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ABSTRACT 

In recent decades there has been a rapidly growing demand for high quality, 

uninterrupted power.  In light of this fact, this study has addressed some of the causes of 

poor power quality and control strategies to ensure a high performance level in inverter-

fed power systems.  In particular, specific loading conditions present interesting 

challenges to inverter-fed, high power systems.  No-load, unbalanced loading, and non-

linear loading each have unique characteristics that negatively influence the performance 

of the Voltage Source Inverter (VSI).  Ideal, infinitely stiff power systems are 

uninfluenced by loading conditions; however, realistic systems, with finite output 

impedances, encounter stability issues, unbalanced phase voltage, and harmonic 

distortion.  Each of the loading conditions is presented in detail with a proposed control 

strategy in order to ensure superior inverter performance.  Simulation results are 

presented for a 90 kVA, 400 Hz VSI under challenging loading conditions to demonstrate 

the merits of the proposed control strategies. 

Unloaded or lightly loaded conditions can cause instabilities in inverter-fed power 

systems, because of the lightly damped characteristic of the output filter.  An inner 

current loop is demonstrated to damp the filter poles at light load and therefore enable an 

increase in the control bandwidth by an order of magnitude. Unbalanced loading causes 

unequal phase currents, and consequently negative sequence and zero sequence (in four-

wire systems) distortion.  A proposed control strategy based on synchronous and 

stationary frame controllers is shown to reduce the phase voltage unbalance from 4.2% to 
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0.23% for a 100%-100%-85% load imbalance over fundamental positive sequence 

control alone.  Non-linear loads draw harmonic currents, and likewise cause harmonic 

distortion in power systems.  A proposed harmonic control scheme is demonstrated to 

achieve near steady state errors for the low order harmonics due to non-linear loads.  In 

particular, the THD is reduced from 22.3% to 5.2% for full three-phase diode rectifier 

loading, and from 11.3% to 1.5% for full balanced single-phase diode rectifier loading, 

over fundamental control alone. 
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1 INTRODUCTION 

1.1 Applications for High Power Inverters 

In the modern world of advanced technology there is an increasing demand for high 

quality, reliable power.  While the utility industry is dedicated to providing undistorted 

and uninterrupted power to its customers, there will inevitably be lapses in the utilities’ 

ability to maintain these commitments.  This may be undesirable or unacceptable for 

certain commercial and industrial users.  Thus, there has been a steady increase in the 

demand for reliable electronic power processing equipment at increasingly high power 

levels.  The following sections describe some of the applications for high power Voltage 

Source Inverters (VSIs) in today’s world and beyond.  For the purposes of this thesis, it 

will be assumed that all high power inverters referred to herein will be three-phase 

inverters, composed of either three or four phase legs. 

Uninterruptible power supplies (UPSs) are not a new technology.  Static (solid 

state) UPSs were first developed in the 1960s [1] and have become a significant market 

to date.  Most UPSs produced today are low-power backup supplies for computers in the 

event of utility outages.  However, there are several applications for high power UPS 

systems.  For example, large computer network servers and telecommunications 

equipment may require uninterrupted power in the tens to hundreds of kilowatts range.  

In addition, semiconductor fabrication and other industrial processes require an extremely 

high level of power quality, because even short transients can disrupt the processes, 

resulting in loss of product.  In the past, high power UPSs were generally fed by diesel-

engine-driven rotary systems as a backup [1].  However, these systems have a finite 

response time that results from switching the utility power line to the backup source.  

This may be an unacceptable transient for a critical load.  In order to achieve a truly 

uninterrupted power source for critical loads, an inverter preferred system, as depicted in 

Figure 1.1, must be employed [2].  In such a system, a rectifier is used to charge a 

battery, which is in turn the source for an inverter that is constantly supplying AC power 

to the critical load.  In the case of an inverter preferred UPS system for semiconductor 



Robert Gannett  CHAPTER 1 INTRODUCTION 

 - 2 -

fabrication equipment, the inverter would be required to provide a large amount of power 

at a high level of quality during normal operation. 

 

 
Figure 1.1  Block diagram of inverter preferred UPS system 

Ground Power Units (GPUs) for aircraft are used in order to provide power to 

start engines and other critical loads while on the ground.  In the recent past, rotary 

motor-generators were used for GPUs; however, high power solid-state converters have 

largely taken over in this role due to their reduced maintenance requirements and higher 

reliability and efficiency [3].  Modern aircraft have an increasing number of customer 

amenities and other advanced electronic equipment that create distortion in the power 

system.  Thus, the demands on the GPU inverter control to provide clean power have 

increased significantly over the last decade. 

Pulsed loads, such as radar systems, often necessitate large energy storage devices 

to provide power during these short, but very high power, transients.  Inevitably this 

requires large, high performance voltage source converters to interface the energy storage 

elements to power distribution systems. 

High Voltage Direct Current (HVDC) transmission systems have become a 

popular method for interconnecting isolated AC systems, interconnecting AC systems at 

medium power levels, and connecting isolated loads (e.g. off-shore oil-rigs) [4].  
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Traditionally, line commutated converters have been used to convert between the AC and 

DC transmission systems.  This employs aging thyristor technology with generally poor 

output performance.  As a result, large passive filters are used to create acceptable output 

performance.  This is undesirable because of the extraordinary size of these filters and the 

additional losses that result due to their utilization.  The increasing power ratings of gate-

commutating devices, such as GTOs and IGBTs, has lead to their use in the voltage 

source inverters employed in the conversion between the AC and DC transmission 

systems.  Because of the gate-commutating action of these devices, much higher 

switching frequencies can be achieved, enabling the possibility for much cleaner output 

power.  

The use of renewable energy sources by the utility industry has lead to the need 

for high power solid-state converters.  Wind generators create variable voltage and 

variable frequency AC power and photovoltaic sources create DC power.  Thus, voltage 

source inverters can be used to interconnect these power sources to the utility grid.  In 

addition, it is widely envisioned that the power utility of the future will be made up of 

many smaller distributed generation plants, rather than a few large centralized generation 

plants [5].  If this vision becomes reality, then the demand for high power, high quality 

inverters will be greatly increased. 

In addition to their use in a distributed generation role, fuel cell stacks and 

microturbines are just beginning to find there way into the new local power generation 

market.  Power customers requiring an exceptional level of power quality and reliability, 

such as hospitals and internet service providers, are beginning to consider local power 

generation for their needs.  In such a power system, the entire power requirement is met 

by an on-site generation facility that may or may not be grid interconnected.  This puts 

demanding requirements on the large power processing equipment employed in the 

system. 

1.2 Power Quality Guidelines and Standards 

Unbalanced and distorted input voltages can cause malfunction of and even 

damage to electric equipment.  Harmonic voltages can cause repetitive overvoltage 
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conditions on capacitor banks for power factor correction.  Harmonic voltages will also 

cause harmonic currents to flow in magnetic devices (transformers, motors, etc.), 

resulting in additional losses and excessive heating.  In addition, harmonic currents in the 

audible frequency range can introduce interference in telephone lines through inductive 

coupling.  Harmonic currents may also cause malfunction of overcurrent relays, circuit 

breakers, and fuses due to the skin effect [6-10].  For the reasons listed above, there are 

established guidelines for the maximum amount of unbalance and harmonic distortion 

that should be present in power distribution systems.  The following sections present 

some of the guidelines and standards as would apply to high power inverters. 

1.2.1 Commercial Guidelines 

The American National Standards Institute (ANSI) and Institute of Electrical and 

Electronics Engineers (IEEE) have established guidelines for unbalanced and distorted 

voltages in the power systems for specific applications.  Based on these guidelines, a set 

of specifications for a high power four-leg inverter for fairly universal use, can be 

developed. 

The first issue to be addressed is that of unbalanced voltages.  Voltage unbalance 

is expressed as a percentage according to 

( )
100

3
% min,,max,, ⋅

++
−⋅

=
cba

cbacba
unbal VVV

VV
, (1.1) 

where max,, cbaV is the maximum RMS phase voltage, and min,, cbaV is the minimum RMS 

phase voltage.  An unbalanced three-phase voltage source applied to three-phase motors 

causes a negative sequence current to flow in the motor windings.  This circulating 

current increases the internal losses of the motor, heating it up.  If the motor is running at 

near rated load, then this could cause the motor to overheat and be severely damaged.  

Table 1.1 displays the effects of unbalanced phase voltages applied to class A and class B 

three-phase motors running at rated load.  In addition to motor damage, voltage 

unbalance in three phase systems can cause connected electronic equipment to 

malfunction. 



Robert Gannett  CHAPTER 1 INTRODUCTION 

 - 5 -

Table 1.1  Effect of Voltage Unbalance on Motors at Rated Load [7] 

Voltage Unbalance (%) 0 2 3.5 5
Negative Sequence Current (%) 0 15 27 38
Increase in Losses (%) 0 9 25 50
Class A Temperature Rise (ºC) 60 65 75 90
Class B Temperature Rise (ºC) 80 85 100 120  

Table 1.1 shows that even a small unbalance in voltage can cause significant 

heating of motors running at full load.  For this reason, NEMA MG1 [8] sets a voltage 

unbalance guideline of no more than 1% unbalance in order to prevent damage to 

sensitive loads.  In addition, it is suggested in IEEE 241 [7] that single-phase loads not be 

connected on the same circuit as loads that are sensitive to voltage unbalance. 

The increasing use of utility line-connected solid-state power converters has 

prompted growing concern over the harmonic distortion in power distribution systems.  

Voltage distortion percentage is defined according to 

100% 2
1

2

2

⋅

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=
�

∞

=

V

V
h

h

distortion , (1.2) 

where hV  is the amplitude of the hth harmonic voltage and 1V  is the amplitude of the 

fundamental voltage.  The harmonics present in the distribution system not only cause 

additional losses in a motor, but will also cause pulsating torques that could damage the 

process for which the motor is being used.  Control and communication systems may also 

experience interference due to the magnetic fields caused by harmonic currents flowing 

in the distribution conductors.  Thus, expensive and bulky shielding may be needed to 

guarantee proper operation of those systems.  For these reasons, certain limits should be 

placed on the acceptable amount of harmonic distortion present in distribution systems.  

Table 1.2 presents voltage distortion guidelines for medium and high voltage power 

systems, as established in IEEE 519 [9]. 
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Table 1.2  Voltage Distortion Guidelines for Power Systems [9] 

Power System Dedicated* Power General Power
Voltage Level System System

Medium Voltage
2.4 kV to 69 kV
High Voltage

115 kV and above
* A dedicated power system is one supplying only converters or
   loads that are not affected by voltage distortion

8% 5%

1.50% 1.50%

 

Based on the guidelines listed above and other considerations, a set of typical 

specifications for high power, three-phase UPS systems has been developed in IEEE 446 

[10].  The inverter output voltage specifications from that document are listed in Table 

1.3. 

Table 1.3  Typical Inverter Output Voltage Specifications for UPS System [10] 

Characteristic
1) ± 2% for balanced load
2) ± 3% for 20% unbalanced load
1) ± 5% for loss or return of AC input power
2) ± 8% for 50% load step
3) ± 10% for bypass or return from bypass

Transient Recovery Return to steady state in 100 ms
Harmonic Content 4% total, 3% for any single harmonic

1) 120º ± 1º for balanced load
2) 120º ± 3º for 20% unbalanced load

Voltage Regulation

Transient Voltage

Phase Displacement

Limit

 

The guidelines listed in Table 1.3 give an accurate picture of the level of power 

quality required of a high power, four-leg inverter for use in commercial or utility 

applications.  These specifications may be difficult to achieve depending on loading 

conditions, and the performance of the inverter will in large part be determined by the 

control strategies employed. 

1.2.2 Aircraft Standards 

Aircraft equipment faces the same problems as commercial equipment in the 

presence of voltage unbalance or distortion in the power system.  The military has set 

their own standards on power quality for aircraft applications in order to ensure reliable 
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operation of critical equipment, and likewise, the commercial aircraft industry has 

adopted the same standards.  MIL-STD-704 [11] describes the necessary aircraft power 

system characteristics.  Table 1.4 details the requirements for these systems, which are 

nominally 400 Hz, three-phase, four-wire, and 115 Vrms. 

Table 1.4  Military Standards for Aircraft Electrical Power Systems [11] 

Characteristic Limits
Steady State Voltage 108 to 118 Vrms 
Peak Transient Voltage 271.8 Vrms, max
Voltage Unbalance 3 Vrms, max
Voltage Phase Difference 116º to 124º
Voltage Distortion 5%
Steady State Frequency 393 Hz to 407 Hz  

Table 1.4 gives a maximum total voltage distortion, but does not give limits for 

individual harmonics.  Figure 1.2 shows a plot of the maximum voltage distortion for any 

given frequency. 

 

Figure 1.2  Maximum voltage distortion for military aircraft power systems [11] 
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1.3 High Power Inverter Challenges 

While providing reliable, high quality power in large amounts may be desirable 

for many applications, it certainly is not a trivial task.  This section will introduce some 

of the many difficulties that engineers face in designing a high-power voltage source 

inverter and its control system.  

1.3.1 Low Inverter Switching Frequencies 

In general, it is desirable to use as high a switching frequency as possible for 

voltage source inverters.  High switching frequencies enable smaller passive components 

to be used, and will usually lead to lower distortion in the output power waveforms.  

While high switching frequencies are advantageous, today’s device technology does not 

provide the means to achieve this goal.  For high power inverter applications, GTOs and 

IGBTs are generally used, which are limited in switching frequency to the kilohertz to 

tens of kilohertz range [12]. 

The low switching frequencies coupled with fundamental output frequencies in 

the tens of hertz to hundreds of hertz, means that there is usually two orders of magnitude 

or less difference between fundamental and switching frequency.  This provides 

interesting challenges to the control designer and makes it difficult, if not impossible, to 

have a high control bandwidth in the rotating dq reference frame.  The reason for this 

difficulty will be explained in more detail in section 1.3.3. 

1.3.2 Digital Delays 

In general, feedback control for high power inverters is accomplished through 

algorithms in digital processors.  There are several reasons for this.  First, control for high 

power inverters is usually performed in the rotating dq reference frame.  This requires 

coordinate transformations that would be extraordinarily difficult to accomplish in an 

analog fashion, but are fairly simple to perform in Digital Signal Processors (DSPs).  

Second, safety and protection functions are easily implemented in a digital control 



Robert Gannett  CHAPTER 1 INTRODUCTION 

 - 9 -

scheme.  Finally, communication with other power processing equipment or with user-

interfaced equipment is most easily achieved through digital controls. 

While digital control may enable many simplifications for control design, it does 

bring about the element of delay in the control loop.  DSPs used in control of power 

electronics circuits require a finite time delay for accomplishing the functions of 

sampling analog data, calculation, and updating digital and analog outputs. 

An ideal time delay can be represented as the frequency domain function, 

( ) sT
delay esH ⋅−= , (1.3) 

where T is the delay time.  This function has unity magnitude for all frequencies and a 

linearly increasing phase-lag with frequency.  A delay in the control loop has an obvious 

destabilizing effect on feedback systems.  Figure 1.3 shows the Bode diagrams of loop 

gain for an arbitrary second-order system with PID compensation before and after the 

addition of an ideal time delay in the control loop.  It is easily seen in Figure 1.3 that a 

relatively robust closed-loop system (here with phase margin of 30º) can become unstable 

due to the addition of a delay in the control loop. 

Because of the destabilizing effects of delay, it becomes very important to model 

the delay accurately when doing control design and analysis.  Figure 1.4 shows the 

location in the control loop where the delay is usually modeled.  The output sampling, 

subtraction from reference, and compensation is all performed within the DSP.  All of the 

delay associated with the sampling and calculation is generally lumped into one delay 

block at the interface between the DSP and the continuous system plant [13]. 
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Figure 1.3  Loop gain Bode diagrams before (-) and after (--) addition of control 

loop time delay 

 

Figure 1.4  Basic system model including ideal time delay 

 

While the delay associated with digital control may not be a constant for various 

reasons, it is important to put bounds on the length of the delay, so that the control can be 

designed around these limits.  While there may be several different strategies for digital 

control implementation, the simplest would be to sample output variables, calculate duty 
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cycles, and update the Pulse Width Modulation (PWM) registers all in one switching 

cycle.  This strategy leads to a delay of between one and two switching periods [14].  

Figure 1.5 shows time-domain waveforms depicting how this time delay occurs in a 

leading edge PWM scheme.  

At the beginning of the first switching period, the output variables are sampled 

and held for digital to analog (D/A) conversion.  During the first switching period, the 

compensation calculations are performed and the PWM registers are updated with new 

duty cycles.  This duty cycle is then held in the PWM register until the next update at the 

end of the second switching period.  So the duty cycle implemented at time t2 in Figure 

1.5, is the result of the output variables as measured at time t0.  The delay time will 

consequently be equal to one switching period (sample and calculation time) and the 

length of the duty cycle in the second switching period (duty cycle hold time).  The delay 

time will vary with the duty cycle, and the maximum delay time will be determined by 

maximum duty cycle (modulation index).  In an analog implementation (delay-free 

system) the error signal, and also the compensated duty cycle control output, would not 

experience this delay, because they would be continuously changing.  For the purposes of 

this thesis, the modeled digital delay will be equal to two switching periods as a worst-

case scenario.   

