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1.0 Executive Summary

Our team is working with the Social Interactome team to assist in coding the
recommender functionality for the Social Interactome network, supported by a
website and system (based on Friendica) designed by the Social Interactome
team to help recovering addicts. The team used Python to parse participant’s
answers to survey questions, and to apply an algorithm to that data to show each
participant's most favorable friend matches. The team is working in concert with
Prashant Chandrasekar, the Graduate Research Assistant (GRA). He provided us
access to the participants’ answers to survey questions. As more and more
surveys are filled out by users the team will continue to refine their algorithm to
accommodate that extra data. As a further step we will work towards a hybrid
recommender, which will incorporate not only content, but also
collaborative-based recommending.



2.0 User Manual

2.1 Objectives

Addiction recovery is a major issue in the United States and there is not an easy
path to recovery. Friendica is an online recovery community created to investigate
the effect of social networks or people recovering from addiction on the
effectiveness of their recovery. The idea behind the Social Interactome data
analysis for recovery friend recommendation is that within the social community of
Friendica having beneficial friends is a crucial step to a successful recovery. The
recovery friend recommender will gather data from multiple sources in order to
provide users with recommended friends that the program deems beneficial to the
user. The suggested friends will then hopefully help the user to get through their
recovery process.

2.2 Business Process

Currently Friendica allows any users to become friends with anyone they want,
but with the updated Social Interactome friend recommender users will have
easier access to more beneficial friends. This will make the program more useful
and thus encourage more people to use and become a part of the Friendica
community. With this addition the customer will get a better experience from
Friendica and hopefully become more successful in his/her recovery process.

Our client is the Social Interactome team that has been working on this project.
Our point of contact with our client is Prashant Chandrasekar. They will be
providing us any access that we need to their database as well as their sandbox
environment for testing our code.

2.3 User Roles and Responsibilities

Users of this system are both people in recovery as well as professionals in the
fields of recovery, human studies, and psychology. The people in recovery use
this system directly by being a part of the Friendica community and having access
to friend suggestions. They will then use the friend suggestions to meet and
communicate with new people who are more likely to help them through their
process of recovery. Other users of this system include professionals in fields



involving recovery and similar studies. The system will be able to provide
information on how the system calculates how to recommend recovery buddies
and from this an analysis on the effectiveness on different parameters for buddies
can be made.

Users in Recovery - These users will be accessing the Friendica network to
connect with their buddies for help each other’s recovery process. While
interacting with the webpage all of their actions will be recorded within a database.
These actions will include reading recovery stories, commenting on other
participant’s posts, messaging other users, attending video meetings, and
completing required and optional assessments. The friend recommender will use
the stored information from the database to determine what other users would
make good buddies by checking for similarities. The similarities will be weighted
differently based on analysis from the first experiment and live data. Once the
algorithm has determined who would be the best person to recommend this
information will be provided to the participant. The user would then decide if they
want to connect with their recommended buddy or not.

Professionals - These users won’t be directly interacting with the friend
recommender as they aren’t in recovery. Professionals will be able to access all
the information from the database and algorithm. Their analysis of a user’s
recovery will help to refine the recommender system. The professionals will be
able to see why a buddy was recommended and if the connection was effective
in either buddies recovery. Using this the system could be reevaluated to decide
which factors should have a higher weight.

2.4 Interactions with Other Systems

The Social Interactome friend recommender builds off of the Social Interactome
network. The Social Interactome is a social network to connect people going
through addiction recovery. To gather effective data for friend recommendations
participants in the Social Interactome network will first fill out a survey to collect
initial information, then participants will go through the first 12 weeks of the study
with a set of six given friends without the ability to add new ones. On the 12th
week they will be able to add new friends and the recommender will give
suggestions on who the system thinks will be most beneficial to the participants.
Throughout the first 12 weeks all the data on what the participants do will be
stored in a database and used to create the friend recommendations. The data



will be stored in a MySQL and the client will either give access to the database or
provide the data in a CSV file.

The recommender will use an algorithm that is based on information from a
previously run experiment to determine the best buddies possible. This
information won’t be used for the recommendations but will be a point of reference
for the design.

2.5 Production Rollout Considerations

After the first 12 weeks are conducted the new recommender will use the
gathered data of how the participants interacted with their given friends, what the
participants did, and how successful they were in their recovery process to give
friend suggestions. A major case, to see whether a friend suggestion is a success
or not, is if the user actually friend-requests the suggested friend. On the other
hand, if the user requests friends that are not high on our recommendation list
then our algorithm has made a false negative error. If the participant sends more
friend requests with the recommender system implemented and he or she has
more interactions with their friends than without the system then it can be
considered a success case. Based on whom the participants add as friends and
how much they communicate with said friends will determine the overall
successfulness of the recommender.

