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Characterization of multicellular 
breast tumor spheroids using 
image data‑driven biophysical 
mathematical modeling
Haley J. Bowers1,2, Emily E. Fannin1, Alexandra Thomas3,4 & Jared A. Weis1,2,3*

Multicellular tumor spheroid (MCTS) systems provide an in vitro cell culture model system which 
mimics many of the complexities of an in vivo solid tumor and tumor microenvironment, and are 
often used to study cancer cell growth and drug efficacy. Here, we present a coupled experimental-
computational framework to estimate phenotypic growth and biophysical tumor microenvironment 
properties. This novel framework utilizes standard microscopy imaging of MCTS systems to drive 
a biophysical mathematical model of MCTS growth and mechanical interactions. By extending 
our previous in vivo mechanically-coupled reaction–diffusion modeling framework we developed a 
microscopy image processing framework capable of mechanistic characterization of MCTS systems. 
Using MDA-MB-231 breast cancer MCTS, we estimated biophysical parameters of cellular diffusion, 
rate of cellular proliferation, and cellular tractions forces. We found significant differences in these 
model-based biophysical parameters throughout the treatment time course between untreated and 
treated MCTS systems, whereas traditional size-based morphometric parameters were inconclusive. 
The proposed experimental-computational framework estimates mechanistic MCTS growth and 
invasion parameters with significant potential to assist in better and more precise assessment of 
in vitro drug efficacy through the development of computational analysis methodologies for three-
dimensional cell culture systems to improve the development and evaluation of antineoplastic drugs.

Recent advances in precision medicine have improved the understanding of breast cancer and have led to the 
rapid emergence of new antineoplastic therapeutic agents for this patient group1,2. Molecularly targeted thera-
pies have significantly increased therapeutic options with improved outcomes for many breast cancer molecular 
subtypes3. With the rapid emergence of new antineoplastic agents, and numerous drugs currently in development, 
there is an urgent unmet need for the generation of new technologies to provide informative evaluations of their 
efficiency throughout the stages of drug discovery and development. Traditionally, early stages of drug evalua-
tion are performed using conventional 2D monolayer in vitro cell culture methods and are typically interpreted 
using drug dose-response curves based on cell viability and fit to a sigmoidal Hill-type model4. These observa-
tional monolayer drug evaluations have historically served as an essential model for investigating cancer cell 
behavior and identifying anti-cancer therapeutic efficiency, however these results cannot always be confirmed 
in preclinical animal trials or clinical trials5–8. Increasingly, monolayer cell cultures methods are insufficient 
for representation of in vivo solid tumors and their complex microenvironment and drug response behavior9. 
Efforts to evaluate drug efficacy for in vitro systems that more appropriately mimic in vivo conditions are being 
pursued to improve drug development. One example is through the use of three-dimensional (3D) multicel-
lular tumor spheroids (MCTS) as they more closely resemble in vivo solid tumors compared to the much more 
simplified 2D culture systems, and bridge the gap between conventional monolayer cell culture methods and 
animal studies10,11. 3D MCTS invasion culture systems, consisting of a MCTS embedded within an extracellular 
matrix (ECM), provide a further enhanced biological model system which recapitulates several architectural and 
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biological behaviors observed in vivo, including cell–cell and cell-extracellular matrix interactions12–14. MCTS 
systems are a more relevant in vitro model compared to monolayer cell culture models and can provide more 
insight during drug development and subsequent clinical translation. While in vitro MCTS systems represent a 
simplified approximation to the true nature of in vivo solid tumors, there is a compelling need to study in vitro 
level models as an important step along the path to translation. In vivo solid tumors exhibit mechanical invasive 
processes as cells invade into the surrounding ECM during growth and metastasis. Mechanical interactions 
between cancer cells and their ECM microenvironment can act to regulate cell behavior, function, and response 
to therapy, however these interactions are often neglected in drug evaluations15,16. While in vivo observations of 
these mechanical interactions are observed on a much longer time scale with more stromal involvement, it has 
been shown that MCTS systems represent a valuable model system for drug development. Currently, there is a 
significant limitation in quantitative analysis tools capable of providing mechanistic insight and interpretation 
of experimental results.

