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Objective Bayesian Analysis for Gaussian
Hierarchical Models with Intrinsic Conditional

Autoregressive Priors

Matthew J. Keefe∗, Marco A. R. Ferreira†, and Christopher T. Franck‡

Abstract. Bayesian hierarchical models are commonly used for modeling spa-
tially correlated areal data. However, choosing appropriate prior distributions for
the parameters in these models is necessary and sometimes challenging. In par-
ticular, an intrinsic conditional autoregressive (CAR) hierarchical component is
often used to account for spatial association. Vague proper prior distributions have
frequently been used for this type of model, but this requires the careful selection
of suitable hyperparameters. In this paper, we derive several objective priors for
the Gaussian hierarchical model with an intrinsic CAR component and discuss
their properties. We show that the independence Jeffreys and Jeffreys-rule priors
result in improper posterior distributions, while the reference prior results in a
proper posterior distribution. We present results from a simulation study that
compares frequentist properties of Bayesian procedures that use several compet-
ing priors, including the derived reference prior. We demonstrate that using the
reference prior results in favorable coverage, interval length, and mean squared
error. Finally, we illustrate our methodology with an application to 2012 housing
foreclosure rates in the 88 counties of Ohio.

MSC 2010 subject classifications: Primary 62H11, 62F15; secondary 62M30.
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1 Introduction

Bayesian hierarchical models with intrinsic conditional autoregressive (CAR) priors are
used for many statistical models for spatially dependent data in applications such as
disease mapping (Clayton and Kaldor, 1987; Bell and Broemeling, 2000; Moraga and
Lawson, 2012; Goicoa et al., 2016), image restoration (Besag et al., 1991), complex sur-
vey data (Mercer et al., 2015), and neuroimaging (Liu et al., 2016). The use of CAR
specifications for modeling areal data was first introduced by Besag (1974), followed
by the intrinsic CAR model as a prior for a latent spatial process proposed by Besag
et al. (1991). Bayesian methods have been the dominating paradigm for spatial models
including a CAR component (Sun et al., 1999; Hodges et al., 2003; Reich et al., 2006;
Banerjee et al., 2014). Often in practice, it is difficult to subjectively choose informa-
tive priors for the parameters of the CAR component that are meaningful based on

∗Department of Statistics, Virginia Tech, Blacksburg, VA 24061
†Department of Statistics, Virginia Tech, Blacksburg, VA 24061. Corresponding author:

marf@vt.edu
‡Department of Statistics, Virginia Tech, Blacksburg, VA 24061

c© 2019 International Society for Bayesian Analysis https://doi.org/10.1214/18-BA1107

http://bayesian.org
mailto:marf@vt.edu
https://doi.org/10.1214/18-BA1107


182 Objective Bayes for Intrinsic CAR Prior

relevant domain knowledge. As a result, practitioners frequently use vague näıve priors
(Bernardinelli et al., 1995; Best et al., 1999; Bell and Broemeling, 2000; Lee, 2013) that
in the case of spatial models may lead to poor performance, such as slow Markov chain
Monte Carlo (MCMC) convergence (Natarajan and McCulloch, 1998), unacceptably
wide credible intervals, or larger mean squared error for estimation of parameters. To
solve these problems, we introduce a novel objective prior that eliminates the need to
subjectively choose priors for the parameters of the intrinsic CAR prior when no previ-
ous knowledge is available. Our objective prior can serve as an automatic prior for the
popular Gaussian hierarchical model with an intrinsic CAR prior for the spatial random
effects, thus enabling an automatic Bayesian analysis.

To address concerns with the use of subjective proper priors, research has been con-
ducted to explore objective Bayesian analysis of various spatial models. In particular,
Berger et al. (2001) have introduced objective priors for geostatistical models for spa-
tially correlated data, which has been further developed by De Oliveira (2007) who has
derived objective priors for a similar model that includes measurement error. The de-
velopment of objective priors for CAR models for the observed data has been explored
by Ferreira and De Oliveira (2007), De Oliveira (2012), and Ren and Sun (2013). While
many use CAR models directly for observed data, sometimes it is preferred to use a
CAR prior for spatial random effects to allow for a smoother spatial process. More
recently, Ren and Sun (2014) have derived objective priors for autoregressive models
incorporated into the model as a latent process. Ren and Sun (2014) have focused on
the use of proper CAR priors for the latent process component. However, in practice
spatial random effects are usually assigned intrinsic CAR priors (Best et al., 2005). In
this work, we consider objective priors for hierarchical models that use intrinsic CAR
priors for the spatial random effects.

In the spatial statistics literature, intrinsic autoregressions (or intrinsic CARs) carry
the notion that they are improper “densities” that are made proper by imposing a
constraint. The most frequently used constraint is a sum-zero constraint that ensures
that the sum of the spatial random effects is equal to zero. For the spatial random
effects, we formally define a sum-zero constrained intrinsic CAR prior which is actually
a singular multivariate Gaussian distribution that is proper.

We provide further details and explanations in the following sections. In Section 2,
we introduce notation and describe the Gaussian hierarchical model with unstructured
random effects and intrinsic CAR spatial random effects. We also describe how to ex-
press the constrained intrinsic CAR prior as the limit of a proper CAR prior. We
derive explicit expressions for the reference prior, the independence Jeffreys prior, and
the Jeffreys-rule prior for this model and discuss posterior propriety in Section 3. We
describe the details of the MCMC algorithm we use to simulate from the posterior dis-
tribution in Section 4. In Section 5, we present results of a simulation study to assess
the frequentist properties of the Bayesian analyses using several competing priors. To
illustrate and compare our proposed method to other common approaches, we conduct
an analysis using the proposed reference prior and two frequently used subjective pri-
ors to model 2012 foreclosure rates in the 88 counties of Ohio in Section 6. Finally,
we provide our conclusions and discussion of future work in Section 7. For clarity of
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exposition, the proofs of the theoretical results are provided in the Appendix section of
the Supplementary Material (Keefe et al., 2019).

2 Model Specification

2.1 Model

Consider a contiguous geographical region of interest that is partitioned into n disjoint
subregions that collectively make up the entire region of interest. For example, a state
could be divided into several counties. Additionally, suppose that a neighborhood struc-
ture is considered for the region of interest such that {Nj ; j = 1, . . . , n} denotes the set of
subregions that are neighbors of subregion j. Typically, subregions that share a bound-
ary are considered neighbors. Within this framework, consider the following model:

Y = Xβ + θ + φ, (1)

where Y is the n × 1 vector containing the response variable, X is a n × p matrix of
covariates, and β is the p× 1 vector of fixed effect regression coefficients. Furthermore,
we assume that θ = (θ1, θ2, . . . , θn)

T is a vector of unstructured random effects defined
such that θi are independent and normally distributed with mean 0 and variance σ2 for
i = 1, 2, . . . , n. Finally, φ = (φ1, φ2, . . . , φn)

T is a vector of spatial random effects that
is assigned an intrinsic CAR prior (Besag and Kooperberg, 1995), with the sum-zero
constraint

∑n
i=1 φi = 0. Additionally, we assume that θ and φ are independent a priori.

In order to demonstrate how to obtain the sum-zero constrained intrinsic CAR prior,
we first provide background information on how intrinsic CAR models are typically
defined in Section 2.2. Then, we describe a formal procedure to obtain the sum-zero
constrained intrinsic CAR prior in Section 2.3 that is used in our model formulation.