2.6 Terminology

Recovery Buddy - The only people that participants are able to interact with during
their participation in the study. Anything posted, personal information, and
activities are viewable by recovery buddies and vice versa.

Recommender - The system that provides participants with suggestions for new
friends. The recommender will use an algorithm that is developed from the first
experiment's data and data from the ongoing experiment.

Social Interactome - an online recovery community created with the purpose of
investigating social networks as a means for therapy for people recovering from
addiction




Friendica - The network that the recommender is being introduced into. The
network allows users to interact in order to assist each other’s recovery and
prevent relapse. Friendica stores the information of every interaction a user has
with the system within a database. The network will provide live data from its
database to the recommender system in order to create buddy recommendations.

Similarity Matrix - A matrix with values that correspond to the likeliness that one
person is similar to another person. These values are made using an algorithm
implemented in Python.

2.7 Equipment Used
The application will be developed using personal laptops.
2.8 Statement of Functionality

The Social Interactome recommender will gather data from prior weeks of the
study in order to provide suggestions for beneficial recovery buddies to
participants. Variables that will be accounted for in the algorithm that we will
design for selecting recovery buddies may include, but are not limited to:
o Readings
Viewings
Things liked
Assessments
Interactions with other peoples
Ethnicity
Gender
Age
Substance recovering from
Job background
Living conditions
Income
Location
Occupation
Urban versus Suburban lifestyle
Hobbies
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Then from these different variables the recommender will formulate a dynamic
algorithm in order to recommend participants with recovery buddies. As the
information get updated and the interactions between suggested recovery buddies
is analyzed, the algorithm will change in order to better provide participants with
recovery buddies.

2.9 Scope

During the initial 12 weeks of the study the data gathered from the interactions
between participants and their recovery buddies will be used to formulate an
algorithm for suggesting recovery buddies to participants. As more data is
gathered during the 12 week process, the algorithm will be adjusted. As the 13th
week begins participants will receive their recovery buddy suggestions.
Continuing, more information on the interaction between the participant and their
suggested recovery buddy will be used to adjust or validate parts of the algorithm.

2.10 Concurrency

The recovery buddy recommendations must stay concurrent with the data of the
Social Interactome in order to not recommend people who are already buddies of
the participant.



3.0 Developer Manual

3.1 Design Overview

To start our recommender project we have to make a design based on the
entrance surveys that all participants must take. From that information we will
make a recommender for the very start of the first experiment’s second iteration.
While this will not be used at that time it is a good place to start for our initial draft
of a recommender. Our recommender will then be improved as more surveys are
filled out by the participants. However, since a number of the participants may not
fill out any surveys we need our recommender to work solely based off of the
initial survey.

The initial data will be provided to us as a comma separated value (CSV) file.
Using the computer programming language of Python we will parse through the
CSV file, and fix any irregularities that are found in the data. Afterwards, we will
apply the algorithm provided by the Social Interactome team to the data to find the
similarity of each of the 128 people in the homophily section of the experiment.
Based on that similarity we will fill out a matrix (Figure 3.1) with each person’s
similarity score. Using that similarity table when the Social Interactome team are
ready to use our recommender they will have a table of every person’s score, and
from there will be able to decide how best to have people distributed as friends.
Our code can be found at https://github.com/baehre/SIRecommender.
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Figure 3.1 - Similarity matrix which will hold recommender output
3.2 Homophily

Our recommender has to be able to suggest people based solely off their initial
survey. This way of recommending friends based on their similarities is referred to
as homophily, and is one of the two ways that the second experiment will be
designed (the second way being random similar to Figure 3.2). It is similar to the
lattice structure (Figure 3.2) which is being used in the first experiment. What
factors decide homophily will be an important part in our recommender. There can
be many different categories that can go into associating participants.
Socio-economic status, their addiction, and many other factors may go into the
final algorithm for deciding these people’s closest matches.
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Randomization to Conditions

Figure 3.2 - Example of Lattice vs. Small world friend organization

3.3 Parsing

While some of the data that comes in from the survey may be usable immediately
some of the data that is provided to us may need to be fixed to match the rest of
the data. Any subjective questions asked, or anything that can be written in a text
field may need to be standardized to match the rest of the data in that column.
While going through the .csv file that will be our first task. After going through the
data we then have to create a similarity score for every person with every other
person. This will result in 8001 different similarity values. While not particularly
efficient this should not cause any problems with our code.

