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Critical dynamics at incommensurate phase transitions and NMR relaxation experiments
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Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435

~Received 13 November 1998!

We study the critical dynamics of crystals which undergo a second-order phase transition from a high-
temperature normal phase to a structurally incommensurate~IC! modulated phase. We give a comprehensive
description of the critical dynamics of such systems, e.g., valid for crystals of theA2BX4 family. Using an
extended renormalization scheme, we present a framework in which we analyze the phases above and below
the critical temperatureTI . Above TI , the crossover from the critical behavior to the mean-field regime is
studied. Specifically, the resulting width of the critical region is investigated. In the IC modulated phase, we
consider explicitly the coupling of the order parameter modes to one-loop order. Here the Goldstone anomalies
and their effect on measurable quantities are investigated. We show their relation with the postulated phason
gap. While the theory can be applied to a variety of experiments, we concentrate on quadrupole-perturbed
nuclear magnetic resonance~NMR! experiments. We find excellent agreement with these dynamical measure-
ments and provide answers for some questions that arose from recent results.@S0163-1829~99!03417-7#
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I. INTRODUCTION

This paper is concerned with the critical dynamics
crystals undergoing a second-order phase transition fro
high-temperature normal~N! phase to a structurally incom
mensurate~IC! modulated phase. In the IC phase, the tra
lational symmetry of the lattice is broken by a modulation
such a way that the characteristic wave vectorqI is a nonra-
tional multiple of a basic lattice vector. The occurrence
incommensurate modulations is in general understood
consequence of competing interactions.1 The most important
characteristic of these systems is that the ground state
not depend on the actual phase of the incommensurate m
lation at a lattice site. This implies that the initial phase
the modulation wave is arbitrary and one must take into
count a phase-shift degeneration of the ground-state ene
Consequently, not only the amplitude of the modulating v
tor is required to characterize each configuration, but in
dition the phase at a arbitrary lattice site must be fix
Therefore a two-dimensional order parameter~OP! has to be
employed in order to describe the phase transition fromN
phase to an IC modulated phase.2 Interesting static proper
ties, e.g., the very rich phase diagrams of systems with c
peting interactions, emerge.3

However, in this work we concentrate on dynamical pro
erties. Considering fluctuations of the OP, the normal mo
can be expressed in terms of the transverse and longitud
componentsc' and c i in the two-dimensional OP space2

The fluctuations ofc' and c i can be identified with the
fluctuations of the phase and the amplitude of the modula
in the crystal.4 As a consequence of the OP being two
mensional, the lattice dynamics of structurally incommen
rate phases shows some peculiar effects which are diffe
from ordinary crystalline phases. Namely, below the tran
tion temperatureTI two nondegenerate branches of mod
PRB 590163-1829/99/59~17!/11226~18!/$15.00
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appear in the dynamical spectrum.4 The ‘‘amplitudon’’
branch, connected with the fluctuations of the amplitude
the incommensurate modulation, exhibits common so
mode behavior. In addition the ‘‘phason’’ branch represe
the massless Goldstone modes of the system, here orig
ing from the invariance of the crystal energy with respect
a phase shift. Because of the massless Goldstone mod5,6

present in the entire IC phase, new types of anomalies m
occur. Examples of such anomalies were discussed in
literature before.7–10 Thus we expect some peculiar featur
of the dynamics in the IC modulated phase stemming fr
the Goldstone modes and their coupling to the other
modes.

The purpose of this paper on the one hand is to provid
general framework for the analysis of the critical dynam
above and below theN/IC phase transition. The theoretica
description of such systems is based on anO(2)-symmetric
time-dependent Ginzburg-Landau model, with purely rela
ational behavior of the nonconserved order parameter.4 The
more generalO(n)-symmetric model has been widely stu
ied above the critical temperature by means of the dynam
renormalization group.11,12 Below the critical temperature
the O(n) symmetry is spontaneously broken; as mention
above parallel and perpendicular fluctuations have to be
tinguished. We will start from the field-theoretical model
incommensurate phase transitions and derive the corresp
ing dynamical Janssen–De Dominicis functional,13,14 which
provides us with the framework to calculate interesting th
oretical properties and correlations functions, which are
quired for the interpretation of experimental data.

Furthermore, we intend to give a comprehensive theo
ical description that goes beyond the mean-field or quasi
monic approach for the IC phase and which is missing
date. We present an explicit renormalization-group analy
to one-loop order above and below the critical temperat
11 226 ©1999 The American Physical Society
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PRB 59 11 227CRITICAL DYNAMICS AT INCOMMENSURATE PHASE . . .
TI . The renormalization-group theory will lead us beyo
the mean-field picture and provide some insight on the
fects of the Goldstone modes on the dynamical proper
below TI . Some specific features of the Goldstone mod
were discussed for the statics by Lawrie15 and for the dynam-
ics in Refs. 16 and 10. In the present paper, we extend
analysis of theO(n)-symmetric model, specifically for the
casen52. We also consider the crossover behavior from
classical critical exponents to the nonclassical ones in de
both above and below the critical temperature~see also Ref.
17!.

Furthermore, our model is employed to analyze spec
experiments. Quadrupole-perturbed nuclear magnetic r
nance ~NMR! is an established method to investigate
phases in a very accurate way.18 In this probe, the interaction
of the nuclear quadrupole moment~Q! of the nucleus unde
investigation with the electric-field gradient~EFG! at its lat-
tice site is measured. The fluctuations of the normal mo
give rise to a fluctuating EFG, which is related to the tran
tion probabilities between the nuclear-spin levels. As a c
sequence, the relaxation rate 1/T1 of the spin-lattice relax-
ation is given by the spectral density of the EFG fluctuatio
at the Larmor frequency. We calculate the NMR relaxat
rate with our theoretical model, and compare our findin
with the experimental data. Our results may be used to in
pret a variety of experimental findings; however, here
will restrict ourselves to the analysis of NMR experimen
The theory presented here is appropriate for the univers
class containing, e.g., the crystals of theA2BX4 family.
Some very precise NMR experiments on these crystals w
performed over the past years.18,19 AboveTI , these data can
be used to analyze the critical dynamics in a tempera
range ofT2TI5100 K more closely. BelowTI , an identi-
fication of relaxation rates, caused by fluctuations of the a
plitude and the phase, respectively, at special points of
NMR frequency distribution is possible. Therefore the rela
ation rates 1/TA and 1/Tf , referring to the critical dynamics
of the two distinct excitations~‘‘amplitudons’’ and ‘‘pha-
sons’’!, can be studied separately. These experiments le
some additional open questions. Above the critical tempe
tureTI , a large region was reported where nonclassical c
cal exponents were found.20 Below TI , the presence of a
phason gap is discussed in order to clarify some experim
as well as the theoretical understanding.21,20 We will show
how these questions can be resolved within the framewor
our theory.