2.2 Background on Intrinsic CAR Models

To distinguish our formal specification of the intrinsic CAR spatial random effects from
the traditional specification, we reserve φ for our formal definition and use ω to provide
background information on intrinsic CAR models as they are frequently used in practice.
Typically, intrinsic CAR models are defined by their conditional distributions, which
are proper distributions. Consider the frequently used intrinsic CAR model for ω =
(ω1, ω2, . . . , ωn)

T specified by its conditional distributions

p(ωi|ω∼i) ∝ exp

⎧⎨
⎩−τω

2

⎡
⎣ n∑

i=1

ω2
i hi − 2

∑
i<j

ωiωjgij

⎤
⎦
⎫⎬
⎭ , (2)

where ω∼i is the vector of the CAR elements for all subregions except subregion i
and τω > 0 is a precision parameter. In addition, gij ≥ 0 is a measure of how similar
subregions i and j are, gij = gji, and hi =

∑n
j=1 gij . Alternatively, we may write the

joint density for ω as

p(ω) ∝ exp
{
−τω

2
ωTHω

}
, (3)

where H is a symmetric, positive semi-definite precision matrix defined as
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(H)ij =

⎧⎪⎨
⎪⎩
hi, if i = j,

−gij , if i ∈ Nj ,

0 otherwise.

(4)

The matrix H is assumed to be fixed and known, as its structure is typically chosen as a
modeling decision. One common choice for the similarity measure is gij = 1 if subregions
i and j are neighbors, and gij = 0 if subregions i and j are not neighbors. This binary
similarity measure implies that hi is the number of neighbors of subregion i. Note that
(3) is a multivariate normal kernel specified by its precision matrix τωH. Furthermore,
note that the matrix H is singular with one eigenvalue equal to zero and corresponding
eigenvector n−1/21n, where 1n denotes a n × 1 vector of ones. As a consequence, the
density given in (3) does not change if we substitute ω by ω+ a1n, where a is any real
constant. Because of that, (3) is an improper “density”. By improper, we mean that the
integral of the “density” with respect to ω diverges to ∞. To make this density proper,
practitioners usually assume the sum-zero constraint

∑n
i=1 ωi = 0. This constraint is

frequently imposed in an informal manner with the vector of spatial random effects being
recentered around its own mean at the end of each MCMC iteration. While ingenious,
this mathematically informal way to impose the sum-zero constraint obscures the actual
joint prior density of ω under the constraint. Consequently, a hierarchical model with
spatial random effects defined by (3) with the sum-zero constraint

∑n
i=1 ωi = 0 imposed

within the MCMC algorithm does not yield itself to a formal objective Bayes analysis.

To enable a formal objective Bayes analysis, in Section 2.3 we consider an intrinsic
CAR expressed as the limit of a proper CAR, rather than starting with an intrinsic
CAR. We impose the sum-zero constraint before taking the limit. The resulting joint
density for the spatial random effects after taking the limit is proper.

2.3 Intrinsic CAR as the Limit of a Proper CAR

In the following development, we consider the following notation to clearly demonstrate
the transition between different CAR models. First, we consider a proper CAR for the
random vector φ∗∗, then impose the sum-zero constraint to obtain the distribution of
the random vector φ∗, and finally consider the limiting case that leads to the sum-zero
constrained intrinsic CAR for the random vector φ. The intrinsic CAR prior is a limiting
case of a proper CAR prior. Specifically, we use a signal-to-noise ratio parametrization
to express the proper CAR prior as

φ∗∗ ∼ N

(
0,

σ2

τc
Σλ

)
, (5)

where σ2 and τc > 0 are unknown parameters, λ > 0 is a propriety parameter, and
Σ−1

λ = λIn +H with In being the n× n identity matrix and H is defined as in (4).

Note that rather than using a CAR model directly for the data, we consider a hier-
archical model with both conditional autoregressive spatial random effects and unstruc-
tured random effects. Because of this, we use a signal-to-noise ratio parametrization
of the CAR prior where the variance of the spatial random effects is expressed as a
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function of the variance of the unstructured random effects, as seen in expression (5).
When λ → 0, φ∗∗ in (5) approaches an intrinsic CAR (Besag et al., 1991; Besag and
Kooperberg, 1995). In practice, the intrinsic CAR spatial random effects are constrained
to sum to zero to ensure propriety of the prior. This is often performed within the pos-
terior sampling algorithm by centering the sampled random effects after each iteration.
Rather than taking this approach, we first consider the proper CAR in (5), then we
impose the sum-zero constraint, and finally we take the limit as λ → 0 to obtain a
constrained intrinsic CAR.

To impose the sum-zero constraint for the CAR prior in (5), we project φ∗∗ onto
the subspace of Rn that is orthogonal to the subspace spanned by the vector n−1/21n

to obtain φ∗. By construction,
∑n

i=1 φ
∗
i = 0. Specifically, we define φ∗ = Pφ∗∗, where

P = (In − n−11n1
T
n ) is a centering (projection) matrix. After imposing the constraint,

the distribution of φ∗ is given by

φ∗ ∼ N

(
0,

σ2

τc
Σφλ

)
, (6)

where Σφλ = PΣλP
T .

Now, suppose that the spectral decomposition of H is given by H = QDQT where
Q = (q1, q2, . . . , qn) is a n× n matrix comprised of columns which are the normalized
eigenvectors of H and D = diag(d1, d2, . . . , dn) where d1 ≥ d2 ≥ · · · ≥ dn are the
ordered eigenvalues of H. Additionally, if all of the subregions that completely partition
the region of interest are connected (i.e. there is a path connecting any two subregions),
then H has rank n−1. Consequently, 0 is an eigenvalue of H with multiplicity 1 (e.g. see
De Oliveira and Ferreira (2011)). As a result, dn−1 > dn = 0 and dn has a corresponding
eigenvector qn = n−1/21n.

Lemma 1. If all of the subregions that completely partition the region of interest are
connected, then Σφλ has rank n − 1 and the spectral decomposition of Σφλ is Σφλ =
QMλQ

T , where Mλ = diag((λ+d1)
−1, . . . , (λ+dn−1)

−1, 0). Finally, Σφλ can be written
as

Σφλ =

n−1∑
i=1

1

λ+ di
qiq

T
i . (7)

Proof. See Appendix in Supplementary Material

Now we take the limit as λ → 0 to obtain the final density for φ which appears in
our model from (1) given by

φ ∼ N

(
0,

σ2

τc
Σφ

)
, (8)

where Σφ = limλ→0 Σφλ = QMQT and M = diag(d−1
1 , . . . , d−1

n−1, 0). Hence, Σφ = H+

is the Moore–Penrose pseudoinverse of H (Penrose, 1955). Thus, the vector of spatial
random effects φ has a singular Gaussian distribution (Muirhead, 2009; Ferreira et al.,
2011). Further, we note that the integral of the corresponding density with respect to
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φ is equal to one. Hence, this singular Gaussian distribution is proper. In addition,
Ferreira (2018) shows that the singular Gaussian distribution in (2.8) is the limiting
distribution of a one-at-a-time Gibbs sampler applied to the intrinsic CAR prior in
(2.2) with centering on the fly. Therefore, our reference prior is directly applicable to
the Gaussian hierarchical models with intrinsic CAR priors widely used in practice.

