
JAVA APPLET FOR TEACHING FINITE ELEMENT

ANALYSIS

by

Suryanarayana Raju Sagi Venkata Naga

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute & State University

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Civil Engineering

Approved:

Dr. Kamal B. Rojiani, Chairman

________________________ ________________________

Dr. Raymond H. Plaut Dr. C. L. Roberts - Wollmann

February 3, 2006

Blacksburg, Virginia

Key Words: Java Applets, Finite Element Analysis, Web-Based Education.

JAVA APPLET FOR TEACHING FINITE ELEMENT

ANALYSIS

by

Suryanarayana Raju Sagi Venkata Naga

Committee Chairman: Kamal B. Rojiani,

Charles E. Via, Jr. Department of Civil Engineering

Virginia Polytechnic Institute and State University

(ABSTRACT)

A Java applet is developed to interactively and dynamically illustrate the fundamental

concepts of finite element analysis. An applet is a computer program written in the

object-oriented Java programming language and is embedded in web pages. Java applets

are well suited for delivering interactive graphical content over the Internet since they are

platform and operating system independent. The applet developed includes a wide range

of elements including one-dimensional truss and beam elements, triangular and

quadrilateral plane stress and plane strain elements, and two-dimensional four-node and

eight-node iso-parametric elements and plate elements. Along with the applet there is a

series of web pages describing the fundamental concepts of finite element analysis,

example problems and instructions for use. The applet provides a novel approach for

teaching basic finite element analysis concepts. It provides students a means for checking

their work, reinforces fundamental concepts learned in class, and enhances students’

learning experiences by allowing them to experiment by building and analyzing complex

models and visualizing results as changes are made to the model. The applet can be used

as supplementary material complementing classroom and textbook instruction.

Acknowledgements

I would like to extend my sincere thanks to my advisory committee chair Dr. Rojiani for

his encouragement, time and kind support at every stage of this work, without whose help

this task would not have been accomplished. Likewise, I would like to thank Dr. Plaut

and Dr. Wollmann for kindly agreeing to serve as my committee members.

My family has been a constant source of support and encouragement throughout the

studies and my life. I am grateful to my father Rama Raju Sagi, my mother Satya Sagi

and my sister Sri Vidya.

I would like to express my gratitude to Vyas for his guidance in Java during this work.

I wish to thank my roommate and friend Vivek Sethi who was a constant support to me

during the course of my graduate studies at Virginia Tech and who also helped me with

the testing of my program. His uncomplaining nature has made my stay much more

enjoyable.

I thank Ravi who helped me with the documentation of my work. I would also like to

thank my friends Suresh, Sowjanya, Sravan, Mahipal, Manoj and Hasan and my cousins

Varma and Pavan for their encouragement and support.

iii

Table of Contents

List of Figures.. vii

List of Tables .. ix

Chapter 1: Introduction ... 1
1.1 Introduction... 1

1.2 Objective and Scope ... 2

1.3 Organization.. 2

Chapter 2: Background.. 4
2.1 Introduction... 4

2.2 Web Based Teaching .. 6

2.3 Java Programming Language.. 7

2.4 Java and Web Based Teaching ... 9

Chapter 3: One-Dimensional Bar and Truss Elements... 12

3.1 Introduction... 12

3.2 One-dimensional Bar Element.. 12

3.3 Truss Element ... 14

3.4 Implementation of the One-dimensional Bar Element in Java 20

3.5 Implementation of Truss Element in Java Applet... 22

Chapter 4: Two-Dimensional Beam and Frame Element ... 25
4.1 Introduction... 25

4.2 Two-dimensional Beam Element.. 25

4.3 Euler-Bernoulli Beam Theory... 26

4.4 Interpolation Functions ... 27

4.5 Element Stiffness Matrix .. 29

4.6 Equivalent Nodal Loads.. 30

4.7 Stiffness Matrix for the Two-Dimensional Frame Element 31

4.8 Implementation of Two-dimensional Beam Element in Java................................. 33

Chapter 5: Plane Stress Elements ... 36

5.1 Introduction... 36

5.2 Two-dimensional Stresses and Strains.. 36

5.2.1 Plane Stress .. 36

5.2.2 Plane Strain .. 37

iv

5.3 Constant Strain Triangle ... 38

5.3.1 Implementation of CST Element in Java ... 42

5.4 Four-node Iso-Parametric Quadrilateral Element ... 45

5.4.1 Interpolation Functions .. 46

5.4.2 Stiffness Matrix.. 47

5.4.3 Element Force Vectors... 51

5.4.4 Implementation of Four-node Quadrilateral Element in Java Applet.............. 52

5.5 Eight-node Iso-Parametric Quadrilateral .. 54

5.5.1 Implementation of the Eight-node Quadrilateral Element in Java................... 57

Chapter 6: Plate Bending Elements .. 60

6.1 Introduction... 60

6.2 Bending of Flat Elastic Plates ... 60

6.3 Strain-Displacement Relations.. 61

6.4 Discrete Kirchhoff Triangle (DKT) Element.. 64

6.5 Implementation of DKT Element in Java ... 70

6.6 Discrete Kirchhoff Quadrilateral (DKQ) Element.. 71

6.7 Implementation of the DKQ Element in Java... 77

Chapter 7: Applet Structure and Interface .. 79
7.1 Introduction... 79

7.2 The Applet Structure... 79

7.3 Input and Output Classes .. 81

7.4 Processing Classes .. 83

7.5 Applet Interface .. 93

7.6 Interface Classes ... 94

7.7 Input .. 95

7.7.1 Manual Input.. 96

7.7.2 Text Input... 100

Chapter 8: Test Problems and Verification of Results.. 101
8.1 Introduction... 101

8.2 Test Problems for One-dimensional Bars and Truss .. 101

8.3 Test Problems for Two-dimensional Truss... 105

8.4 Test Problems for Two-dimensional Beams and Frames 109

8.4 Test Problems for Plane Stress Analysis .. 113

v

8.5 Test Problems for Plate Bending Elements .. 123

Chapter 9: Summary and Conclusions ... 127
9.1 Summary ... 127

9.2 Conclusions... 128

9.3 Future Development.. 129

References.. 130

Appendix – A: Input for the program .. 133
A-1 Manual Input.. 133

A-2 Text Input... 135

A-3 Examples of the Input File... 139

Vita ... 143

vi

List of Figures

Figure 3.1 Bar element.. 13

Figure 3.2 Local and global coordinates... 15

Figure 3.3 Nodal displacements in local coordinates. .. 16

Figure 3.4 Nodal displacements in global coordinates. .. 16

Figure 4.1 Two-dimensional beam element.. 26

Figure 4.2 Frame element. .. 31

Figure 5.1 Constant Strain Triangle.. 38

Figure 5.2 Four-node iso-parametric quadrilateral element. .. 45

Figure 5.3 Four-node iso-parametric quadrilateral in natural coordinates. 46

Figure 5.4 Eight-node quadrilateral element in x, y space. .. 55

Figure 5.5 Eight-node quadrilateral element in ξ, η space.. 55

Figure 6.1 Bending of plate. ... 61

Figure 6.2 Discrete Kirchhoff Triangle. ... 64

Figure 6.3 Discrete Kirchhoff Quadrilateral. .. 71

Figure 7.1 Applet structure diagram. .. 80

Figure 7.2 Element class hierarchy diagram. .. 86

Figure 7.3 Model class diagram. ... 89

Figure 7.4 Analyze class diagram. .. 90

Figure 7.5 Stresses class diagram. .. 93

Figure 7.6 Finite element analysis applet view... 94

Figure 7.7 Element tab.. 96

Figure 7.8 Co-ordinates tab... 97

Figure 7.9 Connectivity tab... 98

Figure 7.10 Restraint tab... 99

Figure 7.11 Text input field. ... 100

Figure 8.1 Model of Problem 1 - Fixed beam... 101

Figure 8.2 Plate modeled with two one-dimensional elements. 103

Figure 8.3 Deformed shape of structure of Problem 2.. 104

vii

Figure 8.4 Truss model for Problem 3. ... 105

Figure 8.5 Deformed shape of truss of Problem 3. ... 106

Figure 8.6 Truss model for Problem 4. ... 107

Figure 8.7 Deformed shape of truss in Problem 4. ... 108

Figure 8.8 Model of beam for Problem 5. .. 109

Figure 8.9 Deformed shape of Beam in Problem 5. ... 110

Figure 8.10 Model of portal frame of Problem 6.. 111

Figure 8.11 Deformed shape of portal frame of Problem 6.. 112

Figure 8.12 FE model for Problem 7. ... 113

Figure 8.12 Deformed shape of the cantilever for Problem 7... 114

Figure 8.13 FE Model of cantilever with four-node quadrilateral elements................... 115

Figure 8.14 Deformed shape of cantilever for Problem 8 .. 116

Figure 8.15 Cantilever modeled with eight-node quadrilateral elements 117

Figure 8.16 Deformed shape of cantilever for Problem 9. ... 118

Figure 8.17 Plate with semi-circular hole modeled with CST Elements. 119

Figure 8.18 Deformed shape of plate with semi-circular hole.. 120

Figure 8.19 Plate with a square hole at center. ... 121

Figure 8.20 Deformed shape of plate with square hole. ... 122

Figure 8.21 Cantilever plate modeled with DKT elements. ... 123

Figure 8.22 Plan view of square plate fixed on all edges. .. 125

viii

List of Tables
Table 3.1 Methods in class OneDBarelement ... 21

Table 3.2 Methods in class TwoDTrusselement .. 23

Table 4.1 Methods in class TwoDBeam ... 34

Table 5.1 Methods in class CSTelement... 44

Table 5.2 Roots and weights for 2x2 Gauss quadrature. .. 51

Table 5.3 Methods in class Qelement ... 53

Table 5.4 Methods in class EightNelement. ... 58

Table 6.1 Methods in class DKTelement... 70

Table 6.2 Methods in class DKQelement... 77

Table 7.1 Methods in Model class.. 88

Table 7.2 Methods in Analyze class .. 89

Table 7.3 Methods in class MemStress ... 91

Table 7.4 Methods in class BenStress ... 92

Table 7.5 Methods in Stresses class .. 93

Table 8.1 Displacements, reactions and forces for Problem 1.. 102

Table 8.2 Displacements, reactions and forces for Problem 2.. 104

Table 8.3 Displacements and reactions for Problem 3 ... 106

Table 8.4 Displacements and reactions for Problem 4 ... 108

Table 8.5 Displacements and reactions for Problem 5 ... 110

Table 8.6 Displacements and reactions for Problem 6 ... 112

Table 8.7 Displacements and stresses for Problem 7.. 114

Table 8.8 Displacements and stresses for Problem 8.. 116

Table 8.9 Displacements and stresses for Problem 9.. 118

Table 8.10 Displacements and stresses for Problem 10.. 120

Table 8.11 Displacements and stresses in plate .. 122

Table 8.12 Displacements and stresses for Problem 12.. 124

Table 8.13 Stresses and displacements for Problem 13.. 126

Table A -1 Data blocks for input file. ... 136

Table A - 2 SYSTEM Data Block .. 136

Table A - 3 JOINTS Data Block... 137

ix

Table A- 4 RESTRAINTS Data Block... 137

Table A- 5 MATERIAL Data Block .. 137

Table A-6 CONNECTIVITY Data Block .. 138

Table A- 7 LOADS Data Block.. 139

x

Chapter 1: Introduction

1.1 Introduction

The finite element method is the most widely used tool for computer-based

numerical solution of a wide range of engineering problems. This method is used for

solving problems in application areas such as structural analysis, heat transfer, fluid

mechanics, vibrations, seepage, electrical and magnetic fields, and many other fields.

With the application of this method, problems that were previously intractable are now

solved routinely.

The finite element analysis method is an approximate method where a large

number of simultaneous equations are solved and a considerable amount of

computational effort is required. With the rapid advancement in programming

technologies and computing hardware, the finite element method has become a popular

method for analyzing structures.

The rapid increase in enrollment in engineering colleges coupled with a shortage

of teachers has posed new educational challenges. These challenges have motivated

educators to look for new technology such as the Internet. Homes, public libraries, and

corporate learning rooms with access to the Internet have become new places for learning

and have reduced the need for the traditional teacher and classroom approach to

education.

Web based teaching has enhanced and pioneered new learning opportunities. It is

a new medium of instruction which can reach everyone without time or distance

constraints. This has led to the creation of a curriculum which is more student centric and

allows them to work at their own pace. Important elements of web based learning are the

incorporation of graphics and the opportunity for students to interact with the application.

Java applets are an excellent means for developing interactive programs to explain

fundamental concepts. The work presented here utilizes Java to create a web based

learning resource for teaching finite element analysis.

1

1.2 Objective and Scope

 Finite element analysis is generally taught at the graduate level in most

universities due to the complexities associated in explaining the concepts. However, with

the rapid growth and widespread use of this method, there is now a growing trend and

need to teach finite element analysis at the undergraduate level. Given the importance of

finite element analysis, it is essential that engineering students have a good understanding

of the fundamental concepts of finite element analysis and the computational procedures

and programming methodologies used in the implementation.

The primary objective of this work is to develop a web-based applet in Java for teaching

finite element analysis. The applet incorporates a wide range of finite elements such as

one-dimensional truss and beam elements, triangular and quadrilateral plane stress and

plane strain elements, two-dimensional four-node and eight-node iso-parametric

elements, and plate elements. The applet is interactive and makes extensive use of

graphics. It has features for entering the finite element model of the structure such as joint

coordinates, supports, connectivity information, element data, material properties, and

loading, and for graphically displaying the finite element model as it is entered.

 A second goal of the work is to develop a website where the applet will be hosted.

The web site has detailed information on the formulation of the various elements,

implementation details such as a description of the various classes used to represent the

different elements and the analysis procedure, and instructions for using the applet and

representative examples. To verify the accuracy of the program, results obtained from

this applet are compared with those obtained from SAP 2000, a commercial finite

element analysis program.

1.3 Organization

 This thesis is divided into nine chapters including the Introduction. The second

chapter deals with an overview of the finite element analysis method, the use of the web

for teaching, and the Java language. Chapter 3 presents the development of the one-

2

dimensional bar element and the two-dimensional truss elements and describes the

implementation of these elements in Java. The two-dimensional beam element and its

implementation in a Java applet is presented in Chapter 4. In Chapter 5, the development

of membrane elements such as the CST element, four-node iso-parametric quadrilateral

element, eight-node iso-parametric quadrilateral element, and their implementation in

Java is discussed. Chapter 6 presents the development of plate bending elements and their

implementation in Java. A description of the Java applet, the program structure, and the

user interface is given in Chapter 7. In Chapter 8 the results obtained for test problems

are compared with SAP 2000. Finally, Chapter 9 presents the summary of work done and

offers suggestions for future development.

3

Chapter 2: Background

2.1 Introduction

 The finite element method was first introduced by Richard Courant in 1943. The

application of this method gained significance in the early to late 1950’s when it was

used for airframe and structural analysis. This was the time during which Turner et al.

derived stiffness matrices for truss, beam, and other elements (Chandrupatla et al.. 1997).

The term finite element was coined and used by Clough (1960) as a finite set of discrete

objects used to model a continuum (Chandrupatla et al. 1997). An element is an

individual piece used in approximating a continuum.

In a finite element problem, a continuous structure is discretized with a set of

finite elements. The material and physical governing relationships such as stress-strain,

compatibility, and equilibrium principles are applied over these elements in terms of

unknown values at nodes (Chandrupatla et al. 1997). The individual elements are then

assembled to form the structure. The assembled system along with the loads and the

boundary conditions reduce to a set of equations. The solution of this system gives the

approximate behavior of the structure.

The accuracy of the solution depends mainly on two factors, the function used to

approximate the element behavior and the number of elements into which the structure is

discretized. This has led to the development of higher order elements which can predict

the behavior of a structure with fewer elements. This method is also known as the p-

method of refinement where the polynomial function is modified for refining the results.

Another method for decreasing errors is by processing more equations (Cook 1989), that

is, representing the structure with a large number of simpler elements, also known as the

h-method of refinement.

4

Recent developments in the finite element method include the introduction of

different elements to solve complex structural problems. There are five major types of

elements – truss, beam, two-dimensional plane stress, shell, and solid elements.

The attractiveness of the finite element method is mainly due to its versatility

since it can be applied to structures with arbitrary shape and irregular loadings. Another

feature of the finite element method is its close resemblance to a real physical structure.

Thus the mathematical model is not purely an abstraction (Cook 1989). Hence this

method provides better insight into understanding the behavior of a structure. The

division of a continuum into smaller sub-domains called elements has many other

advantages. It allows inclusion of dissimilar materials and enables the accurate

representation of the solution within each element to deal with local effects (Reddy

1993).

Solving the system of equations is computationally intensive and this method

would not have been so popular if digital computers were not available. The widespread

success of the finite element method is partly attributed to the rapid development in

computers, availability of powerful programming languages, and the development of

commercial software packages such as ANSYS, ABAQUS, NASTRAN, and SAP. The

advances in and the ready availability of computers and software has brought this method

within the reach of most engineers and students (Chandrupatla et al. 1997).

The finite element method also has some disadvantages. In general, the analysis

of a finite element problem requires a large amount of input data. Also, the output

obtained can be quite extensive and has to be properly sorted out. Hence engineering

judgment and experience are required for making proper use of the results obtained

(Cook 1989). This method cannot be taken for granted just because of its superiority as

compared to classical methods of analysis. The improper use of elements may lead to

inaccurate results. As with other software, providing a finite element program with

inappropriate data and support conditions may lead to incorrect results. Hence it is

recommended that the results obtained from finite element analysis be compared with

those obtained from manual calculations made on a simplified model of the structure.

5

2.2 Web Based Teaching

The World Wide Web has emerged as a powerful tool for teaching. The Web has

allowed people to share information unprecedented in human history (Wikipedia 2005).

The Internet has created a virtual world wherein people from any place can learn about

anything at any time, thereby erasing geographical boundaries and time frames. This new

technology has paved the way for creating universal resources for teaching.

Web based teaching allows integrated environments of various technologies to

support diverse learners’ needs via the internet (Storey et al. 2002). Storey et al. (2002)

emphasize the multiple roles played by the web in complementing class room work and

enhancing students understanding.

In a report submitted to the President of the United States, the Web Based

Education Commission (2000) headed by then senator Bob Kerry calls on educators to

use the full potential of the web as a tool for learning, to expand the horizons of students

of all ages. The report speaks about the advantages of the web and multiple paths such as

graphics, video, and sound. The commission also suggests that the administration should

embrace “e-learning” as an agenda of the nation’s federal education policy.

In 2004 NASA launched a web based education program for providing resources

to teachers and students about microgravity. The site has attracted students from over 100

countries with 1.5 million hits over the past two years. The success of this program led to

further innovation of web imparting resources at various levels, and special features such

as quizzes, puzzles, and games were added to make learning more interesting.

Web based learning has added a new dimension to computer based teaching.

Traditional computer based teaching methods were created using MS-PowerPoint slides

or animations generated by software packages like 3Dmax, Flash, GIF animator, etc.

Although these techniques helped in understanding fundamental concepts in a better

manner, they had several limitations. A significant limitation was the inability to perform

real time simulations and calculations. They could only be used to demonstrate a set of

predefined examples which restricted the students’ understanding of the concepts under a

different set of conditions. This limitation can be avoided if the teaching method is based

on interactive software which makes it possible to explain concepts for a variety of

6

conditions and also allows the students to explore various possibilities and behavior

under a variety of inputs.

Another issue of traditional computer based pedagogy is that it uses large amounts

of resources. Animation file sizes are huge and a lot of bandwidth is required for

transferring these files across the Internet. This becomes a serious issue when a student or

tutor in a remote place cannot afford the cost associated with high bandwidth. Also, any

updates made to the software require that these files be downloaded again.

The problems mentioned above can be overcome if web-based instructional units

are developed in the Java programming language. With Java, it is possible to develop

interactive web based computational software that can be accessed over the Internet with

a Java enabled browser.

2.3 Java Programming Language

 Java is an object oriented programming language developed by Sun Microsystems

in the year 1991. There were five primary goals in the creation of the Java language

(Wikipedia, 2005)

• It should use the object oriented programming methodology

• It should allow the same program to run on different platforms

• It should contain built-in support for using computer networks

• It should allow the code to be executed securely from remote locations

• It should be easy to use, like C++

Java is an object oriented programming language, that is, the program is composed of

a collection of units called objects. In an object oriented program each object can

communicate with other objects or can inherit properties from other objects. Object

oriented programming provides more flexibility, and changes to a program can easily be

made. This property is what makes Java an ideal tool for developing finite element

analysis software.

 To manage increasing complexity, object oriented programming organizes a

program around its data. Classes are templates used to construct objects. The following

are the basic principles of object oriented programming (Hunt 1998).

7

Abstraction: An abstraction denotes the essential characteristics of an object that

distinguishes it from all other objects and thus provides well defined boundaries. The

concept of abstraction is used to break large complex procedures into small simple

procedures.

Encapsulation: This is the process of hiding details of objects from other objects. Each

method or variable in a class may be marked private or public. The public interface

allows the methods in a class to be accessed by other objects. However, private methods

and data can only be accessed within the class itself.

Inheritance: It is the process by which one object acquires the properties of another

object (Shildt 2005). In object oriented programming, classes can be divided into a

subclass or a superclass. A subclass is derived from a superclass and inherits all its

properties. Furthermore, the subclass can have additional properties that give it a unique

identity.