Analysis methodologies for MCTS systems has considerably lagged. Quantifying the growth and response to 
treatment of MCTS is typically through the use of conventional morphometric analysis techniques using meas-
urements of MCTS length and area to determine growth, shrinkage, or stasis in the presence of drug treatment17. 
These common in vitro analysis techniques are analogous to standard in vivo measurements of the response to 
therapy performed in the clinic that utilize the response evaluation criteria in solid tumors (RECIST), which is 
based on measurements of the longest dimension of the tumor from noninvasive patient imaging data18,19. While 
conventional morphometric analysis is capable of identifying overall geometrical changes in MCTS and in vivo 
solid tumors in response to therapy, the coarseness of the volumetric measurement limits true down-stream 
mechanistic interpretations of the underlying biophysics of cancer cellular growth and therapeutic response that 
drives these changes. With the increasing utilization of 3D cell culture methods, including MCTS systems, there 
is a clear need for analysis tools with more mechanistic insight to biophysically characterize changes in response 
to drug treatment and uncover more precise evaluation metrics.

Elsewhere, mathematical models have demonstrated utility in quantifying and characterizing the dynamics 
of cancer, with in silico simulations having been employed to describe MCTS growth20–23. Many of these simula-
tions are still driven by conventional morphometric measurements of MCTS, which fail to take into account key 
changes such as varying cell density and major phenotypic tumor microenvironment (TME) factors limiting their 
impact. In previous work, we presented a mechanically-coupled reaction–diffusion model capable of describing 
breast tumor response to neoadjuvant chemotherapy using noninvasive clinical imaging data24–27. This model 
enabled imaging data-driven characterization of tumor changes in response to therapy through fitting biophysical 
parameters describing cell diffusion and proliferation rate. Further, by coupling the reaction–diffusion model to 
the surrounding tissue mechanics, we were able to better predict eventual response to therapy. Growth models 
have also included major phenotypic TME factors including the mechanical interactions between cancer cells and 
their microenvironment. A highly studied mechanical interaction is the forces exerted by cancer cells on their 
surrounding environment, known as cellular traction forces, which has gained its popularity in cancer research 
as it has shown to be a potential biomarker for metastasis16,29,30. Cancer cells apply a contractile traction force on 
their adjacent fibrous matrix elements and act to align and remodel their surrounding ECM which provides paths 
for cells to invade surrounding tissue31,32. It has been shown that these tensile forces originated from the cancer 
cells facilitates tumor invasion31,33. Characterization of these mechanical interactions in MCTS model systems in 
combination with cellular growth parameters could serve as additional biomarkers of drug responsiveness, which 
could provide a more complete biophysical characterization of mechanistic changes in drug response assays.

In this study, we propose to extend our mathematical modeling framework to the in vitro MCTS cell culture 
scale by continuing development of our image data-driven model characterization methods to estimate cellular 
phenotypic biophysical characteristics of MCTS growth and dynamics. The objective of this work is to propose 
a modeling framework to functionalize observational in vitro microscopy imaging data to analyze biophysi-
cal properties and enable accurate characterization of growth and mechanical interactions of 3D cancer cell 
culture systems. Our approach incorporates MCTS generation, microscopy imaging, image processing, and 
mathematical modeling to characterize the mechanistic changes in cellular density and mechanical interactions 
observed in these MCTS systems. This framework can estimate biophysical parameters of cellular diffusion, 
rate of cellular proliferation, and the cellular traction force exerted on the surrounding ECM. The objectives of 
this study are to establish a combined cell culture, imaging, and image analysis protocol to quantify the cellular 
and mechanical changes in MCTS systems, establish a mathematical model to characterize these changes using 
phenotypic biophysical parameters, and to identify mechanistic biophysical differences between untreated and 
treated MCTS systems.

Methods
Cell culture.  The triple-negative breast cancer cell line, MDA-MB-231, was used to establish the protocol 
for spheroid generation and were obtained from ATCC, and were maintained in culture according to ATCC 
recommendations. The cells were labeled using a fluorescent histone H2B lentiviral vector (H2B-GFP, Addgene 
Plasmid #11680) to facilitate imaging analysis for identifying and estimating cell number. The modified cells 
were maintained in the same manner as their parental strains.

