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Hybrid Parallel Computing Strategies for Scientific Computing Applications 

Joo Hong Lee 

ABSTRACT 

 

Multi-core, multi-processor, and Graphics Processing Unit (GPU) computer architectures 

pose significant challenges with respect to the efficient exploitation of parallelism for large-

scale, scientific computing simulations.  For example, a simulation of the human tonsil at 

the cellular level involves the computation of the motion and interaction of millions of cells 

over extended periods of time.  Also, the simulation of Radiative Heat Transfer (RHT) 

effects by the Photon Monte Carlo (PMC) method is an extremely computationally 

demanding problem.  The PMC method is example of the Monte Carlo simulation 

method⎯an approach extensively used in wide of application areas. Although the basic 

algorithmic framework of these Monte Carlo methods is simple, they can be extremely 

computationally intensive.  Therefore, an efficient parallel realization of these simulations 

depends on a careful analysis of the nature these problems and the development of an 

appropriate software framework.  The overarching goal of this dissertation is develop and 

understand what the appropriate parallel programming model should be to exploit these 

disparate architectures, both from the metric of efficiency, as well as from a software 

engineering perspective.  

 

In this dissertation we examine these issues through a performance study of PathSim2, a 

software framework for the simulation of large-scale biological systems, using two 



 iii 

different parallel architectures⎯distributed and shared memory. First, a message-passing 

implementation of a multiple germinal center simulation by PathSim2 is developed and 

analyzed for distributed memory architectures.  Second, a germinal center simulation is 

implemented on shared memory architecture with two parallelization strategies based on 

Pthreads and OpenMP.   

 

Finally, we present work targeting a complete hybrid, parallel computing architecture. With 

this work we develop and analyze a software framework for generic Monte Carlo 

simulations implemented on multiple, distributed memory nodes consisting of a multi-core 

architecture with attached GPUs.  This simulation framework is divided into two 

asynchronous parts: (a) a threaded, GPU-accelerated pseudo-random number generator (or 

producer), and (b) a multi-threaded Monte Carlo application (or consumer).  The 

advantage of this approach is that this software framework can be directly used within any 

Monte Carlo application code, without requiring application-specific programming of the 

GPU.  We examine this approach through a performance study of the simulation of RHT 

effects by the PMC method on a hybrid computing architecture. We present a theoretical 

analysis of our proposed approach, discuss methods to optimize performance based on this 

analysis, and compare this analysis to experimental results obtained from simulations run 

on two different hybrid, parallel computing architectures. 
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1 Introduction 

 

Current computer architectures provide a computational platform that is much more 

complex than the platforms that existed five to ten years ago.  The architecture of a typical 

workstation today includes multiple central processing units (CPUs) and attached graphics 

processing units (GPUs).  In addition, these workstations can be easily networked together, 

and with a batch scheduling system and standardized message-passing libraries (e.g., MPI) 

that can be used as a parallel computing platform. 

 

For scientists, this complex architecture provides the potential of a tremendous 

computational resource.  However, on the downside, the development of efficient code for 

these complex architectures is a daunting challenge for even the most experienced 

programmer.  When it comes to implementing software to solve specific scientific 

computing problems, it is hard to determine how to take advantage of these different 

architectural levels in a way that is best. 

 

The goal of my dissertation is to attempt to make sense of this complex architectural picture 

through the detailed analysis and implementation of several representative scientific 

computing applications.  These applications include simulations of biological systems at 

the cellular level and a general-purpose software framework for Monte Carlo algorithms.  

The ultimate goal of the analysis of these software implementations is to develop an over-

arching approach to “hybrid computing,” that is a software approach that takes the best 
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advantage of the various architectural resources available to the applications programmer. 

 

1.1  Architectures and Programming Models 
 

Perhaps the central difficulty with developing an approach for hybrid computing is the 

differences in the computer and memory architectures between the available compute 

platforms.  In addition, each of these architectures has a programming model that is 

standardized and well-suited for the architecture, but these programming models differ and 

generally are not compatible. 

 

In Figure 1.1, we show a coarse block diagram that illustrates these differences.  For 

example, the standard picture of distributed memory architecture, shown in Figure 1.1 (a), 

is a number of individual general-purpose processers, each with its own memory and 

address space, connected together by some sort of high-performance network.  One can 

program each processor in a high-level language, and blocks of processors can be 

scheduled via a batch scheduler to execute together to solve a single application instance.  

Communication between the processes is typically done via message-passing through using 

a standard API such as MPI [1].  The efficiency of this programming model depends on 

optimizing the performance of code on each processor and developing algorithms that 

maximize parallelization and minimize message-passing overhead [2]. 

 

The multi-core architecture, shown in Figure 1.1 (b), is more tightly coupled than the 

distributed memory architecture.  One typically can run many processes or threads 
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simultaneously while having access to a global shared memory.  One may or may not be 

able to “pin” a thread or process to a particular core [3].  The programming model takes 

advantage of the shared memory to allow processes or threads to exchange state through 

shared memory primitives such as synchronization locks and barriers.  One can use a 

standardized API such as OpenMP or POSIX threads (e.g., pthreads) to implement 

programs that run on this architecture [4, 5]. 

 

 

Figure 1.1 Coarse block diagrams of the computer and memory architectures for (a) 
distributed memory (b) multi-core, and (c) a CPU with an attached GPU processor. Each of 
these architectures has different characteristic memory access bandwidths and latencies.  
In addition, the programming model and programming API differs for each of these 
architectures. 

 

Finally, the GPU architecture, shown in Figure 1.1 (c), is quite different than the previous 
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two architectures.  Conceptually, the use of the GPU is procedural; a program that is 

running on the CPU offloads a large computational task and its necessary data onto the 

GPU.  The code for the task is written in a language specific to the GPU, and the GPU 

code executes in a SIMD manner [6].  The data that is necessary to run the code must be 

explicitly copied from the CPU memory space to the GPU memory space [7].  The CPU 

must then start the GPU program and wait for it to complete execution.  Once finished, 

output data must be explicitly copied back to the CPU memory space from the GPU.  

 

Because of this data transferring delay between the CPU and the GPU, multiple blocks are 

generated which can be filled with the data generated by the GPU and also used by the 

CPU simultaneously.  After the GPU fills the first data block, the CPU can start using the 

data.  At the same time, the GPU can generated another data and fill in another block 

which is empty. In this way, the data transferring delay time can be saved.  A good 

exemplary application of this scheme is a Monte Carlo method applied application, and it is 

described in detail in Chapter 4 of this paper.  Note that standardized APIs for GPU 

programming include OpenCL and CUDA [8, 9].  

 

1.2 Architecture Characteristics 

 

It is useful to get a high-level picture of the performance characteristics of these 

architectures.  In Table 1.1, we give rough numbers that can be used to characterize the 

cost of communication for the architectures and their relative processing power.  Clearly, 
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the meaning of communication differs between the architectures, and is to a large extent a 

function of the programming model.  However, these architectural characteristics result in 

upper bounds on the performance of particular algorithms based on their communication 

requirements. 

 

For a distributed memory machine, we consider a parallel computer with state-of-the-art 

processors and an InfiniBand high-performance interconnection network [10].  The 

latency in the table corresponds to the “start-up” latency for an MPI message, and the 

bandwidth for a message sent via MPI [11].  The peak performance is the peak double 

precision (DP) performance of a typical AMD or Intel processor. 

 

For a multi-core architecture, we use as latency measurement the time required for an 

OpenMP barrier function call [12]. Typically the coordination between threads running on 

a multi-core architecture is done via synchronization locks and barrier calls so that this 

gives a rough estimate of the latency overhead of coordinating memory access or task 

synchronization on this architecture.  The bandwidth numbers are based on 

HyperTransport, the multi-processor interconnect used on AMD multi-core processors [13].  

 

For a CPU with an attached GPU processor, there are a number of ways that one can 

characterize the architecture.  However, for many applications it turns out that the 

dominant overhead cost is the cost of moving data back and forth between the CPU and 

GPU memories [14].  The time required for this data transfer has a “start-up” latency that 
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can be readily measured and bandwidth based on the underlying interconnection 

architecture (e.g., PCI Express) [15].  The peak processing power is a function of the 

number of stream processors available on the GPU (in the 700-3,000 range on current 

GPUs) and the clock rate (in 700 MHz range for a current GPU).  One important 

difference to note in the peak processing rates is that the rate is for single precision (SP) 

floating point on the GPU. 

 

Table 1.1 A table giving the rough characteristics of the distributed memory, multi-core, 
and attached GPU architectures. Obviously, the latencies and bandwidths have different 
meanings for the different architectures. These differences are described in the text. 

Architecture Latency Bandwidth Peak Processing 

Distributed Memory 4µsec 1.3GB/sec 6.0Gflops(DP)/CPU 

Multi-core 0.5µsec 6.4GB/sec 6.0Gflops(DP)/core 

GPU 3msec 4.3GB/sec 1Tflops(SP) 

 

Important things to note about these numbers are the relatively large amount of single 

precision floating-point performance available on the GPU coupled with the relatively high 

latency cost.  In addition, note the imbalance between the peak processing on the GPU and 

the bandwidth to the GPU from the CPU.  The upshot of these numbers suggests that any 

algorithm that uses the GPU must have a “data reuse” factor that offsets this bandwidth 

imbalance.  That is, any data that is transferred to the GPU must be re-used by the 

algorithm by a rough factor of 1,000 to offset the transfer time.  In addition, any transfer 

of data between the CPU and GPU must be done in increments large enough to offset the 
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relatively large latencies.  For example, for data sent in block size of 4MB, the cost of the 

communication latency roughly equals the communication bandwidth cost.  The 

experimental part of Chapter 4 shows how data reuse has an effect on the simulation time. 

 

A final point to keep in mind that the processing power on the GPU depends on having an 

algorithm that can be framed in lightweight SIMD threads, not as a single-threaded 

program with complex data access patterns and control structures.  Clearly, these 

restrictions imposed by the architectures have a significant impact on the application 

programmer’s ability to develop software that obtains high efficiencies on an attached GPU.  

We formalize how these architectural issues affect the types of algorithms that can obtain 

good performance on this architecture in Chapter 4. 

 

1.3  Specific Contributions in Dissertation 

 

My dissertation attacks the problem of trying to develop algorithms suited for these hybrid 

architectures by considering a small set of canonical scientific computing problems, 

developing efficient algorithms for these problems, implementing these algorithms, and 

then developing a detailed analysis of these algorithms.  The hope is that the specific 

analysis developed in this dissertation can be applied to a wider range of scientific and 

engineering applications. 

 

The applications considered in this dissertation are specific aspects of PathSim2, a 
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framework for the modeling of biological systems at the cellular level [16], and a software 

framework for Monte Carlo applications [17].  These applications are, of course, quite 

different.  However, these applications span a range of computational and inter-process 

communication requirements and, as such, can be used to target different architectural 

aspects and provide an interesting contrast as to how these architectural features can be 

used to solve real-world problems.  For example, PathSim2 is implemented on distributed 

architecture to run multiple Germinal Centers (GCs) simulation and is implemented on 

multi cores with shared memory architecture to divide the workload of running a GC 

simulation.  The Monte Carlo applications that require random samples use the pseudo-

random numbers generated by the GPU.  Like this, based on how to fix the simulation 

model to solve the problem, different architecture should be selected.  

 

My specific contributions in this dissertation can be itemized as follows. 

1. The development and analysis of a distributed-memory version of PathSim2.  This 

modified version allows the user to solve loosely coupled, multiple domain 

problems that are too large to be solved on a single computer.  This application and 

its results are presented in Chapter 2. 

2. The analysis of a multi-threaded, shared memory implementation of an element-

based processing scheme for Pathsim2.  This application and its results are 

presented in Chapter 3. 

3. The implementation and analysis of a GPU accelerated software framework for 

generic Monte Carlo applications. The software framework performance is 
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measured and compared to theory for two applications⎯a π value estimation 

scheme and a Radiative Heat Transfer simulation.  An approach for optimizing the 

performance of these algorithms based on this analysis is also presented. These 

applications and their results are presented in Chapter 4.  

 

1.4 Organization 

 

The reminder of this dissertation is organized as follows.  Chapter 2 presents a strategy for 

distributed memory architecture implementation and analysis of PathSim2 adapted for use 

on multiple, loosely coupled computational domains.  Chapter 3 presents a strategy and 

analysis of a shared memory, element-processing scheme developed for PathSim2.  

Chapter 4 presents a strategy for a GPU accelerated software framework for Monte Carlo 

applications and a detailed analysis of the performance of an implementation of this 

framework.  Finally, the dissertation concludes by summarizing its contributions and 

identifying possible future work in Chapter 5. 
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2 A Strategy for Distributed Memory Architecture 

 

In this chapter, we consider a strategy for distributed memory architecture.  To show this 

strategy, we implement a biological system simulation of multiple Germinal Centers (GCs) 

using PathSim2 on a distributed memory architecture [16].  PathSim2 is a software 

environment developed to simulate biological systems at the cellular level. The goal of 

these simulations is to model the adaptive immune response of the human tonsil [18, 19].  

This biological system represents significant challenges from the perspective of 

computational science because of its multi-scale properties at the spatial and temporal 

scales.  In particular, the efficient modeling of cellular motion and interaction, called inter-

cellular model, must be coupled to sub-scale models of intra-cellular biochemical pathways 

to adequately model the whole immune system.  The key to make such simulation 

tractable is the development of an overall approach that is able to couple inter-cellular and 

intra-cellular models in an efficient manner.   

 

PathSim2 uses two parallelization strategies that can be used to speed up these simulations.  

These strategies work at different spatial scales.  First, at the scale of an individual spatial 

element (a spatial discretization that contains a modest number of cells), PathSim2 can 

employ a multi-threaded approach that can update the state of independent elements in 

parallel.  This approach would be appropriate for shared memory parallel machines or a 

multi-core architecture [20].  We presented an analysis of this approach in Chapter 3.  

Second, to simulate multiple GCs, we have developed a message-passing implementation 
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suitable for distributed memory computers.  It is the second parallelization scheme that is 

the subject of this chapter.  

 

With the appearance of the parallel hardware and software technologies, large-scale 

Biological System Simulation (BSS) programmers have adapted their programming models 

suitable for the parallel architecture [21].  A promising current trend is combining shared- 

and distributed-memory programming models together [22, 23].  These hybrid, parallel-

programming techniques have evolved to take advantage of the emergence of multi-core, 

distributed memory computer architectures [24].  The parallelization approach developing 

for PathSim2 follows this trend toward hybrid parallelization strategies in BSS. 

 

2.1 Simulation Model Overview 

 

PathSim2 is a software framework that simulates the movement, aging, interaction and 

diffusion of agents within a discretized three-dimensional spatial region.  The agents 

simulate biological elements at the cellular level such as various cell types and viruses.  

The spatial regions represent tissue wherein these agents move.  Our target simulation is 

that of multiple GCs contained in human tonsils.  A simplified illustration of a cross-

section of this model is displayed in Figure 2.1.  
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Figure 2.1 A Simplified illustration of GCs in a tissue [25]. 

 

In this model, multiple GCs are contained within a thin layer of lymphatic tissue that is 

bound on the top by an epithelial layer and below by lymph tissue.  Cells within this 

region arrive from a vascular system, or High Endothelial Venules (HEV).  Cells leave the 

system by draining into the lymph systems through connection in the lymph tissue.  The 

tissues are discretized using a structured mesh with individual elements having specific 

attributes to conform to the complex tissue geometries such as those shown in Figure 2.1.  