Polymorphism: It is a feature which allows one interface to be used for a general class of

actions. It is essentially the ability to request that the same operation be performed by

different objects. How the request is processed depends on the object that receives the

request. Effectively, this means that one can ask many different objects to perform the

same action.

When properly applied, all the above mentioned properties combine to produce a

programming environment that supports the development of far more robust and superior

programs.

 Many object oriented programming languages have been developed in recent

years. These include C++, C#, and Java. Java is considered the most popular object

oriented programming language because it has several unique features. Java is a simple

language developed along the lines of C and C++ and has a similar syntax to C++.

Hence, most programmers who are already versed in C++ have little trouble learning

Java. Java has better memory management features. Java has a special class for garbage

collection that dynamically allocates memory and prevents memory loss. In other

programming languages the programmer must manually allocate and free all dynamic

memory, and any mistake in allocating or de-allocating memory leads to poor

8

performance. There is also an error exception handling class built into Java. With proper

use of this class, most run-time errors can be easily managed.

2.4 Java and Web Based Teaching

Java is platform independent. That is, the same code can be used for executing the

program on various platforms like Windows, Mac, or Linux. This is a property that has

made Java a popular programming language. With Java it is possible to use the same

application on different platforms.

Java is a multithreading language. It can easily handle thousands of tasks

simultaneously (Newman et al. 1996). Nikishkov (2004), who developed a platform

independent Java application for teacher student interaction, stresses the importance of a

language like Java with inherent abilities to create multithreaded applications as multiple

clients (students) work with the server at the same time.

Large sets of data have to be handled when performing finite element analysis.

The various input data such as coordinates, type of element, restraints conditions, and

nodal loads can be represented as objects. Also, different objects can be created for

handling elements. This makes it possible to add new elements to the program without

having to make extensive changes to other parts of the program. Object oriented design is

a mechanism which allows modules to “plug and play” (Newman et al. 1996).

 Java programs can be embedded in HTML pages and can be easily transmitted

over the internet. These programs are called applets. Applets can be used for delivering

interactive graphical content over the internet, and can be made available to students and

instructors throughout the world. This approach overcomes many, if not all, of the

limitations of other computer and web based educational approaches and has significant

advantages. The documents and program developed are stored as separate files on a

server, thus making it easy to modify or upgrade them with ease. One further issue is that

unlike some other multimedia tools that offer only limited capability to program

interactive applications and computations, Java can be used to program complex

applications.

9

Another reason for the popularity of Java is its security. When Java applets are

run on a Java compatible web browser, there is little risk of infection by a virus program.

Java achieves this protection by confining a Java program to the Java execution

environment and not allowing it access to other parts of the computer. The ability to

download applets with the confidence that no harm will be done and no security will be

breached is an important feature for developing web based instructional applets.

 Many successful attempts have been previously made to use Java Applets for web

based teaching of structural analysis. A series of web-based instructional units for

teaching structural mechanics to undergraduate students was developed by Rojiani et al.

(2000). Instructional units developed included applets for shear, moment, and deflection

of beams, computation of section properties of sections built up from standard geometric

shapes, analysis of statically determinate and indeterminate trusses and frames, and shear

center for open and closed section thin-walled tubes (Rojiani et al. 2000). These applets

make extensive use of graphics for depicting structural behavior and allow for dynamic

interaction with users.

 Benjamin et al. (2003) discussed the use of Java to develop interactive instructive

courseware. They developed a series of applets for demonstrating the assembly of the

global stiffness matrix of a structure. These applets feature online help and interactive

feedback along with an appealing graphical user interface.

 The use of Java applets for design and analysis of L shaped beams was presented

by Karthik et al. (2000). Here the authors used Java and VRML (Virtual Reality

Modeling Language) to develop a finite element applet. After submitting the required

input, like material type and loads acting on beam, the Java program meshes the beam

automatically and calculates 3D stresses in the beam at various locations. The results

obtained are color coded and displayed. This applet illustrates the potential for using Java

in virtual design and 3D Visualization.

Nikishkov (2003) developed a finite element applet in Java for analyzing plane

cracks in three-dimensional components. The Java library graphics classes were used to

display color contours of stresses in objects modeled with four-node elements. He further

demonstrated the ability of Java to plot stress contours with a sparse mesh of finite

elements. Lu et al. (2001) demonstrated the application of Virtual Reality to finite

10

element analysis using the Java graphical library. According to him, the use of graphics

and interactive Java programs gives engineering students an intuitive understanding of

the finite element analysis technique.

Paul et al. (2004) recommend the use of simplified finite element analysis for

undergraduate students to understand the basic fundamentals of the method. Since

commercial finite element programs are excessively complex, Paul implemented a simple

finite element analysis program for helping students understand the fundamentals of

finite element analysis. The response from students to the software was quite

encouraging.

11

Chapter 3: One-Dimensional Bar and Truss Elements

3.1 Introduction

 Two types of elements are presented in this chapter: (1) One-dimensional Bar

Element, and (2) Truss Element. The development of the stiffness matrix for these

elements, and the computation of displacements, stresses and forces are presented. The

implementation details of these elements in Java are also discussed. Each element is

represented by a separate class. Details of these element classes are presented.

 The one-dimensional bar element and the truss element are the simplest elements

that can be used to explain the fundamentals of the finite element method. These

elements are used to analyze structures which are subjected to pure axial forces (i.e., no

bending or shear). The one-dimensional bar element is used to analyze a structure having

degrees of freedom only in one direction, whereas the truss element is used for the

analysis of determinate and indeterminate trusses with two degrees of freedom at each

node.

An important difference between the one-dimensional bar and the truss element is

the orientation of the element in relation to the structure. The longitudinal axis of the one-

dimensional bar element is parallel to the corresponding axis of the structure, whereas the

axis of the truss element can have any orientation in the plane of structure. Since all

elemental axes are aligned in the same direction, no coordinate transformation is required

for one-dimensional bar elements. The truss element can have any orientation in its plane,

thus transformation matrices are required to convert displacements and stresses in the

local coordinate system to the global coordinate system.

3.2 One-dimensional Bar Element

This is the easiest element to begin with for teaching the finite element method.

This element has one degree of freedom at each node for a total of two degrees of

12

freedom per element. The stress, strain, displacements, and loading depend only on one

variable, either x or y. One-dimensional bar elements are used to model shafts subjected

to axial force.

The stress-strain and strain-displacement relations are

 σ = Eε (3.1)

dx
du

=ε (3.2)

where σ = stress, ε = strain, u = displacement and E = modulus of elasticity. The

procedure for developing the stiffness matrix is as follows.

Consider a uniform prismatic bar element as shown in Figure 3.1

ui uj

Figure 3.1 Bar element.

The two nodes are labeled i and j. The nodal displacements are ui and uj, and the

corresponding nodal forces are fi and fj.

The strain is given by

dx
du

=ε =
L

uu ij − = ⎥⎦
⎤

⎢⎣
⎡−

LL
11

⎭
⎬
⎫

⎩
⎨
⎧

j

i

u
u

 (3.3)

where L is the length of the bar.

The stress is

 σ = Eε = E u
L
∆ (3.4)

where is the change in length of the bar. (j iu u u∆ = −)

The force F in the bar is given by

 F = σA (3.5)

where A is the cross sectional area of the bar.

fjfi

i j
L

13

Substituting Equation (3.4) in (3.5) gives

 F =
L

uEA∆ = k (3.6) u∆

where k =
L

EA is the stiffness of the bar.

Also,

 fj = k() = k(u∆ ij uu −) (3.7)

and

fi + fj = 0 (3.8)

Therefore, from equilibrium of the bar, fi = -fj

 (3.9)

The relationship between the forces at the ends of the bar and the nodal displacements is

given by

 = (3.10)
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

j

i

f
f

⎥
⎦

⎤
⎢
⎣

⎡
−

−
kk
kk

⎭
⎬
⎫

⎩
⎨
⎧

j

i

u
u

and the stress in the bar element can be obtained from

 σ = E ⎥⎦
⎤

⎢⎣
⎡−

LL
11

⎭
⎬
⎫

⎩
⎨
⎧

j

i

u
u

 (3.11)

3.3 Truss Element

The one-dimensional bar element is constrained to deform only along the axis of

the element. However, in the case of a plane truss, the nodes can move in both the x and y

directions. Hence there are two degrees of freedom per node.

The development of the stiffness matrix of a truss element requires a

transformation between the global and local coordinate systems. The truss element is

14

shown in Figure 3.2, along with the global and local coordinate systems which are

defined as follows

Local coordinate system: This is denoted by the x and y axes. All element properties such

as element forces, stresses, and distributed element loads are defined in the local

coordinate system. Each element in a structure has its own set of local coordinates.

Global coordinate system: The global coordinate system for the structure is fixed and is

represented by X and Y axes. Quantities such as nodal loads and nodal displacements are

defined in the global coordinate system.

x

 Figure 3.2 Local and global coordinates.

The nodal displacements in the local coordinate system are shown in Figure 3.3.

The corresponding nodal displacements in the global coordinate system are shown in

Figure 3.4.

X

Y

y θ

j

i

15

 Figure 3.3 Nodal displacements in local coordinates.

 Figure 3.4 Nodal displacements in global coordinates.

x

y

v’j

u’i

u’j

v’i

X

Y

ui

vi

uj

vi

16

The local coordinates {x} = {x, y} T and global coordinates {X} = {X, Y} T are

related by the following transformation equations:

 x = Xcosθ +Ysinθ (3.12)

 y = -Xsinθ +Ycosθ (3.13)

This can be represented in matrix form as

 {x} = [t]{X} (3.14)

 {x} = (3.15) ⎥
⎦

⎤
⎢
⎣

⎡
− θθ

θθ
cossin
sincos

⎭
⎬
⎫

⎩
⎨
⎧

Y
X

The matrix [t] is called the transformation matrix. The same transformation matrix [t] can

be used to map nodal displacements in the global coordinate system to nodal

displacements in the local coordinate system:

 = (3.16)
⎭
⎬
⎫

⎩
⎨
⎧

'
'

v
u

⎥
⎦

⎤
⎢
⎣

⎡
− θθ

θθ
cossin
sincos

⎭
⎬
⎫

⎩
⎨
⎧

v
u

The transformation from the global to local system is obtained by taking the

inverse of [t]. Thus

 {X} = [t]-1{x} (3.17)

It can be shown that the inverse of [t] is equal to its transform, [t] T, that is.

 [t]-1 = [t] T = (3.18) ⎥
⎦

⎤
⎢
⎣

⎡
− θθ

θθ
cossin
sincos

A matrix whose inverse is equal to its transpose is called an orthogonal matrix.

The nodal displacements at the two nodes i and j of the two node truss element are related

to the corresponding global displacements by the transformation

 = (3.19)

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

j

j

i

i

v
u
v
u

'
'
'
'

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

cs
sc

cs
sc

00
00

00
00

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

j

j

i

i

v
u
v
u

where c=cosθ and s=sinθ represent the directional cosines. Equation (3.19) can be

written as

17

 { 'u } = [T]{u} (3.20)

The relationship between local and global nodal forces can be written in a similar

manner:

 { 'f } = [T]{f} (3.21)

The relationship between stiffness, the nodal displacements, and nodal forces

expressed in local coordinates is

L

EA = (3.22) ⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

⎭
⎬
⎫

⎩
⎨
⎧

j

i

u
u
'
'

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

'
'

j

i

f
f

Augmenting the stiffness matrix to include displacements in the Y direction gives

L

EA

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

0000
0101
0000
0101

 = (3.23)

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

j

j

i

i

v
u
v
u

'
'
'
'

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

0
'

0
'

j

i

f

f

The above equation can be written as

 ['k]{ 'u } = { 'f } (3.24)

where ' is the stiffness matrix of the truss element in the local coordinate system and is

given by

k

 = 'k
L

EA (3.25) ⎥
⎦

⎤
⎢
⎣

⎡
−

−
11
11

To obtain the stiffness matrix in global coordinates, we use the transformations in

equations (3.20).

Substituting for from Equation (3.20) in Equation (3.24) gives 'u

 ['k][T]{u} = [T]{f} (3.26)

Multiplying both sides of Equation (3.26) by [T]T,

[T]T[][T]{u} = [T]'k T[T]{f} (3.27)

[T]T[T] = [T]-1[T] = I (3.28)

where I is identity matrix

18

Therefore Equation (3.27) can be expressed as

 [K]{u} = {f} (3.29)

where

 [K] = [T]T ' [T] (3.30) k

is the global stiffness matrix of truss element.

The global stiffness matrix can be written as

 [K] =
L

EA

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−−

22

22

22

22

scsscs
csccsc
scsscs
csccsc

 (3.31)

where c and s are directional cosines. These can be obtained from the global coordinates

of the element as

 c = cosθ =
L

xx ij − (3.32)

s = sinθ =
L

yy ij − (3.33)

where L is the length of the element and is given by

 L = 22)()(ijij yyxx −+− (3.34)

The global stiffness matrix of the structure is obtained by adding the global

stiffness matrices of the individual elements:

K = (3.35)
1

N

i
i

K
=
∑

where n is the number of truss elements in the structure. Once the global stiffness matrix

is formed, the system is solved for nodal displacements in the global coordinates. These

nodal displacements are the used to evaluate stresses and forces in each element.

The element stresses are obtained from

19

σ = Eε = E
L

uu ij '' −
 = E ⎥⎦

⎤
⎢⎣
⎡−

LL
11

⎭
⎬
⎫

⎩
⎨
⎧

'
'

j

i

u
u

 (3.36)

Thus,

σ = E ⎥⎦
⎤

⎢⎣
⎡−

LL
11 (3.37) ⎥

⎦

⎤
⎢
⎣

⎡
sc

sc
00

00

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

j

j

i

i

v
u
v
u

which gives

σ =
L
E [(3.38)]00sc −−

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

j

j

i

i

v
u
v
u

The element forces are evaluated from

 =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

'
'

j

i

f
f

L
EA (3.39) ⎥

⎦

⎤
⎢
⎣

⎡
−

−
11
11

⎭
⎬
⎫

⎩
⎨
⎧

j

i

u
u
'
'

3.4 Implementation of the One-dimensional Bar Element in Java

The one-dimensional bar element is implemented in Java using a class called

OneDBarelement.

The interface for the OneDBarelement class is given below:

public class OneDBarelement {

private double area,length; //area and length

private double[] coodx; //X coordinates of each element

private double[] coody; //Y coordinates of each element

private double ym; //Young’s modulus

public double[][] onedkelem; //element stiffness matrix

public double[] onedstress; //stress values

public double[] onedforce; //force values

20

The variables area and length represent the cross-sectional area and length of the

element. The arrays coodx[] and coody[] are used for storing the nodal coordinates of

the element. The variable ym represent the modulus of elasticity of the bar element. The

stiffness matrix [k] is stored in the two-dimensional array onedkelem . Stresses and

forces are stored in two one-dimensional arrays onedstress and onedforce,

respectively.

The constructor of the class OneDBarelement is

public OneDBarelement(double[] x, double[] y, double moe,

 double th) {

 ym = moe;

 area = th;

 coodx = x;

 coody = y;

 }

Whenever an instance of the OneDBarelement class is created, the properties of the

element like Young’s modulus, area and coordinates are passed as arguments to the

constructor. These variables are later used for further operations like calculation of

stiffness matrix, forces, and stresses.

The methods in class OneDBarelement are listed in Table 3.1.

Table 3.1 Methods in class OneDBarelement

Method Description

calcelemk() Calculates the stiffness matrix of bar element

calcstress() Calculates the stresses and forces in the element

The element stiffness matrix is calculated by calling the function calcelemk().

This function needs no arguments as the variables required for calculating the stiffness

matrix are initialized when the class is instantiated.

21

To analyze a structure consisting of one-dimensional bar elements, an instance of

the OneDBarelement class is created for each element in the structure by calling the

class constructor. The function calcelemk() is invoked for each element to get the

stiffness matrix for the element. The stiffness matrix so obtained is used to assemble the

global stiffness matrix. The functions for calculating displacements are defined in a

separate class called Analyze. The Analyze class assembles the structure stiffness

matrix and solves the equation to obtain nodal displacements. Details of the Analyze

class are given in Chapter 7.

Once the displacements are calculated, the stress and forces in the bar element are

evaluated by calling the function calcstress(). The method calcstress() is

declared as

public void calcstress(double[] u,int[] elemcon,Stresses stodbe)

To calculate the stress in each bar element, we need the nodal displacements and

connectivity information. The stiffness and other details needed for calculating stresses

are obtained from the OneDBarelement object. The computed forces and stresses are

stored in separate variables. These variables are used while displaying the results.

3.5 Implementation of Truss Element in Java Applet

The implementation of the truss element in Java is similar to that of the one-

dimensional bar element with some minor changes. The class developed for representing

a truss element is the TwoDTrusselement class.

The interface for the TwoDTrusselement class is:

public class TwoDTrusselement {

 private double area,length; //area & length

 private double[] coodx; //X Coordinates of each

element

22

private double[] coody; //Y Coordinates of each

element

 private double ym; //Youngs Modulus

 public double[][] twodtrusskelem;//element stiffness matrix

 private double[][]twodkelem; // Stiffness matrix in

local coordinates

 public double[] twodstress; //stresses in element

 public double[] twodforce; //forces in element

The variables area, length, ym and arrays coodx, coody are similar to those

used in the OneDBarelement class. The stiffness matrix, stresses, and forces of an

element are stored in the arrays twodtrusskelem, twodstress, and twodforce,

respectively.

The constructor of this class is

public TwoDTrusselement(double[] x, double[] y, double moe,

 double th){

 ym = moe;

 area = th;

 coodx = x;

 coody = y;

 }

The properties of the element such as Young’s modulus, area, and coordinates are

passed as arguments to the constructor when an instance of the TwoDTrusselement

class is created.

The methods used in class TwoDTrusselement are listed in Table 3.2.

Table 3.2 Methods in class TwoDTrusselement

Method Description

calctdelemk() Calculates stiffness matrix for a truss element

calcstress() Calculates stresses and forces in a truss element

23

The function calctdelemk() calculates the stiffness matrix of the truss

element. The transformation matrices are needed in order to calculate the stiffness matrix.

These are calculated using the data members of the TwoDTrusselement object. For

each truss element, an instance of the TwoDTrusselement is created.

The Analyze class assembles the global stiffness matrix of the structure by

adding the stiffness matrix of each truss element to the corresponding nodes of the

structural stiffness matrix and solves the system of equations. The displacements obtained

from the calcdisp() method of Analyze class are used to calculate element stresses

and forces by calling the method calcstress(), which is declared as

public void calcstress(double[] u,int[] elemcon,Stresses sttdte)

The stresses in each truss element are stored in the object sttdte which is an

instance of Stresses class. The deformed shape of the truss is then plotted by calling an

instance of the Deform class.

24

Chapter 4: Two-Dimensional Beam and Frame Element

4.1 Introduction

 In this chapter the development of the two-dimensional beam element and the

frame element is presented. The degrees of freedom considered for the beam element are

rotation about an axis perpendicular to the plane of the beam and translations

perpendicular to the plane of the beam. For the frame element, which is an extension of

the beam element, axial degrees of freedom are included. Details of the implementation

of the two-dimensional beam element and the frame element in Java are also presented.

 Beams are members that are used for supporting transverse loading. These

elements are used in a variety of structures simulating buildings, bridges, and

scaffoldings. The Two-dimensional Beam element has two degrees of freedom at each

node: a rotation about an axis perpendicular to the plane of beam and a translation

perpendicular to the axis of the beam. Axial deformations in the beam are neglected. The

frame element has axial deformation at each node in addition to the beam deformations.

Hence, the frame element has three degrees of freedom at each node. The beam element

provides flexural rigidity, a property that the truss element does not have. Since there is

no coupling between the axial and flexural deformations, the stiffness matrix of the beam

is first derived and it is then extended to the frame element by incorporating the axial

stiffness.

Unlike plane trusses, which are subjected only to nodal loads, the external loads

on beams may be applied both on the members as well on the nodes. Member loads are

converted into equivalent nodal loads by using the concept of fixed end forces.

4.2 Two-dimensional Beam Element

The procedure to develop the stiffness matrix of a beam element is the same as

that of truss elements, but in addition to axial rigidity, flexural rigidity is considered.

25

Consider a prismatic beam element as shown in Figure 4.1

 Figure 4.1 Two-dimensional beam element.

The two nodes are labeled i and j. Here v’i , and vj’are the vertical displacements at node i

and j, and θ’i and θ’j. are the rotations at nodes i and j. Counter clockwise rotation is

assumed to be positive. Each node is associated with a pair of shear and bending forces.

The corresponding nodal forces are represented by fyi, mi at the i end and fyj, mj at the j

end, respectively. The properties of the beam are:

L = length, I = moment of inertia, and E = Young’s modulus

4.3 Euler-Bernoulli Beam Theory

 Beam elements are based on either the Euler-Bernoulli or Mindlin’s theory. Here

the beam element is formulated using the Euler-Bernoulli theory and shear deformations

in the beam element are neglected. The lateral displacement v can be related to the

rotation θ as

 θ = dv
dx

 (4.1)

Also, the bending moment and shear forces in the beam can be related to v as

2

2

d vEI M
dx

= (4.2)

3

3

d vEI V
dx

= (4.3)

θ’i , mi

i j
L

v’i , fyi v’j, , fyj

y

θ’j , mj

x

26

where M and V are the moment and shear acting at a particular section

The bending stress is given by

 My
I

σ = − (4.4)

4.4 Interpolation Functions

The displacements at any location in the element are expressed in terms of nodal

displacements using an interpolation function. The lateral displacement of the element at

any point x is represented as

 v(x) = 2
1 2 3o

3x x xα α α α+ + + (4.5)

where the iα ’s are undetermined constants.

