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(ABSTRACT) 

 

A Java applet is developed to interactively and dynamically illustrate the fundamental 

concepts of finite element analysis. An applet is a computer program written in the 

object-oriented Java programming language and is embedded in web pages. Java applets 

are well suited for delivering interactive graphical content over the Internet since they are 

platform and operating system independent. The applet developed includes a wide range 

of elements including one-dimensional truss and beam elements, triangular and 

quadrilateral plane stress and plane strain elements, and two-dimensional four-node and 

eight-node iso-parametric elements and plate elements. Along with the applet there is a 

series of web pages describing the fundamental concepts of finite element analysis, 

example problems and instructions for use. The applet provides a novel approach for 

teaching basic finite element analysis concepts. It provides students a means for checking 

their work, reinforces fundamental concepts learned in class, and enhances students’ 

learning experiences by allowing them to experiment by building and analyzing complex 

models and visualizing results as changes are made to the model. The applet can be used 

as supplementary material complementing classroom and textbook instruction. 
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Chapter 1: Introduction 
 

1.1 Introduction 

The finite element method is the most widely used tool for computer-based 

numerical solution of a wide range of engineering problems. This method is used for 

solving problems in application areas such as structural analysis, heat transfer, fluid 

mechanics, vibrations, seepage, electrical and magnetic fields, and many other fields. 

With the application of this method, problems that were previously intractable are now 

solved routinely. 

The finite element analysis method is an approximate method where a large 

number of simultaneous equations are solved and a considerable amount of 

computational effort is required. With the rapid advancement in programming 

technologies and computing hardware, the finite element method has become a popular 

method for analyzing structures. 

The rapid increase in enrollment in engineering colleges coupled with a shortage 

of teachers has posed new educational challenges. These challenges have motivated 

educators to look for new technology such as the Internet.  Homes, public libraries, and 

corporate learning rooms with access to the Internet have become new places for learning 

and have reduced the need for the traditional teacher and classroom approach to 

education.  

Web based teaching has enhanced and pioneered new learning opportunities. It is 

a new medium of instruction which can reach everyone without time or distance 

constraints. This has led to the creation of a curriculum which is more student centric and 

allows them to work at their own pace. Important elements of web based learning are the 

incorporation of graphics and the opportunity for students to interact with the application. 

Java applets are an excellent means for developing interactive programs to explain 

fundamental concepts. The work presented here utilizes Java to create a web based 

learning resource for teaching finite element analysis. 
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1.2 Objective and Scope 

 Finite element analysis is generally taught at the graduate level in most 

universities due to the complexities associated in explaining the concepts. However, with 

the rapid growth and widespread use of this method, there is now a growing trend and 

need to teach finite element analysis at the undergraduate level. Given the importance of 

finite element analysis, it is essential that engineering students have a good understanding 

of the fundamental concepts of finite element analysis and the computational procedures 

and programming methodologies used in the implementation. 

The primary objective of this work is to develop a web-based applet in Java for teaching 

finite element analysis. The applet incorporates a wide range of finite elements such as 

one-dimensional truss and beam elements, triangular and quadrilateral plane stress and 

plane strain elements, two-dimensional four-node and eight-node iso-parametric 

elements, and plate elements. The applet is interactive and makes extensive use of 

graphics. It has features for entering the finite element model of the structure such as joint 

coordinates, supports, connectivity information, element data, material properties, and 

loading, and for graphically displaying the finite element model as it is entered.  

 A second goal of the work is to develop a website where the applet will be hosted. 

The web site has detailed information on the formulation of the various elements, 

implementation details such as a description of the various classes used to represent the 

different elements and the analysis procedure, and instructions for using the applet and 

representative examples. To verify the accuracy of the program, results obtained from 

this applet are compared with those obtained from SAP 2000, a commercial finite 

element analysis program. 

 

1.3 Organization 

 This thesis is divided into nine chapters including the Introduction. The second 

chapter deals with an overview of the finite element analysis method, the use of the web 

for teaching, and the Java language. Chapter 3 presents the development of the one-
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dimensional bar element and the two-dimensional truss elements and describes the 

implementation of these elements in Java. The two-dimensional beam element and its 

implementation in a Java applet is presented in Chapter 4. In Chapter 5, the development 

of membrane elements such as the CST element, four-node iso-parametric quadrilateral 

element, eight-node iso-parametric quadrilateral element, and their implementation in 

Java is discussed. Chapter 6 presents the development of plate bending elements and their 

implementation in Java. A description of the Java applet, the program structure, and the 

user interface is given in Chapter 7. In Chapter 8 the results obtained for test problems 

are compared with SAP 2000. Finally, Chapter 9 presents the summary of work done and 

offers suggestions for future development. 

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3 
 

 
 



 

Chapter 2: Background 
 

 

2.1 Introduction 
 

 The finite element method was first introduced by Richard Courant in 1943. The 

application of this method gained significance in the early to late 1950’s when it was 

used for airframe and structural analysis. This was the time during which Turner et al. 

derived stiffness matrices for truss, beam, and other elements (Chandrupatla et al.. 1997). 

The term finite element was coined and used by Clough (1960) as a finite set of discrete 

objects used to model a continuum (Chandrupatla et al. 1997). An element is an 

individual piece used in approximating a continuum.  

In a finite element problem, a continuous structure is discretized with a set of 

finite elements. The material and physical governing relationships such as stress-strain, 

compatibility, and equilibrium principles are applied over these elements in terms of 

unknown values at nodes (Chandrupatla et al. 1997). The individual elements are then 

assembled to form the structure. The assembled system along with the loads and the 

boundary conditions reduce to a set of equations. The solution of this system gives the 

approximate behavior of the structure. 

The accuracy of the solution depends mainly on two factors, the function used to 

approximate the element behavior and the number of elements into which the structure is 

discretized. This has led to the development of higher order elements which can predict 

the behavior of a structure with fewer elements. This method is also known as the p-

method of refinement where the polynomial function is modified for refining the results. 

Another method for decreasing errors is by processing more equations (Cook 1989), that 

is, representing the structure with a large number of simpler elements, also known as the 

h-method of refinement. 
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Recent developments in the finite element method include the introduction of 

different elements to solve complex structural problems. There are five major types of 

elements – truss, beam, two-dimensional plane stress, shell, and solid elements.  

The attractiveness of the finite element method is mainly due to its versatility 

since it can be applied to structures with arbitrary shape and irregular loadings. Another 

feature of the finite element method is its close resemblance to a real physical structure. 

Thus the mathematical model is not purely an abstraction (Cook 1989). Hence this 

method provides better insight into understanding the behavior of a structure. The 

division of a continuum into smaller sub-domains called elements has many other 

advantages. It allows inclusion of dissimilar materials and enables the accurate 

representation of the solution within each element to deal with local effects (Reddy 

1993). 

Solving the system of equations is computationally intensive and this method 

would not have been so popular if digital computers were not available. The widespread 

success of the finite element method is partly attributed to the rapid development in 

computers, availability of powerful programming languages, and the development of 

commercial software packages such as ANSYS, ABAQUS, NASTRAN, and SAP. The 

advances in and the ready availability of computers and software has brought this method 

within the reach of most engineers and students (Chandrupatla et al. 1997). 

The finite element method also has some disadvantages. In general, the analysis 

of a finite element problem requires a large amount of input data. Also, the output 

obtained can be quite extensive and has to be properly sorted out. Hence engineering 

judgment and experience are required for making proper use of the results obtained 

(Cook 1989). This method cannot be taken for granted just because of its superiority as 

compared to classical methods of analysis. The improper use of elements may lead to 

inaccurate results. As with other software, providing a finite element program with 

inappropriate data and support conditions may lead to incorrect results. Hence it is 

recommended that the results obtained from finite element analysis be compared with 

those obtained from manual calculations made on a simplified model of the structure. 
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2.2 Web Based Teaching 
  

The World Wide Web has emerged as a powerful tool for teaching. The Web has 

allowed people to share information unprecedented in human history (Wikipedia 2005). 

The Internet has created a virtual world wherein people from any place can learn about 

anything at any time, thereby erasing geographical boundaries and time frames. This new 

technology has paved the way for creating universal resources for teaching.  

Web based teaching allows integrated environments of various technologies to 

support diverse learners’ needs via the internet (Storey et al. 2002). Storey et al. (2002) 

emphasize the multiple roles played by the web in complementing class room work and 

enhancing students understanding.  

In a report submitted to the President of the United States, the Web Based 

Education Commission (2000) headed by then senator Bob Kerry calls on educators to 

use the full potential of the web as a tool for learning, to expand the horizons of students 

of all ages. The report speaks about the advantages of the web and multiple paths such as 

graphics, video, and sound. The commission also suggests that the administration should 

embrace “e-learning” as an agenda of the nation’s federal education policy. 

In 2004 NASA launched a web based education program for providing resources 

to teachers and students about microgravity. The site has attracted students from over 100 

countries with 1.5 million hits over the past two years. The success of this program led to 

further innovation of web imparting resources at various levels, and special features such 

as quizzes, puzzles, and games were added to make learning more interesting. 

Web based learning has added a new dimension to computer based teaching. 

Traditional computer based teaching methods were created using MS-PowerPoint slides 

or animations generated by software packages like 3Dmax, Flash, GIF animator, etc. 

Although these techniques helped in understanding fundamental concepts in a better 

manner, they had several limitations. A significant limitation was the inability to perform 

real time simulations and calculations. They could only be used to demonstrate a set of 

predefined examples which restricted the students’ understanding of the concepts under a 

different set of conditions. This limitation can be avoided if the teaching method is based 

on interactive software which makes it possible to explain concepts for a variety of 
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conditions and also allows the students to explore various possibilities and behavior 

under a variety of inputs. 

Another issue of traditional computer based pedagogy is that it uses large amounts 

of resources. Animation file sizes are huge and a lot of bandwidth is required for 

transferring these files across the Internet. This becomes a serious issue when a student or 

tutor in a remote place cannot afford the cost associated with high bandwidth. Also, any 

updates made to the software require that these files be downloaded again.   

The problems mentioned above can be overcome if web-based instructional units 

are developed in the Java programming language. With Java, it is possible to develop 

interactive web based computational software that can be accessed over the Internet with 

a Java enabled browser.  

 

2.3 Java Programming Language 
 

 Java is an object oriented programming language developed by Sun Microsystems 

in the year 1991. There were five primary goals in the creation of the Java language 

(Wikipedia, 2005) 

• It should use the object oriented programming methodology 

• It should allow the same program to run on different platforms 

• It should contain built-in support for using computer networks 

• It should allow the code to be executed securely from remote locations 

• It should be easy to use, like C++ 

Java is an object oriented programming language, that is, the program is composed of 

a collection of units called objects. In an object oriented program each object can 

communicate with other objects or can inherit properties from other objects. Object 

oriented programming provides more flexibility, and changes to a program can easily be 

made. This property is what makes Java an ideal tool for developing finite element 

analysis software. 

 To manage increasing complexity, object oriented programming organizes a 

program around its data. Classes are templates used to construct objects. The following 

are the basic principles of object oriented programming (Hunt 1998). 
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Abstraction: An abstraction denotes the essential characteristics of an object that 

distinguishes it from all other objects and thus provides well defined boundaries. The 

concept of abstraction is used to break large complex procedures into small simple 

procedures. 

Encapsulation: This is the process of hiding details of objects from other objects. Each 

method or variable in a class may be marked private or public. The public interface 

allows the methods in a class to be accessed by other objects. However, private methods 

and data can only be accessed within the class itself. 

Inheritance: It is the process by which one object acquires the properties of another 

object (Shildt 2005). In object oriented programming, classes can be divided into a 

subclass or a superclass. A subclass is derived from a superclass and inherits all its 

properties. Furthermore, the subclass can have additional properties that give it a unique 

identity. 

Polymorphism: It is a feature which allows one interface to be used for a general class of 

actions. It is essentially the ability to request that the same operation be performed by 

different objects. How the request is processed depends on the object that receives the 

request. Effectively, this means that one can ask many different objects to perform the 

same action. 

When properly applied, all the above mentioned properties combine to produce a 

programming environment that supports the development of far more robust and superior 

programs. 

 Many object oriented programming languages have been developed in recent 

years. These include C++, C#, and Java. Java is considered the most popular object 

oriented programming language because it has several unique features. Java is a simple 

language developed along the lines of C and C++ and has a similar syntax to C++. 

Hence, most programmers who are already versed in C++ have little trouble learning 

Java. Java has better memory management features. Java has a special class for garbage 

collection that dynamically allocates memory and prevents memory loss. In other 

programming languages the programmer must manually allocate and free all dynamic 

memory, and any mistake in allocating or de-allocating memory leads to poor 
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performance. There is also an error exception handling class built into Java. With proper 

use of this class, most run-time errors can be easily managed.  

 

2.4 Java and Web Based Teaching 
 

Java is platform independent. That is, the same code can be used for executing the 

program on various platforms like Windows, Mac, or Linux. This is a property that has 

made Java a popular programming language. With Java it is possible to use the same 

application on different platforms. 

Java is a multithreading language. It can easily handle thousands of tasks 

simultaneously (Newman et al. 1996). Nikishkov (2004), who developed a platform 

independent Java application for teacher student interaction, stresses the importance of a 

language like Java with inherent abilities to create multithreaded applications as multiple 

clients (students) work with the server at the same time. 

Large sets of data have to be handled when performing finite element analysis. 

The various input data such as coordinates, type of element, restraints conditions, and 

nodal loads can be represented as objects. Also, different objects can be created for 

handling elements. This makes it possible to add new elements to the program without 

having to make extensive changes to other parts of the program. Object oriented design is 

a mechanism which allows modules to “plug and play” (Newman et al. 1996).  

 Java programs can be embedded in HTML pages and can be easily transmitted 

over the internet. These programs are called applets. Applets can be used for delivering 

interactive graphical content over the internet, and can be made available to students and 

instructors throughout the world. This approach overcomes many, if not all, of the 

limitations of other computer and web based educational approaches and has significant 

advantages. The documents and program developed are stored as separate files on a 

server, thus making it easy to modify or upgrade them with ease. One further issue is that 

unlike some other multimedia tools that offer only limited capability to program 

interactive applications and computations, Java can be used to program complex 

applications. 
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Another reason for the popularity of Java is its security. When Java applets are 

run on a Java compatible web browser, there is little risk of infection by a virus program. 

Java achieves this protection by confining a Java program to the Java execution 

environment and not allowing it access to other parts of the computer. The ability to 

download applets with the confidence that no harm will be done and no security will be 

breached is an important feature for developing web based instructional applets. 

 Many successful attempts have been previously made to use Java Applets for web 

based teaching of structural analysis. A series of web-based instructional units for 

teaching structural mechanics to undergraduate students was developed by Rojiani et al. 

(2000). Instructional units developed included applets for shear, moment, and deflection 

of beams, computation of section properties of sections built up from standard geometric 

shapes, analysis of statically determinate and indeterminate trusses and frames, and shear 

center for open and closed section thin-walled tubes (Rojiani et al. 2000). These applets 

make extensive use of graphics for depicting structural behavior and allow for dynamic 

interaction with users. 

 Benjamin et al. (2003) discussed the use of Java to develop interactive instructive 

courseware. They developed a series of applets for demonstrating the assembly of the 

global stiffness matrix of a structure. These applets feature online help and interactive 

feedback along with an appealing graphical user interface. 

 The use of Java applets for design and analysis of L shaped beams was presented 

by Karthik et al. (2000). Here the authors used Java and VRML (Virtual Reality 

Modeling Language) to develop a finite element applet. After submitting the required 

input, like material type and loads acting on beam, the Java program meshes the beam 

automatically and calculates 3D stresses in the beam at various locations. The results 

obtained are color coded and displayed. This applet illustrates the potential for using Java 

in virtual design and 3D Visualization.  

Nikishkov (2003) developed a finite element applet in Java for analyzing plane 

cracks in three-dimensional components. The Java library graphics classes were used to 

display color contours of stresses in objects modeled with four-node elements. He further 

demonstrated the ability of Java to plot stress contours with a sparse mesh of finite 

elements. Lu et al. (2001) demonstrated the application of Virtual Reality to finite 
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element analysis using the Java graphical library. According to him, the use of graphics 

and interactive Java programs gives engineering students an intuitive understanding of 

the finite element analysis technique. 

Paul et al. (2004) recommend the use of simplified finite element analysis for 

undergraduate students to understand the basic fundamentals of the method. Since 

commercial finite element programs are excessively complex, Paul implemented a simple 

finite element analysis program for helping students understand the fundamentals of 

finite element analysis. The response from students to the software was quite 

encouraging. 
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Chapter 3: One-Dimensional Bar and Truss Elements 
 

3.1 Introduction 
  

 Two types of elements are presented in this chapter: (1) One-dimensional Bar 

Element, and (2) Truss Element. The development of the stiffness matrix for these 

elements, and the computation of displacements, stresses and forces are presented. The 

implementation details of these elements in Java are also discussed. Each element is 

represented by a separate class. Details of these element classes are presented. 

  The one-dimensional bar element and the truss element are the simplest elements 

that can be used to explain the fundamentals of the finite element method. These 

elements are used to analyze structures which are subjected to pure axial forces (i.e., no 

bending or shear). The one-dimensional bar element is used to analyze a structure having 

degrees of freedom only in one direction, whereas the truss element is used for the 

analysis of determinate and indeterminate trusses with two degrees of freedom at each 

node. 

An important difference between the one-dimensional bar and the truss element is 

the orientation of the element in relation to the structure. The longitudinal axis of the one-

dimensional bar element is parallel to the corresponding axis of the structure, whereas the 

axis of the truss element can have any orientation in the plane of structure. Since all 

elemental axes are aligned in the same direction, no coordinate transformation is required 

for one-dimensional bar elements. The truss element can have any orientation in its plane, 

thus transformation matrices are required to convert displacements and stresses in the 

local coordinate system to the global coordinate system. 

 

3.2 One-dimensional Bar Element 
 

This is the easiest element to begin with for teaching the finite element method. 

This element has one degree of freedom at each node for a total of two degrees of 
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freedom per element. The stress, strain, displacements, and loading depend only on one 

variable, either x or y. One-dimensional bar elements are used to model shafts subjected 

to axial force. 

The stress-strain and strain-displacement relations are 

         σ = Eε            (3.1) 

           
dx
du

=ε         (3.2) 

where σ = stress, ε = strain, u = displacement and E = modulus of elasticity. The 

procedure for developing the stiffness matrix is as follows. 

Consider a uniform prismatic bar element as shown in Figure 3.1 

ui uj

 
Figure 3.1 Bar element. 

 

The two nodes are labeled i and j. The nodal displacements are ui and uj, and the 

corresponding nodal forces are fi and fj.  

The strain is given by   

dx
du

=ε = 
L

uu ij −  = ⎥⎦
⎤

⎢⎣
⎡−

LL
11

⎭
⎬
⎫

⎩
⎨
⎧

j

i

u
u

      (3.3) 

where   L is the length of the bar. 

The stress is       

 σ = Eε         = E u
L
∆              (3.4) 

where is the change in length of the bar. ( j iu u u∆ = − )

The force F in the bar is given by 

  F = σA                (3.5)  

where A is the cross sectional area of the bar. 

 

fjfi

i j 
L
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Substituting Equation (3.4) in (3.5) gives 

  F = 
L

uEA∆  = k        (3.6) u∆

where  k = 
L

EA  is the stiffness of the bar. 

 

Also,  

  fj = k( ) = k(u∆ ij uu − )      (3.7) 

and  

fi + fj = 0        (3.8) 

 

Therefore, from equilibrium of the bar,  fi = -fj     

 (3.9) 

The relationship between the forces at the ends of the bar and the nodal displacements is 

given by 

  =          (3.10) 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

j

i

f
f

⎥
⎦

⎤
⎢
⎣

⎡
−

−
kk
kk

⎭
⎬
⎫

⎩
⎨
⎧

j

i

u
u

and the stress in the bar element can be obtained from 

  σ = E ⎥⎦
⎤

⎢⎣
⎡−

LL
11

⎭
⎬
⎫

⎩
⎨
⎧

j

i

u
u

       (3.11) 

  

3.3 Truss Element 
 

The one-dimensional bar element is constrained to deform only along the axis of 

the element. However, in the case of a plane truss, the nodes can move in both the x and y 

directions. Hence there are two degrees of freedom per node. 

The development of the stiffness matrix of a truss element requires a 

transformation between the global and local coordinate systems. The truss element is 
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shown in Figure 3.2, along with the global and local coordinate systems which are 

defined as follows 

 

 

Local coordinate system: This is denoted by the x and y axes. All element properties such 

as element forces, stresses, and distributed element loads are defined in the local 

coordinate system. Each element in a structure has its own set of local coordinates. 