Multicellular tumor spheroid generation.  MCTS were generated using the liquid overlay technique34 
using CellCarrier spheroid ultra-low attachment 96-well microplates (Perkin Elmer). A total suspension volume 
of 200 μl containing 5,000 cells, cell-specific medium and 0.35 mg/ml concentration of Matrigel (Corning) was 
added to wells. To initiate spheroid formation, the microplate was centrifuged in a swinging bucket rotor at 
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300×g for 5 min. Cells were cultivated for 4 days to allow for spheroid self-assembly. Figure 1 shows a schematic 
describing the time course of MCTS generation.

Invasion matrix.  A collagen solution made up of neutralized collagen type I (2.25 mg/ml, Corning) and 
is co-polymerized with 2 μm red fluorescent microsphere beads (FluoSpheres™ Carboxylate-Modified Micro-
spheres, 580/605, 2 × 106  beads/ml) used to track extracellular matrix deformation. The spheroid generation 
plate was chilled on ice for 15 min to pre-chill wells22. 200 μl of collagen solution was placed into a flat bottom 
96-well ultra-microplate (Perkin Elmer, ULA CellCarrier-96 Ultra Microplates) with an optically-clear cyclic 
olefin bottom for optimal imaging acquisition. Once chilled, 25 μl containing the spheroid was removed from 
the spheroid generation plate and was added to the collagen solution (final collagen concentration of 2 mg/
ml) and gently pipette mixed. Once all replicates were complete, the plate was allowed to polymerize at room 
temperature for 1 h followed by polymerization at 37 C for 1 h. Once completely polymerized, 100 μl of medium 
was overlaid in each well. A schematic representation of spheroid embedding into the invasion matrix is found 
in Fig. 1.

Drug treatment.  At 24 h following embedding of MCTS in invasion matrix, spheroids were treated with 
nanoparticle albumin-bound paclitaxel (Abraxane) at a concentration of 400 nM. MCTS systems were exposed 
to the drug for 72 h. MCTS systems (treated and untreated) underwent media changes every 72 h.

MCTS imaging and image processing.  While methodological descriptions for imaging and imaging 
processing steps follow, additional materials further describing and documenting the steps are available as sup-
plementary materials. Briefly, time-lapse fluorescent microscopy imaging of both untreated and treated MCTS 
systems was used to characterize the changes in growth and dynamics. Imaging began 24 h after embedding 
MCTS in collagen and continued every 12  h for a total imaging time of 72  h. MCTS were imaged using a 
fully-automated time-lapse fluorescent microscope (EVOS FL Auto 2 Cell Imaging System, Invitrogen) with 
an on-stage incubator controlling C02 (5%), O2, temperature (37˚C), and humidity (EVOS Onstage Incubator, 
Invitrogen). Z-stack images of the MCTS and surrounding ECM were acquired with a 3 by 3 imaging grid using 
a 10X objective for an overall 500 × 500-micron field of view with pixel sizes of approximately 5 µm. Images were 
acquired in two co-registered fluorescence color channels, with the green channel (GFP) to image the MCTS and 
the red channel (Texas Red) to image the fluorescent microbeads. Figure 1 shows the workflow of data acquisi-

Figure 1.   Schematic of MCTS generation and data acquisition protocol. MCTS are generated using ultra-low 
attachment microplates which are cultivated for 4 days. Once formed, MCTS are embedded into a collagen 
invasion matrix containing fluorescent microspheres to track extracellular matrix deformation. Time-lapse 
microscopy imaging of MCTS systems occurred over a 72-h time span. Images were tiled, stitched and rigidly 
registered before estimating cell number and X and Y deformation for the model.
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tion, image processing, and registration, the necessary steps to prepare the observational microscopy images to 
estimate cell number and deformation.