Equation (4.5) can be expressed in matrix form as

 v(x) =

0

12 3

2

3

1 x x x

α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪⎡ ⎤ ⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪⎩ ⎭

 (4.6)

Using Equations (4.1) and (4.5), the rotation at any location can be expressed as

 θ(x) = 2
1 2 32 3x xα α α+ + (4.7)

Hence, at any location x, the lateral displacement and rotation are given by

2 3

2

1
0 1 2 3

v x x x
x xθ

⎡ ⎤⎧ ⎫
=⎨ ⎬ ⎢

⎩ ⎭ ⎣ ⎦
⎥

0

1

2

3

α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (4.8)

At the ends x=0 and x=L, the nodal displacements and rotations are

27

2 3

2

1 0 0 0
0 1 0 0
1
0 1 2 3

i

i

j

j

v

v L L L
L L

θ

θ

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢=⎨ ⎬ ⎢⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎣ ⎦⎩ ⎭

⎥
⎥

0

1

2

3

α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (4.9)

Equation (4.9) can be written as

 { } []{ }u A α= (4.10)

where

{ }u =

i

i

j

j

v

v
θ

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (4.11)

Thus,

 { }1{ } []A uα −= (4.12)

where is given by 1[]A −

 [A]-1 =
2 2

3 2 3 2

1 0 0 0
0 1 0 0
3 2 3 1

2 1 2 1
L L L L

L L L L

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢− − −
⎢
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥ (4.13)

Substituting Equation (4.12) in Equation (4.1),

 v(x) = 2 31 x x x⎡ ⎤⎣ [A]⎦
-1{ }u (4.14)

or

 v(x) = [N] { }u (4.15)

Equation (4.15) can be written as

 v(x) = []1 2 3 4() () () ()N x N x N x N x

i

i

j

j

v

v
θ

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (4.16)

28

where

 N1(x) =
2 3

2 3

3 21 x x
L L

− +

 N2(x) =
2 3

2

2x xx
L L

− +

 N3(x) =
2 3

2 3

3 2x x
L L

−

 N4(x) =
2 3

2

x x
L L

− + (4.17)

are the shape functions Ni(x) and are called Hermitian polynomials since they contain

both the function itself (displacement) and its derivatives (rotation).

4.5 Element Stiffness Matrix

The procedure for developing the stiffness matrix is as follows

The internal virtual work for a beam is

 δWint = M kdxδ−∫ (4.18)

where k is the curvature and M is the bending moment. The curvature k and the bending

moment M are given by

 k =
2

2

d v
dx

 (4.19)

2

2

d vM EI
dx

= (4.20)

The curvature is obtained as

2

2

d v
dx

 = 2 []{ } []{ }d N u B u
dx

= (4.21)

where [B] is the strain-displacement matrix and is

 [B] = 2 3 2 2 3 2 2

6 12 4 6 6 12 2 6x x x
L L L L L L L L

⎡ ⎤−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛− + − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝⎣ ⎦

x ⎞
⎟
⎠

 (4.22)

The virtual curvature δk is

 {δk} = [B]{δu} (4.23)

29

and the internal virtual work is

 δWint = ()(
0

[]{ } []{ }
L

)B u EI B u dδ−∫ x

⎟

 (4.24)

Since [B]{δu} is a scalar, and it can be rewritten as {δu}T[B]T

Hence,

 δWint = (4.25) ()
0

{ } [] []{ }
L

T Tdu B EI B u dx−∫

 δWint = (4.26) ()
0

{ } [] [] { }
L

T Tdu B EI B dx u
⎛ ⎞

− ⎜
⎝ ⎠
∫

since {u} and {δu} are independent of x. Therefore, the stiffness matrix of the two-

dimensional beam element is

 []'k =
0

[] ()[]
L

TB EI B dx∫ (4.27)

After performing matrix operations and integrating each term, we obtain

 [K] =
2 2

3

2 2

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

L L
L L L LEI

L LL
L L L L

−⎡ ⎤
⎢ ⎥−⎢
⎢ ⎥− − −
⎢ ⎥−⎣ ⎦

⎥ (4.28)

Further, the element equations can be written as

2 2

3

2 2

12 6 12 6
6 4 6 2
12 6 12 6

6 2 6 4

L L
L L L LEI

L LL
L L L L

−⎡ ⎤
⎢ ⎥−⎢ ⎥

⎥⎢− − −
⎢ ⎥−⎣ ⎦

i

i

j

j

v

v
θ

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 =

i

i

j

j

fy
m
fy
m

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (4.29)

4.6 Equivalent Nodal Loads

 As mentioned previously, the beam element can be subjected to member loads in

addition to nodal loads. Member loads are converted to equivalent nodal loads. The

equivalent nodal loads are given by

30

 {f} = (4.30)
0

[] ()
L

TN q x dx∫

where q(x) is a distributed load. For a beam element subjected to a uniformly distributed

load of q, the equivalent nodal force vector can be expressed as

{f} =

2

2

2

12

2

12

qL

qL

qL

qL

⎧ ⎫−⎪ ⎪
⎪ ⎪
⎪ ⎪−⎪ ⎪⎪
⎨ −⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

⎪
⎬ (4.31)

4.7 Stiffness Matrix for the Two-Dimensional Frame Element

 Consider the frame element shown in Figure 4.2

 Figure 4.2 Frame element.

The stiffness matrix of the frame element is obtained by adding the axial stiffness of the

element at the respective degrees of freedom by expanding the beam stiffness matrix. The

stiffness matrix of the frame element is given by

u’j,fxj
u’i,fxi

θ’i , mi

i j
L

v’i , fyi v’j, , fyj

y

θ’j , mj

x

31

3 2 3 2

2 2

3 2 3

2 2

0 0 0 0

12 6 12 60 0

6 4 6 20 0
'

0 0 0 0

12 6 12 60 0

6 2 6 40 0

EA EA
L L

EI EI EI EI
L L L L
EI EI EI EI
L L L Lk

EA EA
L L

EI EI EI EI
L L L L
EI EI EI EI
L L L L

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥= ⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

2

0
0
0
1

 (4.32)

The stiffness matrix presented in Equation (4.32) is in terms of the local coordinate

system of the frame element. The relationship between the local element displacements

and global displacements are identical to those of the truss element. Thus, the

transformation matrix for a frame element is given by

cos sin 0 0 0 0
sin cos 0 0 0 0
0 0 1 0 0
0 0 0 cos sin
0 0 0 sin cos
0 0 0 0 0

T

θ θ
θ θ

θ θ
θ θ

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (4.33)

where cosθ and sinθ are the direction cosines and are obtained from the nodal coordinates

of the element,

 cosθ =
L

xx ij − and sinθ =
L

yy ij − (4.34)

 and L = 22)()(ijij yyxx −+−

is the length of the element

The global stiffness matrix for the frame element is given by

 [K] = [T]T[]'k [T] (4.35)

32

The global stiffness matrix of the structure is obtained by adding the individual

global stiffness matrices of the elements:

 K = (4.36)
1

n

i
i

K
=
∑

where n is the number of truss elements in the structure. Once the global stiffness matrix

is formed, the system is solved for the nodal displacements in global coordinates. These

nodal displacements are then used to evaluate stresses and forces in each element.

4.8 Implementation of Two-dimensional Beam Element in Java

To implement the beam element in Java, a class called TwoDBeam is developed.

The interface for the class TwoDBeam is:
public class TwoDBeam {

 private double mi,length; //Moment of intertia and length

 private double[] coodx; //X Coordinates for each node

 private double[] coody; //Y Coordinates for each node

 private double ym; //Young’s Modulus

 public double[][] twodbeamkelem; //element

stiffness matrix

 public double[] twodbforce,twodbeamstress;//stresses

The variables mi and length represent the moment of inertia and the length of the beam

element, respectively. The arrays coodx[] , coody[] represent nodal coordinates. The

modulus of elasticity is stored in the variable ym. The stiffness matrix of the beam

element is stored in the two-dimensional array twodbeamkelem. Finally, the arrays

twodbforce and twodbeamstress are used to store the calculated forces and stresses

in the beam element.

The constructor for the TwoDBeam is given by

public TwoDBeam(double[] x, double[] y, double moe, double nu

33

 double th){

 ym = moe;

 mi = nu;

 ar = th;

 coodx = x;

 coody = y;

 }

To create an instance of the TwoDBeam object, the element coordinates, section, and

material properties are passed through the constructor.

The methods in the TwoDBeam class calculate the stiffness matrix of the element

and evaluate the stresses and forces in the element. The methods available in the class

TwoDBeam are listed in Table 4.1

Table 4.1 Methods in class TwoDBeam

Method Description
calcelemk() Calculates the element stiffness matrix
calcstress() Calculates the stresses and forces in element
Calcnodalloads() Calculates nodal loads for non nodal loading

The method calcelemk()calculates the stiffness matrix of a two-dimensional beam

element using the variables obtained by instantiation of the TwoDBeam object. There is

one instance of a class for each beam element TwoDBeam in the structure. To analyze a

structure with beam elements, the beam element object is initialized in the Analyze class

as shown in the statement below:

TwoDBeam tdb = new TwoDBeam(x,y,moe,nu,th);

The methods in the class TwoDBeam are then used to calculate the stiffness matrix and

stresses for each beam element.

34

The method calcnodalload()converts the member loads acting on the beam to

equivalent nodal loads. The method calcstress()evaluates the stresses, nodal forces,

and reactions at the restraints. The header for this method is

public void calcstress(double[] u,int[] elemcon,Stresses stbe)

 The stresses are written to an object stdbe. The method calcstress() also

calculates the reactions at the restrained nodes of the structure.

35

Chapter 5: Plane Stress Elements

5.1 Introduction

 Three types of membrane elements are developed for this applet: (1) constant

strain triangle, (2) four-node iso-parametric quadrilateral element, and (3) eight-node iso-

parametric quadrilateral element. In this chapter the development of the stiffness matrices

of these elements along with their implementation in Java is discussed.

5.2 Two-dimensional Stresses and Strains

 Two-dimensional problems are sometimes modeled as plane stress or plane

strain. These problems generally involve structures whose thickness is small compared to

the other two dimensions. When the structure is subjected to inplane forces, the

displacements at any point {x, y} in the element are given by {u, v} where, u and v are

displacements in the x and y directions, respectively:

 U = (5.1)
u
v
⎧ ⎫
⎨ ⎬
⎩ ⎭

The stresses are strains are given by

 { , , }T
x y xyσ σ σ τ=

 (5.2) { , , }T
x y xyε ε ε γ=

5.2.1 Plane Stress

 Plane stress is a condition that prevails in a flat plate in the xy plane, loaded only

in its own plane and without any restraints in the z-direction, so that 0zσ = , 0yzτ = , and

36

0zxτ = (Cook 1989). For an isotropic material, the stress-strain relationship for plane

stress is given by

 []
xx

y

xy xy

D y

εσ
σ ε
τ γ

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪ =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

 (5.3)

where [D] is the material matrix and is expressed as

 [D] = 21
E
ν−

1 0
1 0

10 0
2

ν
ν

ν

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢
⎢ ⎥

⎥
−

⎢ ⎥
⎣ ⎦

 (5.4)

E = Young’s modulus of elasticity, and ν = Poisson’s ratio.

5.2.2 Plane Strain

 If a long body of uniform cross section is subjected to transverse loading along its

length, a small thickness in the loaded area can be treated as being subjected to plane

strain (Chandrupatla et al. 1997). In this case, 0zε = , 0yzγ = , and 0zxγ = . The material

matrix [D] for the plane strain condition for an isotropic material is given by

 [D] =
(1)(1 2)

E
ν ν+ −

1 0
1 0

1 20 0
2

ν ν
ν ν

ν

⎡ ⎤
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 (5.5)

37

5.3 Constant Strain Triangle

This is the simplest element for analyzing two-dimensional problems. It has three

nodes, and each node has two inplane degrees of freedom, making a total of six degrees

of freedom. The triangular element is a widely used element. Triangular elements are

used for structures with irregular boundary conditions, unlike rectangular elements. The

CST element is shown in Figure 5.1. The nodes are numbered in a counter-clockwise

direction for consistency.

 1 (x1, y1)
2 (x2, y2)

3 (x3, y3)

u1

u2

v2

u3

v3

v1

Th

Th

the

wh

Th

e procedure for deve

e displacements u(x,

 displacement functi

 u(x, y) =

 v(x, y) =

ere u(x ,y) and v(x, y

e above equations ar
Y

X

Figure 5.1 Constant Strain Triangle.

loping the stiffness matrix of the CST element is as follows.

 y) and v(x, y) are assumed to vary linearly with x and y, and hence

on can be represented by

 1 2o x yα α α+ +

 3 4 5x yα α α+ + (5.6)

) represent displacements in the x and y directions, respectively.

e rewritten in matrix form as

38

1 0 0 0⎤

⎦

0

1

2

3

4

5

0 0 0 1
u x y
v x y
⎧ ⎫ ⎡

=⎨ ⎬ ⎢ ⎥
⎩ ⎭ ⎣

α
α
α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (5.7)

or

 u(x, y) = [X] {α} (5.8)

Given the displacements, the strains are computed as

 xε (x, y) = u
x
∂
∂

 = 1α

 yε (x, y) = u
y
∂
∂

 = 5α

 xyγ (x, y) = u
y x
∂ ∂

+
∂ ∂

v
4 = 2α α+ (5.9)

It can be observed that the strains are not functions of (x, y), hence the name constant

strain triangle.

Substitution of nodal coordinates in Equation (5.7) results in

1 1 1

1 1 1

2 2 2

2 2

3 33

3 33

1 0 0

2

0 00 1
1 0 0
0 0 0 1
1 0 0 0
0 10 0

u x y
v

0

0
x y

u x y
v x y

x yu
x yv

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥⎪ ⎪ = ⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪ ⎣ ⎦⎩ ⎭

0

1

2

3

4

5

α
α
α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (5.10)

or

{u} = [A]{α} (5.11)

39

The coefficients {α} are obtained by inverting the matrix [A] and multiplying it with {u}:

 {α} = [A]-1{u} (5.12)

Substituting Equation (5.12) in Equation (5.8),

 u(x, y) = [X] [A]-1{u} (5.13)

where [X][A]-1 = [N] represents the shape function.

Inverting matrix [A] and multiplying with [X] results in

0

1

2

3

4

5

α
α
α
α
α
α

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

= 1
2A

2 3 3 2 3 1 1 3 1 2 2 1

2 3 3 1 1 2

3 2 1 3 2 1

2 3 3 2 3 1 1 3 1 2 2 1

2 3 3 1 1 2

3 2 1 3 2 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

x y x y x y x y x y x y
y y y y y y
x x x x x x

x y x y x y x y x y x y
y y y y y y
x x x x x x

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −

−

1

1

2

2

3

3

u
v
u
v
u
v

⎢ ⎥
− −⎢ ⎥⎣ ⎦

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (5.14)

where A is the area of the triangle, and is given by

{ 1 2 3 2 3 1 3 1 2
1 () () (
2

})A x y y x y y x y y= − + − + − (5.15)

The shape functions are obtained by substituting Equation (5.14) in Equation (5.7).and

rearranging the terms:

1 2 3 3 2 2 3 3

2 3 1 1 3 3 1 1 3

3 1 2 2 1 1 2 2

() () (
1 () () (

2
() () (

N x y x y y y x x x
N x y x y y y x x x

A
N x y x y y y x x x

− + − + −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − + −⎣ ⎦ ⎣ ⎦

2

1

)
)
)

y
y
y

 (5.16)

These functions are used to interpolate the displacement at any point (x, y) using the nodal

displacements.

40

Displacements can be obtained from the shape functions using the following relationship:

1 2 3

1 2 3N

1

1

2

2

3

3

u
v
u
v
u
v

0 0 0
0 0 0
N N Nu

N Nv
⎡ ⎤⎧ ⎫

=⎨ ⎬ ⎢ ⎥
⎩ ⎭ ⎣ ⎦

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (5.17)

or

 {u} = [N]{ui} (5.18)

Strains are obtained from the strain-displacement relationships

3

1
x i

i

u N u
x x

ε
=

∂ ∂
= =
∂ ∂ ∑ i

3

1
y i

i

v N v
y y

ε
=

∂ ∂
= =
∂ ∂ ∑ i

3 3

1 1
xy i i i i

i i

u v N u N v
y x y x

γ
= =

∂ ∂ ∂ ∂
= + = +
∂ ∂ ∂ ∂∑ ∑ (5.19)

The above equations can be expressed in matrix form as

31 2

31 2

3 31 1 2 2

0 0 0

0 0 0
x

y

xy

NN N
x x x

NN N
y y y

N NN N N N
y x y x y x

ε
ε
γ

⎡ ⎤∂∂ ∂
⎢ ⎥
∂ ∂ ∂⎢ ⎥⎧ ⎫

⎢ ⎥∂∂ ∂⎪ ⎪ =⎨ ⎬ ⎢ ⎥∂ ∂ ∂⎪ ⎪ ⎢ ⎥
⎩ ⎭ ⎢ ⎥∂ ∂∂ ∂ ∂ ∂

⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

1

1

2

2

3

3

u
v
u
v
u
v

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (5.20)

or

 3x1 3x6 6x1{ (x, y)} = [(x, y)] { }iB uε (5.21)

41

The derivatives are evaluated with respect to x and y to obtain the strain-displacement matrix

[B]:

2 3 3 1 1 2

2 3 1 3 2 1

3 2 2 3 1 3 3 1 2 1 1 2

0 0 0
1[(,)] 0 0 0

2

y y y y y y
B x y x x x x x x

A
x x y y x x y y x x y y

− − −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − − − − −⎣ ⎦

− (5.22)

The element stiffness matrix can now be obtained from

 [k] = [] [][]
T

v

B E B dv∫ (5.23)

For a constant thickness, the volume integral can be reduced to an area integral

 [k] = (5.24) [] [][]
T

A

t B E B dA∫

where t is the thickness of the element. Since [B] is independent of (x, y), the stiffness matrix

can be written as

 [k] = [] [][]T

A

t B E B dA∫ (5.25)

or

 [k] = (5.26) [] [][]TtA B E B

5.3.1 Implementation of CST Element in Java
 To implement the CST element in Java, the CSTelement class is developed.

The interface of this class is shown below:

public class CSTelement {

 private double thick; //thickness of the element

 private double[] coodx; //x coordinates of each node

42

private double[] coody; //y coordinates of each node

private double[][] d; //material Matrix

private double a; //area of the element

private double[][] b; //strain-displacement matrix (3x6)

public double[][] cstkelem; //Element stiffness matrix 6x6

public double[] cststress; //Stresses in element

The variables thick and the arrays coodx[], coody[] represent the thickness of the element

and the nodal coordinates, respectively. The two-dimensional arrays b[] and cstkelem[]

contain the strain-displacement and the element stiffness matrices. The array cststress is

used to store calculated stresses. The area of the CST element is stored in the variable a.

The constructor for the CSTelement is given as

public CSTelement(double[] x, double[] y, double[][] matb,

 double th) {

 d = matb;

 thick = th;

 coodx = x;

 coody = y;

 }

To create an object of the CST element class, the constructor of the CSTelement class

is called by passing the coordinates, thickness, and the material property matrix of the element

as arguments. The methods in the CST element class use these variables to calculate the strain-

displacement matrix, shape functions, stiffness matrix, and stresses.

The methods in the CSTelement class are summarized in Table 5.1.

43

Table 5.1 Methods in class CSTelement

Method Description

area() Calculates area of CST element

cstBMatrix() Calculates strain-displacement matrix

calcelemkcst() Calculates element stiffness matrix

calcstress() Calculates stresses in element

The method calcelemkcst() defines the stiffness matrix of the element. To generate the

stiffness matrix, we need both the area and strain-displacement matrix. These are obtained by

calling the methods area() and cstBMatrix() from the calcelemkcst()method. The

nodal coordinates required to calculate area and strain-displacement matrix are obtained from

the instantiation of the object. An instance of the CST element is created by calling the

constructor of the CSTelement class:

CSTelement cse= new CSTelement(x,y,matb,th);

where cse is an instance of the CSTelement class. The required values such as x and y

coordinates and material matrix, are passed while creating the object. These values are used by

the various methods to calculate the stiffness matrix, which is returned to the calling method in

the Analyze class. The Analyze class further assembles the structure stiffness matrix by

obtaining the element stiffness matrix for each CST element in the structure.

The method calcstress() mentioned above is used to calculate the stresses in the

element and store them in a new Stresses object for further retrieval during the display of

results. The calcstress() method is declared as

public void calcstress(double[] u,int[] elemcon,Stresses stsc)

This method uses the nodal displacements of the element obtained after analysis from the

Analyze class for calculating the stresses. The stresses obtained are stored in a new

44

Stresses object stsc along with element connectivity information in order to associate them

with nodal coordinates.

5.4 Four-node Iso-Parametric Quadrilateral Element

 This is the simplest 2-D quadrilateral element. It has four nodes and two degrees of

freedom at each node for a total of eight degrees of freedom. The four nodes are numbered in a

counterclockwise direction as shown in Figure 5.2. The nodal displacement vector is given by

{u}= {u1, v1, u2, v2, u3, v3, u4, v4}T (5.27)

Y

 Figure 5.2 Four-node iso-parametric quadrilateral element.