3.4 Python

The choice of the Python programming language was simple. Python provides a
number of modules that allow easy access to SQL databases and CSV files. The
other option would be the statistics language R, but R is not a particularly well
known language, and our team has a better handle on Python as an overall

12



language semantically and syntactically. R is also not particularly good at text
processing as compared to Python. Usage of numpy will also allow us to make
matrices to hold all the similarity values computed by our algorithm. This will be
the main data structure that we use in our code. Numpy(3) also provides an easy
way to do any calculations that may be necessary for our algorithm to work.

3.5 Recommender Versions

There are three basic types of recommenders: content based, collaborative and
hybrid. We will be focused on content based recommenders since that will be the
easiest way to get a working algorithm up and running without having to include
any relationships between people in the experiment. An example of a content
based recommender would be to make a recommender based on solely
information such as what we will be getting from user surveys. A collaborative
recommender would be using information about user’s friends to make a
recommender. It also allows us to easily add more specifications as more surveys
are filled out, which provide us more content. While a collaboration based
recommender would allow us to better understand relationships between people,
and which friends of friends would be good choices to recommend to each other.
The final option, hybrid, while quite possibly the best option, is not something that
can be easily implemented in the time that we have to finish our project.

3.6 Extendability

While our recommender may not need to implement many different ways of
recommending friends by collaborative or hybrid recommending methods, we do
need to make our recommender scalable for any other changes that need to
made for extra information coming in from surveys or text based information
provided to us by Abigail Bartolome. This also allows for the Social Interactome
team to use our code even after our part of the project is finished.

3.7 Implementation Strategy

The first step of the implementation of the S| Recommender will be to gather the
starting data on all the participants. The source of our beginning data will be a
qguestionnaire given to the users. Initially before participants join Friendica, they
will be prompted with a survey to record initial data such as age, gender, location,
addictions, etc. This information will be stored in a CSV which will be provided to
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us. From the data we will extract specific characteristics for each participant such
as their age, their area of living, their gender, what substances they are
recovering from, etc. and create a similarity matrix. The similarity matrix will have
participants in both the rows and columns, and their intersections will be the
number of shared characteristics. From the values of the matrix we can then
generate a friend suggestion list for each participants by sorting the numbers in
the matrix from greatest to lowest, greatest meaning the participants has the most
things in common with the specific person.

3.8 Tools and Frameworks

The SI Recommender will be implemented using the Python language. Inside our
recommender we will be using NLTK (the Natural Language Toolkit)(4) for
processing text. We will also be using the package Numpy(3) for a matrix to hold
the output of our algorithm. We will also be using the sqlite3 API(6) to access the
database holding the information of all the user’s survey responses.

3.9 Implementation Methodology

To develop the S| Recommender algorithm we will first analyze the surveys that
new Friendica users take. This survey includes things such as demographic
information, their primary addiction, secondary addiction and other information.
The different sections of the survey will be analyzed to determine which are likely
to be most important for recommending that users connect. Five factors(age,
gender, primary addiction, education level, and household income) will be used by
our algorithm to generate recommendations. These five factors are being used as
they were recommended by the GRA.

3.10 Survey Result Parsing:

Before users join the Friendica network, they are required to take a survey to get
background information on each of the users. All the answers are then stored in a
database in accordance to the user’s ID number. The SI Recommender will then
take the data in the form of a CSV file. The CSV file contains a line of headers for
the question from the survey along with the survey results for each participant.
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Each participant's results are one line of the file starting with their ID number and
followed by each of their question responses.

A L M M X Y
1 |id  Maonth of Year of bit Gender: Education: [] Household Incom... [ What was your p... []
2 4179 March 1964 Female Some college 550,000 - 569,999 Alcohol {liquor, beer, wine)
3 5353 July 1983 Female Bachelors degree $30,000 - 543,999 Opioids (heroin, opium, mo

Table 3.3: Sample of participant survey results

Figure 3.3 above shows the format of the CSV file containing the results from the
survey given to the participants. The first process of the SI Recommender is to
parse the data from the given CSV file and then create a simpler, easier to read
CSV file. Figure 3.4 below shows the output CSV file after parsing.