Microscopy images were compiled and stitched using a customized fully-automated tiling, stitching, regis-
tration, and segmentation software written in MATLAB (Mathworks, Natick, MA). Z-stacks for each 10X field 
were compiled and stacked to create a 3D image of the field. Initial position data for each field was extracted 
from the microscopy acquisition data and fields were stitched using rigid registration based on intensity correla-
tion of the overlap between images. 3D point clouds were then constructed to represent the centroid position 
of the fluorescent beads using the binary image, and used to rigidly register each serial time point image to the 
initial time point using an iterative closest point algorithm. Uncommon z-planes between the time points due 
to physical microplate repositioning between imaging acquisitions were eliminated. To reduce dimensionality, 
maximum intensity projection images of the registered bead and MCTS images were used for subsequent image 
processing and analysis. MCTS pixel fluorescent intensity was normalized by identifying the peak intensity for 
the top 0.01% of pixels among all wells in the plate and across all time points, and normalizing each image to a 
scale of 0–1. This normalization defines the cell number carrying capacity for the model with the assumption of 
a linear relationship between fluorescent intensity and cell number. Regions-of-Interest (ROIs) for each MCTS 
were identified at each time point using a fully-automatic threshold-based segmentation method. Bead images 
were non-rigidly registered to the previous time point using multi-resolution free-field deformations based on 
multi-level B-splines to obtain the observed bead deformation field35,36.

Biophysical model of MCTS growth and deformation.  The biophysical MCTS growth model is based 
on previous work from our group24,27 developed at the in vivo clinical scale and modified for use at the in vitro 
MCTS scale. This study incorporates the same fundamental model used in our previous work with minimal 
modifications allowing for it to be used at the in vitro scale. The governing coupled partial differential equations 
are shown in Eqs. (1)–(3) below:

Equation (1) models the rate of change of cell number, N (
−
x , t) , at a given time and location as the sum of 

random cell diffusion and logistic growth, where D (μm2/h) is the local cellular diffusion coefficient of tumor 
cells in the presence of mechanical stress, k (h−1) is the cell proliferation rate, and θ is the cell carrying capacity. 
Equation (2) couples Eq. (1) to the surrounding tissue stiffness and describes cell diffusion coefficient as a modi-
fication of the global cell diffusion coefficient, D0, through distortional (von Mises) stress, σVM, and an empiri-
cally derived coupling constant, γ. Equation (3) describes linear elastic, isotropic mechanical equilibrium with 
an external expansive force determined by changes in cell number and a biophysical traction force coefficient, 
λ, which governs the response of the displacement vector, u, to tumor cell growth. G represents shear modulus 
and is defined as G = E/2(1 + v) where E represents Young’s modulus and v represents Poisson’s ratio. A uniform 
Young’s modulus of 2 kPa is assigned to the ECM, based on the assumption of uniform invasion matrix density 
throughout. In our previous work, the mechanical coupling constant, λ, was an empirically-derived coupling 
constant. In this work, model-to-data fitting of λ is used to estimate the observed mechanical interactions in the 
MCTS system. The Young’s modulus of the spheroid core is unknown but assigned as an order of magnitude 
higher than the surrounding environment with the assumption that the spheroid core is stiffer than the col-
lagen invasion matrix. We return to these assumptions in the Discussion section. Poisson’s ratio is assumed as 
0.45 representing the near-incompressible nature of the hydrogel system and avoiding numerical instabilities 
due to incompressibility within a linear elastic model solution17. Time stepping was assigned with Δt = 0.125 h 
for a duration of 12 h for each time point, for a total of 72 h (hour 96 to hour 24). Finite element meshes were 
constructed to represent the observed microscopy field of view domain and were composed of three-node 
triangular elements with an average edge length of 45 μm. The equations are solved using the Galerkin method 
of weighted residuals on triangular finite elements described by standard linear Lagrange basis functions using 
a fully explicit forward Euler method. We assume that the MCTS growth takes the form of a reaction diffusion 
logistic growth model, a commonly studied model for estimating the growth of tumors and avascular spheroids. 
We utilize a first-order simplifying approximation by neglecting the convective velocity of cellular mitosis under 
the assumption that the time scale of tumor growth is sufficiently long such that convection motion driven by 
cell mitosis is minimal relative to diffusive motility28.

Parameter estimation.  Figure  2 shows the modeling approach for characterizing MCTS growth and 
mechanical interactions. A Levenberg–Marquardt least-squares non-linear optimization was used to estimate 
the proliferation rate (k), cellular diffusion coefficient (D0), and the traction force coefficient (λ) between each 
imaging time point. Model parameters are assumed as piecewise continuous between each imaging time point 
over the observed time scale as linear uniform time invariant parameterization was determined as inadequate 
for characterizing MCTS systems. Modeling the changes between the observed time points allowed us to cap-
ture the dynamic changes of these biophysical parameters. Model parameters are assumed to be homogenous 
throughout the domain.