This paper is organized as follows: In the following se
tion we introduce the model free energy for a system t
reveals aN to IC phase transition. The dynamics of the a
plitude and phase modes is described by Langevin-type
chastic equations of motion, and we give a brief outline
the general dynamical perturbation theory. In Sec. III,
connection between the NMR experiments and the susc
bility calculated within our theory is discussed. We shall s
that the spectral density functions are closely related to
measured relaxation times. The high-temperature phas
analyzed in Sec. IV. AboveTI , scaling arguments are use
to derive the critical exponents for the relaxation rate. T
crossover from nonclassical to classical critical behavio
discussed by means of a renormalization-group analysis,
we comment on the width of the critical region. In Sec.
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we apply the renormalization-group formalism to the lo
temperature phase. The susceptibility, containing the crit
dynamical behavior for the amplitudon and phason modes
calculated to one-loop order. Specifically, the influence
the Goldstone mode is investigated. In the final section
shall discuss our results and give some conclusions.

II. MODEL AND DYNAMICAL PERTURBATION THEORY

A. Structurally incommensurate systems

We want to study second-order phase transitions from
high-temperature normal~N! phase to a structurally incom
mensurate~IC! modulated phase at the critical temperatu
TI . The real-space displacement field corresponding to
one-dimensional incommensurate modulation can be re
sented by its normal-mode coordinatesQ(q).2 We will treat
systems with a star of soft modes22 consisting only of two
wave vectorsqI and 2qI along one of the principal direc
tions of the Brillouin zone, e.g., substances of theA2BX4
family.2 Because the incommensurate modulation wave is
most cases, at least close toTI , a single harmonic function
of space, the primary Fourier components^Q(q)&}d(q
6qI)e

if0 with the incommensurate wave vectors6qI are
dominating. UsingQ(q) as a primary order parameter of th
normal-to-incommensurate phase transition in the Land
Ginzburg-Wilson free-energy functional, diagonalizatio
leads to2

H@$c +
a%#5

1

2 (
a5f,A

E
k
~r +1k2!c +

a~k!c +
a~2k!

1
u+

4! (
a,b5f,A

E
k1k2k3k4

3c +
a~k1!c +

a~k2!c +
b~k3!c +

b~k4!dS (
l 51

4

k l D , ~2.1!

with new Fourier coordinatesc +
f(k) and c +

A(k) in the OP
space. Here, we have introduced the abbreviations*k . . .
5@1/(2p)d#*ddk . . . , and*v . . . 5(1/2p)*dv . . . .

Below the phase transition, the fluctuations ofc +
f andc +

A

can be identified with the fluctuations of the phase and
amplitude of the displacement field, namedphason and
amplitudon.4 The wave vectork indicates the derivation
from the incommensurate wave vectorqI , k5q7qI . The
parameterr + is proportional to the distance from the mea
field critical temperatureT+I , r +}T2T+I , and the positive
coupling u+ gives the strength of the isotropic anharmon
term. Unrenormalized quantities are denoted by the suffi+.

The functionalH@c +
a# describes the statics of the norma

to-incommensurate phase transition. It represents
n-component isotropic Heisenberg model; in the casen52,
it is also referred to as theXY model. For the sake of gen
erality, then-component order-parameter case will be co
sidered in the theoretical treatment.

B. Critical dynamics

The critical dynamics of the system under consideration
characterized by a set of generalized Langevin equations
the ‘‘slow’’ variables, which in our case consist of the no
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11 228 PRB 59B. A. KAUFMANN, F. SCHWABL, AND U. C. TÄUBER
conserved order parameter fluctuations~because of the criti-
cal slowing-down in the vicinity of a phase transition!.23 The
purely relaxational behavior24 is described by the following
Langevin-type equation of motion

]

]t
c +

a~k,t !52l +

dH@$c +
a%#

dc +
a~2k,t !

1za~k,t !. ~2.2!

The damping is caused by the fast degrees of freedom, w
are subsumed in the fluctuating forcesza. According to the
classification by Halperin and Hohenberg, we are consid
ing model A.23

The probability distribution for the stochastic forcesza is
assumed to be Gaussian. Therefore

^za~k,t !&50,

^za~k,t !zb~k8,t8!&52l +d~k2k8!d~ t2t8!dab, ~2.3!

where the Einstein relation~2.3! guarantees that the equilib
rium probability density is given by

P@$c +
a%#5

e2H[ $c+
a%]

E D@$c +
a%#e2H[ $c+

a%]

. ~2.4!

Following the dynamical perturbation theory develop
by Janssen14 and De Dominicis,13 we want to calculate the
dynamical properties of our system, e.g., the dynamical c
relation functions. First, the stochastic forces are elimina
using Eq.~2.2! and the Gaussian distribution for the stocha
tic forcesza. After a Gaussian transformation and the intr
duction of auxiliary Martin-Siggia-Rose25 fieldsc̃ +

a , the non-
linearities occuring in the initial functional are reduced.
perturbation theory analogous to the static theory can now
implemented on the basis of the path-integral formulati
We define the generating functional

Z@$h̃a%,$ha%#}E D@$ i c̃ +
a%#D@$c +

a%#

3eJ[ $c̃+
a%,$c+

a%] 1*ddx*dt(a~ h̃ac̃+
a

1hac+
a

!, ~2.5!

where the resulting Janssen-De Dominicis functionalJ5J0
1Jint is split into the harmonic partJ0 and the interaction
part Jint ,

J0@$c̃ +
a%,$c +

a%#5E
k
E

v
(
a

$l +c̃ +
a~k,v!c̃ +

a~2k,2v!

2c̃ +
a~k,v!@ iv1l +~r +1k2!#

3c +
a~2k,2v!%, ~2.6!
ch

r-

r-
d,
-
-

e
.

Jint@$c̃ +
a%,$c +

a%#52
l +u+

6 E
k1k2k3k4

E
v1v2v3v4

dS (
i

k i D
3dS (

i
v i D(

ab
c̃ +

a~k1 ,v1!

3c +
a~k2 ,v2!c +

b~k3 ,v3!c +
b~k4 ,v4!.

~2.7!

TheN-point Green functionsG+c̃
i
ac

j
a(k,v) and cumulantsGc

can be derived by appropriate derivatives ofZ and lnZ with
respect to the sourcesh̃a andha . Thus the standard schem
of perturbation theory can be applied. Further details can
found in textbooks~Refs. 26 and 27! and in Refs. 14 and 16

In addition we want to list some important relations th
will be useful for the discussion. The dynamical susceptib
ity gives meaning to the auxiliary fields by noting that it ca
be represented as a correlation function between an auxi
field and the order-parameter field14

x +
ab~x,t;x8,t8!5

d^c +
a~x,t !&

dh̃b~x8,t8!
U

h̃b50

5^c +
a~x,t !l +c̃ +

b~x8,t8!&.