A E C D E
id Age Male Female Other
2 4179 22 0 1 0
3 2353 32 0 5 0
Table 3.4: Output CSV file from data parsing

The parsed data will either be in the form of a numerical value or a bit value of ‘1’
or ‘0’ for true or false. Numerical values will be used for information such as ID
number and age. For the ID number, it will be directly translated from one CSV file
to the next. For the age, the parser will take the input of two strings, the value for
“‘Month of Birth” and the value for “Year of Birth,”"compare those values to today’s
date, and return one numerical value for the user’s age in years.

Bit values will be used for both yes or no questions or categorical questions.
Categorical questions are questions that provide a drop box, containing the
answer possibilities, with the question. For these questions the parsed data will
provide one column per answer choice initially assigned ‘0’ and the column with
the answer selected will be a ‘“1’. For example, if the answer options were alcohol,
drugs, and shopping and the user choose shopping the output file would display
[0, O, 1] for this question. For initial testing we are only using a few of the
questions to recommend friends. These include gender, addiction, educational
level, and income. The code uses a list of the different addictions as well as a
HashMap of the addictions to their indices in the list. A HashMap is used to speed
up the lookup step in the algorithm.
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This code style and data structures are used for all the other categorical
questions. Some of the questions had an ‘other’ option as well as a second survey
question to fill out their answer to the question. These answers are uncommon
outliers and are grouped together in an ‘Other’ category in order to simplify the
coding and friend recommendation processes.

3.11 Similarity Matrix Creation:

The similarity matrix will have participants in both the row and column, and their
intersection will have the number of shared characteristics. From the values of the
matrix we can then generate a friend suggestion list for each participant by sorting
the numbers in the matrix from greatest to lowest, greatest meaning the
participant has the most things in common with the specific person.

Once the data is parsed it is interpreted to create a Similarity Matrix storing the
similarity scores for participants. The matrix is output as a CSV file to be used by
Friendica’s recommender functionality. The matrix creator uses the output from
the parser seen in Figure 3.4 as its input. The input is then parsed to generate a
two dimensional array storing the user answers for age, gender, primary
addiction, education level, and primary addiction.

The array used to easily search from specific user information by index instead of
navigating through the CSV file using function calls. This vastly reduces the
function calls required as each user’s information is compared to the other 127
users. The comparison information is stored within another two dimensional array
that is used for generating the output matrix. The prototype currently uses a
nested for loop to generate the similarity scores and store them within the output
array. These values are rounded to two decimal point to reduce visual clutter in
the output CSV.

The nested loops use a function defined in the script to compare the two users
and return a similarity score for them. The function has two parameters which are
arrays representing each user's information. The values in the array will be age,
gender, primary addiction, education level, and household income. The values for
each user are compared to determine how similar they are. The comparisons
check if the users have the same value for gender, addiction, education and
household income and check if their values for age are within five years. The
results of these comparisons are summed to determine a similarity score for the
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two users. The score ranges from zero to one. A score of zero indicates that the
users are completely different and a score of one indicates that all their values
were the same.

After the similarity scores are computed and stored the data is written to the file
‘matrix.csv’. Table 3.5 shows the format for the similarity matrix. The user IDs are
stored within the first column and row. The similarity scores are stored within the
cells corresponding to the two users that were compared.

id user 11D user 2 ID user 3 ID
user 11D similarity score similarity score similarity score
user 2 1D similarity score similarity score similarity score
user 31D similarity score similarity score similarity score
Table 3.5: Format for the similarity matrix
3.12 Max Flow:

After the similarity matrix is created, there is one main issue that needed to be
addressed. By merely using the similarity matrix scores to recommend friends, it
is possible for someone to be a ‘recommended friend’ to any number of people
while someone else could only be a ‘recommended friend’ for one person. In
order to prevent this we decided that we would put an exact number on how many
people a person should be recommended to, in this case we put the number at
six. In order to enforce this cap and still recommend friends with high similarity
scores we created a max flow algorithm. Max flow is a part of optimization theory
where you find the maximum flow from a single source to a single sink. To apply
this theorem to our problem we created a single source node that branches out to
the number of participants, in this case 128. These participant nodes then link to a
node for every other participant, then those participant nodes link to the final sink
node.