To demonstrate the difficulties imposed on control by the digital delay in the 

control loop, a brief example will be explored.  If an inverter is operating at a switching 

frequency of 10 kHz and operating with the calculation and PWM scheme described 

above, then the phase lag due to the delay will be 45º at 625 Hz and 90º at 1250 Hz.  This 

is the frequency range one might expect to find the output filter resonant frequency (for a 

60 Hz fundamental).  With such a significant phase lag at these frequencies, it would be 

very difficult (if not impossible) for a compensator to be designed with a bandwidth 

greater than the output filter resonant frequency.  Thus, the control loop delay may 

necessitate a low control bandwidth and may cause stability issues under light loading, as 

described in the section below. 
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Figure 1.5  Origins of digital delay time length  

1.3.3 No-load Stability Concerns 

Under light load or unloaded conditions, the output filter of a VSI is lightly 

damped (high Q factor) and will have significant peaking in the frequency domain.  This 

peaking will appear in the loop gain in the d- and q-channels at the resonant frequency 

and in the o-channel at half of the resonant frequency (the reasoning for this will be 

discussed in section 1.5).  In traditional compensator design for power electronics 

circuits, such as for the buck converter, the control bandwidth is generally greater than 

the resonant frequency of the output filter.  Thus, peaking at the resonant frequency is of 

no concern.  However, because of the difficulties described in sections 1.3.1 and 1.3.2, it 

is generally not possible to achieve a control bandwidth greater than the resonant 

frequency of the output filter in a high power inverter.  When this is the case, the peaking 

of the output filter at light load or no load can cause the loop gain to come back above 0 

dB after the intended control bandwidth.  If the phase has already rolled off to below –

180º, then the system will be unstable.  Figure 1.6 depicts an arbitrary second-order 

system with integral compensation under full and light loading conditions. Under full 
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load, the system appears to have very conservative stability margins (gain margin of 15 

dB and phase margin of 90º); however, under light loading conditions, the system would 

obviously be unstable. 

 

Figure 1.6  Loop gain Bode diagrams at full load (-) and light load (--) 

Because the peaking of the output filter can cause the converter to become 

unstable, measures must be taken to ensure appropriate stability margins under light load 

or unloaded conditions.  This places additional burdens on the control design.  

Techniques for addressing this stability issue are discussed in Chapter 2. 

1.3.4 Unbalanced and Distorting Loads 

Under unbalanced phase loading, negative sequence and zero sequence distortion 

occurs (see Appendix B for an explanation of symmetrical decomposition).  This creates 

unbalanced phase voltages and unequal phase shifting between phases.  Section 1.2 

described the concerns associated with applying unbalanced phase voltages to specific 

loads.  Thus, control strategies must be employed to ensure that phase regulation is 
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achieved within certain limits.  Chapter 3 will discuss methods to accomplish successful 

unbalanced load control. 

Non-linear loads, such as diode rectifiers, cause non-linear currents to flow in the 

phase conductors.  A non-linear current is described as any current that does not have a 

linear relationship with the voltage applied to the load.  These currents contain, and in 

some cases are dominated by, harmonics of the fundamental frequency.  If a VSI was an 

ideal voltage source, then providing harmonic currents would not be a concern.  

However, VSIs have a finite output impedance, and the harmonic currents flowing 

through this impedance will create harmonic distortion at the output of the VSI.  Section 

1.2 described the harmful effects of harmonic distortion in power systems.  Several active 

and passive techniques for attenuating harmonic distortion have been proposed and 

demonstrated in the past.  Chapter 4 will detail some old as well as some new techniques 

to reduce the THD of the inverter output under non-linear loading. 

1.4 400 Hz Systems 

Most high power inverter applications are either for 50/60 Hz applications 

(traditional utility frequencies) or large motor drives.  While variable frequency motor 

drives may require fundamental frequencies in excess of 60 Hz, motors are quite 

predictable loads.  Thus, inverter control strategy for this application is very different 

from an inverter in a power distribution role.  However, there are a small number of 

applications outside of motor drives for high power inverters with higher fundamental 

output frequencies. 

1.4.1 Applications 

400 Hz systems find use in applications where space and weight are at a premium.  

Because of a higher fundamental frequency than traditional line frequencies, passive 

components in a 400 Hz system can be much smaller.  For example, transformers will be 

smaller in a 400 Hz system, because the volt-second product (change in flux) will be 

smaller due to the shorter period than that for a 60 Hz system.  Smaller passive 

components enable the power systems to be lighter and take up less volume.  In addition, 
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a 400 Hz system will enable higher induction motor speeds than are possible in 60 Hz 

systems.  This is evidenced in equation (1.4), which gives the synchronous speed of an 

induction motor, 

( )
P

frpmSpeed ⋅= 120 , (1.4) 

where f  is the fundamental line frequency and P is the number of stator poles.  It is 

easily seen that the synchronous speed of the induction motor is directly proportional to 

the line frequency. 

For the reasons listed above, 400 Hz systems have long been the standard for 

aircraft power distribution systems [15].  400 Hz systems have also found application in 

power systems for large people movers, such as subway trains and other electric trains. 

1.4.2 Implications for Control Design 

While 400 Hz systems may be beneficial from the power system standpoint, it 

makes the already difficult task of inverter control even more challenging.  In a 400 Hz 

system, the ratio between the fundamental output frequency and the switching frequency 

is significantly decreased.  This makes the goal of achieving high power quality a more 

difficult task. 

Because of the higher fundamental output frequency, it would generally be 

desirable to increase the resonant frequency of the output filter in order to reduce the size 

of the passive components.  However, increasing the output filter resonant frequency 

makes the task of achieving a control bandwidth greater than the resonant frequency even 

more difficult to achieve with sufficient stability margins due to control loop delay. 

Finally, the higher fundamental frequency implies that the harmonic frequencies 

will also be higher.  This fact makes traditional compensation for these harmonics 

virtually impossible, because significant loop gain would be required at these 

frequencies.  Ensuring harmonic distortion within acceptable limits will thus require 

alternative passive or active means. 



Robert Gannett  CHAPTER 1 INTRODUCTION 

 - 16 -

As is seen in the paragraphs above, the difficulties with high power inverters are 

only magnified when the output fundamental frequency is increased to 400 Hz. 

Therefore, techniques must be developed to guarantee stability and acceptable 

performance of the inverter. 

1.5 Voltage Source Inverter Under Study 

In order to demonstrate the control techniques described in this thesis, it is useful 

to show simulation results based on a specific example.  For this purpose, a single 

inverter model is developed and used throughout this document.  The switching and 

average models described below are based on a three-phase, four-leg inverter rated at 90 

kVA with a 115 Vrms, 400 Hz output. 

1.5.1 Inverter Switching Model 

The switching model of the inverter is developed in order to be as close to a truth 

model as possible.  This model should give accurate time domain waveforms for the 

inverter under various loading conditions and transients.  Figure 1.7 shows a schematic of 

the inverter switching model, and Table 1.5 gives the parameters for the inverter model. 

The fourth leg enables control of the neutral current.  In three-phase, three-leg 

inverters, if the load requires a neutral connection, this point is usually connected to the 

neutral point of the filter capacitors or to the midpoint of the DC link.  When this is the 

case, unbalanced loads or single phase non-linear loads will cause neutral currents to flow 

and zero sequence distortion.  When a fourth leg is employed, the neutral point is 

controlled, and zero sequence distortion can be reduced through control strategies. 
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Figure 1.7  Schematic of the switching model of a four-leg inverter 

Table 1.5  Inverter Switching Model Parameters 

Value
Vin 600 - 700 VDC

Vout,l-n 115 Vrms, 400 Hz
Pout,total 90 kVA
Lfilter 42.8 µH
Ln 42.8 µH
Cfilter 250 µF
fs 15.6 kHz
trise 200 ns
tfall 150 ns
Ron 1 mΩ

Parameter

Input/Output

Filter Components

Switch Characteristics

 

1.5.2 Inverter Average Model 

While the switching model is a good model of the physical inverter, it is non-

linear because of the switches.  For this reason, a representative linear model must be 

developed so that the frequency domain characteristics of the system can be studied.  

Also, simulation times for an average model are greatly reduced over those for a 

switching model, because the simulation time step can be increased (switching frequency 

components are not present in the average model).  These two reasons make the average 

model ideal for control design and development. 
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Modeling and control of three-phase, three-leg inverters is generally done in the 

dq rotating reference frame, so that DC operating points can be studied.  A dqo rotating 

reference frame has been developed for modeling three-phase, four-leg inverters [16].  

Appendix A describes Park’s Transformation and the dqo coordinate system.  Figure 1.8 

depicts the average model of a three-phase, four-leg inverter in dqo coordinates. 

The passive components in the average model above are the same values as 

illustrated in Table 1.5.  Notice that by modeling the inverter in dqo coordinates, it is 

decomposed into three channels.  Except for the cross coupling terms highlighted in 

Figure 1.8, the system would be equivalent to three independent single input, single 

output (SISO) systems.  However, the coupling between the d- and q-channels may be 

significant in some situations, and thus cannot be ignored.  Section 2.3 will discuss the 

issues associated with cross-channel coupling in more detail. 

The average model displayed in Figure 1.8 was utilized to develop and simulate 

the control techniques described in this thesis.  As such, all simulation results depicted in 

this thesis are the product of average model simulations.  The simulation packages used 

to obtain the results in thesis were Matlab and Saber. 
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Figure 1.8  Four-leg inverter average model in dqo coordinates 

1.6 Objectives 

In light of the numerous applications for high power, high performance inverters 

in the modern world, and the difficulties involved in their design, it is the objective of this 

thesis to explore several advanced control topics for increased inverter performance 

under challenging loading conditions.  Presently, there is a significant lack of applied 

inverter control techniques to meet the high level of power quality demanded by today’s 

advanced technology.  In order to produce acceptable power waveforms from high power 

inverters, extra hardware is usually employed.  However, additional power circuitry is 

bulky, expensive, and lossy.  Therefore, it is the goal of this thesis to present some 

advanced inverter control strategies to achieve superior performance without the 

disadvantages of excessive hardware.   
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Chapter 2 will discuss stability concerns at light load in more detail and will 

present control techniques to ensure stable operation at light load.  Modeling of three-

phase inverters and the issue of cross-channel coupling in dqo coordinates will also be 

reviewed and reexamined in Chapter 2.  Traditional and new advanced control strategies 

to compensate for unbalanced loading will be introduced and compared in chapter 3.  A 

research topic of particular interest over the last several years has been harmonic control 

in inverters to compensate for the distorting effect of non-linear loading.  Chapter 4 will 

present the concept of harmonic control, its extension to four-leg inverters, and a 

comparison to traditional harmonic reduction techniques.  Finally, chapter 5 will close 

with some concluding thoughts and topics for future research.   
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2 NO-LOAD CONDITIONS 

All inverters, regardless of their application, may face light load or no-load 

conditions.  This situation can occur in one of two manners.  First, the power required 

from the load of the inverter may drop near or to zero.  Second, under an output fault 

condition, such as an open breaker or fuse, the inverter will experience unloaded 

conditions.  This second situation can occur for any inverter in any application, because 

safety standards require protective circuitry between power sources and loads.  

Regardless of the cause of the light or unloaded conditions, proper operation of the 

inverter must be maintained. 

2.1 Stability Issues 

As was introduced in Section 1.3.3, the issue of stability can arise under light 

loading.  This section will introduce the origins of the stability problem. 

2.1.1 Open Loop Plant Transfer Functions 

The open loop transfer functions developed below will facilitate the discussions 

on stability in this chapter. 

2.1.1.1 Open Loop Control to Output Transfer Function 

First, taking the cross-channel coupling terms to be insignificant, each of the 

channels in the average model of the inverter degenerate into simple SISO buck converter 

average models.  The state equations for each channel would then be,  
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where oqdD ,,  is the individual dqo channel’s duty cycle, loadR  is the balanced phase load 

resistance, and C and L are the channel’s passive components as displayed in Figure 1.8.  

From the state equations, the plant control to output transfer function is 

( )
( ) 21 sCLs
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V
sH
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DC
v
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�

�
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= . (2.2) 

Equation (2.2) can be placed in the traditional second-order low pass filter form, 
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with the following definitions, 

DCv VH =0 , (2.4) 

CLo ⋅
= 1ω , (2.5) 

L
CRQ load ⋅= . (2.6) 

It is easy to see from these definitions that under no-load conditions ( )∞=loadR , 

the output filter is undamped and the Q factor will be infinite.  While this may be the case 

for an ideal output filter, this is not representative of the actual physical system.  By 

adding parasitic resistances into the output filter model, as seen in Figure 2.1, the output 

filter will be lightly damped by its own parasitics at no-load.  LR  and CR  were chosen to 

be Ωm10  for this study.  Because of the dqo coordinate transformation, LR  in the o-

channel will be two times the filter inductor ESR. 
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Figure 2.1  DQO channel average model including parasitic resistances 

From the average model above, the following state space equations are developed, 
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From this set of state space equations, the following plant control to output transfer 

function can be derived, 
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with the following definitions, 

��
�

�
��
�

�

+
⋅=

Lload

load
DCv RR

R
VH 0 , (2.9) 



Robert Gannett  CHAPTER 2 NO-LOAD CONDITIONS 

 - 24 - 
 

C
z RC ⋅

= 1ω , (2.10) 

Cload
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=ω , (2.11) 

( ) ( )
( )CLCloadLload
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The definitions above reveal two things about the control to output transfer 

function when parasitic resistances are included.  First, the addition of the capacitor ESR 

results in a high frequency zero in equation (2.8).  Second, the combination of the 

capacitor and inductor ESRs adds damping to the filter, even at no-load.  Figure 2.2 

displays the dqo channel control to output transfer functions for the VSI under study at 

light load. 

 

Figure 2.2  Bode plots of the plant control to output transfer functions for the d- and 

q-channels (-) and the o-channel (--) 
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The resonant frequency for the o-channel is half of that for the d- and q-channels.  

This is because the equivalent inductance for the o-channel is four times of that for the d- 

and q-channels.  Thus, separate control designs will be required for the d- and q-channels 

and the o-channel. 

2.1.1.2 Open Loop Control to Inductor Current Transfer Function 

Using the state space equations in (2.7), including filter parasitic resistances, the 

following plant control to inductor current transfer function can be developed, 
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with the following definitions, 
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These definitions reveal that the Q factor and the resonant frequency for the plant 

control to inductor current transfer function is the same as for the plant control to output 

transfer function.  However, the plant control to inductor current transfer function has a 

DC gain and a zero that vary greatly as the load resistance varies.  The dqo channel 
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control to inductor current transfer functions for the VSI under study are shown in Figure 

2.3. 

 

Figure 2.3  Bode plots of the control to inductor current transfer functions for the d- 

and q-channels (-) and the o-channel (--) 

2.1.1.3 Transfer Functions with Cross-Channel Coupling 

The plant transfer functions above were developed assuming that the cross-channel 

coupling terms were insignificant.  This allows each of the dqo channels to be reduced to 

a second-order SISO system.  However, the cross-coupling terms are often not 

insignificant, and must be considered.  By adding the cross-coupling terms, the d- and q-

channels merge to become a fourth-order two-input, two-output system.  Essentially, this 

will result in the plant transfer functions, described in (2.8) and (2.13), having an 

additional pair of poles and an additional pair of zeros.  Figures 2.4 and 2.5 show the 

result of adding the cross coupling terms to the d- and q-channel control to the open loop 

transfer functions.  The o-channel transfer functions are unaffected, because the o-
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channel is completely decoupled from the d- and q-channels.  Cross-channel coupling 

issues will be discussed in more detail in Section 2.3. 

 

Figure 2.4  Bode plots of the control to output transfer functions with coupling 

terms for the d- and q-channels (-) and o-channel (--) 

 

Figure 2.5  Bode plots of the control to inductor current transfer functions with 

coupling terms for the d- and q-channels (-) and o-channel (--) 
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2.1.2 Analysis of Plant Transfer Functions 

If traditional voltage loop control is to be employed, then the plant characteristics, 

as depicted in Figure 2.4, must be compensated for.  However, the output filter is very 

lightly damped at no-load, and so the plant poles have a very large imaginary component.  

Thus, the phase roll-off due to the filter poles is very steep, with the phase dropping close 

to –180º near to the resonant frequency.  This characteristic would make it very difficult 

to extend the control bandwidth beyond the resonant frequency with traditional PID 

compensation, especially when the delay due to digital implementation is considered.   

It would be possible to directly cancel the poles at no-load by using a set of 

imaginary zeros in the compensator.  However, under full inverter load, the filter poles 

are almost completely real and will not be directly canceled by the imaginary zeros in the 

compensator.  Thus, some type of adaptive control would be needed in order to cancel the 

filter poles under all loading conditions.  However, the topic of adaptive control is 

beyond the scope of this thesis and would be unnecessary if other techniques could 

achieve similar results. 

2.2 No-Load Control Design 

This section will present the traditional approach to ensure stable operation under 

unloaded inverter output, and its shortcomings.  A technique to ensure stable inverter 

operation at light load or no-load while extending the control bandwidth over 

conventional voltage-loop control will also be discussed. 

2.2.1 Conventional Voltage Loop Control 

In traditional VSI control, voltage compensation is performed in the dqo reference 

frame rotating at the fundamental frequency to ensure good regulation of the fundamental 

component of the output.  Often integral, PI, or PID compensation is employed to achieve 

zero steady state error at the fundamental frequency.  Because of the difficulties 

associated with high power inverter control design, as described in Section 1.3, it is 

generally not possible to attain a voltage loop control bandwidth greater than the resonant 
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frequency under light loading conditions.  Thus, conventional thinking requires the 

bandwidth of the voltage loop to be sufficiently low such that the peaking of the filter 

will not cross above 0 dB under light load or no-load. 

2.2.1.1 Conventional Voltage Loop Design Example 

In order to design a voltage loop that will be stable at no-load, the Q factor of the 

output filter at no-load must be determined.  Equation (2.17) gives a good estimate of the 

Q factor when the ESRs of the inductor and capacitor are measured or estimated well.  

The true peaking of the physical output filter may be slightly different than the estimated 

value due to additional unmodeled parasitics.  This is the justification for designing 

sufficient gain margin into the system. 

At no-load, ∞→loadR , and equation (2.17) can be simplified to, 

C
L

RR
Q

CL

⋅
+

= 1 . (2.18) 

Given equation (2.18), the Q factors for each of the dqo channels of the inverter under 

study at no-load can be calculated.  The Q factor for the d- and q-channels is estimated to 

be 20.69 or 26.3 dB.  It is calculated to be 27.58 or 28.8 dB for the o-channel. 