A possible concern raised by Lavine and Hodges (2012) is that there are several
ways of approaching an improper intrinsic CAR as the limit of a proper CAR. Without
imposing the sum-zero constraint, Lavine and Hodges (2012) showed that different ways
to approach the limit may lead to different functions of τω appearing in the constant
of proportionality in (2.3). As a consequence, the likelihood function for τω would not
be well-defined and formal Bayesian inference would not be possible. To address this
issue, Keefe et al. (2018) have shown that different ways of approaching the limit are
equivalent to using different initial proper CAR models. In particular, Keefe et al. (2018)
consider proper CAR models given by (2.5) but substituting the identity matrix In by
a matrix K to obtain the precision matrix Σ−1

λ = λK +H. Keefe et al. (2018) consider
for K the class of symmetric positive semidefinite matrices such that the sum of its
elements is positive. This construction can represent two of the ways of approaching the
limit considered by Lavine and Hodges (2012). Keefe et al. (2018) have shown that for
any matrix K in this class, if the sum-zero constraint is formally imposed before taking
the limit, then sum-zero constrained intrinsic CAR model does not depend on K and is,
therefore, unique. As a consequence, for any such matrix K, the sum-zero constrained
intrinsic CAR density has a well-defined constant of proportionality that is a unique
function of τc. Therefore, for the hierarchical model with the sum-zero constrained
intrinsic CAR random effects we consider, the likelihood function is well-defined. The
resulting sum-zero constrained intrinsic CAR prior for φ in (2.8) is a singular Gaussian
distribution, which is amenable for an objective Bayes analysis.

Thus, it follows that the model for the response Y with the spatial random effects
φ integrated out is

(Y |β, σ2, τc) ∼ N
(
Xβ, σ2(In + τc

−1Σφ)
)
. (9)

2.4 Remarks

Note that we assume a signal-to-noise ratio parametrization for the variance components
of the random components of the model, as is done in De Oliveira (2007). One of the
benefits of this parametrization is that it leads to simpler expressions for the objective
priors. The unknown model parameters for this hierarchical spatial model for areal data
are η = (β, σ2, τc) ∈ R

p × (0,∞) × (0,∞). Of particular interest is the parameter τc,
which controls the strength of spatial dependence. Conditional on the neighborhood
structure chosen by the user, Σφ is fixed and the correlation between the response for
two neighboring subregions Yi and Yj is given by

ρij =
σij√

τ2c + τcσii + τcσjj + σiiσjj

, (10)
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where σij denotes the element of Σφ located in the ith row and jth column and σii

and σjj denote the ith and jth diagonal elements of Σφ, respectively. Since ρij is a
decreasing function of τc, as τc → 0, ρij increases implying that the spatial dependence
also increases. As is commonly the case in stochastic processes, an increase in correlation
is often accompanied by an increase in marginal variance. Take for example the first-
order autoregressive model (AR(1)) with error variance δ2 and autoregressive coefficient
0 < ρ < 1. The correlation function for lag h is Corr(xt, xt−h) = ρh and the marginal
variance is δ2/(1−ρ2). Therefore, for the widely used AR(1) time series model, increase
in ρ corresponds to increase in both correlation and marginal variance. Note that in our
model, Var(yi) = σ2(1 + τ−1

c σii). So, it is also the case for our model that an increase
in correlation is accompanied by an increase in marginal variance.

Specifying the model using a sum-zero constrained intrinsic CAR simplifies appli-
cation of the results of De Oliveira (2007) to derive several objective priors. Although
these priors take on similar forms as those presented by De Oliveira (2007), the prop-
erties of the derived priors differ in our case. The reason for the difference is that for
the geostatistical models considered by De Oliveira (2007), the matrix Σφ is full rank,
whereas we consider a hierarchical model for areal data where Σφ is singular.

3 Objective Priors

3.1 Likelihood Functions

In order to obtain objective priors, such as the reference, independence Jeffreys, and
Jeffreys-rule priors for this model, we consider the likelihood and integrated likelihood
functions. The likelihood of η given the observed response y and the matrixX is given by

L(η;y, X) ∝ (σ2)−n/2|Ω|−1/2 exp

[
− 1

2σ2
(y −Xβ)TΩ−1(y −Xβ)

]
, (11)

where Ω = In + 1
τc
Σφ and |A| denotes the determinant of the matrix A. All of the

objective priors we derive with respect to the integrated likelihoods in the following
sections conveniently fall into a class of priors of the form

π(η) ∝ π(τc)

(σ2)a
, (12)

where a ∈ R is a hyperparameter and π(τc) is referred to as the marginal prior for τc.

In order to obtain the objective priors, it is first necessary to obtain the integrated
likelihoods. If we first integrate L(η;y, X) with respect to β, we obtain the integrated
likelihood of (σ2, τc). This integration leads to the log-integrated likelihood given by

logLI(σ2, τc;y, X) = −1

2

[
(n− p) log(σ2) + log(|Ω|) + log(|XTΩ−1X|) + S2

σ2

]
, (13)

where S2 = yT [Ω−1 − Ω−1X(XTΩ−1X)−1XTΩ−1]y. Furthermore, obtaining the inte-
gral of LI(σ2, τc;y, X)(σ2)−a with respect to σ2 yields the integrated likelihood of τc,
which is given by
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LI(τc;y, X) ∝
(
|Ω||XTΩ−1X|

)−1/2
(S2)−(

n−p
2 +a−1). (14)

Unfortunately, it is difficult to calculate the reference, independence Jeffreys, and
Jeffreys-rule priors directly using expressions (13) and (14). To overcome this challenge,
it is particularly useful to express (13) in a simplified form involving the eigenvalue
decompositions of matrices that are functions of the matrices X and Σφ. Consider the
following lemma (Verbyla, 1990; Dietrich, 1991; Kuo, 1999; De Oliveira, 2007):

Lemma 2. Suppose Xn×p is of full rank, with n > p, and Σ is an n × n symmetric
positive definite matrix. Then there exists a full rank n × (n − p) matrix L with the
following properties:

(i) LTX = 0

(ii) LTL = In−p

(iii) Σ−1 − Σ−1X(XTΣ−1X)−1XTΣ−1 = L(LTΣL)−1LT

(iv) log(|Σ|)+ log(|XTΣ−1X|) = log(|LTΣL|)+ c, where c depends on X but not on Σ

(v) LTΣL is an (n− p)× (n− p) diagonal matrix with positive diagonal elements.

Here we propose one way to obtain a matrix L with the above properties by the
following steps:

1. Obtain the orthogonal complement of the matrix G = X(XTX)−1XT given by
G∗ = In −X(XTX)−1XT .

2. Calculate the matrix Q∗ such that the columns of Q∗ are the normalized eigen-
vectors corresponding to the non-zero eigenvalues of G∗.

3. Denote the spectral decomposition of Q∗TΣφQ
∗ as UΨUT .

4. Compute L = Q∗U .

The resulting L matrix has properties that allow for convenient simplifications in the
integrated likelihoods. Let ξ1 ≥ ξ2 ≥ · · · ≥ ξn−p > 0 be the ordered eigenvalues of
Q∗TΣφQ

∗. Then, by the way we obtain the matrix L, we have that LTΣφL = Ψ =
diag(ξ1, ξ2, . . . , ξn−p). Then the following results hold (De Oliveira, 2007)

log(|Ω|) + log(|XTΩ−1X|) =
n−p∑
j=1

log(1 +
1

τc
ξj) + c, (15)

S2 d
= σ2

∗

n−p∑
j=1

(
1 + τ−1

c∗ ξj

1 + τ−1
c ξj

)
Z2
j , (16)

where σ2
∗ and τc∗ are the true values of σ2 and τc, respectively, and {Z2

j }
iid∼ χ2

1. Using
these results, the log-integrated likelihood in (13) satisfies
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logLI(σ2, τc;y, X)

d
= −1

2

⎡
⎣(n− p) log(σ2) +

n−p∑
j=1

{
log(1 +

1

τc
ξj) +

σ2
∗

σ2

(
1 + τ−1

c∗ ξj

1 + τ−1
c ξj

)
Z2
j

}⎤⎦ . (17)

The posterior distribution of η using a prior of the form given in (12) is proper if
and only if

0 <

∞∫
0

LI(τc;y, X)π(τc)dτc < ∞. (18)

Proposition 1. Consider the model given in (9) along with the prior given in (12).
Then, LI(τc;y, X) is a continuous function on (0,∞) and LI(τc;y, X) = O(τ1−a

c ) as
τc → 0 and LI(τc;y, X) = O(1) as τc → ∞.