 

Global coordinate system: The global coordinate system for the structure is fixed and is 

represented by X and Y axes. Quantities such as nodal loads and nodal displacements are 

defined in the global coordinate system.  

 

 

x 

 
 

  Figure 3.2 Local and global coordinates. 

 

The nodal displacements in the local coordinate system are shown in Figure 3.3. 

The corresponding nodal displacements in the global coordinate system are shown in 

Figure 3.4. 

 

X 

Y

y θ 

j 

i 

 
15 
 

 
 



 
  Figure 3.3 Nodal displacements in local coordinates. 

 

 

 

 

 
  Figure 3.4 Nodal displacements in global coordinates. 
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The local coordinates {x} = {x, y} T and global coordinates {X} = {X, Y} T are 

related by the following transformation equations: 

 

  x = Xcosθ +Ysinθ       (3.12) 

  y = -Xsinθ +Ycosθ       (3.13) 

 

This can be represented in matrix form as 

  {x} = [t]{X}        (3.14) 

  {x} =       (3.15) ⎥
⎦

⎤
⎢
⎣

⎡
− θθ

θθ
cossin
sincos

⎭
⎬
⎫

⎩
⎨
⎧

Y
X

The matrix [t] is called the transformation matrix. The same transformation matrix [t] can 

be used to map nodal displacements in the global coordinate system to nodal 

displacements in the local coordinate system: 

   =       (3.16) 
⎭
⎬
⎫

⎩
⎨
⎧

'
'

v
u

⎥
⎦

⎤
⎢
⎣

⎡
− θθ

θθ
cossin
sincos

⎭
⎬
⎫

⎩
⎨
⎧

v
u

The transformation from the global to local system is obtained by taking the 

inverse of [t]. Thus 

  {X} = [t]-1{x}        (3.17) 

It can be shown that the inverse of [t] is equal to its transform, [t] T, that is. 

  [t]-1 = [t] T =       (3.18) ⎥
⎦

⎤
⎢
⎣

⎡
− θθ

θθ
cossin
sincos

A matrix whose inverse is equal to its transpose is called an orthogonal matrix. 

The nodal displacements at the two nodes i and j of the two node truss element are related 

to the corresponding global displacements by the transformation 

 

   =      (3.19) 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

j

j

i

i

v
u
v
u

'
'
'
'

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

cs
sc

cs
sc

00
00

00
00

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

j

j

i

i

v
u
v
u

where c=cosθ and s=sinθ represent the directional cosines. Equation (3.19) can be 

written as  
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  { 'u } = [T]{u}       (3.20) 

The relationship between local and global nodal forces can be written in a similar 

manner: 

  { 'f } = [T]{f}        (3.21) 

The relationship between stiffness, the nodal displacements, and nodal forces 

expressed in local coordinates is 

  
L

EA    =      (3.22) ⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

⎭
⎬
⎫

⎩
⎨
⎧

j

i

u
u
'
'

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

'
'

j

i

f
f

Augmenting the stiffness matrix to include displacements in the Y direction gives 

  
L

EA

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

0000
0101
0000
0101

 =     (3.23) 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

j

j

i

i

v
u
v
u

'
'
'
'

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

0
'

0
'

j

i

f

f

The above equation can be written as 

  [ 'k ]{ 'u } = { 'f }       (3.24) 

where '  is the stiffness matrix  of the truss element in the local coordinate system and is 

given by 

k

   = 'k
L

EA          (3.25) ⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

To obtain the stiffness matrix in global coordinates, we use the transformations in 

equations (3.20). 

Substituting for  from Equation (3.20) in Equation (3.24) gives 'u

  [ 'k ][T]{u} = [T]{f}       (3.26) 

 

Multiplying both sides of Equation (3.26) by [T]T,  

   

[T]T[ ][T]{u} = [T]'k T[T]{f}      (3.27) 

[T]T[T] = [T]-1[T] = I        (3.28)  

where I is identity matrix 
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Therefore Equation (3.27) can be expressed as 

  [K]{u} = {f}        (3.29) 

 

where   

 [K] = [T]T '  [T]        (3.30) k

is the global stiffness matrix of truss element. 

 

The global stiffness matrix can be written as 

  [K] = 
L

EA

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−−

22

22

22

22

scsscs
csccsc
scsscs
csccsc

     (3.31) 

where c and s are directional cosines. These can be obtained from the global coordinates 

of the element as  

   c = cosθ = 
L

xx ij −          (3.32) 

s = sinθ = 
L

yy ij −        (3.33) 

where L is the length of the element and is given by 

  L = 22 )()( ijij yyxx −+−       (3.34) 

The global stiffness matrix of the structure is obtained by adding the global 

stiffness matrices of the individual elements: 

   

K =         (3.35) 
1

N

i
i

K
=
∑

 

where n is the number of truss elements in the structure. Once the global stiffness matrix 

is formed, the system is solved for nodal displacements in the global coordinates. These 

nodal displacements are the used to evaluate stresses and forces in each element. 

The element stresses are obtained from 
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σ = Eε = E 
L

uu ij '' −
   = E ⎥⎦

⎤
⎢⎣
⎡−
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⎭
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⎫
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⎨
⎧
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u
u

     (3.36) 

Thus,   

σ = E ⎥⎦
⎤

⎢⎣
⎡−

LL
11       (3.37) ⎥

⎦

⎤
⎢
⎣

⎡
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which gives 

σ = 
L
E  [      (3.38) ]00sc −−

⎪
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The element forces are evaluated from 

   = 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

'
'

j
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f

L
EA         (3.39) ⎥
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3.4 Implementation of the One-dimensional Bar Element in Java  
 

The one-dimensional bar element is implemented in Java using a class called 

OneDBarelement.  

The  interface for the  OneDBarelement class is given  below: 

 
public class OneDBarelement { 

private double area,length;  //area and length 

private double[] coodx;   //X coordinates of each element 

private double[] coody;   //Y coordinates of each element 

private double ym;   //Young’s modulus 

public double[][] onedkelem; //element stiffness matrix  

public double[] onedstress;  //stress values 

public double[] onedforce;  //force values 

 

 
20 
 

 
 



The variables area and length represent the cross-sectional area and length of the 

element. The arrays coodx[] and coody[] are used for storing the nodal coordinates of 

the element. The variable ym represent the modulus of elasticity of the bar element. The 

stiffness matrix [k] is stored in the two-dimensional array onedkelem . Stresses and 

forces are stored in two one-dimensional arrays onedstress and onedforce, 

respectively. 

 

The constructor of the class OneDBarelement is 

  
public OneDBarelement(double[] x, double[] y, double moe, 

                 double th) { 

     ym = moe; 

     area = th; 

     coodx = x; 

     coody = y; 

 } 

 

Whenever an instance of the OneDBarelement class is created, the properties of the 

element like Young’s modulus, area and coordinates are passed as arguments to the 

constructor. These variables are later used for further operations like calculation of 

stiffness matrix, forces, and stresses. 

The methods in class OneDBarelement are listed in Table 3.1. 

 

Table 3.1 Methods in class OneDBarelement 

Method Description 

calcelemk() Calculates the stiffness matrix of bar element 

calcstress() Calculates the stresses and forces in the element 

 

The element stiffness matrix is calculated by calling the function calcelemk(). 

This function needs no arguments as the variables required for calculating the stiffness 

matrix are initialized when the class is instantiated. 
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To analyze a structure consisting of one-dimensional bar elements, an instance of 

the OneDBarelement class is created for each element in the structure by calling the 

class constructor. The function calcelemk() is invoked for each element to get the 

stiffness matrix for the element. The stiffness matrix so obtained is used to assemble the 

global stiffness matrix. The functions for calculating displacements are defined in a 

separate class called Analyze. The Analyze class assembles the structure stiffness 

matrix and solves the equation to obtain nodal displacements. Details of the Analyze 

class are given in Chapter 7. 

Once the displacements are calculated, the stress and forces in the bar element are 

evaluated by calling the function calcstress(). The method calcstress() is 

declared as 

 
public void calcstress(double[] u,int[] elemcon,Stresses stodbe) 

 

To calculate the stress in each bar element, we need the nodal displacements and 

connectivity information. The stiffness and other details needed for calculating stresses 

are obtained from the OneDBarelement object. The computed forces and stresses are 

stored in separate variables. These variables are used while displaying the results.  

 

3.5 Implementation of Truss Element in Java Applet 
 

The implementation of the truss element in Java is similar to that of the one-

dimensional bar element with some minor changes. The class developed for representing 

a truss element is the TwoDTrusselement class. 

 

The interface for the  TwoDTrusselement class is:  

 
public class TwoDTrusselement { 

      private double area,length;  //area & length 

      private double[] coodx;  //X Coordinates of each 

element 
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private double[] coody;  //Y Coordinates of each 

element 

      private double ym;    //Youngs Modulus 

      public double[][] twodtrusskelem;//element stiffness matrix  

      private double[][]twodkelem; // Stiffness matrix in 

local coordinates 

      public double[] twodstress;  //stresses in element 

      public double[] twodforce;  //forces in element 

 

The variables area, length, ym and arrays coodx, coody are similar to those 

used in the OneDBarelement class. The stiffness matrix, stresses, and forces of an 

element are stored in the arrays twodtrusskelem, twodstress, and twodforce, 

respectively. 

The constructor of this class is  

 
public TwoDTrusselement(double[] x, double[] y, double moe, 

                   double th){ 

       ym = moe; 

       area = th; 

       coodx = x; 

       coody = y; 

      } 

 

The properties of the element such as Young’s modulus, area, and coordinates are 

passed as arguments to the constructor when an instance of the TwoDTrusselement 

class is created. 

The methods used in class TwoDTrusselement are listed in Table 3.2. 

 

Table 3.2 Methods in class TwoDTrusselement 

Method Description 

calctdelemk() Calculates stiffness matrix for a truss element 

calcstress() Calculates  stresses and forces in a truss element 
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The function calctdelemk() calculates the stiffness matrix of the truss 

element. The transformation matrices are needed in order to calculate the stiffness matrix. 

These are calculated using the data members of the TwoDTrusselement object. For 

each truss element, an instance of the TwoDTrusselement is created.  

The Analyze class assembles the global stiffness matrix of the structure by 

adding the stiffness matrix of each truss element to the corresponding nodes of the 

structural stiffness matrix and solves the system of equations. The displacements obtained 

from the calcdisp() method of Analyze class are used to calculate element stresses 

and forces by calling  the method calcstress(), which is declared as  

 
public void calcstress(double[] u,int[] elemcon,Stresses sttdte) 

 

The stresses in each truss element are stored in the object sttdte which is an 

instance of Stresses class. The deformed shape of the truss is then plotted by calling an 

instance of the Deform class. 
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Chapter 4: Two-Dimensional Beam and Frame Element 
 

4.1 Introduction 
 

 In this chapter the development of the two-dimensional beam element and the 

frame element is presented. The degrees of freedom considered for the beam element are 

rotation about an axis perpendicular to the plane of the beam and translations 

perpendicular to the plane of the beam. For the frame element, which is an extension of 

the beam element, axial degrees of freedom are included. Details of the implementation 

of the two-dimensional beam element and the frame element in Java are also presented. 

 Beams are members that are used for supporting transverse loading. These 

elements are used in a variety of structures simulating buildings, bridges, and 

scaffoldings. The Two-dimensional Beam element has two degrees of freedom at each 

node: a rotation about an axis perpendicular to the plane of beam and a translation 

perpendicular to the axis of the beam. Axial deformations in the beam are neglected. The 

frame element has axial deformation at each node in addition to the beam deformations. 

Hence, the frame element has three degrees of freedom at each node. The beam element 

provides flexural rigidity, a property that the truss element does not have. Since there is 

no coupling between the axial and flexural deformations, the stiffness matrix of the beam 

is first derived and it is then extended to the frame element by incorporating the axial 

stiffness.  

Unlike plane trusses, which are subjected only to nodal loads, the external loads 

on beams may be applied both on the members as well on the nodes. Member loads are 

converted into equivalent nodal loads by using the concept of fixed end forces. 

 

4.2 Two-dimensional Beam Element 
 

The procedure to develop the stiffness matrix of a beam element is the same as 

that of truss elements, but in addition to axial rigidity, flexural rigidity is considered.  
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Consider a prismatic beam element as shown in Figure 4.1 

 

 
  Figure 4.1 Two-dimensional beam element. 

 

The two nodes are labeled i and j. Here v’i , and  vj’are the vertical displacements at node i 

and j, and θ’i and  θ’j. are the rotations at nodes i and j. Counter clockwise rotation is 

assumed to be positive. Each node is associated with a pair of shear and bending forces. 

The corresponding nodal forces are represented by fyi, mi at the i end and fyj, mj at the j 

end, respectively. The properties of the beam are:  

L = length, I = moment of inertia, and E = Young’s modulus  

 

4.3 Euler-Bernoulli Beam Theory 
 

 Beam elements are based on either the Euler-Bernoulli or Mindlin’s theory. Here 

the beam element is formulated using the Euler-Bernoulli theory and shear deformations 

in the beam element are neglected. The lateral displacement v can be related to the 

rotation θ as 

  θ =  dv
dx

        (4.1) 

Also, the bending moment and shear forces in the beam can be related to v as 

  
2

2

d vEI M
dx

=           (4.2) 

  
3

3

d vEI V
dx

=         (4.3) 

 
 

θ’i , mi

i j 
L

v’i , fyi v’j, , fyj

y 

θ’j , mj

x 
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where M and V are the moment and shear acting at a particular section 

The bending stress is given by 

  My
I

σ = −         (4.4) 

 

4.4 Interpolation Functions 
 

The displacements at any location in the element are expressed in terms of nodal 

displacements using an interpolation function. The lateral displacement of the element at 

any point x is represented as 

 

  v(x) = 2
1 2 3o

3x x xα α α α+ + +       (4.5) 

where the iα ’s are undetermined constants. 

Equation (4.5) can be expressed in matrix form as 

  v(x) = 

0

12 3

2

3

1 x x x

α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤ ⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭

      (4.6) 

Using Equations (4.1) and (4.5), the rotation at any location can be expressed as 

 

  θ(x) = 2
1 2 32 3x xα α α+ +       (4.7) 

Hence, at any location x, the lateral displacement and rotation are given by 

  
2 3

2

1
0 1 2 3

v x x x
x xθ

⎡ ⎤⎧ ⎫
=⎨ ⎬ ⎢

⎩ ⎭ ⎣ ⎦
⎥

0

1

2

3

α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

     (4.8) 

At the ends x=0 and x=L, the nodal displacements and rotations are 
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⎪ ⎪
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⎪ ⎪⎩ ⎭

     (4.9) 

Equation (4.9) can be written as 

 

  { } [ ]{ }u A α=         (4.10) 

where   

{ }u = 

i

i

j

j

v

v
θ

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

        (4.11) 

Thus, 

  { }1{ } [ ]A uα −=        (4.12) 

where  is given by 1[ ]A −

  [A]-1 = 
2 2

3 2 3 2

1 0 0 0
0 1 0 0
3 2 3 1

2 1 2 1
L L L L

L L L L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢− − −
⎢
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥       (4.13)  

Substituting Equation (4.12) in Equation (4.1), 

  v(x) =  2 31 x x x⎡ ⎤⎣  [A]⎦
-1{ }u      (4.14) 

or 

  v(x) = [N] { }u         (4.15) 

Equation (4.15) can be written as 

  v(x) = [ ]1 2 3 4( ) ( ) ( ) ( )N x N x N x N x

i

i

j

j

v

v
θ

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

   (4.16) 
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where 

  N1(x) = 
2 3

2 3

3 21 x x
L L

− +  

  N2(x) = 
2 3

2

2x xx
L L

− +  

  N3(x) = 
2 3

2 3

3 2x x
L L

−  

  N4(x) = 
2 3

2

x x
L L

− +        (4.17) 

are the shape functions Ni(x) and are called Hermitian polynomials since they contain 

both the function itself (displacement) and its derivatives (rotation). 

 

4.5 Element Stiffness Matrix 
 

The procedure for developing the stiffness matrix is as follows  

The internal virtual work for a beam is  

  δWint = M kdxδ−∫        (4.18) 

where k is the curvature and M is the bending moment. The curvature k and the bending 

moment M are given by 

  k = 
2

2

d v
dx

         (4.19) 

  
2

2

d vM EI
dx

=         (4.20) 

The curvature is obtained as 

  
2

2

d v
dx

 = 2 [ ]{ } [ ]{ }d N u B u
dx

=       (4.21) 

where [B] is the strain-displacement matrix and is 

  [B] = 2 3 2 2 3 2 2

6 12 4 6 6 12 2 6x x x
L L L L L L L L

⎡ ⎤−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛− + − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎣ ⎦

x ⎞
⎟
⎠

 (4.22) 

The virtual curvature δk is 

  {δk} = [B]{δu}       (4.23) 
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and the internal virtual work is 

  δWint = ( )(
0

[ ]{ } [ ]{ }
L

)B u EI B u dδ−∫ x

⎟

     (4.24) 

Since [B]{δu} is a scalar, and it can be rewritten as {δu}T[B]T   

Hence,  

  δWint =      (4.25) ( )
0

{ } [ ] [ ]{ }
L

T Tdu B EI B u dx−∫

  δWint =     (4.26) ( )
0

{ } [ ] [ ] { }
L

T Tdu B EI B dx u
⎛ ⎞

− ⎜
⎝ ⎠
∫

since {u} and {δu} are independent of x. Therefore, the stiffness matrix of the two-

dimensional beam element is  

  [ ]'k = 
0

[ ] ( )[ ]
L

TB EI B dx∫       (4.27) 

After performing matrix operations and integrating each term, we obtain 

  [K] = 
2 2

3

2 2

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

L L
L L L LEI

L LL
L L L L

−⎡ ⎤
⎢ ⎥−⎢
⎢ ⎥− − −
⎢ ⎥−⎣ ⎦

⎥      (4.28) 

Further, the element equations can be written as 

2 2

3

2 2

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

L L
L L L LEI

L LL
L L L L

−⎡ ⎤
⎢ ⎥−⎢ ⎥

⎥⎢− − −
⎢ ⎥−⎣ ⎦

i

i

j

j

v

v
θ

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 = 

i

i

j

j

fy
m
fy
m

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

   (4.29) 

   

 

4.6 Equivalent Nodal Loads 
 

 As mentioned previously, the beam element can be subjected to member loads in 

addition to nodal loads. Member loads are converted to equivalent nodal loads. The 

equivalent nodal loads are given by 
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   {f} =       (4.30) 
0

[ ] ( )
L

TN q x dx∫

where q(x) is a distributed load. For a beam element subjected to a uniformly distributed 

load of q, the equivalent nodal force vector can be expressed as  

{f} = 

2

2

2

12

2

12

qL

qL

qL

qL

⎧ ⎫−⎪ ⎪
⎪ ⎪
⎪ ⎪−⎪ ⎪⎪
⎨ −⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

⎪
⎬        (4.31) 

 

4.7 Stiffness Matrix for the Two-Dimensional Frame Element 
 

 Consider the frame element shown in Figure 4.2 

 
 Figure 4.2 Frame element.  

 

The stiffness matrix of the frame element is obtained by adding the axial stiffness of the 

element at the respective degrees of freedom by expanding the beam stiffness matrix. The 

stiffness matrix of the frame element is given by 

 

u’j,fxj
u’i,fxi

θ’i , mi

i j 
L

v’i , fyi v’j, , fyj

y 

θ’j , mj

x 
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3 2 3 2

2 2

3 2 3

2 2

0 0 0 0

12 6 12 60 0

6 4 6 20 0
'

0 0 0 0

12 6 12 60 0

6 2 6 40 0

EA EA
L L

EI EI EI EI
L L L L
EI EI EI EI
L L L Lk

EA EA
L L

EI EI EI EI
L L L L
EI EI EI EI
L L L L

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥= ⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

2

0
0
0
1

  (4.32) 

 

The stiffness matrix presented in Equation (4.32) is in terms of the local coordinate 

system of the frame element. The relationship between the local element displacements 

and global displacements are identical to those of the truss element. Thus, the 

transformation matrix for a frame element is given by 

  

cos sin 0 0 0 0
sin cos 0 0 0 0
0 0 1 0 0
0 0 0 cos sin
0 0 0 sin cos
0 0 0 0 0

T

θ θ
θ θ

θ θ
θ θ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

    (4.33) 

 

where cosθ and sinθ are the direction cosines and are obtained from the nodal coordinates 

of the element, 

    cosθ = 
L

xx ij −   and sinθ = 
L

yy ij −     (4.34) 

 and L = 22 )()( ijij yyxx −+−   

is the length of the element 

The global stiffness matrix for the frame element is given by 

   [K] = [T]T[ ]'k  [T]      (4.35) 
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The global stiffness matrix of the structure is obtained by adding the individual 

global stiffness matrices of the elements: 

  K =         (4.36) 
1

n

i
i

K
=
∑

where n is the number of truss elements in the structure. Once the global stiffness matrix 

is formed, the system is solved for the nodal displacements in global coordinates. These 

nodal displacements are then used to evaluate stresses and forces in each element. 