(1)
∂N(x, t)

∂t
= ∇ · (D∇N(x, t))+ kN(x, t)

(

1−
N(x, t)

θ

)

(2)D = D0e
−γ σVM (x,t)

(3)∇ · G∇
⇀
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G
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− �∇N(x, t) = 0
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The objective function that was minimized is the sum-squared error between the observed and model-
estimated spheroid cellularity, and the observed and model-estimated traction force displacement. Iterative 
parameter estimation was terminated based on the following convergence criteria: (a) absolute objective func-
tion value less than 1 × 10–4, (b) relative change in the objective function between iterations less than 1 × 10–2, 
(c) maximum of 500 iterations, or (d) maximum of 1,000 function evaluations. We note that relative objective 
function change was the typical convergence condition.

To improve inverse parameter optimization performance, we use an iterative sequential method to indepen-
dently solve for the model parameters. Our sequential method involves solving the inverse problems in steps 
by fitting the model parameters between two sequential time points. Initially we use a cell number objective 
function to fit parameters of D0 and k, with an arbitrary assigned λ. We then fit λ using a displacement objective 
function holding the optimized first iteration D0 and k parameters fixed. We then repeat the process until the 
final model parameters are converged, which occurred in two iterations in all cases. In data not shown, we vali-
dated our parameter estimation methodology using synthetic in silico MCTS systems subjected over a dynamic 
range of parameters and found convergence of the inverse problem for parameter estimation to the correct set 
of parameters.

Spheroid ROIs and X and Y bead deformation at each time point were interpolated onto the mesh and used as 
inputs for the model. We derive a first-order approximation for spheroid cell density using a linear relationship 
between cell density and fluorescent intensity, with a maximal carrying capacity, ϴ, of 1 set from normalization 
of spheroid fluorescent intensity described above.

Figure 2.   Model schematic of microscopy image-driven biophysical mathematical model parameter estimation. 
The model is used to build a map of cellular density, X deformation, and Y deformation and parameters are 
iteratively optimized until the error is minimized below the preset tolerance. The fit parameters are then used to 
project the model forward in time to obtain the model estimated images.
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Results
Six MCTS systems (n = 3 untreated, n = 3 treated) were imaged and analyzed using our mathematical model. 
Figure 3 displays our data results for our model estimated biophysical parameters of cellular diffusion, cellular 
proliferation rate, and cellular traction force over the observed time course. Our mechanically-coupled reaction 
diffusion model was capable of describing MCTS growth and traction force for both treated and untreated condi-
tions. Figure 3 compares our model-estimated biophysical parameters to conventional morphometric techniques. 
Over time the MCTS core density is observed to reduce which we hypothesize is due to a combination of the dif-
fusive motility (in which cells dissociate at a higher rate than proliferation) along with the avascular nature of the 
MCTS core. Imaging data and model predictions for MCTS systems from an untreated and treated representative 
MCTS systems are shown in Figs. 4, 5, 6 and 7. The mechanically-coupled reaction–diffusion model is used to 
estimate parameters of diffusion, proliferation rate, and mechanical traction forces by fitting the model to pairs 
of observational MCTS microscopy images. The model-based parameters are used to characterize untreated 
and treated MCTS systems to distinguish between the two groups. Figures 4 and 5 display and compare cellular 
density observation and model-estimated data over the imaging time course for representative untreated and 
treated MCTS systems. Qualitatively, the untreated MCTS systems show cellular invasion into the surrounding 
microenvironment whereas as compared to hindered cellular invasion in the treated MCTS systems. Compared 
to observed cellularity data, our model underestimates MCTS core cellularity once cellular invasion into the 
ECM begins. Figures 6 and 7 display and compare X and Y deformation observation and model-estimated data 
over the imaging time course from representative untreated and treated MCTS systems. As expected, we observe 
more deformation in untreated MCTS systems compared to treated MCTS systems. In both untreated and treated 
MCTS systems, peak deformation is observed adjacent to the MCTS edge with a reduction in deformation in 
the radial direction. We also observe the bulk of deformation changes during the earlier time points over the 
imaging time course with the differences in deformation minimizing in later time points. The bead deforma-
tion field image is obtained through non-rigid registration of fluorescent bead images, and the model is used 
to estimate λ, to characterize the underlying biophysics of cell-ECM mechanical interactions. Qualitatively, the 
treated MCTS deformation field map exhibits a significant decrease in bead displacement relative to untreated 
MCTS. Statistical analysis was performed to determine the ability of the model to characterize treatment effects 
on MCTS systems using biophysical parameters. An unpaired parametric t-test was used for each parameter at 
each time point with a significance level, alpha of 0.05. The mean, standard deviation and statistical significance 
for each parameter are reported in Table 1. As shown in Table 1, the model was able to characterize treatment-
induced differences in MCTS growth and mechanical interaction biophysical parameters over the time course.