Proof. See Appendix in Supplementary Material

The condition in (18) and the tail behavior of the integrated likelihood in Propo-
sition 1 provide justification for determining whether or not the proposed priors lead
to proper posterior distributions. For example, the tail behavior of the posterior dis-
tribution as τc → 0 must be O(τmc ) where m > −1 in order to guarantee posterior
propriety. Likewise, the tail behavior of the posterior distribution as τc → ∞ must be
O(τmc ) where m < −1 in order to guarantee posterior propriety.

3.2 Reference Prior

In order to obtain a reference prior for the model parameters η, it is necessary to
identify an order of importance for the parameters. Here, we consider β to be a nui-
sance parameter, while (σ2, τc) is the parameter vector of interest. Then, we use exact
marginalization to find the reference prior (Berger et al., 2001). First, the joint prior
distribution of η is factored as πR(η) = πR(β|σ2, τc)π

R(σ2, τc). Then given (σ2, τc),
the conditional reference prior for β is πR(β|σ2, τc) ∝ 1 (Bernardo and Smith, 1994).
Finally, we use the Jeffreys-rule algorithm on the integrated likelihood LI(σ2, τc;y, X)
to obtain πR(σ2, τc).

Theorem 1. Consider the model given in (9). Then, the reference prior of η is of the
form (12) with

a = 1 and πR(τc) ∝
1

τc

⎡
⎢⎣n−p∑

j=1

(
ξj

τc + ξj

)2

− 1

n− p

⎧⎨
⎩

n−p∑
j=1

(
ξj

τc + ξj

)⎫⎬
⎭

2
⎤
⎥⎦
1/2

. (19)

Proof. See Appendix in Supplementary Material
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The following proposition and corollary describe the properties of the proposed ref-
erence prior and its resulting posterior distribution.

Proposition 2. Suppose that ξ1, ξ2, . . . , ξn−p are not all equal. Then, the marginal
reference prior of τc in (19) is a continuous function on (0,∞) where:

(i) πR(τc) = O(1) as τc → 0

(ii) πR(τc) = O(τ−2
c ) as τc → ∞.

Proof. See Appendix in Supplementary Material

Corollary 1. Using the model given by (9), we have

(i) The reference prior πR(τc) given in (19) and its resulting posterior πR(η|y, X)
are both proper.

(ii) The kth moment of the marginal reference posterior πR(τc|y, X) does not exist for
k ≥ 1.

Proof. See Appendix in Supplementary Material

Notice that the reference prior depends on the covariates X through the eigenvalues
ξ1, ξ2, . . . , ξn−p of LTΣφL. We also note that since our proposed reference prior has
the same mathematical expression as that of De Oliveira (2007), the results regarding
the marginal reference prior, the joint posterior distribution, and the marginal posterior
distribution are all the same. However, the same is not true for the independence Jeffreys
and Jeffreys-rule priors that follow. This is due to the fact that, in our case, LTΣφL is
full rank, while Σφ is not full rank.

3.3 Independence Jeffreys Prior

The independence Jeffreys prior is obtained by assuming that β and (σ2, τc) are in-
dependent a priori. Then, the Jeffreys rule is used to find the marginal prior of each
parameter, assuming the other parameters are known. We denote the ordered eigenval-
ues of Σφ as γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0. It is important to note that in our case,
we are dealing with areal data, and thus γn = 0 since Σφ is of rank n− 1. This is a key
distinction between our work and that of De Oliveira (2007), which leads to different
results regarding posterior propriety.

Theorem 2. Consider the model given in (9). Then, the independence Jeffreys prior
of η is of the form (12) with

a = 1 and πJ1(τc) ∝
1

τc

⎡
⎣ n∑

i=1

(
γi

τc + γi

)2

− 1

n

{
n∑

i=1

(
γi

τc + γi

)}2
⎤
⎦
1/2

. (20)
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Proof. See Appendix in Supplementary Material

Proposition 3. The marginal independence Jeffreys prior of τc in (20) is a continuous
function on (0,∞) where πJ1(τc) = O(τ−1

c ) as τc → 0.

Proof. See Appendix in Supplementary Material

Corollary 2. Using the model given by (9), the independence Jeffreys prior πJ1(τc)
given in (20) and its resulting posterior πJ1(η|y, X) are both improper.

Proof. See Appendix in Supplementary Material

3.4 Jeffreys-Rule Prior

The Jeffreys-rule prior is obtained by πJ2(η) ∝ |I(η)|1/2, where I(η) is the Fisher
information matrix of η.

Theorem 3. Consider the model given in (9). Then, the Jeffreys-rule prior of η, is of
the form (12) with

a = 1 +
p

2
and πJ2(τc) ∝

⎛
⎜⎜⎜⎝

n−p∏
j=1

(1 + τ−1
c ξj)

n∏
i=1

(1 + τ−1
c γi)

⎞
⎟⎟⎟⎠

1/2

· πJ1(τc). (21)

Proof. See Appendix in Supplementary Material

Proposition 4. The marginal Jeffreys-rule prior of τc in (21) is a continuous function

on (0,∞) where πJ2(τc) = O(τ
p−3
2

c ) as τc → 0.

Proof. See Appendix in Supplementary Material

Corollary 3. Using the model given by (9), the posterior distribution obtained by using
the Jeffreys-rule prior πJ2(τc) given in (21) is improper.

Proof. See Appendix in Supplementary Material

Similar to the reference prior, notice that the Jeffreys-rule prior also depends on the
covariates X through the eigenvalues ξ1, ξ2, . . . , ξn−p of LTΣφL.
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3.5 Remarks

There are a few key distinctions between our results and those of other researchers.
Specifically, our reference prior leads to a proper posterior distribution, while the in-
dependence Jeffreys and Jeffreys-rule priors lead to improper posterior distributions,
unlike De Oliveira (2007). Although we consider areal data while De Oliveira (2007)
has considered geostatistical data, the reference prior in (19) has the same mathemati-
cal expression as that proposed by De Oliveira (2007) because we choose to formulate
our model with the intrinsic CAR component as the limit of a proper CAR. However,
the matrix Σφ is not full rank in the areal data setting. Thus, the smallest eigenvalue
of Σφ is γn = 0, which leads to improper posterior distributions when the independence
Jeffreys and Jeffreys-rule priors are used.

Ren and Sun (2014) have defined their proper CAR prior using conditional distri-
butions with a constant variance that does not depend on the number of neighbors a
subregion has, which limits utility for many applications. In contrast, the conditional
specification of the CAR prior we use has a variance that depends on the number of
neighboring subregions. This allows the conditional distribution of φi given φ∼i for
subregions with more neighbors to have a smaller variance. Furthermore, the objective
priors that have been derived by Ren and Sun (2014) do not have explicit mathemat-
ical forms. Specifically, the priors of Ren and Sun (2014) are written as functions of
determinants of Fisher information matrices that do not resemble our reference prior.
In contrast, the expression of our reference prior can be easily implemented with its
explicit mathematical form.

4 Sampling from the Posterior Distribution

In order to perform posterior inference about the model parameters, we propose a
MCMC algorithm. Specifically, we have implemented a MCMC sampler (Gelfand and
Smith, 1990) that considers the integrated likelihood given in (9) obtained by integrating
out the spatial random effects φ. Our MCMC sampler is a Metropolis-within-Gibbs
algorithm that includes a Gibbs step for β and a joint Metropolis-Hastings step for τc
and σ2. Additionally, we simulate φ using composite sampling.