If integral control is used in the voltage compensation, then the loop gain will roll 

off at 20 dB per decade before the resonant frequency.  The loop gain is defined here as 

the compensator times the control to output transfer function times the gain of the return 

path, and is used to determine the closed-loop stability of the controlled system.  

Designing a conservative gain margin of 12 dB, combined with the 26 to 28 dB of 

peaking at the resonant frequency, will require the loop gain crossover frequency to be 2 

decades below the resonant frequency.  For the case of the inverter under study, the 

resonant frequency in the d- and q- channels is 1.54 kHz, and thus the loop gain crossover 

frequency must be around 15 Hz.  The o-channel resonant frequency is half of the d- and 

q- channels, and subsequently the loop gain crossover frequency for the o-channel must 

also be half.  Using the designed loop gain crossover frequencies above, Figure 2.6 
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displays the loop gains at no-load, and Figure 2.7 shows the resulting closed loop system 

model for each channel.  Table 2.1 depicts the compensator gains as implemented for 

each channel. 

 

Figure 2.6  Bode plots of the loop gain containing integral voltage loop 

compensation for the d- and q-channels (-) and the o-channel (--) 

 

Figure 2.7  Closed loop inverter model containing integral compensation for each 

channel 
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Table 2.1  Integral Compensator Design Parameters 

Parameter Value
Kid 0.16
Kiq 0.16
Kio 0.08  

2.2.1.2 Conventional Approach Analysis 

The conventional voltage loop control design successfully achieves a robust 

design, with conservative gain margins of approximately 12 dB and phase margins of 

approximately 90º at no-load.  This control will achieve zero steady state error for the 

fundamental output waveforms, because the compensator integrates the error signal.  

However, this design also results in the extremely low control bandwidths of 15 Hz and 7 

Hz for the dq-channels and the o-channel, respectively.  This low control bandwidth will 

result in slow transient responses to load changes and poor performance under 

unbalanced and distorting loads. 

While this conventional control strategy may provide acceptable performance for 

certain applications, it certainly produces poor results under the types of loading 

conditions typical for many high power inverter applications.  For most applications, it 

would be beneficial to realize higher control bandwidths. 

2.2.2 Inner Current Loop Control 

Inner current control loops are often used in DC/DC converters in order to 

achieve several improvements in control performance [17].  By designing an inner 

current loop, voltage loop design is simplified and better transient response to load 

change can be accomplished [18].  Because three-phase VSIs are often modeled as buck 

converters in the dqo coordinate system, similar control performance improvements 

should be possible in three- and four-leg inverters. 

2.2.2.1 Inner Control Loop Concept 

Figure 2.8 depicts a closed loop system with an inner (minor) and outer (major) 

loop.  The minor loop can be viewed as a forward path transfer function with its own 
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independent poles that can be adjusted separately through the minor loop gain [19].  This 

may enable performance gains for the entire closed loop system. 

 

Figure 2.8  Nested Control Loops 

From Figure 2.8, the closed loop transfer functions and loop gains of the two 

loops can be developed.  The minor loop gain is given by,  

( ) ( ) ( )sHGsHsG 11=⋅ , (2.19) 

and the closed minor loop reference to output transfer function is, 

( ) ( )
( )sHG

sHGsT
11

11
1 1+

= . (2.20) 

The closed minor loop reference to output transfer function now becomes a forward path 

transfer function in the major loop.  Thus, the major loop gain is  

( ) ( ) ( )
( )sHG

sHHGGsHsG
11

2112

1+
=⋅ , (2.21) 

and the closed major loop reference to output transfer function becomes, 

( ) ( )
( )

( )
( ) ( )sHHGGsHG

sHHGG
sR
sYsT

211211

2112
2 1 ++

== . (2.22) 
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The equations developed above will enable an inner current loop control strategy 

to be designed, and its benefits explored. 

2.2.2.2 Inner Control Loop Applied to Inverters 

In order to make use of an inner control loop, the inverter model must be 

reconfigured to be of the form shown in Figure 2.8.  Figure 2.9 depicts the new system 

model for each channel, with ( )sH i  representing the plant control to inductor current 

transfer function, and ( )sH v  representing the plant control to output transfer function. 

 

Figure 2.9  System model including inner and outer control loops 

Using this model and equation (2.20), the closed inner current loop reference to 

output transfer function becomes, 

( ) ( )
( )sHG

sHGsT
ikik

ikik

+
=

11 , (2.23) 

and the outer voltage loop gain that results is, 

( ) ( ) ( )
( )sHG
sHGGsHsG

ikik

vkikvk

+
=⋅

1
. (2.24) 
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If ( )sGvk  is initially taken to be unity, it is clear to see from equation (2.24) that 

the poles of the voltage loop gain will be the zeros of ( )sHG ikik+1 .  This results because 

the poles of ( )sHik  are exactly the same as the poles of ( )sH vk  (see equations (2.8) and 

(2.13) for validation of this comment).  Thus, through the choice of ( )sGik , the zeros of 

( )sHG ikik+1  can be designed such that the peaking in the voltage loop gain will be 

eliminated.  This possibility is best demonstrated through an expansion of ( )sHG ikik+1 .  

Assuming ( )sGik  to be the simple proportional gain iG , 

( )
( )

2

2

0
0
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1
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. (2.25) 

Using equation (2.25), bounds can be placed on iG , such that the zeros of 

( )sHG ikik+1  will not introduce peaking.  First, under light load or no-load, the 0ii HG ⋅  

term will be insignificant compared to 1 and can be ignored in the 0s  term in the 

numerator, because loadR  is very large (see equation (2.14) for justification).  Thus, the 

numerator of (2.25) is of the standard second-order form.  In this form, the Q factor of the 

second order equation must be less than or equal to 
2

1  in order to prevent peaking.  

This constraint is defined as, 

oz

ii

o

HG
Q ωωω

21 0 ≥��
�

�
��
�

� ⋅
+

⋅
. (2.26) 

Using the definitions identified in Section 2.1.1.2, this inequality can be redefined as, 

( ) ( ) ( )
( )LloadDC

CLCloadLloadLloadCload
i RRVC

RRRRRRCLRRRCLRCL
G

+⋅⋅
⋅+⋅+⋅⋅−−+⋅⋅⋅+⋅⋅⋅

≥
2

. (2.27) 
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At no-load, ∞→loadR , and inequality (2.27) reduces to,  

DC

CL

i V

RRC
L

G
−−⋅

≥
2

. (2.28) 

Inequality (2.28) sets a lower bound for the value of iG  in order to prevent 

peaking in the voltage loop gain.  If a value of iG  greater than the critical value shown in 

(2.28) is chosen, then the Q factor (left side of (2.26)) of the pair of zeros in ( )sHG ikik+1  

will decrease.  At a Q factor of 0.5 the zeros become purely real, and if iG  is increased 

further, then the zeros remain purely real and split along the real axis.  There will also be 

a maximum bound on the value of iG  determined by the phase margin requirements of 

the inner loop.  Even if sufficient phase margin is not achievable with the critical value 

shown in (2.28), then a value for iG  smaller than this will still reduce the imaginary 

component of the plant poles in the voltage loop gain, which will consequently reduce the 

peaking.  Now that the peaking in the voltage loop gain can be reduced or eliminated, the 

voltage compensation transfer function, ( )sGvk , can be chosen such that significant gains 

in the voltage loop control bandwidth are achieved while maintaining sufficient stability 

margins. 

2.2.2.3 Inner Current Loop Control Design 

Making use of the previous section, an inner current loop can be designed for the 

inverter under study in order to extend the voltage control loop bandwidth under 

unloaded conditions.  Using equation (2.28), for no-load conditions, the minimum value 

of iG  for the d- and q-channels is 0.00092, and is 0.00186 for the o-channel. 

Using these minimum values for iG , Figure 2.10 displays the inner current loop 

gains for the channels and Figure 2.11 shows the resulting closed inner current loop 

reference to output transfer function.  This resulting transfer function can now be thougt 

of as the voltage loop plant.  The derivations above, in Section 2.2.2.2, neglect the cross 

coupling terms in the d- and q-channels; however, the technique still results in significant 
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reduction of the peaking in the voltage loop, as shown in Figure 2.11.  Comparing these 

results to the plant control to output transfer functions in Figure 2.4, the benefits of the 

inner current loop are easily grasped. 

 
Figure 2.10  Inner current loop gain Bode diagrams for the d- and q-channels (-) 

and the o-channel (--) 

 

Figure 2.11  Bode diagrams of the closed inner current loop reference to output 

transfer function for the d- and q-channels (-) and the o-channel (--),  
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The previous plots were shown in order to prove the inner current loop concept, 

but the modeled delay was ignored for these results.  When the modeled delay is set to 

the realistic value of two switching periods, then the ensuing phase roll off causes the 

inner closed loop to become unstable.  Consequently, some phase lead is required near 

the crossover frequencies in order to ensure proper stability margins.  Traditionally, this 

would be accomplished by placing a zero(s) near the crossover frequency.  This may 

achieve the desired results, but a more efficacious strategy is to use complex zeros.  

Complex zeros result in downward peaking (notching) and sharp phase lead at the 

resonant frequency in the frequency domain.  In order to demonstrate these 

characteristics, figure 2.12 shows the transfer function for an arbitrarily chosen set of 

complex zeros at 1000 rad/sec, with a Q factor of 2, and a set of real poles at 2000 

rad/sec.  The poles are required in order to make the transfer function proper (the number 

of poles greater than or equal to the number zeros).  The characteristics described above 

can be utilized to either increase the phase margin at the crossover frequency, or to 

increase the gain margin after the crossover frequency, or a combination of both.  It is up 

to the control designer to choose the location of the poles and zeros in order to achieve 

the appropriate stability margins. 

 

Figure 2.12  Transfer function utilizing complex zeros 
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Utilizing the characteristics of complex zeros, the inner current loop can be 

stabilized, and its benefits still reaped.  Figure 2.13 displays the new inner current loop 

gains, including the modeled digital delay and making use of complex zeros.  The chosen 

current loop compensator transfer functions are displayed in Table 2.2.  Comparing these 

results to the case without the modeled delay (Figure 2.10), it is clear to see that some 

gain is lost in order to stabilize the loop.  As a result, the peaking of the voltage loop 

poles will not be completely eliminated, but will still be significantly reduced. 

 

Figure 2.13  Inner current loop gain Bode diagrams for the d- and q-channels (-) 

and the o-channel (--) with modeled delay and complex zero compensation 

Closing this inner current loop significantly decreases the voltage loop peaking, 

even under unloaded conditions.  With this benefit, a simple integral controller can be 

designed to achieve higher bandwidths than were possible without closing the inner 

current loop.  Figure 2.14 shows the closed loop system for each channel, and Table 2.2 

gives the compensator parameters as simulated for the inverter under study.  Figure 2.15 

displays the resulting outer voltage loop gains (integral compensator times closed inner 

current loop reference to output transfer function times unity return path gain).  The 
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current loop compensator gains have been increased slightly in order to compensate for 

the decreased gain due to the complex zeros. 

 

Figure 2.14  Closed loop inverter model with inner and outer control loops 

 

Table 2.2  Inner and Outer Loop Compensator Design Parameters 

Parameter Value
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Figure 2.15  Voltage loop gain Bode plots for the d- and q-channels (-) and the o-

channel (--) 

2.2.2.4 Inner Current Loop Analysis 

Exploitation of an inner current control loop enables an extremely robust voltage 

loop to be designed with an extended control bandwidth.  The stability margins and 

control bandwidths for each of the channels are summarized in Table 2.3. 

Table 2.3  Current and Voltage Loop Characteristics 

D- and Q-Channels O-Channel
Phase Margin 52º 52º
Gain Margin 6 dB 10 dB
Phase Margin 70º 80º
Gain Margin 13 dB 15 dB
Control Bandwidth 260 Hz 110 Hz

Current Loop

Voltage Loop
 

The control bandwidths for this control technique have been improved by over an 

order of magnitude with respect to the traditional approach as described in Section 2.2.1.  

The increased bandwidth is not at the expense of decreased voltage loop stability 
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margins.  These gains have been achieved while maintaining simple integral voltage loop 

control.  Further gains in control bandwidth may be achievable with the implementation 

of PID controllers, increasing the transient performance of the VSI. 

It is important to note that all practical compensators must roll-off at high 

frequencies, and that this low pass filtering must occur below the switching frequency in 

all switching converter feedback control systems.  In addition, digital systems require 

anti-aliasing filters to ensure proper performance of the control system.  Anti-aliasing can 

be accomplished through a first-order low pass filter with a cutoff frequency below the 

digital sampling frequency.  Often a single compensator pole near the converter 

switching frequency is utilized to perform both functions.  Regardless, the frequency of 

this compensator pole with respect to the control crossover frequency will lead to 

additional phase lag at the crossover frequency, and likewise, a reduction in the phase 

margin. 

It is interesting to note that the stability margins are not as great, and the peaking 

is more pronounced, in the d- and q-channels as compared to the o-channel.  This is due 

to the increased phase roll-off from the modeled delay at the frequencies of interest for 

the d- and q-channels. 

Assuming current sensors would already be in place for overcurrent monitoring, 

adding the inner current loop would require no significant additional hardware for 

implementation.  The inner loop would, however, involve additional processing time.  

But considering the present-day processing speed of DSPs, it would likely be an 

insignificant amount of time compared to the switching period. 

2.2.3 No-Load Control Summary 

The conventional approach to ensuring stability under unloaded conditions is to 

simply decrease the voltage loop gain crossover frequency until sufficient stability 

margins are achieved.  While this approach can accomplish a very robust design, it will 

have an extremely low control bandwidth, which will limit transient performance of the 

inverter. 
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Closing an inner current loop is a traditional technique in DC/DC converters to 

improve transient performance, and a similar approach has been presented here to attain 

similar benefits for high power inverters.  By introducing a current loop, the peaking of 

the voltage loop poles can be reduced or eliminated.  This enables significant 

improvement of the closed loop bandwidth of the system, as evidenced above. 

The limiting factor in the voltage loop design using the traditional approach 

(Section 2.2.1) is the peaking of the output filter poles.  By closing an inner current loop, 

this factor can be virtually eliminated, and the limiting factor becomes the phase roll-off 

of the control delay.  This is an uncontrollable aspect of implementing the control 

digitally, and thus it pushes the boundaries of this implementation. 

While the multiple loop control strategy provides the possibility of extending the 

control bandwidth, it may not be increased enough to significantly attenuate harmonics of 

the fundamental output frequency.  This becomes especially true for high power, high 

fundamental frequency inverters, where the ratio of fundamental frequency to switching 

frequency is small.  Consequently, the technique of a closed inner loop may improve 

dynamic response to load changes, but other techniques must be applied in order to 

manage the distortion due to unbalanced and non-linear loads.  Chapters 3 and 4 will 

present such techniques. 

2.3 Cross-Channel Coupling 

It would be desirable if the transformation from abc coordinates to dqo 

coordinates would result in an average three-phase, four-leg inverter model with three 

independent SISO channels.  However, the resulting model has some cross-coupling 

between the states in the d- and q-channels.  This section will explore the benefits and 

possibility of decoupling the d- and q-channels. 
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2.3.1 Cross-Coupling Transfer Functions 

Because the coupling between the d- and q-channels may be significant, the 

channels must be viewed as a Multiple Input, Multiple Output (MIMO) system.  The state 

space equations for this system take the form, 

[ ] [ ] [ ]
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T
qd
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qd

T
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In the form above, the dq-channel MIMO system will have the four transfer 

functions, ,~
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channels were completely decoupled.  The cross-coupling transfer functions become 

most significant under lightly loaded or unloaded conditions.  Figure 2.15 compares the 

d-channel control to output transfer function to the cross-coupling transfer function 
q

d

d
v
~
~

 at 

no-load.  Because of the symmetry between the d- and q-channels, the results will be the 

same for the q-channel, except that the cross-coupling transfer function will be 180º out 

of phase due to the change in signs. 

 

Figure 2.16  Open loop d-channel control to output (-) and cross-coupling (--) 

transfer functions 

It is clear that the cross-coupling is significant around the resonant frequency at 

light load.  As a result, the control to output transfer function has two sets of complex 

poles and one set of complex zeros near the resonant frequency of the output filter.  This 

causes the double peaking present in the plot. 

2.3.2 Advantages of Decoupling 

Usually, three-phase inverter control is approached with independent 

compensators for each channel.  This implies that the cross-coupling is assumed to be 
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insignificant. However, the cross-coupling may not be negligible under lightly loaded or 

unloaded conditions.  As seen above, this causes the open loop control to output transfer 

functions to be fourth-order, possibly making compensation more difficult.  If the 

coupling could be made insignificant, then the d- and q-channels would degenerate to 

independent second-order SISO systems.  Figure 2.17 compares the control to output 

transfer functions with and without the coupling between the channels at no-load.  From 

this plot, it is clear that compensation could be simplified for the d- and q-channels if the 

voltage control bandwidth is near or above the resonant frequency. 

 

Figure 2.17  Open loop d-channel control to output transfer function with (-) and 

without (--) the cross-channel coupling terms 

2.3.3 Decoupling Strategies 

Because of the implications for control design, it would be beneficial if a simple 

method for decoupling the d- and q-channels could be implemented.  The following 

sections investigate the traditional technique for decoupling and several proposed 

approaches. 
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2.3.3.1 Traditional Approach 

The cross-coupling terms can be viewed as uncontrollable inputs into each of the 

channels.  Taking this approach, the state space equations for the d-channel model can be 

written as in equation (2.33).  The state space equations for the q-channel model are the 

same, except that the sign of the cross-coupling terms is reversed. 
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Viewing the state space equations in (2.33), it is evident that feedforward terms 

could be added to the control input dD  in order to cancel out the LqI  cross-coupling term.  