 

4.8 Implementation of Two-dimensional Beam Element in Java  
  

To implement the beam element in Java, a class called TwoDBeam is developed. 

The interface for the class TwoDBeam is: 
public class TwoDBeam { 

    private double mi,length;  //Moment of intertia and length 

     private double[] coodx;  //X Coordinates for each node 

     private double[] coody;  //Y Coordinates for each node 

     private double ym;       //Young’s Modulus 

     public double[][] twodbeamkelem;  //element 

stiffness    matrix  

     public double[] twodbforce,twodbeamstress;//stresses  

 

The variables mi and length represent the moment of inertia and the length of the beam 

element, respectively. The arrays coodx[] , coody[] represent nodal coordinates. The 

modulus of elasticity is stored in the variable ym. The stiffness matrix of the beam 

element is stored in the two-dimensional array twodbeamkelem. Finally, the arrays 

twodbforce and twodbeamstress are used to store the calculated forces and stresses 

in the beam element. 

 

The constructor for the TwoDBeam is given by 
 

public TwoDBeam(double[] x, double[] y, double moe, double nu 
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                  double th){ 



 

         ym = moe; 

         mi = nu; 

         ar = th; 

         coodx = x; 

         coody = y; 

     } 

 

To create an instance of the TwoDBeam object, the element coordinates, section, and 

material properties are passed through the constructor.  

The methods in the TwoDBeam class calculate the stiffness matrix of the element 

and evaluate the stresses and forces in the element. The methods available in the class 

TwoDBeam are listed in Table 4.1 

 

Table 4.1 Methods in class TwoDBeam 

Method Description 
calcelemk() Calculates the element stiffness matrix 
calcstress() Calculates the stresses and forces in element 
Calcnodalloads() Calculates nodal loads for non nodal loading 

 

The method calcelemk()calculates the stiffness matrix of a two-dimensional beam 

element using the variables obtained by instantiation of the TwoDBeam object. There is 

one instance of a class for each beam element TwoDBeam in the structure. To analyze a 

structure with beam elements, the beam element object is initialized in the Analyze class 

as shown in the statement below: 

 
TwoDBeam tdb = new TwoDBeam(x,y,moe,nu,th); 

 

The methods in the class TwoDBeam are then used to calculate the stiffness matrix and 

stresses for each beam element. 
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The method calcnodalload()converts the member loads acting on the beam to 

equivalent nodal loads. The method calcstress()evaluates the stresses, nodal forces, 

and reactions at the restraints. The header for this method is 

 
public void calcstress(double[] u,int[] elemcon,Stresses stbe) 

 

 The stresses are written to an object stdbe. The method calcstress() also 

calculates the reactions at the restrained nodes of the structure. 
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Chapter 5: Plane Stress Elements 
 

5.1 Introduction 
  

 Three types of membrane elements are developed for this applet: (1) constant 

strain triangle, (2) four-node iso-parametric quadrilateral element, and (3) eight-node iso-

parametric quadrilateral element. In this chapter the development of the stiffness matrices 

of these elements along with their implementation in Java is discussed. 

 

5.2 Two-dimensional Stresses and Strains 
 

  Two-dimensional problems are sometimes modeled as plane stress or plane 

strain. These problems generally involve structures whose thickness is small compared to 

the other two dimensions. When the structure is subjected to inplane forces, the 

displacements at any point {x, y} in the element are given by {u, v} where, u and v are 

displacements in the x and y directions, respectively: 

 

  U =         (5.1) 
u
v
⎧ ⎫
⎨ ⎬
⎩ ⎭

 

The stresses are strains are given by 

 

   { , , }T
x y xyσ σ σ τ=

         (5.2) { , , }T
x y xyε ε ε γ=

 

5.2.1 Plane Stress 
 

 Plane stress is a condition that prevails in a flat plate in the xy plane, loaded only 

in its own plane and without any restraints in the z-direction, so that 0zσ = , 0yzτ = , and 
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0zxτ =  (Cook 1989). For an isotropic material, the stress-strain relationship for plane 

stress is given by 

 

  [ ]
xx

y

xy xy

D y

εσ
σ ε
τ γ

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪ =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

       (5.3) 

 

where [D] is the material matrix and is expressed as 

  [D] = 21
E
ν−

1 0
1 0

10 0
2

ν
ν

ν

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢
⎢ ⎥

⎥
−

⎢ ⎥
⎣ ⎦

      (5.4) 

E = Young’s modulus of elasticity, and ν = Poisson’s ratio. 

 

5.2.2 Plane Strain  
 

 If a long body of uniform cross section is subjected to transverse loading along its 

length, a small thickness in the loaded area can be treated as being subjected to plane 

strain (Chandrupatla et al. 1997). In this case, 0zε = , 0yzγ = , and 0zxγ = . The material 

matrix [D] for the plane strain condition for an isotropic material is given by 

 

  [D] = 
(1 )(1 2 )

E
ν ν+ −

1 0
1 0

1 20 0
2

ν ν
ν ν

ν

⎡ ⎤
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

    (5.5) 
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5.3 Constant Strain Triangle 
  

This is the simplest element for analyzing two-dimensional problems. It has three 

nodes, and each node has two inplane degrees of freedom, making a total of six degrees 

of freedom. The triangular element is a widely used element. Triangular elements are 

used for structures with irregular boundary conditions, unlike rectangular elements. The 

CST element is shown in Figure 5.1. The nodes are numbered in a counter-clockwise 

direction for consistency. 
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Figure 5.1 Constant Strain Triangle. 

 

loping the stiffness matrix of the CST element is as follows.  

 y) and v(x, y) are assumed to vary linearly with x and y, and hence 

on can be represented by 

 1 2o x yα α α+ +  

 3 4 5x yα α α+ +       (5.6) 

) represent displacements in the x and y directions, respectively. 

e rewritten in matrix form as 
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1 0 0 0⎤

⎦

0

1

2

3

4

5

0 0 0 1
u x y
v x y
⎧ ⎫ ⎡

=⎨ ⎬ ⎢ ⎥
⎩ ⎭ ⎣

α
α
α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

     (5.7) 

or 

  u(x, y) = [X] {α}       (5.8) 

 

Given the displacements, the strains are computed as 

 

  xε (x, y) = u
x
∂
∂

 = 1α  

  yε (x, y) = u
y
∂
∂

 = 5α  

  xyγ (x, y) = u
y x
∂ ∂

+
∂ ∂

v
4 = 2α α+      (5.9) 

 

It can be observed that the strains are not functions of (x, y), hence the name constant 

strain triangle. 

Substitution of nodal coordinates in Equation (5.7) results in  

 

  

1 1 1

1 1 1

2 2 2

2 2

3 33

3 33

1 0 0

2

0 00 1
1 0 0
0 0 0 1
1 0 0 0
0 10 0

u x y
v

0

0
x y

u x y
v x y

x yu
x yv

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥⎪ ⎪ = ⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪ ⎣ ⎦⎩ ⎭

0

1

2

3

4

5

α
α
α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    (5.10) 

or    

{u} = [A]{α}        (5.11) 
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The coefficients {α} are obtained by inverting the matrix [A] and multiplying it with {u}: 

 

  {α} = [A]-1{u}        (5.12) 

 

Substituting Equation (5.12) in Equation (5.8),  

 

  u(x, y) = [X] [A]-1{u}       (5.13) 

 

where [X][A]-1 = [N] represents the shape function. 

 

Inverting matrix [A]  and multiplying with [X] results in 

 

0

1

2

3

4

5

α
α
α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

= 1
2A

2 3 3 2 3 1 1 3 1 2 2 1

2 3 3 1 1 2

3 2 1 3 2 1

2 3 3 2 3 1 1 3 1 2 2 1

2 3 3 1 1 2

3 2 1 3 2 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

x y x y x y x y x y x y
y y y y y y
x x x x x x

x y x y x y x y x y x y
y y y y y y
x x x x x x

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −

−

1

1

2

2

3

3

u
v
u
v
u
v

⎢ ⎥
− −⎢ ⎥⎣ ⎦

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

           (5.14) 

 

where A is the area of the triangle, and is given by 

{ 1 2 3 2 3 1 3 1 2
1 ( ) ( ) (
2

})A x y y x y y x y y= − + − + −    (5.15) 

The shape functions are obtained by substituting Equation (5.14) in Equation (5.7).and 

rearranging the terms: 

 

  
1 2 3 3 2 2 3 3

2 3 1 1 3 3 1 1 3

3 1 2 2 1 1 2 2

( ) ( ) (
1 ( ) ( ) (

2
( ) ( ) (

N x y x y y y x x x
N x y x y y y x x x

A
N x y x y y y x x x

− + − + −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − + −⎣ ⎦ ⎣ ⎦

2

1

)
)
)

y
y
y

   (5.16) 

 

These functions are used to interpolate the displacement at any point (x, y) using the nodal 

displacements. 
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Displacements can be obtained from the shape functions using the following relationship: 

 

1 2 3

1 2 3N

1

1

2

2

3

3

u
v
u
v
u
v

0 0 0
0 0 0
N N Nu

N Nv
⎡ ⎤⎧ ⎫

=⎨ ⎬ ⎢ ⎥
⎩ ⎭ ⎣ ⎦

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    (5.17) 

or 

  {u} = [N]{ui}        (5.18) 

 

Strains are obtained from the strain-displacement relationships 

 
3

1
x i

i

u N u
x x

ε
=

∂ ∂
= =
∂ ∂ ∑ i  

3

1
y i

i

v N v
y y

ε
=

∂ ∂
= =
∂ ∂ ∑ i  

3 3

1 1
xy i i i i

i i

u v N u N v
y x y x

γ
= =

∂ ∂ ∂ ∂
= + = +
∂ ∂ ∂ ∂∑ ∑     (5.19) 

 

The above equations can be expressed in matrix form as 

 

  

31 2

31 2

3 31 1 2 2

0 0 0

0 0 0
x

y

xy

NN N
x x x

NN N
y y y

N NN N N N
y x y x y x

ε
ε
γ

⎡ ⎤∂∂ ∂
⎢ ⎥
∂ ∂ ∂⎢ ⎥⎧ ⎫

⎢ ⎥∂∂ ∂⎪ ⎪ =⎨ ⎬ ⎢ ⎥∂ ∂ ∂⎪ ⎪ ⎢ ⎥
⎩ ⎭ ⎢ ⎥∂ ∂∂ ∂ ∂ ∂

⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

1

1

2

2

3

3

u
v
u
v
u
v

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

  (5.20) 

or 

  3x1 3x6 6x1{ (x, y)}  = [ (x, y)] { }iB uε      (5.21) 
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The derivatives are evaluated with respect to x and y to obtain the strain-displacement matrix 

[B]: 

 

2 3 3 1 1 2

2 3 1 3 2 1

3 2 2 3 1 3 3 1 2 1 1 2

0 0 0
1[ ( , )] 0 0 0

2

y y y y y y
B x y x x x x x x

A
x x y y x x y y x x y y

− − −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − − − − −⎣ ⎦

−   (5.22) 

 

The element stiffness matrix can now be obtained from 

 

  [k] = [ ] [ ][ ]
T

v

B E B dv∫        (5.23) 

For a constant thickness, the volume integral can be reduced to an area integral 

 

  [k] =        (5.24) [ ] [ ][ ]
T

A

t B E B dA∫

where t is the thickness of the element. Since [B] is independent of (x, y), the stiffness matrix 

can be written as  

 

  [k] = [ ] [ ][ ]T

A

t B E B dA∫        (5.25) 

or 

  [k] =        (5.26)  [ ] [ ][ ]TtA B E B

 

5.3.1 Implementation of CST Element in Java  
  To implement the CST element in Java, the CSTelement class is developed. 

The interface of this class is shown below: 

 
public class CSTelement { 

 private double thick;   //thickness of the element 

 private double[] coodx;   //x coordinates of each node  
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private double[] coody;   //y coordinates of each node  

private double[][] d;   //material Matrix 

private double a;    //area of the element 

private double[][] b;   //strain-displacement matrix (3x6) 

public double[][] cstkelem;  //Element stiffness matrix 6x6 

public double[] cststress;  //Stresses in element 

 

 

The variables thick and the arrays coodx[], coody[] represent the thickness of the element 

and the nodal coordinates, respectively. The two-dimensional arrays b[] and cstkelem[] 

contain the strain-displacement and the element stiffness matrices. The array cststress is 

used to store calculated stresses. The area of the CST element is stored in the variable a. 

 

The constructor for the CSTelement is given as 

 
public CSTelement(double[] x, double[] y, double[][] matb, 

                    double th) { 

         d = matb; 

         thick = th; 

         coodx = x; 

         coody = y; 

 

  } 

 

 

To create an object of the CST element class, the constructor of the CSTelement class 

is called by passing the coordinates, thickness, and the material property matrix of the element 

as arguments. The methods in the CST element class use these variables to calculate the strain-

displacement matrix, shape functions, stiffness matrix, and stresses. 

 

The methods in the CSTelement class are summarized in Table 5.1. 
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Table 5.1 Methods in class CSTelement 

Method Description 

area()  Calculates area of CST element 

cstBMatrix() Calculates strain-displacement matrix  

calcelemkcst() Calculates element stiffness matrix 

calcstress() Calculates stresses in element 

 

The method calcelemkcst() defines the stiffness matrix of the element. To generate the 

stiffness matrix, we need both the area and strain-displacement matrix. These are obtained by 

calling the methods area() and cstBMatrix() from the calcelemkcst()method. The 

nodal coordinates required to calculate area and strain-displacement matrix are obtained from 

the instantiation of the object. An instance of the CST element is created by calling the 

constructor of the CSTelement class: 
 

CSTelement cse= new CSTelement(x,y,matb,th); 

 

where cse is an instance of the CSTelement class. The required values such as x and y 

coordinates and material matrix, are passed while creating the object. These values are used by 

the various methods to calculate the stiffness matrix, which is returned to the calling method in 

the Analyze class. The Analyze class further assembles the structure stiffness matrix by 

obtaining the element stiffness matrix for each CST element in the structure. 

The method calcstress() mentioned above is used to calculate the stresses in the 

element and store them in a new Stresses object for further retrieval during the display of 

results. The calcstress()  method is declared as  

 
public void calcstress(double[] u,int[] elemcon,Stresses stsc) 

 

This method uses the nodal displacements of the element obtained after analysis from the 

Analyze class for calculating the stresses. The stresses obtained are stored in a new 
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Stresses object stsc along with element connectivity information in order to associate them 

with nodal coordinates. 

 

5.4 Four-node Iso-Parametric Quadrilateral Element 
 

 This is the simplest 2-D quadrilateral element. It has four nodes and two degrees of 

freedom at each node for a total of eight degrees of freedom. The four nodes are numbered in a 

counterclockwise direction as shown in Figure 5.2. The nodal displacement vector is given by 

   

{u}= {u1, v1, u2, v2, u3, v3, u4, v4}T      (5.27) 

 

 

Y

 
  Figure 5.2 Four-node iso-parametric quadrilateral element. 

 

The formulation of the stiffness matrix for the quadrilateral element is as described below 

(Cook 1989). For developing the stiffness matrix, the master (or parent) element is defined in 

the natural (ξ,η) coordinates as shown in Figure 5.3. 
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 Figure 5.3 Four-node iso-parametric quadrilateral in natural coordinates. 

 

5.4.1 Interpolation Functions 
 

The displacements u and v are obtained from nodal coordinates by means of Lagrange 

interpolation functions as 

 

   
4

1
( , ) i i

i
u Nξ η

=

=∑ u

N vξ η
=

=∑  v        (5.28) 
4

1
( , ) i i

i

For an iso-parametric element, the same shape function can be used to determine the geometry 

and the displacements, which is why this element is known as iso-parametric. 

The geometry of the element can be expressed as 

  
4

1
( , ) i i

i
x N xξ η

=

=∑  

         (5.29) 
4

1
( , ) i i

i
y ξ η

=

=∑N y

  

where N1, N2, N3 and N4 are shape functions in the natural coordinate system. These shape 

functions can be written as  

 (-1, 1) 

1   2 

3 4 

ξ

η

 (-1,-1) 

(1, 1) 

(1,-1) 
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1
1( , ) (1 )(1 )
4

N ξ η ξ= − −η  

2
1( , ) (1 )(1 )
4

N ξ η ξ= + −η  

3
1( , ) (1 )(1 )
4

N ξ η ξ= + +η  

4
1( , ) (1 )(1 )
4

N ξ η ξ= − +η       (5.30) 

The displacements ( , )u ξ η  and ( , )v ξ η  are rewritten in matrix form as  

 

1

1

2

21 2 3 4

31 2 3 4

3

4

4

0 0 0 0( , )
0 0 0 0( , )

u
v
u
vN N N Nu
uN N N Nv
v
u
v

ξ η
ξ η

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎡ ⎤⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨⎢
⎩ ⎭ ⎣ ⎦

⎬⎥
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

    (5.31) 

 

5.4.2 Stiffness Matrix 
 

To obtain the element stiffness matrix of an iso-parametric quadrilateral element, the strain-

displacement is converted from Cartesian space to natural space. Hence the derivatives of 

function f in ,x y coordinates need to be expressed in terms of ,ξ η . For a function f(x, y), the 

derivatives with respect to ξ  and η  are obtained from the chain rule of differentiation: 

 

f f x f y
x y

f f x f y
x y

ξ ξ ξ

η η η

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

       (5.32) 
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or 

f f
xJ
ff
y

ξ

η

∂⎧ ⎫ ∂⎧ ⎫
⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪=⎨ ⎬ ⎨∂∂⎪ ⎪ ⎪

∂⎪ ⎪ ⎪∂ ⎩ ⎭⎩ ⎭

⎪
⎬
⎪
⎪

       (5.33) 

The transformation matrix used to map the strain-displacement matrix from Cartesian space to 

natural space is known as the Jacobian matrix and is given by 

  
11 12

21 22

[ ]

x y
J J

J
J Jx y

ξ ξ

η η

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ⎡ ⎤⎢ ⎥= = ⎢ ⎥∂ ∂⎢ ⎥ ⎣ ⎦
⎢ ⎥∂ ∂⎣ ⎦

     (5.34) 

The determinant of the Jacobian is given by 

  11 22 21 12J J J J J= −        (5.35) 

and the inverse  is 1[ ]J −

  22 121

21 11

1[ ]
J J

J
J JJ

− −⎡ ⎤
= ⎢−⎣ ⎦

⎥       (5.36) 

Substituting the shape functions from Equation (5.29), the terms in the Jacobian matrix are 

obtained as 

  
4

11
1

i
i

i

NxJ x
ξ ξ=

∂∂
= =
∂ ∂∑  

  
4

12
1

i
i

i

NyJ y
ξ ξ=

∂∂
= =
∂ ∂∑  

  
4

21
1

i
i

i

NxJ x
η η=

∂∂
= =
∂ ∂∑  

  
4

22
1

i
i

i

NyJ
η η=

∂∂
= =
∂ ∂∑ y         (5.37) 

 

The strain-displacement relations are expressed as 

 
48 
 

 
 



x

y

xy

u
x
v
y
u v
y x

ε
ε
γ

⎧ ⎫∂
⎪ ⎪
∂⎪ ⎪⎧ ⎫

⎪∂⎪ ⎪ =⎨ ⎬ ⎨ ⎬∂⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪∂ ∂

+⎪ ⎪
∂ ∂⎩ ⎭

⎪
       (5.38) 

The derivatives in Cartesian space can be expressed in terms of derivatives in natural space as 

  22 12

21 11

1
uu

J Jx
u J J uJ
y

ξ

η

∂⎧ ⎫∂⎧ ⎫
⎪ ⎪⎪ ⎪ − ∂⎡ ⎤∂⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥∂ − ∂⎣ ⎦⎪ ⎪ ⎪ ⎪

∂⎪ ⎪ ⎪ ⎪∂⎩ ⎭ ⎩ ⎭

     (5.39) 

  22 12

21 11

1
vv

J Jx
v J J vJ
y

ξ

η

∂⎧ ⎫∂⎧ ⎫
⎪ ⎪⎪ ⎪ − ∂⎡ ⎤∂⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥∂ − ∂⎣ ⎦⎪ ⎪ ⎪ ⎪