The use of the signal-to-noise ratio parametrization results in a Fisher information
matrix of log(σ2) and log(τc) which does not depend on the value of σ2. This im-
plies a uniform prior for log(σ2). Thus, in sampling from the posterior distribution, we
jointly propose values for log(σ2) and log(τc) with a Metropolis-Hastings step using
Normal proposal distributions, and accept proposed values based on the appropriate
Metropolis-Hastings acceptance probability (Gamerman and Lopes, 2006; Robert and
Casella, 2004). Posterior inference can then be conducted directly from the MCMC sam-
ples after discarding an appropriate number of iterations as burn-in. While we choose
to use a MCMC sampler, there are numerous alternative methods that could be used
to obtain samples from the posterior distribution. For example, De Oliveira (2007) has
implemented adaptive rejection Metropolis sampling (Gilks et al., 1995). The steps of
our MCMC algorithm are provided in Algorithm 1.



M. J. Keefe, M. A. R. Ferreira, and C. T. Franck 193

Since the matrix Σφ can be conveniently expressed as a function of eigenvectors and
eigenvalues of H, as shown in (7), several computational equivalences can be used to
speed up the MCMC algorithm. Specifically, execution of the MCMC algorithm relies
on computation of the determinant and inverse of the matrix (I+τ−1

c Σφ). In this work,
these quantities can be expressed by the following equivalences

I + τ−1
c Σφ = Qdiag

(
1 +

τ−1
c

λ+ d1
, . . . , 1 +

τ−1
c

λ+ dn−1
, 1

)
QT , (22)

(I + τ−1
c Σφ)

−1 = Qdiag

([
1 +

τ−1
c

λ+ d1

]−1

, . . . ,

[
1 +

τ−1
c

λ+ dn−1

]−1

, 1

)
QT , (23)

∣∣σ2(I + τ−1
c Σφ)

∣∣ = (σ2)n
n−1∏
i=1

(
1 +

τ−1
c

λ+ di

)
. (24)

Algorithm 1 MCMC Algorithm

1. Initialize η(0) = (β(0), σ2(0), τ
(0)
c )

For i in 1 to K
{
2. Generate log(σ2∗) ∼ N(σ2(i−1), δs) and log(τ∗c ) ∼ N(τ

(i−1)
c , δt)

3. Compute joint acceptance probability for σ2∗ and τ∗c :

α = min

[
1,

P (η∗|Data)

P (η(i)|Data)

q(η|η∗)

q(η∗|η)

]

4. Generate (β∗|y, σ2, τc, X) ∼ Np(μ
∗,Σ∗), where

μ∗ =
(
XT (In + τ−1(i−1)

c Σφ)
−1X

)−1

XT (In + τ−1(i−1)
c Σφ)

−1y,

Σ∗ = σ2(i−1)
(
XT (In + τ−1(i−1)

c Σφ)
−1X

)−1

.

}
5. Use composite sampling to generate φ(i) (i = 1, . . . ,K) from its full conditional
distribution which is provided in the Appendix in the Supplementary Material.

5 Simulation Study

5.1 Comparison of Priors

We use Monte Carlo simulation to compare the performance of the proposed refer-
ence prior with two commonly used vague näıve prior distributions from the literature.
Because the independence Jeffreys and Jeffreys-rule priors lead to improper posterior
distributions, we have not included them in this simulation study. Performance is as-
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sessed using frequentist properties of Bayesian procedures, including interval coverage
rate, average interval length (IL), and mean squared error (MSE).

The vague näıve prior distributions we consider come from the CARBayes R package
(Lee, 2013) and Best et al. (1999). Both of these approaches assume gamma(shape, rate)
prior distributions for the precisions of both unstructured and spatial random effects.
Specifically, the CARBayes package (version 4.0) has implemented gamma(0.001, 0.001)
prior distributions as the default for both precision parameters. Best et al. (1999) has
used gamma(0.001, 0.001) and gamma(0.1, 0.1) prior distributions for the precisions
of the unstructured and spatial random effects, respectively. Previously, the CARBayes

package used uniform prior distributions which are no longer available. We adopt the
prior distributions implied by the CARBayes package and Best et al. (1999) under our
signal-to-noise ratio parametrization. For the purpose of reporting, we refer to these
methods as CARBayes and NB (lead author initials), respectively.

Since we have adopted a signal-to-noise ratio parametrization in this work, the
gamma(α1, β1) and gamma(α2, β2) prior distributions for the precisions of the un-
structured and spatial random effects, respectively, are re-parametrized. The implied
marginal prior for τc under the signal-to-noise ratio parametrization is given by

πV (τc) =
βα1
1 βα2

2 Γ(α1 + α2)

Γ(α1)Γ(α2)
(β1 + β2τc)

−(α1+α2)τα2−1
c , (25)

where Γ(·) is the Gamma function.

When comparing priors, it is important to consider not only the regions in the
parameter space that receive the most mass, but also the rate of decay of the tail of
each prior. It is clear from (25) that with regard to tail behavior, as τc → ∞, πV (τc) =
O(τ−α1−1

c ) and as τc → 0, πV (τc) = O(τα2−1
c ). Thus, for values of α1 and α2 close to 0,

the vague näıve prior is close to impropriety. From Proposition 2, we can see that the tail
behavior of the reference prior is considerably different than that of the CARBayes and
NB priors. Consequently, the slower decay rate as τc → ∞ implies that the CARBayes
and NB priors place significantly more mass on large values of τc. Figure 1(a) provides
a plot of each of the prior distributions for τc that we consider. The plot of log π(τc)
versus log10 τc provided in Figure 1(b) shows that the reference prior places more mass
on values of τc between 0.01 and 56 (CARBayes) and 0.02 and 35 (NB), while the
CARBayes and NB priors place significantly more mass on large values of τc.

In addition, the CARBayes and NB priors put more mass on very small values of τc.
Our practical experience indicates that real spatial datasets will usually have estimated
values of τc between 0.1 and 10. For example, in the application considered in Section 6
the estimated values of τc for the three considered priors range from about 0.15 to about
0.25. Further, because we use a signal-to-noise ratio parametrization, values of τc much
less than 0.01 are not of practical use. Note that τc < 0.01 implies that the conditional
variance of the structured random effects is greater than 100 times the variance of the
unstructured random effects. In that case, the analyst should consider a model that
does not include unstructured random effects. Hence, in the rare case when for a given
dataset the estimate of τc is less than 0.01, then instead of the hierarchical model given
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Figure 1: (a) Raw plot of π(τc) and (b) plot of log π(τc) vs. log10 τc for the reference,
CARBayes, and NB priors. The CARBayes and NB priors both approach ∞ as τc → 0,
while the reference prior does not. Panel (c) shows the Kullback–Leibler divergence per
observation between the spatial model and the independent data model across values
of τc, indicating that large values of τc correspond to a model for nearly independent
data.

in (1), the analyst should consider a proper CAR model directly for the observations

(e.g., see Ferreira and De Oliveira, 2007).

In order to better understand the importance of the parameter τc as it relates to the

strength of spatial dependence, we consider the Kullback–Leibler divergence between

the spatial model and the independent data model as a function of τc. Specifically, if pi
and ps correspond to the independent and spatial models, respectively, we consider the

Kullback–Leibler divergence given by
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KL(pi ‖ ps) =

∫
pi(x) log

[
pi(x)

ps(x)

]
dx

= −n

2
+

1

2
log |Ω|+ 1

2

n∑
i=1

(1 + τ−1
c d−1

i )−1.