~2.8!

Notice that the generating functional of the response fu
tions has a different form than the one of the correlat
functions in Eq.~2.5!.16 This leads to the factorl + in Eq.
~2.8!.

The Fourier transform of the dynamical susceptibility

x +
ab~k,v!5l +G+c̃acb~k,v! ~2.9!

is associated with the Green functionsG+c̃acb. The
fluctuation-dissipation theorem relates the correlation fu
tion of the order-parameter fields and the imaginary part
the response function14

G+cacb~k,v!52
Ix +

ab~k,v!

v
, ~2.10!

which will enter the calculation of the NMR relaxation rat
E.g., considering only the harmonic partJ0 of the dynamical
functional and carrying out the functional integration give

G+cacb~k,v!5dab
2l +

@l +~r +1k2!#21v2
. ~2.11!

Finally we want to introduce the vertex functionsG +c̃acb,
which are related to the cumulants through a Legendre tra
formation. For example,14,16

G
+c̃aca
c

~k,v!5
1

G +c̃aca~2k,2v!
. ~2.12!

The vertex functions are entering the explicit calculation oZ
factors and the susceptibility in the renormalization-gro
theory. The advantage of working with vertex functions
that they are represented by one-particle irreducible Fe
man diagrams only.
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III. NMR EXPERIMENTS AND SPIN-LATTICE
RELAXATION

Quadrupolar perturbed nuclear magnetic resona
~NMR! can be used to study the dynamics of phase tra
tions from aN to an IC modulated phase.18 In this method
the interaction between the nuclear quadrupole momenQ
and the electric-field gradient~EFG! V is the dominant per-
turbationHQ of the Zeeman Hamiltonian. Thus in the corr
sponding Hamiltonian

H5HZ1HQ ~3.1!

next to the dominating Zeeman termHZ one has to conside
the quadrupole interactionHQ5 1

6 ( j ,kQjkVjk as a perturba-
tion. The quadrupole moment operatorQjk is coupled lin-
early to the EFG tensorVjk at the lattice site.28,29 The fluc-
tuations of Vjk can be expressed via order parame
fluctuations, because of the dominant linear coupling of
EFG to the order parameter30,31

dVi j ~x,t !5A1i j @dcA~ t !1 idcf~ t !#eikx1F01c.c.
~3.2!

We now briefly sketch how the OP fluctuations determ
the relaxation rate. The spin-lattice relaxation describes
return of the nuclear-spin magnetizationM in the direction of
the external field back to its thermal equilibrium value fo
lowing a radio frequency pulse.32 During that time the en-
ergy of the spin system is transferred to single modes of
lattice fluctuations.19 Because the EFG fluctuations can
written as OP fluctuations, the spin-lattice relaxation is
termined by the spectral density functions of the local
fluctuations at the Larmor frequencyv5vL . The transition
probabilities for nuclei with spinI 5 3

2 in three dimensions
are given by32,33

1

T1
5WS 6

3

2
↔6

1

2D5
p2

3
@J~Vxy ,vL!1J~Vyz ,vL!#

}E
BZ

Ix +
ab~k,vL!

vL
5E

0

L1

2
k2G+cacb~k,vL!dk, ~3.3!

with the spectral density of the EFG fluctuations

J~Vi j ,v!5E
2`

`

Vi j ~ t !Vi j* ~ t1t!e2 ivtdt, ~3.4!

and *BZ inticating the integration over the respective Br
louin zone. Measuring the spin-lattice relaxation thus yie
information on the susceptibility of the local fluctuations
the order parameter.

The spin-lattice relaxation was studied in great detail
means of echo pulse methods both below and aboveTI .18,19

Below the critical temperatureTI , it is possible for the pro-
totypic system Rb2ZnCl4 to identify the relaxation rates 1/T1

A

and 1/T1
f , dominated in the plane-wave limit by the amp

tudon and phason fluctuations, respectively.19 Therefore the
dynamical properties of the order-parameter fluctuations
be studied below the phase transition as well, and separa
for the two distinct excitations.
e
i-

r
e

e
e

e

-
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y

n
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IV. HIGH-TEMPERATURE PHASE

In this section, the critical behavior of the incommens
rate phase transition aboveTI will be investigated. On the
basis of scaling arguments and the use of critical expone
calculated within the renormalization-group theory for t
XY model in three dimensions and model A, the temperat
dependence of the NMR relaxation rate is analyzed in
first subsection. Next we study the crossover scenario of
temperature dependence of the relaxation rate in the se
subsection by means of the renormalization-group theo
Comparison with experimental data is made, and we co
ment on the width of the critical region.

A. Scaling laws for the relaxation time

Above the phase transition, the thermodynamical aver
of the order-parameter components is zero. Because
structure of the correlation function of the order parame
does not change dramatically aboveTI ~see Sec. IV B! and
the calculation of the relaxation rate 1/T1 involves the inte-
gration of the correlation function over all wave vectors, w
will derive a form of the correlation function using scalin
arguments. Thus we are able to discuss the universal fea
of the relaxation rate behavior when approachingTI from
above. In the harmonic approximation we immediately g
the correlation function, which turns out to be the propaga
of our functionalJ0 @see Eq.~2.11!#:

^c +
a~k,t !,c +

b~k8,t8!&5d~k1k8!d~v1v8!dabG+~k,v!,

G+~k,v!5
2l +

@l +~r +1k2!#21v2
. ~4.1!

The suffix + will be omitted in the following discussion o
this subsection, because no renormalization will be con
ered here.

We want to exploit our knowledge about the critical r
gion. The static scaling hypothesis for the static respo
function states

x~k!5Axx̂~x!k221h ~4.2!

with the scaling functionx̂, a constant prefactorAx , the
scaling variable x5(kj)21 (j denoting the correlation
length!, and the critical exponenth. Neglecting a frequency
dependence for the kinetic coefficient~Lorentzian approxi-
mation!, the dynamic scaling hypothesis for the characte
tic frequency of the OP dynamics states

vw~k![l~k!/x~k!;kz, ~4.3!

and we can deduce

l~k!5All̂~x!kz221h, ~4.4!

with l̂(x) being the scaling function for the kinetic coeffi
cient andAl a constant prefactor. Notice that for fixed wav
vectork Eq. ~4.3! leads to23

vw~k!;j2z. ~4.5!

The correlation functionG(k,v) can now be rewritten in
scaling form
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G~k,v!5L
1

kz122h
f̂ ~v̂,x!, ~4.6!

with

L5
2Ax

2

Al
,v̂5

Ax

Al

v

kz
, x5

1

kj
,

f̂ ~v̂,x!5x̂~x!
l̂~x!/x̂~x!