∂⎪ ⎪ ⎪ ⎪∂⎩ ⎭ ⎩ ⎭

     (5.40) 

Combining Equations (5.38), (5.39) and (5.40), the strains are expressed in term of local 

coordinates (ξ,η) as 

  
x

y

xy

u

u

A
v

v

ξ

ε
η

ε
γ

ξ

η

∂⎧ ⎫
⎪ ⎪∂⎪ ⎪
∂⎪ ⎪⎧ ⎫ ⎪ ⎪∂⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬∂⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎪ ⎪∂
⎪ ⎪∂⎪ ⎪
⎪ ⎪∂⎩ ⎭

⎪        (5.41) 

where  

  
22 12

21 11

21 11 22 12

0 0
1 0 0

J J
A J

J
J J J J

−⎡ ⎤
⎢= −⎢
⎢ ⎥− −⎣ ⎦

J ⎥
⎥      (5.42) 

 

Further, the derivatives of the displacements with respect to natural coordinates are expressed 

as 
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4

1

i
i

i

Nu u
ξ ξ=

∂∂
=

∂ ∂∑  

  
4

1

i
i

i

Nu u
η η=

∂∂
=

∂ ∂∑  

  
4

1

i
i

i

Nv v
ξ ξ=

∂∂
=

∂ ∂∑  

  
4

1

i
i

i

Nv v
η η=

∂∂
=

∂ ∂∑        (5.43) 

The above equations can be rewritten in matrix form as 

131 2 4

1

231 2 4

2

331 2 4

3

31 2 4 4

4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

uNN N Nu
v
uNN N Nu
v
uv NN N N
v

v NN N N u
v

ξ ξ ξ ξξ

η η η η η

ξ ξ ξ ξ ξ

η η η η η

⎧ ⎫∂∂ ∂ ∂∂ ⎡ ⎤⎧ ⎫
⎪ ⎪⎢ ⎥⎪ ⎪ ∂ ∂ ∂ ∂∂ ⎪ ⎪⎢ ⎥⎪ ⎪
⎪ ⎪∂∂ ∂ ∂∂ ⎢ ⎥⎪ ⎪
⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨∂ ∂∂ ∂ ∂⎢ ⎥⎪ ⎪ ⎪

⎢ ⎥⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂⎢ ⎥⎪ ⎪ ⎪∂ ∂∂ ∂ ∂⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎪
⎪
⎪
⎪
⎪

⎪
⎬ (5.44) 

Equation (5.44) can be written as  

  { } [ ][ ]{ }A G uε =        (5.45) 

where  

  [G] = 

31 2 4

31 2 4

31 2

31 2 4

0 0 0

0 0 0

0 0 0 0

0 0 0

NN N N

NN N N

NN N

NN N N

ξ ξ ξ ξ

η η η η

4

0

0

0

N
ξ ξ ξ

η η η η

∂∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥

∂∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥

∂∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥

∂∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

ξ
∂
∂

 (5.46) 

Therefore, 

  { } [ ]{ }B uε =         (5.47) 

where [ ] [ ][ ]B A G=  is the strain-displacement matrix 
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The stresses in the element are given by  

{ } [ ][ ]{ }D B uσ =         (5.48) 

where [D] is the material matrix. 

The element stiffness matrix is given by 

  [        (5.49) ] [ ] [ ][ ]
T

A

k t B D B dA= ∫

Since [B] is in terms of natural coordinates, Equation (5.49) is integrated with respect to 

natural coordinates. Substituting  

  ( , )dA dxdy J d dξ η ξ η= =       (5.50) 

we obtain the element stiffness matrix as  

  
1 1

1 1

[ ] [ ( , )] [ ][ ( , )] ( , )Tk t B D B J d dξ η ξ η ξ η
− −

= ∫ ∫ ξ η    (5.51)  

where t is the thickness of the element. The element stiffness matrix so obtained is an 8x8 

matrix and each term is a function of ξ  and η . Gauss quadrature is used to integrate these 

terms. If a 2x2 Gauss quadrature rule is used, then the stiffness matrix is 

  
2 2

1 1
[ ] [ ( , )] [ ][ ( , )] ( , )T

j i
j i

k t w w B D B J d dξ η ξ η ξ η
= =

= ∑∑ ξ η   (5.52) 

The roots and weights for 2x2 Gauss quadrature are given in Table 5.2 (Chandrupatla et al. 

1997). 

Table 5.2 Roots and weights for 2x2 Gauss quadrature. 

Roots Weight Functions (w) 

±0.7745966692 0.55555555555556 

 

5.4.3 Element Force Vectors 
 

Uniformly distributed forces acting on the elements are converted to equivalent nodal loads. 

This is determined by using the potential energy expression (Chandrupatla et al. 1997) 

          (5.53) ( , )T

V

u fξ η∫ dV

Using Equation (5.28) and considering the body force f = [fx, fy]T, we get  

 
51 
 

 
 



        (5.54) 
1

( , )
N

T
i

iV

u fdV uξ η
=

=∑∫ T f

where N is the number of elements in the structure. The force vector of each element is given 

by 

  
1 1

1 1

[ ( , )] ( , ) xT

y

f
f t N J d d

f
ξ η ξ η ξ η

− −

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∫ ∫     (5.55)  

The force vector is evaluated using Gauss quadrature. 

 

5.4.4 Implementation of Four-node Quadrilateral Element in Java Applet 
 

 For implementing the four-node iso-parametric quadrilateral element in Java, the class 

Qelement is developed. The following is a brief description of variables and functions in the 

Qelement class. 

 
public class Qelement { 

   private double thick;  //thickness of the element 

   private double[] coodx; //x coordinates of each element 

   private double[] coody; //y coordinates of each element 

   private double[][] d;  // material matrix 

   private double[] dxi;  //derivatives of shape functions w.r.t si 

   private double[] deta; //derivaitives of shape functions w.r.t eta 

   private double[][] jacb;  // Jacobain martrix 

   private double djac;   //determinant of Jacobian matrix 

   private double[][] b;   //strain-displacement matrix 

   public double[][] q4kelem;  //element Stiffness matrix   

   public double[] stressmat; //stress matrix 

 

 

The variables thick and the arrays coodx[], coody[] contain the coordinates of the 

element. Arrays dxi and deta contain the derivates of the shape functions with respect to ξ 

and η, respectively. The two-dimensional arrays d, b, jacb and q4kelem store the material 
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matrix [D], calculated strain-displacement matrix [B], the Jacobian matrix, and the element 

stiffness matrix, respectively. 

 

The constructor for the Qelement class is 

 
public Qelement(double[] x, double[] y, double[][] matb, 

                   double th) { 

 

       d = matb; 

       thick = th; 

       coodx = x; 

       coody = y; 

   } 

 

To create an instance of the four-node quadrilateral element object, the constructor of 

the Qelement class is called and the coordinates, thickness, and material property matrix are 

passed as arguments. The methods in the Qelement class use this data to calculate the strain-

displacement matrix, the shape functions, the stiffness matrix, and stresses. 

 

The methods in the Qelement class are listed in Table 5.3 

 

Table 5.3 Methods in class Qelement 

Method Description 

q4dshapefx()  Calculates shape functions  

jacobian() Calculates Jacobian matrix  

q4Bmatrix() Calculates the strain-displacement matrix  

calcelemk() Calculates the element stiffness matrix 

calcstress() Calculates element stresses  

 

Method calcelemk() calculates the stiffness matrix by using  2x2 Gauss quadrature. For 

each Gauss point the methods q4dshapefx(), jacobian() and q4Bmatrix() are invoked 

to calculate the shape functions, Jacobian matrix, and strain-displacement matrix, respectively. 
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Then the contributions to the element stiffness matrices at each Gauss point are calculated and 

these are added to form the element stiffness matrix. 

The approach used to analyze a structure consisting of four-node quadrilateral elements 

is as follows. For each element an instance of the Qelement class is created by calling the 

constructor from the  Analyze class. 

 
Qelement q= new Qelement(x,y,matb,th); 

 

where q is an instance of the Qelement class. The required values such as the x and y 

coordinates, and the material matrix, are passed in the constructor. These values are then used 

by the methods in the Qelement class to calculate the element stiffness matrix which is 

returned to the calling method in the Analyze class. The Analyze class further assembles the 

structure stiffness matrix by using the element stiffness matrix for each Qelement object . 

 

The method calcstress() method mentioned calculates the stresses in the element 

and stores the results in a new Stresses object.  

The calcstress()  method is declared as  

 
public void calcstress(double[] u,int[] elemcon,Stresses sts) 

 

This method uses the nodal displacements of the element obtained after analysis from the 

Analyze class for calculating the stresses. The stresses at each node are calculated using 

Gauss 2x2 quadrature. The methods q4dshapefx(), jacobian() and q4Bmatrix() are 

called at each Gauss point and stresses are calculated using the stress-strain relationships 

mentioned in section 5.4.2. The stresses obtained are stored in a new Stresses object sts 

along with element connectivity information to associate them with nodal coordinates. 

 

5.5 Eight-node Iso-Parametric Quadrilateral 
 

 The eight-node isoparametric quadrilateral element is an extension of the four-node 

element. Four additional nodes are considered along the mid-points of the element boundaries.  
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The nodes of the quadrilateral element are numbered as shown in Figure 5.4 

 
  

 Figure 5.4 Eight-node quadrilateral element in x, y space. 

 

The eight-node quadrilateral element in natural coordinates is shown in Figure 5.5 

 
   

Figure 5.5 Eight-node quadrilateral element in ξ, η space. 

 

Each node has two degrees of freedom, an x and y translation, for a total of sixteen degrees of 

freedom for the element. 
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As for the four-node quadrilateral element, the displacements and coordinates at any point in 

the element are expressed in terms of the nodal displacements by 
8

1
( , ) i i

i
u Nξ η

=

=∑ u

N v

 

         (5.56) 
8

1
( , ) i i

i
v ξ η

=

=∑

The x and y coordinates of any point are obtained from  

  
8

1
( , ) i i

i
x N xξ η

=

=∑  

         (5.57) 
8

1
( , ) i i

i
y ξ η

=

=∑N y

where, N1, N2, N3 ,… N8 are the shape functions in the natural coordinate system. These shape 

functions can be written as  

1
1( , ) (1 )(1 )(1 )
4

N ξ η ξ η ξ= − − − + +η  

2
1( , ) (1 )(1 )(1 )
4

N ξ η ξ η ξ= − + − − +η  

3
1( , ) (1 )(1 )(1 )
4

N ξ η ξ η ξ η= − + + − −  

4
1( , ) (1 )(1 )(1 )
4

N ξ η ξ η ξ= − − + + −η  

2
5

1( , ) (1 )(1 )
2

N ξ η ξ= − −η  

2
6

1( , ) (1 )(1 )
2

N ξ η ξ= + −η  

2
7

1( , ) (1 )(1 )
2

N ξ η ξ= − +η  

2
8

1( , ) (1 )(1 )
2

N ξ η ξ= − −η       (5.58) 

The formulation of the stiffness matrix for this element is similar to that for the four-node 

quadrilateral element. Also, numerical integration and the calculation of the load vector follow 

the same approach as before. Although Gauss quadrature using a 3x3 grid is required to 

integrate all the terms of the stiffness matrix, it has been suggested that a Gauss two point 
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(2x2) quadrature be used to prevent the element from becoming too stiff and to yield 

conservative estimates of deflections and stresses (Liang-Wu Cai 2004). 

 

5.5.1 Implementation of the Eight-node Quadrilateral Element in Java  
 

The implementation of the eight-node quadrilateral element in Java is similar to that of the 

four-node quadrilateral element with few modifications such as matrix declarations and the 

shape functions. The EightNelement class is developed for implementing the eight-node iso-

parametric quadrilateral element in Java. The following is a brief description of the variables 

and functions in the EightNelement class. 

 
public class EightNelement { 

    private double thick;  //thickness of the Element 

   private double[] coodx; //x coordinates of each element 

   private double[] coody; //y coordinates of each element 

   private double[][] d;  // material matrix 

   private double[] dxi;  //derivative of shape functions w.r.t si 

   private double[] deta;  //derivative of shape functions w.r.t eta 

   private double[][] jacb;  // Jacobain matrix 

   private double djac;   //determinant of the Jacobian matrix 

   private double[][] b;   //strain-displacement matrix 

   public double[][] q8kelem;  //element Stiffness matrix   

   public double[] stressmat; //stress matrix 

 

 

The variable thick and the arrays coodx[], coody[] are used to store the thickness and the 

coordinates of the element. Arrays dxi and deta represent the derivatives of the shape 

functions with respect to ξ and η respectively. The material matrix [D], strain-displacement 

matrix [B], Jacobian matrix and the element stiffness matrix are stored in the two-dimensional 

arrays d[], b[], jacb[] and q8kelem[], respectively. 
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The constructor for the EightNelement class is  

 
public EightNelement(double[] x, double[] y, double[][] matb, 

                   double th) { 

 

       d = matb; 

       thick = th; 

       coodx = x; 

       coody = y; 

   } 

 

To create an eight-node quadrilateral element object, the constructor of the 

EightNelement class is called and the coordinates, thickness, and material property matrix of 

the element are passed as arguments. The methods in the EightNelement class use these 

variables as data to calculate the strain-displacement matrix, shape functions, stiffness matrix, 

and stresses. 

The methods in the EightNelement class are summarized in Table 5.4 

 

Table 5.4 Methods in class EightNelement. 

Method Description 

q8dshapefx()  Calculates shape functions  

jacobian() Calculates the Jacobian matrix  

q8Bmatrix() Calculates the strain-displacement matrix  

calcelemk() Calculates the element stiffness matrix 

calcstress() Calculates stresses in the element 

 

Method calcelemk() calculates the stiffness matrix by using Gauss 2x2 quadrature. For each 

Gauss point the methods q8dshapefx(), jacobian() and q8Bmatrix() are invoked to 

calculate the shape functions, Jacobian matrix, and the strain-displacement matrix. Then the 

element stiffness matrix at each Gauss point is computed and is added to form the element 

stiffness matrix. 
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The approach used to analyze a structure containing eight-node quadrilateral elements 

is as follows. For each element an instance of the EightNelement class is created by calling 

the constructor from the Analyze class: 

 
EightNelement q8 = new EightNelement(x,y,matb,th); 

 

where q8 is an instance of the EightNelement class. The required values such as x and y 

coordinates, and material matrix, are passed in the constructor. These values are used by the 

various methods to calculate the stiffness matrix which is returned to the calling method in the 

Analyze class. The Analyze class further assembles the structure stiffness matrix by 

obtaining the element stiffness matrix for each EightNelement object. 

 

The method calcstress()mentioned calculates the stresses in the element and 

stores them in a new Stresses object for later retrieval. The calcstress()  method is 

declared as  

 
public void calcstress(double[] u,int[] elemcon,Stresses sts) 

 

This method uses the nodal displacements of the element obtained after analysis from the 

Analyze class for calculating the stresses. The stresses at each node are calculated using 

Gauss 2x2 quadrature. The methods q8dshapefx(), jacobian() and q8Bmatrix() are 

called at each Gauss point and stresses are calculated using the stress-strain relationships 

mentioned in Section 5.4.2. The stresses obtained are stored in a new Stresses object sts 

along with element connectivity information to associate them with nodal coordinates. 
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Chapter 6: Plate Bending Elements 
 
 

6.1 Introduction 
 

 Two types of plate bending elements are discussed in this chapter: (1) Discrete 

Kirchhoff Triangle (DKT) element developed by Batoz et al. (1980) and (2) Discrete 

Kirchhoff Quadrilateral (DKQ) element developed by Batoz and Tahar (1982). The 

development of the element stiffness matrix for each of these elements and the 

implementation in Java are presented in this chapter. The classes for implementing both 

of these elements were developed in a master’s thesis by KaushalKumar 

Kansara(Virginia Tech 2004) under the supervision of Professor Rojiani and are included 

in the Java applet with due permission. 

 

6.2 Bending of Flat Elastic Plates 
 

 A plate can be defined as the two-dimensional equivalent of a beam with bending 

in two principal directions. Plates are subjected to transverse loads perpendicular to the 

plane of the plate. The behavior of the plate can be described by classical plate theory 

which is an extension of the Euler – Bernoulli beam theory to plates. This is also known 

as Kirchhoff plate theory. 

 

The assumptions for bending of thin plates are as follows: 

1. Plate is of uniform thickness 

2. A line normal to the middle surface of the plate before deformation remains 

normal after deformation. This assumption is known as Kirchhoff’s assumption. 

3. The middle surface of the plate remains unchanged after deformation. 

4. Transverse shear stresses are neglected as they are small compared to normal 

stresses. 
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For an isotropic elastic plate with uniform thickness h in the XY plane, the moments are 

given by the following relationships: 
/ 2

/ 2

h

x x
h

M zdzσ
−

= ∫         

/ 2

/ 2

h

y y
h

M zdzσ
−

= ∫       

 
/ 2

/ 2

h

xy xy
h

M zdzτ
−

= ∫        (6.1) 

 

where Mx and My are moments per unit length in the x and y directions, respectively, and 

Mxy is the twisting moment per unit length. 

 

6.3 Strain-Displacement Relations 
 

 Consider a section through the plate before and after deformation as shown in 

Figure 6.1. Point A at a distance z from the middle surface before deformation has moved 

to point A’ after deformation.  

Z 

A’ 

u 

z w
x

∂
∂

 
u0

A 

 
 Figure 6.1 Bending of plate.  
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The displacement of point A in the x-direction represented by u  is given by 

  o
wu u z
x

∂
= −

∂
        (6.2) 

where is the middle surface displacement and w is displacement of the plate in the Z 

direction. 

ou

Similarly the displacement in the y direction is 

  o
wv v z
y

∂
= −

∂
        (6.3) 

 

The terms ou  and  remain constant based on the assumption made previously that there 

is no change in length of the middle surface of the plate on deformation. Thus, the strains 

are obtained by differentiation: 

ov

   

xε  = u
x
∂
∂

 = 
2

2

wz
x

∂
−

∂
        

  yε  = u
y
∂
∂

 = 
2

2

wz
y

∂
−

∂
        

  xyγ  = u v
y x
∂ ∂

+
∂ ∂

 = 
2

2 wz
x y
∂

−
∂ ∂

      (6.4) 

 

The relationship between stresses and strains is given by 

 

[ ]
xx

y

xy xy

D y

εσ
σ ε
τ γ

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪ =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

       (6.5)  

 

where [D] is the material matrix and is expressed as 
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  [D] = 21
E
ν−

1 0
1 0

10 0
2

ν
ν

ν

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥

⎥
⎥

−
⎢ ⎥
⎣ ⎦

      (6.6) 

Here, E = Young’s modulus of elasticity and ν = Poisson’s ratio. 

The stresses in the plate are given by substituting Equation (6.6) in Equation 

(6.5): 

 

  2

1 0
1 0

1
10 0

2

xx

y

xy xy

E
y

εσ ν
σ ν

ν
τ ν

ε

γ

⎡ ⎤
⎧ ⎫⎢ ⎥⎧ ⎫
⎪ ⎪⎢ ⎥⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥−⎩ ⎭ ⎩ ⎭⎢ ⎥

⎣ ⎦

     (6.7) 

 

Hence the stresses can be expressed as  

 

  
2 2

2 2 21x
Ez w w

x y
σ

ν
⎡ ⎤− ∂ ∂

= +⎢− ∂ ∂⎣ ⎦
ν ⎥        

  
2 2

2 2 21y
Ez w w

y x
σ

ν
⎡ ⎤− ∂ ∂

= +⎢− ∂ ∂⎣ ⎦
ν ⎥        

  
2

2

2 (1 )
1 2z

Ez w
x y

νσ
ν

− − ∂
=

− ∂ ∂
      (6.8) 

 

The moments in the plate are obtained by substituting Equations (6.8) in Equation (6.1) 

and integrating over the thickness h: 

  

  
3 2 2

2 2 212(1 )x
Eh w wM

x y
ν

ν
⎡ ⎤− ∂ ∂

= +⎢− ∂ ∂⎣ ⎦
⎥       

  
3 2 2

2 2 212(1 )y
Eh w wM

y x
ν

ν
⎡− ∂ ∂

= +⎢− ∂ ∂⎣ ⎦

⎤
⎥       
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3 2

2 (1 )
12(1 )xy

Eh wM
x y

ν
ν

⎡ ⎤− ∂
= − ⎢ ⎥− ∂ ∂⎣ ⎦

     (6.9) 

 

The term  
3

212(1 )
Eh

ν−
 is known as the bending stiffness of the plate and is represented by 

D. 