The formulation of the stiffness matrix for the quadrilateral element is as described below

(Cook 1989). For developing the stiffness matrix, the master (or parent) element is defined in

the natural (ξ,η) coordinates as shown in Figure 5.3.

u4

u3

v3

u2

v2v1

u1

3 (x3,y3)
v4

1 (x1,y1)

4 (x4,y4)

2 (x2,y2)

X

45

 Figure 5.3 Four-node iso-parametric quadrilateral in natural coordinates.

5.4.1 Interpolation Functions

The displacements u and v are obtained from nodal coordinates by means of Lagrange

interpolation functions as

4

1
(,) i i

i
u Nξ η

=

=∑ u

N vξ η
=

=∑ v (5.28)
4

1
(,) i i

i

For an iso-parametric element, the same shape function can be used to determine the geometry

and the displacements, which is why this element is known as iso-parametric.

The geometry of the element can be expressed as

4

1
(,) i i

i
x N xξ η

=

=∑

 (5.29)
4

1
(,) i i

i
y ξ η

=

=∑N y

where N1, N2, N3 and N4 are shape functions in the natural coordinate system. These shape

functions can be written as

 (-1, 1)

1 2

3 4

ξ

η

 (-1,-1)

(1, 1)

(1,-1)

46

1
1(,) (1)(1)
4

N ξ η ξ= − −η

2
1(,) (1)(1)
4

N ξ η ξ= + −η

3
1(,) (1)(1)
4

N ξ η ξ= + +η

4
1(,) (1)(1)
4

N ξ η ξ= − +η (5.30)

The displacements (,)u ξ η and (,)v ξ η are rewritten in matrix form as

1

1

2

21 2 3 4

31 2 3 4

3

4

4

0 0 0 0(,)
0 0 0 0(,)

u
v
u
vN N N Nu
uN N N Nv
v
u
v

ξ η
ξ η

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎡ ⎤⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨⎢
⎩ ⎭ ⎣ ⎦

⎬⎥
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 (5.31)

5.4.2 Stiffness Matrix

To obtain the element stiffness matrix of an iso-parametric quadrilateral element, the strain-

displacement is converted from Cartesian space to natural space. Hence the derivatives of

function f in ,x y coordinates need to be expressed in terms of ,ξ η . For a function f(x, y), the

derivatives with respect to ξ and η are obtained from the chain rule of differentiation:

f f x f y
x y

f f x f y
x y

ξ ξ ξ

η η η

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

 (5.32)

47

or

f f
xJ
ff
y

ξ

η

∂⎧ ⎫ ∂⎧ ⎫
⎪ ⎪ ⎪ ⎪∂ ∂⎪ ⎪ ⎪=⎨ ⎬ ⎨∂∂⎪ ⎪ ⎪

∂⎪ ⎪ ⎪∂ ⎩ ⎭⎩ ⎭

⎪
⎬
⎪
⎪

 (5.33)

The transformation matrix used to map the strain-displacement matrix from Cartesian space to

natural space is known as the Jacobian matrix and is given by

11 12

21 22

[]

x y
J J

J
J Jx y

ξ ξ

η η

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ⎡ ⎤⎢ ⎥= = ⎢ ⎥∂ ∂⎢ ⎥ ⎣ ⎦
⎢ ⎥∂ ∂⎣ ⎦

 (5.34)

The determinant of the Jacobian is given by

 11 22 21 12J J J J J= − (5.35)

and the inverse is 1[]J −

 22 121

21 11

1[]
J J

J
J JJ

− −⎡ ⎤
= ⎢−⎣ ⎦

⎥ (5.36)

Substituting the shape functions from Equation (5.29), the terms in the Jacobian matrix are

obtained as

4

11
1

i
i

i

NxJ x
ξ ξ=

∂∂
= =
∂ ∂∑

4

12
1

i
i

i

NyJ y
ξ ξ=

∂∂
= =
∂ ∂∑

4

21
1

i
i

i

NxJ x
η η=

∂∂
= =
∂ ∂∑

4

22
1

i
i

i

NyJ
η η=

∂∂
= =
∂ ∂∑ y (5.37)

The strain-displacement relations are expressed as

48

x

y

xy

u
x
v
y
u v
y x

ε
ε
γ

⎧ ⎫∂
⎪ ⎪
∂⎪ ⎪⎧ ⎫

⎪∂⎪ ⎪ =⎨ ⎬ ⎨ ⎬∂⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪∂ ∂

+⎪ ⎪
∂ ∂⎩ ⎭

⎪
 (5.38)

The derivatives in Cartesian space can be expressed in terms of derivatives in natural space as

 22 12

21 11

1
uu

J Jx
u J J uJ
y

ξ

η

∂⎧ ⎫∂⎧ ⎫
⎪ ⎪⎪ ⎪ − ∂⎡ ⎤∂⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥∂ − ∂⎣ ⎦⎪ ⎪ ⎪ ⎪

∂⎪ ⎪ ⎪ ⎪∂⎩ ⎭ ⎩ ⎭

 (5.39)

 22 12

21 11

1
vv

J Jx
v J J vJ
y

ξ

η

∂⎧ ⎫∂⎧ ⎫
⎪ ⎪⎪ ⎪ − ∂⎡ ⎤∂⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥∂ − ∂⎣ ⎦⎪ ⎪ ⎪ ⎪

∂⎪ ⎪ ⎪ ⎪∂⎩ ⎭ ⎩ ⎭

 (5.40)

Combining Equations (5.38), (5.39) and (5.40), the strains are expressed in term of local

coordinates (ξ,η) as

x

y

xy

u

u

A
v

v

ξ

ε
η

ε
γ

ξ

η

∂⎧ ⎫
⎪ ⎪∂⎪ ⎪
∂⎪ ⎪⎧ ⎫ ⎪ ⎪∂⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬∂⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎪ ⎪∂
⎪ ⎪∂⎪ ⎪
⎪ ⎪∂⎩ ⎭

⎪ (5.41)

where

22 12

21 11

21 11 22 12

0 0
1 0 0

J J
A J

J
J J J J

−⎡ ⎤
⎢= −⎢
⎢ ⎥− −⎣ ⎦

J ⎥
⎥ (5.42)

Further, the derivatives of the displacements with respect to natural coordinates are expressed

as

49

4

1

i
i

i

Nu u
ξ ξ=

∂∂
=

∂ ∂∑

4

1

i
i

i

Nu u
η η=

∂∂
=

∂ ∂∑

4

1

i
i

i

Nv v
ξ ξ=

∂∂
=

∂ ∂∑

4

1

i
i

i

Nv v
η η=

∂∂
=

∂ ∂∑ (5.43)

The above equations can be rewritten in matrix form as

131 2 4

1

231 2 4

2

331 2 4

3

31 2 4 4

4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

uNN N Nu
v
uNN N Nu
v
uv NN N N
v

v NN N N u
v

ξ ξ ξ ξξ

η η η η η

ξ ξ ξ ξ ξ

η η η η η

⎧ ⎫∂∂ ∂ ∂∂ ⎡ ⎤⎧ ⎫
⎪ ⎪⎢ ⎥⎪ ⎪ ∂ ∂ ∂ ∂∂ ⎪ ⎪⎢ ⎥⎪ ⎪
⎪ ⎪∂∂ ∂ ∂∂ ⎢ ⎥⎪ ⎪
⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨∂ ∂∂ ∂ ∂⎢ ⎥⎪ ⎪ ⎪

⎢ ⎥⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂⎢ ⎥⎪ ⎪ ⎪∂ ∂∂ ∂ ∂⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎪
⎪
⎪
⎪
⎪

⎪
⎬ (5.44)

Equation (5.44) can be written as

 { } [][]{ }A G uε = (5.45)

where

 [G] =

31 2 4

31 2 4

31 2

31 2 4

0 0 0

0 0 0

0 0 0 0

0 0 0

NN N N

NN N N

NN N

NN N N

ξ ξ ξ ξ

η η η η

4

0

0

0

N
ξ ξ ξ

η η η η

∂∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥

∂∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥

∂∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥

∂∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

ξ
∂
∂

 (5.46)

Therefore,

 { } []{ }B uε = (5.47)

where [] [][]B A G= is the strain-displacement matrix

50

The stresses in the element are given by

{ } [][]{ }D B uσ = (5.48)

where [D] is the material matrix.

The element stiffness matrix is given by

 [(5.49)] [] [][]
T

A

k t B D B dA= ∫

Since [B] is in terms of natural coordinates, Equation (5.49) is integrated with respect to

natural coordinates. Substituting

 (,)dA dxdy J d dξ η ξ η= = (5.50)

we obtain the element stiffness matrix as

1 1

1 1

[] [(,)] [][(,)] (,)Tk t B D B J d dξ η ξ η ξ η
− −

= ∫ ∫ ξ η (5.51)

where t is the thickness of the element. The element stiffness matrix so obtained is an 8x8

matrix and each term is a function of ξ and η . Gauss quadrature is used to integrate these

terms. If a 2x2 Gauss quadrature rule is used, then the stiffness matrix is

2 2

1 1
[] [(,)] [][(,)] (,)T

j i
j i

k t w w B D B J d dξ η ξ η ξ η
= =

= ∑∑ ξ η (5.52)

The roots and weights for 2x2 Gauss quadrature are given in Table 5.2 (Chandrupatla et al.

1997).

Table 5.2 Roots and weights for 2x2 Gauss quadrature.

Roots Weight Functions (w)

±0.7745966692 0.55555555555556

5.4.3 Element Force Vectors

Uniformly distributed forces acting on the elements are converted to equivalent nodal loads.

This is determined by using the potential energy expression (Chandrupatla et al. 1997)

 (5.53) (,)T

V

u fξ η∫ dV

Using Equation (5.28) and considering the body force f = [fx, fy]T, we get

51

 (5.54)
1

(,)
N

T
i

iV

u fdV uξ η
=

=∑∫ T f

where N is the number of elements in the structure. The force vector of each element is given

by

1 1

1 1

[(,)] (,) xT

y

f
f t N J d d

f
ξ η ξ η ξ η

− −

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∫ ∫ (5.55)

The force vector is evaluated using Gauss quadrature.

5.4.4 Implementation of Four-node Quadrilateral Element in Java Applet

 For implementing the four-node iso-parametric quadrilateral element in Java, the class

Qelement is developed. The following is a brief description of variables and functions in the

Qelement class.

public class Qelement {

 private double thick; //thickness of the element

 private double[] coodx; //x coordinates of each element

 private double[] coody; //y coordinates of each element

 private double[][] d; // material matrix

 private double[] dxi; //derivatives of shape functions w.r.t si

 private double[] deta; //derivaitives of shape functions w.r.t eta

 private double[][] jacb; // Jacobain martrix

 private double djac; //determinant of Jacobian matrix

 private double[][] b; //strain-displacement matrix

 public double[][] q4kelem; //element Stiffness matrix

 public double[] stressmat; //stress matrix

The variables thick and the arrays coodx[], coody[] contain the coordinates of the

element. Arrays dxi and deta contain the derivates of the shape functions with respect to ξ

and η, respectively. The two-dimensional arrays d, b, jacb and q4kelem store the material

52

matrix [D], calculated strain-displacement matrix [B], the Jacobian matrix, and the element

stiffness matrix, respectively.

The constructor for the Qelement class is

public Qelement(double[] x, double[] y, double[][] matb,

 double th) {

 d = matb;

 thick = th;

 coodx = x;

 coody = y;

 }

To create an instance of the four-node quadrilateral element object, the constructor of

the Qelement class is called and the coordinates, thickness, and material property matrix are

passed as arguments. The methods in the Qelement class use this data to calculate the strain-

displacement matrix, the shape functions, the stiffness matrix, and stresses.

The methods in the Qelement class are listed in Table 5.3

Table 5.3 Methods in class Qelement

Method Description

q4dshapefx() Calculates shape functions

jacobian() Calculates Jacobian matrix

q4Bmatrix() Calculates the strain-displacement matrix

calcelemk() Calculates the element stiffness matrix

calcstress() Calculates element stresses

Method calcelemk() calculates the stiffness matrix by using 2x2 Gauss quadrature. For

each Gauss point the methods q4dshapefx(), jacobian() and q4Bmatrix() are invoked

to calculate the shape functions, Jacobian matrix, and strain-displacement matrix, respectively.

53

Then the contributions to the element stiffness matrices at each Gauss point are calculated and

these are added to form the element stiffness matrix.

The approach used to analyze a structure consisting of four-node quadrilateral elements

is as follows. For each element an instance of the Qelement class is created by calling the

constructor from the Analyze class.

Qelement q= new Qelement(x,y,matb,th);

where q is an instance of the Qelement class. The required values such as the x and y

coordinates, and the material matrix, are passed in the constructor. These values are then used

by the methods in the Qelement class to calculate the element stiffness matrix which is

returned to the calling method in the Analyze class. The Analyze class further assembles the

structure stiffness matrix by using the element stiffness matrix for each Qelement object .

The method calcstress() method mentioned calculates the stresses in the element

and stores the results in a new Stresses object.

The calcstress() method is declared as

public void calcstress(double[] u,int[] elemcon,Stresses sts)

This method uses the nodal displacements of the element obtained after analysis from the

Analyze class for calculating the stresses. The stresses at each node are calculated using

Gauss 2x2 quadrature. The methods q4dshapefx(), jacobian() and q4Bmatrix() are

called at each Gauss point and stresses are calculated using the stress-strain relationships

mentioned in section 5.4.2. The stresses obtained are stored in a new Stresses object sts

along with element connectivity information to associate them with nodal coordinates.

5.5 Eight-node Iso-Parametric Quadrilateral

 The eight-node isoparametric quadrilateral element is an extension of the four-node

element. Four additional nodes are considered along the mid-points of the element boundaries.

54

The nodes of the quadrilateral element are numbered as shown in Figure 5.4

 Figure 5.4 Eight-node quadrilateral element in x, y space.

The eight-node quadrilateral element in natural coordinates is shown in Figure 5.5

Figure 5.5 Eight-node quadrilateral element in ξ, η space.

Each node has two degrees of freedom, an x and y translation, for a total of sixteen degrees of

freedom for the element.

η=+1

8
 ξ=-1

 7

 6

5

4

3

 2
1

η

ξ

ξ = +1

η =-1

6

ξ=+1

ξ=-1

η=+1

8

η

7 3

5

4

2 1

ξ

η=-1

55

As for the four-node quadrilateral element, the displacements and coordinates at any point in

the element are expressed in terms of the nodal displacements by
8

1
(,) i i

i
u Nξ η

=

=∑ u

N v

 (5.56)
8

1
(,) i i

i
v ξ η

=

=∑

The x and y coordinates of any point are obtained from

8

1
(,) i i

i
x N xξ η

=

=∑

 (5.57)
8

1
(,) i i

i
y ξ η

=

=∑N y

where, N1, N2, N3 ,… N8 are the shape functions in the natural coordinate system. These shape

functions can be written as

1
1(,) (1)(1)(1)
4

N ξ η ξ η ξ= − − − + +η

2
1(,) (1)(1)(1)
4

N ξ η ξ η ξ= − + − − +η

3
1(,) (1)(1)(1)
4

N ξ η ξ η ξ η= − + + − −

4
1(,) (1)(1)(1)
4

N ξ η ξ η ξ= − − + + −η

2
5

1(,) (1)(1)
2

N ξ η ξ= − −η

2
6

1(,) (1)(1)
2

N ξ η ξ= + −η

2
7

1(,) (1)(1)
2

N ξ η ξ= − +η

2
8

1(,) (1)(1)
2

N ξ η ξ= − −η (5.58)

The formulation of the stiffness matrix for this element is similar to that for the four-node

quadrilateral element. Also, numerical integration and the calculation of the load vector follow

the same approach as before. Although Gauss quadrature using a 3x3 grid is required to

integrate all the terms of the stiffness matrix, it has been suggested that a Gauss two point

56

(2x2) quadrature be used to prevent the element from becoming too stiff and to yield

conservative estimates of deflections and stresses (Liang-Wu Cai 2004).

5.5.1 Implementation of the Eight-node Quadrilateral Element in Java

The implementation of the eight-node quadrilateral element in Java is similar to that of the

four-node quadrilateral element with few modifications such as matrix declarations and the

shape functions. The EightNelement class is developed for implementing the eight-node iso-

parametric quadrilateral element in Java. The following is a brief description of the variables

and functions in the EightNelement class.

public class EightNelement {

 private double thick; //thickness of the Element

 private double[] coodx; //x coordinates of each element

 private double[] coody; //y coordinates of each element

 private double[][] d; // material matrix

 private double[] dxi; //derivative of shape functions w.r.t si

 private double[] deta; //derivative of shape functions w.r.t eta

 private double[][] jacb; // Jacobain matrix

 private double djac; //determinant of the Jacobian matrix

 private double[][] b; //strain-displacement matrix

 public double[][] q8kelem; //element Stiffness matrix

 public double[] stressmat; //stress matrix

The variable thick and the arrays coodx[], coody[] are used to store the thickness and the

coordinates of the element. Arrays dxi and deta represent the derivatives of the shape

functions with respect to ξ and η respectively. The material matrix [D], strain-displacement

matrix [B], Jacobian matrix and the element stiffness matrix are stored in the two-dimensional

arrays d[], b[], jacb[] and q8kelem[], respectively.

57

The constructor for the EightNelement class is

public EightNelement(double[] x, double[] y, double[][] matb,

 double th) {

 d = matb;

 thick = th;

 coodx = x;

 coody = y;

 }

To create an eight-node quadrilateral element object, the constructor of the

EightNelement class is called and the coordinates, thickness, and material property matrix of

the element are passed as arguments. The methods in the EightNelement class use these

variables as data to calculate the strain-displacement matrix, shape functions, stiffness matrix,

and stresses.

The methods in the EightNelement class are summarized in Table 5.4

Table 5.4 Methods in class EightNelement.

Method Description

q8dshapefx() Calculates shape functions

jacobian() Calculates the Jacobian matrix

q8Bmatrix() Calculates the strain-displacement matrix

calcelemk() Calculates the element stiffness matrix

calcstress() Calculates stresses in the element

Method calcelemk() calculates the stiffness matrix by using Gauss 2x2 quadrature. For each

Gauss point the methods q8dshapefx(), jacobian() and q8Bmatrix() are invoked to

calculate the shape functions, Jacobian matrix, and the strain-displacement matrix. Then the

element stiffness matrix at each Gauss point is computed and is added to form the element

stiffness matrix.

58

The approach used to analyze a structure containing eight-node quadrilateral elements

is as follows. For each element an instance of the EightNelement class is created by calling

the constructor from the Analyze class:

EightNelement q8 = new EightNelement(x,y,matb,th);

where q8 is an instance of the EightNelement class. The required values such as x and y

coordinates, and material matrix, are passed in the constructor. These values are used by the

various methods to calculate the stiffness matrix which is returned to the calling method in the

Analyze class. The Analyze class further assembles the structure stiffness matrix by

obtaining the element stiffness matrix for each EightNelement object.

The method calcstress()mentioned calculates the stresses in the element and

stores them in a new Stresses object for later retrieval. The calcstress() method is

declared as

public void calcstress(double[] u,int[] elemcon,Stresses sts)

This method uses the nodal displacements of the element obtained after analysis from the

Analyze class for calculating the stresses. The stresses at each node are calculated using

Gauss 2x2 quadrature. The methods q8dshapefx(), jacobian() and q8Bmatrix() are

called at each Gauss point and stresses are calculated using the stress-strain relationships

mentioned in Section 5.4.2. The stresses obtained are stored in a new Stresses object sts

along with element connectivity information to associate them with nodal coordinates.

59

Chapter 6: Plate Bending Elements

6.1 Introduction

 Two types of plate bending elements are discussed in this chapter: (1) Discrete

Kirchhoff Triangle (DKT) element developed by Batoz et al. (1980) and (2) Discrete

Kirchhoff Quadrilateral (DKQ) element developed by Batoz and Tahar (1982). The

development of the element stiffness matrix for each of these elements and the

implementation in Java are presented in this chapter. The classes for implementing both

of these elements were developed in a master’s thesis by KaushalKumar

Kansara(Virginia Tech 2004) under the supervision of Professor Rojiani and are included

in the Java applet with due permission.

6.2 Bending of Flat Elastic Plates

 A plate can be defined as the two-dimensional equivalent of a beam with bending

in two principal directions. Plates are subjected to transverse loads perpendicular to the

plane of the plate. The behavior of the plate can be described by classical plate theory

which is an extension of the Euler – Bernoulli beam theory to plates. This is also known

as Kirchhoff plate theory.

The assumptions for bending of thin plates are as follows:

1. Plate is of uniform thickness

2. A line normal to the middle surface of the plate before deformation remains

normal after deformation. This assumption is known as Kirchhoff’s assumption.

3. The middle surface of the plate remains unchanged after deformation.

4. Transverse shear stresses are neglected as they are small compared to normal

stresses.

60

For an isotropic elastic plate with uniform thickness h in the XY plane, the moments are

given by the following relationships:
/ 2

/ 2

h

x x
h

M zdzσ
−

= ∫

/ 2

/ 2

h

y y
h

M zdzσ
−

= ∫

/ 2

/ 2

h

xy xy
h

M zdzτ
−

= ∫ (6.1)

where Mx and My are moments per unit length in the x and y directions, respectively, and

Mxy is the twisting moment per unit length.

6.3 Strain-Displacement Relations

 Consider a section through the plate before and after deformation as shown in

Figure 6.1. Point A at a distance z from the middle surface before deformation has moved

to point A’ after deformation.