@ l̂~x!/x̂~x!#21v̂2
, ~4.7!

where the Lorentzian line shape is retained. AboveTI , this
not a very crucial approximation, because the shape of
correlation function does not change in a first-ord
renormalization-group analysis, as we will see in the n
section. To calculate the relaxation rate 1/T1, one has to
evaluate the integral@see Eq.~3.3!#

1

T1
}E

0

L1

2
k2G~k,vL!dk

}LE
BZ

k2dkk2z221h f̂ ~kvL
21/z ,kj!. ~4.8!

With u5kvL
21/z andv5kj we introduce new variables

%5Au21v25kAvL
22/z1j2 ~4.9!

and

tanw5
v
u

5
j

vL
21/z

. ~4.10!

This leads to the relation

1

T1
5L~AvL

22/z1j2!z212hI %„ f̂ ~%,w!…, ~4.11!

where the integralI % does not contribute to the leading tem
perature dependence.

The temperature dependence of the relaxation rate
now easily be found in the limits where the Larmor fr
quency or the frequency, of the critical fluctuations, resp
tively, dominate the integral and its prefactor.

1. Fast-motion limit „vL /vw!1…

For temperatures very far above the critical temperat
TI , the characteristic frequency is larger than the Larm
frequency. Thus the temperature dependence of the OP
tuations determines the temperature dependence of the r
ation rate; the value of the Larmor frequency should not p
any role.34 For the integral

1

T1
5L$vL

22/z@11~vL /j2z!2/z#%~z212h!/2I % ~4.12!

we obtain with tanw5const@see Eq.~4.10!#

1

T1
}jz212h5S T2TI

T D 2n~z212h!

. ~4.13!

Taking the values for the critical exponents from Table I,
e
r
t

an

-

e
r
c-

ax-
y

find

1

T1
}S T2TI

T D 20.663

. ~4.14!

This can be compared with the experimental results
Rb2ZnCl4 by Holzeret al.,20 who found for the leading scal
ing behavior of the relaxation rate, following th
temperature-independent region, the exponent20.625.

2. Slow-motion limit„vL /vw@1…

In the vicinity of the critical temperatureTI critical slow-
ing down will occur. This means that the characteristic f
quencyvw is approaching zero and will fall below the valu
of the Larmor frequency.34 Thus the characteristic time sca
of the OP fluctuations is slower than the experimental ti
scale. For the temperature dependence of the relaxation

1

T1
}L$j2@~j2z/vL!2/z11#%~z212h!/2I % , ~4.15!

we now obtain

1

T1
}vL

2~z212h!/z const. ~4.16!

Taking the values for the critical exponents from Table
again,

1

T1
}vL

20.49. ~4.17!

This is in good agreement with the experimental resu20

for Rb2ZnCl4 that the value of the relaxation rate nearTI

scales asvL
20.5 for different Larmor frequencies.

We want to stress that the transition from the fast- to
slow-motion limit is a property of the integral entering th
calculation of the relaxation rate. Because the susceptib
is evaluated at fixedvL , there exists for a lower boundar
for the integralT'TI . This means that the transition from
the temperature-dependent to the temperature-indepen
behavior nearTI is fixed by the scalevL . It should also be
mentioned that our results reproduce those obtained ea
by Holzeret al. ~see Ref. 20!, when the van Hove approxi
mation forz is used (z'2).

B. Renormalization-group analysis aboveTI

Our investigations concerning the critical behavior abo
TI in the last section led to fair agreement with experimen
data. It was possible to gain the critical exponents for
frequency and temperature dependence of the relaxation
in a quantitatively accurate way. Furthermore, we obtaine
qualitative understanding of the transition of the relaxat
rate 1/T1 from the slow- to the fast-motion limit. This tran
sition is caused by the characteristic frequency of the ord
parameter dynamicsvw approaching zero, i.e., the critica

TABLE I. Critical exponents in theO(2) symmetricf4 field
theory in three dimensions~Refs. 23 and 27!.

n50.6695 h50.033 z52.024
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slowing down nearTI . This renders the Larmor frequenc
vL the dominating time scale, 1/T1 becomes temperature
independent nearTI .

At this point we want to consider what happens up
leaving the region near the transition temperature and go
to higher temperatures. Our results~4.12! for the fast-motion
limit are based on the assumption that fluctuations are v
important. We used nonclassical exponents and scaling a
ments valid in the critical region. The question arises h
large this region of temperature, where the system disp
the nonclassical behavior calculated in the last section,
be. Increasing temperature diminishes the effect of fluct
tions. One would expect that at some temperature Gaus
behavior should emerge. We shall apply the renormalizat
group theory to one-loop approximation in order to descr
the transition from the fluctuation-dominated behavior n
TI to a temperature region where the mean-field descrip
should be valid. It is obvious that the properties of the in
gral, responsible for the transition between the slow and
fast motion limit, will account for the crossover of the lea
ing scaling behavior when the temperature is increased
order to discuss the crossover within this analysis a modi
minimal-subtraction prescription is employed. This sche
was first introduced by Amit and Goldschmidt35 and subse-
quently explored by Lawrie for the study of Goldston
singularities.15 It can comprise exact statements in a cert
limit. Below TI , this is the regime dominated by the Gol
stone modes alone; in the region aboveTI , which we will
consider in this section, the mean-field result is used. In
scheme, in addition the standard field-theoretical formulat
of the renormalization group is neatly reproduced. Follow
the arguments of Schloms and Dohm36 and Ref. 16 we can
refrain from the« expansion, with«542d defining the dif-
ference from the upper critical dimension of thef4 model.
This is motivated by the following. AboveTI the Gaussian
or zero-loop theory becomes exact in the high-tempera
limit. The critical fixed point, i.e., the Heisenberg fixed poin
dominating the behavior of the system near the critical te
perature is calculated to one-loop order. The main inte
here lies in the crossover behavior between these two fi
points, which is calculated to one-loop order, too. Thus
further approximations are necessary to be consistent.

Very close to the critical temperatureTI an « expansion
or Borel resummation36 would of course be inevitable in or
der to obtain better values for the critical exponents. A
scription of the generalized minimal subtraction scheme
for example given in Refs. 35, 15, 16, and 37. A crosso
into an asymptotically Gaussian theory is described by
method in Ref. 17.

1. Flow equations

Our aim is to calculate the wave number and freque
dependence of the susceptibility to one-loop order. The fi
renormalization is zero to one loop order. Thus we will n
take into account corrections to the static exponenth and
corrections to the mean-field value of the dynamic expon
z'2. This leavesr + and u+ as the only quantities to b
renormalized.17

There is a shift of the critical temperature from the mea
field resultT+I to the ‘‘true’’ transition temperatureTI . In
order to take this shift into account, a transformation to
g

ry
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new temperature variable, being zero at the critical tempe
ture TI , is performed. This new variable will be denote
again ast + . The only renormalized quantities are then wr
ten as

t5Zr
21t +m

22,

u5Zu
21u+Adm2«. ~4.18!