 

6.4 Discrete Kirchhoff Triangle (DKT) Element 
 

 The DKT element was developed by Batoz et al. (1980). This element is widely 

used for the analysis of irregular shaped plates. The stiffness matrix for the DKT element 

developed by Batoz et al. is discussed in this section. Figure 6.2 shows the DKT element 

with three degrees of freedom at each node. 

Z, w 

 
  Figure 6.2 Discrete Kirchhoff Triangle. 

 

From the assumptions mentioned earlier, the displacements u, v, and w of a point 

with coordinates x, y and z are given by 

 

 ( , )xu z x yβ=   ( , )yv z x yβ=   ( , )w w x y=    (6.10) 

θx

θy

    W2 
2   θx2               
     θy2

       w3 
3     θx3     
       θy3

w1
θx1     1 
θy1

Y 

X 
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where w is the transverse displacement in the z direction and ,x yβ β are the rotations of 

the normal to the undeformed middle surface in the xz and yz planes, respectively, and 

are given by 

  x

y

u
x
u
y

β
β

∂⎧ ⎫−⎪ ⎪⎧ ⎫ ∂⎪=⎨ ⎬ ⎨ ⎬∂⎩ ⎭ ⎪ ⎪−
∂⎪ ⎪⎩ ⎭

⎪        (6.11) 

  

The curvatures are given by 

 

 

2

2

, 2

, 2

, , 2

2

x x

y y

x y y x

wz
x
wz

y
wz

z

x y

β
κ β

β β

⎡ ⎤∂
−⎢ ⎥

∂⎢ ⎥⎡ ⎤
⎢ ⎥∂⎢ ⎥= = −⎢⎢ ⎥ ∂⎢ ⎥⎢ ⎥+⎣ ⎦ ⎢ ⎥∂
⎢− ⎥

⎥

∂ ∂⎢ ⎥⎣ ⎦

      (6.12) 

 

and the transverse shear strains are given by 

 ,

,

x x

y y

w u
w x x

w uw
y y

β
γ

β

∂ ∂⎡ ⎤−⎢ ⎥+⎡ ⎤ ∂ ∂⎢= =⎢ ⎥ ∂ ∂+ ⎢ ⎥⎣ ⎦ −⎢ ⎥∂ ∂⎣ ⎦

⎥        (6.13) 

 

The total strain energy is 

  U = Ub +Us        (6.14) 

where 

  1
2

T
b b

A

U D dxdyκ κ= ∫        (6.15) 

  1
2

T
s s

A

U D dxdyγ γ= ∫        (6.16) 
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The variables Ub and Us represent the bending and transverse shear contributions. For 

thin plates the transverse shear strains and the transverse shear strain energy Us are 

negligible compared to the bending energy Ub. Hence the stiffness matrix is derived 

based on the bending energy expression  

 

  1
2

T
b

A

U D dxdyκ κ= ∫        (6.17) 

where 

  
3

2

1 0
1 0

12(1 )
10 0

2

b
EhD

ν
ν

ν
ν

⎡ ⎤
⎢ ⎥
⎢

= ⎢− ⎢ ⎥

⎥
⎥

−
⎢ ⎥
⎣ ⎦

     (6.18) 

 

The following observations were made by Batoz et al. to relate the rotations of the normal 

to the middle surface ,xβ  yβ  to the transverse displacement  (which does not appear in 

Equation (6.17)): 

w

 

1. The triangular element must have only 9 degrees of freedom, that is, the 

displacement  and the rotations w xθ  and yθ  at the three corner nodes. 

2. Using Kirchhoff theory, the nodal point rotations should be x
u
x

θ ∂
=
∂

 and 

y
u
y

θ ∂
=
∂

. 

3. The Kirchhoff plate theory assumptions can be imposed at any discrete point. 

4. Compatibility of the rotations xβ and yβ  should not be lost. 

The formulation of the DKT element is based on the following assumptions made by 

Batoz et al.: 

1. xβ and yβ  at any point over the element are given by 

6

1
x i xi

i
Nβ β

=

=∑
6

1
y i yi

i
Nβ β

=

=∑ ;      (6.19) 
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where xiβ and xiβ are the nodal rotations at the corners and at the mid-nodes.  

The shape functions for the DKT element in area coordinates are given by   

  1
12(1 )
2

N ξ η ξ⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

η  

  2 (2 1)N ξ ξ= −  

  3 (2 1)N η η= −  

  4 4N ξη=  

  5 4 (1 )N η ξ η= − −  

  6 4 (1 )N ξ ξ η= − −        (6.20) 

2. The Kirchhoff hypothesis is imposed to remove transverse strains. 

a. At the corner nodes 1,2, and 3 

,

,
0x x

y y

w
w

β
γ

β
+⎡ ⎤

= ⎢ ⎥+⎣ ⎦
=        (6.21) 

b. At the mid-nodes defined in a counter-clockwise sense around the element 

  , 0sk skw β+ =  where k = 4, 5, and 6     (6.22) 

3. The variation of the transverse displacement  is cubic and is given by w

3 1 3 1,
2 4 2 4sk i si j

ij ij

w w w w
l l
−

= − + − sjw      (6.23) 

where  denotes the mid-node of side  and represents the length of side . k ij ijl ij

4. The variation of rotations along the sides are given by 

(1
2nk ni nj )β β β= +        (6.24) 

where k = 4, 5, and 6 represent the mid-nodes of sides 23, 31, and 12, 

respectively. 

Since  varies cubically along the sides, w ,sw and sβ vary quadratically. Hence 

,sw matches sβ at the three points along each side, thereby satisfying the Kirchhoff 

hypothesis along the entire boundary. 

The nodal degrees of freedom of this element are represented by 

  1 1 1 2 2 2 3 3 3{ , , , , , , , , }T
x y x y x yU w w wθ θ θ θ θ θ=     (6.25) 
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xβ and yβ are expressed in terms of the nodal degrees of freedom using the following 

expressions: 

  ( , )T
x xH Uβ ξ η=  

  ( , )T
y yH Uβ ξ η=        (6.26) 

where and  are the component vectors of the shape functions and are represented 

by the following expressions: 

T
xH T

yH

 

        (6.27) 

6 6 5 5

5 5 6 6

1 5 5 6 6

4 4 6 6

6 6 4 4

2 6 6 4 4

5 5 4 4

4 4 5 5

3 4 4 5 5

1.5( )

1.5( )

1.5( )

x

a N a N
b N b N

N c N c N
a N a N

H b N b N
N c N c N

a N a N
b N b N

N c N c N

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎢ ⎥
⎢= +
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−
⎢ ⎥

+⎢ ⎥
⎢ ⎥− −⎣ ⎦

⎥

⎥

     

        (6.28) 

6 6 5 5

1 5 5 6 6

5 5 6 6

4 4 6 6

2 6 6 4 4

6 6 4 4

5 5 4 4

3 4 4 5 5

4 4 5 5

1.5( )

1.5( )

1.5( )

y

d N d N
N e N e N

b N b N
d N d N

H N e N e N
b N b N
d N d N

N e N e N
b N b N

−⎡ ⎤
⎢ ⎥− + +⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎢ ⎥
⎢= − + +
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−
⎢ ⎥
− + +⎢ ⎥
⎢ ⎥− −⎣ ⎦

Also,  

  

2

2

/

3 /
4

k ij ij

k ij ij

a x l

b x y

= −

= ijl
 

2 21 1( )
4 2k ij ijc x y= − 2/ ijl  
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2

2 2

2 2 2

/

1 1( )
4 2

( )

k ij ij

k ij ij

ij i j

ij i j

ij ij ij

d y l

e y x

x x x

y y y

l x y

= −

= −

= −

= −

= +

2/ ijl

d

       (6.29) 

  

where  = 4, 5, and 6 for sides ij = 23, 31, and 12, respectively. k

The stiffness matrix of the DKT element is evaluated using the displacement method and 

is given by  

 

  
11

0 0

2 T
DKT bK A B D Bd

η

ξ η
−

= ∫ ∫       (6.30) 

where B is the strain-displacement matrix given by 

 

31 , 12 ,

31 , 12 ,

31 , 12 , 31 , 12 ,

1( , )
2

T T
x x
T T
y y

T T T
x x y

y H y H
B x H x H

A
x H x H y H y H

ξ η

ξ η
T
yξ η ξ

ξ η
⎡ ⎤+
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − + +⎣ ⎦η

  (6.31) 

and A is the area given by   31 12 12 310.5( )A x y x y= −

 

Assuming, the element is of constant thickness, the stiffness matrix of the DKT element 

is evaluated using three point Gauss quadrature. 

 Once the nodal displacements are determined, the bending moments at any point 

in the element can be obtained using the following equations (Batoz et al. 1980) 

  ( , ) ( , )bM x y D B x y U=       (6.32) 

where 

  1 21 3

1 21

1

31

x x x x
y y y y

ξ η
ξ η

= + +
= + +

       (6.33) 
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6.5 Implementation of DKT Element in Java 
 

 The class DKTElement was developed by KaushalKumar Kansara and requires 

the x and y coordinates, material matrix [D], and thickness of the element. When 

analyzing a structure using the DKTElement, an instance of this class is created by the 

Analyze class. The DKTElement class has several methods for calculating the shape 

functions, the strain-displacement matrix, and the element stiffness matrix of the element. 

Table 6.1 lists the methods available in DKTElement along with their use. 

 

Table 6.1 Methods in class DKTelement 

Method Description 
Geometry() Calculates the geometric rotation components for an 

element 
ShFnHXxi() 
 

Calculates the derivatives of the component vector of the 

shape functions in the x direction with respect toξ  .  

ShFnHXeta() Calculates the derivatives of the component vector of the 

shape functions in the x direction with respect to η  

ShFnHYxi() 
 

Calculates the derivatives of the component vector of the 

shape functions in the y direction with respect to ξ   

ShFnHYeta() Calculates the derivatives of the component vector of the 

shape functions in the y direction with respect to η  

DKTElementKMatrix() Calculates the stiffness matrix of the DKT element 
DKTBMatrix() Calculates the strain-displacement matrix of the DKT 

element 
CalcStresses() Calculates stresses in the DKT element 

 

The stresses are calculated using the stress-strain relationships mentioned previously and 

the values at each node are passed to the Stresses class which stores them. 
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6.6 Discrete Kirchhoff Quadrilateral (DKQ) Element 
 

 The Kirchhoff Quadrilateral plate bending element (DKQ) is essentially 

developed along the same lines as the DKT element using the Kirchhoff plate bending 

assumptions. The DKQ element has four nodes with three degrees of freedom at each 

node for a total of 12 degrees of freedom for the element. The Discrete Kirchhoff 

Quadrilateral (DKQ) element was developed by Batoz and Tahar (1982) for analyzing 

plate structures such as flat slabs and footings. Figure 6.3 shows the DKQ element with 

, xw θ , and yθ , representing the transverse displacement and rotation in the x and y 

directions. 

 
 Figure 6.3 Discrete Kirchhoff Quadrilateral. 

 

 

The displacements at any point (x, y) are given by 

( , )w w x y=   ,x y
w w
y

θ ∂
= =
∂

  ,y
w w
x

θ x
∂

= =
∂

    (6.34) 
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This section discusses the development of the DKQ element by Batoz and Tahar. 

The basic arguments and formulation of DKQ element remain the same as that of the 

DKT element. Neglecting the transverse shear strain energy, the total strain energy is 

given by 

          (6.35) e
b

e
U U=∑

where is the element strain energy due to bending and is given by e
bU

  { }1 [ ]
2 e

e
b b

A

U D dxdyχ χ= ∫       (6.36) 

and  is the area of  element eA

The curvatures for a homogenous isotropic plate are given by 

 

  { }       (6.37) 
/
/

/ /

x

y

x y

x
y

y x

β
χ β

β β

⎧ ⎫∂ ∂
⎪= ∂ ∂⎨
⎪ ⎪∂ ∂ + ∂ ∂⎩ ⎭

⎪
⎬

 

where xβ and yβ  are the rotations of the normal to the undeformed middle surface in the 

xz and yz planes, respectively. 

The material matrix is given by 

 

  
3

2

1 0
1 0

12(1 )
10 0

2

b
EhD

ν
ν

ν
ν

⎡ ⎤
⎢ ⎥
⎢

= ⎢− ⎢ ⎥

⎥
⎥

−
⎢ ⎥
⎣ ⎦

     (6.38) 

 

E ,ν , and  are Young’s modulus, Poisson’s ratio, and thickness of the plate, 

respectively. 

h
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Batoz and Tahar made the following observations while formulating the DKQ 

element: 

1. xβ and yβ  are defined by incomplete cubic polynomials  

 
8

1
x i

i
N xiβ β

=

=∑   
8

1
y i

i
N yiβ β

=

=∑      (6.39) 

Here represent the shape functions of the eight-node quadrilateral element and are 

given by 

iN

1
1( , ) (1 )(1 )(1 )
4

N ξ η ξ η ξ= − − − + +η  

2
1( , ) (1 )(1 )(1 )
4

N ξ η ξ η ξ= − + − − +η  

3
1( , ) (1 )(1 )(1 )
4

N ξ η ξ η ξ= − + + − −η  

4
1( , ) (1 )(1 )(1 )
4

N ξ η ξ η ξ= − − + + −η  

2
5

1( , ) (1 )(1 )
2

N ξ η ξ= − −η  

2
6

1( , ) (1 )(1 )
2

N ξ η ξ= + −η  

2
7

1( , ) (1 )(1 )
2

N ξ η ξ= − +η  

2
8

1( , ) (1 )(1 )
2

N ξ η ξ= − −η

=

      (6.40) 

2. The Kirchhoff hypothesis is imposed to remove transverse strains. 

a. At the corner nodes 1,2, 3 and 4 

,

,
0xi xi

yi yi

w
w

β
γ

β
+⎡ ⎤

= ⎢ ⎥+⎣ ⎦
       (6.41) 

b. At the mid-point nodes defined in a counter-clockwise sense around the 

element 

  , 0sk skw β+ =  where k =5, 6, 7, and 8     (6.42) 

  where s represents coordinates along the element boundary. 
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3. The transverse displacement at any node is defined by a cubic expression and its 

derivative with respect to s at the mid-node  is given by 

w

k

 

  ,
3 1( ) (

2 4 , , )sk i j si
ij

w w w w
l
−

= − − + sjw      (6.43) 

 

where = 5, 6, 7, and 8 is the mid-node of the sides = 12, 23, 34, 41, respectively, and 

represents the length of side . 

k k

ijl ij

4. The rotations at mid-nodes are average values of the corresponding end nodes: 

 

  ( )1
2nk ni njβ β β= + = ( , ,

1
2 ni njw w+ )      (6.44) 

 

where = 5, 6, 7, and 8 corresponds to the mid node of sides 12, 23, 34, 41, respectively. k

 

For formulating the stiffness matrix of the DKQ element, the rotations xβ and yβ  

are to be explicitly expressed in terms of nodal variables. The nodal variables for the 

DKQ element are given by 

   

1 1 1 2 2 2 3 3 3 4 4 4{ , , , , , , , , , , ,n x y x y x y xU w w w w }yθ θ θ θ θ θ θ θ=    (6.45) 

 

Hence, the rotations are given by the following expressions. 

   ( , )x
x nH Uβ ξ η=

         (6.46) ( , )y
y Hβ ξ η= nU

 

where and  are component vectors of shape functions represented by the 

following expressions: 

xH yH
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        (6.47) 

5 5 8 8

5 5 8 8

1 5 5 8 8

6 6 5 5

6 6 5 5

2 6 6 5 5

7 7 6 6

7 7 6 6

3 7 7 6 6

8 8 7 7

8 8 7 7

4 8 8 7 7
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b N b N
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N c N c N

H
a N a N

b N b N
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−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎢ ⎥
⎢ ⎥+
⎢ ⎥

− −⎢= ⎢ −
⎢ ⎥

+⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥+⎢ ⎥
⎢ ⎥− −⎣ ⎦

⎥
⎥

⎥
⎥

 

     

        (6.48) 

5 5 8 8

1 5 5 8 8

5 5 8 8
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N e N e N

b N b N
d N d N

N e N e N
b N b N

H
d N d N

N e N e N
b N b N
d N d N

N e N e N
b N b N

−⎡ ⎤
⎢ ⎥− + +⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎢ ⎥
⎢ ⎥− + +
⎢ ⎥

− −⎢= ⎢ −
⎢ ⎥
− + +⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥− + +⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

Also,  

  

2

2

/

3 /
4

k ij ij

k ij ij

a x l

b x y

= −

= ijl
 

2 21 1( )
4 2k ij ijc x y= − 2/ ijl  
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2 2

2 2 2

/

1 1( )
4 2

( )

k ij ij

k ij ij

ij i j

ij i j

ij ij ij

d y l

e y x

x x x

y y y

l x y

= −

= −

= −

= −

= +

2/ ijl

d

       (6.49) 

where  = 5, 6, 7, and 8 for sides ij = 12, 23, 34, and 41, respectively. k

The stiffness matrix of the DKQ element is evaluated using the standard procedure of the 

displacement method and is given by  

 

  
1 1

1 1

det[ ]e T
bK B D B J dξ η

− −

= ∫ ∫       (6.50) 

where B is the strain-displacement matrix given by 

 

11 , 12 ,

21 , 22 ,

11 , 12 , 21 , 22 ,

( , )

x x

y x

y y x
x

j H j H
B j H j H

xj H j H j H j H

ξ η

ξ η

ξ η ξ

ξ η
⎡ ⎤+
⎢= − −⎢
⎢ ⎥+ + +⎣ ⎦η

⎥
⎥     (6.51) 

In Equation (6.50), 11 12 21, ,j j j , and 22j  are the components obtained by inverting the 

Jacobian matrix [  of the transformation between the parent and actual element. The 

Jacobian matrix is given by 

]J
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  (6.52) 

 

Thus, the components are given by  

  11 22
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j J
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=  
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−
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Also, the determinant of the Jacobian matrix is 
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42 31 31 42 34 21 21 34 41 32 32 41
1 ( ) ( ) (
8 8 8

J y x y x y x y x y x y x )ξ η
= − + − + −   (6.54) 

Assuming the element is of constant thickness, the stiffness matrix of the DKQ element is 

evaluated using the two-point Gauss quadrature.   

6.7 Implementation of the DKQ Element in Java 
 

 The class DKQElement was developed by KaushalKumar Kansara and the inputs 

to the constructor for the class are x and y coordinates, material matrix [D], and thickness 

of the element. When analyzing a structure using DKQElement, an object of this class is 

created in the Analyze class for each plate in the structure. There are several methods in 

the DKQElement class for calculating shape functions, the strain-displacement matrix, 

and the element stiffness matrix of the element. 

Table 6.2 lists the methods available in the DKQElement along with a brief description. 

 

Table 6.2 Methods in class DKQelement 

Method Description 
Geometry() Calculates the geometric rotation components for an element 
ShFnHXxi() 
 

Calculates the derivatives of the component vector of the 

shape functions in x direction with respect toξ  .  

ShFnHXeta() Calculates the derivatives of the component vector of the 

shape functions in the x direction with respect to η  

ShFnHYxi() 
 

Calculates the derivatives of the component vector of the 

shape functions in the y direction with respect to ξ   

ShFnHYeta() Calculates the derivatives of the component vector of the 

shape functions in the y direction with respect to η  

DKQElementKMatrix() Calculates the stiffness matrix of the DKQ element 
DKQBMatrix() Calculates the strain-displacement matrix of  the DKQ 

element 
CalcStresses() Calculates stresses in the DKQ element 
Jacobian() Calculates the Jacobian matrix  
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The stiffness matrix of the DKQ Element is computed using the DKQElementKMatrix() 

method. At each Gauss point, the methods ShFnHXxi(), ShFnHXeta(), ShFnHYxi(), 

ShFnHYeta(), and DKQBMatrix() are called to evaluate the shape functions and the 

strain-displacement matrix. Then the contribution to the element stiffness matrix at each 

Gauss point is calculated and added to form the final stiffness matrix. 

The DKQ Element also has a calcstresses() method. This method evaluates the 

stresses at each node and stores the results in a new Stresses object for later retrieval 

during printing of results. 
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Chapter 7: Applet Structure and Interface 
 
 

 

7.1 Introduction 
 
 A Java Applet is developed to perform finite element analysis using different 

elements. This applet is embedded in a HTML page and can be accessed from any place 

over the Internet. All that is required is a Java enabled web browser. In this chapter, the 

details regarding the structure of the program and the various classes are presented. The 

program interface and required input are also described.  

 

 

7.2 The Applet Structure  
 

 The classes developed for the finite element analysis program are divided into 

three different types: (1) Input and Output classes, (2) Processing classes, and (3) 

Interface classes. Figure 7.1 shows the structure of the applet along with all of the classes. 