To understand the scale of these models, the thickness of the tissue shown in Figure 2. 1 is 

roughly 1,000 microns and the width of a GC is roughly 500 microns.  A typical element 

size is roughly 50 microns on a side.  Thus, the number of elements used to discretize one 

GC is on the order of 2,000 spatial elements.  In Figure 2.2 we show a cross-section 

through one of the simulated GCs.  Individual cells are shown in addition to a colored 

background representing the concentration of a particular chemokine.  The motion of cells 

through the tissue is largely determined by these chemokine concentrations.  
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Figure 2.2 A cross-section of one GC model showing the simulated cells and a chemokine 
concentration [25]. 

 

To simulate the flow of cells into and out of the GC mesh, PathSim2 includes a “pool” 

model to represent well-mixed systems such as the blood and lymph.  Because of the well-

mixed nature of the blood and lymph compartments, it is not necessary to represent the 

spatial location of cells in these pools. In the case of the GC, the model includes four pools: 

blood, lymph, marrow and saliva. For the purpose of this simulation, it is sufficient to 

consider just the blood and lymph compartments.  These pools are connected to multiple 

elements in the appropriate mesh regions.  The pools are connected to each other and to 

the tissues types as shown in Figure 2.3.  The illustration indicates flow rates between 

compartments; when the flow enters or exists the mesh, the total flow is divided among the 

connected elements.  The flow between compartments is adjusted to ensure that the net 
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total flow to any compartment is zero. 

 

 

Figure 2.3 Connectivity between pools and the GC [25]. 

 

We first consider the case of how the computational model is implemented for a sequential 

computer. In this case, the blood or lymph pool is directly connected to GC mesh as shown 

in Figure 2.3.  For example, with the HEV tissue, the blood pool is connected to HEV 

tissue and agents flow directly into elements of the HEV tissue.  Likewise, with the lymph 

tissue, agents flow out of individual elements of the GC mesh and into the lymph pool.  

Within GC mesh, however, agents flow between adjacent elements based in the computed 

dynamics of individual cells.  Typically, the computational complexity of computing the 

movement and interaction of agents within the GC mesh dominates the time required to 

compute the flow into, out of, and between the pools.  For all the discussion that follows, 
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we can assume that computational requirements of updating the mesh dominate the time to 

update the pools. 

 

Overall, a simulation of just one GC involves the modeling of roughly 100,000 cells, their 

interactions and movement at a sub-minute time-scale, and the evolution of the GC over 

weeks of simulated time.  As such, the computational complexity of simulating a single 

GC is significant; these simulations typically run at 10 to 100 times real-time.  As the 

over-arching goal of these simulations is to model tonsil tissues that include thousands of 

GCs, the potential of parallelizing the calculation and running the simulation on a parallel 

computer is an attractive option. 

 

To achieve a model suitable for parallel implementation, the straightforward model 

presented above requires modification.  The first modification is made by the observation 

that the primary motion of individual agents within a tissue containing multiple GCs is 

essentially limited to a specific GC.  That is, from the perspective of the model, we can 

ignore the motion and interaction of agents between different GCs.  We still have to have 

common pools as the agents mix once they enter the blood or lymph compartments, but for 

the spatial decomposition of the tissue, we can consider the mesh representing each GC as 

disconnected.  From the perspective of the parallel implementation, this represents a 

significant simplification, as we do not have to represent communication between the 

discretizations of different GCs. Of course, if these GC were assigned to different 

processors, then this movement between GCs would require no inter-processor 
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communication.  Based on this observation, we partition the tissue by assigning different 

GCs to different processors. This partitioning is illustrated in Figure 2.4.  

 

 

Figure 2.4 An illustration of the spatial partitioning, as indicated by the dotted lines, of 
different GCs in the tissue. The mesh corresponding to each of these different regions is 
assigned to different processors [25]. 

 

A second modification of the sequential version of the model is made to make a parallel 

implementation more efficient.  The idea is break up the blood and lymph pools into two 

parts. The first part is the main pools.  We call these the global pools and they are 

essentially the same pools as those used in the sequential model.  As the computational 

cost of updating these pools is minimal, this part of the calculation does not need to be 

parallelized.  However, to interface to the individual meshes on each processor, it is 

convenient to have a small, local pool represented on each processor.  It is these pools that 

have connections to elements within the mesh assigned to that processor.  As these 

connections are local to a processor, there is no inter-processor communication required. 

The inter-processor communication is only required to connect the local pools to the global 
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pools. This new computational model is illustrated in Figure 2.5.  

 

 

Figure 2.5 Programming model of multiple GCs [25] 

 

In contrast to the sequential model, the parallel model has intermediate pools, one for each 

GC mesh.  As mentioned earlier, the partitioning of the entire tissue assumes that the flow 

between GC mesh regions is small enough to be ignored by the simulation.  In the parallel 

mode, all the processes are the same as the sequential model, except that the global pool 

distributes and gathers the information to each local pool as indicated in Figure 2.5. 

 

A third observation that can be used to improve the performance of the model is to note that 

a longer time-step can be used in the updating of the local pools by the global pools that is 

required in the updating of the mesh elements and the flow from the local pools to the GC 



 18 

meshes.  In the following discussion let tlocal denote this latter time-step, the time-step used 

to update the mesh and flow between the local pools and the GC mesh on each processor. 

In addition, let tglobal denote the longer time-step corresponding to the update of the local 

pools by the global pool (this is the part of the calculation that involves inter-processor 

communication).  The resulting parallel algorithm is summarized in the pseudocode given 

on the right in Figure 2.6.  For comparison, the equivalent sequential code is given on the 

left in this figure. Again, note that for the parallel algorithm, the global_local_pool_update() 

happens at the longer time-scale corresponding to the tglobal time-step. 

 

 

2.2  Theoretical Analysis 
 

To model the performance of the parallelization strategy presented in the previous section, 

in this section we develop a simple analysis based on the assumption that a message-

 
while ( t < tmax ) { 
     update_pools(); 
     update_mesh(); 
     t += tlocal ;  
} 
 
 
 

(a) 

while ( t < tmax ) { 
     update_local_pools(); 
     update_local_mesh(); 
     if ( (t – tlast_global_update) > tglobal ) { 
         global_local_pool_update(); 
         tlast_global_update = t ; 
     }  
     t += tlocal ; 
} 

(b) 

Figure 2.6 Pseudocode for (a) sequential model and (b) parallel model. Note that the only 
routine that requires interprocessor communication is the function 
global_local_pool_update() [25]. 
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passing scheme (such as MPI) is used to communicate between processors.  We also 

assume that processor architecture is homogeneous and the cost to send a message between 

any two processors is equal.  

 

2.2.1 Scaled Efficiency 
 

To analyze the performance of the proposed GC model simulation on multiple nodes, we 

model the time required for the calculation as follows.  As discussed in the previous 

section, there are two time-steps associated with the simulation, tlocal and tglobal, which 

correspond to different parts of the multiple GC model as depicted in Figure 2.5.  We 

denote by n the ratio of these time-steps, that is,  

 

n = tglobal / tlocal . (2.1)  

 

For example, if tlocal were 0.5 minutes and tglobal were 30 minutes, n would be 60.  To 

model one time-step of this “global” model (e.g., n time-steps of the “local” or individual 

GC simulation), let the simulation time for the sequential model be denoted by TS and the 

parallel simulation by TP.  The time required for one time-step in the sequential model 

consists of two parts.  The first part is the computational time required to solve for the 

update to the GC mesh, and the second part is the time required to update the pools.  We 

denote the times required for these two calculations as TMesh and TPool.  Thus, the required 

sequential simulation time for n time-steps is given by the equation: 
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TS  =  n(TMesh + TPool). (2.2)  

 

For the parallel model, the time required can be decomposed into the time required to 

update the mesh, the local pools, the global pools, and the message-passing between 

processors.  If we let the index of a processing node be i, we denote by Ti
Mesh, and 

Ti
Local_Pool the times for updating the mesh and the local pools on each processor.  

Furthermore, let TGlobal_Pool and TM denote the time for updating the global pools and the 

message-passing time. Note that these last two times do not depend on the processor index 

as global synchronization points bracket them.  The mesh and local pool update times are 

the times required for one local time-step.  Thus, we can express the parallel simulation 

time to update the mesh and local pools at each processor node as: 

 

Ti
P = n(Ti

Mesh + Ti
Local_Pool) + TGlobal_Pool + TM .                  (2.3)  

 

We note that the time required to update the mesh and local pools can differ on each 

processor because of differences in the biological interactions in each individual GC.  

Thus, we make the following definition, 

 

TMesh + TLocal_Pool = max(Ti
Mesh+Ti

Local_Pool).                                                      1≤i≤p (2.4)   

 

where p is the number of processors.  In addition, recall that the global update and 

communication happens only once each n local time-steps.  Thus, if we assume that this 
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maximum time is independent of time-step, then TP can be expressed as: 

 

TP = n(TMesh + TLocal_Pool) + TGlobal_Pool + TM .                    (2.5)  

 

If the time to send one message with the required data between the processor with the 

global pool and a processor with a local pool is tm, then TM can be expressed as ptm, as the 

messages sent to each processor are unique.  Recall that the Scaled Efficiency (SE) is 

defined as TS/TP.  Thus, the SE for our model can be expressed as: 

 

            SE = TS/TP 

               = n(TMesh+TPool)/[n(TMesh+TLocal_Pool)+TGlobal_Pool +ptm]. 
(2.6)  

 

In practice, when the simulation time of mesh and local pool is compared to that of global 

pool, we note that the computation time for global pool is relatively short.  In addition, we 

assume that the time to update the mesh on the sequential machine is essentially the 

maximum time for any of the GCs on the parallel machine.  Thus, we can ignore 

TGlobal_Pool and assume that the ratio of sequential mesh update time to the maximum 

parallel mesh update time is approximately one.  Hence, SE can be approximated as:  

 

                       SE = 1/ [ 1 + ptm /n ( TMesh+TPool)]. (2.7)  

 

Using the notation ρ=1/n and κ = tm/(TMesh+TPool), the SE can be approximated as  
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SE = 1/ (1 + pρκ).                                                          (2.8)  

 

2.3 Experimental Results 
 

Computational experiments were performed on the System X parallel computer at Virginia 

Tech.  This machine is made up of 1100 compute nodes; each node consists of dual 

2.3GHz PowerPC 970FX processors.  Each processor is connected to 4GB of ECC 

DDR400 (PC3200) RAM.  The communication network is connected with SilverStorm 

Technology InfiniBand switches.  Four-core switches and 64 leaf switches are used for 

network interconnections.  Each core switch has 132 ports and each leaf switch has 24 

ports.  Overall, this network architecture satisfies our assumption that the node-to-node 

communication times are (to first order) independent of processor assignment.  

 

For our experiments we measured the SE as a function of the number of processors.  The 

number of processors used was 10, 20, 30, 40 and 50.  In addition, we varied the ratio of 

the global to local time-step.  Global time-steps of 30 and 60 minutes were used.  The 

local time-step was fixed at 0.5 minutes.  The GC model assigned to each processor was 

essentially identical; hence, the workload was evenly distributed to processors. 

 

2.3.1 Scaled Efficiency Measurements 
 

To accurately measure the simulation performance, we ran the simulation five times for a 
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fixed set of simulation parameters.  From these measured simulation times we computed 

an average, a minimum, and a maximum time for each set of parameters.  In Figure 2.7, 

we present the computed SE for the simulation.  The symbols indicate the average values 

of execution times and the error bars shown at each point indicate the minimum and 

maximum values over the five runs. 

 

Note that the observed average SE of the implementation with the 60-minute global time-

step is consistently higher than that of the 30-minute global time-step.  The difference 

results from the relative difference in the communication overhead as discussed in the 

preceding section.  

 

 

Figure 2.7 The scaled efficiency as a function of the number of processors for different 
global time-steps [25]. 
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2.3.2 Communication Overhead Time Measurement 
 

Using these results, we can estimate tm by fitting the theoretical model developed in the 

preceding section to the experimental results.  For the curve fitting, the least squares 

method was used.  Based on this approach, the computed value for tm is approximately 

2.04×10-5 second.  To see if this time makes sense, we can use the standard linear 

message-passing model.  For System X, the start-up, and incremental message-passing 

times are given in Table 2.1.  Recall that ts is startup time, or the time to initialize the 

message (including operating system overhead) and tw is the time to send a byte over a link 

in the network (i.e., the reciprocal of the network bandwidth).  If we denote the message 

size (in bytes) sent over the network as m, tm is given in this linear model as  

 

tm = ts + mtw .                                 (2.9)  

 

The values for ts and tw computed from a “ping-pong” test program run on System X yield 

the values included in the following table.  

 

Table 2.1 System X Parameters [25]. 

Parameter Value  

ts 2.0x10-5 sec/message 

tw 1.9x10-9 sec/byte 

 

In our simulation, the message passing occurs with the updates between the global and 
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local blood and lymph pools.  For these messages, m is small enough that we can ignore 

the mtw term in equation (2.9).  Thus, given that tm is essentially given by ts, our model has 

excellent agreement with the least squares fit to the experimental data. 

 

2.3.3 Verifying Experiment Results  
 

To verify the adequacy of our model, we compare the experimental results with the 

theoretical model for the SE based on tm computed with the message-passing parameters 

given in Figure 2.8.  This figure shows the theoretical (solid line) and experimental results 

(data points) for the SE for the 30- and 60-minute global time-steps.  The theoretical 

model is within the experimental error for the data obtained on System X.  

 

 

Figure 2.8 A comparison of the experimental data and theoretical model for two different 
global time-steps [25]. 
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3 A Strategy for Shared Memory Architecture 
 

In this chapter, we consider a strategy for shared memory architecture.  To show this 

strategy, we consider efficient multi-threading strategies for multi-core with shared 

memory architectures as a second step in developing a hybrid implementation for GC 

simulation.  At the scale of an individual spatial element (a spatial discretization that 

contains a modest number of cells), PathSim2 can employ a multi-threaded approach that 

can update the state of independent elements in parallel.  This approach would be 

appropriate for shared memory parallel machines or a multi-core architecture [20].  For 

this purpose, we focus on different approaches to multi-threading, which enable these 

applications to make the efficient use of available CPUs on this architecture. 

 

In particular, we study the relative performance of OpneMP and pthreads within PathSim2. 

The framework has been used for germinal center simulation [26-28].  In this chapter, the 

theoretical model for the performance of OpenMP and pthreads implementation is 

described then computational results are compared. 

 

3.1  Simulation Model Overview 
 

PathSim2 is a software framework that simulates the motion and interaction of biological 

agents (usually representing cells) within a discretized three-dimensional spatial region 

(usually representing tissue).  In the discretization of the physical volume we refer to the 

discretized sub-volumes as elements and the collection of elements that make up the 
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physical volume as the computational mesh.  Thus, the movement of cells in a tissue is 

modeled to the movement of agents between neighboring elements in this computational 

mesh.  A simplified two-dimensional illustration of the elements and agents is displayed in 

the top image in Figure 3.1.  In the bottom image of Figure 3.1, we show a cropped, two-

dimensional cross-section from a PathSim2 simulation.  This image shows a rendering of 

cells (agents) and elements (indicated by the size of the colored squares). 