Here, the geometric factorAd is chosen36 as

Ad5
G~32d/2!

2d22pd/2~d22!
. ~4.19!

For the nontrivialZ factors one finds in the generalize
minimal subtraction procedure~see the Appendix!:

Zu511
n18

6«
u+Adm2«

1

~11t + /m2!«/2
,

Zr511
n12

6«
u+Adm2«

1

~11t + /m2!«/2
. ~4.20!

Settingt +50 the familiar renormalization constants for th
n-componentf4 model are recovered. In general here, ho
ever, theZ factors are functions of bothu+ andt + .35 In the
next step the fact that the unrenormalizedN-point functions
do not depend on the scalem is exploited and the Callan
Symanzik equations are derived.26 The idea behind that is to
connect via the renormalization-group equations the unc
cal theory, which can be treated perturbationally, with t
critical theory displaying infrared divergences. The resulti
partial differential equations can be solved with the meth
of characteristics@m( l )5m l #. With the definition of Wil-
son’s flow functions

zt~ l !5m
]

]m U
0

ln
t

t +

,

bu~ l !5m
]

]m U
0

u, ~4.21!

we proceed to the flow dependent couplingst( l ) and u( l )
@see Eqs.~4.18!#:

l
]t~ l !

] l
5t~ l !zt~ l !,

l
]u~ l !

] l
5bu~ l !, ~4.22!

given by the first-order ordinary differential equations

l
]t~ l !

] l
5t~ l !S 221

n12

6
u~ l !

1

@11t~ l !#11«/2D ,

l
]u~ l !

] l
5u~ l !S 2«1

n18

6
u~ l !

1

@11t~ l !#11«/2D ,

~4.23!
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and the initial conditionst(1)5t and u(1)5u. The
asymptotic behavior is determined by zeros of theb func-
tion, giving the fixed points of the renormalization grou
Here, we find the Gaussian fixed pointuG* 50 with zG* 5

22 and the Heisenberg fixed pointuH* 56«/(n18) with
zH* 5221«. These fixed points are of course well known26

but in the generalized minimal subtraction scheme it is n
possible to describe the crossover between these two fi
points. We are interested in the theory in three dimensi
and will henceforth discuss this case («51).

First we investigate the crossover of thet( l ) flow. It is
possible to recover the universal crossover in the flow
plotting t( l ) against the scaling variable~compare Refs. 10
16, and 17!

x5
l

t~1!1/S 22
n12
n18D . ~4.24!

In Fig. 1 the effective exponent for thex dependence oft( l )
is depicted for ten different values oft(1) @with fixed u(1)
and n52#, coinciding perfectly. There is a crossover fro
the regionl→0 with the exponent22 to the regionl→1
with the exponent221(n12)/(n18).

Next we find, with the scaling variablex}(kj)21, the
effective exponentneff of the temperature dependence of t
correlation length

t~ l !} l 21/neff⇒ 1

neff
5H 2 l→0

22
n12

n18
l'1.

~4.25!

Thus with the generalized minimal-subtraction scheme
can describe the crossover from the nonclassical critical
havior to the Gaussian behavior, e.g., as a function of
temperature variablet.

2. Matching

To one-loop order, only the tadpole graph enters in
two-point function ~seeG +c̃c in the appendix! shifting the
critical temperature as stated above. Thus the susceptib
does not change its form and the renormalized version re
with Eq. ~2.9!, Eq. ~2.12!, and the appendix to one-loop o
der,

xR
21~k,v!5k22 iv/l1t~ l !m2l 2. ~4.26!

Yet what we gained in the last subsection was the temp
ture dependence of the coupling constants. We have to
into consideration this temperature dependence in orde
discuss the changes resulting from the fluctuation cor
tions. One now has to ask the question: how does the fl
enter the physical quantities measured in an experiment

With the flow dependence of the coupling constants,
relaxation rate to one-loop order becomes@see Eq.~3.3!#
ed
s

y

e
e-
e

e

ity
ds

a-
ke
to
c-
w

e

1

T1
}E k2dk

IxR~k,vL!

vL

5E k2dk
1

vL
2/l21@k21t~ l !m2l 2#2

1

l

5
1

m l

1

lE k̃2dk̃
1

ṽL
21@ k̃21t~ l !#2

, ~4.27!

wherek̃5k/m l and ṽL5vL /lm2l 2.
Keepingr ( l ) fixed ~it is set to 1! the relaxation rate 1/T1

is proportional tol 21 for large l . When l approaches zero a
constant value of the integral and hence of the relaxation
1/T1 will be reached, because of the fixed time scale 1/ṽL .
The physical reason is that in the slow-motion limit the ch
acteristic time scale (1/vw) becomes larger than the exper
mental time scale 1/ṽL . In Fig. 2 the logarithmicl depen-
dence of the integral

I 1[
] ln T1

] ln l
52

] lnS 1

m llE k̃2dk̃
1

ṽL
21~ k̃211!2D

] ln l
~4.28!

is plotted against the scaling variable

x5 l S mAl

AvL
D . ~4.29!

We regain the transition from thel-independent regime (l
→0) ~and therefore of the temperature-independent regi!
to the regimeI 1} l ( l→`). This corresponds to the transitio
from the slow-motion to the fast-motion limit; a change ol
is equivalent to a change ofvw .

However, we are rather interested in the dependenc
the relaxation rate from the physical temperaturet(1) than
from the flow parameterl . This may be obtained as follows
Knowing the solution of the flow equationst( l ) and u( l ),
we can find al 1 for a givent(1) that fulfills the equation
t( l 1)51. Inverting this relation,t(1) for a given l 1 with
t( l 1)51 can be found. It is not possible to write down a
analytical expression, but numerically this relationship
readily obtained. Thus we are led to 1/T1@r (1)#
51/T1$ l 1@r (1)#%. To connect the theory in a region whe
the perturbation expansion is valid with the interesting
gion, we match the temperature variabler ( l ) to 1, thus im-
posing the crossover behavior of the flowr ( l ) to the effec-
tive exponent of the relaxation time 1/T1.

In Fig. 3 the resultingT1(T) dependence is used to fi
experimental NMR data for Rb2ZnCl4 ~measured points are
indicated by circles! from Mischo et al.38 Two parameters
have to be fixed in the theory. First, the prefactor relating
relaxation rate and the integral over the imaginary part of
susceptibility in Eq.~4.27! must be determined. Thus th
value of 1/T1(T5TI) is set. The second parameter is t
scale of vL compared to the couplinglm. With this the
relative temperatureDT, where the transition between slow
and fast-motion limit takes place, is adjusted.
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The two fit curves presented in Fig. 3 show a crossove
the mean-field regime starting atDT'10 K ~a! and atDT
'5 K ~b!. A very good agreement, not only for the trans
tion from the slow- to the fast-motion limit, but also for th
high-temperature behavior, is found in the second case.
want to discuss this issue now in more detail.