Our results show promise in describing MCTS systems using D0, k, and λ. To compare our biophysical model-
based biomarker analysis to conventional MCTS analysis we assessed conventional morphometric analysis of core 
and invasive diameter. We defined the core diameter using the maximum intensity projection image at the initial 
time point with a threshold selected for fluorescent intensity to define the core diameter. The longest dimen-
sion of the total MCTS ROI was defined as the invasive diameter. Figure 3 shows model estimated biophysical 
parameters and the conventional morphometric analysis over the observed time course. We found that the core 

Figure 3.   (Top) Preliminary data results with model estimated biophysical parameters of diffusion, 
proliferation, and traction force and (bottom) conventional morphometric assessment methods. As previously 
described, parameters D0, k, and λ were fit for each untreated and treated MCTS system over the time course. 
The model fit parameters are able to describe the underlying biophysics driving MCTS changes in response 
to paclitaxel treatment. The conventional morphometric assessment methods of core diameter and invasive 
diameter can describe overall growth, shrinkage, or stasis of MCTS, but are unable to infer mechanistic 
biophysical interpretation.
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Figure 4.   Observational microscopy images, model characterization of cellular density, and error maps 
between the observed and model-estimated cellular density for one representative untreated MCTS system 
is shown. Processed observational microscopy images show cellular density on a scale from 0 to 1. Cellular 
density is estimated using our computational model and is used to estimate parameters of cellular diffusion and 
proliferation between each imaging time point. Error maps show model-data misfit of cellular density.

Figure 5.   Observational microscopy images, model characterization of cellular density, and error maps 
between the observed and model estimated cellular density for one representative treated MCTS system is 
shown. Processed observational microscopy images show cellular density on a scale from 0 to 1. Cellular 
density is estimated using our computational model and is used to estimate parameters of cellular diffusion and 
proliferation between each imaging time point. Error maps show model-data misfit of cellular density.
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diameter was not able to differentiate between treated and untreated conditions with no significant differences 
throughout the treatment time course. The traditional morphologic measurement of invasive diameter was able 
to distinguish between the treated and untreated MCTS systems, but is only statistically significant following 
48 h of growth and invasion. Comparatively, the combination of our model fit parameters D0, k, and λ better 
characterize the biophysical changes between untreated and treated MCTS systems with increased sensitivity 
throughout the entire time course.

Discussion
In this work, we modified our previously published mechanically-coupled reaction–diffusion model by extension 
from the in vivo clinical scale to describe in vitro MCTS growth, invasion, and mechanical interaction within 
extracellular matrix. We show that biophysical model parameters of cell diffusion, proliferation, and cellular 
traction force can be reliably estimated from observational microscopy imaging of MCTS growth and mechani-
cal interactions. These model-based quantitative biomarkers indicate the underlying biophysics driving growth 
and invasion into the surrounding ECM and reveal important biological insights through the use of observa-
tional imaging data alone. Importantly, the model-based framework was able to distinguish between treated 
and untreated MCTS systems, validating that our modeling framework is able to characterize both growth and 
treatment-related parameters. We found significant differences in model parameters of diffusion, proliferation, 
and cellular traction force between untreated and treated MCTS spheroids. In this study, we use the antineo-
plastic therapeutic nab-paclitaxel, a taxane-based chemotherapeutic antimicrotubule agent. Taxanes stabilize 
microtubules against depolymerization, blocking the cell cycle in G1 or M phases and preventing cell division 
and triggering cell cycle arrest and mitotic catastrophe37. This results in reduced proliferation, which is reflected 
in our modeling framework through significantly lower proliferation rates observed for treated MCTS systems. 
Further, microtubule cytoskeletal networks are crucial for transducing and regulating mechanical signals, with 
cellular traction force generated through microtubule depolymerization38. This mechanism is reflected in our 
modeling framework through significant attenuation in the traction force parameter at early time points. At the 
later time points, there is a significant reduction in the amount of cellular traction force which may be an effect 

