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(Abstract)

Rugged terrains, including much of the earth’s surface, other planets, and many man-
made structures, are inaccessible to wheeled and tracked vehicles. This has inspired
research into legged vehicles. Prior to the research described here, virtually all
legged vehicle designs relied on the concept of mounting actuated leg-type
mechanisms onto a single rigid frame or chassis. This dissertation research explores
and advances a novel vehicle concept that uses passive legs attached to an actuated
multibody structure. This new vehicle moves only its actuated body trunk to achieve
locomotion; thus moving in a manner similar to that used by insect larvae known as
caterpillars. The passive-legged design is termed a “crawling” vehicle, to differentiate

it from “walking” vehicles, which have powered legs.

A conceptual design for the proposed vehicle was developed using insights from
observations of caterpillar specimen geometry, gaits, leg trajectories, and ranges of
motion. The flexible, segmented body of the robot is realized using a series of
actuated truss-like mechanisms, resulting in a configuration similar to the body

structure of caterpillars.



A computer simulation was developed to verify the concept and to assist in creating
future designs. This simulation includes a parametric model of the robot structure, an
efficient kinematics model, a motion programming method based on six-dimensional
parametric cubic trajectories, static stability analysis, actuator velocity and
acceleration analysis, wire-frame animations, and rendering, thus providing synthesis

and analysis tools for this new class of vehicle.

Results of this work show that by using properly designed Stewart-Gough platform
mechanisms for the vehicle multibody structure, a range of motion very similar to
that of caterpillars is achievable. Simulation tests showed that imitating the
caterpillars” primary gait (or stepping sequence) yields superior speed and efficiency,

with little reduction of stability, when compared to a simpler, more obvious gait.

With proper controls, this crawling vehicle will, like its biological counterpart, be
intrinsically stable and have excellent maneuverability over rough terrain. The
crawling vehicle is shown to be a viable legged locomotion system that may prove
to have superior rough terrain mobility to all previous types of man-made land

vehicles.
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