3. Width of the critical region

Some experiments report large regions in which nonc
sical exponents for the temperature dependence of the re
ation rate are observed. For example, in Ref. 20 the ra
above TI where nonclassical exponents are found isDT
'100 K. These findings have to be understood by mean
the Ginzburg-Levanyuk39,40argument, which states that on
near to the critical temperature the nonclassical critical
ponents should be valid. Fluctuations should contribute o
near the critical point and change the mean-field pict
there.

The property of the integral quantity 1/T1, in the region
where a crossover between the nonclassical critical ex
nents and the mean-field exponents occurs, was studie
the last subsection. We now comment on the four regi
that can be identified and are indicated by numbers 1•••4 in
Fig. 4.

Very close toTI , there is a temperature-independent
gion ~1!, because of the dominating scalevL . Here, the
probing frequencyvL is too fast to grasp the critical behav
ior. Upon going to higher temperatures, after a transit
region~2!, a temperature dependence with nonclassical c
cal exponents emerges~3!. For even higher temperatures on
finds a crossover to the mean-field exponents, in regime~4!.
In Fig. 4 this crossover takes place betweenDT'5 K and
DT'20 K. From Fig. 3, we find that the crossover at low
temperatures, here starting atDT'5 K, leads to a better fit
of the experimental data. Thus the reported large reg
where supposedly nonclassical exponents are found,20 is in
our opinion not an indispensable conclusion that can
drawn from the experimental data. The plausible scenari
an extended crossover regime beyond the truly asymp
region of width DT'5 K is in fact in perfect agreemen
with the data.

FIG. 1. The flow of the renormalized mass parametert( l ) vs the
scaling variablex5 l /t(1)0.625 for ten different values oft(1)
,0.1 @u(1)50.6,n52#.
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As this is not a universal feature other scenarios are p
sible. It may happen that the scale ofvL is very large and
thus only the Gaussian exponents are found. We omitted
contribution of higher Raman processes, as discussed
Holzer et al.,20 leading to an additionalT2 dependence for
the relaxation rate. These would bend the curves downw
even more and explain the deviation present at the hig
measured temperatures. Not taking these additional contr
tions into consideration, however, clarifies the crossover
pect.

V. LOW-TEMPERATURE PHASE

This section is devoted to the incommensurate orde
phase below the critical temperatureTI . In the
O(n)-symmetrical model a spontaneous breaking of a glo
continuous symmetry occurs and the expectation value of
order parameter becomes nonzero. Now parallel and per
dicular fluctuations with respect to the nonzero order para
eter have to be distinguished. As a consequence there ap
n21 massless Goldstone modes which lead to infrared
gularities for all temperatures belowTI in certain correlation
functions.7,8 We investigate how these Goldstone modes
fluence the dynamical properties of the quantities we are
terested in, e.g., the NMR relaxation rate. To do so, we fi
derive the dynamical functional appropriate belowTI . In the
following subsection some comments about the Goldst
anomalies are made. We will then treat the dynamics of
fluctuations parallel~amplitudons! and perpendicular~pha-
sons! to the order parameter. Again a renormalization-gro
calculation to one-loop order is presented. We will discu
the dynamical susceptibility before evaluating the integr
leading to the relaxation rate. In the last section, we comp
with experimental data. We also comment on the existe
of a phason gap.

A. Dynamical functional

Let us assume that the spontaneous symmetry brea
below TI appears in thenth direction of the order-paramete
space. As usual, new fieldsp +

a , a51, . . . , n21, ands +

are introduced:15

FIG. 2. Logarithmic derivative of the integral in Eq.~4.27! with
respect tol , plotted vs the scaling variablex5 lml1/2/v1/2.
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S c̃ +
a

c̃ +
nD 5S p̃ +

a

s̃ +

D , S c +
a

c +
nD 5S p +

a

s +1f̄ +

D , ~5.1!

with

^p +
a&5^s +&50. ~5.2!

The order parameter is parametrized as

FIG. 3. Relaxation timeT1 vs the deviationDT from the critical
temperatureTI . The NMR experimental data,38 indicated by
circles, are compared with the theoretical results, represented b
solid lines. A crossover to the mean-field regime starting atDT
'10 K @line ~a!# and atDT'5 K @line ~b!# is considered here.
f̄ +5A3

u+

m+ . ~5.3!

Thuss + corresponds to the longitudinal, andp +
a to the trans-

verse fluctuations.
Inserting these transformations into the functional~2.7!

leads to a new functional of the formJ5J01Jint1J1
1const with16

the

FIG. 4. Relaxation timeT1 in a logarithmic plot vs the deviation
DT from the critical temperatureTI . The NMR experimental data38

~circles! are compared with the theoretical result, represented by
solid line. A crossover to the mean-field regime starting atDT
'5 K is considered. The four labeled temperature regimes are
cussed in the text.
J0@$p̃ +
a%,s̃ + ,$p +

a%,s +#

5E
k
E

v
H(

a
l +p̃ +

a~k,v!p̃ +
a~2k,2v!1l +s̃ +~k,v!s̃ +~2k,2v!2(

a
p̃ +

a~k,v!

3F iv1l +S r +1
m+

2

2
1k2D Gp +

a~2k,2v!2s̃ +~k,v!F iv1l +S r +1
3m+

2

2
1k2D Gs +~2k,2v!J , ~5.4!

Jint@$p̃ +
a%,s̃ + ,$p +

a%,s +#

52
1

6
l +u+E

k1k2k3k4

E
v1v2v3v4

dS (
i

k i D dS (
i

v i D F(
ab

p̃ +
a~k1 ,v1!p +

a~k2 ,v2!p +
b~k3 ,v3!p +

b~k4 ,v4!

1(
a

p̃ +
a~k1 ,v1!p +

a~k2 ,v2!s +~k3 ,v3!s +~k4 ,v4!1(
a

s̃ +~k1 ,v1!p +
a~k2 ,v2!p +

a~k3 ,v3!s +~k4 ,v4!

1s̃ +~k1 ,v1!s +~k2 ,v2!s +~k3 ,v3!s +~k4 ,v4!G2l +A3u+

6
m+E

k1k2k3

E
v1v2v3

dS (
i

k i D dS (
i

v i D
3F(

a
2p̃ +

a~k1 ,v1!p +
a~k2 ,v2!s +~k3 ,v3!1(

a
s̃ +~k1 ,v1!p +

a~k2 ,v2!p +
a~k3 ,v3!13s̃ +~k1 ,v1!s +~k2 ,v2!s +~k3 ,v3!G ,

~5.5!
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and

J1@s̃ +#52l +A3

u+

m+S r +1
m+

2

2 D
3E

k
E

v
s̃ +~2k,2v!d~k,v!. ~5.6!