A description of these classes follows.    

Dividing a large complex program into various classes is the essential idea behind 

object oriented programming. FemApplet is the main class of the applet. This class has 

methods for reading the input data and the FemApplet class creates an instance of the 

Analyze class. The Analyze class collects the input data and creates the model of the 

structure with the Model class. Data from the Model class is used by the Analyze class 

object to perform the analysis of the structure. The Analyze class also performs post 

processing. 
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 Figure 7.1 Applet structure diagram. 
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 The Element class is an important class of this program. Since different 

types of elements are used for analysis, the Element class is the super class and it 

contains sub classes for representing the different elements such as OneDBarelement, 

TwoDTrusselement, TwoDBeam, CSTelement classes. These classes are derived from 

the Element class by inheritance. The Element class also contains methods to 

determine the type of element and the nodes to which the element is connected. The 

nodal data of the structure such as the node number and joint coordinates is stored in the 

Joint class. There is an instance of the Joint class for each node in the structure. 

Restraints, nodal loads, and uniform or pressure loads are represented by separate classes.  

Stresses is a container class which contains classes defined to store different 

types of stresses. AxStress, BenStress and MemStress are classes defined to 

represent axial, bending, and membranes stresses, respectively. The TextInput class 

reads the input and creates a model of the structure when text input is used in the 

program. The Results class acquires the data such as displacement and stresses and 

displays them in the applet window. The Draw and Deform classes are called by the 

FemApplet class to plot the structure and the deformed shape of the structure. 

Finally, a third party Java package named Jama developed by the National 

Institute of Standards and Technology (NIST) is used for matrix operations. The classes 

in the Jama package are called by the FemApplet class while performing matrix 

inversion or multiplication.  

Details of these classes are provided in the following paragraphs. 

 

7.3 Input and Output Classes 
 

 The required input for the finite element model is specified either by a text file or 

by entering data in the various input fields provided in the graphical user interface of the 

program. The text input option essentially creates a finite element model using the format 

provided by typical commercial finite element programs. This input includes nodal data, 

connectivity information, material properties, restraints, and joint loads acting on the 

structure specified in an orderly format as described in Appendix A. 
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TextInput Class 

 

 The TextInput class is initialized when the input for the program is provided in 

the form of text. The information required for generating a finite element model is 

extracted and stored as an instance of the Model class. The data acquired by reading the 

text file is stored into different vectors in the Model class. These vectors store 

information such as joint numbers, joint coordinates, material properties, and 

connectivity information.  

The constructor of the TextInput class has JTextArea and FemApplet as 

arguments. When the constructor is called, the text from the text area is read in and 

assigned to a string. All the necessary code required for interpreting and storing the data 

is provided in this class. 

 

FemApplet Class 

 

 This is an interface class. It reads in the input entered from the graphical user 

program.  The interface part of this class is discussed in a later section. Several nested 

classes are contained in this class to provide the functionality for processing the buttons 

of the input tabs. Action Listeners are added to all interface components like buttons, 

check boxes, combo boxes, and radio buttons. Whenever an Add button is pressed an 

action event is triggered which in turn calls the corresponding nested class associated 

with that event. This inner class has a set of instructions for adding the input data to the 

various vectors in the Model object along with displaying the input in the list boxes. The 

same procedure is applied for the addition of components like nodal coordinates, 

connectivity information, and restraints. Similarly, Remove buttons are provided to 

remove the selected data from the Model object. 
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Result Class 

 

 The Result class represents the results frame. Large amounts of data such as 

displacements at nodes, and stresses in elements, are obtained after performing the 

analysis. These data are stored in different vectors as MemStress or AxStress and 

BenStress objects depending on the type of stress. 

 The Result class contains only one method named AddText() which adds the 

displacements and different types of stresses obtained at each node to the JTextArea 

component of the Result frame which is passed as an argument to the constructor of this 

class. AddText() is a method for obtaining the calculated values from the respective 

vectors in which they are stored and tabulating them in an orderly fashion before printing 

them. The output format of the results displayed is similar to that of SAP 2000. 

 

7.4 Processing Classes 
 

 This is a set of classes which store the input data, perform analysis, and store the 

results of the structure as objects. Once the structure to be analyzed is defined, the input 

data obtained from the TextInput class or the FemApplet class is stored in the Model 

class. The data required to create a finite element model such as degrees of freedom, 

nodal coordinates, material properties, restraints, element nodal connectivity, and joint 

loads are represented as objects of class SystemProp, Joint, Material, Restraint, 

Element, and JointLoad, respectively. 

Once the Model object is created, an instance of Analyze class is generated. 

This class performs the necessary operations to evaluate displacements and stresses at 

each node. Instances of the element classes such as QElement and OneDBarElement 

are called to generate the stiffness matrix of the respective element. 

After performing the analysis, instances of the classes AxStress, BenStress, 

and MemStress are created to store axial, bending, and membrane stresses. These 

objects are further stored in a vector using the methods of the Stresses class.  
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SystemProp Class 

 

 The type of element to be used for analysis is determined by the degrees of 

freedom possible at each node.  The SystemProp class defines the behavior of the 

structure, that is, the possible directions in which the structure can deform on loading. 

This class is composed of three methods. Method getdof() returns an array which is 

used by the Analyze class along with the number of nodes per element to determine the 

type of element for carrying out analysis based on the permitted degrees of freedom at 

each node. For example, two types of elements are possible with three nodes: either the 

CST Element or the DKT plate element. The type of element used is determined by 

considering the degrees of freedom at each node. Method getsdf() returns the total 

degrees of freedom at each node. Method getoption() contains information which is 

used by the Analyze class to determine whether the problem is a plane stress or a plane 

strain condition. 

 

Joint Class 

 

 This class represents a joint in the structure. An instance of this class is created for 

each node in the structure by calling the class constructor. The input to the constructor are 

node number and x and y coordinates of the joint. These objects are used by the Analyze 

class for computing the stiffness matrix of each element. Methods getx(), gety(), 

and getnodes() of this class return the x coordinate, y coordinate, and node number, 

respectively. 

 

 

 

Material Class 
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Material properties such as Young’s modulus and Poisson’s ratio are required for 

evaluating the material matrix [D] for either plane stress or plane strain condition. The 

Material class is used to create objects of this class representing material properties of 



each element and these are stored as a vector in Model class. The methods getym() and 

getpr() return  Young’s modulus and Poisson’s ratio of the material. The method 

getAth() returns the section properties such as the thickness and area of cross-section 

of the elements. 

 

Restraint Class 

 

 Finite element analysis essentially requires the solution of a large number of 

equations. The number of equations to be solved depends on the total number of 

restraints and the number of degrees of freedom for the entire structure. The number of 

restraints at each node depends on the degrees of freedom allowed at each node. The 

Restraint class represents restraints in the structure and is used to create objects which 

are used by the Analyze class. Further, these objects are also used by the Result class 

for displaying results. The methods getrestloc(), getrestx(), and 

getresty() can be called to determine whether there is a restraint in the x or y 

direction at any given node. 
 

 

Element Class 

 

 To assemble the stiffness matrix, connectivity details of each element are 

required. The Element class contains details such as connectivity, element number and 

element type. Methods getconnect(), getelemno(), and getelemtype() 

return the array of connectivity, element number, and element type, respectively. The 

Analyze class calls an instance of the Element class to get the node connectivity 

array for the element. The coordinates of each node are obtained by calling the methods 

defined in the Joint class for each node. Once the details of the element are obtained, 

the stiffness matrix of the element is generated by calling the corresponding element class 

such as Qelement and DKTElement by passing the coordinates and material 
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properties of the element as arguments to the constructor. The class hierarchy structure of 

the Element class is given in Figure 7.2 

 

 

 Figure 7.2 Element class hierarchy diagram. 
 

JointLoad Class 

 

 The global load vector is formed by calling the methods of the JointLoad class 

to compute the applied force or moment acting at each node. The getload() and 

getloadpos() methods provide the magnitude of the applied force and  the node 

number, respectively. The load vector assembled is used for calculating nodal 

displacements. 

 

ULoad Class 

 

 Uniform or pressure loads acting on the elements are converted into equivalent 

nodal forces. The ULoad class represents uniform or pressure loads. The methods 

getelno(), getstartpos(), and getendpos() are used to obtain the element 

number and the location of the loads on the element. The uniform loads are stored in a 

vector utloaddata of Model class. The Analyze class calls the corresponding element 

CSTelement 

OneDBarelement TwoDBeam TwoDTrusselement 

DKTElement 
Element

Qelement EightNelement DKQElement 
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class such as OneDBarelement, CSTelement and passes information regarding load 

magnitudes and location needed to convert uniform loads into equivalent nodal loads. 

The loads evaluated are added to existing loads for performing analysis. 

 

Model Class 

 

 As mentioned previously, this class serves as a container for storage of the finite 

element model. Objects of all structural component classes previously defined such as 

degrees of freedom, nodal coordinates, material properties, restraints, element nodal 

connectivity, and joint loads are stored as instances of the Vector class. 

 The Vector class belongs to the Java class library. A Vector is a dynamic array 

of objects. The components of a Vector can be accessed by using an integer index. 

Moreover, a Vector has a unique property which allows it to add or remove items after 

the Vector has been created. There are a set of well defined methods to manipulate a 

Vector. The dynamic resizing property of Vector allows the programmer to create 

storage containers for the objects without any limitations regarding capacity. Method 

addElement()adds a specified object to the end of a Vector. To remove an object 

from a specified location in a Vector, the removeElementAt() method is called by 

passing an index of the location of the object as an argument.  

 The Model class consists of various instances of the Vector class. Vectors such 

as elementdata, nodedata, jointloaddata, restraintdata, materialprop, 

and systemdata are used to store objects of classes Element, Joint, JointLoad, 

Restraint, Material, and SystemProp, respectively. Hence all of the components 

required for performing finite element analysis of a structure are stored in Vectors 

instantiated by Model class. 

 The methods for manipulating the data stored in Vectors are also defined in the 

Model class. The addition and removal of any object from Vector is done by the 

addElementAt() or removeElementAt() methods defined previously. A summary 

of methods in the Model class is given in Table 7.1.  A class diagram depicting the 

relationship among the various classes and the Model class is given in Figure 7.3. 
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Table 7.1 Methods in Model class. 

Method Description 
addelem() Creates an instance of the Element class and adds it to 

elementdata Vector 
removeelem() Removes a object of the Element class from elementdata 

Vector 
addnode() Creates an instance of the Joint class and adds it to 

jointdata Vector 
removenode() Removes an object of the Joint class from jointdata 

Vector 
addload() Creates an instance of the JointLoad class and adds it to 

jointloaddata Vector 
removeload() Removes an object of JointLoad class from 

jointloaddata Vector 
addrestraint() Creates an instance of the Restraint class and adds it to 

restraintdata Vector 
removerestraint() Removes an object of Restraint class from 

restraintdata Vector 
addmaterial() Creates an instance of the Material class and adds it to 

materialdata Vector 
removematerial() Removes an object of Material class from materialdata 

Vector 
addsystem() Creates an instance of the SystemProp class and adds this to 

systemdata Vector 
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Figure 7.3 Model class diagram. 
 

Analyze Class 

 

 This class utilizes all of the previously defined classes and performs the analysis 

of the structure. An instance of this class is called by the FemApplet class. Once this 

class is instantiated it uses the data stored in the Model object for calculating stiffness 

matrices, displacements, and stresses at each node. Each of the above mentioned task is 

carried out by methods defined in this class, which are listed in Table 7.2. 

 

Table 7.2 Methods in Analyze class 

Method Description 
analysisdata() Extracts data required for analysis from the Model object 

stiffnessmatrix() Calculates stiffness matrix based on element type 
calcdisp() Calculates displacement at each node 
stress() Calculates stresses in each element 
Calckpstress() Calculates material matrix for plane stress condition 
Calckpstrain() Calculates material matrix for plane strain condition 
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  The method analysisdata() is used to obtain analysis data stored in the form 

of vectors in the Model object. This method further calculates the number of restraints 

and total number of degrees of freedom for the structure, and assigns equation numbers 

for assembling the stiffness matrix. The stiffnessmatrix() method uses the number 

of elements obtained from analysisdata() for assembling the global stiffness matrix 

by performing the following the operations for each element of the structure. 

• Connectivity details of the element are obtained. 

• Nodal coordinates are obtained by using the methods of the Joint class for each 

node of the element.  

• The stiffness matrix of the element is generated by calling an instance of the 

particular element such as CSTelement and DKTElement by passing the nodal 

coordinates and material properties of the element as arguments.  

• The global stiffness matrix is obtained by adding the element stiffness matrix 

using the equation numbers generated earlier. 

Deflections at each node are then calculated in the calcdisp()  method by inverting 

the structural stiffness matrix and multiplying it by the global load vector. The matrix 

operations are performed using the Jama Library class library developed by NIST 

(National Institute of Standards and Technology). The stresses in the element are 

evaluated by calling the stress() method which instantiates the specific element class 

and then calls the calcstress() method of that class to calculate stress by passing the 

nodal displacements  and the connectivity array as arguments. The stresses are stored in 

vectors defined in the Stresses class. Methods calcpkstress() and 

calcpkstrain() are used to calculate the [D] matrix based on the analysis option 

chosen. Figure 7.4 shows the class diagram for the Analyze class. 

 

 

 

Model

 
FemApplet StressesAnalyze
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Figure 7.4 Analyze class diagram. 



 

 
 

 

 

AxStress Class  

 

 This class contains methods for storing calculated axial stresses in the 

OneDBarelement and TwoDTrusselement classes. Methods gets1() and getf() 

are used to get the axial stress and force in each element while printing results. The 

AxStress class objects are stored in the axstress vector of Stresses class. 

 

MemStress Class 

 

 Membrane stresses are obtained when the structure is subjected to inplane 

loading. Elements such as CSTelement, Qelement, and EightNelement classes yield 

membrane stresses on loading. The MemStress class stores normal stresses in the x and 

y directions, shear stress, maximum and minimum principal stresses and the angle of the 

principal axis at each node. The methods of the MemStress class are listed in Table 7.3. 

 

Table 7.3 Methods in class MemStress 

Method Description 
getnodenum() Returns node number at which stresses are evaluated 
gets1() Returns normal stress in x direction at the given node 
gets2() Returns normal stress in y direction at the given node 
gets12() Returns shear stress at the given node 
getsmax() Returns maximum principal stress at the node 
getsmin() Returns minimum principal stress at the node 
getsang() Returns angle of principal axis at the node 
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BenStress class 

 

 This class is used for storing stresses when plate bending elements are used. This 

class stores the normal stresses in the x and y directions, shear stress, maximum and 

minimum principal stresses, and angle of the principal axis at each node for plate bending 

problems. The methods defined in this class are listed in Table 7.4 

 

Table 7.4 Methods in class BenStress  

Method Description 
getnodenum() Returns node number at which stresses are evaluated 
gets1() Returns normal stress in x direction at the given node 
gets2() Returns normal stress in y direction at the given node 
gets12() Returns shear stress at  the given node 
getsmax() Returns maximum principal stress at the node 
getsmin() Returns minimum principal stress at the node 
getsang() Returns angle of principal axis at the node 

 

 

Stresses Class 

 

Objects of classes AxStress, MemStress, and BenStress are organized and 

stored in axstress, memstress, and benstress vectors, respectively, by this class. 

The Analyze class calls an instance of each element class such as CSTelement and 

DKTElement for calculating stresses. The Calcstress() method defined for each 

element takes an instance of the Stresses class as an argument along with the 

connectivity and nodal displacements arrays of the element. The evaluated stresses at 

each node are then stored in vectors as objects of AxStress, MemStress or BenStress 

based on the type of element used for analysis. Table 7.5 lists the methods defined in the 

 
92 
 

 
 



Stresses class. The relationship between the Stresses class and other classes is 

shown in Figure 7.5. 

 

   

 

Table 7.5 Methods in Stresses class 

Method Description 
addAxialStress() Creates an instance of the AxStress class and adds this to 

the axstress vector 

addMemStress() Creates an instance of MemStress class and adds this to 

the memstress vector 

addBendingStress() Creates an instance of BenStress class and adds this to 

the benstress vector 

 

 

Results 

 
Stresses

BenStress MemStress AxStress 

 

 

 

 

   

Figure 7.5 Stresses class diagram. 

 

7.5 Applet Interface 
 

  The main window of the applet which is derived from the JApplet class is 

shown in Figure 7.6. A menu bar is provided with the File, Model, Analysis, and Help 

menus. The Model menu contains the Input and Draw commands. The Input command 

is discussed in section 7.7. When Run is selected from the Analysis menu, an instance of 
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the Analyze class is created for performing the analysis of structure. The Results 

command instantiates the Result class which displays the results on the Results frame 

once the analysis is completed.  

 

 

 
 Figure 7.6 Finite element analysis applet view. 

 

7.6 Interface Classes 
 

 The graphical user interface of the applet is mainly provided by the FemApplet 

class. The Draw class displays the structure. The deformed shape of the structure under 

loading is plotted by the Deform class.  
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FemApplet Class 

 

 FemApplet class is created by extending the JApplet class of the Java class 

library. The size of applet is defined as 640 by 520 pixels for compatibility with monitors 

of any resolution. This class contains all the required code for controlling the behavior of 

the components defined in it. Various components such as JTextBox, JLabel, JList, 

JScrollPane, JTextArea, JButton, JCheckBox, and JRadioButton are used for 

developing the user interface for manual input. Several inner classes are provided for 

event handling operations of the above mentioned components. 

 

Draw Class 

 

 This class draws the structure based on the input data. The user can make changes 

to the input and modify the structure until the desired model of the structure is created. 

The Draw class scales the diagram so as to fit in the applet. This class contains methods 

for displaying the structure, concentrated loads, uniform loads, and restraints. Each 

element is numbered along with the nodes as given in the input. In short, it creates the 

graphical representation of the structure being analyzed. 

 

Deform class 

 

 The Deform class generates the deformed shape of the structure. The deformed 

shape of the structure helps in visualizing the response of the structure to loading. The 

addition of the Deform class is to make the applet more interactive.  

 

7.7 Input 
  

The input for this applet is divided into three steps. The first step is similar to the 

pre-processing step of commercial finite element programs where input for the structure 

is entered. Two types of input are possible for this program: a) manual input and b) text 
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input. The user has the choice of making changes to the structure input. Once the user is 

done with input, the structure is analyzed. To view results such as displacements at 

various nodes and stresses in each element, the Results frame is activated. The results can 

also be saved by copying them to a text file. 

 

7.7.1 Manual Input 
  

The manual input frame essentially consists of five tabs. The input frame of the 

applet is activated by selecting the Input command from the Model menu. This leads to 

the input area shown in Figure 7.7 where the element type, coordinates of nodes, 

connectivity information, restraints, and loads acting at various nodes are entered. Each 

input tab is discussed in detail in the following paragraphs. 

 

 
 

Figure 7.7 Element tab. 
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Element Type tab: Input regarding the type of element to be used for modeling the 

structure, degrees of freedom possible, and the method of input are entered in this tab. 

The options for plane stress or plane strain are activated when the selected element type 

is a membrane or plate element. The Element Type combo list gives the user the option 

of selecting from one-dimensional bar element, two-dimensional truss element, two-

dimensional beam element, CST element, four-node iso-parametric quadrilateral element, 

eight-node iso-parametric quadrilateral element, Discrete Kirchhoff triangular plate 

element, and Discrete Kirchhoff quadrilateral plate element. The Element Type tab is 

shown in Figure 7.7 

  

 
 

 Figure 7.8 Co-ordinates tab. 
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Co-ordinates Tab: Each node in the structure is defined by a set of X and Y coordinates. 

All coordinates entered are to be specified in the global system. To add a node, the node 

number and X and Y text fields are filled with respective values and the Add command 

button is pressed. This action displays the previously entered values in a list box as 

shown in Figure 7.8. To remove a node, the corresponding node is selected and the 

Remove button is pressed. There are no limitations on the number of nodes that can be 

contained in a structure. 

 

 
 

 Figure 7.9 Connectivity tab. 

 

Connectivity Tab: Each element is connected to a set of nodes. The number of nodes to 

which each element is connected depends on the type of element. Connectivity 

information is required for calculating the stiffness matrix and stresses at each node. 

Here, along with the connectivity information, the material properties of element such as 
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Young’s modulus, Poisson’s ratio, and section properties like area or moment of inertia 

are entered. The Add and Remove buttons function similarly to those mentioned in the 

Co-ordinates tab. Figure 7.9 illustrates the Connectivity tab. 