This is demonstrated graphically in the model depicted in Figure 2.18. 

 

Figure 2.18  D- and q-channel models including the decoupling terms 

A simple calculation yields the decoupling term, 
DC

Lq

V
IL ⋅⋅

−
ω

, that can be added 

to the control input dD  in order to cancel the cross-coupling due to LqI .  The q-channel 

decoupling term will simply have the sign reversed. 



Robert Gannett  CHAPTER 2 NO-LOAD CONDITIONS 

 - 47 - 
 

Adding in these decoupling terms has little effect on the coupling between the d- 

and q-channels.  Figure 2.19 depicts the d-channel control to output transfer function and 

the cross-coupling transfer function, 
q

d

d
v
~
~

, after the LqI  decoupling term is added.  The 

cross-coupling transfer function is clearly still significant near the resonant frequency. 

 

Figure 2.19  D-channel control to output (-) and cross-coupling (--) transfer 

functions with decoupling terms added 

The reason that this traditional technique of decoupling lacks effectiveness is in 

the origins of the LI  coupling terms.  These terms represent the fundamental voltage drop 

across the filter inductors from the stationary coordinate system.  In general, the filter 

inductor value would be designed such that its impedance at the fundamental frequency 

would be very low, because it is in the path of power flow.  Consequently, the 

fundamental voltage drop should be small, and thus this coupling term also very small.  

Ultimately, this technique fails because it does not decouple the CV  terms, and, as a 

result, the d- and q-channels remain fourth order. 

The results given in Figure 2.19 are without the presence of the modeled DSP 

delay.  Near the resonant frequency, where the coupling terms are most significant, the 
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delay phase roll-off causes the decoupling terms to no longer directly cancel the cross-

channel coupling terms, decreasing the effectiveness of the decoupling.  In a true 

feedforward path, where the variables that are fed forward are independent of the 

controlled system, predicting the future values of the feedforward terms could 

compensate for the phase lag.  However, in the case of the feedforward decoupling terms 

discussed above, the feedforward variables (inductor currents) are in fact state variables.  

Consequently, the decoupling strategy discussed above forms a feedback loop, and 

system stability can be impacted.  In fact, when the delay is included in the inverter under 

study, a set of right half plane (RHP) poles appears in the transfer functions, causing the 

system to become unstable.  Besides the ineffectiveness of the traditional feedforward 

decoupling strategy in a delay-free environment, it proves unstable in the practical 

implementation for the inverter under study, because it actually forms a feedback loop. 

2.3.3.2 L-C Adjustment 

The results from the previous section show that the cross-coupling due to the 

voltage drop across the filter inductor comprises only a small portion of the cross-

coupling transfer functions.  Thus, the majority of the cross-coupling is the result of the 

other term, that due to the filter capacitor fundamental current.  This term appears in the 

d- and q-channel average models as a dependent current source, and is directly 

proportional to the filter capacitance value.  Therefore, decreasing the capacitance could 

decrease the influence of this term on the cross-coupling transfer function.  Figure 2.20 

shows the result of lowering the filter capacitance, while continuing to add in the 

decoupling terms for the voltage drop across the filter inductor. 

In the figure below, the cross-coupling transfer function is less than half (6 dB) of 

the control to output transfer function over all frequencies.  This is a significant 

improvement over the original cross-coupling transfer function (Figure 2.16); however, 

for the inverter under study this requires the filter capacitance to be decreased by four 

orders of magnitude.  Consequently, the filter inductance would be increased be four 

orders of magnitude to maintain the same filter cutoff frequency.  This is obviously not a 

viable solution for this case.  In general, this technique would not be viable for high 
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power inverters, because the filter inductance is usually kept relatively small, due to its 

location in the path of the power flow. 

 

Figure 2.20  Open loop d-channel control to output (-) and cross-coupling (--) 

transfer functions with L-C adjustment 

2.3.3.3 Capacitor Current Decoupling 

From the state equations presented in (2.33), it is clear that terms can be added to 

the plant inputs that will directly compensate for the fundamental voltage drop across the 

filter inductors ( LI  coupling terms), as is done in traditional decoupling.  Not as obvious 

is the possibility of adding terms to the plant inputs in order to compensate for the 

fundamental current in the filter capacitors ( CV  coupling terms).  Calculating the 

decoupling terms to be added to the d-channel duty cycle yields, 
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The decoupling terms for the q-channel will be precisely the same, only with the signs 

reversed. 
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The decoupling terms displayed in (2.34) contain the derivative of the q-channel 

capacitor voltage.  The derivative is difficult to directly calculate from the capacitor 

voltage, because a derivative is a non-causal function and introduces noise issues.  

However, there are two simpler methods for determining this derivative.  The first is 

simply to measure the capacitor current, which, through the capacitor voltage-current 

relationship, is equal to 
dt

dVC C⋅ .  The second method is to use a state-space observer to 

recover the derivative of the capacitor voltage state.  This state-space approach is 

displayed graphically in Figure 2.21.  In this figure, A represents the state matrix, B 

represents the input matrix, C represents the output matrix, and G is the observer gain 

matrix.  It would likely be more precise to use the first method, because the observer 

accuracy is highly dependent on how well A,B, and C model the physical system.  

However, if only the output voltage of the inverter is to be measured, an observer would 

be necessary, and has been proposed and utilized for single-phase inverter applications 

[20]. 

Using this capacitor current decoupling technique in addition with the traditional 

inductor voltage decoupling technique, results in a well decoupled system.  Figure 2.22 

shows the d-channel control to output transfer function and the cross-coupling transfer 

function for this strategy at light load.  The cross-coupling is at least an order of 

magnitude (20 dB) below the control to output transfer function for all frequencies.  

Because of this, the d- and q-channels essentially become second-order SISO systems.   

As with the traditional technique, this scheme scales the decoupling terms based 

on state variables (capacitor voltages); and thus, system stability is affected.  In fact, this 

scheme produces an unstable system for the inverter under study when the modeled DSP 

delay is included.  Thus, this technique is also impractical for use in the control system 

for the inverter under study. 
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Figure 2.21  State-space system with observer [21] 

 

Figure 2.22  D-channel control to output (-) and cross-coupling (--) transfer 

functions with inductor voltage and capacitor current decoupling strategy 
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2.3.3.4 Capacitor Current Control Loop 

Filter capacitor current control has been used as an inner control loop in various 

single-phase VSI applications [22].  The filter capacitor current is directly proportional to 

the derivative of the capacitor voltage.  As a result, regulating the capacitor current to a 

sinusoid, will result in a sinusoidal output voltage that lags the current by 90º.  Applying 

capacitor current control to three-phase VSIs easily enables decoupling of the terms 

associated with the fundamental current flowing in the filter capacitors, because the 

decoupling terms can be directly added to the capacitor current command [23].  Because 

the feedforward path associated with this technique relies on knowledge of physical 

constants in the plant, this technique is limited by the accuracy of the plant model.  In 

addition, the physical properties of the plant may be time-varying, for such reasons as 

inductor saturation and capacitance variations due to temperature.  These effects will 

further degrade the efficacy of this decoupling strategy. 

This control technique was not explored for the inverter application under study.  

An inductor current inner loop was chosen for this application, due to its specific 

advantages, including damping of the output filter and output overcurrent monitoring.  

However, the possibility of using a capacitor current inner loop may be feasible for 

certain applications. 

2.3.4 Cross-Channel Coupling with Inner Current Loop 

All of the decoupling techniques listed above appear to be ineffective or 

inapplicable to the inverter under study, and likewise to similar high power, three-phase 

VSIs.  However, it is interesting to note that closing the inner inductor current loop 

achieves some degree of decoupling between the d- and q-channels.  Figure 2.23 

compares the d-channel voltage loop gain with the closed inner current loop to the cross-

coupling transfer function at light load.  The cross-coupling transfer function is at least  

8 dB below the voltage loop gain for all frequencies.  While this may not be enough to 

say that the channels are completely decoupled, each of the channels will behave very 

similarly to a second-order SISO system, because of the well damped nature of the 

voltage loop gain. 
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While the addition of the modeled DSP delay somewhat degrades the 

performance of the inner current loop, as was discussed in Section 2.2.2.3, the filter poles 

are still significantly damped by the inner loop. Thus, no additional decoupling 

techniques are required for the inverter under study, because no significant performance 

gain would come from employing them. 

 

Figure 2.23  D-channel voltage loop gain (-) and cross-coupling transfer function (--) 

with a closed inner inductor current loop 

2.3.5 Cross-Channel Coupling Summary 

Cross-coupling between the d- and q-channels occurs in the inverter average 

model as a result of the fundamental voltage drop across the filter inductor and the 

fundamental current flowing in the filter capacitor.  These cross-coupling terms are 

significant under lightly loaded or unloaded conditions, so the d- and q-channels act as a 

MIMO system.  From a control standpoint, it is much more desirable to approach each 

channel as an independent system for compensation.  This section has presented several 

decoupling strategies for three-phase VSIs and demonstrated their lack of usefulness for 

the inverter under study and similar high power inverters.  However, utilizing a closed 

inner current loop negates the necessity for employing any decoupling strategies. 
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2.4 No-Load Control Summary 

All inverters, regardless of their application, should maintain proper performance 

under lightly loaded or unloaded conditions.  Nevertheless, no-load conditions pose 

interesting problems on the inverter system.  No-load stability issues and cross-channel 

coupling require special attention and highly influence the final control design. 

In general, it is desirable to design the output filter with the resulting parasitic 

components as small as possible.  However, this causes the filter poles to be nearly 

undamped at no-load.  This could create system instability if the control bandwidth is 

below the resonant frequency.  Thus, control measures must be made to ensure that 

inverter operation remains stable, even when the output terminals are unterminated. 

Cross-coupling the between d- and q-channels at no-load in the rotating 

coordinate system causes increased complexity of the plant model.  For this reason, 

several techniques to decouple the channels have been proposed, yet none seem to 

effectively solve the problem. 

Just as both issues arise from a single condition, both can be managed through a 

single control technique.  By closing an inner inductor current loop, the filter poles are 

well damped under all loading conditions.  In this manner, the inner current loop provides 

the possibility for increased control bandwidth and eliminates the need to decouple the d- 

and q-channels. 

 

 



Robert Gannett  CHAPTER 3 UNBALANCED LOADING CONDITIONS 

 - 55 - 
 

3 UNBALANCED LOADING CONDITIONS 

Unbalanced loading conditions can occur in power systems for a variety of 

reasons.  In general, small loads (relative to the power level of the distribution system) 

are configured to draw power from only one phase.  When several single-phase loads are 

placed on a distribution system, then the fluctuating power required from each of these 

loads can cause unbalance in the power system.  Even for dedicated multiple-phase motor 

drives, a significant (up to several percent) imbalance in the phase impedances can exist.  

Unbalanced phase loading causes negative sequence and zero sequence (in four-wire 

systems) to flow in the power system.  For ideal sources and distribution systems this 

would not be a problem.  However, physical systems, with finite output and transmission 

impedances, will experience voltage distortion in the form of phase voltage imbalance 

and phase shift due to unbalanced loading.  As was described in Section 1.2, unbalanced 

voltages can cause malfunction and even failure of power-consuming equipment.  Thus, 

in inverter-fed power systems, it is the responsibility of the inverter to ensure that certain 

tolerances on phase voltage imbalance at the load terminals are met under specified 

loading conditions. 

3.1 Unbalanced Load Impact on Inverters 

3.1.1 Unbalanced Three-Phase Variable Representations 

Unbalanced output phase voltages or currents can be symmetrically decomposed 

(Appendix B) into their negative sequence and zero sequence components.  Figure 3.1 

demonstrates this concept for unbalanced output voltages.  Note that the zero sequence is 

the same for all phases.  It is clear that both the negative and zero sequence distortion 

occur in the stationary abc reference frame at the fundamental frequency, ω .  

Transforming to dqo-coordinates, the negative sequence distortion appears as a 

disturbance in the d- and q-variables at a frequency of ω⋅2 .  This is the case because the 

dq reference frame is rotating in the positive direction at an angular frequency of ω , 

while the negative sequence disturbance rotates at an angular frequency of ω  in the 

opposite direction.  The zero sequence disturbance appears in the o-variable at a 
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frequency of ω , because the o-axis is stationary.  Figure 3.2 displays unbalanced output 

voltages in the abc reference frame, and their corresponding representation in the dqo 

reference frame.  Both figures below are simulation plots based on the inverter under 

study, with a fundamental output frequency, ω , of 4002 ⋅⋅π  rad/sec. 

 

Figure 3.1  Symmetrical decomposition of unbalanced phase a (-), phase b (--), and 

phase c (-.) voltages 

 

Figure 3.2  Unbalanced abc-coordinate voltages and their representation in 

dqo-coordinates 
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3.1.2 Implications for Control 

It is clear from the plots above that unbalanced output currents, as a result of 

unbalanced phase loading, will create d- and q-channel load currents that have a ω⋅2  

rad/sec sinusoidal disturbance on top of a DC offset.  Subsequently, if the d- and q-

channel duty cycles are constant (as is the case for balanced loading), then the sinusoidal 

component of the d- and q-channel load currents will flow through the output capacitor, 

creating the d- and q-voltage distortion.  The o-channel will be similarly affected by the 

ω  rad/sec disturbance in the o-channel load current. 

In order to prevent the sinusoidal current disturbances from causing dqo-voltage 

distortion, the sinusoidal currents must not flow through the output capacitors.  Thus, 

these currents must be delivered by the dqo-channel voltage sources, through sinusoidally 

varying duty cycles.  The following section solves the steady state equations for the duty 

cycles that will provide the appropriate load currents to prevent dqo-channel output 

voltage distortion. 

3.1.3 Steady State DQO-Channel Solutions 

In order to facilitate this discussion, it is necessary to rewrite the d-channel state 

space equations in the following form, with the load being an ideal current source input, 
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The q-channel equations will be exactly the same, only with the signs of the cross-

coupling terms reversed.  The o-channel equations will also be of the same form, simply 

with the cross-coupling terms removed altogether.  However, it is important to note that 

L  in the o-channel will be replaced with the o-channel equivalent inductance, 
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nfilter LL ⋅+ 3 , and LR  will be replaced with the o-channel equivalent inductor ESR, 

LR⋅2 . 

Using these state space equations, it becomes easy to solve for the steady state 

dqo-channel conditions.  Ideally, at steady state, the dqo-channel output voltages will 

track the references perfectly (assuming the Park’s Transformation is aligned with the 

line-to-line voltage vectors), 
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where pkllV ,−  is the amplitude of the line-to-line output voltage in abc-coordinates.  Under 

steady state, the dqo-channel output voltages should be unchanging, and therefore the 

derivatives of the channel voltages are zero (capacitor currents equal to zero).  This 

allows the steady state dqo-channel inductor currents to be solved for using the 

definitions in (3.2) for the dqo-channel steady state output voltages, 
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Given the state variable definitions at steady state in equations (3.2) and (3.3), the 

steady state dqo-channel duty cycles can be solved, 
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It is interesting to note that under balanced, linear loading, the dqo-channel load 

currents will all be constants.  Thus, the derivative terms become zero, and the steady 

state duty cycles are all constants.  However, under unbalanced loading, the dqo-channel 

load currents will be sinusoidally varying with DC offsets.  Likewise, this will cause the 
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steady state duty cycles to contain a constant component and a sinusoidally varying 

component. 

3.2 Conventional Solutions 

Being a well-known issue in power systems, the problem of unbalanced loading 

has been addressed with traditional control strategies.  The following section will present 

some of these techniques and simulation results from the inverter under study. 

3.2.1 Extending Controller Bandwidth 

By using some type of integral compensation in the dqo-channels, zero steady 

state errors will be achieved for the DC component of the dqo-channel output voltages.  

However, as has been demonstrated in the previous sections, an unbalanced load will 

cause sinusoidal disturbances in the dqo-channel load currents, and likewise the output 

voltages.  If a traditional integral controller, as is in Section 2.2.1, with a bandwidth 

below the frequency of the disturbances is employed, very little attenuation of the 

disturbances over open loop operation will be achieved. 

By utilizing controllers with bandwidths greater than the frequency of the 

disturbances, some attenuation will be achieved.  For example, approximately 20 dB of 

attenuation of the disturbance will be achieved if the control bandwidth is a decade above 

the disturbance frequency (assuming a 20 dB/dec crossover slope).  This may bring the 

output distortion within reasonable tolerances, but in order to do so the control bandwidth 

would need to be ω⋅⋅102  for the d- and q-channels and ω⋅10  for the o-channel.  While 

this may be possible in low power inverters, it would be very difficult, and likely 

impossible, to accomplish in high power inverters due to the difficulties listed in Section 

1.3.  The impossibility of this option is amplified for inverters with high output 

fundamental frequencies, such as the inverter under study. 

3.2.2 Load Current Feedforward Control 

Because of the unlikelihood of increasing the controller bandwidth sufficiently to 

achieve appropriate performance, other techniques are required to control the 
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disturbances associated with unbalanced loading.  One such technique that has been 

explored and implemented is the concept of inserting compensating feedforward terms 

into the dqo-channel duty cycles [16]. 

3.2.2.1 Load Current Feedforward Applied to Inverters 

The steady state duty cycles given in equation (3.4) are the necessary commands 

to the plant in order to get the ideal, balanced three-phase output.  Thus, these command 

signals can be implemented through feeding forward the dqo-channel load currents in 

order to realize the time-varying component of the duty cycles.  The voltage feedback 

compensation path is then left to adjust the DC component of the duty cycles.  Figure 3.3 

depicts the system model for each channel, including the feedforward path.  The 

compensation scheme shown in Figure 3.3 may be a voltage loop alone or combined with 

an inner current loop. 