Equation~5.2! (^s +&50) yields a perturbative identity tha
gives the relation betweenr + and m+ , reading to one-loop
order15

r +1
m+

2

2
52

n21

6
u+E

k

1

r +1
m0

2

2
1k2

2
1

2
u+E

k

1

r +1
3m0

2

2
1k2

.

~5.7!

In the following r + is replaced bym+ . Notice that by using
the variablem+ , the shift ofTI is already incorporated@see
Eq. ~5.3!#. We can now write down the basic ingredien
needed to apply the recipe for the dynamical perturba
theory belowTI . The emerging propagators, vertices, a
counterterms are listed with their graphical representatio
Figs. 5, 6, and 7~see Ref. 16!.

B. Goldstone theorem and coexistence limit

As mentioned before, the particularity of th
O(n)-symmetric functionals below the critical temperature
the occurrence of Goldstone modes in the entire lo
temperature phase.5–7 Because no free energy is required f
an infinitesimal quasistatic rotation of the order parame
the transverse correlation length diverges in the limit of z
external field. The corresponding massless modes are
Goldstone modes,5 in this context called phasons. They a
manifest in nonanalytical behavior of correlation function
for example the longitudinal static susceptibility diverg
and changes its leading behavior from being proportiona
k22 to7,8,15,16

xL
21~k,0!}k«. ~5.8!

Before discussing the details of the renormalization the
belowTI , we summarize some important aspects, which
plain why below TI an « expansion can be avoided. Fo
more details see Ref. 16.

Leaving the critical temperature regionT'TI , which is
characterized in the nonperturbed case bym+50, and lower-

FIG. 5. Propagators belowTI .
n

in

-

r,
o
he

,

to

y
-

ing the temperature, means that the fluctuations of the lo
tudinal modes~amplitudons! become negligible, becaus
these modes are massive (m+). In contrast the phasons re
main massless and hence their fluctuations will dominate

Yet a different way of describing the dominance of t
fluctuations of the Goldstone modes is to consider the sph
cal model limit8 n→`. In this case of ‘‘maximal’’ symmetry
breaking, the Goldstone modes are weighted with the fa
n21→`.

As mentioned above, belowTI coexistence anomalies ar
present. They arise from the fact that then21 transverse
modes are massless. In the limitk→0 andv→0 for T,TI
this manifests itself in typical infrared divergences. An im
portant point to remember is that in order to gain these
existence anomalies, one can also study the casem+→`. In
the renormalization scheme it is shown that the flow of
mass parameterm+ tends to infinity as the momentum an
frequency tend to zero.

From this it is plausible, and was also proved,15 that in the
coexistence limit the result for the two-point vertex functio
are identical with the results arising from the spherical mo
limit n→`.

These findings render an« expansion unnecessary in th
coexistence limit (k→0, v→0 at m+.0), because the
asymptotic theory~the spherical model! is exactly treatable
and reduces to the zero- and one-loop contributions.
course, one has to make sure that the properties of

FIG. 6. Vertices belowTI . The tensorF has the formFabgd

5
1
3 (dabdgd1dagdbd1daddbg).
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asymptotic functional will be reproduced in the respect
limit. Within the generalized minimal subtraction schem
this is possible. As stated in Sec. IV B Lawrie’s method15

and its dynamical extension in Ref. 16 lead beyond th
limits and allow for a detailed study of the crossover beh
ior.

The behavior of the correlation functions in our case
driven by the crossover between the three fixed po
present belowTI . Besides the Gaussian fixed point one fin
the Heisenberg fixed point

uH* 56e/~n18! ~5.9!

and the coexistence fixed point15

uC* 56e/~n21!. ~5.10!

We will again employ the generalized minimal subtracti
scheme to study the crossover between these fixed poin

C. Renormalization-group analysis belowTI

1. Flow equations

Below TI , using only the one-loop diagrams, again t
field renormalization vanishes. Hence, the only nontriviaZ
factors are the ones for the temperature scale and the
pling constant:

m25Zm
21m+

2m22,

u5Zu
21u+Adm2«. ~5.11!

Because we usem instead ofr an important relationship ca
be stated, which is true independently of the loop order:16

Zm•Zs5Zu . ~5.12!

To one-loop order (Zs51) we find ~see the Appendix!16

Zu5Zm511
n21

6«
u+Adm2«1

3

2«
u+Adm2«

1

~11m+
2/m2!«/2

.

~5.13!

Here, the contribution of the transverse loops lead to diff
ent divergences manifest in the change of theZ factors com-
pared to those aboveTI @see Eq.~4.20!#. We recover the
familiar renormalization constant in the critical region b
setting m+50. When considering the coexistence limitm+

→`, the weight of the effective critical fluctuations is re
duced fromn18 to n21, the number of Goldstone mode

Asymptotically (m→`) the Z factors are exact. In the
crossover region they are an approximation to the or
u+

2/(11m+ /m2)«/2.16

From this we directly derive the flow-dependent co
plings

l
]m~ l !

] l
5

1

2
m~ l !S 221

n21

6
u~ l !1

3

2

u~ l !

@11m~ l !2#11«/2D ,

FIG. 7. Counter term belowTI .
e
-

s
ts
s

.

u-

r-

r

-

l
]u~ l !

] l
5u~ l !S 2«1

n21

6
u~ l !1

3

2

u~ l !

@11m~ l !2#11«/2D .

~5.14!

Wilson’s flow equationsbu andzm now read

l
]m~ l !

] l
5

1

2
m~ l !zm~ l !,

l
]u~ l !

] l
5bu~ l !. ~5.15!

Three fixed points have now to be taken in
consideration.15,16 Next to the Gaussian fixed pointuG* 50
with zmG* 522, we find in the critical limit (m+→0) the
infrared stable Heisenberg fixed pointuH* 56«/(n18) with
zmH* 5221«. In the coexistence limitm+→`, we find in
addition to the still ultraviolet-stable Gaussian fixed point t
coexistence fixed point, identified by Lawrie,15 uC* 56«/(n
21) with zmH* 5221«, which is infrared stable. Thus
m( l )2 diverges asymptotically forl→0 as l 221«, if «,2.
Indeed, the coexistence limit is described by a diverg
mass parameter.

In Figs. 8 and 9 the flow form( l ) andu( l ) is plotted. We
find for the flow u( l ) a crossover between the coexisten
fixed point, inversely proportional to the number of Gol
stone modes (n21), and the Heisenberg fixed point

u~ l !⇒H 6«/~n21! l→0

6«/~n18! l'1.
~5.16!

That means that form(1)!1 the coexistence limit is no
approached directly forl→0, but for a while the flow stays
near the Heisenberg fixed point regime. The scaling varia
for u( l ) is here10,16

x5
l

m~1!2/~22«!
, ~5.17!

again leading to perfectly coinciding curves when plotted
x.