Z

A’

u

z w
x

∂
∂

u0

A

 Figure 6.1 Bending of plate.

61

The displacement of point A in the x-direction represented by u is given by

 o
wu u z
x

∂
= −

∂
 (6.2)

where is the middle surface displacement and w is displacement of the plate in the Z

direction.

ou

Similarly the displacement in the y direction is

 o
wv v z
y

∂
= −

∂
 (6.3)

The terms ou and remain constant based on the assumption made previously that there

is no change in length of the middle surface of the plate on deformation. Thus, the strains

are obtained by differentiation:

ov

xε = u
x
∂
∂

 =
2

2

wz
x

∂
−

∂

 yε = u
y
∂
∂

 =
2

2

wz
y

∂
−

∂

 xyγ = u v
y x
∂ ∂

+
∂ ∂

 =
2

2 wz
x y
∂

−
∂ ∂

 (6.4)

The relationship between stresses and strains is given by

[]
xx

y

xy xy

D y

εσ
σ ε
τ γ

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪ =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

 (6.5)

where [D] is the material matrix and is expressed as

62

 [D] = 21
E
ν−

1 0
1 0

10 0
2

ν
ν

ν

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥

⎥
⎥

−
⎢ ⎥
⎣ ⎦

 (6.6)

Here, E = Young’s modulus of elasticity and ν = Poisson’s ratio.

The stresses in the plate are given by substituting Equation (6.6) in Equation

(6.5):

 2

1 0
1 0

1
10 0

2

xx

y

xy xy

E
y

εσ ν
σ ν

ν
τ ν

ε

γ

⎡ ⎤
⎧ ⎫⎢ ⎥⎧ ⎫
⎪ ⎪⎢ ⎥⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥−⎩ ⎭ ⎩ ⎭⎢ ⎥

⎣ ⎦

 (6.7)

Hence the stresses can be expressed as

2 2

2 2 21x
Ez w w

x y
σ

ν
⎡ ⎤− ∂ ∂

= +⎢− ∂ ∂⎣ ⎦
ν ⎥

2 2

2 2 21y
Ez w w

y x
σ

ν
⎡ ⎤− ∂ ∂

= +⎢− ∂ ∂⎣ ⎦
ν ⎥

2

2

2 (1)
1 2z

Ez w
x y

νσ
ν

− − ∂
=

− ∂ ∂
 (6.8)

The moments in the plate are obtained by substituting Equations (6.8) in Equation (6.1)

and integrating over the thickness h:

3 2 2

2 2 212(1)x
Eh w wM

x y
ν

ν
⎡ ⎤− ∂ ∂

= +⎢− ∂ ∂⎣ ⎦
⎥

3 2 2

2 2 212(1)y
Eh w wM

y x
ν

ν
⎡− ∂ ∂

= +⎢− ∂ ∂⎣ ⎦

⎤
⎥

63

3 2

2 (1)
12(1)xy

Eh wM
x y

ν
ν

⎡ ⎤− ∂
= − ⎢ ⎥− ∂ ∂⎣ ⎦

 (6.9)

The term
3

212(1)
Eh

ν−
 is known as the bending stiffness of the plate and is represented by

D.

6.4 Discrete Kirchhoff Triangle (DKT) Element

 The DKT element was developed by Batoz et al. (1980). This element is widely

used for the analysis of irregular shaped plates. The stiffness matrix for the DKT element

developed by Batoz et al. is discussed in this section. Figure 6.2 shows the DKT element

with three degrees of freedom at each node.

Z, w

 Figure 6.2 Discrete Kirchhoff Triangle.

From the assumptions mentioned earlier, the displacements u, v, and w of a point

with coordinates x, y and z are given by

 (,)xu z x yβ= (,)yv z x yβ= (,)w w x y= (6.10)

θx

θy

 W2
2 θx2
 θy2

 w3
3 θx3
 θy3

w1
θx1 1
θy1

Y

X

64

where w is the transverse displacement in the z direction and ,x yβ β are the rotations of

the normal to the undeformed middle surface in the xz and yz planes, respectively, and

are given by

 x

y

u
x
u
y

β
β

∂⎧ ⎫−⎪ ⎪⎧ ⎫ ∂⎪=⎨ ⎬ ⎨ ⎬∂⎩ ⎭ ⎪ ⎪−
∂⎪ ⎪⎩ ⎭

⎪ (6.11)

The curvatures are given by

2

2

, 2

, 2

, , 2

2

x x

y y

x y y x

wz
x
wz

y
wz

z

x y

β
κ β

β β

⎡ ⎤∂
−⎢ ⎥

∂⎢ ⎥⎡ ⎤
⎢ ⎥∂⎢ ⎥= = −⎢⎢ ⎥ ∂⎢ ⎥⎢ ⎥+⎣ ⎦ ⎢ ⎥∂
⎢− ⎥

⎥

∂ ∂⎢ ⎥⎣ ⎦

 (6.12)

and the transverse shear strains are given by

 ,

,

x x

y y

w u
w x x

w uw
y y

β
γ

β

∂ ∂⎡ ⎤−⎢ ⎥+⎡ ⎤ ∂ ∂⎢= =⎢ ⎥ ∂ ∂+ ⎢ ⎥⎣ ⎦ −⎢ ⎥∂ ∂⎣ ⎦

⎥ (6.13)

The total strain energy is

 U = Ub +Us (6.14)

where

 1
2

T
b b

A

U D dxdyκ κ= ∫ (6.15)

 1
2

T
s s

A

U D dxdyγ γ= ∫ (6.16)

65

The variables Ub and Us represent the bending and transverse shear contributions. For

thin plates the transverse shear strains and the transverse shear strain energy Us are

negligible compared to the bending energy Ub. Hence the stiffness matrix is derived

based on the bending energy expression

 1
2

T
b

A

U D dxdyκ κ= ∫ (6.17)

where

3

2

1 0
1 0

12(1)
10 0

2

b
EhD

ν
ν

ν
ν

⎡ ⎤
⎢ ⎥
⎢

= ⎢− ⎢ ⎥

⎥
⎥

−
⎢ ⎥
⎣ ⎦

 (6.18)

The following observations were made by Batoz et al. to relate the rotations of the normal

to the middle surface ,xβ yβ to the transverse displacement (which does not appear in

Equation (6.17)):

w

1. The triangular element must have only 9 degrees of freedom, that is, the

displacement and the rotations w xθ and yθ at the three corner nodes.

2. Using Kirchhoff theory, the nodal point rotations should be x
u
x

θ ∂
=
∂

 and

y
u
y

θ ∂
=
∂

.

3. The Kirchhoff plate theory assumptions can be imposed at any discrete point.

4. Compatibility of the rotations xβ and yβ should not be lost.

The formulation of the DKT element is based on the following assumptions made by

Batoz et al.:

1. xβ and yβ at any point over the element are given by

6

1
x i xi

i
Nβ β

=

=∑
6

1
y i yi

i
Nβ β

=

=∑ ; (6.19)

66

where xiβ and xiβ are the nodal rotations at the corners and at the mid-nodes.

The shape functions for the DKT element in area coordinates are given by

 1
12(1)
2

N ξ η ξ⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

η

 2 (2 1)N ξ ξ= −

 3 (2 1)N η η= −

 4 4N ξη=

 5 4 (1)N η ξ η= − −

 6 4 (1)N ξ ξ η= − − (6.20)

2. The Kirchhoff hypothesis is imposed to remove transverse strains.

a. At the corner nodes 1,2, and 3

,

,
0x x

y y

w
w

β
γ

β
+⎡ ⎤

= ⎢ ⎥+⎣ ⎦
= (6.21)

b. At the mid-nodes defined in a counter-clockwise sense around the element

 , 0sk skw β+ = where k = 4, 5, and 6 (6.22)

3. The variation of the transverse displacement is cubic and is given by w

3 1 3 1,
2 4 2 4sk i si j

ij ij

w w w w
l l
−

= − + − sjw (6.23)

where denotes the mid-node of side and represents the length of side . k ij ijl ij

4. The variation of rotations along the sides are given by

(1
2nk ni nj)β β β= + (6.24)

where k = 4, 5, and 6 represent the mid-nodes of sides 23, 31, and 12,

respectively.

Since varies cubically along the sides, w ,sw and sβ vary quadratically. Hence

,sw matches sβ at the three points along each side, thereby satisfying the Kirchhoff

hypothesis along the entire boundary.

The nodal degrees of freedom of this element are represented by

 1 1 1 2 2 2 3 3 3{ , , , , , , , , }T
x y x y x yU w w wθ θ θ θ θ θ= (6.25)

67

xβ and yβ are expressed in terms of the nodal degrees of freedom using the following

expressions:

 (,)T
x xH Uβ ξ η=

 (,)T
y yH Uβ ξ η= (6.26)

where and are the component vectors of the shape functions and are represented

by the following expressions:

T
xH T

yH

 (6.27)

6 6 5 5

5 5 6 6

1 5 5 6 6

4 4 6 6

6 6 4 4

2 6 6 4 4

5 5 4 4

4 4 5 5

3 4 4 5 5

1.5()

1.5()

1.5()

x

a N a N
b N b N

N c N c N
a N a N

H b N b N
N c N c N

a N a N
b N b N

N c N c N

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎢ ⎥
⎢= +
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−
⎢ ⎥

+⎢ ⎥
⎢ ⎥− −⎣ ⎦

⎥

⎥

 (6.28)

6 6 5 5

1 5 5 6 6

5 5 6 6

4 4 6 6

2 6 6 4 4

6 6 4 4

5 5 4 4

3 4 4 5 5

4 4 5 5

1.5()

1.5()

1.5()

y

d N d N
N e N e N

b N b N
d N d N

H N e N e N
b N b N
d N d N

N e N e N
b N b N

−⎡ ⎤
⎢ ⎥− + +⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎢ ⎥
⎢= − + +
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−
⎢ ⎥
− + +⎢ ⎥
⎢ ⎥− −⎣ ⎦

Also,

2

2

/

3 /
4

k ij ij

k ij ij

a x l

b x y

= −

= ijl

2 21 1()
4 2k ij ijc x y= − 2/ ijl

68

2

2 2

2 2 2

/

1 1()
4 2

()

k ij ij

k ij ij

ij i j

ij i j

ij ij ij

d y l

e y x

x x x

y y y

l x y

= −

= −

= −

= −

= +

2/ ijl

d

 (6.29)

where = 4, 5, and 6 for sides ij = 23, 31, and 12, respectively. k

The stiffness matrix of the DKT element is evaluated using the displacement method and

is given by

11

0 0

2 T
DKT bK A B D Bd

η

ξ η
−

= ∫ ∫ (6.30)

where B is the strain-displacement matrix given by

31 , 12 ,

31 , 12 ,

31 , 12 , 31 , 12 ,

1(,)
2

T T
x x
T T
y y

T T T
x x y

y H y H
B x H x H

A
x H x H y H y H

ξ η

ξ η
T
yξ η ξ

ξ η
⎡ ⎤+
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − + +⎣ ⎦η

 (6.31)

and A is the area given by 31 12 12 310.5()A x y x y= −

Assuming, the element is of constant thickness, the stiffness matrix of the DKT element

is evaluated using three point Gauss quadrature.

 Once the nodal displacements are determined, the bending moments at any point

in the element can be obtained using the following equations (Batoz et al. 1980)

 (,) (,)bM x y D B x y U= (6.32)

where

 1 21 3

1 21

1

31

x x x x
y y y y

ξ η
ξ η

= + +
= + +

 (6.33)

69

6.5 Implementation of DKT Element in Java

 The class DKTElement was developed by KaushalKumar Kansara and requires

the x and y coordinates, material matrix [D], and thickness of the element. When

analyzing a structure using the DKTElement, an instance of this class is created by the

Analyze class. The DKTElement class has several methods for calculating the shape

functions, the strain-displacement matrix, and the element stiffness matrix of the element.

Table 6.1 lists the methods available in DKTElement along with their use.

Table 6.1 Methods in class DKTelement

Method Description
Geometry() Calculates the geometric rotation components for an

element
ShFnHXxi()

Calculates the derivatives of the component vector of the

shape functions in the x direction with respect toξ .

ShFnHXeta() Calculates the derivatives of the component vector of the

shape functions in the x direction with respect to η

ShFnHYxi()

Calculates the derivatives of the component vector of the

shape functions in the y direction with respect to ξ

ShFnHYeta() Calculates the derivatives of the component vector of the

shape functions in the y direction with respect to η

DKTElementKMatrix() Calculates the stiffness matrix of the DKT element
DKTBMatrix() Calculates the strain-displacement matrix of the DKT

element
CalcStresses() Calculates stresses in the DKT element

The stresses are calculated using the stress-strain relationships mentioned previously and

the values at each node are passed to the Stresses class which stores them.

70

6.6 Discrete Kirchhoff Quadrilateral (DKQ) Element

 The Kirchhoff Quadrilateral plate bending element (DKQ) is essentially

developed along the same lines as the DKT element using the Kirchhoff plate bending

assumptions. The DKQ element has four nodes with three degrees of freedom at each

node for a total of 12 degrees of freedom for the element. The Discrete Kirchhoff

Quadrilateral (DKQ) element was developed by Batoz and Tahar (1982) for analyzing

plate structures such as flat slabs and footings. Figure 6.3 shows the DKQ element with

, xw θ , and yθ , representing the transverse displacement and rotation in the x and y

directions.

 Figure 6.3 Discrete Kirchhoff Quadrilateral.

The displacements at any point (x, y) are given by

(,)w w x y= ,x y
w w
y

θ ∂
= =
∂

 ,y
w w
x

θ x
∂

= =
∂

 (6.34)

θy

θx

 w4
4 θx4
 θy4

 w3
3 θx3
 θy3

w2
θx2 2
θy2

w1
θx1 1
θy1

X

Y

Z,w

71

This section discusses the development of the DKQ element by Batoz and Tahar.

The basic arguments and formulation of DKQ element remain the same as that of the

DKT element. Neglecting the transverse shear strain energy, the total strain energy is

given by

 (6.35) e
b

e
U U=∑

where is the element strain energy due to bending and is given by e
bU

 { }1 []
2 e

e
b b

A

U D dxdyχ χ= ∫ (6.36)

and is the area of element eA

The curvatures for a homogenous isotropic plate are given by

 { } (6.37)
/
/

/ /

x

y

x y

x
y

y x

β
χ β

β β

⎧ ⎫∂ ∂
⎪= ∂ ∂⎨
⎪ ⎪∂ ∂ + ∂ ∂⎩ ⎭

⎪
⎬

where xβ and yβ are the rotations of the normal to the undeformed middle surface in the

xz and yz planes, respectively.

The material matrix is given by

3

2

1 0
1 0

12(1)
10 0

2

b
EhD

ν
ν

ν
ν

⎡ ⎤
⎢ ⎥
⎢

= ⎢− ⎢ ⎥

⎥
⎥

−
⎢ ⎥
⎣ ⎦

 (6.38)

E ,ν , and are Young’s modulus, Poisson’s ratio, and thickness of the plate,

respectively.

h

72

Batoz and Tahar made the following observations while formulating the DKQ

element:

1. xβ and yβ are defined by incomplete cubic polynomials

8

1
x i

i
N xiβ β

=

=∑
8

1
y i

i
N yiβ β

=

=∑ (6.39)

Here represent the shape functions of the eight-node quadrilateral element and are

given by

iN

1
1(,) (1)(1)(1)
4

N ξ η ξ η ξ= − − − + +η

2
1(,) (1)(1)(1)
4

N ξ η ξ η ξ= − + − − +η

3
1(,) (1)(1)(1)
4

N ξ η ξ η ξ= − + + − −η

4
1(,) (1)(1)(1)
4

N ξ η ξ η ξ= − − + + −η

2
5

1(,) (1)(1)
2

N ξ η ξ= − −η

2
6

1(,) (1)(1)
2

N ξ η ξ= + −η

2
7

1(,) (1)(1)
2

N ξ η ξ= − +η

2
8

1(,) (1)(1)
2

N ξ η ξ= − −η

=

 (6.40)

2. The Kirchhoff hypothesis is imposed to remove transverse strains.

a. At the corner nodes 1,2, 3 and 4

,

,
0xi xi

yi yi

w
w

β
γ

β
+⎡ ⎤

= ⎢ ⎥+⎣ ⎦
 (6.41)

b. At the mid-point nodes defined in a counter-clockwise sense around the

element

 , 0sk skw β+ = where k =5, 6, 7, and 8 (6.42)

 where s represents coordinates along the element boundary.

73

3. The transverse displacement at any node is defined by a cubic expression and its

derivative with respect to s at the mid-node is given by

w

k

 ,
3 1() (

2 4 , ,)sk i j si
ij

w w w w
l
−

= − − + sjw (6.43)

where = 5, 6, 7, and 8 is the mid-node of the sides = 12, 23, 34, 41, respectively, and

represents the length of side .

k k

ijl ij

4. The rotations at mid-nodes are average values of the corresponding end nodes:

 ()1
2nk ni njβ β β= + = (, ,

1
2 ni njw w+) (6.44)

where = 5, 6, 7, and 8 corresponds to the mid node of sides 12, 23, 34, 41, respectively. k

For formulating the stiffness matrix of the DKQ element, the rotations xβ and yβ

are to be explicitly expressed in terms of nodal variables. The nodal variables for the

DKQ element are given by

1 1 1 2 2 2 3 3 3 4 4 4{ , , , , , , , , , , ,n x y x y x y xU w w w w }yθ θ θ θ θ θ θ θ= (6.45)

Hence, the rotations are given by the following expressions.

 (,)x
x nH Uβ ξ η=

 (6.46) (,)y
y Hβ ξ η= nU

where and are component vectors of shape functions represented by the

following expressions:

xH yH

74

 (6.47)

5 5 8 8

5 5 8 8

1 5 5 8 8

6 6 5 5

6 6 5 5

2 6 6 5 5

7 7 6 6

7 7 6 6

3 7 7 6 6

8 8 7 7

8 8 7 7

4 8 8 7 7

1.5()

1.5()

1.5()

1.5()

x

a N a N
b N b N

N c N c N
a N a N

b N b N
N c N c N

H
a N a N

b N b N
N c N c N

a N a N
b N b N

N c N c N

−⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎢ ⎥
⎢ ⎥+
⎢ ⎥

− −⎢= ⎢ −
⎢ ⎥

+⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥+⎢ ⎥
⎢ ⎥− −⎣ ⎦

⎥
⎥

⎥
⎥

 (6.48)

5 5 8 8

1 5 5 8 8

5 5 8 8

6 6 5 5

2 6 6 5 5

6 6 5 5

7 7 6 6

3 7 7 6 6

7 7 6 6

8 8 7 7

4 8 8 7 7

8 8 7 7

1.5()

1.5()

1.5()

1.5()

y

d N d N
N e N e N

b N b N
d N d N

N e N e N
b N b N

H
d N d N

N e N e N
b N b N
d N d N

N e N e N
b N b N

−⎡ ⎤
⎢ ⎥− + +⎢ ⎥
⎢ ⎥− −
⎢ ⎥−⎢ ⎥
⎢ ⎥− + +
⎢ ⎥

− −⎢= ⎢ −
⎢ ⎥
− + +⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥− + +⎢ ⎥
⎢ ⎥− −⎣ ⎦

Also,

2

2

/

3 /
4

k ij ij

k ij ij

a x l

b x y

= −

= ijl

2 21 1()
4 2k ij ijc x y= − 2/ ijl

75

2

2 2

2 2 2

/

1 1()
4 2

()

k ij ij

k ij ij

ij i j

ij i j

ij ij ij

d y l

e y x

x x x

y y y

l x y

= −

= −

= −

= −

= +

2/ ijl

d

 (6.49)

where = 5, 6, 7, and 8 for sides ij = 12, 23, 34, and 41, respectively. k

The stiffness matrix of the DKQ element is evaluated using the standard procedure of the

displacement method and is given by

1 1

1 1

det[]e T
bK B D B J dξ η

− −

= ∫ ∫ (6.50)

where B is the strain-displacement matrix given by

11 , 12 ,

21 , 22 ,

11 , 12 , 21 , 22 ,

(,)

x x

y x

y y x
x

j H j H
B j H j H

xj H j H j H j H

ξ η

ξ η

ξ η ξ

ξ η
⎡ ⎤+
⎢= − −⎢
⎢ ⎥+ + +⎣ ⎦η

⎥
⎥ (6.51)

In Equation (6.50), 11 12 21, ,j j j , and 22j are the components obtained by inverting the

Jacobian matrix [of the transformation between the parent and actual element. The

Jacobian matrix is given by

]J

 21 34 12 34 21 34 12 34 11 12

32 41 12 34 32 41 12 34 21 22

() ()
[]

() ()
x x x x y y y y J J

J
x x x x y y y y J J

η η
ξ ξ

+ + + + + +⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+ + + + + + ⎣ ⎦⎣ ⎦

 (6.52)

Thus, the components are given by

 11 22
1

det[]
j J

J
= 12 12

1
det[]

j J
J

−
=

 21 21
1

det[]
j J

J
−

= 22 22
1

det[]
j J

J
= (6.53)

Also, the determinant of the Jacobian matrix is

76

42 31 31 42 34 21 21 34 41 32 32 41
1 () () (
8 8 8

J y x y x y x y x y x y x)ξ η
= − + − + − (6.54)

Assuming the element is of constant thickness, the stiffness matrix of the DKQ element is

evaluated using the two-point Gauss quadrature.