(26)

Note that as τc → ∞, KL(pi ‖ ps) → 0 indicating that the spatial and independent
data models are nearly identical for large values of τc. Specifically, Figure 1(c) shows
that for values of τc > 10, the Kullback–Leibler divergence per observation is nearly
zero, indicating that the spatial model we consider is only relevant for smaller values of
τc. The CARBayes and NB priors unnecessarily place significantly more mass on large
values of τc. In contrast, the reference prior intuitively places mass on values of τc that
are typical of spatially dependent data.

5.2 Simulation Design

For the design of our simulations, we consider square regions with three different
sample sizes of n = 52, 72, 102. We fix σ2 = 2, while considering values of τc =
0.01, 0.032, 0.1, 0.32, 1, 3.2, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. To explore how the num-
ber of neighbors which exert spatial dependence on a subregion affects inferential perfor-
mance, we investigate both first- and second-order neighborhood structure (i.e., diagonal
subregions are not/are considered neighbors, respectively). We also consider p = 1 (in-
tercept only) with β = 1 and p = 6 with β = (−3,−2,−1, 1, 2, 3)T . All covariates are
generated from a normal distribution with mean 0 and variance 1. We generate results
based on 1,000 simulated data sets for each combination of these levels of n, τc, neigh-
borhood structure, and p. For each data set, 15,000 MCMC iterations are obtained with
the first 5,000 iterations discarded as burn-in. The Gelman–Rubin convergence diagnos-
tic (Gelman and Rubin, 1992) for τc and σ2 for three MCMC chains using one setting
of parameter values was used to determine the number of MCMC iterations needed to
obtain convergence. Gelman–Rubin convergence diagnostics for τc and σ2 were calcu-
lated to be less than 1.01, indicating that 15,000 MCMC iterations is sufficient for our
simulation study. The variances of the proposal distributions described in Section 4 were
chosen to be δs = δt = 0.5 yielding an acceptance rate close to 40%. Due to the heavily
right-skewed posterior density for τc, we consider 95% highest posterior density (HPD)
regions for τc, while 95% equal-tailed credible intervals are considered for σ2 and β.

Performance results pertaining to τc less than or equal to 10, first-order neighborhood
structure, and p = 6 are displayed graphically and discussed in Section 5.3. For the
sake of brevity, performance results pertaining to β, σ2, second-order neighborhood
structure, or p = 1 are described in Section 5.3 and tabulated in the Supplementary
Material. To investigate the case of a larger number of regressors, we have also performed
a simulation study with p = 20 when n = 100; because the results are qualitatively
similar to the results discussed in Section 5.3, we do not include them here. Simulation
results for values of τc > 10 indicate that the performance of all considered priors
deteriorates as τc increases (see Simulation Results in Supplementary Material; To make
the information easier to digest, in addition to the values of τc less or equal to 10, the
tables provided in the Supplementary Material include only three representative values
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of τc greater than 10: 40, 70, and 100.). In particular, the frequentist coverages of the
reference and NB credible intervals for τc decrease substantially as τc increases much
beyond 10. The frequentist coverage of the CARBayes credible interval remains above
nominal, but the CARBayes credible interval is so wide that it becomes of no practical
use. The deterioration of performance of the reference credible interval is not a problem,
because as illustrated by the Kullback–Leibler divergence shown in Figure 1(c), larger
values of τc indicate that the observations are nearly independent, which may imply that
a model without spatial dependence would be preferred. We focus on values of τc < 10,
since our reference prior is intended for a model that accounts for spatial dependence.

5.3 Simulation Results

Figure 2 displays the frequentist interval coverage rate and average IL (on the log10
scale) for τc resulting from the reference, CARBayes, and NB priors across a range of
values for τc (on the log10 scale) for various sample sizes, assuming p = 6 and first-
order neighborhood structure. Figure 2 demonstrates that the reference prior achieves
nominal interval coverage and low average interval length as n increases across a range
of values for τc. Further, the CARBayes and NB priors exhibit a dip in interval coverage
for values of τc corresponding to strong spatial dependence. The CARBayes prior yields
particularly wide average interval lengths, potentially detracting from the value of its
close-to-nominal coverage. These results demonstrate that, when compared to the two
gamma priors, the reference prior leads to favorable coverage and interval length.

Mean squared error of the posterior median of τc is shown in Figure 3, which demon-
strates that use of the reference prior leads to advantageous estimation properties across
all sample sizes, especially smaller sample sizes. Use of the CARBayes prior leads to
considerably higher MSE than that of the other priors.

All credible intervals for each of the regression coefficients β achieve the nominal
level for frequentist coverage with comparable interval lengths across all three priors.
Note that for the tabulated results in the Supplementary Material for the case of p = 6,
the frequentist coverage and average interval length are averaged across all six of the re-
gression coefficients since results were comparable for each of the regression coefficients.
Additionally, all three priors show reasonable performance in terms of frequentist cover-
age and average interval length for σ2. Results for second-order neighborhood structure
are qualitatively similar to those presented for first-order neighborhood structure. Like-
wise, results for p = 1 are qualitatively similar to those for p = 6.

An intriguing result is that, even though Figure 1(b) seems to show that the marginal
CARBayes and NB priors for τc are fairly similar, the frequentist properties of the CAR-
Bayes and NB posteriors can be very different. The issue here is that in the CARBayes
and NB specifications, τc and σ2 are not independent a priori. Specifically, it is straight-
forward to show that in both CARBayes and NB specifications, the conditional prior for
σ2 given τc is IG(α1 + α2, β1 + β2τc), where IG(., .) corresponds to an inverse gamma
distribution defined by its shape and scale parameters, respectively. Hence, the joint
posteriors of σ2 and τc (and the marginal posteriors of τc) under the CARBayes and
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Figure 2: Frequentist coverage and log10 average interval length (IL) for τc for n = 100
(top row), n = 49 (middle row), and n = 25(bottom row). Reference prior shows
favorable performance in terms of frequentist coverage and average interval length.
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Figure 3: log10MSE for the posterior median of τc for (a) n = 100, (b) n = 49, and
(c) n = 25. Reference prior leads to favorable performance in terms of estimation of τc.
Note that since the y-axis is on the log10 scale, the difference in MSE of the posterior
median of τc between the reference prior and the CARBayes prior is considerable.

NB specifications may differ substantially. Therefore, even thought the marginal pri-
ors for τc under the CARBayes and NB specifications behave similarly, the frequentist
properties of CARBayes and NB procedures for τc may be very different.

This is illustrated in Figure S1 (Supplementary Material) that shows the impact
of the joint prior of (σ2, τc) on the posterior inference for these parameters for a diffi-
cult dataset. Specifically, Figure S1 shows contour plots of (a) integrated likelihood of
(σ2, τc), and joint posterior density of (σ2, τc) based on (b) reference prior, (c) NB prior,
and (d) CARBayes prior. The dataset was simulated with a first-order neighborhood
structure, square regular grid, n = 49, and parameters β = 1, σ2 = 2, and τc = 0.1.
Contours correspond to HPD regions with credible levels equal to 10%, 20%, . . ., 90%.
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The integrated likelihood behaves badly for this dataset and at first glance seems not to
provide much information about σ2 and τc. We have found empirically that the prob-
ability of such a bad integrated likelihood behavior increases as the Moran-I statistic
decreases. For the particular dataset used to produce Figure S1, the Moran-I statistic
is equal to 0.203 with a corresponding p-value of 0.0181 (null hypothesis is of no spatial
dependence). This is not an extreme dataset; under the conditions used to simulate this
dataset, the probability of the Moran-I statistic being less than 0.203 is about 0.12. For
this dataset, the CARBayes analysis provides unacceptably large HPD regions. The NB
analysis provides somewhat smaller HPD regions than the CARBayes analysis. Finally,
in this case the reference analysis provides much smaller HPD regions. True parameter
values are indicated with a red dot, and the posterior median under each prior is in-
dicated with a red star. The posterior medians of τc are equal to 1.0, 2.2, and 3.2 for
the reference, NB, and CARBayes analyses, respectively. Hence, analyses based on the
reference, NB, and CARBayes priors may differ substantially. Finally, for this dataset
the reference analysis provides much tighter HPD regions and a much better estimate
of τc.