  

 

Figure 3.1 (Above) A simplified two-dimensional model of agents with elements; (Below) 
A close up of a two-dimensional cross-section from a PathSim2 simulation showing cells 
(agents) and elements (indicated by the colored squares [20]. 

 

The interaction of agents is handled by considering the agents within each element 



 28 

independently.  These interactions can be complex and thus can require significant 

computing time.  However, since these element-based calculations are independent, they 

can be executed in separate threads.  A simple approach would be the following.  If we 

had p threads available, we could keep a list of the elements (and the agents contained in 

each element) and assign the interaction calculation for each element to a thread when it 

became available.  Pseudocode expressing this algorithm is given in Figure 3.2.  In this 

pseudocode, the function GET_NEXT returns the next element off of the list in a thread-

safe way. 

 

Main process: 
  Create and start p threads with access to the element list L 

 
Thread function: 
  Barrier();  // wait until all threads are started 

  // GET_NEXT retrieves the first available element from list 
  while ((e = GET_NEXT(L)) != NULL) { 

       compute_interactions(e); 
  } 

  // return NULL for the thread_join in the calling function 

  return(NULL); 

Figure 3.2 Pseudocode for element-based agent interaction [20]. 

 

A typical PathSim2 simulation involves computing the motion and interaction of agents 

over a long period of time.  This is done by choosing an appropriate time-step and 

repeating the movement and interaction calculations.  The simulation time is incremented 

by the time-step until the desired simulation time is reached.  As these simulation times 
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can be long (e.g., days, months, or even years) and the time-steps are short (on the order of 

minutes), the computational time can be significant.  Thus, it would be extremely useful if 

we could improve the simulation performance by taking advantage of the above multi-

threaded approach done on multiple cores.  To help us analyze the potential of this 

approach, in the following section, we develop a theoretical model for the performance of 

the multi-threaded approach. 

 

3.2  Theoretical Analysis  
 

The calculations done in PathSim2 are quite complex and as a result, difficult to analyze.  

Thus, to be able to draw conclusions about the multi-core performance of PathSim2, we 

first develop a simple model of the calculations done by the framework.  In particular, the 

number of agents in an element and the nature of their interactions vary greatly.  Also, the 

calculation at each time-step involves more than just interaction: it involves movement, 

aging, diffusion of chemokines, and the simulation of a number of other processes.  For 

our simplified model, we consider just the interaction phase of the simulation (the most 

computationally expensive part of the simulation).  We also initially assume that the work 

require per element is homogeneous.   

 

3.2.1 Overhead of Threading 
 

Our proposed approach is based on creating and destroying multiple threads, thus it is 

important to understand the overhead associated with this thread management.  We 
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assume that the main process creates the threads sequentially, and that this process takes 

some small fixed amount of time, which we denote by Ts.  This time may depend on the 

particular thread implementation used (e.g., pthreads or OpenMP), however we assume that 

this overhead time is constant for a particular implementation. 

 

3.2.2 Speedup 
 

To analyze the speedup of our multi-threaded implementation of the simplified model we 

employ the following assumptions.  Let the number of elements in our simulation be N.  

Also, let us assume that the interaction calculation done for each element requires some 

fixed amount of work, say W, and takes time TW.  Finally, let the number of threads (and 

cores) be p.  Ideally, one would like a computational job that is split up among p 

processors and complete in 1/p time.  However, there will be overhead and sequential 

code portions that limit the efficiency of the code.  To quantify how close we are to the 

ideal case, we use the speedup metric defined as the ratio of the time required running the 

calculation on one core to the time required on p cores. 

 

Let Tseq(N,W) be the time required to complete the task on one processor and Tparallel(N,W,p) 

be the time required with p threads.  Then, the speedup S is defined as 

 

S = Tseq(N,W) / Tparallel(N,W,p)       (3.1)  

 

The sequential time is simply NTW.  The parallel time consists of two parts, the sequential 
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work divided up between the p threads and the thread management overhead. To model the 

overhead, there are two aspects to consider. First, there is the time required to create and 

destroy each thread, and second, there is the synchronization overhead in getting elements 

from the list in a thread-safe manner.  We assume that the first cost is the dominant cost.  

If we let Ts represent the time required to create and destroy one thread, then since the 

thread are created sequentially by the main routine, we have that 

 

Tparallel(N,W,p) = ⎡N/p⎤Tw + pTs.                    (3.2)  

 

If we assume that N is large relative to p, then we can approximate the speedup by the 

equation 

 

S ≈ p / (1+p2TS/NTW) (3.3)  

 

3.2.3 Multi-threading of Pthreads and OpenMP 
 

To implement this approach, the two most common choices for a multi-threading 

application programming interface (API) would be Pthreads and OpenMP.  Pthreads is the 

POSIX standard API to handle the actions required in a multi-threaded application.  These 

actions include (among others) thread creation, joining, argument passing, and termination.  

The Pthreads API requires a detailed specification of the thread context when it is created.  

In exchange for the amount of multi-threading code required, Pthreads provides extensive 

control over threading operations.  On the other hand, the OpenMP standard was 
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developed to standardize the shared-memory programming model, and to ensure portability 

between different machines.  We can use a subset of this API to provide a simpler (than 

the Pthread implementation) multi-threaded programming implementation.   

 

Pseudocode example for different multi-threaded implementations is illustrated in Figure 

3.3.  In the following section we compare OpenMP and Pthreads implementations of our 

simplified model and analyze the performance of these algorithms with respect to the above 

sequential model.  Finally, we consider the performance of PathSim2 relative to this 

simplified model. 

 

3.3 Experimental Results 
 

The computational experiments were performed on an SGI ALTIX 3700.  This machine 

uses 128 Intel Itanium processors, each running at 1.6 GHz.  The processors are connected 

to a 512GB main memory by a crossbar switch that can provide a peak bandwidth of 6.4 

GB/sec.  The cache memory for each processor is 16KB of L1, 256KB of L2, and 4MB of 

L3. 

 

3.3.1 Test Conditions 
 

In measuring the speedup of the different multi-threaded implementations, we consider 

three varying problem parameters: the number of threads, the number of mesh elements, 

and the amount of work required for each element.  The number of threads used was 2, 4, 
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6, 8 and 10. The number of threads was limited due to the number of processors available 

on the SGI ALTIX 3700. 

Figure 3.3 Pseudocode for different threading methods [20]. 

 

// Prototype for the thread function “thread_func,” 

// thead_arg is a pointer to any information required by the thread. 
// Pseudocode for the thread function is given in Figure 3.2. 
void *thread_func (void *thread_arg ) 

 
// Create num_thread threads. 
for i=1,…,num_threads do 

status = pthread_create(…., thread_func, &thread_arg); 
if (status != 0)  

display error and exit 
endif 

enddo 

 
// Wait for threads to complete and join. 
for i=1,…,num_threads do 

status = pthread_join(…); 
if (status != 0)  

display error and exit 
endif 

enddo 

(a) Pthread-based pseudocode 

 
//Creating and joining threads are executed by OpenMP directive 

#pragma omp parallel 
thread_func (&thread_arg ); 

(b) OpenMP-based pseudocode 
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To make the workload equal for all processors, the number of elements must be a common 

multiple of threading numbers.  For this reason, the number of elements was set to be 120 

- the least common multiple of number of threads used in the experiments.  

 

Each computational mesh has N elements; in the real simulation each element contains 

some number of agents that interact with each other.  To mimic this calculation in our test 

problem, we used a matrix-matrix multiplication of two n by n matrices.  The work (e.g., 

the number of floating point calculations) required to multiply these matrices is W = O(n3).  

This calculation is similar to the interaction calculation in the real problem in that if we 

have n agents in an element, the work required depends nonlinearly on n.  We used five 

different matrix sizes, with n = 20, 40, 60, 80, and 100.  

 

3.3.2 Speedup Measurements 
 

To measure the performance of the test code, for each set of parameters we have run the 

simulation ten times.  From the measured execution times we compute an average and a 

minimum and maximum.  In Figure 3.4, we present the measured speedup for the Pthreads 

and OpenMP implementations on the multi-processor shared memory systems.  The left 

plot shows the Pthread implementation and the right shows the OpenMP implementation.  

In Figure 3.4, the symbols indicate the average values of execution times and the error bars 

for each point indicate the minimum to maximum values. 
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Figure 3.4 Speedup of Different Multithreading [20]. 

 

Note that the observed speedup of the OpenMP implementation is consistently higher than 

that of the Pthreads implementation.  This difference results from the different thread 

management times for the Pthreads and OpenMP implementations.  Also note that, as 

expected, the speedup increases for larger workloads. 

 

3.3.3 Startup Time Estimates 
 

Using these results we can estimate Ts by fitting the theoretical model developed in the 

preceding section to the experimental results.  For the curve fitting the least squares 

method was used.  Based on this approach, the computed startup times for each working 

set size are listed in Table 3.1. From Table 3.1, we can see that the startup time for 

OpenMP (as computed from our model) is approximately 2/3 the time for the Pthreads 

implementation. 
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Table 3.1 The startup time, TS, computed from the theoretical model for different values of 
N [20]. 

 Startup Time (s) 

N Pthreads OpenMP 

20 0.0625 0.0312 

40 0.0672 0.0407 

60 0.0707 0.0467 

80 0.0720 0.0478 

100 0.0711 0.0339 

Average 0.0687 0.0424 

 

3.3.4 Verifying Experiment Results 

 

To verify the adequacy of our theoretical model, we can compare the experimental results 

with the speedup equation (3.3).  For this verification, the value for Ts in equation (3.3) is 

the average startup time taken from the results in Table 3.1.  In Figure 3.5, we show plots 

of experimental results for n = 100 and TW = 1 second.  The upper plot shows the results 

for the pthread implementation and the lower graph the results for the OpenMP 

implementation.  As shown in Figure 3.5, the experimental results are consistent with the 

theoretical model for both multi-threaded implementations.  

 

As shown in Figure 3.5, the experimental results are consistent with the theoretical model 

for both multi-threaded implementations. 
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Figure 3.5 Speedup of Experimental and Theoretical Results when n = 100 [20]. 

 

3.3.5 PathSim2 Speedup Measurements 
 

We can compare the results obtained from our simplified model to computational results 

obtained from running the complete PathSim2 simulation code.  For a standard data set 

modeling a germinal center, we obtained running times for both OpenMP and Pthreads 

implementation of PathSim2.  The computed speedups are shown in Figure 3.6 as a 

function of the number of threads used.  Note that, as expected, the OpenMP model 

performs better than pthreads model.  These results are consistent with the experimental 

results obtained when running the matrix multiplication code, and shows good scaling in 

spite of imbalances in the computational complexity between mesh elements. 
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Figure 3.6 The speedup measured from a representative PathSim2 simulation using 
Pthreads (red) and OpenMP (green) implementations [20]. 
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4 A Hybrid Parallel Computing Strategy for Monte Carlo 

Applications 
 

4.1 Introduction 
 

In this chapter, we present a strategy for utilizing a hybrid parallel computing architecture 

with good efficiency for a specific class of applications.  In the previous chapters we 

presented strategies for the efficient use of shared memory and distributed memory 

architectures for the simulation of biological systems.  However, the development of an 

over-arching hybrid strategy involves the integration of very different programming models 

and underlying architectures. 

 

With this aim in mind, we have chosen to focus on a class of scientific simulation methods 

that are both widely used and have the potential of exploiting the full potential of a hybrid 

computing architecture.  Monte Carlo methods are widely used in the scientific and 

engineering simulation community [46-48].  In addition, these methods are typically 

“separable” into two basic software parts: (1) a function of random variables that must be 

evaluated many times in order to achieve a desired statistical accuracy; and (2) a method 

for the generation of the uncorrelated random (or, more properly on a computer, pseudo-

random) variables necessary to accomplish the function evaluations.  Often times the 

function evaluation can be quite complex; for example, if high-order accuracy is necessary 

or in the simulation of complex physical phenomena.  On the other hand, the generation of 
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the massive number of pseudo-random numbers necessary can be decoupled from the 

function evaluation, and can be accomplished by any number of well-know algorithms [49]. 

 

There are several reasons why Monte Carlo applications are a good candidate for a hybrid 

computing architecture.  First, the function evaluation is typically “embarrassingly 

parallel.”  That is, if we have a distributed memory computer consisting of many multi-

core nodes, each node can run as many threads as cores and accumulate statistics for each 

node.  Then the results on each node can be combined using global, distributed memory 

communication to obtain statistics for all the nodes.  Second, if each node has an attached 

GPU, the generation of the pseudo-random numbers could, in principle, be off-loaded to the 

GPU.  The combination of these two strategies has the potential take full advantage of a 

hybrid parallel computing architecture and obtain good speedups for Monte Carlo 

applications. 

 

In this chapter we present a new approach that accomplishes this goal.  First, we present a 

portable class-based software library to support Monte Carlo applications.  Second, we 

present a detailed analysis of the performance of this implementation on hybrid 

architectures.  Third, we compare this analytical model with experimental results from a 

moderately sized hybrid parallel computing cluster for a real-world, radiative heat transfer 

calculation based on Monte Carlo ray tracing.  

 

4.2 The GPU Architecture and its Potential Use 
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In Chapter 1 we gave a brief introduction to GPU architecture and its potential use to 

accelerate computation.  The relative advantage of the GPU over the CPU is primarily due 

to the fact that it has a large number of simple, stream processers.  A rough estimate of 

this performance advantage may be obtained by assuming that the GPU has 1,000 such 

stream processors, each running at a clock rate of 1.0GHz.  This estimate yields a raw 

peak performance of this hypothetical GPU of 1Tflop, assuming 1 flop per instruction per 

processor.  A typical CPU on the other hand might have a slightly faster clock rate of 

2.5GHz. The CPU may at most perform 2 floating-point operations per clock cycle. Thus, 

the raw peak performance of this CPU would be 5Gflops.  Hence, based on this rough 

comparison of the peak performance of the two architectures gives us a potential speedup 

of 200 for the GPU over the CPU.  Much of what consider in this chapter is the answer to 

the question, “How much of these potential speedup can we obtain for a real-world 

application?” 

  

In Figure 4.1 we give a more detailed block diagram of the CPU with attached GPU 

architecture than that given in Chapter 1.  We begin by reviewing a number of important 

aspects of this architecture.  Note that the thread (or stream) processors on the GPU are 

organized into groups.  These groups are known as “compute units.”  For example, the 

ATI Radeon HD 5750 that we use for some of the experimental results presented in this 

chapter has 9 compute units, each with 80 stream processors, for a total of 720 stream 

processors.  Note each compute unit has a local memory associated with it, although this 

local memory is typically quite small (e.g., 32KB for each compute unit on the ATI Radeon 
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HD 5750).  Use of this local memory avoids memory contention issues that arise when 

using the much larger global memory on the graphics card, and sharing this memory among 

the compute units. 

 

 

Figure 4.1 A block diagram of the architecture of a multi-core CPU and attached GPU. The 
abbreviations used in the diagram are: TP, thread (or stream) processor; and LM, local 
memory. In addition, note that only one of the core CPUs can run a program on the GPU at 
a time. In the diagram, the core CPU* is the one executing a program on the GPU. Data 
from the CPU main memory and GPU global memory can be transferred via DMA over the 
PCIx bus. 