17
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Figure 3.6: Max flow graph of participants to participants, adapted from [ref-3]

Figure 3.6 shows the graph for the max flow algorithm, ‘s’ is the source that links
to the participants (s, to s,) and those participants link to other participants (t, to
t ) which then link to the sink ‘t". The links from the source to the participants and
participants to the sink have a fixed value while the links from participants to
participants use the value from the similarity scores for their edge. The algorithm
then uses maximum bipartite matching, allowing only six edges from each
participant to other participants, to calculate the max possible value for the entire
graph. The max flow value is virtually the sum of the six similarity scores for each
of the 128 participants and their recommended friends. The algorithm then
updates the list of recommended friends for each participant that gives the max
flow.

3.13 Testing:

The goal of our project was to provide a recommender to the Social Interactome
team. To test that what code we provided was correct we will test it with two
different methods. The first will be to use our data on Steam, an online gaming
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network, data to see if the code we have written is versatile. The other is to check
especially similar scores between participants by looking at the values that were
used to calculate that score.

Our code currently takes into account five factors from each person in the Social
Interactome. These five factors are age, gender, addiction, education, and
household income. These factors are used as the GRA recommended using them
to determine the similarity between two users. Based on these factors we wrote
our algorithms.

The shortest distance algorithm as mentioned above gets the difference of each
value (with the exception of age) and then giving each value an equal weight and
returning a value between zero and one for each person. A value of one indicates
that the users being compared are either the same user or have the same values
for all five factors. A smaller return value indicates a larger difference between the
users being compared. The other algorithm compares each person and returns
the euclidean distance between each person. The euclidean distance is
calculated by for each value taking the difference squaring it and adding it to all
the other squared differences and then taking the square root of that sum. For our
purposes at this point that gives us a 256x256 matrix with the top left to the
bottom right diagonal of zero. The rest of the values generally range between one
and three. A distance of zero indicates that the users being compared are either
the same user or have the same values for each factor. Larger values indicate a
greater distance meaning the people are more different the larger the distance
becomes. The age was an outlier in that if it was included without any change it
would skew the data. It instead was changed so that if the age was within five
years of each other then it was considered a value of one and otherwise was
given a value of zero.

The algorithms are accurate if they produce recommendations that result in
people with the most similarities being recommended. We want to recommend
people that are most similar as the social interactome experiment is testing to see
if organizing individuals in recovery based on homophily will result in continued
recovery. Homophily is “The tendency of individuals to interact with others that are
characteristically similar’(Welcome to the Social Interactome). So our algorithm
should correctly recommend people who are most similar.
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Steam

Our code will also be evaluated on its extensibility. We will check our algorithm
using data from another source to show that friends are recommended properly.
We will create a Python script to crawl the data from a Steam friends list and
check the results of the algorithm. Since Steam users don’t have any addictions in
their profile we will instead use the list of games that they own as a replacement
for the addiction comparison within our algorithm. After adjusting the algorithm to
account for owned games instead of addiction we will inspect the results to
determine if users were recommended with similar owned games.

We tested the Shortest Distance Algorithm using data gathered from 50 Steam, a
gaming software distribution platform, profiles to show that it is extensible and will
give recommendations based on similarities. For this test instead of using
addiction as a comparison factor it was replaced with games owned. There were
eight games(Enter the Gungeon, Counter Strike, Rocket League, Super Meat
Boy, Garry’s Mod, Hotline Miami, Team Fortress 2, and Dota 2) that were
compared. The comparison was based on if the user owned a game or not. These
games were chosen as they were some of the most recently played games by the
users. Steam profiles don’t require including a user’s age, gender, education, and
salary so those factors were irrelevant to this test.

com 8,1,1,8,8,8,8,1,1

.8,1,1,8,8
battlecat ,9,0,1,1,08,1,0,1,0
@,0,1,1,1

Edi ,9,6,1,1,1,1,6,8,1

Figure 3.7: Sample input for Steam data

The test results confirm that users with more differences are correctly given a
higher score, showing a greater distance between the two, than users with less
differences. Figure 3.7 shows a sample of three users and their values for each of
the eight games as well as a zero for the age field. The differences amongst the
three users should result in the Shortest Distance Algorithm giving the greatest
distance between users one and three and the smallest distance between users
two and three. After running the Shortest Distance Algorithm the distances were 2
for users one and two, 2.24 for users one and three, and 1.73 for users two and
three. So our assumption was correct and the Shortest Distance Algorithm is
giving greater distances to users with more differences. The results also show that
the algorithm can be used for different forms of input to show similarities.
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At the suggestion of Dr. Franck we tested the Euclidean distance algorithm by
taking people with low scores, and checking their values to ensure that the low
distance outputted made sense. If a large number of the values matched then the
Euclidean distance computed made sense. We tested 10 random low scores to
ensure that our algorithm was sound.

