nondimensional Time

V
d
c
[V

]

Shaped Input
Unshaped Input

(b) Input Voltage

Figure 10.6: Response of the micromirror to shaped and unshaped commands designed to

successively switch the mirror between multiple equilibrium positions. A quality factor Q = 5

is used in this simulation.



Chapter 11

Conclusions and Future Work

11.1 Quay-Side Container Cranes

For linear time-invariant systems, an accurate theoretical or experimental estimate of the fre-

quency and damping ratio are enough to achieve satisfactory shaper performance. Therefore,

traditional shaping techniques, such as the zero vibration shaper, are expected to perform

well on these systems. However, in general, for linear time-variant or nonlinear systems, suc-

cessful implementation of input-shaping controllers is highly dependent on the availability of

an accurate model of the system. Our results demonstrated that a single-step input-shaping

controller based on a simple pendulum model falls short of satisfying the goal of eliminating

residual oscillations on quay-side container cranes. The residual oscillations obtained with

a shaped acceleration profile based on a simple pendulum were as large as 2 m. The reason

for this poor performance is that a simple pendulum model is not an accurate model of a

quay-side container crane.

To achieve satisfactory performance, we based our shaper on an accurate constrained double-

pendulum model derived from the geometry of a four-bar-mechanism model of a container

crane. For predefined system parameters, the input-shaping acceleration profiles based on

152
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a nonlinear frequency approximation of this model were capable of reducing the residual

oscillations to less than 0.01 m.

Based on this model, we successfully extended input-shaping controllers to include large

hoisting operations (more than 50% of the initial cable length), thereby overcoming the

degradation in their performance for large hoisting operations. This new approach is based

on a graphical representation of the phase portrait that describes the response of a container

crane payload to a double-step acceleration profile. This controller is suitable for automated

crane operations and does not require any additions to current crane-system configurations.

In contrast with single-step input-shaping controllers, the new controller is less sensitive to

frequency approximations. In fact, our results showed that a nonlinear frequency approxi-

mation of the payload oscillations has a slight influence on the performance of the controller.

Numerical simulations conducted on the full-model of the crane illustrated that, for different

combinations of lowering and hoisting maneuvers, the double-step input-shaping controller

was capable of reducing the transient and residual oscillations of the payload to less than

15 mm.

A delayed-position feedback controller was used to minimize the sensitivity of input-shaping

controllers to variations in system parameters and to improve their robustness to modeling

errors. Since feedback controllers do not use the maximum crane capabilities (certain per-

centage of the available input goes to the feedback control signal), we augmented the delayed-

feedback controller to the preshaped commands only at the end of the transfer maneuver for

a very short period of time. The feedback controller accounts for system delays, mitigates

external disturbances, and compensates for uncertainties in the system. The controller was

capable of reducing the residual oscillations of the payload to less than 0.05 m within 5 s of

the end of the transfer maneuver.

To validate the controllers, we built a 1:10 scale model of a 65-ton container crane. This

facility is unique and can be used to test new technologies that are related to payload transfer

on cranes. For automated crane operations, we tested the novel double-step input-shaping
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controller. Using the maximum crane capabilities, we conducted different experiments that

involved large hoisting and lowering operations. The results demonstrated that the controller

is capable of very fast payload transfer with less than 5 mm payload sway.

For operator-in-the-loop crane operations, input-shaping controllers do not provide an al-

ternative. These controllers require predefined trolley and payload paths, which are not

available if the operator was to operate the crane using the crane joysticks. Therefore, we

used the delayed-position feedback controller analyzed in Chapter 3 to stabilize the payload

for random trolley input commands and hoisting operations. The controller feedback signal

was added to the operator input commands and the controller was experimentally tested.

The results demonstrated that the controller is very effective in reducing payload oscillations

for virtually any operator input. As a result, the controller minimizes the burdens imposed

by intensive training of crane operators.

11.2 Torsional Micromirrors

We developed a comprehensive model of a torsional micromirror subjected to electric exci-

tations. We used a Galerkin expansion in the Lagrangian to develop a reduced-order model

for the system. As trial functions, we used the mode shapes of the free vibrations of a

clamped-clamped beam to represent the angular motion of the mirror and the mode shapes

of the free vibrations of a clamped-clamped beam with a mass at its center to represent the

transverse vibrations of the mirror. We validated the static response of the reduced-order

model by gradually increasing the number of assumed modes until the results converged to

the exact static stable and unstable branches of the solution using 9 torsional modes and 3

bending modes. We compared the results to experimental data and showed excellent agree-

ment. Similarly, we validated the dynamic response of the model by gradually increasing

the number of assumed modes and then solving for the eigenvalues and the associated mode

shapes. We found that using 8 torsional modes and 3 bending modes is sufficient to realize
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convergence of the natural frequencies for voltage values ranging from zero to pull-in.

The results of the eigenvalue problem indicated that the natural frequencies of the higher

modes are two orders of magnitude larger than the first two natural frequencies. Further, at

zero voltage, the eigenfunctions associated with the lowest two modes are those of the first

torsion and bending modes of the suspension beams. Therefore, under normal operating

conditions, we found that one can treat the mirror as a lumped mass attached to two springs

representing the suspension beams. This conclusion significantly facilitated further analysis

of the problem.