 

The program being run on each stream processors is based on the instructions issued by the 

“Thread Execution Control Unit.”  The instructions execute in SIMD fashion on each 

compute unit.  Different compute units execute independently unless there is some global 

synchronization event.  Each compute unit executes a number of logical threads, referred 

to as “work items” in the OpenCL terminology.  These work items are scheduled to run on 

the individual stream processors in the compute unit by the control unit.  Obviously, one 
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typically wants the number of work items assigned to compute unit to be a multiple of the 

number of stream processors.  In OpenCL terminology, the number of work items 

assigned to a compute unit is known as the “work group size.” 

 

Data that is needed by the GPU must be explicitly copied from the CPU memory to the 

GPU memory.  Likewise, results that are computed on the GPU must be explicitly copied 

from the GPU memory to the CPU memory.  The physical connection between these two 

memories is the PCIx bus shown in the figure.  DMA transfer is the mechanism used to 

execute the copies between the memories.  These copies can achieve the full bandwidth 

possible over PCIx, typically 4.3GB/s.  However, a distinct problem with these DMA 

transfers is the long latencies required to initiate the transfers.  We refer to this latency in 

our analysis as a “start up cost.”  These memory transfer times can be improved somewhat 

by using some specific options (e.g., using memory pinning [57]).  However, the start up 

cost remains large; for example, around 3ms for the experimental results we present in this 

chapter. 

 

Finally, we note the GPU cannot be used by more than one CPU (although this may change 

with the new version of CUDA [56]).  Thus, in the figure we depict one core, CPU*, as 

having exclusive control of the GPU.  This CPU is the one that initiates any memory 

transfers, downloads and executes the GPU program, and retrieves the computed results 

when the GPU program finishes.  
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4.2.1 Programming the GPU 
 

As is apparent from the detailed discussion of the GPU architecture, a standard 

programming language such as C/C++ is not appropriate for the GPU.  The development 

of GPU specific programming languages has been the focus of much recent development 

[59].  Clearly, as the architecture is SIMD, and due to the importance of the memory 

hierarchy on the GPU, it is important that the language map well to the underlying GPU 

architecture. 

 

Current GPU programming languages include the CUDA API of Nvidia [29] or Brook+ of 

AMD [30].  However, a distinct problem with these programming APIs is that they are 

vendor specific, and compatible only with their own vendor’s hardware.  In contrast, the 

OpenCL API is an open standard put forward, developed, and maintained by the Khronos 

Group consortium [8].  The OpenCL API has been adopted by a number of vendors 

including Intel, ATI, Nvidia, and Apple.  The goal of this standard is to maintain 

portability while achieving performance comparable to the vendor specific implementations. 

 

Given the portability of the OpenCL API and its ability to achieve good performance on 

GPU architectures, we have used this API for the GPU implementation for the pseudo-

random number portion of the Monte Carlo software.  The organization of the code 

developed is discussed in more detail in subsequent sections of this chapter. 
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4.2.2 A Simple Model for GPU Speedup 
 

Based on the above discussion on the GPU hardware, and its performance 

characteristics, one can develop a simple model for the speedup of an application 

that takes advantage of an attached GPU for some of its processing.  The basic 

idea for our model is that we assume two things.  First, we assume that some 

amount of data, for example the computed results, have to be transferred between 

the CPU and GPU memories.  Second, we assume that for each word transferred 

between the memory, the underlying calculation done on the GPU executes some 

number of instructions that is proportional to the number of words transferred.  For 

example, with the pseudo-random number generation done on the GPU, we know 

that up to 200 instructions are generated on a stream processor for each number 

generated [49].  We can think of this factor as a form of data “reuse” and we 

denote it by the symbol ρ.  Finally, we assume that our calculation achieves perfect 

speedup, so that the programs run independently on the stream processors and only 

the number of stream processors, p, on the GPU, limits that performance on the 

GPU. 

 

Given the discussion above about transferring data between the CPU and GPU (or visa 

versa), we can use the following equation to model the time, TTranfer (n), to transfer n words 

of data, 

 

TTranfer (n)  = tw n + ts                      (4.1)  
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In this equation, tw represents the time to transfer a word of data (say 4 bytes) and ts 

represents the “start up” cost for each transfer.  From the above discussion, we can 

approximate ts by 3.0ms, and tw by 4.0bytes/4.3GB/s ≈ 9.3×10-10 s/word.  

 
To estimate the time required for our model program to execute on a GPU with p 
stream processors, TGPU(n,p), we can use the following expression, 
 

TGPU (n,p) = ρ tGPU ⎡n/p⎤ + TTranfer (n). (4.2)  

 

Again, recall that the number of times that each word transferred is “reused” is given by the 

term ρ, and that the time to execute one instruction on the GPU is tGPU.  A simple 

approximation for tGPU would be 2.0×10-9 s, assuming that the GPU clock was 500MHz 

(just to use round numbers).  Note that the number of concurrent threads that can run is 

limited by p, the number of stream processors and we assume that each thread uses one 

word of data.  

 

To compare the time on the GPU to the time for the same problem to execute on the CPU, 

we can assume (again rather unrealistically) that we can execute our code at the peak flop 

rate, so that tCPU would be about 2.0×10-10 s for our 5Gflop CPU.  Thus, the time required 

to execute our program on the CPU for n words, TCPU (n), can be modeled by the equation 

 

TCPU (n) = ρ tCPU n. (4.3)  
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We can use these two expressions to compute an overall speedup for using the GPU over 

using the CPU.  The resulting speedup, S (n,p), is given by the expression, 

 

S (n,p) = TCPU (n) / TGPU (n,p). (4.4)  

 

We can look at this expression for the speedup as two-dimension function of the number of 

words that we are using and the amount of reuse that each word of data gets once on the 

GPU.  In Figure 4.2 we show a two-dimensional contour plot showing iso-speedup curves 

for several different speedups.  

 

 

Figure 4.2 Iso-speedup curves for a simple computational model for different amounts of 
data reuse and data communication between the CPU and GPU. 

 

In Figure 4.2 note that although the theoretical maximum speedup is 1,000, the 
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actual speedups that one can achieve are severely limited by the overhead inherent 

in the data transfers between the CPU and GPU.  In order to achieve speedups 

greater than 10, the data reuse must be at least 200.  This asymptotic relationship 

can be improved by increasing the data reuse, increasing the number of stream 

processors, or by decreasing the incremental transfer cost tw. 

 

In addition, note that the minimum data set size must be large, greater than 1MB, 

in order to achieve any reasonable speedup.  This limitation is a result of the 

relatively large start up cost, ts.  Thus, the only way an implementation will 

achieve reasonable speedups is if the data transfers are large and combined into 

single transfers (or as few transfers as possible).  Given that we know the pseudo-

random number generation has a data reuse of about 200, this simple model 

predicts that the best speedups we will be able to obtain is in the range of 10 to 

20.  The results that we present later in the chapter are quite close to this rough 

estimate.  In this results we do slightly better.  This difference is due to the fact 

that the CPU does executes the PRNG at a slower rate than the 5Gflop rate of our 

model, and the fact that the GPU clock is slightly faster than the 500MHz that we 

used in our model.  In any case, this simple model dramatically illustrates some of 

the limitations of using the GPU to accelerate a calculation.  

 

4.3 Introduction to Monte Carlo 
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As noted at the beginning of this chapter, the Monte Carlo method is widely used in 

scientific and engineering applications [46-48].  To understand the basics of implementing 

the Monte Carlo method, an example of simple toy problem is illustrative.  Suppose that 

we wanted to compute the number π.   One way to do this would be to compute the area 

of the unit circle, which we know to be π.  We could accomplish this task numerically 

using the following approach.  Suppose that we have a function Random() that returns 

uniformly distributed, statistically independent random numbers on the unit interval [0,1]. 

Consider the illustration shown in Figure 4.3.   

 

 

Figure 4.3 A simple example illustrating how π can be computed by using a Monte Carlo 
method.  In this case, the random point in the unit square is checked to determine whether 
it is within the unit circle.  Statistics on the number of such points can be used to estimate 
the value of π.  

 



 50 

We can use two of the random values to generate a random point in the unit square, (X,Y), 

as shown in the Figure 4.3.  This point is either within the unit circle or not.  We generate 

many independent random points and keep track of the number of these points that are 

found to be within the unit circle.  If we then compute the ratio of the number of points 

within the circle compared to the total number of points generated, this ratio would give us 

an estimate of the area of the quarter circle shown in the figure.  Given the areas of the 

unit square and the quarter unit circle, this ratio would give us an estimate of the value of 

π/4.  

 

// A sequential code to estimate π using a Monte Carlo scheme 

 
// num_samples is the number of Monte Carlo samples to be done 
int num_inside = 0; 
for (int i=0; i<num_samples; i++) { 

 
// 1. Generate the random point (X,Y) 
float X = Random(); 
float Y = Random(); 
 
// 2. Compute the Monte Carlo “function” F 
float F = X*X + Y*Y; 
if (F <= 1.0) num_inside++;  

} 
 
// Estimate π 
float pi_estimate = 4.0 * (float) num_inside / (float) num_samples; 

Figure 4.4 A sequential code to estimate π using the Monte Carlo method 
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Another important point about this program is that the computational cost of evaluating the 

function Random() is relatively expensive.  For example, the well-known pseudo-random 

number generator RANLUX requires from 24 to 389 instructions on the CPU to generate a 

pseudo-random number [50].  Thus, running time for the code to compute π given in 

Figure 4.4 is completely dominated by the computational cost of computing the pseudo-

random numbers. 

 

4.3.1 A Multi-Threaded Version of the Monte Carlo Method 
 

A first step toward developing a hybrid parallel version of the Monte Carlo code would be 

to adapt it to a multi-core, shared memory architecture.  The obvious way to implement 

such a code would be to use a multi-threaded approach where a “master” process spawns a 

number of “worker” threads, each of which computes independent evaluations of the Monte 

Carlo function.  The master process then waits for all the worker threads to complete and 

then uses these results to compute an improved Monte Carlo estimate.  For example, using 

the toy problem discussed above, a pthread version of this multi-threaded Monte Carlo code 

could look something like the code given in Figure 4.5.  

 

It is clear that the above approach is “embarrassingly parallel.”  One would expect that if 

the number of samples (num_samples) is large and the number threads used 

(NUM_THREADS) is equal to the number of cores available, then the overall speedup 

would close to the number of cores.  However, there are some critical aspects to making 

this scheme work. First, the pseudo-random number generators (PRNG) have an internal 
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state.  Thus, each thread must have its own instance of a PRNG so that the state is not 

shared.  The PRNG are usually designed to be thread-safe (e.g., GSL [43]); however, 

using a single instance would mean that only one thread would be allowed to alter the state 

at a time defeating the whole purpose of the parallelization scheme.  Second, if each 

thread has its own instance of the PRNG, then the state tables must be initialized in a way 

that ensures that the numbers generated are uncorrelated [51].   

 

4.3.2 Asynchronous Generation of Pseudo-Random Numbers 
 

The multi-core approach discussed in the previous subsection can achieve excellent 

speedups; however, the running time of the program would still be dominated by the time 

required to compute the pseudo-random numbers.  Our goal is to develop an approach that 

takes advantage the tremendous computational resources available on an attached GPU to 

dramatically reduce the time required to generate these numbers.  In this section we 

produce a new, asynchronous algorithm that allows us to take full advantage of GPU to 

achieve these speedups. 

 

There are several key observations that we can use to develop our algorithm.  First, 

although we think of the calls to the function Random() in Figures 4.4 and 4.5 as generating 

the pseudo-random number after the function call, and then returning the result, there is no 

reason that the numbers cannot be generated earlier.  All we require is that the numbers 

are statistically independent.  Thus, in principle, we could use a large array to hold 

statistically independent pseudo-random numbers that are generated asynchronously, prior  
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// A mutli-threaded code to estimate π using a Monte Carlo scheme 
 
// A data structure to pass arguments to the worker threads 
typedef struct { 

int num_samples; 
float pi_estimate; 

} threadArgs; 
 
// the worker thread 
void *pi_estimate_thread (void *ptr) 
{ 

threadArgs *thread_arg_ptr = (threadArgs *) ptr; 
int num_inside = 0; 
for (int i=0; i< thread_arg_ptr->num_samples; i++) { 

// 1. Generate the random point (X,Y) 
float X = Random(); 
float Y = Random(); 
// 2. Compute the Monte Carlo “function” F 
float F = X*X + Y*Y; 
if (F <= 1.0) num_inside++; 

} 
// Estimate π 
thread_arg_ptr->pi_estimate = 4.0 * (float) num_inside / (float) num_samples; 
// exit thread 
pthread_exit(NULL); 

} 
 
// The main “master” routine that spawns the worker threads, waits for these 
// threads to complete, and then merges the pi estimates from each thread 
 
int main() 
{ 

threadArgs  thread_args_array[NUM_THREADS]; 
float  thread_pi_estimate[NUM_THREADS]; 
 
// Start all the worker threads 
for (int i = 0; i < NUM_THREADS; i++) { 

threadArgsArray[i].num_samples = num_samples; 
pthread_create(&threads[i], &attr,  pi_estimate_thread, 

(void*) &thread_args_array[i]); 
} 
// Wait for all threads to complete 
for (int i = 0; i < NUM_THREADS; i++) { 

pthread_join(threads[i], NULL); 
thread_pi_estimate[i] = thread_args_array[i].pi_estimate; 

} 
// Compute overall estimate for π 
float sum = 0; 
for (int i = 0; i < NUM_THREADS; i++) { 

sum += thread_pi_estimate[i]; 
} 
float pi_estimate = sum / (float) NUM_THREADS ; 

 
return(0); 

} 

Figure 4.5 A multi-threaded code to estimate π using the Monte Carlo method 
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to any of the Random() function calls.  A call to Random() could just read the next number 

available from this array and increment a pointer keeping track of which numbers had been 

used.  Second, if we compute the pseudo-random numbers on the GPU, for efficiency we 

will have to compute large blocks of these numbers at a time because of the time required 

to copy these numbers from the GPU memory to the CPU memory where they are used.  

Third, on the GPU we can use the same scheme that we used in the multi-core program 

where we have different instance of the PRNG state for each independent thread running on 

the GPU. This will ensure that the numbers generated are statistically independent. 

 

In addition to the three observations detailed in the previous paragraph, there are constraints 

on how the GPU can be used.  In particular, only one thread can execute a GPU program 

at time [52].  Because of this constraint, it makes sense, from a programming perspective, 

to have a single thread that we can think of as a daemon that “manages” the execution of 

the GPU programs that generate the blocks of pseudo-random numbers.  On the other 

hand, the worker threads that use the pseudo-random numbers should be able to run 

asynchronously with respect to this daemon.  All each worker thread requires is access to 

a unique block of pseudo-random numbers.  When presented in this way, this approach 

fits into the producer-consumer design pattern [53-55].  We have one producer, the 

daemon that manages the GPU programs and produces full blocks of independent pseudo-

random numbers.  And we have multiple consumers, the worker threads that use the full 

blocks of pseudo-random numbers and return them empty to be re-filled by the GPU 

managing daemon. 
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Figure 4.6 An illustration of how the random number blocks are managed between the GPU 
managing thread and the Monte Carlo application threads. The thread that manages GPU 
acts as a producer; it has exclusive access to a memory block and fills this block with data 
from the GPU program. Multiple Monte Carlo application threads act as consumers of these 
blocks; they may obtain exclusive of a filled block, use the numbers, then return the block 
marking it as empty. The empty blocks will be in turn re-filled by the managing thread [32].  