Figure 6.   The model characterization of cellular traction force for one representative untreated MCTS system 
is shown. X and Y deformation field images are determined based on non-rigid registration of observational 
microscopy imaging of fluorescent microbeads over time. Using the model-fit cellular density parameters and 
observational deformation field images in combination with our computational model, a cellular traction force 
parameter is estimated between each imaging time point. The figure reflects the cumulative cellular traction 
force overtime in both and X and Y displacement directions. Error maps show the model-data misfit for both X 
and Y deformation.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:11583  | https://doi.org/10.1038/s41598-020-68324-4

www.nature.com/scientificreports/

of the ECM stiffening. In untreated MCTS systems, we see a substantial amount of initial traction force, but the 
traction force is significantly lower in MCTS systems treated with nab-paclitaxel. The mechanistic validation 
of our modeling framework through the use of a widely-studied antineoplastic agent with well-characterized 
mechanisms of action provides significant promise for the use of our model to characterize biophysical mecha-
nistic treatment effects.

Here, we show characterization of the dynamic changes in mechanistic biophysical properties that enhances 
the available information from traditional drug sensitivity assays without requiring significant changes to current 
observational imaging protocols. In the current state of conventional drug sensitivity screening, morphometric 
measurements and cell counts reflect the eventual downstream consequences of treatment (cytostatic or cytotoxic 

Figure 7.   The model characterization of cellular traction force for one representative treated MCTS system 
is shown. X and Y deformation field images are determined based on non-rigid registration of observational 
microscopy imaging of fluorescent microbeads over time. Using the model-fit cellular density parameters and 
observational deformation field images in combination with our computational model, a cellular traction force 
parameter is estimated between each imaging time point. The figure reflects the cumulative cellular traction 
force overtime in both and X and Y displacement directions. Error maps show the model-data misfit for both X 
and Y deformation.

Table 1.   Mean and standard deviations for each model parameter and time point. *Denotes statistical 
significance with p < 0.05, **p < 0.01, ***p < 0.001.

Time point 
(hours)

Diffusion Proliferation Traction force

Untreated Treated Untreated Treated Untreated Treated

36 399.46 ± 31.99 95.79 ± 29.36*** 1.18E−2 ± 1.73E −3 3.37E−3 ± 3.07E −3*  − 1596.31 ± 163.03  − 892.13 ± 133.93**

48 352.7 ± 43.77 68.04 ± 44.57*** 1.12E−2 ± 3.52E−3 6.69E−3 ± 2.21E−3  − 560.88 ± 6.28  − 232.76 ± 42.75***

60 256.72 ± 41.08 57.33 ± 48.54* 1.01E−2 ± 1.28E−3 4.96E−3 ± 2.12E−3*  − 408.97 ± 36.36  − 181.65 ± 48.96**

72 248.27 ± 37.28 56.67 ± 45.43** 9.5E−3 ± 1.14E−3 4.18E−3 ± 1.47E−3*  − 222.96 ± 40.28  − 195.46 ± 35.75

84 243.17 ± 36.16 52.84 ± 47.09* 1.02E−3 ± 5.95E−4 3.20E−3 ± 1.50E−3**  − 166.50 ± 21.83  − 170.20 ± 14.36

96 219.83 ± 36.91 19.87 ± 7.15** 8.45E−3 ± 8.64E−4 3.20E−4 ± 4.53E−4***  − 115.15 ± 11.28  − 121.20 ± 15.06



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:11583  | https://doi.org/10.1038/s41598-020-68324-4