6.7 Implementation of the DKQ Element in Java

 The class DKQElement was developed by KaushalKumar Kansara and the inputs

to the constructor for the class are x and y coordinates, material matrix [D], and thickness

of the element. When analyzing a structure using DKQElement, an object of this class is

created in the Analyze class for each plate in the structure. There are several methods in

the DKQElement class for calculating shape functions, the strain-displacement matrix,

and the element stiffness matrix of the element.

Table 6.2 lists the methods available in the DKQElement along with a brief description.

Table 6.2 Methods in class DKQelement

Method Description
Geometry() Calculates the geometric rotation components for an element
ShFnHXxi()

Calculates the derivatives of the component vector of the

shape functions in x direction with respect toξ .

ShFnHXeta() Calculates the derivatives of the component vector of the

shape functions in the x direction with respect to η

ShFnHYxi()

Calculates the derivatives of the component vector of the

shape functions in the y direction with respect to ξ

ShFnHYeta() Calculates the derivatives of the component vector of the

shape functions in the y direction with respect to η

DKQElementKMatrix() Calculates the stiffness matrix of the DKQ element
DKQBMatrix() Calculates the strain-displacement matrix of the DKQ

element
CalcStresses() Calculates stresses in the DKQ element
Jacobian() Calculates the Jacobian matrix

77

The stiffness matrix of the DKQ Element is computed using the DKQElementKMatrix()

method. At each Gauss point, the methods ShFnHXxi(), ShFnHXeta(), ShFnHYxi(),

ShFnHYeta(), and DKQBMatrix() are called to evaluate the shape functions and the

strain-displacement matrix. Then the contribution to the element stiffness matrix at each

Gauss point is calculated and added to form the final stiffness matrix.

The DKQ Element also has a calcstresses() method. This method evaluates the

stresses at each node and stores the results in a new Stresses object for later retrieval

during printing of results.

78

Chapter 7: Applet Structure and Interface

7.1 Introduction

 A Java Applet is developed to perform finite element analysis using different

elements. This applet is embedded in a HTML page and can be accessed from any place

over the Internet. All that is required is a Java enabled web browser. In this chapter, the

details regarding the structure of the program and the various classes are presented. The

program interface and required input are also described.

7.2 The Applet Structure

 The classes developed for the finite element analysis program are divided into

three different types: (1) Input and Output classes, (2) Processing classes, and (3)

Interface classes. Figure 7.1 shows the structure of the applet along with all of the classes.

A description of these classes follows.

Dividing a large complex program into various classes is the essential idea behind

object oriented programming. FemApplet is the main class of the applet. This class has

methods for reading the input data and the FemApplet class creates an instance of the

Analyze class. The Analyze class collects the input data and creates the model of the

structure with the Model class. Data from the Model class is used by the Analyze class

object to perform the analysis of the structure. The Analyze class also performs post

processing.

79

Element

Draw

Joint

JointLoad

Material

Model

Restraint

Results

Stresses

SystemProp

TextInput

ULoad

FemApplet

CSTelement

DKQElement

DKTElement

EightNelement

OneDBarelement

TwoDBeam

Qelement

Deform

Analyze

TwoDTrusselement

AxStress

BenStress

Jama

MemStress

 Figure 7.1 Applet structure diagram.

80

 The Element class is an important class of this program. Since different

types of elements are used for analysis, the Element class is the super class and it

contains sub classes for representing the different elements such as OneDBarelement,

TwoDTrusselement, TwoDBeam, CSTelement classes. These classes are derived from

the Element class by inheritance. The Element class also contains methods to

determine the type of element and the nodes to which the element is connected. The

nodal data of the structure such as the node number and joint coordinates is stored in the

Joint class. There is an instance of the Joint class for each node in the structure.

Restraints, nodal loads, and uniform or pressure loads are represented by separate classes.

Stresses is a container class which contains classes defined to store different

types of stresses. AxStress, BenStress and MemStress are classes defined to

represent axial, bending, and membranes stresses, respectively. The TextInput class

reads the input and creates a model of the structure when text input is used in the

program. The Results class acquires the data such as displacement and stresses and

displays them in the applet window. The Draw and Deform classes are called by the

FemApplet class to plot the structure and the deformed shape of the structure.

Finally, a third party Java package named Jama developed by the National

Institute of Standards and Technology (NIST) is used for matrix operations. The classes

in the Jama package are called by the FemApplet class while performing matrix

inversion or multiplication.

Details of these classes are provided in the following paragraphs.

7.3 Input and Output Classes

 The required input for the finite element model is specified either by a text file or

by entering data in the various input fields provided in the graphical user interface of the

program. The text input option essentially creates a finite element model using the format

provided by typical commercial finite element programs. This input includes nodal data,

connectivity information, material properties, restraints, and joint loads acting on the

structure specified in an orderly format as described in Appendix A.

81

TextInput Class

 The TextInput class is initialized when the input for the program is provided in

the form of text. The information required for generating a finite element model is

extracted and stored as an instance of the Model class. The data acquired by reading the

text file is stored into different vectors in the Model class. These vectors store

information such as joint numbers, joint coordinates, material properties, and

connectivity information.

The constructor of the TextInput class has JTextArea and FemApplet as

arguments. When the constructor is called, the text from the text area is read in and

assigned to a string. All the necessary code required for interpreting and storing the data

is provided in this class.

FemApplet Class

 This is an interface class. It reads in the input entered from the graphical user

program. The interface part of this class is discussed in a later section. Several nested

classes are contained in this class to provide the functionality for processing the buttons

of the input tabs. Action Listeners are added to all interface components like buttons,

check boxes, combo boxes, and radio buttons. Whenever an Add button is pressed an

action event is triggered which in turn calls the corresponding nested class associated

with that event. This inner class has a set of instructions for adding the input data to the

various vectors in the Model object along with displaying the input in the list boxes. The

same procedure is applied for the addition of components like nodal coordinates,

connectivity information, and restraints. Similarly, Remove buttons are provided to

remove the selected data from the Model object.

82

Result Class

 The Result class represents the results frame. Large amounts of data such as

displacements at nodes, and stresses in elements, are obtained after performing the

analysis. These data are stored in different vectors as MemStress or AxStress and

BenStress objects depending on the type of stress.

 The Result class contains only one method named AddText() which adds the

displacements and different types of stresses obtained at each node to the JTextArea

component of the Result frame which is passed as an argument to the constructor of this

class. AddText() is a method for obtaining the calculated values from the respective

vectors in which they are stored and tabulating them in an orderly fashion before printing

them. The output format of the results displayed is similar to that of SAP 2000.

7.4 Processing Classes

 This is a set of classes which store the input data, perform analysis, and store the

results of the structure as objects. Once the structure to be analyzed is defined, the input

data obtained from the TextInput class or the FemApplet class is stored in the Model

class. The data required to create a finite element model such as degrees of freedom,

nodal coordinates, material properties, restraints, element nodal connectivity, and joint

loads are represented as objects of class SystemProp, Joint, Material, Restraint,

Element, and JointLoad, respectively.

Once the Model object is created, an instance of Analyze class is generated.

This class performs the necessary operations to evaluate displacements and stresses at

each node. Instances of the element classes such as QElement and OneDBarElement

are called to generate the stiffness matrix of the respective element.

After performing the analysis, instances of the classes AxStress, BenStress,

and MemStress are created to store axial, bending, and membrane stresses. These

objects are further stored in a vector using the methods of the Stresses class.

83

SystemProp Class

 The type of element to be used for analysis is determined by the degrees of

freedom possible at each node. The SystemProp class defines the behavior of the

structure, that is, the possible directions in which the structure can deform on loading.

This class is composed of three methods. Method getdof() returns an array which is

used by the Analyze class along with the number of nodes per element to determine the

type of element for carrying out analysis based on the permitted degrees of freedom at

each node. For example, two types of elements are possible with three nodes: either the

CST Element or the DKT plate element. The type of element used is determined by

considering the degrees of freedom at each node. Method getsdf() returns the total

degrees of freedom at each node. Method getoption() contains information which is

used by the Analyze class to determine whether the problem is a plane stress or a plane

strain condition.

Joint Class

 This class represents a joint in the structure. An instance of this class is created for

each node in the structure by calling the class constructor. The input to the constructor are

node number and x and y coordinates of the joint. These objects are used by the Analyze

class for computing the stiffness matrix of each element. Methods getx(), gety(),

and getnodes() of this class return the x coordinate, y coordinate, and node number,

respectively.

Material Class

84

Material properties such as Young’s modulus and Poisson’s ratio are required for

evaluating the material matrix [D] for either plane stress or plane strain condition. The

Material class is used to create objects of this class representing material properties of

each element and these are stored as a vector in Model class. The methods getym() and

getpr() return Young’s modulus and Poisson’s ratio of the material. The method

getAth() returns the section properties such as the thickness and area of cross-section

of the elements.

Restraint Class

 Finite element analysis essentially requires the solution of a large number of

equations. The number of equations to be solved depends on the total number of

restraints and the number of degrees of freedom for the entire structure. The number of

restraints at each node depends on the degrees of freedom allowed at each node. The

Restraint class represents restraints in the structure and is used to create objects which

are used by the Analyze class. Further, these objects are also used by the Result class

for displaying results. The methods getrestloc(), getrestx(), and

getresty() can be called to determine whether there is a restraint in the x or y

direction at any given node.

Element Class

 To assemble the stiffness matrix, connectivity details of each element are

required. The Element class contains details such as connectivity, element number and

element type. Methods getconnect(), getelemno(), and getelemtype()

return the array of connectivity, element number, and element type, respectively. The

Analyze class calls an instance of the Element class to get the node connectivity

array for the element. The coordinates of each node are obtained by calling the methods

defined in the Joint class for each node. Once the details of the element are obtained,

the stiffness matrix of the element is generated by calling the corresponding element class

such as Qelement and DKTElement by passing the coordinates and material

85

properties of the element as arguments to the constructor. The class hierarchy structure of

the Element class is given in Figure 7.2

 Figure 7.2 Element class hierarchy diagram.

JointLoad Class

 The global load vector is formed by calling the methods of the JointLoad class

to compute the applied force or moment acting at each node. The getload() and

getloadpos() methods provide the magnitude of the applied force and the node

number, respectively. The load vector assembled is used for calculating nodal

displacements.

ULoad Class

 Uniform or pressure loads acting on the elements are converted into equivalent

nodal forces. The ULoad class represents uniform or pressure loads. The methods

getelno(), getstartpos(), and getendpos() are used to obtain the element

number and the location of the loads on the element. The uniform loads are stored in a

vector utloaddata of Model class. The Analyze class calls the corresponding element

CSTelement

OneDBarelement TwoDBeam TwoDTrusselement

DKTElement
Element

Qelement EightNelement DKQElement

86

class such as OneDBarelement, CSTelement and passes information regarding load

magnitudes and location needed to convert uniform loads into equivalent nodal loads.

The loads evaluated are added to existing loads for performing analysis.

Model Class

 As mentioned previously, this class serves as a container for storage of the finite

element model. Objects of all structural component classes previously defined such as

degrees of freedom, nodal coordinates, material properties, restraints, element nodal

connectivity, and joint loads are stored as instances of the Vector class.

 The Vector class belongs to the Java class library. A Vector is a dynamic array

of objects. The components of a Vector can be accessed by using an integer index.

Moreover, a Vector has a unique property which allows it to add or remove items after

the Vector has been created. There are a set of well defined methods to manipulate a

Vector. The dynamic resizing property of Vector allows the programmer to create

storage containers for the objects without any limitations regarding capacity. Method

addElement()adds a specified object to the end of a Vector. To remove an object

from a specified location in a Vector, the removeElementAt() method is called by

passing an index of the location of the object as an argument.

 The Model class consists of various instances of the Vector class. Vectors such

as elementdata, nodedata, jointloaddata, restraintdata, materialprop,

and systemdata are used to store objects of classes Element, Joint, JointLoad,

Restraint, Material, and SystemProp, respectively. Hence all of the components

required for performing finite element analysis of a structure are stored in Vectors

instantiated by Model class.

 The methods for manipulating the data stored in Vectors are also defined in the

Model class. The addition and removal of any object from Vector is done by the

addElementAt() or removeElementAt() methods defined previously. A summary

of methods in the Model class is given in Table 7.1. A class diagram depicting the

relationship among the various classes and the Model class is given in Figure 7.3.

87

Table 7.1 Methods in Model class.

Method Description
addelem() Creates an instance of the Element class and adds it to

elementdata Vector
removeelem() Removes a object of the Element class from elementdata

Vector
addnode() Creates an instance of the Joint class and adds it to

jointdata Vector
removenode() Removes an object of the Joint class from jointdata

Vector
addload() Creates an instance of the JointLoad class and adds it to

jointloaddata Vector
removeload() Removes an object of JointLoad class from

jointloaddata Vector
addrestraint() Creates an instance of the Restraint class and adds it to

restraintdata Vector
removerestraint() Removes an object of Restraint class from

restraintdata Vector
addmaterial() Creates an instance of the Material class and adds it to

materialdata Vector
removematerial() Removes an object of Material class from materialdata

Vector
addsystem() Creates an instance of the SystemProp class and adds this to

systemdata Vector

88

Joint

Element

Material

SystemData

ULoad

 Model

JointLoad

Restraint

Figure 7.3 Model class diagram.

Analyze Class

 This class utilizes all of the previously defined classes and performs the analysis

of the structure. An instance of this class is called by the FemApplet class. Once this

class is instantiated it uses the data stored in the Model object for calculating stiffness

matrices, displacements, and stresses at each node. Each of the above mentioned task is

carried out by methods defined in this class, which are listed in Table 7.2.

Table 7.2 Methods in Analyze class

Method Description
analysisdata() Extracts data required for analysis from the Model object

stiffnessmatrix() Calculates stiffness matrix based on element type
calcdisp() Calculates displacement at each node
stress() Calculates stresses in each element
Calckpstress() Calculates material matrix for plane stress condition
Calckpstrain() Calculates material matrix for plane strain condition

89

 The method analysisdata() is used to obtain analysis data stored in the form

of vectors in the Model object. This method further calculates the number of restraints

and total number of degrees of freedom for the structure, and assigns equation numbers

for assembling the stiffness matrix. The stiffnessmatrix() method uses the number

of elements obtained from analysisdata() for assembling the global stiffness matrix

by performing the following the operations for each element of the structure.

• Connectivity details of the element are obtained.

• Nodal coordinates are obtained by using the methods of the Joint class for each

node of the element.

• The stiffness matrix of the element is generated by calling an instance of the

particular element such as CSTelement and DKTElement by passing the nodal

coordinates and material properties of the element as arguments.

• The global stiffness matrix is obtained by adding the element stiffness matrix

using the equation numbers generated earlier.

Deflections at each node are then calculated in the calcdisp() method by inverting

the structural stiffness matrix and multiplying it by the global load vector. The matrix

operations are performed using the Jama Library class library developed by NIST

(National Institute of Standards and Technology). The stresses in the element are

evaluated by calling the stress() method which instantiates the specific element class

and then calls the calcstress() method of that class to calculate stress by passing the

nodal displacements and the connectivity array as arguments. The stresses are stored in

vectors defined in the Stresses class. Methods calcpkstress() and

calcpkstrain() are used to calculate the [D] matrix based on the analysis option

chosen. Figure 7.4 shows the class diagram for the Analyze class.

Model

FemApplet StressesAnalyze

Jama

90

Figure 7.4 Analyze class diagram.

AxStress Class

 This class contains methods for storing calculated axial stresses in the

OneDBarelement and TwoDTrusselement classes. Methods gets1() and getf()

are used to get the axial stress and force in each element while printing results. The

AxStress class objects are stored in the axstress vector of Stresses class.

MemStress Class

 Membrane stresses are obtained when the structure is subjected to inplane

loading. Elements such as CSTelement, Qelement, and EightNelement classes yield

membrane stresses on loading. The MemStress class stores normal stresses in the x and

y directions, shear stress, maximum and minimum principal stresses and the angle of the

principal axis at each node. The methods of the MemStress class are listed in Table 7.3.

Table 7.3 Methods in class MemStress

Method Description
getnodenum() Returns node number at which stresses are evaluated
gets1() Returns normal stress in x direction at the given node
gets2() Returns normal stress in y direction at the given node
gets12() Returns shear stress at the given node
getsmax() Returns maximum principal stress at the node
getsmin() Returns minimum principal stress at the node
getsang() Returns angle of principal axis at the node

91

BenStress class

 This class is used for storing stresses when plate bending elements are used. This

class stores the normal stresses in the x and y directions, shear stress, maximum and

minimum principal stresses, and angle of the principal axis at each node for plate bending

problems. The methods defined in this class are listed in Table 7.4

Table 7.4 Methods in class BenStress

Method Description
getnodenum() Returns node number at which stresses are evaluated
gets1() Returns normal stress in x direction at the given node
gets2() Returns normal stress in y direction at the given node
gets12() Returns shear stress at the given node
getsmax() Returns maximum principal stress at the node
getsmin() Returns minimum principal stress at the node
getsang() Returns angle of principal axis at the node

Stresses Class

Objects of classes AxStress, MemStress, and BenStress are organized and

stored in axstress, memstress, and benstress vectors, respectively, by this class.

The Analyze class calls an instance of each element class such as CSTelement and

DKTElement for calculating stresses. The Calcstress() method defined for each

element takes an instance of the Stresses class as an argument along with the

connectivity and nodal displacements arrays of the element. The evaluated stresses at

each node are then stored in vectors as objects of AxStress, MemStress or BenStress

based on the type of element used for analysis. Table 7.5 lists the methods defined in the

92

Stresses class. The relationship between the Stresses class and other classes is

shown in Figure 7.5.

Table 7.5 Methods in Stresses class

Method Description
addAxialStress() Creates an instance of the AxStress class and adds this to

the axstress vector

addMemStress() Creates an instance of MemStress class and adds this to

the memstress vector

addBendingStress() Creates an instance of BenStress class and adds this to

the benstress vector

Results

Stresses

BenStress MemStress AxStress

Figure 7.5 Stresses class diagram.

7.5 Applet Interface

 The main window of the applet which is derived from the JApplet class is

shown in Figure 7.6. A menu bar is provided with the File, Model, Analysis, and Help

menus. The Model menu contains the Input and Draw commands. The Input command

is discussed in section 7.7. When Run is selected from the Analysis menu, an instance of

93

the Analyze class is created for performing the analysis of structure. The Results

command instantiates the Result class which displays the results on the Results frame

once the analysis is completed.

 Figure 7.6 Finite element analysis applet view.

7.6 Interface Classes

 The graphical user interface of the applet is mainly provided by the FemApplet

class. The Draw class displays the structure. The deformed shape of the structure under

loading is plotted by the Deform class.

94

FemApplet Class

 FemApplet class is created by extending the JApplet class of the Java class

library. The size of applet is defined as 640 by 520 pixels for compatibility with monitors

of any resolution. This class contains all the required code for controlling the behavior of

the components defined in it. Various components such as JTextBox, JLabel, JList,

JScrollPane, JTextArea, JButton, JCheckBox, and JRadioButton are used for

developing the user interface for manual input. Several inner classes are provided for

event handling operations of the above mentioned components.

Draw Class

 This class draws the structure based on the input data. The user can make changes

to the input and modify the structure until the desired model of the structure is created.

The Draw class scales the diagram so as to fit in the applet. This class contains methods

for displaying the structure, concentrated loads, uniform loads, and restraints. Each

element is numbered along with the nodes as given in the input. In short, it creates the

graphical representation of the structure being analyzed.

Deform class

 The Deform class generates the deformed shape of the structure. The deformed

shape of the structure helps in visualizing the response of the structure to loading. The

addition of the Deform class is to make the applet more interactive.

7.7 Input

The input for this applet is divided into three steps. The first step is similar to the

pre-processing step of commercial finite element programs where input for the structure

is entered. Two types of input are possible for this program: a) manual input and b) text

95

input. The user has the choice of making changes to the structure input. Once the user is

done with input, the structure is analyzed. To view results such as displacements at

various nodes and stresses in each element, the Results frame is activated. The results can

also be saved by copying them to a text file.

7.7.1 Manual Input

The manual input frame essentially consists of five tabs. The input frame of the

applet is activated by selecting the Input command from the Model menu. This leads to

the input area shown in Figure 7.7 where the element type, coordinates of nodes,

connectivity information, restraints, and loads acting at various nodes are entered. Each

input tab is discussed in detail in the following paragraphs.

Figure 7.7 Element tab.

96

Element Type tab: Input regarding the type of element to be used for modeling the

structure, degrees of freedom possible, and the method of input are entered in this tab.

The options for plane stress or plane strain are activated when the selected element type

is a membrane or plate element. The Element Type combo list gives the user the option

of selecting from one-dimensional bar element, two-dimensional truss element, two-

dimensional beam element, CST element, four-node iso-parametric quadrilateral element,

eight-node iso-parametric quadrilateral element, Discrete Kirchhoff triangular plate

element, and Discrete Kirchhoff quadrilateral plate element. The Element Type tab is

shown in Figure 7.7

 Figure 7.8 Co-ordinates tab.

97

Co-ordinates Tab: Each node in the structure is defined by a set of X and Y coordinates.

All coordinates entered are to be specified in the global system. To add a node, the node

number and X and Y text fields are filled with respective values and the Add command

button is pressed. This action displays the previously entered values in a list box as

shown in Figure 7.8. To remove a node, the corresponding node is selected and the

Remove button is pressed. There are no limitations on the number of nodes that can be

contained in a structure.

 Figure 7.9 Connectivity tab.