 

This scheme is illustrated in Figure 4.6.  We have a number of memory blocks that can be 

filled with pseudo-random numbers.  If any of these blocks is empty, the GPU managing 

daemon runs and executes a GPU program to generate one memory block of pseudo-

random numbers.  Once the GPU program completes, the daemon copies this data back to 

CPU memory and puts the data in the unused block of memory.  If all the memory blocks 

are full, or are being used by worker thread, the daemon blocks execution until a memory 

block becomes free.  On the consumer side, if a worker thread needs a block of pseudo-

random numbers, it asks for any of the available blocks.  If one is full, this thread is given 

exclusive access to this block and uses the numbers for its calculation.  If one is not full, 
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the worker thread blocks until a full block becomes available.  Once the worker thread 

finishes with a block, the block is marked as empty and returned to the pool of blocks to be 

filled by the daemon. 

 

4.3.3 A Class-Based Library to Support GPU Accelerated Monte Carlo 
Methods 

 

In designing the software to implement the algorithms discussed in the previous subsections, 

a number of design choices were made.  First, software should be designed to make it easy 

for a user to add this functionality to their application.  Second, the software should be 

flexible to allow the use different pseudo-random number generators with minimal changes 

to the software base.  Third, the managing thread software should be portable and robust. 

The software that developed to support Monte Carlo applications achieves each of these 

goals. In this subsection we detail how these goals were achieved. 

 

The first software goal, ease of integration into existing Monte Carlo codes is done through 

the specification of simple API that matches up one-to-one with the API for sequential 

PRNGs.  The interface is based on class-based library including a class randClass that is 

directly instantiated by the user.  The example code given in Figure 4.7 shows how the 

multi-threaded thread code for computing π would be modified to use the Monte Carlo 

libraries.  Note that the worker code has hardly changed at all.  In place of the unique 

PRNG state for each worker thread, we have substituted the instance of the class randClass.  
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The argument to the randClass constructor determines the underlying PRNG to use.  The 

instance of randClass is destroyed when the worker thread exits. 

 
#include "randClass.h" 
 
… 
 
// the worker thread modified to use the Monte Carlo library 
void *pi_estimate_thread (void *ptr) 
{ 

threadArgs *thread_arg_ptr = (threadArgs *) ptr; 
 
// instantiate randClass in each worker thread 
randClass myRand("GPURandLux"); 
 
int num_inside = 0; 
for (int i=0; i< thread_arg_ptr->num_samples; i++) { 
 

// 1. Generate the random point (X,Y) 
float X = myrand.Random(); 
float Y = myrand.Random(); 
 
// 2. Compute the Monte Carlo “function” F 
float F = X*X + Y*Y; 
if (F <= 1.0) num_inside++; 

} 
 
// Estimate π 
thread_arg_ptr->pi_estimate = 4.0 * (float) num_inside / (float) num_samples; 
 
// the user must call the exit function before exiting the worker thread 
myRand.exitFunction(); 
 
// exit thread 
pthread_exit(NULL); 

} 
 

Figure 4.7 A version of the example worker thread from Figure 4.5 modified to use the 
Monte Carlo class-based library.  This library enables the user the option of using pseudo-
random numbers generated asynchronously on the attached GPU. 

 

The second software goal, that of having the flexibility to add different PRNG generators to 

the Monte Carlo library is done by defining an abstract base class, randNumGenerator, and 
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an API that can be used by the managing thread independent of the underlying PRNG. The 

interface defined by this class includes the API shown in Figure 4.8. 

 

class randNumGenerator { 
public: 

virtual int getBlockSize() = 0; 
virtual void init() = 0; 
virtual void generateBlock(float *) = 0; 

  … 
} 

 

Figure 4.8 The API defined for the abstract base class randNumGenerator . 

 

This base class can then be used to implement a derived class to implement any of a 

number of PRNG.  Of course, we are most interested in developing a GPU accelerated 

scheme.  The interface includes a method that returns a preferred block size.  This 

preferred block size is used by the managing thread to determine the memory size required 

to hold the generated pseudo-random numbers.  The block size is determined by the 

PRNG because this size depends on the particular algorithm and specific characteristics of 

the GPU hardware.  The virtual method init() does any required one-time initialization of 

the PRNG.  For example, the initialization of the PRNG state tables for each thread run on 

the GPU would be done here.  Finally, the method generateBlock(float*) fills the memory 

block at that pointer with a block size of pseudo-random numbers generated by the 

implemented method.  For the GPU version, the implementation of this method would 

have to do everything required to copy data back and forth to the GPU, compile the GPU 
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program, and initialize and run the GPU program.  Again, this class, GPURanLux, which 

is a derived class from randNumGenerator is not instantiated by the user.  Instead, the 

user instantiates randClass, and the randClass constructor take care of creation and 

destruction of the particular pseudo-random number generator used. 

 

We now discuss the implementation of the class randClass.  The user interface to this 

class is designed to be simple and easy to use, but the class has a number of subtle features 

in its implementation.  As shown in Figure 4.7, each thread has its own instance of the 

class.  However, all these class instances make use of shared data and a single thread that 

manages the generation of the pseudo-random numbers.  To see how this is accomplished, 

in Figure 4.9 we show a small portion of the class definition. 

 

The idea is that the first instance of the class is the one that allocates all the buffer space for 

the pseudo-random numbers (in **buffers) and starts up the managing thread.  A number 

of variables are declared as static (i.e., global to the class).  In this way there is only one 

copy of each of these variables and so that each instance has access to these variables.  

Once started, the managing thread asynchronously fills the buffers based on a version of the 

producer/consumer algorithm.  The static semaphores are used to unblock and block the 

managing thread based on whether there are buffers to be filled or if all the buffers have 

been filled.  Each instance of the class uses the shared mutex to claim or release a buffer 

of numbers.  Each instance keeps track of its current buffer and where it is in the buffer 

with the non-static variables currentBuffer and bufferPointer. 
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class randClass { 
public: 

// constructor, the string argument selects the particular PRNG 
randClass(string); 
// returns a uniform pseudo-random number 
double Random(); 
// An exit function that each instance must call 
void exitFunction(); 

private: 
// static buffer and thread variables 
static cl_float **buffers; 
static pthread_t randThread; 
… 
// static synchronization variables 
static sem_t *emptySemaphore; 
static sem_t *fullSemaphore; 
static pthread_mutex_t modifyMutex; 
… 
// non-static variables, i.e., unique to each instance of randClass 
int currentBuffer; 
int bufferPointer; 

… 
} 

 

Figure 4.9 A portion of the class definition for randClass. 

 

Another potentially tricky part of the implementation is the destruction of the class 

instances.  In particular, the managing thread and the buffer memory should be released 

only when the last instance of the class is destroyed. This is ensured by having the user call 

the method exitFunction() prior to exiting the worker thread and the class destructor being 
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called (typically because the class instance goes out of scope).  The correct way to do this 

is shown in the code segment in Figure 4.7.  The exit function keeps track of the number 

of individual instances.  When the last instance is being destroyed, this method gracefully 

cancels the managing thread and frees all the allocated static memory.  Following the call 

to this function, the worker thread can exit safely and the destructor called.  Following the 

call to the exit function by the last instance of the class, if another thread instances 

randClass then the buffer memory would be re-allocated and the managing thread restarted. 

 

4.3.4 Ensuring Statistical Independence 
 

A subtle, yet important issue is the statistical independence of the pseudo-random numbers 

used by all the Monte Carlo application threads running on a hybrid, parallel computing 

architecture.  There are two places where this issue arises. First, on the GPU each work 

item executes as an independent thread.  Clearly, each of these work items must have a 

state table for its PRNG that ensures this independence.  Second, if we are running the 

application in a distributed memory environment, the state tables used on different nodes 

must be independent. 

 

The first issue, the multiple state tables on a single GPU is solved by initializing the state 

tables with independent data.  Then following the execution of the GPU program, both the 

generated pseudo-random numbers and the current state tables are copied back to the CPU. 

In this manner, the next time the GPU program is executed, the current state tables can be 
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restored to the GPU.  In Figure 4.23 we show the correct convergence of a Monte Carlo 

calculation done on a single node demonstrating the independence of these state tables. 

 

The second issue, what to do in a distributed memory environment is solved by using an 

offset to the state table that is derived from the node number.  This number can be 

obtained from an MPI call, and then the state tables can be offset so that the state tables on 

each node are independent.  This independence is illustrated in the radiative heat transfer 

results shown in Figure 4.32.  

 

In the following subsections we discuss the actual implementation of the GPU-accelerated 

PRNG and develop a detailed analysis of its performance.  Using this analysis one can 

select a buffer size for the randClass instances that optimizes the overall performance of 

the implementation.  The actual implementation of this PRNG is done in the derived class 

GPURanLux.  As optimizing the performance of these algorithms is particular to this 

implementation, this class internally determines a buffer size to use and returns this size to 

randClass through the getBlockSize() method as defined in Figure 4.8. 

 

4.4 Analysis of GPU-accelerated Pseudo-random Number Generation 
 

In this section we develop a theoretical model to analyze the performance of our GPU-

based pseudo-random number generation framework.  For this analysis, we consider only 

the thread that manages the GPU kernel that is used to compute the blocks of pseudo-

random numbers.  We assume that the computation time is not constrained by the time 
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required by the Monte Carlo threads that consume the numbers generated by the GPU 

thread.  In this case, the time required by the framework is completely limited by the time 

required to compute the pseudo-random numbers on the GPU. 

 

4.4.1 Data Transfer between GPU and CPU 
 

We first consider the problem of modeling the time to read and write data between the CPU 

memory and the GPU memory.  As has been noted elsewhere [33], a linear model can 

accurately represent the time required to transfer data between these memories as a function 

of the amount of data transferred.  We show experimental results for the measured transfer 

times for both writing from the CPU memory to the GPU memory and reading from the 

GPU memory to the CPU memory.  Note that the linear approximations differ slightly. 

 

Using the GPU to generate pseudo-random numbers involves three main factors: the 

transfer of state tables from CPU to GPU memory, the actual computation of the pseudo-

random numbers on the GPU stream processors, and finally the copying back of the state 

tables and the pseudo-random numbers from the GPU to CPU memory. 

 

The memory transfer time between the CPU and GPU and back again can be modeled by a 

linear dependence with respect to the amount of data transferred.  Accordingly, if we 

denote the time required to copy m bytes of data from the CPU to the GPU by TCPU→GPU (m) 

and the time required to copy m bytes of data from the GPU to the CPU by TCPU→GPU (m), 

we have the linear relations 
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TCPU→GPU(m)  = tCG m + ts                      

 TGPU→CPU(m)  = tGC m + ts. 

(4.5)  

 

In these formulae ts is a “start up” time for the copy, tCG is the incremental time required to 

copy each addition byte of data from the CPU to the GPU, and tGC is the incremental time 

required to copy each addition byte of data from the GPU to the CPU.  These constants are 

architecture dependent and can easily be measured.  For example, for a ATI Radeon HD 

5750 GPU attached machine used for the results presented in the experimental section of 

the π value calculation in this chapter, we obtained the data shown in Figure 4.10. 

 

Figure 4.10 Experimental results from a ATI Radeon HD 5750 GPU attached machine 
showing the time (in seconds) required transferring data between the CPU and the GPU 
(and visa versa) as a function of the number of bytes transferred. Note the different 
incremental transfer rates to and from the GPU. [32]. 
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We also obtained the data for the Athena system used for the results presented in the 

experimental section of the RHT simulation in this chapter, and it is shown in Figure 4.11. 

 

Using a linear least squares fit to the data shown in Figure 4.10 and Figure 4.11, we obtain 

the values for the constants in Equation 4.5 as shown in Table 4.1. 

 

 

Figure 4.11 Experimental results from the Athena system showing the time (in seconds) 
required transferring data between the CPU and the GPU (and visa versa) as a function of 
the number of bytes transferred. Note the different incremental transfer rates to and from 
the GPU. 
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for.  The stream processing units are organized into compute units, and the number of 

threads that are assigned to each compute unit is given by the work group size.  For 

example, for the ATI Radeon HD 5750 used for π value calculation experiment, the number 

of stream processing units per compute unit is 80.  Thus, the work group size used must be 

at least as large as the number of stream processing units per compute unit.  Overall this 

GPU has 9 compute units for a total of 720 stream processing units.  Note that for the 

Athena systems used for the RHT experiment, the number of stream processing units per 

compute unit is 32 and the compute unites are 14.  Overall this GPU has 448 stream 

processing units. 

 

Table 4.1 The constants ts, tCG and tGC obtained by a linear least-squares fit to the data in 
Figure 4.9 and Figure 4.10.  These constants are for the ATI Radeon HD 5750 attached 
machine used for the π value calculation results, and the Athena system, the hybrid 
computing system used for the RHT experimental results. 

Constant Time (ATI Radeon HD 5750) Time (Athena) 

ts 2.9ms/copy 3.0ms/copy 

tCG 0.23ns/byte 0.29ns/copy 

tGC 0.19ns/byte 0.37ns/copy 

 

4.4.2 Computation Model for Pseudo-random Number Kernel Code 
 

To develop an analysis for the computational time required to generate a block of pseudo-

random numbers by the GPU thread it is necessary to examine the GPU architecture and 

GPU kernel code in some detail.  An overview of the key section of the GPU thread code 
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that calls the GPU kernel is shown in Figure 4.12. In Figure 4.13 we give a high-level view 

of the OpenCL kernel code that is executed by each thread on the GPU. 

 

From the OpenCL pseudo-code shown in Figure 4.12, one can see that the required 

computation time is comprised of the time required to complete three types of tasks.   

 

// Write the pseudo-random number state tables to the GPU memory 

queue.enqueueWriteBuffer(PRN_Tab, PRN_Tab_Size, GPU_PRN_Tab); 
 
// Set kernel arguments 

Kernel_PRN.setArg(0, KernelCycles); 
Kernel_PRN.setArg(1, GPU_PRN_Tab); 
Kernel_PRN.setArg(2, GPU_PRNs); 
 
// Iterate by calling the GPU kernel a number of times to compute 

// an entire block of pseudo-random numbers 

for (int Iter=0; Iter<NumIterations; Iter++){ 

   // Execute the pseudo-random number kernel on the GPU 

   queue.enqueueNDRangeKernel(Kernel_PRN);  

  // Read back a partial block of newly computed pseudo-random numbers 

  queue.enqueueReadBuffer(PRNs, PRNs_Size, GPU_PRNs); 
} 

 
// Read back the pseudo-random number state tables 

queue.enqueueReadBuffer(PRN_Tab, PRN_Tab_Size, GPU_PRN_Tab); 

Figure 4.12 A simplified overview of the OpenCL calls used to compute a block of 
pseudo-random numbers on the GPU. The variables PRN_Tab and PRNs are pointers to 
arrays in the CPU main memory for the pseudo-random number state tables and the buffer 
of pseudo-random numbers. The variables GPU_PRN_Tab and GPU_PRNs are pointers to 
memory on the GPU [32]. 
 

First, data must be written from the CPU memory to the GPU memory.  This task is 
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accomplished by calling the OpenCL function queue.enqueueWriteBuffer.  Second, the 

OpenCL kernel must be run on the GPU.  This task is accomplished by the OpenCL 

function queue.enqueueNDRangeKernel.  Note that the kernel arguments are set by the 

OpenCL calls to the function Kernel_PRN.setArg.  And, third, data must be read back 

from the GPU memory to the CPU memory.  This task is accomplished by the OpenCL 

function call queue.enqueueReadBuffer. 