 

 

 
 

Figure 7.10 Restraint tab. 

 

 

Restraint Tab: The restraints are entered in this tab. The node number of the restraint, 

along with the direction in which it is restrained, are entered. Figure 7.10 shows the 

Restraint tab.  

Load Tab: The functioning of Load Tab is similar to the Restraint Tab where, instead of 

restraints in the X and Y directions, loads acting in the X and Y direction are specified for 

nodal loads. Details of the input for uniform loads are given in Appendix A. 
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7.7.2 Text Input 
  

 When a structure with a large number of nodes is analyzed, it is more convenient 

to provide input in text format. Generally, an input text file is created and is read by the 

program. But in Java an applet cannot read input from a file due to security reasons. 

Hence, the input text is copied to the clipboard and then pasted to the text input field 

which is activated when the Text input option is selected on the Element Type tab. The 

format of input text is specified in Appendix A. Figure 7.11 illustrates the use of the input 

text field. 

 

 
   

 Figure 7.11 Text input field. 

 

 
100 

 
 
 



Chapter 8: Test Problems and Verification of Results 
 

 

8.1 Introduction 
 

 In this chapter the deflections and stresses obtained at selected nodes from the 

applet for test problems are compared to those obtained from SAP 2000, a commercial 

finite element analysis package developed by Computers and Structures Inc. (CSI), 

Berkeley. All units involve pounds and inches. 

 

8.2 Test Problems for One-dimensional Bars and Truss 
 

 Two test examples were considered and the results obtained from the applet are 

compared to those obtained from SAP 2000. Deflections at critical nodes, forces in 

elements, and reactions are compared. 

 

Problem 1: The first problem is a fixed beam of length 30 in. with three equal segments 

(Sennett 2000). The structure consists of four nodes and three elements. The edges are 

fixed at nodes 1 and 4 and loads are applied at nodes 2 and 3.  Figure 8.1 shows the finite 

element model of the beam.   

 

 
 

Figure 8.1 Model of Problem 1 - Fixed beam 
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Geometric Data 

Span 1: Length = 10 in., area = 1 in2. 

Span 2: Length = 10 in., area = 2 in2. 

Span 3: Length = 10 in., area = 1 in2. 

Material Properties 

E = 10 x 106 psi 

Loading 

A concentrated load of 5000 lb at node 2  

A concentrated load of -10000 lb at node 3 

Restraints 

Nodes 1 and 4 are restrained in the X direction 

 

 

Comparison of Results 

 

The results obtained from the applet and SAP 2000 are shown in Table 8.1. The 

results compared are displacements at nodes 2 and 3 and reactions at nodes 1 and 4. It is 

observed that the results obtained are identical to those obtained from SAP 2000. Table 

8.1 also shows the forces in elements 1 and 3. 

 

 

Table 8.1 Displacements, reactions and forces for Problem 1 

Location Parameter Result from Applet Result from SAP 
2000 Percent error 

Node 2 UX -0.0010 -0.0010 0.00 
Node 3 UX -0.0040 -0.0040 0.00 
Node 1 RX 1000.0000 1000.0000 0.00 
Node 4 RX 4000.0000 4000.0000 0.00 

Element 1 FX -1000.0000 -1000.0000 0.00 
Element 3 FX 4000.0000 4000.0000 0.00 
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Problem 2: The second test problem considered is a thin tapered steel plate of 1 in. 

uniform thickness subjected to its self weight in addition to a concentrated load at the 

midpoint (Chandrupatla et al. 1997). The width of the plate at the top and bottom are 6 in. 

and 3 in., respectively, and the total length of the plate is 24 in. The plate is modeled with 

two one-dimensional bar elements of 12 in. length. The finite element model is shown in 

Figure 8.2 

 

 
  Figure 8.2 Plate modeled with two one-dimensional elements. 

 
Geometric Data 

Element 1: Length = 12 in., area = 5.25 in2. 

Element 2: Length = 12 in., area = 3.75 in2. 

Material Properties 

E = 30 x 106 psi 

Loading 

A concentrated load of 100 lb at node 2  
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Self-weight per unit length of magnitude -1.48 lb/in. on element 1 

Self-weight per unit length of magnitude -1.06 lb/in. on element 2 

Restraints 

Node 1 is restrained in the Y direction 

 

Comparison of Results 

 Displacements at nodes 1, 2, and 3, and forces in elements 1 and 2 obtained from 

SAP 2000 and from the applet are the same. Table 8.2 illustrates the comparison of 

results. 

 

Table 8.2 Displacements, reactions and forces for Problem 2 

Location Parameter Result from Applet Result from SAP 
2000 Percent Error 

Node 2 UY -9.26476E-6 -9.26E-06 0.00 
Node 3 UY -9.94316E-6 -9.94E-06 0.00 
Node 1 RY 130.480 130.480 0.00 

Element 1 FY 121.600 121.600   0.00 
Element 2 FY 6.36000 6.3600   0.00 

 

The deformed shape of the plate generated by the applet is shown in Figure 8.3. 

 
  Figure 8.3 Deformed shape of structure of Problem 2.  
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8.3 Test Problems for Two-dimensional Truss  
 

 Two test examples were considered to verify the accuracy of the results obtained 

from the trusses. The results from the applet are compared to those obtained from SAP 

2000. Deflections at selected nodes and reactions are compared. 

 

Problem 3: A four bar determinate truss is analyzed (Chandrupatla et al. 1997). The 

cross section area of all truss members is 1 in.2. The finite element model of the truss is 

shown in Figure 8.4.  

 
Figure 8.4 Truss model for Problem 3. 

Geometric Data 

Element 1: Length = 40 in., area = 1 in2. 

Element 2: Length = 30 in., area = 1 in2. 

Element 3: Length = 50 in., area = 1 in2. 

Element 4: Length = 40 in., area = 1 in2. 

Material Properties 

E = 29.5 x 106 psi 

Loading 

A concentrated load of 20000 lb is applied at node 2 in the X direction. 
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A concentrated load of 25000 lb is applied at node 3 in the Y direction.  

Restraints 

Nodes 1 and 4 are restrained in both the X and Y directions 

Node 2 is restrained in the Y direction 

 

Comparison of Results 

 

 The displacements at nodes 2 and 3, and the reactions at nodes 1 and 2, are 

compared. Table 8.3 shows the comparison. It can be seen that the results obtained are 

the same as those from SAP 2000. The deformed shape of the truss from the applet is 

shown in Figure 8.5. 

 

Table 8.3 Displacements and reactions for Problem 3 

Location Parameter Result from 
Applet 

Result from SAP 
2000 Percent error 

Node 2 UX 0.0271 0.0271 0.00 
UX 0.0056 0.0056 0.00 Node 3 
UY -0.0222 -0.0222 0.00 
RX -15833.3000 -15833.3000 0.00 Node 1 
RY 3125.0000 3125.0000 0.00 

Node 2 RY 21875.0000 21875.0000 0.00 
 

 
Figure 8.5 Deformed shape of truss of Problem 3. 
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Problem 4: An indeterminate truss problem (Kassimali 1999) as illustrated in Figure 8.6 

is analyzed. The area of all truss members is 6 in.2

 

 

 
 

Figure 8.6 Truss model for Problem 4. 

 

Geometric Data 

The truss geometry is shown in Figure 8.6. The truss spans 45 ft and is 20 ft in height. 

Material Properties 

E = 29 x 106 psi 

Loading 

A concentrated load of 10000 lb is applied at node 5 in the X direction. 

A concentrated load of 30000 lb is applied at nodes 2 and 6 in the Y direction.  

 

Restraints 

Node 1 is restrained in both the X and Y directions. 

Nodes 3 and 4 are restrained in the Y direction. 
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Comparison of Results 

 

 The displacements at nodes 2, 5, and 6 and reactions at nodes 1 and 4 are 

presented in Table 8.4. The results obtained from the applet are the same as those 

obtained from SAP 2000. The deformed shape of the structure is shown in Figure 8.7. 

 

Table 8.4 Displacements and reactions for Problem 4 

Location Parameter Result from Applet Result from SAP 
2000 Percent error 

UX 0.0194 0.0194 0.00 Node 2 
UY -0.0964 -0.0964 0.00 
UX 0.0312 0.0312 0.00 Node 5 
UY -0.0560 -0.0560 0.00 
UX 0.0259 0.0259 0.00 Node 6 
UY -0.0320 -0.0320 0.00 
RX -10000.000000 -10000.000000 0.00 Node 1 
RY 12032.0000 12032.0000 0.00 

Node 4 RY 6997.2800 6997.2800 0.00 
 

 

 

 
 

Figure 8.7 Deformed shape of truss in Problem 4. 
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8.4 Test Problems for Two-dimensional Beams and Frames 
 

 Two test examples were considered to verify the accuracy of the applet for two-

dimensional beams and frames. The results obtained from the applet are compared to 

those obtained from SAP 2000. The first example is an indeterminate beam and the 

second example is a frame structure. Deflections at selected nodes and reactions are 

compared. 

 

Problem 5: The two span continuous beam as illustrated in Figure 8.8 is analyzed             

( Sennett 2000). The beam model consists of four nodes. The supports at nodes 1 and 4 

are fixed and node 2 is a hinged support. 

 

 
Figure 8.8 Model of beam for Problem 5. 

 

Geometric Data 

Element 1: Length = 360 in., I = 233 in4. 

Element 2: Length = 540 in., I = 233 in4. 

Element 3: Length = 720 in., I = 233 in4. 

Material Properties 

E = 29 x 106 psi 

Loading 

A concentrated load of 50000 lb is applied at node 3 in the Y direction. 

A uniform load of 300 lb/in. is applied on span 1 in the Y direction.  

Restraints 

Nodes 1 and 4 are restrained against translation in the X, Y directions and against rotation 

in the Z direction. 
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Node 2 is restrained in the Y direction. 

 

Comparison of Results 

  

 The rotation at node 2 and the reaction at nodes 1, 2, and 4 are compared to those 

obtained from SAP 2000. Table 8.5 shows the results of the comparison. It is clear that 

the results obtained from the applet are the same as those from SAP 2000. Figure 8.9 

shows the deformed shape of beam under loading. 

 

Table 8.5 Displacements and reactions for Problem 5 

Location Parameter Result from 
Applet 

Result from SAP 
2000 Percent error 

Node 2 UR 0.0066 0.0066 0.00 
RY 56062.5000 56062.5000 0.00 Node 1 
MZ 3487500.0000 3487500.0000 0.00 

Node 2 RY 79000.0000 79000.0000 0.00 
RY 22937.5000 22937.5000 0.00 Node 4 
MZ -2002500.0000 -2002500.0000 0.00 

 

 

 

 

 

 
  Figure 8.9 Deformed shape of Beam in Problem 5. 
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Problem 6: A portal frame is analyzed using two-dimensional frame elements. The 

structure is illustrated in Figure 8.10 (Chandrupatla et al. 1997).  

 
  Figure 8.10 Model of portal frame of Problem 6.  

 

Geometric Data 

Element 1: Length = 96 in., I = 65 in.4, area = 6.8 in.2

Element 2: Length = 144 in., I = 65 in.4, area = 6.8 in.2

Element 3: Length = 96 in., A = 65 in.4, area = 6.8 in.2

Material Properties 

E = 30 x 106 psi 

Loading 

A concentrated load of 3000 lb is applied at node 2 in the X direction. 

A uniform load of 42 lb/in. is applied on Element 2 from node 2 to node 3 in the Y 

direction.  

Restraints 

Nodes 1 and 4 are restrained against translation in the X, Y directions and against rotation 

in the Z direction. 
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Comparison of Results 

 

 Displacements at nodes 2 and 3 and support reactions at node 1 are compared. 

Table 8.6 shows the comparison. It can be seen that results obtained from the applet and 

from SAP 2000 are in perfect agreement. The deformed shape of the frame is shown in 

Figure 8.11. 

 

Table 8.6 Displacements and reactions for Problem 6 

Location Parameter Result from 
Applet 

Result from SAP 
2000 Percent error 

UX 0.091766 0.091766 0.00 
UY -0.001036 -0.001036 0.00 Node 2 
UR -0.001387 -0.001387 0.00 
UX 0.090119 0.090119 0.00 
UY -0.001788 -0.001788 0.00 Node 3 
UR -0.000039 -0.000039 0.00 
RX -665.776000 -665.776150 0.00 
RY 2201.200000 2201.2020 0.00 Node 1 
MZ 60138.300000 60138.3110 0.00 

 

 
  Figure 8.11 Deformed shape of portal frame of Problem 6. 

 
112 

 
 
 



 

8.4 Test Problems for Plane Stress Analysis 
 

 The accuracy of the plane stress elements developed in this applet is verified by 

considering five test problems. Standard test problems consisting of CST, four-node 

quadrilateral, and eight-node quadrilateral elements are analyzed using the applet and 

SAP 2000. Deflections and stresses at critical nodes are compared. The following section 

describes the finite element models for these test problems and presents a comparison of 

results. 

 

Problem 7: A cantilever of length 50 in. and height 10 in. is modeled with 10 CST 

elements as shown in Figure 8.12. The thickness of the cantilever is 1 in. It is subjected to 

two concentrated loads of 20 kips each at nodes 6 and 12.  

 

 
  Figure 8.12 FE model for Problem 7. 

 

Geometric Data 

Length L = 50 in. 

Height h = 10 in.  

Thickness t = 1 in. 

Material Properties 

E = 30 x 106 psi. 

Poisson’s ratio ν = 0.25 
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Loading 

A concentrated load of 20000 lb at node 6 in the Y direction 

A concentrated load of 20000 lb is applied at node 12 in the Y direction 

Restraints 

Nodes 1 and 7 are restrained in both the X and Y directions. 

 

Comparison of Results 

 

 The results obtained from the applet are compared to those obtained in SAP 2000 

and are shown in Table 8.7. Displacements at node 6 and 12 and stresses at node 4 are 

compared. It is observed that the results obtained from the applet are identical to those 

obtained from SAP 2000. 

   

Table 8.7 Displacements and stresses for Problem 7 

Location Parameter Result from 
Applet Result from SAP 2000 Percent error 

UX -0.023541 -0.023541 0.00 Node 6 
UY -0.168199 -0.168199 0.00 
UX 0.022189 0.022189 0.00 Node 12 
UY -0.167592 -0.167592 0.00 
S11 -14545.700000 -14545.700000 0.00 
S22 -1818.350000 -1818.350000 0.00 Node 4 
S12 1454.270000 1454.270000 0.00 

 

 

The deformed shape of the structure is shown in Figure 8.12. 

 

 
  Figure 8.12 Deformed shape of the cantilever for Problem 7. 
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Problem 8: The same cantilever beam of Problem 7 is analyzed using four-node 

quadrilateral elements. The length of the beam is 50 in., depth is 10 in., and thickness is 1 

in. A vertical load totaling 40000 lb is applied at the free end of the beam. The finite 

element mode has 33 nodes and 20 four-node quadrilateral elements as shown in Figure 

8.13. 

 

 

 

 
Figure 8.13 FE Model of cantilever with four-node quadrilateral elements 

 

Geometric Data 

Length L = 50 in.  

Height h = 10 in.  

Thickness t  = 1 in. 

Material Properties 

E = 30 x 106 psi 

Poisson’s ratio ν = 0.25 

Loading 

A concentrated load of 6666.67 lb is applied at nodes 11 and 33 in the Y direction 

A concentrated load of 26666.67 lb is applied at node 22 in the Y direction 

Restraints 

Nodes 1, 12, and 23 are restrained in the X and Y directions. 
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Comparison of Results 

 

 The displacements at nodes 11 and 33 and stresses at node 6 are shown in Table 

8.9.  The difference in results obtained from the applet and SAP 2000 is about 0.01 

percent. 

 

 

Table 8.8 Displacements and stresses for Problem 8 

Location Parameter Result from 
Applet 

Result from SAP 
2000 Percent error 

UX -0.089254 -0.089259 0.01 Node 11 UY -0.609463 -0.609497 0.01 
UX 0.089254 0.089259 0.01 Node 33 UY -0.609463 -0.609497 0.01 
S11 -61247.3000 -61250.791000 0.01 
S22 -8592.8300 -8593.309000 0.01 
S12 8084.910000 8085.594000 0.01 

S-MAX -7379.3800 -7379.729 0.00 
Node 6 

S-MIN -62460.8000 -62464.371 0.01 
 

 

The deformed shape of the cantilever is shown in Figure 8.14 

 

 

 
 

Figure 8.14 Deformed shape of cantilever for Problem 8 
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Problem 9: The cantilever beam shown in Figure 8.15 is analyzed using five eight-node 

quadrilateral elements.  The length of the cantilever is 50 in., depth is 10 in., and 

thickness is 1 in. A concentrated load totaling 40000 lb acts at the end as shown in Figure 

8.15. 

 

 
Figure 8.15 Cantilever modeled with eight-node quadrilateral elements 

 

Geometric Data 

Length L = 50 in.  

Height h = 10 in.  

Thickness t = 1 in. 

Material Properties 

E = 30 x 106 psi 

Poisson’s ratio ν = 0.25 

Loading 

A concentrated load of 6666.67 lb is applied at nodes 11 and 22 in the Y direction 

A concentrated load of 26666.67 lb is applied at node 28 in the Y direction 

Restraints 

Nodes 1, 12, and 23 are restrained in the X and Y directions. 

 

Comparison of Results 

 

 The displacements at nodes 11 and 22 and stresses at nodes 4 and 12 are shown in 

Table 8.9.  The difference in results is less than 1% except for the stresses at node 5. The 
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reason for this difference is that SAP 2000 employs an error estimation method and is 

therefore more accurate. The deformed shape of the structure is shown in Figure 8.16. 

 

Table 8.9 Displacements and stresses for Problem 9 

Location Parameter Result from 
Applet Result from SAP 2000 Percent error 

UX -0.099261 -0.099255 -0.01 Node 11 UY -0.676005 -0.675435 -0.08 
UX 0.099261 0.099255 -0.01 Node 22 UY -0.676005 -0.675435 -0.08 
S11 -83985.600000 -84000.021000 0.02 Node 4 S22 2941.210000 2803.249000 -4.92 
S11 119976.000000 119455.572 -0.44 Node 12 S22 29994.100000 2.99E+04 -0.44 

 

 

 
 Figure 8.16 Deformed shape of cantilever for Problem 9. 

 

Problem 10: A plate with a semi-circular hole of radius 2.5 in. at its center is analyzed 

using the applet and SAP 2000. The plate is subjected to a force of 100 lb/in. at its bottom 

end and is fixed at the top. The length of the plate is 16 in., width is 6 in. and the 

thickness is 1 in. The plate is modeled with 48 CST elements as shown in Figure 8.17. 

Geometric Data 

Width b = 6 in.  

Height h = 12 in.  

Thickness t = 1 in. 
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Figure 8.17 Plate with semi-circular hole modeled with CST Elements. 

Material Properties 

E = 30 x 106 psi. 

Poisson’s ratio ν = 0.3 

Loading 

A uniform load of 100 lb/in2 is applied at the bottom end. 

Restraints 

Nodes 1, 2, and 3 are restrained in the X and Y directions. 

 

Comparison of Results 

 

 Displacements at nodes 25 and 32 and stresses at nodes 1 and 17 obtained from 

the applet are compared to those obtained from SAP 2000 in Table 8.10. The difference 

in displacements at nodes 25 and 32 is less than 0.4%.  The stresses at node 17 differ by 
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0.43 percent. The reason for this difference is that SAP 2000 averages the stresses over 

adjacent elements and uses an error estimation technique to arrive at more accurate 

values.  Figure 8.18 shows the deformed shape of the plate. 

 

Table 8.10 Displacements and stresses for Problem 10 

Location Parameter Result from 
Applet Result from SAP 2000 Percent error 

UX 5.75E-05 0.000058 0.05 Node 25 
UY -1.39E-04 -0.000139 0.34 
UX 1.73E-04 0.000173 0.20 Node 32 
UY -1.53E-04 -0.000153 -0.19 
S11 3.12E+01 31.212398 0.00 Node 1 
S22 1.04E+02 104.041326 0.00 
S11 3.46E+00 3.466700 0.29 Node 17 
S22 5.24E+02 5.26E+02 0.43 

 

 
 

Figure 8.18 Deformed shape of plate with semi-circular hole. 
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Problem 11: For this test case a rectangular plate of size 4 ft x 3 ft with a square hole of 

size 1ft x 1ft is analyzed. The thickness of the plate is 1 in. The plate is fixed on one end 

and a uniform load of 100 lb/in. acts on the other end. The plate is modeled with 62 nodes 

and 44 four-node quadrilateral elements. A finite element discretization of this problem is 

shown in Figure 8.19 

 
Figure 8.19 Plate with a square hole at center. 