 

Figure 3.3  System model including feedforward path for each channel 

Using this system model combined with the desired duty cycle signals given in 

equation (3.4), the following feedforward commands can be implemented, 
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These feedforward commands will create the necessary time-varying components of the 

duty cycle that the low bandwidth compensator will not be able to accomplish.  It is also 

important to notice that the feedforward commands contain derivatives of the dqo-

channel load currents.  As discussed previously, taking a derivative is physically 

unrealizable.  However, the dqo-channel inductor voltages contain the derivative of the 

load currents through the inductor voltage-current relationship, 
dt

dILV L
L = .  This works 

well for simulation, but unfortunately, the dqo-channel inductor voltage is not a 

physically measurable variable.  And thus, the derivative of the dqo-channel load currents 

must be obtained through some other means or calculation. 

It is important to note that load current feedforward is a slight misnomer.  True 

feedforward assumes that the variables that are fed forward are known and independent 

of the controlled system.  In the case of the dqo-channel load currents, these two 

assumptions are false, because the load currents are closely coupled to the plant state 

variables.  Thus, as was discussed for decoupling strategies in Section 2.3.3.1, this 

feedforward control in fact forms a feedback loop.  As a result, the system stability is 

affected and must be examined. 

3.2.2.2 Load Current Feedforward Control Design 

Making use of the previous section, a feedforward controller can be designed for 

the inverter under study.  Plugging in the physical system parameters for the inverter 

under study, equation (3.5) becomes, 
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In order to demonstrate the merits of this control strategy, an unbalanced loading 

case must be established.  Phase a and b are loaded to full rated power, and phase c is 

loaded to 85% of full rated power (specification for inverter under study).  Figure 3.4 

shows the output voltages for the inverter under study operating with a low bandwidth 

controller and under the loading conditions described above.  A line depicting the 

nominal peak voltage of 162.6 V (for 115 Vrms) has been provided for reference.  Using 

the low bandwidth controller alone under the unbalanced loading conditions results in 

significant disturbances in the dqo-channel output voltages.  Consequently, the output 

voltages in abc-coordinates are unbalanced.  The output has a maximum phase unbalance 

of 4.2%, with a maximum difference of 8.5 V between phases.  Figure 3.5 shows the 

result of adding the feedforward commands, as portrayed in equation (3.6).  Using the 

feedforward commands, as predicted, results in perfect dqo-channel output voltages, and 

likewise, abc-coordinate output voltages with no unbalance. 

The results in Figure 3.5 are without the addition of the modeled DSP delay in the 

control loop.  When the delay is included, the system becomes unstable, because the 

feedforward control is in actuality a feedback loop.  If the feedforward terms were 

independent variables, their future values could be predicted and the effects of the phase 

lag could be minimized.  However, because the feedforward terms here are closely 

coupled to the state variables, accurate prediction is unlikely, and impossible in the case 

of transient situations.  In order to stabilize the system for this case, the feedforward path 

gains must be decreased.  Figure 3.6 shows the results when the modeled delay is 

included and the feedforward gains are decreased by 50%.  The consequence of 

decreasing the gains is quite evident in the substantially reduced performance.  The abc-

coordinate outputs in figure 3.6 have a maximum phase unbalance of 2.4% with a 

maximum difference of 4.7 V between the phases. 
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Figure 3.4  Phase a (-), phase b (--), and phase c (-.) output voltages under 

unbalanced load 

 

Figure 3.5  Phase a (-), phase b (--), and phase c (-.) output voltages under 

unbalanced load with load current feedforward 
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Figure 3.6  Phase a (-), phase b (--), and phase c (-.) output voltages under 

unbalanced load with modeled delay and decreased feedforward gains 

3.2.2.3 Load Current Feedforward Control Analysis 

For a perfect plant model and no control delay, load current feedforward 

completely compensates for the unbalanced load currents.  However under realistic 

situations, the performance of this technique is significantly degraded.  The delay in the 

system necessitates decreasing the gains of the feedforward controller, diminishing its 

effectiveness.  In addition, the feedforward control relies on accurate knowledge of the 

physical plant parameters, L  and LR , in order to produce the command that will give 

ideal outputs.  Perfect knowledge of these parameters, though, is not realistic, and thus 

further degradation of the feedforward controller may occur.  In fact, these parameters 

may even be time-varying by 25% or more due to magnetic saturation and temperature 

drift. 

Even though the load current feedforward control does realize some increase in 

performance under realistic conditions over the low bandwidth controller, the output 

voltages are likely still to be out of specifications.  For the inverter under study, the 
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output voltage unbalance, as seen in Figure 3.6, is still over 2 %.  Thus, load current 

feedforward may not a viable option for unbalanced loading compensation for high 

power inverter applications. 

3.3 Proposed Solution 

In light of the poor and unacceptable performance of the conventional solutions to 

unbalanced loading, new techniques are required to compensate for unbalanced loading 

in high power inverter applications.  This section will present a feedback control strategy 

for high power three- and four-leg inverters under unbalanced loading conditions. 

3.3.1 Motivations 

The feedforward technique described above sought to compensate for the dqo-

channel disturbances, due to unbalanced loading, by injecting sinusoidal terms into the 

channel duty cycles based on the negative and zero sequence components of the load 

currents.  Another approach to the problem of unbalanced loading is to inject 

compensating terms into the duty cycles based on the negative and zero sequence content 

of the output voltages.  While the first technique works perfectly when the knowledge of 

the plant is perfect, the latter technique does not require knowledge of the plant to work 

perfectly, because it is a true feedback of the variable of interest.  Ultimately, 

feedforward control does not succeed because it does not make adjustments based on the 

variable which it is attempting to correct. 

The steady state error of a feedforward controller is determined by the accuracy of 

the feedforward path gains (with respect to the physical plant parameters) and the delay 

in the control loop.  However, a feedback controller’s steady state error is determined by 

the loop gain at the frequency of interest.  In the case of DC quantities, a feedback 

controller can, in fact, achieve zero steady state errors by using an integrator, whose DC 

gain is infinite.  This fact creates the motivation for developing a feedback controller to 

deal with unbalanced loading. 
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3.3.2 Negative Sequence Controllers in Three-Leg Inverters 

In three-phase, three-wire systems (delta connected sources and loads), 

unbalanced loads create negative sequence currents, and likewise, negative sequence 

voltage distortion.  A previously unexplored control technique has been proposed in 

literature [24] to compensate for the negative sequence voltage distortion due to 

unbalanced loads in three-phase, three-wire systems.  In traditional control of three-phase 

inverters, a rotating dq reference frame is established, such that the time-varying output 

voltages are transformed into DC quantities.  This enables perfect tracking of the 

reference for the positive sequence component of the output voltage.  Hsu and Behnke 

[24] propose the construction of a reference frame rotating at the fundamental frequency 

in the opposite direction as the positive sequence.  Thus, the negative sequence 

components of the output voltage will become DC quantities in this negative sequence dq 

reference frame.  With a parallel controller in the negative sequence dq reference frame, 

the negative sequence distortion can be attenuated, or even eliminated if an integral 

controller is used. Hsu and Behnke [24] have demonstrated this concept in simulation and 

experimentation, with the predicted results. 

The proposed control scheme above is quite effective for three-phase, three-wire 

systems; however, many loads require a fourth (neutral) connection.  This control 

strategy could effectively eliminate the negative sequence distortion in four-wire systems, 

but it would not address the issue of zero sequence distortion.  As a result, this technique 

alone would not suffice for control of three-phase, four-leg inverters. 

3.3.3 Negative and Zero Sequence Controllers in Four-Leg Inverters 

Because a voltage feedback scheme has been demonstrated to eliminate steady 

state negative sequence errors in thee-leg inverters, it is only logical to believe that a 

similar scheme can be applied to four-leg inverters to eliminate both negative and zero 

sequence steady state errors.  This possibility is described and demonstrated through 

simulation in the following sections. 
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3.3.3.1 Unbalanced Load Control Concept 

3.3.3.1.1 Negative Sequence Controller 

The concept of the negative sequence controller in the context of four-leg 

inverters is the same as described above for a three-leg inverter.  The negative sequence 

distortion caused by an unbalanced load can be transformed into DC quantities through a 

change of basis to a reference frame rotating in the negative (clockwise) direction at the 

fundamental frequency.  Then, an integrator can operate on the negative sequence error 

signal and the resulting output, transformed back to the positive sequence frame, to be 

added to the dq-channel duty cycles.  The resulting compensation will achieve zero 

steady state errors for the negative sequence distortion.  Figure 3.7 displays this control 

strategy in block diagram format. 

 

Figure 3.7  Negative sequence control structure 

It is interesting to note that positive sequence component of the output voltage 

will appear in dV−  and qV−  as a sinusoid at a frequency of ω⋅2 .  Thus, the authors of 

[24] have suggested that the negative sequence d and q references should be the 

transformation of the positive sequence d and q references into the negative sequence 

rotating frame, given by, 
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These references are redundant and unnecessary, assuming that the bandwidth of the 

negative sequence controllers is sufficiently low.  It is the responsibility of the positive 

sequence controllers to ensure that the positive sequence references are followed 

precisely.  The negative sequence controllers should only operate on the DC components 

of the negative sequence d- and q-voltages, and ensure they are exactly zero.  Thus the 

negative sequence d and q references can simply be zero.  It is then required that the 

bandwidth of this negative sequence controller is less than ω⋅2 , so that it does not try to 

attenuate the positive sequence voltages’ presence in the negative rotating frame.  If the 

bandwidth of the negative sequence controller approaches ω⋅2 , then the references 

given in (3.7) must be used to ensure that the negative sequence controller does not give 

conflicting commands with the fundamental positive sequence controller. 

3.3.3.1.2 Zero Sequence Controller 

The fourth leg of the inverter facilitates control of the zero sequence current, and 

likewise, the zero sequence voltage distortion.  As was described in Section 3.1.1, the 

zero sequence voltage distortion appears as a disturbance in the o-channel at the 

fundamental frequency.  Because the o-axis actually exists in the stationary frame (see 

Appendix A), there is no way to rotate the o-channel voltage in order to transform it into 

a DC quantity.  Thus, some other technique must be employed to attenuate the o-channel 

disturbance. 

In order to achieve zero steady state errors for a frequency of interest, the loop 

gain must be infinite at that frequency.  This is easily accomplished for DC with an 

integrator.  However, in order to achieve a loop gain of infinity at other frequencies a 

zero-damping bandpass filter must be employed.  The transfer function for a zero-

damping bandpass filter is given in equation (3.8).  Figure 3.8 displays the Bode 

diagrams for a zero-damping bandpass filter with a resonant frequency arbitrarily chosen 

to be 1000 rad/sec. 
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Figure 3.8  Bode diagrams of a zero-damping bandpass filter 

The Bode diagram above does not show an infinite gain at the resonant frequency 

due to rounding in the solver.  Nevertheless, it is clear from equation (3.8) that as 

ojs ω→ , the denominator will approach zero, and thus the magnitude of the transfer 

function will approach infinity. 

Using a zero-damping bandpass filter, it is clear that an infinite gain can be 

obtained for a discrete frequency.  Thus, by placing a parallel path in the o-channel, 

containing a zero-damping bandpass filter with a resonant frequency of ω , the loop gain 

will be infinite at the zero sequence disturbance frequency.  This will make zero steady 

state errors possible for the zero sequence distortion from unbalanced loads.  Figure 3.9 

displays a block diagram of the zero sequence controller described above.  Because the o-

axis is the same in all rotating reference frames, this o-channel zero sequence controller 

can be implemented in any dqo reference frame.  For simplicity, it has been shown here 
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in the fundamental frequency positive rotating frame, where traditional fundamental 

compensation is performed.  The fundamental compensation blocks in Figure 3.9 may 

also contain an inner current loop.  The positive sequence references do not change from 

traditional dqo-channel control, 
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Figure 3.9  Zero sequence controller structure 

3.3.3.1.3 Complete Unbalanced Load Controller 

Combining the negative sequence and zero sequence controllers described above 

will result in zero steady state errors for both the negative and zero sequences under 

unbalanced loading conditions.  This leaves only the positive sequence, controlled by the 

fundamental controllers, resulting in a perfect three-phase output in abc coordinates. 

A minor simplification in error signal calculation can be made when several 

rotating reference frames are used in control.  Rather than transforming the abc output 

voltages into several equivalent rotating dq voltages, the abc output voltages can be 
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subtracted from ideal abc-coordinate references, and the abc error signals can then be 

transformed into the rotating reference frames.  This is a minor simplification that may or 

may not achieve some benefit in actual implementation.  Figure 3.10 depicts the complete 

unbalanced control strategy as expressed above.  The abc references are given by the 

ideal output, 
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Figure 3.10  Complete unbalanced load control structure 

3.3.3.2 Unbalanced Load Control Design 

Using the control structure of Figure 3.10, an unbalanced load controller can be 

designed for the inverter under study.  The fundamental compensators will be the same as 
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described in Figure 2.14 and Table 2.2, with an inner current loop to dampen the output 

filter poles at light load.  Consequently, the dynamics of the system, with respect to the 

fundamental positive sequence, will be identical to the no-load control scheme as 

described in Section 2.2.2.  Table 3.1 lists the integrator gains for the negative sequence 

controllers and the transfer function for the zero sequence controller.  The integrator 

gains haven been chosen under the guidelines given in 2.2.1.1 for conventional voltage 

loop compensation.  Because the dqo average model of the inverter is the same in both 

the positive and negative fundamental rotating reference frame, the designed integral 

gains are the same.  While this ensures that the negative sequence control is stable alone, 

it does not ensure that the entire control system is stable.  This topic will be discussed in 

more detail in the next section.  In order to ensure convergence of the simulation package 

solver, a small amount of damping has been added to the bandpass filter transfer function 

for the zero sequence controller. 

Table 3.1  Unbalanced Load Controller Parameters 

Parameter Value
G-id 0.16
G-iq 0.16
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Using the parameters displayed above, Figure 3.11 gives the results for the 

inverter under study with an unbalanced load (100%-100%-85% phase loading) and 

modeled DSP delay.  There is a maximum phase voltage unbalance of 0.23% and a 

maximum difference between phases of 0.45 V.  Zero steady state errors have not truly 

been reached, because of the damping added to the bandpass filter and rounding errors in 

the solver (see discussion of Figure 3.9 above). 

In order to show the transient response of the unbalance controllers, Figure 3.12 

has been provided below. This figure displays the d- and q-component of the abc-
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coordinate error signal in the negative sequence (a), and the zero sequence component of 

the error signal (b).  The controllers have been turned on at a time of 100 milliseconds.  It 

is clear that the error signals converge toward zero over several 400 Hz line cycles.  The 

speed of response for the negative sequence controller is similar to that for the 

conventional voltage loop control, described in Section 2.2.1, because the integrator gains 

are the same.  There is some distortion present in the negative sequence d- and q-channels 

in Figure 3.12.  This is an artifact of the implementation of the transformation between 

abc- and dqo-coordinates.  The true transformation is a continuous-time function, 

however, the implementation in simulation operates on discrete time steps.  This fact 

combined with rounding errors contributes to the distortion seen in Figure 3.12.  It is 

important to note that the distortion is present before the controllers are turned on, and 

their presence does not contribute to the distortion. 

 

Figure 3.11  Phase a (-), phase b (--), and phase c (-.) output voltages under 

unbalanced load with proposed controller 
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(a) 

 
(b) 

Figure 3.12  (a) Negative sequence controller transient response for the d- and q-

channels; (b) Zero sequence controller transient response 

3.3.3.3 Stability Analysis 

As with any control system design, it is of utmost importance to ensure stable 

operation of the controlled system.  Thus, some strategy to test the stability of the system 

must be employed, regardless of the fact that parallel controllers are operating in different 

rotating reference frames.  This issue has been addressed in literature [25] through the 

development of a transformation for regulators in a rotating reference frame to their 

stationary reference frame equivalent.  A rotating reference frame regulator, ( )sGrf , is 

represented in the stationary frame by, 

( ) ( ) ( )[ ]rrfrrfsf jsHjsHsG ωω ⋅−+⋅+⋅=
2
1 , (3.11) 
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where rω  is the angular rotation frequency of the reference frame.  While this is the 

precise transformation, it is difficult to physically realize.  For this reason, Zmood and 

Holmes [25] have proposed the following simplification of equation (3.11): 
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Using this transformation for an integral controller, ( )
s

KsG i
rf = , in the rotating reference 

frame yields, 
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in the stationary frame.  Equation (3.13) is clearly a zero damping bandpass filter 

centered at the frequency rω .  It is interesting to note that both the positive and negative 

sequence controllers will map into the same frequency in the stationary frame.  For this 

reason, the two controllers are represented by a single bandpass filter in the αβ  

stationary frame, as depicted in Figure 3.13.  This initial analysis indicates that 

appropriate stability margins are maintained when both the positive and negative 

sequence controllers are represented in the same reference frame.  The high loop gain at 

400 Hz will ensure that the fundamental component of the reference will be tracked with 

near zero steady state errors. 

Because the o-channel already exists in the stationary frame, no transformation of 

the regulator is required.  Figure 3.14 displays the o-channel loop gain with the zero 

sequence controller included.  From this figure, initial analysis of the o-channel controller 

points toward a stable closed loop system.  It is interesting to note the interaction between 

the fundamental control and the zero damping bandpass filter cause a sharp notch in the 

loop gain below the resonant frequency of the bandpass filter.  This does not, however, 

significantly affect the o-channel bandwidth (for comparison see Figure 2.15).  Both 

figures below are obtained under light loading conditions, where the filter peaking is 

most significant. 
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Figure 3.13  Stationary frame (alpha/beta) loop gain for unbalance control with 

modeled digital delay 

 

Figure 3.14  O-channel loop gain for unbalance control with modeled digital delay 

3.3.3.4 Unbalanced Load Control Design Analysis 

By utilizing negative and zero sequence controllers, near zero steady state errors 

can be achieved for the output phase voltages under unbalanced loading conditions.  By 
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rotating the error signal into the fundamental frequency negative sequence, the negative 

sequence distortion is transformed into DC quantities.  This enables traditional DC 

control techniques to be employed, and thus the possibility of eliminating steady state 

errors to be realized.  Combined with a zero damping bandpass filter (infinite gain at 

resonant frequency) to compensate for zero sequence distortion, excellent inverter 

performance under unbalanced loading is enabled. 