In an attempt to provide a deep insight into the response of torsional microscanners, their

design, and possible ways to improve their performance capabilities, we developed a second-

order nonlinear analytical solution of the scanner’s response to combined DC and AC res-

onance excitations. Due to the softening-type nonlinearity, we found that the frequency-

response curves are bent to the left and that the bending increases as the magnitude of the

DC or AC voltages increase. This nonlinear behavior causes multiple stable solutions to

exist for values of the frequency that are slightly less than the natural frequency. This may

result in significant jumps in the response amplitude as the AC voltage is varied.

For the given mirror parameters, we identified a region of the DC voltage in which a two-to-

one internal resonance between the first two modes may be activated. The resonance occurs

at a critical voltage Vdc ≈ 13.2 V, but it affects a region extending from Vdc ≈ 12 V to

Vdc ≈ 15 V. To account for the internal resonance, we developed a second-order nonlinear

analytical solution that describes the response of the scanner in that region. We found

that, as we excited the mirror near primary resonance of the first mode and approached

the critical internal resonance voltage, the equilibrium solution of the modulation equations

loses stability via two Hopf bifurcation, giving way to a region of dynamic solutions. These

dynamic solutions result in undesirable quasi-periodic responses of the scanner, which can

produce distorted images.

We also explored exciting the mirror near the second-mode frequency. We found that, due to
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the considerable effects of the cubic nonlinearities, increasing the magnitude of the applied

AC voltage does not cause the second mode response to saturate. Hence, we could not

use the saturation phenomenon to obtain a large-amplitude periodic steady-state torsional

response with a very small amplitude bending response.

To avoid the undesired internal resonance, we proposed a redesign approach based on chang-

ing the length of the suspension beams and the sizes and positions of the electrodes. We

found that, decreasing the length of the suspension beams, did not only increase the second

natural frequency, but it also resulted in a significant increase in the voltage required to

realize the same tilt angles. To counter this effect, we increased the electrode parameters

α and β to achieve a scanner response free of internal resonance with minimal additional

voltage requirements.

Finally, we developed a novel technique for preshaping input commands applied to torsional

micromirrors used for light switching applications. Unlike traditional shaping methods which

are suitable for linear systems, this technique accounts for the frequency-voltage dependance

resulting from the nonlinearities in the electrostatic field. Our numerical simulations il-

lustrated that, using this approach, we can achieve very fast switching with almost zero

overshoot and minimal settling time. The technique is suitable for both switching opera-

tions in the presence of large and small quality factors as well as successive variable-angle

switching. Most importantly, the technique does not require any alterations to the current

mirror design or feedback measurements that are very cumbersome at the micro scale.

11.3 Recommendations for Future Work

Because the research conducted in this dissertation is diverse and covers two different topics,

the horizon has been expanded to explore various new research subjects at the micro and

macro scales. Following an approach similar to that used in Chapter 10, a theory for input-

shaping control of general nonlinear systems can be developed. This theory is expected to
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have tremendous applications, especially at the micro scale, where systems are highly nonlin-

ear and feedback measurements are very difficult and costly. The theory should account for

significant effect of higher modes and similar to input shaping of linear systems, robustness

constraints should also be derived. We are currently investigating the application of this

theory to a microbeam subjected to a step electrostatic voltage.

We are also investigating the development of a general theory for input-shaping control

of linear time-variant systems with slowly varying coefficients. In Chapter 4, we success-

fully demonstrated the development of an input-shaping controller for container cranes with

variable cable length. Currently, we are generalizing the procedure and investigating its

application to rotating flexible beams with variable length, such as flexible variable-length

robot arm manipulators.

In this work and previous work conducted by Masoud et al. [92, 93], delayed-position feed-

back control has been shown to be a very efficient means for suppressing payload oscillations

on various types of cranes. However, the application of a delayed-position feedback controller

to continuous systems has not been thoroughly investigated. The application of this con-

troller to continuous systems is expected to be more complicated. This stems from the fact

that, for multimode systems, one gain-delay combination that stabilizes the lower dominant

mode does not guarantee the stability of the other modes. In this aspect, we are currently

investigating the application of a delayed-feedback controller to extend the travel range of a

micromirror beyond the pull-in limit. However, since the equilibria are not defined beyond

the pull-in point, we cannot linearize or even expand the equations of motion. Therefore,

we propose a feedback linearization technique combined with a delayed-feedback controller.

One problem that appears however, is that using available technologies it is extremely hard

to measure both of the tilt angle and the deflection of the mirror for feedback. Therefore,

an observer has to be designed for state estimation. The question is how can one guarantee

the stability of the observer in the delayed-feedback measurements. This opens a whole new

problem for research and investigation. In general, the area of delayed-feedback control is

very rich in interesting dynamics and control problems that have not yet been explored. We
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recommend further investigation of this exciting area of research.
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