 

__kernel void KernelPRN( global KernelCycles, global float *PRN_Tab, global float 
*PRNs){ 
// Number of workgroup 
int gid = get_global_id(0); 
 
// Number of workgroup size 
int global_size = get_global_size(0); 
 
// four-vector used as a return argument for the pseudo-random number generator 
float4 randomnr = 0; 
 
// Generate pseudo-random numbers and then copy to GPU PRN buffer 
for ( int i = 0; I < KernelCycles; i += 4){  
     randomnr = random_generator(); 
     PRNs[gid  +  (i+0) * global_size] = randomnr.x; 
     PRNs[gid  +  (i+1) * global_size] = randomnr.y; 
     PRNs[gid  +  (i+2) * global_size] = randomnr.z; 
     PRNs[gid  +  (i+3) * global_size] = randomnr.w; 
} 

Figure 4.13 A high-level view of the kernel code run on the GPU. The arguments passed to 
the kernel include the number of OpenCL function call t be written from the CPU memory 
to the GPU memory.  This task is accomplished by to the pseudo random number block 
(output). Each GPU thread uses its workgroup number and size to write the numbers it 
computes to the correct GPU memory location in the PRNs buffer [32]. 

 

From the above kernel code, the next aspect of computing the pseudo-random numbers on 
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the GPU is the time to execute the “kernel” (the OpenCL program that contains the 

instructions that are executed on the GPU).  This time can be modeled as consisting of two 

parts, a “kernel start up time” Ts and a “kernel execute time” which we denote by Te.  The 

total time to execute the kernel, Tk, is modeled as the sum of these two terms as 

 

Tk = Te  + Ts. (4.6)  

 

The pseudo-random number generator works by generating a sequence of numbers in a 

loop⎯we denote the number of times through the loop, or the “kernel cycle,” as nk.   

Empirically we determine that Ts can be modeled as a function of nk by the equation 

 

Ts (nk) = ank +b, (4.7)  

 

where a is an incremental rate measured to be 200ns/kernel-cyle, for the ATI Radeon HD 

5750, and 100ns/kernel-cyle, for the Athena machine.  The constant b is a fixed setup time 

measured to be 0.9ms, for the ATI Radeon HD 5750, and 1ms, for the Athena machine.  

Each kernel cycle, the GPU tries to schedule some number of threads, nwgs, called the 

“working group size” on each compute unit in the GPU.  The GPU performance is, 

however, limited by the number of stream processors that it has per compute unit.  We 

denote this number by pwgs (this number is 80 for the ATI Radeon HD 5750 and 32 for the 

Athena system).  Given that it takes some amount of time to execute the thread, say tc
GPU, 

then the second term, the “kernel execute time,” can be modeled as 
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Te  (nk ,nwgs)  = nk tc
GPU ⎡nwgs / pwgs⎤ , (4.8)  

 

where tc
GPU was measured to be 160 ns/number for the ATI Radeon HD 5750 attached 

machine and 400ns/number for the Athena system.  Using the Equations 4.7 and 4.8 to 

model the overall execution time for one kernel cycle as given in (4.6), we obtain the black 

‘*’ points shown in Figure 4.14. 

 

 

Figure 4.14 The time measured for the kernel to execute as a function of the work group 
size per work group (or compute unit) for the ATI Radeon HD 5750 attached machine. For 
this data we fixed the number of work groups to be one. The experimentally measured data 
from the Athena system is shown as the green ‘+’ points, the modeled times, based on 
Equation 4.6, are shown as the black ‘*’ points on this graph. In this figure the number of 
kernel cycles is fixed at 10,000. 
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Likewise, for the Athena System we can use its machine constants to obtain the black ‘*’ 

points to model the overall execution time for one kernel cycle. This data is shown in 

Figure 4.15 where it compared to the experimentally measured times for the Athena 

machine. 

 

 

Figure 4.15 The time measured for the kernel to execute as a function of the work group 
size per work group (or compute unit) for the Athena System. For this data we fixed the 
number of work groups to be one. The experimentally measured data from the Athena 
system is shown as the green ‘+’ points, the modeled times, based on Equation 4.6, are 
shown as the black ‘*’ points on this graph. In this figure the number of kernel cycles is 
fixed at 10,000. 

 

In Figures 4.14 and 4.15 the number of kernel cycles, nk, is fixed at 10,000; we then 
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(e.g., 32, 64, and 96) for the ATI Radeon HD 5750 attached machine and 80 (e.g., 80, 160, 

and 240) for the Athena system, we observe discrete jumps in the measured times as 

predicted by Equation 4.8. 

 

A good way to parameterize the performance of the pseudo-random generator is in terms of 

the number of work items, nwi, which is the product of the number of work groups, nwg, and 

the work group size, nwgs, as follows 

 

nwi = nwg nwgs . (4.9)  

 

This a good way to parameterize the scaling of the parallel algorithm because the number 

of work items, nwi, represents the number of independent “tasks” that are to be executed on 

the GPU.  However, there are two limitations to the number of these tasks that can be 

executed in parallel.  First, only one work group can use a compute unit at a time; hence, 

the number of work groups that can execute in parallel is limited by the number of compute 

units on the GPU.  We denote the number of compute units on the GPU by nCU.  Second, 

as discussed above, the number of stream processors per compute unit, pwgs, limits the 

number of threads that can execute at one time on a compute unit. 

 

A complete model of the time required to generate the pseudo-random numbers requires 

that we also include the time necessary to copy the pseudo-random number seed tables back 

and forth between the CPU and GPU memory (one table for each work item) and to copy 



 73 

the pseudo-random numbers from the GPU to the CPU memory.  To help amortize the 

cost of copying the seed tables between the CPU and GPU memories, we iteratively run the 

GPU kernel code ni times. Each time the GPU kernel code is run we generate n' = nk nwi 

pseudo-random numbers.  Thus, the total number of pseudo-random numbers generated is 

given by n = ni n'.  

 

Therefore, in our model we have four separate parts to consider: (1) the time to upload the 

seed tables, TseedUp; (2) the time to download the seed tables TseedDown; (3) the kernel 

execution time, Tk; and (4) the time to download the n' pseudo-random numbers, 

TGPU→CPU(n').  

 

On the first line of the program outline given in Figure 4.11, the data written to the GPU are 

the pseudo-random number state tables.  We use ntab to represent the number of bytes 

comprising one of the number state tables.  We require a unique state table for each 

independent pseudo-random number generator thread that we run on the GPU.  Thus, the 

time required to write the state tables to the GPU is given by the expression 

 

 TseedUp  = nwi ntab tCG  + ts . (4.10)  

 

The time required reading the state tables back from the GPU (the last line of the program 

segment in Figure 4.12) is given by the expression 
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 TseedDown  = nwi ntab tGC + ts . (4.11)  

 

In addition, to reading and writing the state tables, we also need to read the pseudo-random 

numbers generated on the GPU back to the GPU.  Then the time required reading these 

numbers back would be given by the expression 

 

TnumDown  = nk nwi tGC + ts .                                      (4.12)  

 

After generating pseudo-random numbers on GPU, those numbers need to be downloaded 

to CPU memory side.  Thus the time required downloading those numbers is given by the 

expression 

 

TnumDown  = nk nwi tGC + ts  

                                  = tGC n’ + ts . 

(4.13)  

 

Combining these factors, the time to generate n pseudo-random numbers using the GPU, 

TRN
GPU (n), can be expressed as: 

 

          TRN
GPU (n) = TseedUp + TseedDown  + ni [Tk(nk,nwgs) + TGPU→CPU(n')] 

                   = TseedUp + TseedDown  + ni [Tk(nk,nwgs) + tGC n' + ts] . 

(4.14)  

 

The seed table size is 28 words, and we require a separate seed table for each work group.  
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However, given that the number of work groups is at most in the thousands, and the number 

of pseudo-random numbers that we will be copying back from the GPU is typically in the 

millions, we can ignore TseedUp and TseedDown in Equation 4.14 and use the following 

approximation,  

 

                        TRN
GPU (n) ≈ ni [Tk(nk,nwgs)+ tGC n' + ts] . (4.15)  

 

Also note that in our formulation of Tk(nk,nwgs), we tacitly assumed that there are an 

unlimited number of compute units available on the GPU.  In practice, of course, the GPU 

architecture has limited number of compute units, nCU.  When the number of work groups 

is larger than the number of compute units, the extra work corresponding to these additional 

work groups must be scheduled sequentially on the GPU.  To take this effect into account, 

we introduce a modified kernel execution time function, Tk
*(nk, nwgs, nwg).  The modified 

kernel execution time can be expressed as 

 

                    Tk
*(nk, nwgs, nwg) = Tk(nk,nwgs) ⎡nwg / nCU⎤ . (4.16)        

 

To compute the speedup of the GPU accelerated algorithm, we need a model for the 

running time of the sequential algorithm on the CPU.  As this running time should depend 

linearly on the number of pseudo-random numbers generated, we model the time to 

generate the numbers using the CPU, TRN
CPU (n), as: 
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                         TRN
CPU (n) = nk nwi ni tc

CPU 

                                  =tc
CPU n . 

(4.17)  

 

The pseudo-random number generator used on the GPU is an implementation of RANLUX 

[42].  Thus, on the CPU we use the GNU Scientific Library (GSL) implementation of this 

pseudo-random number generator [43].  For the GSL implementation of RANLUX with a 

luxury level of 0 (gsl_rng_ranlxs0) the value measured for tc
CPU for the ATI Radeon HD 

5750 attached machine for the π estimation is 65ns/number and for the Athena system used 

for the RHT experiments is 50ns/number.  For a luxury level of 2, this value was 

measured to be 120ns/number for the Athena system.  Combining the two models, the 

speedup of generating n pseudo-random numbers using the GPU compared to CPU can be 

computed as 

 

                     SRN (n) = TRN
CPU (n) / TRN

GPU (n) . (4.18)  

 

This speedup is presented below in Figure 4.16 for the Radeon HD 5750 attached machine 

and in Figure 4.17 for the Athena system.  In those figures we show both the 

experimentally measured speedup and the theoretical speedup based on the model 

presented above computed using the machine parameters for the Athena system.  Note that 

we plot the theoretical speedup for two models. The first model assumes an unlimited 

number of compute units, and the second model is based on Equation 4.16, where the 

number of compute units is limited to 9 (as for the ATI Radeon HD 5750 attached machine) 



 77 

and 14 (as for the Athena system). 

 

 

Figure 4.16 Speedup plots comparing the GPU execution time to the CPU execution time 
for the pseudo-random number generation library for the ATI Radeon HD 5750 GPU. 
Three different work group sizes (80, 160 and 240) are used. The speedup results are 
plotted as a function of the number of work items. As explained in the text, the number of 
work groups and the number of kernel cycles are both varied in order to compute the same 
number of pseudo-random numbers for each data point. These results are for RANLUX 
with luxury level 0. 

 

How we obtain the increasing number of work items in Figure 4.16 and Figure 4.17 
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4.17). The number of work groups, nwgs, is varied in the following manner.  In the case of 

the Athena machine, when nwgs is 32 and ni is fixed as 10, the number of work groups, nwg, 

is increased from 20 to 29 and nk is respectively decreased from 600×29 to 600×20 to 

generate the same number of pseudo-random numbers.  The parameters are changed in a 

similar manner (as described above) to obtain the results presented in Figure 4.17. 

 

Figure 4.17 Speedup plots comparing the GPU execution time to the CPU execution time 
for the pseudo-random number generation library for the Athena system. Three different 
work group sizes (32, 64 and 96) are used. The speedup results are plotted as a function of 
the number of work items. As explained in the text, the number of work groups and the 
number of kernel cycles are both varied in order to compute the same number of 
pseudo-random numbers for each data point. These results are for RANLUX with luxury 
level 0. 

 

Note that the experimentally measured results agree well with the modified theoretical 

model.  We include in the plot the theoretical model for an unlimited number of compute 

102 103 104 105
0

5

10

15

20

25

log10(ni)

Sp
ee

du
p

 

 
nwgs = 32 (unlimited)
nwgs = 32 (limited)
nwgs = 32 (experiment)
nwgs = 64 (unlimited)
nwgs = 64 (limited)
nwgs = 64 (experiment)
nwgs = 96 (unlimited)
nwgs = 96 (limited)
nwgs = 96 (experiment)



 79 

units.  As one can see, the overall speedup is limited and ultimately approaches an 

asymptotic value.  This limit results primarily from the time required to copy back the 

pseudo-random numbers from the GPU to the CPU memories. 

 

4.4.3 Optimization of the GPU Performance 
 

The speedup plots shown in Figures 4.16 and 4.17 have the undesirable property that the 

speedup is not uniformly good as a function of the number of work items.  To help address 

this problem, we can take advantage of the excellent correspondence between the analytical 

performance model and the experimental results.  As there are many possible parameter 

choices that generate similarly sized blocks of pseudo-random numbers, the analytical 

model can be used to select parameters that optimize the GPU performance.  Thus, one 

can think of the problem of optimizing the GPU performance as an optimization problem 

subject to constraints.  The constraints might be, for example, that we want to generate a 

fixed number, n, of pseudo-random numbers with a fixed number of kernel iterations, ni.  

As minimizing the running time on the GPU maximizes the speedup, we can express this 

optimization problem as the following problem 

 

min TRN
GPU(n), s.t. n, ni fixed. (4.19)  

 

As this function is discontinuous and the parameter choices are discrete, we consider an ad 

hoc approach toward solving this optimization problem.  First, as we know that n must be 

large in order to amortize the cost of reading the numbers back from the GPU, we can fix n 
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to be the same value used for the experimental results in the preceding subsection.  Thus, 

we fix n at 245,760,000 for the ATI Radeon HD 5750 GPU and at 98,304,000 for the 

Athena machine (the values used for the results presented in Figures 4.16 and 4.17). In 

addition, we fix the number of kernel iterations, ni, to 10, as was used in these figures. 

 

Given these constraints, one of the first things to notice from Equation 4.16 is that the 

number of work groups, nwg, should be an exact multiple of the number of compute units, 

nCU.  This choice maximizes the number of pseudo-random numbers generated on the 

GPU without increasing Tk.  Choosing these values optimizes the overall speedup for a 

range of choices for nwg, 

 

A second thing to notice from Equation 4.8 is that when executing the kernel, there is a 

fixed startup time b.  If we can increase the work group size, that is the number of work 

items on each compute unit, nwgs/nwg, we can amortize this startup cost.  You can see this 

on the graphs in Figures 4.14 and 4.15 as this approach corresponds to the measured times 

on right hand side of each graph.  However, if we fix the number of pseudo-random 

numbers generated, we can only do this by decreasing the number of kernel cycles, nk.  

We do not want to have the number of kernel cycles too few as the startup cost b would 

again begin to dominate.  To do this optimization, we have implemented a Matlab 

program for the analytical model of the running time, and by varying these parameters 

within a driver program we can determine a minimum running time for fixed n. 
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The speedup plots presented in Figure 4.18 and 4.19 show the speedups for the two 

architectures for the optimized parameter values chosen using the above-described method.  