Because this technique should achieve near zero steady state errors, then even 

under the harshest of unbalances, the output should remain well regulated.  This worst 

case unbalance occurs when one or two phases is unterminated, while the other(s) is(are) 

fully loaded.  This could, in fact, happen if each output phase has independent circuit 

breakers or fuses.  Simulation of this loading case reveals that the controllers maintain 

regulation of all phases within 1.6% of the nominal output voltage for the inverter under 

study, thereby proving the operation of this control strategy. 

It is important to also note the transient behavior of the unbalance controllers.  

While steady state performance may achieve near zero steady state errors; under 

transients, the controllers may require several line cycles to reach a steady state.  This is 

due to the choice of bandwidth of the controllers to be much smaller than the 

fundamental control bandwidth.  Thus, the tracking performance of these controllers will 

be degraded if the unbalanced load is not slowly time-varying. 

The control structure described in this section will unavoidably require additional 

processing time due to the error signal being rotated into an additional reference frame.  

However, because high power switching devices require such low switching frequencies, 

in comparison to the processor speeds of modern DSPs, there will likely be enough time 

to make all of the necessary transformations and calculations within one power stage 

switching period. 

 
3.4 Unbalanced Load Control Summary 

In three-phase VSI control, the d- and q-channels are used to compensate for the 

rotating components (positive and negative sequence) of the output variables (voltage and 
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current).  When conventional voltage loop compensation is utilized in the fundamental 

positive sequence reference frame, it is generally not possible to achieve a bandwidth 

high enough, in high power VSIs, to attenuate the disturbances due to unbalanced loads. 

When a fourth leg is included in the VSI, an additional channel, the o-channel, is 

introduced to compensate for the stationary (zero sequence) component of the output 

variables.  One of the foremost reasons that a fourth-leg has been proposed for VSIs, is to 

be able to control the zero sequence current present when three-phase loads require a 

fourth (neutral) connection.  Again, using conventional voltage loop compensation in the 

o-channel does not facilitate a high enough bandwidth to attenuate the zero sequence 

disturbance due to unbalanced loads. 

Because of traditional control’s inability to compensate for unbalanced loading 

conditions, special techniques have been proposed to achieve acceptable output 

performance.  Load current feedforward techniques have been shown to eliminate all 

output voltage error when an ideal physical system is used.  However, under realistic 

conditions and control delay, the performance of the feedforward technique is 

significantly reduced.  Hsu and Behnke [24] have proposed and demonstrated a negative 

sequence controller to eliminate negative sequence distortion in three-phase, three-wire 

power systems.  This technique can be applied similarly to three-phase, four-wire VSIs; 

however, it does nothing to address zero sequence distortion.  A zero damping bandpass 

filter for compensation of zero sequence disturbances due to unbalanced loading has been 

proposed and simulated in this thesis.  Table 3.2 and Table 3.3 below display the 

performance of the control strategies described above compared to open loop operation 

under two separate loading conditions, 100%-100%-85% phase loading and 100%-100%-

0% phase loading. 
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Table 3.2  Comparison of Control Techniques under Moderate Unbalance 

Open Loop Fundamental 
Control

Feedforward 
Control

Negative and Zero 
Sequence Control

max. % 
difference from 

nominal
3.76% 4.24% 2.39% 0.23%

max. voltage 
difference 
between 
phases

7.78 V 8.50 V 4.67 V 0.45 V

 

Table 3.3  Comparison of Control Techniques under Severe Unbalance 

Open Loop Fundamental 
Control

Feedforward 
Control

Negative and Zero 
Sequence Control

max. % 
difference from 

nominal
27.13% 37.50% 24.12% 1.61%

max. voltage 
difference 
between 
phases

59.58 V 74.67 V 53.19 V 3.01 V

 

From these tables, it is clear that the control structure proposed in Section 3.3 far 

exceeds the performance of the other control schemes.  Moreover, the proposed controller 

performs better under the most severe unbalance than the feedforward control does under 

just moderate unbalance.  These results demonstrate the true merit of the proposed 

control structure. 
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4 NON-LINEAR LOADING CONDITIONS 

With the increasing prevalence of electronic loads in today’s world, non-linear 

loading is becoming more of a problem in power systems.  The most common non-linear 

loads are three-phase and single-phase rectifiers.  Both of these types of loads draw 

harmonic currents from the source.  Harmonic voltage distortion occurs when these 

currents flow through the finite output and transmission impedances of the power system.  

Harmonic distortion can be extremely damaging to loads and power transmission 

equipment, such as transformers.  For this reason, THD guidelines have been established 

for power systems to prevent improper operation of, or damage to, power-processing and 

power-consuming equipment.  Nevertheless, reducing harmonic distortion in high power 

systems is not a trivial task, and has become a topic of a great amount of research in 

recent years.  This chapter will present the results of some of this research and as well as 

some new techniques to attenuate harmonic distortion in inverter-fed power systems. 

4.1 Non-Linear Load Impact on Inverters 

This section will specifically describe the impact of three-phase and single-phase 

diode rectifiers on inverter-fed power system.  While these are not the only types of non-

linear loads, they do represent the majority, and their characteristics may be 

representative of other types of non-linear loads. 

4.1.1 Three-Phase Diode Rectifiers 

Three-phase diode rectifiers are used in a wide variety of applications, such as 

front-end converters for DC distribution systems and motor drives.  In general, three-

phase diode rectifiers are used in medium to high power (> 1 kVA) AC/DC converter 

applications.  Figure 4.1 displays a schematic of a three-phase diode rectifier.  The 

resistive load may also be accompanied by some filtering elements. 
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Figure 4.1  Three-phase diode rectifier 

4.1.1.1 Harmonic Distortion 

A three-phase diode rectifier is an uncontrolled, six-pulse converter, whose 

switches turn on and off based on the relative magnitudes and phases of the input lines.  

Thus, an ideal three-phase rectifier will only draw currents at the following harmonic 

frequencies: 

( )[ ] ω⋅±⋅ 16 n , (4.1) 

where n is any positive, real integer and ω  is the fundamental line frequency.  A property 

of three-phase diode rectifiers is that all ( )[ ] ω⋅+⋅ 16 n  harmonic currents are positive 

sequence, and all ( )[ ] ω⋅−⋅ 16 n  harmonic currents are negative sequence (Appendix C 

mathematically demonstrates this property).  These currents will cause harmonic voltage 

distortion at the same frequencies in the same rotating direction.  From Figure 4.1, it is 

clear that there is no neutral connection, and thus no zero sequence current or distortion 

will be present. 

Figure 4.2 and 4.3 below display the output phase voltage distortion in the time 

and frequency domains for the inverter under study in open loop operation with a full 

three-phase non-linear load (90 kVA) of the configuration shown in Figure 4.1.  It is 

interesting to note that the magnitude of the harmonic voltage distortion decreases as the 
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frequency increases.  The reason for this is twofold.  First, a Fourier analysis of the phase 

currents reveals that the lower frequency harmonics are dominant; and secondly, the 

output impedance of the inverter generally decreases with increasing frequency 

(characteristic of LC low-pass filter). 

 

Figure 4.2  Output phase voltage (-) and current (--) under 90 kVA three-phase  

diode rectifier 

 

Figure 4.3  Frequency components of the output phase voltage under 90 kVA three-

phase diode rectifier 
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4.1.1.2 Implications for Control 

From the plots above, it is clear that the output phase voltages are highly distorted 

by heavy three-phase diode rectifier loading.  In the case of the inverter under study the 

THD is over 20%.  It is important to note that the majority of the distortion is contained 

in the 5th and 7th harmonics, because the output filter attenuates the higher frequency 

harmonics.  Therefore, additional means must be employed to attenuate the lower 

frequency harmonics. 

Because the 5th harmonic distortion rotates in the negative sequence and the 7th 

rotates in the positive sequence, both will appear as disturbances in the d- and q-voltages.  

In fact, both harmonics will emerge as disturbances at a frequency of ω⋅6  in the d- and 

q-voltages.  This occurs because the 5th harmonic disturbance is rotating in the opposite 

direction of the fundamental rotating reference frame, and the 7th harmonic is rotating in 

the same direction.  As a result, the d- and q-channel loop gains would need to have a 

significant magnitude at a frequency of ω⋅6  in order to be able to attenuate these 

disturbances.  This is impossible in high power inverters, where the switching frequency 

is significantly limited by today’s power devices. 

4.1.2 Single-Phase Diode Rectifiers 

Single-phase diode rectifiers are often used in lower power (< 500 VA) AC/DC 

applications.  Almost all small electronic equipment and consumer electronic equipment 

contain single-phase diode rectifiers.  While single-phase diode rectifiers may each only 

be used for small power applications, their effects are additive when several draw power 

from the same phase.  The single phase diode rectifier used for the purpose of simulation 

is depicted in Figure 4.4.  Additional configurations include other half- and full-wave 

rectifiers, with and without filtering. 
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Figure 4.4  Single-phase diode rectifier used in simulations 

4.1.2.1 Harmonic Distortion 

Single-phase diode rectifiers are uncontrolled AC/DC converters with either one 

or two pulses per line period.  An ideal single-phase diode rectifier, configured as in 

Figure 4.4, draws currents at all odd harmonic frequencies.  As with three-phase 

rectifiers, all ( )[ ] ω⋅+⋅ 16 n  frequencies are positive sequence, and all ( )[ ] ω⋅−⋅ 16 n  

frequencies rotate in the negative sequence.  However the odd triplen harmonics (3rd, 9th, 

15th, etc.) are zero sequence currents, because their magnitudes do not cancel in the 

neutral conductor.  Appendix C mathematically details these characteristics of single-

phase diode rectifiers.  The harmonic currents drawn by these loads will cause voltage 

distortion at the same frequency in the same sequence.  All full-wave rectifiers will 

exhibit similar characteristics; however, half-wave rectifiers, draw even harmonics, and 

will not be discussed in any further detail here.  They are rarely used, and only in very 

low power applications, so their impact on high power inverters would likely be minimal. 

Figure 4.5 and 4.6 display the output phase distortion and the phase and neutral 

currents for the inverter under study in open loop operation with a full load of balanced 

single-phase diode rectifiers (30 kVA per phase).  For an unbalanced load of single-phase 

rectifiers, there will also be negative and zero sequence distortion at the fundamental 
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frequency.  As described above for three-phase rectifiers, the magnitude of the harmonic 

distortion decreases as the harmonic frequency increases. 

 

Figure 4.5  Output phase voltage (-) and current (--), and neutral current (-.) under 

90 kVA single-phase balanced diode rectifiers 

 

Figure 4.6  Frequency components of the output phase voltage under 90 kVA single-

phase balanced diode rectifiers 
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4.1.2.2 Implications for Control 

The output phase voltages are visibly distorted, here with a THD greater than 

10%, under single-phase diode rectifier loading.  The dominant harmonics are the 3rd, 5th, 

and 7th.  These three frequencies are not significantly attenuated by the output filter, and 

must be alternatively decreased in order to achieve acceptable inverter performance. 

As described above in section 4.1.1.2, the negative sequence 5th harmonic and 

positive sequence 7th harmonic distortion will both appear as a 6th harmonic disturbance 

in the d- and q-voltages.  Likewise, all higher frequency ( )[ ] ω⋅−⋅ 16 n  and ( )[ ] ω⋅+⋅ 16 n  

harmonics will appear together as a corresponding ( ) ω⋅⋅ n6  disturbance in the 

fundamental, positive sequence dq reference frame.  All of the triplen harmonics exist as 

zero sequence distortion (stationary disturbances), and thus will appear in the o-voltage at 

the same frequency.  As detailed in the sections and chapters above, it is impossible in 

high power inverters to achieve a high enough control bandwidth to appreciably reduce 

harmonics at these frequencies. 

4.2 Conventional Solutions 

Because of the ever-growing use of electronic and non-linear loads, harmonic 

distortion has become a major consideration in power systems.  In the past, many 

strategies have been employed to reduce harmonic distortion for specific applications; 

however, all have had significant drawbacks.  This section will detail some of these 

conventional solutions to deal with the effects of distorting loads in three-phase, inverter-

fed power systems. 

4.2.1 Passive Filtering 

The most common and simplest solution to reduce the harmonic voltage distortion 

is through passive filtering at the output terminals of the inverter.  This technique seeks to 

reduce the output impedance of the inverter at the harmonic frequencies, thereby 

reducing the voltage distortion for a given harmonic current magnitude.  For example, 

decreasing the resonant frequency of the single-stage output filter will reduce the output 
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impedance of the inverter under study at harmonic frequencies.  However, reducing the 

resonant frequency of the output filter will require the use of larger passive elements.  

This is obviously undesirable from a cost and size/weight standpoint.  This technique is 

further limited because the resonant frequency can only be decreased to a range 

approaching the fundamental frequency.  If the resonant frequency is further reduced, 

then the filter will attenuate the fundamental output. 

Another passive filtering technique is to add harmonic traps to the output filter at 

the specific harmonic frequencies where distortion occurs.  Harmonic traps will 

significantly reduce the output impedance of inverter at the resonant frequency of the 

trap; however, harmonic traps have several drawbacks.  Care must be taken when using 

harmonic traps, because they can cause interactions that may significantly alter the 

characteristics of the output filter and actually increase the output impedance at certain 

frequencies.  Usually harmonic traps require some amount of damping in order to reduce 

these interactions.  This increases the losses in the trap, thereby decreasing efficiency and 

increasing cooling requirements.  In addition, harmonic traps tuned to lower frequency 

harmonics have very large and expensive passive components.  Another limitation of this 

technique, is that the harmonic trap must be tuned very accurately, or its effectiveness 

will be considerably decreased in reducing the harmonic distortion at the frequency of 

interest. 

4.2.2 Assistant Inverter and Active Filtering 

A topic of particular interest in the power quality field over the last several 

decades has been active power filtering.  Active power filters have been proposed and 

implemented to correct power quality issues, such as unbalance and harmonic distortion.  

Active power filters operate on the principle that distortion can be canceled through the 

injection of equal but opposite distortion [26].  Essentially, an active filter is just an 

inverter controlled to output voltages or currents at harmonic frequencies.  Because active 

power filters are simply power converters connected in parallel with the power system 

loads, they can easily be applied to existing power systems.  Figure 4.7 displays an active 

filter configuration in a three-phase, four-wire power network.  Active power filtering can 
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also be applied to single-phase and other multi-phase systems, making them an extremely 

flexible solution for networks with power quality problems. 

 

Figure 4.7  Active power filter configuration in a three-phase, four-wire power 

system 

While an active power filter is designed for application to existing power systems, 

an assistant inverter is designed specifically to accompany a main inverter in an inverter-

fed power system.  The main inverter supplies all of the power at the fundamental 

frequency, and the assistant inverter supplies currents at the harmonic frequencies.  The 

assistant inverter delivers much less power than the main inverter, and consequently the 

assistant inverter switching frequency can be much greater, enabling the control of higher 

frequency harmonics.  Because the assistant inverter sources all of the harmonic current 

required by the load, the harmonic currents will not flow through the output impedance of 

the main inverter, and thus ideally no voltage distortion will exist at the output of the 

main inverter.  This, in effect, reduces the output impedance of the inverter to zero at the 

specified harmonic frequencies.  The design and implementation of an assistant inverter, 

as well as experimental results, have been detailed in [16]. 

While active power filters and assistant inverters have been shown to be 

extremely flexible and effective at correcting voltage distortion, they have several 
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drawbacks.  The most obvious is that the additional hardware will add cost and size to the 

power system.  Overall system efficiency will also be decreased, due to the losses 

incurred in the active filter. 

4.2.3 Parallel Inverter Operation 

Another proposed solution to the problem of distortion in inverter-fed power 

systems is the paralleling of inverters.  The outputs of the N number of parallel inverters 

are controlled to be phase shifted in a manner to achieve current ripple cancellation in the 

output filter capacitors.  In this fashion, the effective switching frequency of the entire 

system is increased N times, as is the effective control bandwidth of the entire system.  

Figure 4.8 depicts the simulation results of paralleling 16 models of the inverter under 

study with a full three-phase diode rectifier load.  This increases the effective switching 

frequency and the effective system control bandwidth by 16 times, enabling the 

controllers to attenuate the output distortion.  The result is an output THD of less than 

4%. 

 

Figure 4.8  Output phase voltage for 16 parallel operating models of the inverter 

under study 
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In addition to enabling the attenuation of output harmonics, the paralleling of 

inverters adds redundancy to the system.  If one of the inverters fails, the output power of 

the system is only reduced by the fraction 
N

N 1− .  Although paralleling inverters appears, 

on the surface, to be a very convenient solution, it is not without its own disadvantages.  

If neither the inputs (DC power sources) nor the outputs of the inverters are isolated, then 

small variations in the parallel inverters will cause circulating zero sequence current 

between the inverters [27].  While isolating either the DC or AC side of the inverter 

prevents this problem, it is expensive and not very practical, especially when a large 

number of inverters are to be paralleled.  For this reason, zero-sequence current control 

has been proposed and simulated for non-isolated parallel inverters [28].  Even in this 

case, the size and cost of several smaller inverters combined (16 in the case for the 

inverter under study) will almost undoubtedly be greater than the size and cost of one 

larger inverter.  Despite this possibility of operating non-isolated inverters in parallel, the 

increased system and control complexity is not warranted if a simpler solution is 

available. 