Connectivity Tab: Each element is connected to a set of nodes. The number of nodes to

which each element is connected depends on the type of element. Connectivity

information is required for calculating the stiffness matrix and stresses at each node.

Here, along with the connectivity information, the material properties of element such as

98

Young’s modulus, Poisson’s ratio, and section properties like area or moment of inertia

are entered. The Add and Remove buttons function similarly to those mentioned in the

Co-ordinates tab. Figure 7.9 illustrates the Connectivity tab.

Figure 7.10 Restraint tab.

Restraint Tab: The restraints are entered in this tab. The node number of the restraint,

along with the direction in which it is restrained, are entered. Figure 7.10 shows the

Restraint tab.

Load Tab: The functioning of Load Tab is similar to the Restraint Tab where, instead of

restraints in the X and Y directions, loads acting in the X and Y direction are specified for

nodal loads. Details of the input for uniform loads are given in Appendix A.

99

7.7.2 Text Input

 When a structure with a large number of nodes is analyzed, it is more convenient

to provide input in text format. Generally, an input text file is created and is read by the

program. But in Java an applet cannot read input from a file due to security reasons.

Hence, the input text is copied to the clipboard and then pasted to the text input field

which is activated when the Text input option is selected on the Element Type tab. The

format of input text is specified in Appendix A. Figure 7.11 illustrates the use of the input

text field.

 Figure 7.11 Text input field.

100

Chapter 8: Test Problems and Verification of Results

8.1 Introduction

 In this chapter the deflections and stresses obtained at selected nodes from the

applet for test problems are compared to those obtained from SAP 2000, a commercial

finite element analysis package developed by Computers and Structures Inc. (CSI),

Berkeley. All units involve pounds and inches.

8.2 Test Problems for One-dimensional Bars and Truss

 Two test examples were considered and the results obtained from the applet are

compared to those obtained from SAP 2000. Deflections at critical nodes, forces in

elements, and reactions are compared.

Problem 1: The first problem is a fixed beam of length 30 in. with three equal segments

(Sennett 2000). The structure consists of four nodes and three elements. The edges are

fixed at nodes 1 and 4 and loads are applied at nodes 2 and 3. Figure 8.1 shows the finite

element model of the beam.

Figure 8.1 Model of Problem 1 - Fixed beam

101

Geometric Data

Span 1: Length = 10 in., area = 1 in2.

Span 2: Length = 10 in., area = 2 in2.

Span 3: Length = 10 in., area = 1 in2.

Material Properties

E = 10 x 106 psi

Loading

A concentrated load of 5000 lb at node 2

A concentrated load of -10000 lb at node 3

Restraints

Nodes 1 and 4 are restrained in the X direction

Comparison of Results

The results obtained from the applet and SAP 2000 are shown in Table 8.1. The

results compared are displacements at nodes 2 and 3 and reactions at nodes 1 and 4. It is

observed that the results obtained are identical to those obtained from SAP 2000. Table

8.1 also shows the forces in elements 1 and 3.

Table 8.1 Displacements, reactions and forces for Problem 1

Location Parameter Result from Applet Result from SAP
2000 Percent error

Node 2 UX -0.0010 -0.0010 0.00
Node 3 UX -0.0040 -0.0040 0.00
Node 1 RX 1000.0000 1000.0000 0.00
Node 4 RX 4000.0000 4000.0000 0.00

Element 1 FX -1000.0000 -1000.0000 0.00
Element 3 FX 4000.0000 4000.0000 0.00

102

Problem 2: The second test problem considered is a thin tapered steel plate of 1 in.

uniform thickness subjected to its self weight in addition to a concentrated load at the

midpoint (Chandrupatla et al. 1997). The width of the plate at the top and bottom are 6 in.

and 3 in., respectively, and the total length of the plate is 24 in. The plate is modeled with

two one-dimensional bar elements of 12 in. length. The finite element model is shown in

Figure 8.2

 Figure 8.2 Plate modeled with two one-dimensional elements.

Geometric Data

Element 1: Length = 12 in., area = 5.25 in2.

Element 2: Length = 12 in., area = 3.75 in2.

Material Properties

E = 30 x 106 psi

Loading

A concentrated load of 100 lb at node 2

103

Self-weight per unit length of magnitude -1.48 lb/in. on element 1

Self-weight per unit length of magnitude -1.06 lb/in. on element 2

Restraints

Node 1 is restrained in the Y direction

Comparison of Results

 Displacements at nodes 1, 2, and 3, and forces in elements 1 and 2 obtained from

SAP 2000 and from the applet are the same. Table 8.2 illustrates the comparison of

results.

Table 8.2 Displacements, reactions and forces for Problem 2

Location Parameter Result from Applet Result from SAP
2000 Percent Error

Node 2 UY -9.26476E-6 -9.26E-06 0.00
Node 3 UY -9.94316E-6 -9.94E-06 0.00
Node 1 RY 130.480 130.480 0.00

Element 1 FY 121.600 121.600 0.00
Element 2 FY 6.36000 6.3600 0.00

The deformed shape of the plate generated by the applet is shown in Figure 8.3.

 Figure 8.3 Deformed shape of structure of Problem 2.

104

8.3 Test Problems for Two-dimensional Truss

 Two test examples were considered to verify the accuracy of the results obtained

from the trusses. The results from the applet are compared to those obtained from SAP

2000. Deflections at selected nodes and reactions are compared.

Problem 3: A four bar determinate truss is analyzed (Chandrupatla et al. 1997). The

cross section area of all truss members is 1 in.2. The finite element model of the truss is

shown in Figure 8.4.

Figure 8.4 Truss model for Problem 3.

Geometric Data

Element 1: Length = 40 in., area = 1 in2.

Element 2: Length = 30 in., area = 1 in2.

Element 3: Length = 50 in., area = 1 in2.

Element 4: Length = 40 in., area = 1 in2.

Material Properties

E = 29.5 x 106 psi

Loading

A concentrated load of 20000 lb is applied at node 2 in the X direction.

105

A concentrated load of 25000 lb is applied at node 3 in the Y direction.

Restraints

Nodes 1 and 4 are restrained in both the X and Y directions

Node 2 is restrained in the Y direction

Comparison of Results

 The displacements at nodes 2 and 3, and the reactions at nodes 1 and 2, are

compared. Table 8.3 shows the comparison. It can be seen that the results obtained are

the same as those from SAP 2000. The deformed shape of the truss from the applet is

shown in Figure 8.5.

Table 8.3 Displacements and reactions for Problem 3

Location Parameter Result from
Applet

Result from SAP
2000 Percent error

Node 2 UX 0.0271 0.0271 0.00
UX 0.0056 0.0056 0.00 Node 3
UY -0.0222 -0.0222 0.00
RX -15833.3000 -15833.3000 0.00 Node 1
RY 3125.0000 3125.0000 0.00

Node 2 RY 21875.0000 21875.0000 0.00

Figure 8.5 Deformed shape of truss of Problem 3.

106

Problem 4: An indeterminate truss problem (Kassimali 1999) as illustrated in Figure 8.6

is analyzed. The area of all truss members is 6 in.2

Figure 8.6 Truss model for Problem 4.

Geometric Data

The truss geometry is shown in Figure 8.6. The truss spans 45 ft and is 20 ft in height.

Material Properties

E = 29 x 106 psi

Loading

A concentrated load of 10000 lb is applied at node 5 in the X direction.

A concentrated load of 30000 lb is applied at nodes 2 and 6 in the Y direction.

Restraints

Node 1 is restrained in both the X and Y directions.

Nodes 3 and 4 are restrained in the Y direction.

107

Comparison of Results

 The displacements at nodes 2, 5, and 6 and reactions at nodes 1 and 4 are

presented in Table 8.4. The results obtained from the applet are the same as those

obtained from SAP 2000. The deformed shape of the structure is shown in Figure 8.7.

Table 8.4 Displacements and reactions for Problem 4

Location Parameter Result from Applet Result from SAP
2000 Percent error

UX 0.0194 0.0194 0.00 Node 2
UY -0.0964 -0.0964 0.00
UX 0.0312 0.0312 0.00 Node 5
UY -0.0560 -0.0560 0.00
UX 0.0259 0.0259 0.00 Node 6
UY -0.0320 -0.0320 0.00
RX -10000.000000 -10000.000000 0.00 Node 1
RY 12032.0000 12032.0000 0.00

Node 4 RY 6997.2800 6997.2800 0.00

Figure 8.7 Deformed shape of truss in Problem 4.

108

8.4 Test Problems for Two-dimensional Beams and Frames

 Two test examples were considered to verify the accuracy of the applet for two-

dimensional beams and frames. The results obtained from the applet are compared to

those obtained from SAP 2000. The first example is an indeterminate beam and the

second example is a frame structure. Deflections at selected nodes and reactions are

compared.

Problem 5: The two span continuous beam as illustrated in Figure 8.8 is analyzed

(Sennett 2000). The beam model consists of four nodes. The supports at nodes 1 and 4

are fixed and node 2 is a hinged support.

Figure 8.8 Model of beam for Problem 5.

Geometric Data

Element 1: Length = 360 in., I = 233 in4.

Element 2: Length = 540 in., I = 233 in4.

Element 3: Length = 720 in., I = 233 in4.

Material Properties

E = 29 x 106 psi

Loading

A concentrated load of 50000 lb is applied at node 3 in the Y direction.

A uniform load of 300 lb/in. is applied on span 1 in the Y direction.

Restraints

Nodes 1 and 4 are restrained against translation in the X, Y directions and against rotation

in the Z direction.

109

Node 2 is restrained in the Y direction.

Comparison of Results

 The rotation at node 2 and the reaction at nodes 1, 2, and 4 are compared to those

obtained from SAP 2000. Table 8.5 shows the results of the comparison. It is clear that

the results obtained from the applet are the same as those from SAP 2000. Figure 8.9

shows the deformed shape of beam under loading.

Table 8.5 Displacements and reactions for Problem 5

Location Parameter Result from
Applet

Result from SAP
2000 Percent error

Node 2 UR 0.0066 0.0066 0.00
RY 56062.5000 56062.5000 0.00 Node 1
MZ 3487500.0000 3487500.0000 0.00

Node 2 RY 79000.0000 79000.0000 0.00
RY 22937.5000 22937.5000 0.00 Node 4
MZ -2002500.0000 -2002500.0000 0.00

 Figure 8.9 Deformed shape of Beam in Problem 5.

110

Problem 6: A portal frame is analyzed using two-dimensional frame elements. The

structure is illustrated in Figure 8.10 (Chandrupatla et al. 1997).

 Figure 8.10 Model of portal frame of Problem 6.

Geometric Data

Element 1: Length = 96 in., I = 65 in.4, area = 6.8 in.2

Element 2: Length = 144 in., I = 65 in.4, area = 6.8 in.2

Element 3: Length = 96 in., A = 65 in.4, area = 6.8 in.2

Material Properties

E = 30 x 106 psi

Loading

A concentrated load of 3000 lb is applied at node 2 in the X direction.

A uniform load of 42 lb/in. is applied on Element 2 from node 2 to node 3 in the Y

direction.

Restraints

Nodes 1 and 4 are restrained against translation in the X, Y directions and against rotation

in the Z direction.

111

Comparison of Results

 Displacements at nodes 2 and 3 and support reactions at node 1 are compared.

Table 8.6 shows the comparison. It can be seen that results obtained from the applet and

from SAP 2000 are in perfect agreement. The deformed shape of the frame is shown in

Figure 8.11.

Table 8.6 Displacements and reactions for Problem 6

Location Parameter Result from
Applet

Result from SAP
2000 Percent error

UX 0.091766 0.091766 0.00
UY -0.001036 -0.001036 0.00 Node 2
UR -0.001387 -0.001387 0.00
UX 0.090119 0.090119 0.00
UY -0.001788 -0.001788 0.00 Node 3
UR -0.000039 -0.000039 0.00
RX -665.776000 -665.776150 0.00
RY 2201.200000 2201.2020 0.00 Node 1
MZ 60138.300000 60138.3110 0.00

 Figure 8.11 Deformed shape of portal frame of Problem 6.

112

8.4 Test Problems for Plane Stress Analysis

 The accuracy of the plane stress elements developed in this applet is verified by

considering five test problems. Standard test problems consisting of CST, four-node

quadrilateral, and eight-node quadrilateral elements are analyzed using the applet and

SAP 2000. Deflections and stresses at critical nodes are compared. The following section

describes the finite element models for these test problems and presents a comparison of

results.

Problem 7: A cantilever of length 50 in. and height 10 in. is modeled with 10 CST

elements as shown in Figure 8.12. The thickness of the cantilever is 1 in. It is subjected to

two concentrated loads of 20 kips each at nodes 6 and 12.

 Figure 8.12 FE model for Problem 7.

Geometric Data

Length L = 50 in.

Height h = 10 in.

Thickness t = 1 in.

Material Properties

E = 30 x 106 psi.

Poisson’s ratio ν = 0.25

113

Loading

A concentrated load of 20000 lb at node 6 in the Y direction

A concentrated load of 20000 lb is applied at node 12 in the Y direction

Restraints

Nodes 1 and 7 are restrained in both the X and Y directions.

Comparison of Results

 The results obtained from the applet are compared to those obtained in SAP 2000

and are shown in Table 8.7. Displacements at node 6 and 12 and stresses at node 4 are

compared. It is observed that the results obtained from the applet are identical to those

obtained from SAP 2000.

Table 8.7 Displacements and stresses for Problem 7

Location Parameter Result from
Applet Result from SAP 2000 Percent error

UX -0.023541 -0.023541 0.00 Node 6
UY -0.168199 -0.168199 0.00
UX 0.022189 0.022189 0.00 Node 12
UY -0.167592 -0.167592 0.00
S11 -14545.700000 -14545.700000 0.00
S22 -1818.350000 -1818.350000 0.00 Node 4
S12 1454.270000 1454.270000 0.00

The deformed shape of the structure is shown in Figure 8.12.

 Figure 8.12 Deformed shape of the cantilever for Problem 7.

114

Problem 8: The same cantilever beam of Problem 7 is analyzed using four-node

quadrilateral elements. The length of the beam is 50 in., depth is 10 in., and thickness is 1

in. A vertical load totaling 40000 lb is applied at the free end of the beam. The finite

element mode has 33 nodes and 20 four-node quadrilateral elements as shown in Figure

8.13.

Figure 8.13 FE Model of cantilever with four-node quadrilateral elements

Geometric Data

Length L = 50 in.

Height h = 10 in.

Thickness t = 1 in.

Material Properties

E = 30 x 106 psi

Poisson’s ratio ν = 0.25

Loading

A concentrated load of 6666.67 lb is applied at nodes 11 and 33 in the Y direction

A concentrated load of 26666.67 lb is applied at node 22 in the Y direction

Restraints

Nodes 1, 12, and 23 are restrained in the X and Y directions.

115

Comparison of Results

 The displacements at nodes 11 and 33 and stresses at node 6 are shown in Table

8.9. The difference in results obtained from the applet and SAP 2000 is about 0.01

percent.

Table 8.8 Displacements and stresses for Problem 8

Location Parameter Result from
Applet

Result from SAP
2000 Percent error

UX -0.089254 -0.089259 0.01 Node 11 UY -0.609463 -0.609497 0.01
UX 0.089254 0.089259 0.01 Node 33 UY -0.609463 -0.609497 0.01
S11 -61247.3000 -61250.791000 0.01
S22 -8592.8300 -8593.309000 0.01
S12 8084.910000 8085.594000 0.01

S-MAX -7379.3800 -7379.729 0.00
Node 6

S-MIN -62460.8000 -62464.371 0.01

The deformed shape of the cantilever is shown in Figure 8.14

Figure 8.14 Deformed shape of cantilever for Problem 8

116

Problem 9: The cantilever beam shown in Figure 8.15 is analyzed using five eight-node

quadrilateral elements. The length of the cantilever is 50 in., depth is 10 in., and

thickness is 1 in. A concentrated load totaling 40000 lb acts at the end as shown in Figure

8.15.

Figure 8.15 Cantilever modeled with eight-node quadrilateral elements

Geometric Data

Length L = 50 in.

Height h = 10 in.

Thickness t = 1 in.

Material Properties

E = 30 x 106 psi

Poisson’s ratio ν = 0.25

Loading

A concentrated load of 6666.67 lb is applied at nodes 11 and 22 in the Y direction

A concentrated load of 26666.67 lb is applied at node 28 in the Y direction

Restraints

Nodes 1, 12, and 23 are restrained in the X and Y directions.

Comparison of Results

 The displacements at nodes 11 and 22 and stresses at nodes 4 and 12 are shown in

Table 8.9. The difference in results is less than 1% except for the stresses at node 5. The

117

reason for this difference is that SAP 2000 employs an error estimation method and is

therefore more accurate. The deformed shape of the structure is shown in Figure 8.16.

Table 8.9 Displacements and stresses for Problem 9

Location Parameter Result from
Applet Result from SAP 2000 Percent error

UX -0.099261 -0.099255 -0.01 Node 11 UY -0.676005 -0.675435 -0.08
UX 0.099261 0.099255 -0.01 Node 22 UY -0.676005 -0.675435 -0.08
S11 -83985.600000 -84000.021000 0.02 Node 4 S22 2941.210000 2803.249000 -4.92
S11 119976.000000 119455.572 -0.44 Node 12 S22 29994.100000 2.99E+04 -0.44

 Figure 8.16 Deformed shape of cantilever for Problem 9.

Problem 10: A plate with a semi-circular hole of radius 2.5 in. at its center is analyzed

using the applet and SAP 2000. The plate is subjected to a force of 100 lb/in. at its bottom

end and is fixed at the top. The length of the plate is 16 in., width is 6 in. and the

thickness is 1 in. The plate is modeled with 48 CST elements as shown in Figure 8.17.

Geometric Data

Width b = 6 in.

Height h = 12 in.

Thickness t = 1 in.

118

Figure 8.17 Plate with semi-circular hole modeled with CST Elements.

Material Properties

E = 30 x 106 psi.

Poisson’s ratio ν = 0.3

Loading

A uniform load of 100 lb/in2 is applied at the bottom end.

Restraints

Nodes 1, 2, and 3 are restrained in the X and Y directions.

Comparison of Results

 Displacements at nodes 25 and 32 and stresses at nodes 1 and 17 obtained from

the applet are compared to those obtained from SAP 2000 in Table 8.10. The difference

in displacements at nodes 25 and 32 is less than 0.4%. The stresses at node 17 differ by

119

0.43 percent. The reason for this difference is that SAP 2000 averages the stresses over

adjacent elements and uses an error estimation technique to arrive at more accurate

values. Figure 8.18 shows the deformed shape of the plate.

Table 8.10 Displacements and stresses for Problem 10

Location Parameter Result from
Applet Result from SAP 2000 Percent error

UX 5.75E-05 0.000058 0.05 Node 25
UY -1.39E-04 -0.000139 0.34
UX 1.73E-04 0.000173 0.20 Node 32
UY -1.53E-04 -0.000153 -0.19
S11 3.12E+01 31.212398 0.00 Node 1
S22 1.04E+02 104.041326 0.00
S11 3.46E+00 3.466700 0.29 Node 17
S22 5.24E+02 5.26E+02 0.43

Figure 8.18 Deformed shape of plate with semi-circular hole.

120

Problem 11: For this test case a rectangular plate of size 4 ft x 3 ft with a square hole of

size 1ft x 1ft is analyzed. The thickness of the plate is 1 in. The plate is fixed on one end

and a uniform load of 100 lb/in. acts on the other end. The plate is modeled with 62 nodes

and 44 four-node quadrilateral elements. A finite element discretization of this problem is

shown in Figure 8.19

Figure 8.19 Plate with a square hole at center.

Geometric Data

Length L=48 in.

Height h=36 in.

Thickness t = 1 in.

Material Properties

E = 29 x 106 psi.

Poisson’s ratio ν = 0.3

Loading

A uniform load of 100 lb/in. acts along the right edge as shown in Figure 8.19

Restraints

The left end of the plate is restrained against displacements in the X and Y directions.

(i.e. nodes 1,10, 19, 28, 36, 45, 54 are restrained)

121

Comparison of Results

 Table 8.11 shows the comparison of displacements and stresses obtained from the

applet and SAP 2000 for this problem. The displacements at nodes 32 and 35 and stresses

at nodes 23 and 40 are compared. Results obtained from the applet match with those from

SAP 2000 with a minor deviation of 0.08% for the displacement at node 32 which might

be due to truncation. The deformed shape of the plate is illustrated in Figure 8.20.

Table 8.11 Displacements and stresses in plate

Location Parameter Result from
Applet

Result from SAP
2000 Percent error

UX 0.000030 0.000031 0.08 Node 32
UY 0.000000 0.000000 0.00
UX 0.000036 0.000036 0.04 Node 35
UY 0.000000 0.000000 0.00
S11 232.044000 232.046372 0.00
S22 20.222400 20.223189 0.00 Node 23
S12 14.281200 14.281677 0.00
S11 232.044000 232.046372 0.00
S22 20.222400 20.223189 0.00 Node 40
S12 -14.281200 -14.281677 0.00

Figure 8.20 Deformed shape of plate with square hole.

122

8.5 Test Problems for Plate Bending Elements

The comparison of displacements and stresses obtained from the applet with those

obtained from SAP 2000 for plate bending elements is presented in this section. Three

problems were selected for verification of DKT and DKQ elements. A description of

each problem and discussion of results is presented in this section.

Problem 12: The first problem is a square cantilever plate is of size 3 ft x 3ft and a

thickness of 2 in. The plate is fixed on two adjacent sides as shown in plan (Figure 8.21).