Results

Our testing has shown us that the algorithms that we wrote are indeed sound.
They will be able to be implemented easily into the PHP code by the developers
of the project, and that the code is extendable enough so that any changes that
may need to be made in the future are possible.

4.0 Lessons Learned

Responsibilities

Andrew Baehre - Write algorithm and test algorithm to provide multiple options
for recommending friends, general writing for the write up of each section

Trevor Kinaman - Parse CSV file to provide information to Colin Gray, general
testing, general writing for the write up of each section

Colin Gray - Algorithm analysis, programmatically create similarity tables to
provide to Andrew Baehre, general writing for the write up of each section

Prashant Chandrasekar - Provide access to Sandbox development server, access
to user data, and general guidance in the project

Time Table - Planned Dates

2/14-2/20
Andrew Baehre - Work on Requirements and Design report

Trevor Kinaman - Work on Requirements and Design report

Colin Gray - Work on Requirements and Design report
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2/21-2/27
Andrew Baehre - Start working on algorithm analysis

Trevor Kinaman - Work on parsing the CSV file

Colin Gray - Start working on algorithm analysis

2/28-3/5
Andrew Baehre - Start writing algorithm, work on implementation report

Trevor Kinaman - Standardize all data for output CSV file

Colin Gray - Start writing algorithm

3/6-3/12
Andrew Baehre - discuss which factors would be best to be used in the algorithms

Trevor Kinaman - discuss which factors would be best to be used in the
algorithms

Colin Gray - discuss which factors would be best to be used in the algorithms

3/13-3/19
Andrew Baehre - take extra data and make sure algorithm still works with it

Trevor Kinaman - provide extra data to Colin Gray and Andrew Baehre

Colin Gray - update algorithm to accommodate new data

3/20-3/26
Andrew Baehre - Improve algorithm

Trevor Kinaman - Work on prototype and refinement report

Colin Gray - Improve algorithm

3127 - 4/2 -
Andrew Baehre - Write prototype and refinement report, work on other algorithm
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Trevor Kinaman - Properly extract data from CSV file provided by Prashant
Chandrasekar, and provide to Colin Gray and Andrew Baehre

Colin Gray - Take extracted data from Trevor, and apply an algorithm to make a
similarity table

4/3 - 4/9 -
Andrew Baehre - apply improved algorithm to make a similarity table

Trevor Kinaman - Provide more data from the CSV to Colin to further improve
algorithm used

Colin Gray - Take extracted data from Trevor, and apply an improved algorithm to
make a similarity table

4/10 - 4/16 -
Andrew Baehre - work on write up, compare similarity tables

Trevor Kinaman - Work on write up making any corrections necessary

Colin Gray - Help Andrew Baehre with comparison of similarity tables

4/17 - 4/23 -
Andrew Baehre - Finish algorithm, write up tutorial on how to make code

Trevor Kinaman - Finish parsing Python code, work on final write up of the
project

Colin Gray - Provide final similarity chart, finish write up with Trevor Kinaman,
create script for testing using Steam data

4/24 - 4/26 -
Andrew Baehre - Work on final touches for write up and code

Trevor Kinaman - Work on final touches for write up and code

Colin Gray - Work on final touches for write up and code
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Problems

At the beginning of our project we assumed that an algorithm for comparing users
would be provided to us by the Social Interactome team. We also believed that we
would have access to the PHP sandbox environment for implementation of our
similarity matrix.

Solutions

To work around our problems we coded two different algorithms to come up with
similarity scores for each member of the study. We provided a CSV and python
code to Prashant to provide to the coder in charge of the implementation of the
recommender.

Future Work

In the future we would like to improve our algorithm, as well as take into account
more variables. We would like to update the parsing of the data to better handle
the ‘other’ categories, work on the max flow algorithm for assigning the friends,
and some more testing to ensure the quality of our results. We would also like to
work with Abigail Bartolome, an undergraduate research assistant working on
parsing the communication between participants. We would like to include her
data in our algorithm.
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5.0 Conclusion

We will be providing a scalable recommender based on initial survey results in the
next few weeks. Afterwards we will work on making a table of all the results of our
algorithms between each person. As more information comes in we will update
the table, and algorithm to give a better picture of which people would be best as
recovery friends. When week 12 of the experiment approaches we will have the
most up to date table for use of the Social Interactome team in recommending
friends to people once the participants are allowed to choose their friends freely.
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