Finally, Figure S2 in the Supplementary Material shows the behavior of the inte-
grated likelihood and the posterior densities for a dataset with Moran-I statistic of
moderate size. Specifically, for this dataset the Moran-I statistic is equal to 0.363 with
a corresponding p-value of 0.00017 (null hypothesis is of no spatial dependence). This
Moran-I statistic is close to the median of the sampling distribution of the Moran-I
statistics. The simulation setting was the same as in the previous paragraph: first-order
neighborhood structure, square regular grid, n = 49, and parameters β = 1, σ2 = 2, and
τc = 0.1. For this dataset, the integrated likelihood behaves much better than the one
discussed in the previous paragraph. However, the integrated likelihood tends to put
much of its mass at values of σ2 and τc larger than the true values. The reference prior
corrects the integrated likelihood behavior and leads to a reference posterior density
that has much of its mass close to the true values of the parameters. For this dataset,
the NB and CARBayes priors tend to shrink the posterior density too much towards
zero. Specifically, the posterior medians of τc are equal to 0.095 (reference), 0.017 (NB),
and 0.015 (CARBayes), while the posterior medians of σ2 are 2.8 (reference), 0.6 (NB),
and 0.6 (CARBayes). Thus, for this dataset the NB and CARBayes analyses are actually
fairly similar and severely underestimate both σ2 and τc. Meanwhile, the reference anal-
ysis provides a reasonable correction to the integrated likelihood and yields estimates
for σ2 and τc much closer to the true values of these parameters. Such beneficial cor-
rection of badly behaved likelihood functions by reference (and other non-informative)
priors has been previously reported in other statistical inference problems such as for
example in the analysis of generalized linear models (Firth, 1993), linear regression with
Student-t errors (Fonseca et al., 2008) and exponential power errors (Salazar et al., 2012;
Ferreira and Salazar, 2014), and analysis of elapsed times in continuous time Markov
chains (Ferreira and Suchard, 2008) used in phylogenetic tree reconstruction (Bouckaert
et al., 2014).

In summary, the proposed reference prior exhibits a favorable combination of high
interval coverage, short average interval length, and low MSE relative to the CARBayes
and NB priors, in addition to philosophical appeal and practical convenience relative to
vague näıve priors previously used in the literature.



M. J. Keefe, M. A. R. Ferreira, and C. T. Franck 201

6 Case Study

6.1 Data Description

To illustrate an objective Bayesian analysis using the model in (9) along with the ref-
erence prior, we consider a data set containing foreclosure rates as a proportion of all
housing transactions for each of the 88 counties in the state of Ohio for the year 2012.
This data set is a subset of a larger database of approximately 54 million records from
municipalities across the United States between 2005 and 2014 that we obtained from
our partnerships with the Virginia Center for Housing Research and Metrostudy, a
Hanley Wood Company. The data include very fine spatial and temporal information,
including latitude, longitude, and sale date of each closing record. We choose to aggre-
gate the data at the county level to illustrate this analysis. For more details describing
how records were classified as foreclosures, see Keefe et al. (2017). In addition to fore-
closure rates, county unemployment rates are also available as a potential covariate
to be used in modeling (Bureau of Labor Statistics, 2012). For each county, the total
number of housing transactions and the observed number of foreclosures are available.
Analogously to what is typically done in disease mapping, we consider the standardized
morbidity ratio (SMR) for each county, defined by SMRi = Oi/Ei, where Oi is the ob-
served number of foreclosures in county i and Ei is the expected number of foreclosures
in county i. The expected counts are calculated by Ei = ni(

∑
j Oj/

∑
j nj), where ni is

the total number of housing transactions in county i. A map of the SMRs for foreclosure
rates in Ohio counties for 2012 is shown in Figure 4(a). Figure 4(b) shows a map of the
unemployment rates in 2012 for each county.

6.2 Modeling

Using the 2012 foreclosure rate data set, we fit the model given in (9) using the ref-
erence, CARBayes, and NB priors in order to compare the results using the proposed
reference prior to the results using the priors used frequently in practice. We consider
yi = log(SMRi) as the response variable and unemployment rate as a covariate. The pos-
terior distribution was sampled using the MCMC algorithm described in Section 4 with
25,000 iterations where the first 5,000 were discarded as burn-in. Gelman–Rubin con-
vergence diagnostics were calculated using four MCMC chains with the reference prior
implemented with different starting values for β = (β0, β1)

T , τc and σ2. The 25,000
MCMC iterations with 5,000 burn-in iterations yielded Gelman–Rubin diagnostics that
were all below 1.005, indicating acceptable posterior convergence. Posterior summaries,
including posterior medians and credible intervals for the parameters are provided in
Table 1. Note that 95% HPD credible intervals are used for τc, while 95% equal-tailed
credible intervals are used for β = (β0, β1)

T and σ2.

From Table 1, we see that posterior estimates for the fixed effect regression coef-
ficients are all similar. The estimates for τc and σ2 vary quite a bit for the different
priors. In particular, the analysis using the NB prior implied much stronger spatial
dependence than the reference prior with an estimate of τc closer to 0. The estimated
values of log10 τc for all three analyses are between −0.8 and −0.55, which according
to our simulation study are values of τc for which the proposed reference prior provides
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Figure 4: Map of (a) 2012 SMRs for foreclosure rates, (b) 2012 unemployment rates
(%), (c) posterior median E[SMR], and (d) posterior standard deviation of E[SMR] in
Ohio counties.

superior results in terms of interval coverage, average interval length, and MSE for τc.
Thus, we should trust the resulting inference based on the reference prior more than
the other priors. Furthermore, note that the credible interval for τc is wider when the
CARBayes prior is used, while use of the reference and NB priors results in more nar-
row credible intervals. This supports the findings of our simulation study regarding the
average interval length for τc. Although the credible interval for τc using the CARBayes
prior is only slightly wider in the case study, the simulation study results illustrate the
potential danger of using this particular vague prior. While the analysis of foreclosure
rates does not result in undesirably wide credible intervals for τc when the CARBayes
prior is used, our simulation study shows that other data sets may lead to credible inter-
vals for τc that are orders of magnitude wider than those obtained when the reference
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Prior Parameter Estimate 95% Credible Interval

Reference

β0 (intercept) -0.5561 (-0.9388, -0.1710)

β1 (unemployment rate) 0.0488 (0.0008, 0.0967)

τc 0.2519 (0.0017, 0.9781)

σ2 0.0432 (0.0046, 0.0854)

CARBayes

β0 (intercept) -0.5612 (-0.9482, -0.1708)

β1 (unemployment rate) 0.0496 (0.0009, 0.0977)

τc 0.1959 (0.0009, 1.0231)

σ2 0.0385 (0.0013, 0.0819)

NB

β0 (intercept) -0.5687 (-0.9516, -0.1802)

β1 (unemployment rate) 0.0504 (0.0020, 0.0985)

τc 0.1589 (0.0010, 0.6290)

σ2 0.0345 (0.0019, 0.0755)

Table 1: Posterior Summaries for Foreclosure Rate Case Study for Bayesian Analyses
Using Reference, CARBayes, and NB Priors.

prior is used. Unreasonably wide credible intervals for τc could lead practitioners to
decide that a spatial model is not necessary for the data, resulting in the incorrect use
of a non-spatial model. We thus recommend use of the reference prior.