Geometric Data 

Length L=48 in.  

Height h=36 in.  

Thickness t = 1 in. 

Material Properties 

E = 29 x 106 psi. 

Poisson’s ratio ν = 0.3 

Loading 

A uniform load of 100 lb/in. acts along the right edge as shown in Figure 8.19 

Restraints 

The left end of the plate is restrained against displacements in the X and Y directions. 

(i.e. nodes 1,10, 19, 28, 36, 45, 54 are restrained) 
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Comparison of Results 

  

 Table 8.11 shows the comparison of displacements and stresses obtained from the 

applet and SAP 2000 for this problem. The displacements at nodes 32 and 35 and stresses 

at nodes 23 and 40 are compared. Results obtained from the applet match with those from 

SAP 2000 with a minor deviation of 0.08% for the displacement at node 32 which might 

be due to truncation. The deformed shape of the plate is illustrated in Figure 8.20. 

 

Table 8.11 Displacements and stresses in plate 

Location Parameter Result from 
Applet 

Result from SAP 
2000 Percent error 

UX 0.000030 0.000031 0.08 Node 32 
UY 0.000000 0.000000 0.00 
UX 0.000036 0.000036 0.04 Node 35 
UY 0.000000 0.000000 0.00 
S11 232.044000 232.046372 0.00 
S22 20.222400 20.223189 0.00 Node 23 
S12 14.281200 14.281677 0.00 
S11 232.044000 232.046372 0.00 
S22 20.222400 20.223189 0.00 Node 40 
S12 -14.281200 -14.281677 0.00 

 

 
Figure 8.20 Deformed shape of plate with square hole. 
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8.5 Test Problems for Plate Bending Elements 
 

The comparison of displacements and stresses obtained from the applet with those 

obtained from SAP 2000 for plate bending elements is presented in this section. Three 

problems were selected for verification of DKT and DKQ elements. A description of 

each problem and discussion of results is presented in this section. 

 

Problem 12: The first problem is a square cantilever plate is of size 3 ft x 3ft and a 

thickness of 2 in. The plate is fixed on two adjacent sides as shown in plan (Figure 8.21). 

The opposite adjacent edges of plate are free. A concentrated load of 1000 lb acts at the 

corner (node 1).  

 

 

 
Figure 8.21 Cantilever plate modeled with DKT elements. 
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Geometric Data 

Length L=36 in.  

Height h=36 in.  

Thickness t = 2 in. 

Material Properties 

E = 29 x 106 psi 

Poisson’s ratio ν = 0.3 

Loading 

A concentrated load of 1000 lb acts at corner node 1 as shown in Figure 8.21. 

Restraints 

The adjacent edges of the plate are fixed and the remaining two edges are free. 

 

Comparison of Results 

  

 Table 8.12 shows the comparison of displacements at nodes 1 and 9, and stresses 

at nodes 15. The vertical displacement at the free end deviates from that obtained in SAP 

2000 by 1.5 percent. The variation in stress at node 15 is 2.5 percent. The difference in 

the results is due to the fact that SAP 2000 uses a different shell element.  

 

Table 8.12 Displacements and stresses for Problem 12 

Location Parameter Result from 
Applet 

Result from SAP 
2000 Percent error 

UZ -0.004382 -0.004446 1.44 
RX 0.000343 0.000351 0.00 Node 1 
RY -0.000353 -0.000351 0.00 
UZ -0.000771 -0.000773 0.29 
RX 0.000210 0.000211 0.37 Node 9 
RY -0.000057 -0.000054 0.00 
S11 82.459700 80.520000 -2.41 Node 15 S22 274.866000 280.353620 1.96 
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Problem 13: A square plate of size 3 ft x 3ft and thickness of 2 in. The plate is fixed on 

all edges and is subjected to a uniform surface load of 100 lb/in.2. The plate is modeled 

with 36 DKQ elements and the finite element model is shown in Figure 8.22. 

 

 
 

Figure 8.22 Plan view of square plate fixed on all edges. 

 

Geometric Data 

Length L=36 in.  

Height h=36 in.  

Thickness t = 2 in. 

Material Properties 

E = 29 x 106 psi. 

Poisson’s ratio ν = 0.3 
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Loading 

A uniform surface load of 1000 lb is applied on the plate. 

Restraints 

All four edges of the plate are fixed.  

 

Comparison of Results 

  

 The displacements and stresses obtained from the applet and SAP 2000 are 

tabulated in Table 8.13. Displacements are compared at the mid-point of the plate that is 

at node 25. The stresses are compared at nodes 8 and 25. The results obtained from the 

applet are similar to those obtained in SAP 2000.  

 

Table 8.13 Stresses and displacements for Problem 13 

Location Parameter Result from 
Applet 

Result from 
SAP 2000 Percent error 

UZ 0.010747 0.010746 0.00 
RX 0.000000 0.000000 0.00 Node 25 
RY 0.000000 0.000000 0.00 
S11 -9753.320000 -9753.317000 0.00 Node 8 
S22 -2925.990000 -2925.995000 0.00 
S11 4947.330000 4947.333000 0.00 Node 25 
S22 4947.330000 4947.333000 0.00 

 

 

The results of the verification indicate that for the test problems considered the results 

obtained from the applet are essentially the same as those obtained form SAP 2000. The 

difference in results for the few cases where the results do not match are due to the more 

accurate stress computation procedure used in SAP 2000 and due to a different plate 

element being used in SAP 2000. 
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Chapter 9: Summary and Conclusions 
 

9.1 Summary 
 

The objective of this study was to develop a web based tool for teaching finite 

element analysis to engineering students. An applet and a set of web pages were 

developed to illustrate the basic concepts of finite element analysis. The applet was 

written in the object-oriented Java programming language and is platform and operating 

system independent. The web pages and applet are hosted on a web server, which makes 

them accessible to students and instructors over the Internet.  Eight different elements are 

developed to analyze a structure using this applet. One-dimensional bar elements, truss 

elements, and beam elements are provided for explaining the basics of finite element 

analysis. The membrane elements developed in this applet included a three node triangle 

element (CST element), a four-node quadrilateral element, and an eight-node 

quadrilateral element. Plate bending elements implemented in this applet can be used to 

explain advanced topics in finite element analysis. The two plate bending elements 

provided are the Discrete Kirchhoff Triangle (DKT) and the Discrete Kirchhoff 

Quadrilateral (DKQ) element. The Java classes for implementing plate bending elements 

were developed by Kansara (2004). The applet has a graphical user interface which 

makes it very easy to learn. The applet also has many interactive features such as plotting 

the structure and its deformed shape under loading which makes it more attractive to use.  

Input to the applet can be provided either directly into the program or in text 

format. The format of the text input is similar to SAP 2000 with a few modifications. The 

applet has several tabbed input forms for entering nodal coordinates, connectivity, 

material properties, restraints, and loading. Details of input are given in Appendix A. The 

purpose of providing text input is to allow students to save the finite element analysis 

model of the structure for future modifications. Text input is also useful when a structure 

with a large number of nodes and elements is analyzed.  

The applet computes displacements and stresses at each node of the structure. The 

results obtained can be copied to the clipboard and can be saved for later reference. The 

applet also displays the structure and its deformed shape. 
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The accuracy of the applet is verified by analyzing a series of test structures and 

comparing the results obtained from the applet with those obtained from commercial 

finite element analysis software (SAP 2000). The results obtained are compared at critical 

locations of the structure.  

 

9.2 Conclusions 
 

 The applet was developed using object oriented programming principles. Several 

classes were developed representing various structural components like nodes, elements, 

restraints, and loads as discussed in Chapter 7.  The benefit of such an approach is that it 

is possible to include additional elements such as shell elements without modifying the 

rest of the code. 

 The results obtained from the applet are similar to those obtained from SAP 2000.  

It was found that for most cases the difference in results was less than one percent. For 

the few cases where the difference was larger, the difference can be attributed to a) a 

more accurate approach used in SAP 2000 for computing stresses and b) a different plate 

element used in SAP 2000. However, there is a slight deviation in stresses as no error 

correction procedure was incorporated in the applet. 

 The one-dimensional bar element, the truss element, and the two-dimensional 

frame elements all yielded accurate results with no deviation at all. The displacements 

and stresses obtained for structures consisting of the membrane elements are the same as 

those obtained from SAP 2000. The deviation in stresses ranged from 1 percent to 5 

percent. The reason for this deviation is that SAP 2000 uses a stress averaging technique 

for computing stress. 

Displacements calculated for plate structures using the DKT and DKQ plate 

bending elements are close to those obtained from SAP 2000. The difference in results 

was less than 2 percent. The stresses computed differed by 3 percent. The difference in 

stresses can be attributed to the fact that SAP 2000 uses a different plate element than the 

one used in the applet. Nevertheless, the variation in stresses is acceptable.  

In conclusion, the applet developed has all the basic elements required for 

teaching finite element analysis. It has a number of features that make it very attractive in 
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teaching. The graphical user interface combined with the various input forms make it 

easy to enter data. The ability to plot the finite element model promises interactive and 

immediate feedback and makes it easy to detect errors in the finite element model. The 

applet coupled with web pages can be a useful tool for teaching engineering students. 

There is no limitation on the number of nodes and elements. Also, the deformed shape 

generated by the applet makes it easy to understand the behavior of the structure under 

different types of loading.  

 

9.3 Future Development 
 

 The objective of this work is to develop an applet for teaching finite element 

analysis. The applet developed can be improved to make it more interactive. The 

functionality of the applet can be enhanced by providing additional tools for meshing the 

structure and providing a graphical interface for the input. Shell and solid elements can 

also be added to make it a complete tool for teaching finite element analysis of structures.   
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Appendix – A: Input for the program 
 
  

As mentioned in previous chapters, the input to the program can be provided 

either manually or from a text file. Manual input is useful for explaining the pre-

processing step in finite element analysis where information on the finite element model 

such as nodal coordinates, elements, and material data is entered. Manual input can be 

cumbersome for large models. Text input is useful when a model with a large number of 

nodes and elements is to be analyzed. For this case, text input is a more efficient way to 

enter model data. All input data is given in inches and pounds or in any consistent system 

of units. This section discusses both input methods. 

 

A-1 Manual Input  
 

 Manual input is divided into several steps, from selecting the joint type through 

defining the loads. Individual tabs are provided for entering coordinates, connectivity, 

restraints, and loading data. 

 

Step 1: Select element type. 

1. From the Model menu, select the Input menu item. This displays the Element 

tab.  

2. Select the type of element to be used for analyzing the structure from the Element 

Type drop down box provided in the Element tab. 

3. For a one-dimensional bar element, select the degree of freedom (X or Y 

direction) by selecting the appropriate check box. For all other elements, both X 

and Y are active. 

4. For membrane elements, select plane stress or plane strain by clicking on the 

appropriate check box. 
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Step 2: Enter joint coordinates. 

1. Select the Co-ordinates tab. 

2. Enter the node number and X and Y coordinates in the text fields provided. 

3. Press the Add button to add the node. The added node is displayed in the List 

Box. Repeat this until all the nodes are entered. 

4. To remove a node or change its coordinates, select the node from the List Box and 

press the Remove button. 

Step 3: Enter connectivity data.  

1. Select the Connectivity tab. 

2. Enter the element number and the node numbers at which the element is 

connected. The connecting nodes are specified in a counterclockwise direction 

and are separated by a space. 

3. Enter material properties of the element in the respective fields. Press the Add 

button to add the element connectivity and material data.   

4. Repeat the above procedure (Steps 1-3) to enter connectivity data for all elements 

in the structure. 

Step 4: Enter joint restraints. 

1. Select the Restraints tab. 

2. Enter the node number and select the direction of the restraint by clicking the drop 

down box corresponding to the restraint direction. 

3. Press the Add button to enter restraint data. 

4. To remove a restraint, select the restraint from List Box and press the Remove 

button. 

Step 5: Enter loads. 

1. Select the Loads tab. 

2. Enter the node number and loads in x and y directions. 

3. Press the Add button to add the loads. 

4. To remove a load, select the list box and press the Remove button. 

5. To enter a linear or uniform load on a element, specify the start and end nodes and 

the magnitude of the load at these nodes. 
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Step 6: View the model. 

1. Select Draw form Model menu to view the model. Follow steps 1 through 5 to 

make modifications to the model. 

Step 7: Analyze the structure. 

1. Once the desired model is created, press Run from the Analysis menu to perform 

the analysis.   

Step 8: View results and deformed shape. 

1. To view the output of displacements and stresses, click Results from the Analysis 

menu. 

2. The deformed view of the structure can be obtained by clicking the Deformed 

Shape from the Analysis menu. 

 

To perform a new analysis, select New from the File menu. 

 

A-2 Text Input  
  

The input for the program can also be provided by creating a text file and copying 

it into the text area of the applet. The format of the text file essentially follows that used 

in SAP 2000. However, a few modifications were made to this format. Due to security 

reasons, a Java applet cannot directly read a text file and hence the input text is copied to 

the clipboard and then transferred to the applet. 

To provide input in text format, the Text Input checkbox is selected, which then 

displays the text panel. The text from the clipboard is then copied to this text form. Once 

the text is pasted, the Read button is pressed. The input is then read and is interpreted and 

the model is generated. 

The data is provided in input blocks and each data block is separated by a title 

which defines the block and separates it from the other data blocks. The data blocks are 

tabulated in Table A-1 and must be in the same order as listed in Table A-1. 
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Table A -1 Data blocks for input file. 

Data Block Function 

SYSTEM Defines system properties 

JOINTS Defines joint coordinates 

RESTRAINTS Defines restraints at nodes 

MATERIAL Defines material properties and thickness 

CONNECTIVITY Defines joint connectivity for each element 

LOADS Defines applied loads on nodes and elements 

END Marks the end of input text 

 

 

SYSTEM Data Block 

 

 The SYSTEM data block defines the degrees of freedom for the entire structure. 

The possible restraints are derived from this data block. The format of the system data is 

shown in Table A-2. 

 

Table A - 2 SYSTEM Data Block 

SYSTEM 

DOF = UX OR DOF = UY One-dimensional Bar Element 

DOF = UX UY Truss Element and Plane Stress Elements 

DOF = UX UY RZ Two-dimensional Beam Element 

DOF = UZ RX RY Plate Bending Elements 

 

JOINTS Data Block 

  

 The JOINTS data block specifies the coordinates of the joints. For each joint there 

is a separate line for each node. The input on each line consists of the joint number and 

the X and Y coordinates of the joint.  
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Table A - 3 JOINTS Data Block 

JOINTS 

1 X = 1 Y = 1 

Node Number X Coordinate Y Coordinate 

 

RESTRAINTS Data Block 

 

 The RESTRAINTS data block specifies the restraints at different nodes of the 

structure. The notations UX, UY represents translational restraints in the global X and Y 

directions and RX, RY, and RZ represent rotational restraints in the global X, Y, and Z 

directions respectively. 

  

Table A- 4 RESTRAINTS Data Block 

RESTRAINTS 

ADD = 1 DOF = UX UY RX RY RZ 

Adds restraint at node Defines the direction of restraints. 

 

MATERIAL Data Block 

 

 The MATERIAL data block defines material properties for each element such as 

the modulus of elasticity and Poisson’s ratio. This section also defines section properties 

of the element such as the thickness and area of the element.  

 

Table A- 5 MATERIAL Data Block 

MATERIAL    

STEEL E = 29000 U = 0.3 TH = 1 or AR = 1 

Name of section Modulus of 

elasticity 

Poisson’s ratio  thickness or area of 

element 
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CONNECTIVITY Data Block 

 

 The CONNECTIVITY data block provides the connectivity data and material 

type. For each element the nodes are specified in a counterclockwise direction. The 

material type specifies the name of the material corresponding to the material label 

specified in the material data block.   

 

Table A-6 CONNECTIVITY Data Block 

CONNECTIVITY  

1 J = 1 2 STEEL 

Element number Defines nodes j1 and j2 (in a counterclockwise direction) for one-

dimensional bar, truss, and beam elements. Label STEEL defines 

the material type. 

1 J = 1 2 3 STEEL 

Element number Defines nodes j1, j2, and j3 (in a counterclockwise direction) for 

triangular elements (both plane stress and plate elements) 

1 J = 1 2 3 4 STEEL 

Element number Defines nodes j1, j2, j3, and j4 (in a counterclockwise direction) 

for four-node quadrilateral elements  (both plane stress and plate 

elements) 

1 J = 1 2 3 4 5 6 7 8 STEEL 

Element number Defines nodes j1,j2…………j8 (in a counterclockwise direction) 

for eight-node quadrilateral elements 

 

LOADS Data Block 

 

 The LOADS data block defines two types of loads. For concentrated loads 

applied at a node, the direction of the load and the magnitude of the load are specified. A 

concentrated load can be applied at any node. In the case of uniform loads, additional 

details such as the start and end nodes and magnitude of the load at nodes are specified. 
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Table A- 7 LOADS Data Block 

LOADS  

ADD = 1 UX = 100 UY = -50 

Adds concentrated load at specified node Magnitude of load in X and Y directions 

ADDU = 1 S = 1 S = 2 UM = 2 

Adds uniform load on specified element Specifies start node and end node of load 

and magnitude of load. 

 

END Data Block 

 

 The END data block consists of a single line with the keyword END and specifies 

the end of input. 

 

A-3 Examples of the Input File. 
 

Example 1: The input file for the truss of Problem 4 in Chapter 8 is shown in below. 

 

SYSTEM 

  DOF = UX UY 

 

JOINTS 

  1 X = 0 Y = 0   

  2 X = 180 Y = 0 

  3 X = 360 Y = 0 

  4 X = 540 Y = 0 

  5 X = 180 Y = 240 

  6 X = 360 Y = 240 

   

RESTRAINTS 

  ADD = 1 DOF = UX UY  

  ADD = 3 DOF = UY  
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  ADD = 4 DOF = UY      

 

MATERIAL 

  MAT1 E = 29E6 U = 0 TH = 6.0 

   

 

CONNECTIVITY 

  1 J = 1 2 MAT1        

  2 J = 2 3 MAT1 

  3 J = 3 4 MAT1 

  4 J = 5 6 MAT1 

  5 J = 2 5 MAT1 

  6 J = 3 6 MAT1 

  7 J = 1 5 MAT1 

  8 J = 5 3 MAT1 

  9 J = 6 4 MAT1 

LOADS     

   ADD = 2 UX = 0 UY = -30000 

  ADD = 5 UX = 10000 UY = 0  

  ADD = 6 UX = 0 UY = -30000 

    

END 

 

Example 2: The input file for the plate of Problem 12 in Chapter 8 is shown in below. 

 

 

JOINTS 

  1 X = -9 Y = -9 

  2 X = -3 Y = -9 

  3 X = 3 Y = -9  

  4 X = 9 Y = -9  
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  5 X = -9 Y = -3 



  6 X = -3 Y = -3 

  7 X = 3 Y = -3  

  8 X = 9 Y = -3  

  9 X = -9 Y = 3  

  10 X = -3 Y = 3 

  11 X = 3 Y = 3 

  12 X = 9 Y = 3 

  13 X = -9 Y = 9 

  14 X = -3 Y = 9 

  15 X = 3 Y = 9   

  16 X = 9 Y = 9   

 

RESTRAINTS 

  ADD = 4 DOF = UX UY RZ 

  ADD = 8 DOF = UX UY RZ 

  ADD = 12 DOF = UX UY RZ 

  ADD = 13 DOF = UX UY RZ 

  ADD = 14 DOF = UX UY RZ 

  ADD = 15 DOF = UX UY RZ 

  ADD = 16 DOF = UX UY RZ 

 

MATERIAL 

  MAT1 E = 2.9E7 U = 0.3 TH = 2 

   

 

CONNECTIVITY 

  1 J = 6 5 1 MAT1  

  2 J = 2 6 1 MAT1  

  3 J = 7 6 2 MAT1  

  4 J = 3 7 2 MAT1  

  5 J = 8 7 3 MAT1  
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  6 J = 4 8 3 MAT1  



  7 J = 10 9 5 MAT1 

  8 J = 6 10 5 MAT1 

  9 J = 11 10 6 MAT1 

  10 J = 7 11 6 MAT1  

  11 J = 12 11 7 MAT1  

  12 J = 12 7 8 MAT1  

  13 J = 14 13 9 MAT1  

  14 J = 10 14 9 MAT1  

  15 J = 15 14 10 MAT1  

  16 J = 11 15 10 MAT1  

  17 J = 16 15 11 MAT1  

  18 J = 12 16 11 MAT1   

 

LOADS 

   

      ADD = 1 UX = -1000 UY = 0 

 

 

END 
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