www.nature.com/scientificreports/

effects) but obfuscates the underlying mechanisms that are driving observed tumor growth and therapeutic 
responses. While we show that conventional assessment methods (e.g. spheroid core and invasive diameter) may 
eventually yield statistically significant changes in response to treatment that reflects observable cytotoxic effects, 
biophysical characterization methods as developed in this study provide advantages in providing mechanistic 
insight. The spheroid core diameter was unable to distinguish between the treated and untreated MCTS systems 
throughout the entire time course. The core diameter also showed a slight reduction in MCTS cell density over the 
time course which we hypothesize could be due to diffusive motility and the avascular nature of MCTS systems. 
Due to the mechanical invasion motility process, cells dissociate from the MCTS core at a faster rate than they 
are proliferating leading to a slight core reduction. Additionally, as the MCTS systems are an avascular system, 
the internal cells of the MCTS core may receive restricted oxygen and nutrient penetration potentially leading 
to cellular senesce and/or apoptosis. The spheroid invasive diameter was able to distinguish between the treated 
and untreated MCTS systems at later time points, however mechanistic interpretation is limited with failure to 
describe the underlying biophysics which drive these observed morphometric changes.

While the results of this study are promising, there are several limitations. In our model we assumed homo-
geneous mechanical stiffness throughout the extracellular matrix domain with the heterogeneity of collagen 
matrix stiffness not considered in this work. Cancer cells have been shown to induce ECM remodeling through 
deposition, crosslinking, and alignment of ECM collagen fibers which is known to stiffen the ECM, however 
accurate methods to quantify the bulk heterogeneity of mechanical stiffness in ECM in vitro systems are chal-
lenging. It would be of interest to develop methods to quantify stiffness throughout MCTS systems over time. 
By incorporating more accurate mechanical stiffness assumptions, we could improve our spatiotemporal model 
fits. Incorporating this heterogeneity would increase the complexity of the proposed model, requiring additional 
experimental data to characterize the stiffness. Additionally, in this work, we only characterize the MCTS systems 
using 2D analysis. While acquired images are 3D, in this first-order analysis we dimensionally-reduced our input 
data to 2D in order to simplify the initial validation of our modeling framework to describe biophysical changes 
in response to treatment. With further model development, in future studies we will characterize these biophysi-
cal parameters in 3D. Despite these limitations, our model allowed for the mechanistic characterization of bio-
physical changes in MCTS systems, improving upon current conventional morphometric assessment methods.

While in this work we restricted our analysis to biophysical parameters of proliferation, diffusion, and trac-
tion forces, this mathematical analysis framework is generalizable and has the ability to be extended to evaluate 
additional biophysical phenomena. Our model has the potential to additionally account for other phenotypic 
biophysical TME factors affecting growth and therapeutic response, including the addition of active migration/
motility through haptotaxis along stiffness gradients, cellular metabolism regulated by spatial oxygen gradients, 
and collagen fiber remodeling and alignment. Our methodology also shows promise in the ability to describe 
cell population-specific and drug-specific biophysics by evaluating various breast cancer cell lines and thera-
peutic agents. Our modeling framework may also be applied to assessment of 3D breast cancer organoid models 
using patient-derived cells. Characterizing mechanistic biophysical parameters could enable patient-specific 
therapeutic selection by identifying patient-specific biophysical phenomena driving tumor growth or reflecting 
particular therapeutic vulnerabilities.

This integration of microscopy imaging, biophysics, and mathematical modeling has the potential to impact 
many areas of research pertaining to dynamics of cancer growth and therapeutic response including cell line 
observations, drug sensitivity assays, anti-cancer drug development, and patient-specific drug selection and 
prediction of response. Ultimately, pre-existing cellular biophysics dictates individual phenotypic observations of 
cancer growth and response to therapy; yet conventional microscopy imaging assessment methods are relegated 
to monitoring the conclusions of these phenotypic responses and not their underlying causes. The coarseness of 
these outcome measures complicates efforts to understand the mechanistic effects of drugs or the specific driving 
biological factors in patient-derived samples as many different combinations and levels of various biophysical 
phenomena may yield similar final observed responses. In this work, we demonstrate the utility of a microscopy 
imaging-data driven modeling approach to quantify cellular biophysics based on fitting longitudinal observations 
to biophysical models in an important step towards precision evaluation.
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