The opposite adjacent edges of plate are free. A concentrated load of 1000 lb acts at the

corner (node 1).

Figure 8.21 Cantilever plate modeled with DKT elements.

123

Geometric Data

Length L=36 in.

Height h=36 in.

Thickness t = 2 in.

Material Properties

E = 29 x 106 psi

Poisson’s ratio ν = 0.3

Loading

A concentrated load of 1000 lb acts at corner node 1 as shown in Figure 8.21.

Restraints

The adjacent edges of the plate are fixed and the remaining two edges are free.

Comparison of Results

 Table 8.12 shows the comparison of displacements at nodes 1 and 9, and stresses

at nodes 15. The vertical displacement at the free end deviates from that obtained in SAP

2000 by 1.5 percent. The variation in stress at node 15 is 2.5 percent. The difference in

the results is due to the fact that SAP 2000 uses a different shell element.

Table 8.12 Displacements and stresses for Problem 12

Location Parameter Result from
Applet

Result from SAP
2000 Percent error

UZ -0.004382 -0.004446 1.44
RX 0.000343 0.000351 0.00 Node 1
RY -0.000353 -0.000351 0.00
UZ -0.000771 -0.000773 0.29
RX 0.000210 0.000211 0.37 Node 9
RY -0.000057 -0.000054 0.00
S11 82.459700 80.520000 -2.41 Node 15 S22 274.866000 280.353620 1.96

124

Problem 13: A square plate of size 3 ft x 3ft and thickness of 2 in. The plate is fixed on

all edges and is subjected to a uniform surface load of 100 lb/in.2. The plate is modeled

with 36 DKQ elements and the finite element model is shown in Figure 8.22.

Figure 8.22 Plan view of square plate fixed on all edges.

Geometric Data

Length L=36 in.

Height h=36 in.

Thickness t = 2 in.

Material Properties

E = 29 x 106 psi.

Poisson’s ratio ν = 0.3

125

Loading

A uniform surface load of 1000 lb is applied on the plate.

Restraints

All four edges of the plate are fixed.

Comparison of Results

 The displacements and stresses obtained from the applet and SAP 2000 are

tabulated in Table 8.13. Displacements are compared at the mid-point of the plate that is

at node 25. The stresses are compared at nodes 8 and 25. The results obtained from the

applet are similar to those obtained in SAP 2000.

Table 8.13 Stresses and displacements for Problem 13

Location Parameter Result from
Applet

Result from
SAP 2000 Percent error

UZ 0.010747 0.010746 0.00
RX 0.000000 0.000000 0.00 Node 25
RY 0.000000 0.000000 0.00
S11 -9753.320000 -9753.317000 0.00 Node 8
S22 -2925.990000 -2925.995000 0.00
S11 4947.330000 4947.333000 0.00 Node 25
S22 4947.330000 4947.333000 0.00

The results of the verification indicate that for the test problems considered the results

obtained from the applet are essentially the same as those obtained form SAP 2000. The

difference in results for the few cases where the results do not match are due to the more

accurate stress computation procedure used in SAP 2000 and due to a different plate

element being used in SAP 2000.

126

Chapter 9: Summary and Conclusions

9.1 Summary

The objective of this study was to develop a web based tool for teaching finite

element analysis to engineering students. An applet and a set of web pages were

developed to illustrate the basic concepts of finite element analysis. The applet was

written in the object-oriented Java programming language and is platform and operating

system independent. The web pages and applet are hosted on a web server, which makes

them accessible to students and instructors over the Internet. Eight different elements are

developed to analyze a structure using this applet. One-dimensional bar elements, truss

elements, and beam elements are provided for explaining the basics of finite element

analysis. The membrane elements developed in this applet included a three node triangle

element (CST element), a four-node quadrilateral element, and an eight-node

quadrilateral element. Plate bending elements implemented in this applet can be used to

explain advanced topics in finite element analysis. The two plate bending elements

provided are the Discrete Kirchhoff Triangle (DKT) and the Discrete Kirchhoff

Quadrilateral (DKQ) element. The Java classes for implementing plate bending elements

were developed by Kansara (2004). The applet has a graphical user interface which

makes it very easy to learn. The applet also has many interactive features such as plotting

the structure and its deformed shape under loading which makes it more attractive to use.

Input to the applet can be provided either directly into the program or in text

format. The format of the text input is similar to SAP 2000 with a few modifications. The

applet has several tabbed input forms for entering nodal coordinates, connectivity,

material properties, restraints, and loading. Details of input are given in Appendix A. The

purpose of providing text input is to allow students to save the finite element analysis

model of the structure for future modifications. Text input is also useful when a structure

with a large number of nodes and elements is analyzed.

The applet computes displacements and stresses at each node of the structure. The

results obtained can be copied to the clipboard and can be saved for later reference. The

applet also displays the structure and its deformed shape.

127

The accuracy of the applet is verified by analyzing a series of test structures and

comparing the results obtained from the applet with those obtained from commercial

finite element analysis software (SAP 2000). The results obtained are compared at critical

locations of the structure.

9.2 Conclusions

 The applet was developed using object oriented programming principles. Several

classes were developed representing various structural components like nodes, elements,

restraints, and loads as discussed in Chapter 7. The benefit of such an approach is that it

is possible to include additional elements such as shell elements without modifying the

rest of the code.

 The results obtained from the applet are similar to those obtained from SAP 2000.

It was found that for most cases the difference in results was less than one percent. For

the few cases where the difference was larger, the difference can be attributed to a) a

more accurate approach used in SAP 2000 for computing stresses and b) a different plate

element used in SAP 2000. However, there is a slight deviation in stresses as no error

correction procedure was incorporated in the applet.

 The one-dimensional bar element, the truss element, and the two-dimensional

frame elements all yielded accurate results with no deviation at all. The displacements

and stresses obtained for structures consisting of the membrane elements are the same as

those obtained from SAP 2000. The deviation in stresses ranged from 1 percent to 5

percent. The reason for this deviation is that SAP 2000 uses a stress averaging technique

for computing stress.

Displacements calculated for plate structures using the DKT and DKQ plate

bending elements are close to those obtained from SAP 2000. The difference in results

was less than 2 percent. The stresses computed differed by 3 percent. The difference in

stresses can be attributed to the fact that SAP 2000 uses a different plate element than the

one used in the applet. Nevertheless, the variation in stresses is acceptable.

In conclusion, the applet developed has all the basic elements required for

teaching finite element analysis. It has a number of features that make it very attractive in

128

teaching. The graphical user interface combined with the various input forms make it

easy to enter data. The ability to plot the finite element model promises interactive and

immediate feedback and makes it easy to detect errors in the finite element model. The

applet coupled with web pages can be a useful tool for teaching engineering students.

There is no limitation on the number of nodes and elements. Also, the deformed shape

generated by the applet makes it easy to understand the behavior of the structure under

different types of loading.

9.3 Future Development

 The objective of this work is to develop an applet for teaching finite element

analysis. The applet developed can be improved to make it more interactive. The

functionality of the applet can be enhanced by providing additional tools for meshing the

structure and providing a graphical interface for the input. Shell and solid elements can

also be added to make it a complete tool for teaching finite element analysis of structures.

129

References

Batoz J.-L., Bathe K. J. and Ho L. W., A Study of Three-Noded Triangular Plate Bending

Elements, International Journal for Numerical Methods in Engineering, Vol.15, 1771-

1812 (1980).

Batoz J.-L. and Tahar M. B., Evaluation of a New Quadrilateral Thin Plate Bending

Element, International Journal for Numerical Methods in Engineering, Vol. 18, 1655-

1677 (1982).

Benjamin C.V., Rencis J.J., Alam J., and Hartley T. G, Jr., “Using Java to develop

interactive learning material for the World-Wide Web.” Worchester Polytechnic

Institute, 1996.

Chandrupatla R.T., and Belegundu A.D., Introduction to Finite Elements in Engineering,

2nd ed., Prentice Hall, 1997.

Cook R. D., Malkus D. S., and Plesha M. E., Concepts and Applications of Finite

Element Analysis, 3rd ed., John Wiley & Sons, 1989.

Hunt J., Java and object orientation: an introduction, 1st ed., Springer-Verlag, 1998.

Kansara.K., Development of Membrane, Plate and Flat Shell Elements in Java, M.S

Thesis, Virginia Polytechnic Institute and State University, 2004.

Karthik R., and Kurt G., “3-D Finite Element Analysis on the Internet using Java and

VRML.” Proceedings, ASEE Annual Conference, June, St. Louis, MO, 2000.

Kassimali A., Matrix Analysis of Structures., 1st ed., Brooks/Cole Publishing Company,

1999.

130

Liang-Wu C., Lecture Notes for Finite Element Analysis., Kansas State University, 2004.

Ling L., Connell M., Tullberg O., “The Use of Virtual Reality in Interactive Finite

Element Analysis: State of the Art Report”. Department of Structural Mechanics

Chalmers University of Technology, Gothenburg, Sweden, 2001

Storey M.-A., Phillips B., Maczewski M., and Wang M., Evaluating the usability of Web-

based learning tools, Education Technology & Society, Vol. 5, 2002.

“NASA – NASA expands web-based education program”., Marshall center space news

release , January 2004.

Newman A., Using Java, 1st ed., Que Corporation, 1996.

Nikishkov G.P., Tsuchimoto T., and Mirenkov N.N., “Web-Based Teacher-Student

Interaction in a Traditional Course”, University of Aizu, Aizu-Wakamatsu, Fukushima

965-8580, Japan.

Nikishkov G.P., “Generating contours on FEM/BEM higher-order surfaces using Java 3D

textures”, Advances in Engineering Software, 2003, 34(8), pp. 469-476.

Paul S. S, Gallagher E., “Use of Simplified FEA to Enhance Visualization in Mechanics”.

Proceedings, ASEE Annual Conference, 2004.

Reddy J.N., An Introduction to the Finite Element Method, 2nd ed., McGraw Hill, 1993.

Report of the Web-Based Education Commission to the President and the Congress of the

United States, “The power of Internet for learning: Moving from promise to practice”,

December 2000.

131

Rojiani K. B., Kim Y.Y., and Kapania R.K., “Web-Based Java Applets for Teaching

Engineering Mechanics.” Proceedings, ASEE Annual Conference, June, St. Louis, MO,

2000.

SAP-2000 - Integrated Finite Element Analysis and Design of Structures, Analysis

Reference, Computers and Structures, Inc., Berkeley, California, 1997.

SAP-2000 - Integrated Finite Element Analysis and Design of Structures, Input File

Format, Computers and Structures, Inc., Berkeley, California, 1997.

Schildt H., Java: the complete reference , 5th ed., McGraw Hill/Osborne, 2005.

Sennett R.E., Matrix Analysis of Structures., 1st ed., Waveland Press, Inc. 2000.

Wikipedia – Wikimedia Foundation Inc., http://www.wikipedia.org

132

Appendix – A: Input for the program

As mentioned in previous chapters, the input to the program can be provided

either manually or from a text file. Manual input is useful for explaining the pre-

processing step in finite element analysis where information on the finite element model

such as nodal coordinates, elements, and material data is entered. Manual input can be

cumbersome for large models. Text input is useful when a model with a large number of

nodes and elements is to be analyzed. For this case, text input is a more efficient way to

enter model data. All input data is given in inches and pounds or in any consistent system

of units. This section discusses both input methods.

A-1 Manual Input

 Manual input is divided into several steps, from selecting the joint type through

defining the loads. Individual tabs are provided for entering coordinates, connectivity,

restraints, and loading data.

Step 1: Select element type.

1. From the Model menu, select the Input menu item. This displays the Element

tab.

2. Select the type of element to be used for analyzing the structure from the Element

Type drop down box provided in the Element tab.

3. For a one-dimensional bar element, select the degree of freedom (X or Y

direction) by selecting the appropriate check box. For all other elements, both X

and Y are active.

4. For membrane elements, select plane stress or plane strain by clicking on the

appropriate check box.

133

Step 2: Enter joint coordinates.

1. Select the Co-ordinates tab.

2. Enter the node number and X and Y coordinates in the text fields provided.

3. Press the Add button to add the node. The added node is displayed in the List

Box. Repeat this until all the nodes are entered.

4. To remove a node or change its coordinates, select the node from the List Box and

press the Remove button.

Step 3: Enter connectivity data.

1. Select the Connectivity tab.

2. Enter the element number and the node numbers at which the element is

connected. The connecting nodes are specified in a counterclockwise direction

and are separated by a space.

3. Enter material properties of the element in the respective fields. Press the Add

button to add the element connectivity and material data.

4. Repeat the above procedure (Steps 1-3) to enter connectivity data for all elements

in the structure.

Step 4: Enter joint restraints.

1. Select the Restraints tab.

2. Enter the node number and select the direction of the restraint by clicking the drop

down box corresponding to the restraint direction.

3. Press the Add button to enter restraint data.

4. To remove a restraint, select the restraint from List Box and press the Remove

button.

Step 5: Enter loads.

1. Select the Loads tab.

2. Enter the node number and loads in x and y directions.

3. Press the Add button to add the loads.

4. To remove a load, select the list box and press the Remove button.

5. To enter a linear or uniform load on a element, specify the start and end nodes and

the magnitude of the load at these nodes.

134

Step 6: View the model.

1. Select Draw form Model menu to view the model. Follow steps 1 through 5 to

make modifications to the model.

Step 7: Analyze the structure.

1. Once the desired model is created, press Run from the Analysis menu to perform

the analysis.

Step 8: View results and deformed shape.

1. To view the output of displacements and stresses, click Results from the Analysis

menu.

2. The deformed view of the structure can be obtained by clicking the Deformed

Shape from the Analysis menu.

To perform a new analysis, select New from the File menu.

A-2 Text Input

The input for the program can also be provided by creating a text file and copying

it into the text area of the applet. The format of the text file essentially follows that used

in SAP 2000. However, a few modifications were made to this format. Due to security

reasons, a Java applet cannot directly read a text file and hence the input text is copied to

the clipboard and then transferred to the applet.

To provide input in text format, the Text Input checkbox is selected, which then

displays the text panel. The text from the clipboard is then copied to this text form. Once

the text is pasted, the Read button is pressed. The input is then read and is interpreted and

the model is generated.

The data is provided in input blocks and each data block is separated by a title

which defines the block and separates it from the other data blocks. The data blocks are

tabulated in Table A-1 and must be in the same order as listed in Table A-1.

135

Table A -1 Data blocks for input file.

Data Block Function

SYSTEM Defines system properties

JOINTS Defines joint coordinates

RESTRAINTS Defines restraints at nodes

MATERIAL Defines material properties and thickness

CONNECTIVITY Defines joint connectivity for each element

LOADS Defines applied loads on nodes and elements

END Marks the end of input text

SYSTEM Data Block

 The SYSTEM data block defines the degrees of freedom for the entire structure.

The possible restraints are derived from this data block. The format of the system data is

shown in Table A-2.

Table A - 2 SYSTEM Data Block

SYSTEM

DOF = UX OR DOF = UY One-dimensional Bar Element

DOF = UX UY Truss Element and Plane Stress Elements

DOF = UX UY RZ Two-dimensional Beam Element

DOF = UZ RX RY Plate Bending Elements

JOINTS Data Block

 The JOINTS data block specifies the coordinates of the joints. For each joint there

is a separate line for each node. The input on each line consists of the joint number and

the X and Y coordinates of the joint.

136

Table A - 3 JOINTS Data Block

JOINTS

1 X = 1 Y = 1

Node Number X Coordinate Y Coordinate

RESTRAINTS Data Block

 The RESTRAINTS data block specifies the restraints at different nodes of the

structure. The notations UX, UY represents translational restraints in the global X and Y

directions and RX, RY, and RZ represent rotational restraints in the global X, Y, and Z

directions respectively.

Table A- 4 RESTRAINTS Data Block

RESTRAINTS

ADD = 1 DOF = UX UY RX RY RZ

Adds restraint at node Defines the direction of restraints.

MATERIAL Data Block

 The MATERIAL data block defines material properties for each element such as

the modulus of elasticity and Poisson’s ratio. This section also defines section properties

of the element such as the thickness and area of the element.

Table A- 5 MATERIAL Data Block

MATERIAL

STEEL E = 29000 U = 0.3 TH = 1 or AR = 1

Name of section Modulus of

elasticity

Poisson’s ratio thickness or area of

element

137

CONNECTIVITY Data Block

 The CONNECTIVITY data block provides the connectivity data and material

type. For each element the nodes are specified in a counterclockwise direction. The

material type specifies the name of the material corresponding to the material label

specified in the material data block.

Table A-6 CONNECTIVITY Data Block

CONNECTIVITY

1 J = 1 2 STEEL

Element number Defines nodes j1 and j2 (in a counterclockwise direction) for one-

dimensional bar, truss, and beam elements. Label STEEL defines

the material type.

1 J = 1 2 3 STEEL

Element number Defines nodes j1, j2, and j3 (in a counterclockwise direction) for

triangular elements (both plane stress and plate elements)

1 J = 1 2 3 4 STEEL

Element number Defines nodes j1, j2, j3, and j4 (in a counterclockwise direction)

for four-node quadrilateral elements (both plane stress and plate

elements)

1 J = 1 2 3 4 5 6 7 8 STEEL

Element number Defines nodes j1,j2…………j8 (in a counterclockwise direction)

for eight-node quadrilateral elements

LOADS Data Block

 The LOADS data block defines two types of loads. For concentrated loads

applied at a node, the direction of the load and the magnitude of the load are specified. A

concentrated load can be applied at any node. In the case of uniform loads, additional

details such as the start and end nodes and magnitude of the load at nodes are specified.

138

Table A- 7 LOADS Data Block

LOADS

ADD = 1 UX = 100 UY = -50

Adds concentrated load at specified node Magnitude of load in X and Y directions

ADDU = 1 S = 1 S = 2 UM = 2

Adds uniform load on specified element Specifies start node and end node of load

and magnitude of load.

END Data Block

 The END data block consists of a single line with the keyword END and specifies

the end of input.

A-3 Examples of the Input File.

Example 1: The input file for the truss of Problem 4 in Chapter 8 is shown in below.

SYSTEM

 DOF = UX UY

JOINTS

 1 X = 0 Y = 0

 2 X = 180 Y = 0

 3 X = 360 Y = 0

 4 X = 540 Y = 0

 5 X = 180 Y = 240

 6 X = 360 Y = 240

RESTRAINTS

 ADD = 1 DOF = UX UY

 ADD = 3 DOF = UY

139

 ADD = 4 DOF = UY

MATERIAL

 MAT1 E = 29E6 U = 0 TH = 6.0

CONNECTIVITY

 1 J = 1 2 MAT1

 2 J = 2 3 MAT1

 3 J = 3 4 MAT1

 4 J = 5 6 MAT1

 5 J = 2 5 MAT1

 6 J = 3 6 MAT1

 7 J = 1 5 MAT1

 8 J = 5 3 MAT1

 9 J = 6 4 MAT1

LOADS

 ADD = 2 UX = 0 UY = -30000

 ADD = 5 UX = 10000 UY = 0

 ADD = 6 UX = 0 UY = -30000

END

Example 2: The input file for the plate of Problem 12 in Chapter 8 is shown in below.

JOINTS

 1 X = -9 Y = -9

 2 X = -3 Y = -9

 3 X = 3 Y = -9

 4 X = 9 Y = -9

140

 5 X = -9 Y = -3

 6 X = -3 Y = -3

 7 X = 3 Y = -3

 8 X = 9 Y = -3

 9 X = -9 Y = 3

 10 X = -3 Y = 3

 11 X = 3 Y = 3

 12 X = 9 Y = 3

 13 X = -9 Y = 9

 14 X = -3 Y = 9

 15 X = 3 Y = 9

 16 X = 9 Y = 9

RESTRAINTS

 ADD = 4 DOF = UX UY RZ

 ADD = 8 DOF = UX UY RZ

 ADD = 12 DOF = UX UY RZ

 ADD = 13 DOF = UX UY RZ

 ADD = 14 DOF = UX UY RZ

 ADD = 15 DOF = UX UY RZ

 ADD = 16 DOF = UX UY RZ

MATERIAL

 MAT1 E = 2.9E7 U = 0.3 TH = 2

CONNECTIVITY

 1 J = 6 5 1 MAT1

 2 J = 2 6 1 MAT1

 3 J = 7 6 2 MAT1

 4 J = 3 7 2 MAT1

 5 J = 8 7 3 MAT1

141

 6 J = 4 8 3 MAT1

 7 J = 10 9 5 MAT1

 8 J = 6 10 5 MAT1

 9 J = 11 10 6 MAT1

 10 J = 7 11 6 MAT1

 11 J = 12 11 7 MAT1

 12 J = 12 7 8 MAT1

 13 J = 14 13 9 MAT1

 14 J = 10 14 9 MAT1

 15 J = 15 14 10 MAT1

 16 J = 11 15 10 MAT1

 17 J = 16 15 11 MAT1

 18 J = 12 16 11 MAT1

LOADS

 ADD = 1 UX = -1000 UY = 0

END

142

Vita

Suryanarayana Raju Sagi Venkata Naga was born on December 4, 1983 in

Visakhapatnam, India. He did his schooling from Kendriya Vidyalaya- Srivijaynagar. He

received his Bachelor of Engineering degree in Civil Engineering with a gold medal for

outstanding academic performance from Andhra University, Visakhapatnam in March

2004. He joined Virginia Tech to pursue his Master of Science degree in Civil

Engineering in January 2005.

143