The estimate of the regression coefficient for unemployment rate is positive and its
credible interval does not contain zero in all three cases. This implies that, on average,
as unemployment rate increases, foreclosure rates also increase. Consider the posterior
distribution of the expected SMR in county i given by E[SMRi] = exp{β0+β1xi+φi},
where xi is the unemployment rate of county i for i = 1, 2, . . . , n. Figures 4(c) and 4(d)
show maps of the posterior median and posterior standard deviation, respectively, of the
expected SMR values computed directly from the results of the MCMC algorithm using
the reference prior. These maps show that counties with higher unemployment rates
tend to have higher risk of foreclosure than counties with lower unemployment rates.

As shown in the simulation study, the main selling point of the reference prior
is that, in the absence of prior information, it allows a more realistic assessment of
the uncertainty for the several parameters. This actually makes difference in our case
study. For example, we may be interested in identifying clusters of counties with risk
higher than predicted by the regressors. If that is the case, we would analyze the spa-
tial random effects. A common decision rule would be to say that counties for which
P (φi > 0|Y ) > 0.95 would have risk higher than predicted by the regressors. With
respect to counties with risk higher than predicted by the regressor, the reference,
CARBayes, and NB analyses identify 3, 4, and 9 counties respectively. Similarly to the
results presented in Table 1, for this particular dataset the CARBayes analysis provides
results that are in between those of the reference and the NB analyses. Further, the NB
analysis identifies many more counties than the reference analysis. Thus, the analyses
based on the different priors lead to very different conclusions in terms of what counties
have risk of foreclosure higher than predicted by the regressor. That is because such
analyses are based on tail probabilities that depend crucially on an appropriate assess-
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ment of uncertainty through the variance parameters σ2 and τc. As our simulation study
indicates, amongst the analyses considered in this study, the reference prior provides
the best uncertainty quantification for these parameters and is, therefore, preferable.

It is often difficult to choose sensible hyperparameters for the commonly used priors
for this type of spatial model. For instance, it might be difficult for a housing market
expert to articulate their understanding of the spatial dependence among counties’
foreclosure rates in such a way as to inform prior specification for a Bayesian hierarchical
model. The proposed reference prior is an appealing alternative because it is automatic.
It does not require the choice of hyperparameters and has favorable performance. This
reference prior is useful in situations where researchers are unsure of how to subjectively
choose priors for areal data with a nugget effect.

7 Discussion

This paper presents a fully Bayesian analysis for a commonly used Gaussian hierarchical
model for spatial data. We have derived explicit expressions for several objective priors,
including the reference, independence Jeffreys, and Jeffreys-rule priors for the Gaussian
hierarchical model with an intrinsic CAR prior for the spatial random effects. We have
shown that the reference prior results in a proper posterior distribution, while the in-
dependence Jeffreys and Jeffreys-rule priors lead to improper posterior distributions.
Furthermore, we have studied frequentist properties of Bayesian procedures using the
proposed reference prior and two commonly used priors for this model.

We have determined that the reference prior leads to a combination of favorable
frequentist coverage, average interval length, and mean squared error relative to two
commonly used priors. We have demonstrated using the Kullback–Leibler divergence
that focus should be placed on small values of τc, which correspond to strong spatial
dependence. So, while inferential performance deteriorates across all considered priors
for larger values of τc, this is not a concern since perhaps a model without spatial
dependence would be preferred in this situation. More importantly, the reference prior
performs better than the competing priors for smaller values of τc in terms of frequentist
coverage, average interval length, and mean squared error.

Additionally, the reference prior approach obviates the need to subjectively specify
hyperparameters, allowing for an automatic Bayesian analysis. This philosophy works
well for hierarchical modeling when interpretation of hyperparameters and elicitation
of meaningful priors is difficult. Often times, practitioners choose to use a vague näıve
prior in the absence of prior information or understanding of the problem. However, in
situations such as the one considered here, where an improper prior for τc would lead to
an improper posterior, the use of a vague näıve prior only masks the impropriety issue,
rather than solving it (Berger, 2006). By contrast, an objective prior like the reference
prior proposed here, will lead to a proper posterior distribution and will let the data
speak for themselves.

Although much research has been done on objective Bayesian analysis for spatial
models, such as geostatistical models (Berger et al., 2001; De Oliveira, 2007), proper
CAR models for the observed data (Ferreira and De Oliveira, 2007; De Oliveira, 2012;
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Ren and Sun, 2013), and proper CAR models for latent process models for areal data
(Ren and Sun, 2014), the hierarchical model with an intrinsic CAR prior that we con-
sider here is one of the most popularly used models in applications of disease mapping
and other areas of research. All intrinsic CAR models require subjective decisions re-
garding rigorous specification and additional constraints to ensure propriety (Lavine
and Hodges, 2012). Keefe et al. (2018) have shown that if we first impose the sum-
zero constraint and then consider the limit to obtain the sum-zero constrained intrinsic
CAR, there is a broad class of proper CAR priors that all result in the unique intrinsic
CAR prior given in Equation (8). Our development of an appropriate objective Bayesian
analysis for this model will hopefully help researchers analyze areal data.

There are many possible avenues for future research. For example, this work could
be extended by developing objective priors for areal models for non-Gaussian responses,
such as counts and rates that can be more accessible to disease mapping applications
such as the one described in Section 6. Other future work may also include the study
and development of objective priors for spatio-temporal models for areal data, as well
as the effect of the choice of priors for these types of models.

Supplementary Material

Supplementary Material of Objective Bayesian Analysis for Gaussian Hierarchical Mod-
els with Intrinsic Conditional Autoregressive Priors (DOI: 10.1214/18-BA1107SUPP;
.pdf).

References
Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2014). Hierarchical Modeling and Anal-
ysis for Spatial Data. CRC Press. MR3362184. 181

Bell, B. S. and Broemeling, L. D. (2000). “A Bayesian analysis for spatial processes with
application to disease mapping.” Statistics in Medicine, 19(7): 957–974. 181, 182

Berger, J. (2006). “The case for objective Bayesian analysis.” Bayesian Analysis, 1(3):
385–402. MR2221271. doi: https://doi.org/10.1214/06-BA115. 204

Berger, J. O., De Oliveira, V., and Sansó, B. (2001). “Objective Bayesian analysis of
spatially correlated data.” Journal of the American Statistical Association, 96(456):
1361–1374. MR1946582. doi: https://doi.org/10.1198/016214501753382282.
182, 189, 204

Bernardinelli, L., Clayton, D., and Montomoli, C. (1995). “Bayesian estimates of disease
maps: how important are priors?” Statistics in Medicine, 14(21–22): 2411–2431. 182

Bernardo, J. and Smith, A. (1994). Bayesian Theory . New York: Wiley. MR1274699.
doi: https://doi.org/10.1002/9780470316870. 189

Besag, J. (1974). “Spatial interaction and the statistical analysis of lattice systems.”
Journal of the Royal Statistical Society. Series B (Methodological), 192–236.
MR0373208. 181

https://doi.org/10.1214/18-BA1107SUPP
http://www.ams.org/mathscinet-getitem?mr=3362184
http://www.ams.org/mathscinet-getitem?mr=2221271
https://doi.org/10.1214/06-BA115
http://www.ams.org/mathscinet-getitem?mr=1946582
https://doi.org/10.1198/016214501753382282
http://www.ams.org/mathscinet-getitem?mr=1274699
https://doi.org/10.1002/9780470316870
http://www.ams.org/mathscinet-getitem?mr=0373208


206 Objective Bayes for Intrinsic CAR Prior

Besag, J. and Kooperberg, C. (1995). “On conditional and intrinsic autoregressions.”
Biometrika, 82(4): 733–746. MR1380811. 183, 185
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