Recall that the number of pseudo-random numbers generated is the same as for the results 

in Figures 4.16 and 4.17.  In addition, the number of iterations, ni, is again 10 for these 

results.  Thus, we can directly compare the speedups in these graphs to demonstrate the 

advantage of optimizing for the parameter choices.  

 

 

Figure 4.18 The experimentally measured speedup for generating pseudo-random numbers 
using ATI Radeon HD 5750 using parameters optimized based on the analytical running 
time model. The experimental results are compared to the model. The speedup curves 
labeled “unlimited” are computed for a model with an unlimited number of compute units. 
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Figure 4.19 The experimentally measured speedup for generating pseudo-random numbers 
using Nvidia S2050 using parameters optimized based on the analytical running time 
model. The experimental results are compared to the model. The speedup curves labeled 
“unlimited” are computed for a model with an unlimited number of compute units. 

 

As discussed above, in Figure 4.18 we show of the speedup of generating pseudo-random 

number after optimization for ATI Radeon HD 5750, and in Figure 4.19 we show the 

results for the Nvidia S2050 (the Athena machine). For the ATI Radeon HD 5750, the 

number of compute units is 9 so we set the number of work groups, nwg, to be 9, 18, or 27 

(a multiple of the number of compute units). We then increase the work group size, nwgs, 

from 80 to 240 in increments of 80 (so that this number is evenly divided by 80, the number 

of thread processors per compute unit). Based on these choices, the number of kernel cycles 

is chosen to generate the same number of pseudo-random numbers, 245,760,000.  
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For the case of the Nvidia S2050 (the Athena machine) the number of compute units is 14 

so we set the number of work groups, nwg, to be 14, 28, or 42 (a multiple of the number of 

compute units). And, as before, the work group size, nwgs, is varied from 32 to 256 in 

increments of 32 (so that this number is evenly divided by 32, the number of thread 

processors per compute unit).  The total number of pseudo-random numbers generated is 

fixed at 98,304,000 for the results presented in Figure 4.19.  

 

As one can see for the results presented in 4.16 and 4.17, when compared to the results in 

Figures 4.18 and 4.19, the overall speedup achieved with the optimized parameters is more 

consistent and always greater than for the un-optimized parameters. The maximum speedup 

obtained is not dramatically increased, but the overall performance is clearly superior. 

Currently, the optimized parameters are computed within the code; however, this would 

clearly be a useful feature and could be a topic for future work. 

 

4.4.4 An Analysis for the Overall Running Time 
 

To analyze the speedup of the GPU accelerated speedup with multiple threads, we consider 

the speedup of GPU accelerated Monte Carlo simulation. We can compute a speedup for 

the simulation using a hybrid-computing scheme (i.e., using the GPU to compute the 

pseudo-random numbers) relative to using solely the CPU.  First, we consider the time 

required on a single thread using the CPU to compute the pseudo-random numbers.  Let 

the required number of pseudo-random numbers be denoted by n.  Note that the number of 

pseudo-random numbers required increases linearly with the number of samples and 
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photons used in the π value calculation and the RHT simulation.  We can express the 

sequential simulation time, TS (n), as 

 

                          TS (n)=TRN
CPU(n)+TMC (n), (4.20)  

 

where TMC(n) is a time required for the Monte Carlo simulation (excluding the pseudo-

random number generation) and TRN
CPU(n) is the time for generating pseudo-random 

numbers using the CPU.  

 

An analysis of the time required for the Monte Carlo simulation running in parallel using 

multiple threads and a single GPU to compute the pseudo-random numbers is more 

complex as it involves the parallel execution of the thread managing the GPU and the GPU 

program itself [32].  As discussed in the preceding subsection, the time to compute a 

pseudo-random number on the GPU is a complex function of a number of factors specific 

to the GPU used and its configuration.  We can, however, simplify the analysis by 

considering only a single parameter, the block size B.  As a general rule, the efficiency of 

computing the numbers increases with the block size.  However, the exact efficiency 

depends on the number of work items, nwi, the number of iterations, ni, and the number of 

kernel cycles, nk (as discussed above and in detail in reference [32]).  Given these 

parameters, the block size B is given by the formula 

 

B = nk ni nwi . (4.21)  
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As noted earlier, the number of work items, nwi, can be configured in a number of different 

ways by selecting different values for the number of work groups, nwg and the work group 

size, nwgs as the number of work items is the product of these two parameters.  We assume 

that these parameters are chosen to maximize the efficiency of computation on the GPU.  

Given these definitions, the parallel simulation time, TP (p,pn,B), can be expressed as 

 

                TP (p,np,B) = pTRN
GPU (B) +  

                           max{p(⎡n/B⎤-1) TRN
GPU (B),  

                           ⎣n/B⎦ TMC (B)+ TMC (n - ⎣n/B⎦B)}, 

(4.22)  

 

where TRN
GPU(B) is a time to fill in the pseudo-random numbers using the GPU for the 

block size B, and p is the number of threads. 

 

The timeline for the Monte Carlo simulation for a single thread in the above equation is 

illustrated in Figures 4.20 and 4.21.  Figure 4.20 shows the simulation time when the 

pseudo-random number block generation time takes longer than the Monte Carlo time; note 

how the Monte Carlo part of the code is blocked while it waits for a new block of pseudo-

random numbers is generated by the GPU. 
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Figure 4.20 A timeline showing what the Monte Carlo thread and the pseudo-random 
number thread manager are doing relative to each other when TRN (B) is longer than TMC 

(B). In (a) we show the case the block size is larger than in (b). 

 

To illustrate where the “max” arises in Equation 4.22, in Figure 4.21 we illustrate the 

simulation time when the TRN(B) (the time to generate a block of pseudo-random numbers 

on the GPU) is shorter than the time TMC (B). 

 

 

Figure 4.21 Illustrations of the simulation timeline showing the Monte Carlo thread and the 
pseudo-random number managing thread. In  (a) the block size is large enough that TRN 

(B) can generate a new block before TMC (B) completes.  In (b) we illustrate the case when 
the block size is even larger than in (a). 
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In Figure 4.22 we illustrate the case when the simulation is multi-threaded with multiple 

threads consuming the pseudo-random numbers generated.  Again, note how the “max” in 

Equation 4.22 is used to describe this case. 

 

 

Figure 4.22 An example illustrating multiple threads executing the Monte Carlo part of the 
code using the pseudo-random numbers generated from the single thread managing the 
GPU.  

 

Finally, the overall scaled speedup, SS, for the hybrid version the Monte Carlo simulation 

using the GPU-accelerated libraries can be expressed as: 

 

                      SS (p,np,B) = p TS (n) / TP (p,np,B). (4.23)  

 

4.5 Using the GPU Accelerated Pseudo Random Number Code in Monte 
Carlo Applications 

 

In this section we examine the overall performance of Monte Carlo applications that take 

advantage of our GPU-acceleration scheme. We consider two model applications. The first 

is the toy problem we introduced earlier, a numerical integration scheme to estimate the 
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value of π. The second model application is a complex, real-world application to simulate 

the radiative heat transfer for a three-dimensional domain using the Monte Carlo ray tracing 

method. In addition to presenting an analysis of the performance of these applications, we 

also consider the issue of the statistical independence of the pseudo-random numbers used. 

 

4.5.1 Statistical Independence of the Pseudo-Random Numbers 
 

In using a pseudo-random numbers generator, one would like some assurance that the 

pseudo-random numbers are statistically independent.  There are two approaches that we 

have used.  The first check is a simple statistical analysis of average function values 

computed by the Monte Carlo method. The second way is to use a much more rigorous 

empirical statistical test of all the pseudo-random numbers generated using the software 

library TestU01. 

 

The basic idea for the first approach, using the computed function values, is as follows. 

First, we subdivide the set of computed samples (i.e., function values) into some number of 

independent subsets and compute the mean of each of these subsets.  For example, 

suppose with our toy problem to estimate π, we use the multi-threaded code we discussed 

earlier. Each core will compute an estimate for pi.  Suppose the cores are labeled i =1,…,p. 

Suppose the mean estimate from each core i is µi. A consequence of the Central Limit 

Theorem [58] is that these means should (roughly) follow a normal distribution. In 

addition, as we increase the number of samples used to compute each mean, the standard 
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deviation of these means should decrease.  In particular, this standard deviation should 

decrease with the square root of the number of samples.  

 

This first approach can be used as a simple sanity check for the pseudo-random numbers 

generated on the GPU.  We can compare the results obtained on the GPU with results 

using a standard, high quality PRNG on the CPU.  In Figure 4.23, we show the computed 

standard deviations for both the CPU and GPU versions of the code for the toy problem to 

estimate π.  As shown, the standard deviations for both versions decrease as the square 

root of the number of samples.  

 

A second, much more rigorous test, is to use the software library TestU01 [35] to employ a 

suite of empirical statistical test on the pseudo-random numbers generated by our GPU 

code.  The TestU01 library contains three sets of tests: SmallCrush, Crush, and BigCrush.  

These tests apply a variety of statistical tests (respectively 15, 144, and 160 tests) to check 

for correlations in large sequences of pseudo-random numbers.  We tested our GPU 

implementation of RANLUX using these three test batteries.  

 

One modification that we had to make to the pseudo-random numbers generated on GPU to 

use these tests is as follows.  The GPU implementation of RANLUX is done in single 

precision, and thus has only 24 bits of resolution in the mantissa.  The TestU01 assumes 

that the pseudo-random numbers are double precision.  Thus, to convert our numbers to 

double precision, the additional mantissa bits in the double have to be filled with 
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statistically independent values.  Two single precision numbers were combined to obtain 

one double precision value for the test.  Once this was done, then the pseudo-random 

numbers passed the SmallCrush battery. For the Crush and BigCrush battery, all of the tests 

were passed except for one of tests from each battery.  The passing of these tests indicates 

a high degree of confidence in the statistical independence of the pseudo-random numbers 

generated by the GPU implementation of the RANLUX algorithm. 

 

 

Figure 4.23 The standard deviation of the computed means for the Monte Carlo toy 
application as a function of the number of samples used. The standard deviations should 
decrease as the square root of the number of samples (the dashed lines in the figure). This 
satisfies a simple first test for statistical independence of the pseudo-random numbers used 
in the calculation. 

 

4.5.2 Performance of the Monte Carlo Code for the Toy Application  
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To observe the performance improvement for using the GPU to generate the pseudo-

random numbers in a simple Monte Carlo application we first consider our toy problem, a 

numerical integration scheme to estimate the value of π.  In measuring the performance of 

this model, we are using the ATI Radeon HD 5750 GPU.  This GPU contains 9 compute 

unites and each compute unit consists of 80 processing elements.  The overall software 

framework is illustrated in Figure 4.6. The framework has a managing thread that fills 

empty memory blocks with pseudo-random numbers.  The threads that use numbers for 

the Monte Carlo application access these full memory blocks via a shared-memory 

producer/consumer implementation.  The pseudo-random numbers can be generated either 

on the CPU or on the GPU. When using the CPU, the RANLUX numbers are generated by 

routines from the GNU scientific library [34]. When using the GPU, memory blocks are 

filled with the method described in Figure 4.12 and Figure 4.13.  The simulation times for 

the CPU and the GPU are compared and the resulting speedup is shown in Figure 4.24.  

This graph shows that generating the pseudo-random numbers using the GPU makes the 

Monte Carlo application run significantly faster when compared to using the CPU.  
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Figure 4.24 The speedup of a simple Monte Carlo simulation using the GPU acceleration 
scheme with work group sizes of 80, 160 and 240 [32]. The speedup is relative to using the 
CPU is plotted as a function of the number of pseudo-random number samples used by the 
Monte Carlo method. 

 

To verify the adequacy of our model, we present the estimation of π using Monte Carlo 

method as a simple application.  The estimated value of π is presented with error and 

mean in Figure 4.25. The theoretical value is within the error range of experimental result.  

Also with more samples, the experimental result approximates to π.   
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Figure 4.25 Convergence of the theoretical and experimental estimation of π by numerical 
integration with the Monte Carlo framework as a function of the number of samples used. 

 

4.5.3 Radiative Heat Transfer⎯A Complex, Real-World Application 

 

The other application that we consider is the RHT simulation with PMC method.  The 

computational cost of modeling RHT effects accurately can be extremely high due to its 

highly nonlinear and non-local nature [36].  This nonlinearity arises because the RHT 

rates typically depend on the fourth power of the temperature [37].  Thus, applications that 

involve the computation of these rates, such as with combustion, are highly sensitive to the 

accuracy of these temperature calculations.  Omitting the RHT effects from simulations in 

such applications can lead to inaccurately computed temperature profiles, which in turn 

affects the stability and the accuracy of the calculation of other variables [38]. 

 

5.5 6 6.5 7 7.5 8 8.5
3.132

3.134

3.136

3.138

3.14

3.142

3.144

3.146

3.148

3.15

log10(Number Samples)

/ 
Es

tim
at

e

 

 
 /
GPU
CPU



 94 

The non-local nature of RHT comes from the fact that the photons that carry radiation (and 

energy) can be absorbed far from the physical position that they are emitted.  Because of 

these non-local effects, conservation laws cannot be applied over an infinitesimal volume, 

but instead must be applied over the entire computational domain.  The Photon Monte 

Carlo (PMC) method can be effectively used in the solution of thermal radiation problems 

[39].  This method is based on a model of radiative energy traveling in discrete packets 

(like photons) and the computation of the effect of these photons while traversing, 

scattering and interacting with matter within the computational domain.  Advantages of 

this method include: an ability to deal with complex geometries; an ability to handle non-

uniform temperature fields; the ability to include photon scattering; and the ability to 

employ a great variety of methods to include specialized radiative properties of the 

enclosure or the transport domain [40]. 

 

4.5.3.1 The Photon Monte Carlo Method 
 

The Photon Monte Carlo (PMC) method is a sampling method based on simulating the 

movement and absorption of photon bundles (rays) through a discretized computational 

domain.  The advantage of this approach, as opposed to other RHT approximation 

schemes, is that its overall computational cost grows slowly as a function of the complexity 

of the RHT problems [39].  An additional advantage is that increased accuracy can be 

obtained by using larger numbers of photon bundles.  Hence, the PMC method is well 

suited to radiation calculations that include complex geometries, non-trivial absorption 

properties, and singular effects such as scattering.  In this section we describe the basic 
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PMC algorithm. We also review how pseudo-random numbers are used within the PMC 

algorithm and ultimately in the overall RHT simulation. 

 

In numerical simulations that include a RHT component, the computational domain 

contains a participating medium (a material that both emits and absorbs photons).  The 

PMC method traces a statistically significant sample of photon bundles from their point of 

emission within the medium to a point of absorption within the medium or its boundary.  

When the photon bundle is absorbed, its energy is added to the local energy of the 

absorbing element within the discretized medium.  With this approach, the PMC method 

is able to calculate the energy gain or loss for every element within the computational 

domain. 

 

The tracking of the photon bundles through the computational domain requires that the 

PMC algorithm model several types of element interactions.  These interaction types are 

illustrated in Figure 4.26.  On the left, Figure 4.26 (a), we show a photon bundle entering 

an element and being absorbed within the element.  In the middle, Figure 4.26 (b), we 

show a photon bundle entering an element and being scattered off of a particle within the 

element.  On the right, Figure 4.26 (c), we show a photon entering an element, traversing 

the entire element, and exiting the element to enter a neighboring element.  For the 

computational results presented in this paper we employ a software framework capable of 

modeling these element interactions and tracing the photon bundles through a 

computational mesh [41]. 
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Figure 4.26 Possible photon interactions within an element. In (a) we show the photon 
bundle being absorbed within the element, in (b) the photon is scattered off a particle within 
the element, and in (c) the photon bundle is transmitted through the element. 