4.3 Proposed Solution 

While the conventional solutions to harmonic distortion in power systems may 

achieve acceptable power quality, their implementation tends to be costly and 

inconvenient because of the added hardware.  This section will present and show 

simulation results for a new control scheme to attenuate harmonic distortion in three-

phase, four-leg inverters. 

4.3.1 Motivations 

Because all of the conventional solutions to distortion in power systems have the 

disadvantage of requiring additional hardware, it is desirable to develop a control 

algorithm to deal with the harmonic distortion.  While it is obvious that conventional 

control will not enable a sufficient bandwidth to control the voltage harmonics in high 

power inverters, it would be theoretically possible to employ a load current feedforward 

control, as described in Section 3.2.2, to ensure that the dqo-channel output voltages are 
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always DC quantities.  However, this strategy is just as unrealistic and ineffective for 

harmonic control as it was demonstrated to be for unbalance control.  

Just as for unbalance control, it is desirable to correct the output voltages using a 

voltage feedback loop in order to achieve the best system performance.  It has been 

shown that zero steady state error can be achieved for a specific frequency of interest, 

when the loop gain is infinite at that frequency.  This operating principle is utilized in the 

fundamental control of VSIs and in the unbalance controller described in Section 3.3.  

This principle also becomes the motivation for developing a feedback controller that 

selectively eliminates the voltage harmonics due to non-linear loading. 

4.3.2 Selective Harmonic Elimination in Three-Leg Inverters 

As demonstrated above in Section 4.1.1, three-phase diode rectifiers create 

distortion at the ( )[ ] ω⋅±⋅ 16 n  harmonic frequencies.  A similar control technique to that 

demonstrated for unbalance control [24] has been proposed for control of harmonic 

frequencies [29].  By rotating the output voltage error signals into dq reference frames 

rotating at the harmonic frequencies, those harmonic disturbances become DC quantities.  

For example, the negative sequence distortion at the 5th harmonic frequency becomes a 

DC magnitude in the dq reference frame rotating at ω⋅5  in the negative (clockwise) 

direction.  The error signal in each of the rotating harmonic frames can then be integrated 

and the result added into the dq-channel duty cycles, in order to achieve zero steady state 

errors for the compensated harmonics.  This concept has been validated through 

simulation and experimental results for a three-phase, three-wire VSI [29]. 

While this control strategy shows the potential to eliminate negative and positive 

sequence voltage harmonics, it does not address the issue of zero sequence distortion.  As 

described in Section 4.1.1, single-phase diode rectifier loads cause currents at the triplen 

harmonic frequencies to flow in the neutral conductor of three-phase, four-wire power 

systems.  As a result, the harmonic elimination control concept must be extended to 

include zero sequence distortion, in order to ensure good power quality for three-phase, 

four-wire VSIs with single-phase diode rectifier loads. 
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4.3.3 Selective Harmonic Elimination in Four-Leg Inverters 

Because selective harmonic elimination has been proven to be effective in 

eliminating positive and negative sequence harmonic distortion for three-phase, three-leg 

VSIs, this control strategy should be easily extended to three-phase, four-leg VSIs.  

However, additional measures must also be employed to eliminate the triplen zero 

sequence harmonics.  The following sections will demonstrate through simulation the 

selective harmonic elimination control strategy as applied to three-phase, four-leg VSIs. 

4.3.3.1 Harmonic Control Concept 

4.3.3.1.1 Positive and Negative Sequence Controllers 

The concept of positive and negative sequence control is the same in three-leg and 

four-leg VSIs, because the rotating dq reference frame is identical in both cases.  Only 

one rotating reference frame is required for each ( )[ ] ω⋅±⋅ 16 n  harmonic, because each 

only rotates in either the positive or negative sequence.  Consequently, each of the 

( )[ ] ω⋅+⋅ 16 n  harmonics to be compensated for will require positive sequence rotating 

controllers, and each of the ( )[ ] ω⋅−⋅ 16 n  harmonics will necessitate negative sequence 

controllers.  If each of the controllers is chosen to be an integral compensator, then zero 

steady state errors will be achieved for each harmonic.  This is because the harmonic 

distortion is transformed into DC quantities by the change of basis into its own rotating 

dq reference frame.  Figure 4.9 displays this control structure for the 5th and 7th 

harmonics.  If additional harmonic controllers were to be employed, they would be 

configured in parallel with the controllers shown below. 
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Figure 4.9  Rotating 5th and 7th harmonic controller structure 

It is important to note that the error signals in each of the harmonic rotating 

reference frames will not only contain a DC component representing the magnitude of 

that frame’s harmonic, but will also contain the representation of all of the other 

harmonic disturbances in that basis.  Thus the error signal in any given reference frame 

will be, 
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where k is the harmonic number of the rotating reference frame, and h is the harmonic 

number of all of the other ( )[ ] ω⋅−⋅ 16 n  frequencies.  The appropriate sign, must also 

precede the harmonic number in k and h corresponding to the sequence, positive or 

negative, in which the harmonic rotates.  Because the rotating frame error signals take the 

form given in (4.2), it is important that each rotating compensator have a low control 

bandwidth, so that it does not interfere with the controllers of other harmonics.  Ensuring 
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that the bandwidth of each harmonic controller is much less than the fundamental 

frequency, ω , will ensure that the interactions between different rotating controllers will 

be minimized. 

4.3.3.1.2 Zero Sequence Controller 

As shown above in Section 4.1.2, single-phase diode rectifiers cause zero 

sequence distortion at the odd triplen harmonics.  This distortion exists as disturbances in 

the stationary o-channel at the same harmonic frequencies, and thus cannot be rotated 

into a reference frame to be represented as DC quantities.  For this reason, zero damping 

bandpass filters, as described above in Section 3.3.3.1.2, can be utilized to increase the 

loop gain to approach infinity at the harmonic frequencies of interest.  With an infinite 

loop gain at the odd triplen harmonics, zero steady state errors can be achieved for these 

frequencies.  Figure 4.10 depicts the control structure for a zero sequence controller to 

eliminate 3rd harmonic distortion.  If additional odd triplen harmonics were to be 

compensated for, additional bandpass filters at those frequencies would be placed in 

parallel with the one shown below. 

 

Figure 4.10  Zero sequence 3rd harmonic controller structure 
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4.3.3.1.3 Complete Harmonic Controller 

By combining the control structures described in Sections 4.3.3.1.1 and 4.3.3.1.2 

above, zero steady state errors can be realized for the harmonics created by three-phase 

and single-phase diode rectifiers.  With these harmonics eliminated, the fundamental 

positive sequence controller will regulate the output to be a perfectly balanced three-

phase source.  The complete harmonic controller structure is displayed below in Figure 

4.11.  The three-phase reference in abc-coordinates will be the same as given in equation 

(3.10). 

 

Figure 4.11  Complete harmonic control structure 

4.3.3.2 Harmonic Control Design 

A harmonic control design for the inverter under study can be developed from the 

structure in Figure 4.11.  The fundamental compensators will be the same as detailed in 



Robert Gannett  CHAPTER 4 NON-LINEAR LOADING CONDITIONS 

 - 96 - 
 

Figure 2.14 and Table 2.2, with an inner current loop to damp the filter poles at light 

load.  For the sake of simplicity, compensation will only be implemented here for the 

dominant harmonics in each sequence. From the plots in Section 4.1, it is clear that the 

dominant harmonic in each sequence is lowest order harmonic.  Thus, the control will 

contain a zero sequence 3rd harmonic controller, a negative sequence 5th harmonic 

controller, and a positive sequence 7th harmonic controller.  However, stable 

compensation at these harmonics is difficult, because of the phase lag due to the digital 

delay.  The phase delay for the inverter under study at each of these harmonic frequencies 

is given in Table 4.1.  Mattavelli and Fasolo [29] propose to add phase lead to the 

transformation from the rotating harmonic frame back to the stationary frame.  This will 

change the dq to abc inverse Park’s transformation to: 

( ) ( )

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

�
�

	


�

� +⋅+⋅−�
�

	


�

� +⋅+⋅

�
�

	


�

� +⋅−⋅−�
�

	


�

� +⋅−⋅

+⋅−+⋅

=

kk

kk

kk

abcdq

tt

tt

tt

T

φπωφπω

φπωφπω

φωφω

3
2sin

3
2cos

3
2sin

3
2cos

sincos

3
2

/ , (4.3) 

where kφ  is the leading angle for the harmonic number k.  The inverse Park’s 

transformation provides a convenient means to add phase lead in the path of the negative 

and positive sequence harmonic controllers.  Because the zero sequence already exists in 

the stationary frame, there is no such simple means to add phase lead and stabilize the 

controller.  In order to accomplish appropriate stability margins for the zero sequence 

controller, the technique of utilizing complex zeros to achieve phase lead (Section 

2.2.2.3) will be employed.  By placing a set of complex zeros and a set of real poles at 

800 Hz, some phase lead will be achieved at frequencies after 800 Hz.  By choosing the 

proper Q factor for the complex zeros, the appropriate phase lead at 1200 Hz can be 

attained, as shown in Figure 4.12.  It is also important to notice that this phase lead 

network also reduces the gain at the harmonic frequency of 1200 Hz.  This will reduce 

the effectiveness of the 3rd harmonic controller. 



Robert Gannett  CHAPTER 4 NON-LINEAR LOADING CONDITIONS 

 - 97 - 
 

Table 4.1  Phase Delay at Harmonic Frequencies 

Harmonic Phase Delay
3rd 55º
5th 90º
7th 129º  

 

 

Figure 4.12  Bode diagrams of phase lead network for zero sequence controller 

Table 4.2 below lists the integrator gains and leading angles used for the 5th and 

7th harmonic controllers, as well as the transfer function for the 3rd harmonic, zero 

sequence controller.  The leading angle for the rotating controllers has been chosen to be 

90º greater than the phase delay at the harmonic frequency, in order to attain robust phase 

margins for these controllers.  The issue of stability will be discussed in more detail in the 

following section.  The rotating controller integrator gains have again been chosen 

according to the guidelines provided in Section 2.2.1.1 for conventional voltage loop 

control.  This will ensure that the controller bandwidths will be low enough to prevent 

interactions between the harmonic controllers. 
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Table 4.2  Harmonic Controller Parameters 

Parameter Value
G-5id 0.16
G-5iq 0.16
G+7id 0.16
G+7iq 0.16
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Using the control structure depicted in Figure 4.11 with the parameters given in 

Table 4.2, a significant improvement in output distortion should be accomplished over 

the open loop results given in Section 4.1.  Figures 4.13 and 4.14 show the output voltage 

distortion in the time and frequency domains with a full three-phase diode rectifier load.  

Comparing these results to Figures 4.2 and 4.3, the THD has been decreased to 5.2%, 

with the 5th and 7th harmonics essentially eliminated.  The remaining THD is the result of 

the higher frequency harmonics that are not controlled, and are only attenuated by the 

output filter.  If further THD reduction is required, then higher frequency harmonics must 

be controlled.  The results for a full balanced load of single-phase diode rectifiers are 

displayed in Figures 4.15 and 4.16.  In comparison to the results displayed in Figures 4.5 

and 4.6 for open loop operation, the THD has been reduced to 1.5%, with the 3rd, 5th, and 

7th harmonics all significantly attenuated.  The 3rd harmonic has a slightly larger 

magnitude because of the damping added to the bandpass filter and because of the loop 

gain reduction at the harmonic frequency due to the phase-lead network (see Figure 

4.12). 
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Figure 4.13  Output phase voltage (-) and current (--) under 90 kVA three-phase  

diode rectifier with harmonic controllers 

 

Figure 4.14  Frequency components of the output phase voltage under 90 kVA 

three-phase diode rectifier with harmonic controllers 
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Figure 4.15  Output phase voltage (-) and current (--), and neutral current (-.) under 

90 kVA single-phase balanced diode rectifiers with harmonic controllers 

 

Figure 4.16  Frequency components of the output phase voltage under 90 kVA 

single-phase balanced diode rectifiers with harmonic controllers 
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Figure 4.17 displays the abc-coordinate error signal representation in the 5th (a) 

and the 7th (b) harmonic frames.  The controllers have been turned on under non-linear 

loading at a time of 100 milliseconds in order to show the transient response of the 

rotating harmonic controllers.  It is clear that the DC component of the error signals for 

both the 5th and 7th harmonic controllers approaches zero over the span of several 400 Hz 

line cycles.  The speed of response here is similar to the negative sequence controller for 

the unbalance control and the conventional low bandwidth voltage loop control, because 

the integrator gains for each of these controllers are the same.  The high frequency 

components of the error signals represent the harmonic distortion at frequencies other 

than the rotating frequency of the harmonic frame. 

 
(a) 

 
(b) 

Figure 4.17  (a) 5th harmonic controller transient response for the d-channel;  

(b) 7th harmonic controller transient response for the d-channel 
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4.3.3.3 Stability Analysis 

Because the selective harmonic control technique is regulating frequencies at 

which the phase has rolled off significantly from the digital delay, it is important that 

system stability is investigated.  Using the transformation (3.12) from [25], the harmonic 

controllers along with the fundamental control can be expressed in the stationary αβ  

reference frame.  Figure 4.18 displays the magnitude Bode plot for the αβ  loop gains.  

The large loop gains at the fundamental frequency and the 5th and 7th harmonics ensures 

that near zero steady state error tracking of the reference will be achieved for those 

frequencies.  The phase Bode plot has been omitted here because the large phase jumps at 

the resonant frequency of the bandpass filters makes deciphering the phase information 

from the Bode plot very difficult.  A simpler way to examine the stability of the system is 

through the Nyquist stability criterion.  According to the Nyquist stability criterion, a 

negative unity feedback system is stable if and only if the number of counterclockwise 

(CCW) encirclements of the (-1,0) point in the plot of the Nyquist contour mapped 

through the loop gain is equal to the number of open loop right half plane (RHP) poles.  

Stated in the format of an equation, the Nyquist stability criterion becomes, 

pnz NNN += , (4.4) 

where zN  is the number of closed loop RHP poles, nN  is the number of encirclements of 

the (-1,0) point (+1 for CW encirclements and –1 for CCW encirclements), and pN  is the 

number of open loop RHP poles.  Obviously, zN  must be zero in order for the closed 

loop system to be stable.  Figure 4.19 displays the Nyquist plot for the αβ  loop gains.  

Because there are no encirclements of the (-1,0) point and no open loop RHP poles, 

initial analysis indicates that the closed loop system is stable. 

Figure 4.20 displays the magnitude of the stationary o-channel loop gain for the 

harmonic control.  The sharp increase in the loop gain at 1200 Hz represents the 3rd 

harmonic zero sequence controller.  However, the gain at this frequency does not 

approach infinity.  This is a result of the damping added to the 3rd harmonic bandpass 

filter in order to ensure convergence of the simulation package.  The phase Bode diagram 
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is again omitted, in favor of a Nyquist plot to examine system stability.  Figure 4.21 

shows the Nyquist plot for the o-channel loop gain.  For the o-channel, there are no open-

loop RHP poles, and no encirclements of the (-1,0) point, so the initial analysis indicates 

closed loop stability. 

 

Figure 4.18  Stationary frame (alpha/beta) loop gain for harmonic control 

 

Figure 4.19  Nyquist diagram of the stationary frame (alpha/beta) loop gain for 

harmonic control with modeled digital delay 
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Figure 4.20  O-channel loop gain for harmonic control 

 

Figure 4.21  Nyquist diagram of the o-channel loop gain for harmonic control with 

modeled digital delay 

4.3.3.4 Harmonic Control Analysis 

The use of harmonic controllers in four-leg VSIs can achieve near zero steady 

state errors for the compensated harmonics under non-linear loading.  Because the 

harmonic currents they draw, and the sequence in which the currents are present, can 

characterize non-linear loads, harmonic controllers can be specifically targeted to achieve 

zero steady state errors for the dominant voltage harmonics that the non-linear load 



Robert Gannett  CHAPTER 4 NON-LINEAR LOADING CONDITIONS 

 - 105 - 
 

creates.  As shown above, the use of these harmonic controllers can enable a drastic 

improvement in the level of power quality in high power inverter-fed power systems. 

The use of harmonic controllers places new constraints on the inverter DC bus 

voltage.  The harmonic controllers will inject sinusoidal terms into the DC dqo duty 

cycles provided by the fundamental controllers.  Consequently, the DC voltage overhead 

will be reduced, and the DC bus voltage may need to be increased in order to ensure that 

the duty cycles do not saturate.  This is obviously an important issue that must be 

addressed in simulations on a case by case basis, or analyzed further as future work. 

It is important also to examine the transient behavior of the harmonic controllers.  

Because the bandwidth of the harmonic controllers has been chosen to be quite low, this 

control technique will only perform well under slowly time-varying non-linear loading.  

Under extreme conditions, such as a fast load step, the harmonic controllers may even 

decrease the performance of the inverter.  For example, when the harmonic controllers 

have reached steady state under a heavy non-linear load, they will be injecting large 

sinusoidal terms into the dqo duty cycle to compensate for the voltage distortion.  If this 

load rapidly steps down to light load, the harmonic controllers will take some time to 

reach the new steady state with much smaller sinusoidal duty cycle commands.  In the 

interim, the large sinusoidal terms in the dqo duty cycles will cause significant output 

voltage distortion, because the load is no longer drawing large harmonic currents.  The 

result is that loads may experience a significant peak voltage transient and repetitive 

overvoltage conditions.  Therefore, a scheme to reset the harmonic controller integrators 

under severe load steps should be employed. 

The harmonic control structure detailed above will require a significant amount of 

processing time to accomplish.  Each rotating frame will require additional 

transformations, and thus additional processing time.  This fact may limit the number of 

harmonics that are possible to control in a physical implementation of the structure 

described in the section above.  The harmonics that may be regulated are also limited by 

another constraint.  Assuming that the digital sampling frequency is the same as the 

power stage switching frequency, the maximum frequency that can be controlled is half 
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of the switching frequency, because frequencies above this cannot be resolved by the 

specified sampling frequency (Nyquist sampling theorem).  Harmonics above half of the 

switching frequency cannot be controlled, and thus the output filter must be relied upon 

to sufficiently attenuate these harmonics without the possibility of achieving zero steady 

state errors. 