 

The PMC algorithm can be used to solve a wide range of RHT problems.  In this 

experiment, we use the algorithm to solve a simple model problem.  The model problem 

we use is a three-dimensional rectangular solid domain with two plates with different 

temperatures on opposite walls and periodic boundary conditions in the other two 

orthogonal dimensions [39].  The RHT problem that we solve involves computing the 

temperature as a function of position between the two plates. For a fixed computational 

mesh the overall computational work grows linearly with the number of photon bundles 

that we track through the domain.  By increasing the number of photon bundles used in 

the simulation, we can examine the “scaled” speedup of the simulation when run on a 

hybrid parallel computer architecture.  In addition, as we increase the number of photons, 

the accuracy of the computed solution improves and we can verify the statistical 

independence of sampling done by the photon bundles by looking at the convergence of the 

temperature from independent samples. 
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4.5.3.2 The Structure of the Radiative Heat Transfer Code 

 

For every photon bundle, the PMC algorithm must determine a point of emission, a 

direction of emission, a wavelength, a point of absorption, and various other properties that 

are independently chosen from probability distributions.  Because of the large number of 

required pseudo-random numbers, a profile of the PMC code running a standard CPU 

shows that 90% or more of the computational time is spent generating these numbers.  

This percentage can be even higher as the complexity of the radiative properties and the 

accuracy required from the simulation increases.  Based on this observation, a more 

efficient scheme for generating these pseudo-random numbers can dramatically improve 

the overall performance of the PMC algorithm. 

 

The scheme to improve the performance of the PMC algorithm is similar to the PathSim2 

experiment.  The RHT computation can be allocated to multiple threads and be distributed 

to multiple CPU cores.  The pseudo-random numbers required for the PMC algorithm for 

the RHT simulation can be generated on the GPU.   

 

In the following section, we present a GPU accelerated pseudo-random number generation 

algorithm.  In addition, we present an analysis of the running time of this algorithm and 

show how it achieves much of this potential efficiency gain for the RHT simulation. 
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4.5.3.3 Experimental Results for the Radiative Heat Transfer Problem 
 

For the experimental results presented in this section, we use the Athena system in Virginia 

Tech [44]. Athena is a cluster system with GPUs and large RAM memory.  The system is 

made up of 16 nodes and each node consists of 4 octa-cores.  Each node also has one 

NVIDIA S2050 GPU. Each GPU contains 14 compute units, and each compute unit 

consists of 32 processing elements [45].  For all the results presented in this section, a 

luxury level of 2 is used for the RANLUX pseudo-random number generators. 

 

To measure the scaled speedup on this hybrid architecture, the CPU-only version of the 

simulation is first run and timed on a single CPU.  These measurements are compared to 

the running time of the simulation on the hybrid architecture for a scaled instance of the 

problem.  In Figures 4.27 and 4.28 we show the speedup of the RHT simulation using the 

GPU accelerated random number generator and a single CPU as compared to the solely 

CPU-based version.  In Figure 4.27, note that when the number of photons used by the 

simulation is small, the scaled speedup is limited by the time required to generate the first 

block of pseudo-random numbers (e.g., see the timelines in Figures 4.21).  For larger 

numbers of photons, this initial time is amortized as many blocks are used.  Note that by 

using a smaller block size, this transition to improved speedup occurs for a smaller number 

of photons.  The results in Figure 4.27 correspond to the timelines shown in Figure 4.21 

where the asymptotic speedup is determined by the relative amount of time spent in RHT 

portion of the simulation. 
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Figure 4.27 The speedup for the GPU-accelerated simulation run on a single CPU for large 
block sizes. The photon numbers are increased from 102 to 106 in order to vary the 
workload. The work group size is 96, the number of work groups is 14, and the number of 
kernel cycles is 500. To change the block size, the number of iterations is respectively set to 
10, 100 and 1000. 

 

In Figure 4.28 we show the speedup for the timeline case shown in Figure 4.20.  In this 

case, the asymptotic speedup is limited by the speedup of pseudo-random numbers being 

generated on the GPU.  As shown in the figure, this speedup decreases with smaller block 

sizes. 
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Figure 4.28 The speedup of the RHT simulation for on a single CPU for small block sizes. 
The photon numbers are increased from 102 to 106 in order to vary the workload. The work 
group size is 96, the number of work groups is 14 and the number of iterations is 1. To 
change the block size, the number of kernel cycles is set to 20, 40 and 60.  

 

The scaled speedup obtained with multiple threads on a single node is in Figure 4.29.  

This plot shows that the overall performance of the simulation increases almost linearly.  

As with the results in Figure 4.29, the speedup is limited for small numbers of photons by 

the generation of the initial blocks of pseudo-random numbers.  This fact is illustrated in 

the timelines shown in Figure 4.22.  Again, as in Figure 4.27, this initial cost is amortized 

as multiple blocks are used for larger numbers of photons.  
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Figure 4.29 The measured scaled speedup for GPU-accelerated version of the RHT 
simulation using 1, 2, 4 and 8 threads on a single node (i.e., with one GPU). The photon 
numbers are increased from 103 to 106 in order to vary the workload. The work group size 
is 96, the number of work groups is 14, the number of iterations is 100 and the number of 
kernel cycles is 500. 

 

The relative cost of the RHT portion of the simulation can be varied by increasing the 

computed accuracy of the energy contributed to an element during the transmission of a 

photon (as depicted in Figure 4.26(c)).  This increased accuracy requires the use of more 

pseudo-random numbers for the Monte Carlo integration involving the absorptivity when 

traversing the element.  The effect of this increased accuracy on the speedup is shown in 

Figure 4.30.  The speedups for three different numbers of samples per element (80, 160, 

and 240) are shown in this figure. 
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Figure 4.30 The speedup for the GPU-accelerated algorithm run on a single CPU for 
different transmission sampling strategies (as described in the text). The number of samples 
per element is respectively set to 80, 160 and 240.  The number of photons used is 
increased from 102 to 106 in order to vary the workload. For these results the work group 
size is 96, the number of work groups is 14, the number of iterations is 100 and the number 
of kernel cycles is 500. 

 

To be able to generate the theoretical curves shown in Figure 4.27-4.30, one needs to know 

how the RHT portion of the simulation, TRHT (B), scales with block size. In Figure 4.31 we 

show how this time varies with block size and with differing numbers of samples per 

element during the transmission calculation. 
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Figure 4.31 The change of TRHT (B) as a function of block size B. The block size B is 
increased from 896,000 to 4,480,000 for the data shown on this plot. Linear least squares 
fits to these data points are shown as the dashed lines in this figure. For sampling of 80, 160 
and 240 points per element, the respective slopes from the least squares fit are 1.38×10-7, 
6.9×10-8 and 4.6×10-8. 

 

Finally, the RHT simulation was run on a complete hybrid architecture including 

distributed memory (using 10 nodes), using multiple threads on each node (8 threads per 

node), and using the GPU-accelerated pseudo-random number generator (using one GPU 

per node).  The scaled speedup results obtained on this hybrid architecture are shown in 

Figure 4.32.  Clearly, significant scaled speedups can be obtained for a modestly sized 

hybrid architecture using this approach. 
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Figure 4.32 The scaled speedup plots for the RHT simulation using the GPU-accelerated 
pseudo-random number generator on a hybrid computing architecture. The number of 
photons used in the Monte Carlo simulation is increased from 103 to 106 in order to vary the 
workload. 10 compute nodes are used with 8 threads per node for the simulation. For the 
GPU the work group size is 96, the number of work groups is 14, the number of iterations 
is 100 and the number of kernel cycles is 500. 

 

4.5.3.4 Statistical Analysis of the Experimental Results 

 

To ensure that the simulation results obtained on this parallel system are statistically 

independent when using multiple nodes, we computed the mean of the temperature at one 

point in the interior of the domain for the multiple threads within each node.  We then 

compute the standard deviation of these means (from the 10 nodes).  This standard 

deviation is plotted in Figure 4.33 as a function of the number of photons used in the 

simulation.  The slope of this graph is -0.5, which is what one would expect (from the 
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central limit theorem) and is consistent with statistically independent simulation results 

from different nodes.  Note that this result does not prove statistical independence, but it 

does show that the data is not statistical dependent. 

 

 

Figure 4.33 The standard deviation for the mean temperature obtained on different compute 
nodes as a function of the number of samples. Note that the slope of the best-fit line in this 
graph is -0.5, which is consistent with the Monte Carlo simulation data on different nodes 
being statistically independent. 

 

4.5.4 Toward New Algorithms for Biological Systems Applications 
 

In Chapter 3 we considered the discretization of the physical volume, where we referred to 

the discretized sub-volumes as elements and the collection of elements that make up the 

physical volume as the computational mesh.  For these biological simulations, the 

movement of cells in a tissue is modeled to the movement of agents between neighboring 
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elements in this computational mesh.  A simplified three-dimensional illustration of the 

elements and agents is displayed in the top image in Figure 4.34.  In the top image of 

Figure 4.34, an element is indicated as Ek, the internal work of interaction and movement of 

agents is indicated as Wi
k and the summation of internal work of each agent is Sk.  In the 

bottom image of Figure 4.34, we show a cropped, two-dimensional cross-section from a 

PathSim2 simulation.  This image shows a rendering of cells (agents) and elements 

(indicated by the size of the colored squares). 

 

Many of the computationally intensive element-based computations can be allocated to 

multiple threads and be distributed to multiple CPU cores.  Certain other parts of the 

calculation, an element is indicated as Ek, the internal work of interaction and movement of 

agents is indicated as Wi
k and the summation of internal work of each agent is Sk.  For 

example randomly generated agents, can be accomplished on the GPU. This allocation of 

tasks to a multi-core system with an attached GPU is illustrated in Figure 4.34. 
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Figure 4.34 (Above) A simplified three-dimensional model of agents with elements, Ek : 
Element, Wi

k : Internal work of interaction and movement of agents, Sk : Summation of 
internal work of each agent; (Below) A close up of a two-dimensional cross-section from a 
PathSim2 simulation showing cells (agents) and elements (indicated by the colored 
squares) [32]. 
 

In Figure 4.35, the element sets assigned to the two cores are indicated as Ek and Ek’.  The 

sets of agents within the element sets are denoted by Sk and Sk’.  For the agents in these 

sets, the updating of the individual states involves the solutions of ODEs represented by the 

work W0
k, W1

k, …, Wn
k and W0

k’, W1
k’, …, Wm

k’.  These work sets must be coordinated 

through the shared memory.  Then they are prepared in parallel on the multiple stream 
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processors on the GPU.  By using this scheme, PathSim2 simulation can achieve better 

performance.  

 

 

Figure 4.35 The assignment of element workload to multiple cores and the GPU [32]. 
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5 Conclusions 

 

This dissertation presents the characteristics of the complex architectural picture of hybrid 

computing.  The advantage of having a clear characterization is that it can present to the 

applications programmer a model for how to use this architecture in the most effective 

manner for their particular application.  This characterization is developed through the 

detailed analysis and implementation of several representative scientific computing 

applications.  These applications include simulations of biological systems at the cellular 

level and a general-purpose software framework for Monte Carlo algorithms.  The 

ultimate goal of the analysis of these software implementations is to develop an over-

arching approach to “hybrid computing,” that is a software approach that takes the best 

advantage of the various architectural resources available to the applications programmer. 

We now summarize the dissertation’s contributions and identify future work. 

 

5.1 Summary of Contributions 

 

Implement and analyze a multiple GC simulation on a distributed memory architecture 

[completed and presented in Chapter 2].  

Summary: We have developed a theoretical model for the performance of simulating 

multiple GCs.  Message-passing implementation of this approach is developed using 

PathSim2.  To verify this model, experimental results were obtained by measuring the 

running time of our implementation on System X.  The scaled efficiencies computed from 
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these results agree with our theoretical analysis.  A significant advantage of our approach 

is that it introduces a longer, global time-step for updating the part of the simulation that 

requires inter-processor communication and synchronization.  This longer time-step 

significantly improves the overall performance of parallel simulation without adversely 

affecting the accuracy of the computed results.  

 

Develop an analysis of a multi-threading approach for an element-based processing 

scheme for Pathsim2 on a multi-core architecture [completed and presented in Chapter 3].  

Summary: We compared two standard APIs for multi-threading, Pthreads and OpenMP, 

using the PathSim2.  Although a pthread implementation has advantages in terms of 

detailed control (e.g., setting priorities), its measured performance was not as good as an 

OpenMP implementation.  This difference is due to different system overheads and can be 

characterized as a difference in thread startup times. For the SGI ALTIX 3700 that our tests 

were run on, the OpenMP startup time was measured to be 2/3 that of the pthread startup 

time.  An additional advantage of the OpenMP implementation is that its coding is slightly 

simpler.  When the two APIs were used with the PathSim2 simulation code, similar 

relative performances were measured, and good speedups were achieved for a 

representative biological simulation. 

 

Implement and analyze a GPU accelerated Monte Carlo software framework suitable for 

hybrid architectures to solve π  estimation and Radiative Heat Transfer (RHT) simulation. 

[completed and presented in Chapter 4]. 
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Summary: We have introduced and implemented a theoretical model of a multi-threaded 

Monte Carlo application framework using GPU acceleration on a hybrid computer 

architecture.  In this framework the GPU acceleration is used for generating large blocks 

of pseudo-random numbers asynchronously.  The target application is π value calculation 

and a baseline Radiative Heat Transfer (RHT) simulation.  Experimental results are 

obtained by measuring the running time of the simulation and these running times are well 

explained by the theoretical analysis.  We presented experimental results that confirm our 

analysis about the scaled speedup of this approach.  Overall, this approach can be very 

effective and achieve nearly a 1,000 times speedup on a modestly sized hybrid machine.  

 

Our approach demonstrates an efficient way of mixing multi-threading with GPU 

acceleration that can be used in π value calculation or in real world applications such as 

RHT.  We observe that generating as much data as possible from the GPU at a time 

improves the overall simulation time relative to a CPU-based scheme.  However, the time 

required transferring data between the CPU and GPU memories and hardware setup times 

ultimately limit the efficiencies of these algorithms.  In case of transferring small date 

from the CPU to GPU and big data from the GPU to CPU, we observe that transferring 

time from the CPU to GPU can significantly improve the simulation efficiency.  These 

limits need to be considered when considering the overall benefits possible for a GPU-

accelerated software application framework.  The overhead of memory copies to and from 

the CPU and GPU must be amortized through the use of large data block transfers and 

significant data reuse on the GPU. 
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5.2 Future Work 

 

A direction for future research is to extend an overall characterization of hybrid computing 

architectures and uses the properties of applications effectively. In Chapter 1 of this 

dissertation, in Table 1.1, the basic architectural parameters of the computing layers of a 

hybrid computing system are listed.  The goal of this section of my dissertation would be 

to develop an overall characterization of what properties a scientific computing application 

must have in order to take full advantage of hybrid, parallel computing.  Given such a 

characterization, I think that various applications can be analyzed and developed for a more 

comprehensive picture of the potential advantages and challenges of hybrid, parallel 

computing. 
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