4.4 Summary of Non-Linear Loading Solutions 

Because of the low control bandwidth of high power VSIs, harmonic distortion 

due to non-linear loads can be a significant problem in inverter-fed power systems.  

Traditional solutions to harmonic distortion in power systems, while effective, all require 

additional hardware to be inserted into the power system.  The techniques of passive 

filtering and paralleling inverters will attenuate the output distortion by lowering the 

output impedance of the VSI.  However, only the active filter has the possibility to 

exactly correct for harmonic distortion and achieve zero steady state errors.  The 

technique of selective harmonic elimination is unique and extraordinarily beneficial 

because it essentially integrates the high power VSI and an active power filter into a 

single power stage, made possible through the control structure described in Section 

4.3.3.  While the utilization of a selective harmonic elimination control scheme will 

possibly increase the one-time development time and cost of a high power inverter (due 

to more involved DSP coding), it is significantly more profitable than increasing the 

recurring manufacturing and parts costs that will accompany the traditional solutions (due 

to the additional hardware required).  This is the genuine value of the proposed control 

strategy. 

The proposed control structure is not without its own significant drawbacks.  If 

several harmonics are to be controlled, then two or more DSPs may be required in order 

to accomplish all of the calculations associated with transforming the error signal into all 

of the rotating reference frames.  This considerably increases the control complexity to 

the point that it may become infeasible.  However, a simplification of the control scheme 

for digital implementation has been proposed in literature [29].  The authors propose an 

equivalent control in the stationary frame, consisting of a digital Finite Impulse Response 



Robert Gannett  CHAPTER 4 NON-LINEAR LOADING CONDITIONS 

 - 107 - 
 

(FIR) filter of N taps, where N is the number of samples in a fundamental period.  In this 

manner, compensation for additional harmonics does not require additional calculations, 

it only requires a change in the characteristics of the FIR filter.  This simplification for 

implementation makes the technique of selective harmonic elimination even more 

practical and remarkable. 
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5 CONCLUSIONS AND FUTURE RESEARCH 

5.1 Conclusions 

The research reported in this thesis has focused on the interesting challenges 

presented to inverter-fed, high power systems by specific loading conditions.  No-load, 

unbalanced loading, and non-linear loading each have unique characteristics that 

negatively influence the performance of the VSI.  Ideal, infinitely stiff systems are 

uninfluenced by loading conditions; however, realistic systems, with finite output 

impedances, encounter stability issues, unbalanced phase voltage, and harmonic 

distortion.  The research reported in this thesis has taken a control approach to solve these 

problems. 

The traditional solution to lightly loaded or unloaded conditions is simply to 

design low controller bandwidths, such that stable operation of the VSI is ensured.  While 

this approach effectively addresses the problem, the result will be very poor transient 

performance of the system.  The use of an inner current control loop has been shown, 

through theory and simulation, to provide increased damping of the filter poles at light 

load, enabling the voltage control bandwidth to be increased.  For the system example in 

this thesis, the control bandwidth was improved by and order of magnitude, significantly 

enhancing transient performance.  Utilization of an inner current loop has been shown to 

have the added benefit of minimizing the effect of the coupling between the d- and q-

channels in the average plant model. 

Traditionally, unbalanced loading conditions are offset in control by using a load 

current feedforward controller.  While effective in ideal simulations, the load current 

feedforward controller’s performance is significantly decreased under realistic 

conditions.  Therefore, a voltage feedback control structure, based on negative and zero 

sequence controllers, has been proposed.  As predicted in concept, this control strategy 

has been demonstrated through simulation to achieve near zero steady state error for the 

inverter under study. 
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The established solutions for harmonic distortion in power systems, while 

effective, all involve the addition of excess hardware.  In an attempt to reduce the use of 

bulky and expensive hardware, a voltage feedback control scheme has been proposed.  

This control structure, in concept, realizes near infinite loop gain at the discrete harmonic 

frequencies of interest.  The concept has been proven, through simulation of the inverter 

under study, to achieve near zero steady state errors for the dominant low frequency 

harmonics characteristic of common non-linear loads. 

5.2 Direction of Future Research 

The research presented in this thesis, while promising for high power VSIs, is 

certainly far from complete.  Implementation of the control strategies must be 

demonstrated in a physical system in order to fully prove the concepts.  Experimental 

results for the unbalanced and non-linear control techniques on three-leg inverters are 

given in literature [24, 29] for low power VSIs (~ 3 kVA).  However, application to 

higher power four-leg inverters must also be demonstrated. 

In order to achieve the best overall inverter performance, all of the proposed 

control strategies presented in this thesis should be implemented together.  However, 

initial simulations including both unbalance and harmonic control resulted in unstable 

inverter operation.  Further investigation revealed that interaction between the zero 

sequence bandpass filters for unbalance control and 3rd harmonic control caused the zero 

sequence controller to become unstable.  The preliminary solution of simply reducing the 

gains of the bandpass filters stabilized the system, but reduced performance.  Further 

work should be done in order to completely understand the interactions between these 

controllers.  This will involve a mathematically rigorous study of the steady state and 

transient system stability.  It is important to note that the stability analyses performed in 

this thesis were not mathematically rigorous and only lend an indication of system 

stability.  Because the stability was analyzed in the stationary reference frame, there is no 

single steady state operating point (state variables are time-varying).  Thus, this quasi-

steady state analysis only lends insight into the stability at the operating point which the 
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inverter model is linearized around.  As a result, system stability cannot be guaranteed 

without further analysis. 

All of the concepts and simulation results given in this thesis were the result of a 

continuous time domain implementation.  In the physical implementation, all of the 

control will be realized in a digital signal processor.  For this reason, discrete time 

domain implementation of the control strategies should tested in simulations in order to 

better predict the physical system performance.  In addition, a digital model of the VSI 

should be developed in order to facilitate more accurate system stability studies.  The 

simplification for digital implementation of harmonic controllers [29] should also be 

studied in more detail for application to four-leg inverters, because this technique holds 

some promise for significantly reducing processing times and facilitating the 

compensation of additional harmonics. 
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APPENDIX A PARK’S TRANSFORMATION 

The time-variation of a balanced three-phase vector representation in orthogonal 

abc-coordinates causes it to exist in a two-dimensional subspace that is perpendicular to 

the vector [ ]T111 .  Based on this fact, a new αβγ -coordinate system is often defined.  

The α -axis is defined as the projection of the a-axis in abc-coordinates onto the plane 

perpendicular to the vector [ ]T111 .  The γ -axis is co-linear with the vector [ ]T111  

in abc-coordinates, and the β -axis is defined by the right-hand rule.  Thus, the time-

variation of a balanced symmetrical and sinusoidal three-phase vector in abc-coordinates 

appears as a vector of constant magnitude rotating counter-clockwise at an angular speed 

of ω  (fundamental frequency) in αβγ -coordinates.  This is represented graphically with 

the three-phase variable v�  in Figure A.1.  The γ -axis points out of the paper, and the γ  

component of a balanced three-phase vector will always be zero.  The γ  component will 

be nonzero when the three-phase variable is unbalanced or has unequal phase shifts. 

 

Figure A.1  Balanced three-phase vector representation in αβγ -coordinates 
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A rotating coordinate system can now be defined to enable the vector 

representation to become a constant without any time-variation.  Thus, a dqo-coordinate 

system has been defined, such that the d- and q-axes rotate at the angular frequency ω  in 

the αβ -plane.  The o-axis is the same as the γ -axis.  This is displayed graphically in 

Figure A.2.  A balanced three-phase vector representation in this rotating dqo-coordinate 

system will now be constant over all time. 

 

Figure A.2  Balanced three-phase vector representation in dqo-coordinates 

The transformation matrices to change basis from abc-coordinates to dqo-

coordinates, and from dqo-coordinates to abc-coordinates, without changing the length of 

the vectors, are given below in equations (A.1) and (A.2), respectively. 
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APPENDIX B SYMMETRICAL DECOMPOSITION 

All sinusoidal three-phase variables, balanced or unbalanced, can be decomposed 

into balanced positive sequence, negative sequence, and zero sequence components.  

Using phasor representation, a balanced three-phase voltage, [ ]T
cba VVV , in 

sinusoidal steady state is composed of only positive sequence components, 

[ ] [ ]TT
cba aaVVVV 21⋅= ++++ , (B.1) 

where +V  is the positive sequence voltage magnitude and “ a ” is a 120º phase lag, 

2
3

2
1º120 ⋅−−== − jea j . (B.2) 

An unbalanced sinusoidal three-phase voltage will have negative and zero sequence 

components, which are given in equations (B.3) and (B.4), respectively, 

[ ] [ ]TT
cba aaVVVV 21⋅= −−−− , (B.3) 

[ ] [ ]TT
cba VVVV 1110000 ⋅= , (B.4) 

where −V  is the negative sequence voltage magnitude and 0V  is the zero sequence 

voltage magnitude. 

It is clear from the definitions above that the positive and negative sequence 

components are balanced and can be represented as DC quantities in separate dq 

reference frames, rotating in a counter-clockwise (CCW) direction for the positive 

sequence and in a clockwise (CW) direction for the negative sequence.  The zero 

sequence component is the same for all phases, and thus may not be represented as a DC 

quantity in a rotating dq reference frame. 
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The magnitudes for each of the components can be extracted from the three-phase 

phasor representation using the transformation matrix given in equation (B.5) below.  

Equation (B.6) gives the inverse transformation matrix. 
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APPENDIX C LOAD CHARACTERIZATION 

This appendix will characterize two common types of non-linear power system 

loads according to the harmonic currents that they draw from balanced three-phase 

sources.  The currents can be represented as a summation of harmonic components using 

a trigonometric Fourier series expansion: 

( ) ��
∞

=

∞

=

++=
1

0
1

00 sincos
n

n
n

n tnbtnaatx ωω , (C.1) 

with the following definitions, 

( )�=
0

 1

0
0 T

dttx
T

a , (C.2) 

( )�=
0

 cos2
0

0
Tn dttntx

T
a ω , (C.3) 

( )�=
0

 sin2
0

0
Tn dttntx

T
b ω . (C.4) 

C.1 Three-Phase Diode Rectifier 

A single period of the phase currents drawn by a three-phase diode rectifier takes 

the form of those shown in Figure C.1.  The currents drawn by the rectifier may by 

moderately different due to varying rectifier filters and loads; however, the currents will 

always take a similar form.  Equations (C.5) to (C.7) give the discontinuous time domain 

functions for the phase currents shown in Figure C.1.  In these equations, oT  is the period 

of the fundamental frequency, and “A” is the amplitude of the current peaks. 
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Figure C.1  Phase a (-), phase b (--), and phase c (-.) currents for a three-phase diode 

rectifier 
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Using these definitions for the phase currents, the trigonometric Fourier series 

coefficients for each of the phases can be calculated.  It is clear that the 0a  coefficient is 

zero for each of the phase currents, because the average value of all of the waveforms 

will be zero.  The na  coefficients for each phase are calculated to be: 
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The nb  coefficient for phase c is zero by inspection because the c phase current 

representation is symmetric about the y-axis (even function).  The nb  coefficients for the 

other phases are calculated to be: 
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Normalizing these coefficients (A=1) and examining the 5th harmonic (n=5) 

yields the following equations for the 5th harmonic component of the phase currents: 

( ) tttia 005 5sin3101.05cos179.0 ωω += , (C.13) 

( ) tttib 005 5sin3101.05cos179.0 ωω −= , (C.14) 

( ) ttic 05 5cos3581.0 ω−= . (C.15) 

Rearranging equations (C.13) to (C.15) yields, 

( ) ( )º305sin3581.0 05 += ttia ω , (C.16) 

( ) ( )º1505sin3581.0 05 += ttib ω , (C.17) 

( ) ( )º905sin3581.0 05 −= ttic ω . (C.18) 

From equations (C.16) to (C.18), it is clear that phase a leads phase c by 120º and lags 

phase b by 120º.  Thus, the phase sequence is phase a →phase c →phase b.  This 
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obviously represents the negative sequence, and would thus rotate in the negative, or CW, 

direction in the αβ -plane. 

Examining the 7th harmonic (n=7) yields the following 7th harmonic phase current 

equations: 

( ) tttia 007 7sin124.07cos0716.0 ωω −= , (C.19) 

( ) tttib 007 7sin124.07cos0716.0 ωω += , (C.20) 

( ) ttic 07 7cos1432.0 ω−= . (C.21) 

Rearranging equations (C.19) to (C.21) yields, 

( ) ( )º1507sin1432.0 07 += ttia ω , (C.22) 

( ) ( )º307sin1432.0 07 += ttib ω , (C.23) 

( ) ( )º907sin1432.0 07 −= ttic ω . (C.24) 

From equations (C.22) to (C.24), it is clear that phase a leads phase b by 120º and lags 

phase c by 120º.  Thus, the phase sequence is phase a →phase b →phase c.  

Consequently, the 7th harmonic components of the phase currents exist in the positive 

sequence, and rotate in the CCW direction in the αβ -plane. 

Further analysis of the Fourier series representations of the phase currents reveals 

that all of the even harmonics and odd triplen harmonics (3rd,9th,15th, etc.) are identically 

zero.  Additionally, all of the ( )[ ]16 −⋅ m  harmonics, as demonstrated for the 5th 

harmonic, will be negative sequence, and all of the ( )[ ]16 +⋅ m  harmonics, as 

demonstrated for the 7th harmonic, will exist in the positive sequence (where m  is any 

positive, real integer). 
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C.2 Single-Phase Diode Rectifier 

For the purpose of this discussion, the single-phase diode rectifier displayed in 

Figure 4.4 will be used.  Although other single-phase diode rectifier topologies exist, this 

topology along with a four diode bridge rectifier are the most common and will display 

similar harmonic results.  Figure C.2 displays a single period of the phase currents 

(neutral current omitted) drawn by a typical load of balanced single-phase diode 

rectifiers.  Equations (C.25) to (C.27) give the discontinuous time domain functions for 

the phase currents shown in Figure C.2.  In these equations, oT  is the period of the 

fundamental frequency, and “A” is the amplitude of each of the current peaks. 

 

Figure C.2  Phase a (-), phase b (--), and phase c (-.) currents for a load of single-

phase diode rectifiers 
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Using equations (C.25) to (C.27), the trigonometric Fourier series coefficients for 

each of the phases can be calculated.  The 0a  coefficient is zero for each of the phase 

currents, because the average value of all of the waveforms is clearly zero.  The na  

coefficients for each phase are calculated to be: 
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The nb  coefficients for each of the phases are calculated to be: 
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Normalizing these coefficients (A=1) and examining the 3rd harmonic (n=3) 

yields the following equations for the 3rd harmonic component of the phase currents: 

( ) ( ) ( )ttti ooa ωω 3sin2067.03cos1194.03 −= , (C.34) 

( ) ( ) ( )ttti oob ωω 3sin2067.03cos1194.03 −= , (C.35) 

( ) ( ) ( )ttti ooc ωω 3sin2067.03cos1194.03 −= . (C.36) 

The 3rd harmonic components of the phase currents are all identical, and thus the 3rd 

harmonic currents clearly exist in the zero sequence. 
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Examining the 5th harmonic (n=5) yields the following 5th harmonic phase current 

equations: 

( ) tttia 005 5sin0689.05cos1194.0 ωω += , (C.37) 

( ) ttib 05 5sin1378.0 ω−= , (C.38) 

( ) ttti oc ωω 5sin0689.05cos1194.0 05 +−= . (C.39) 

Rearranging equations (C.37) to (C.39) yields, 

( ) ( )º605sin1378.0 05 += ttia ω , (C.40) 

( ) ( )º1805sin1378.0 05 += ttib ω , (C.41) 

( ) ( )º605sin1378.0 05 −= ttic ω . (C.42) 

From equations (C.40) to (C.42), it is clear that phase a leads phase c by 120º and lags 

phase b by 120º.  As did the 5th harmonic for the three-phase diode rectifier, the phase 

sequence here is phase a →phase c →phase b.  This obviously represents the negative 

sequence, and would thus rotate in the negative, or CW, direction in the αβ -plane. 

Examining the 7th harmonic (n=7) yields the following 7th harmonic phase current 

equations: 

( ) tttia 007 7sin0345.07cos0597.0 ωω +−= , (C.43) 

( ) ttib 07 7sin0689.0 ω−= , (C.44) 

( ) ttti oc 07 7cos0345.07cos0597.0 ωω += . (C.45) 

Rearranging equations (C.43) to (C.45) yields, 

( ) ( )º607sin0689.0 07 −= ttia ω , (C.46) 



Robert Gannett  APPENDIX C LOAD CHARACTERIZATION 

 - 125 - 
 

( ) ( )º1807sin0689.0 07 −= ttib ω , (C.47) 

( ) ( )º607sin0689.0 07 += ttic ω . (C.48) 

From equations (C.46) to (C.48), it is clear that phase a leads phase b by 120º and lags 

phase c by 120º.  As was true for the 7th harmonic for three-phase diode rectifiers, the 

phase sequence here is phase a →phase b →phase c.  Consequently, the 7th harmonic 

components of the phase currents exist in the positive sequence, and rotate in the CCW 

direction in the αβ -plane. 

By further examination of the Fourier series coefficients, it can be determined that 

all of the even harmonic components of the phase currents will be exactly zero.  Also, all 

of the additional odd triplen harmonics, like the 3rd harmonic, will exist in the zero 

sequence.  Finally, as was determined for the three-phase diode rectifiers, all of the 

( )[ ]16 −⋅ m  harmonics will be negative sequence, and all of the ( )[ ]16 +⋅ m  harmonics 

will exist in the positive sequence (where m  is any positive, real integer). 
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