From the relation stated in Eq.~5.12! one can deduce the
renormalization-group invariant16

FIG. 8. The effective exponentye f f5@] ln m( l )/] ln l # of the
flow of the renormalized mass parameterm( l ) vs l for seven dif-
ferentm(1)!1 belowTI @u(1)51022uH* ,n52,«51#.
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m~ l !2

u~ l !
l 22«5

m~1!2

u~1!
, ~5.18!

which immediately gives us the scaling ofm( l ) that can be
observed in Fig. 8,

m~ l !2} l 21/neff with
1

neff
5H 22« l→0

22
n12

n18
l'1.

~5.19!

Notice that the value of 1/neff in the first case is the same a
1/n for the spherical model. The mass parameterm diverges
for l→0, m( l )2} l 221« with «,2.

From now on we will concentrate on three dimensio
(«51) andn52.

2. Matching

In order to discuss the static susceptibility we use
matching conditionm l 5k. This relation connects the depe
dence of the renormalized quantities on the momentum s
m with the k dependence, in which we are interested.

For the integrated value, we are interested in the temp
ture dependence rather than the dependence on the flow
rameterl or the wave vectork. Thus after integration we
have to again match the resultingl-dependent relaxation rat
with the physical temperature~see Sec. IV B!.
m

th
he
ify
lu

ec
s

e

le

a-
pa-

D. Susceptibility

In order to determine the renormalized dynamical susc
tibility, we evaluate the one-loop diagrams for the two-po
cumulants, which can be easily derived from the one-lo
vertex functions listed in the appendix.16 Below TI , the
structure of the susceptibility does change to one loop or
compared to the mean-field results. We write in a gene
form

x +'/i
21 ~k,v!5

2 iv

l +

1k21 f +
'/i~k,v!, ~5.20!

with the self-energyf +
'/i containing the contributions of the

one-loop diagrams. The explicit form off +
'/i is gained from

the calculation of the two-point vertex function in the appe
dix and Eqs.~2.9! and ~2.12!. We then obtain the renormal
ized susceptibilityx i ,'

R by inserting theZ factors with the
flow dependent coupling constantsu( l ) and m( l ). Because
no field renormalization is present, we can replacel + with l
to this order. This is because via the fluctuation-dissipat
theorem~2.10!, Zl and the field renormalizations are co
nected.

1. Amplitudon modes

In d53 the longitudinal susceptibility characterizing th
amplitudon modes is given by16
x i
R~k,v!5

1

k22 iv/l1m2l 2m~ l !2Zm~ l !
H 11

1

~k22 iv/l!/m2l 21m~ l !2

u~ l !m~ l !2

2k/m l Fn21

3 S p

2
1arcsin

iv/l

k22 iv/l
D

13S arcsin
iv/lm2l 2

@~@k22 iv/l#/m2l 2!214m~ l !2k2/m2l 2#1/2
1arcsin

~k22 iv/l!/m2l 2

@~@k22 iv/l#/m2l 2!214m~ l !2k2/m2l 2#1/2D G J .

~5.21!
fre-

is
of
re-

and
q.
f

ng
e
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nal
First we want to discuss some limits in order to beco
acquainted with this complex form of the susceptibility.

It is important to notice the change of the structure of
renormalization-group susceptibility that results from t
one-loop contribution of the perturbation theory. To clar
this, we state the asymptotic susceptibility, which is eva
ated for nonzero frequency (k→0, v.0):

x i
R5

1

k22 iv/l1m~1!2k
1

11a@g~k!#

~5.22!

with a constanta and a functiong(k) that is regular fork
→0. From this limit, it becomes clear that we have to exp
changes of the scaling behavior.

In the coexistence limit (v50, k→0) we recover the ex-
act asymptotic result (d53, «51)

x i
R}k21 ~5.23!
e

e

-

t

displaying the coexistence anomaly. When keeping the
quencyv.0 fixed (k→0, vÞ0) the imaginary part of the
susceptibility approaches a constant value

x i
R⇒h~v!, ~5.24!

whereh(v) is a function ofv only. We can now turn to the
full susceptibility. The imaginary part of the susceptibility
plotted for different temperatures in Fig. 10. The structure
Ix i

R changes dramatically as compared to the mean-field
sult, as to be expected. The contributions of the phason
amplitudon loops are given by the terms in brackets of E
~5.21!. They give rise to a qualitatively different behavior o
x i

R . Different scaling regions can be identified. Expandi
the imaginary part ofx i

R yields analytical expressions for th
scaling regions, as listed in Table II. While thek→` and
k→0 behavior reproduces the mean-field result, the cor
treatment of the Goldstone anomalies lead to an additio
k23 behavior in the intermediate regionAv/l,k,m(1). A
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plateau appears for smallerk and temperatures far away from
the critical temperatureTI . The effective exponentk of thek
dependence ofIx i

R is plotted in Fig. 11. One can therefrom
easily identify the scaling regions presented in Table II.

The influence of the Goldstone modes is therefore to a
the k dependence of the susceptibility not only in the coe
istence limit, but also in intermediate regions. In order

FIG. 9. Flow of the coupling constantu( l ) vs l for five different
u(1) belowTI @m(1)50.01,n52, «51#. The coexistence and th
Heisenberg fixed point are marked on theu axis.
re
r
e

ir
o

es
r
-

derive the temperature dependence ofx i
R , in addition the

flows of m( l ) andu( l ) need to be considered.

2. Phason modes

For the transverse susceptibility characterizing the pha
modes one finds16

FIG. 10. The longitudinal susceptibility for the critical temper
ture T5TI and seven other temperatures plotted vskAl/v. The
scaling regions listed in Table II are valid for temperatures not
close toTI .
x'
R~k,v!5

1

k22 iv/l
H 12

u~ l !m~ l !/6

~k22 iv/l!/m2l 2 F22
m~ l !

k/m l S p

2
2arcsin

2 iv/lm2l 21m~ l !2

~k22 iv/l!/m2l 21m~ l !2

1arcsin
iv/lm2l 21m~ l !2

$@~k22 iv/l!/m2l 22m~ l !2#214m~ l !2k2/m2l 2%1/2

1arcsin
~k22 iv!/lm2l 22m~ l !2

$@~k22 iv/l!/m2l 22m~ l !2#214m~ l !2k2/m2l 2%1/2D G J . ~5.25!
ts,
een,

e-

rse

he
This
son
Here the problem lies in the cancellation of terms with
spect to theirk dependence, hidden in the complex structu
of Eq. ~5.25!. Hence we start again with considering th
coexistence limit (k→0, v→0)

x'
R}k22, ~5.26!

which is easily found. The results fork→0, vÞ0 are more
difficult to obtain, because the arcsin terms cancel thek
dependence against each other. In two limits this can be d
analytically. Form→0 one gets

x'
R→x +'5

1

k22 iv/l
~5.27!

reproducing the mean-field susceptibility for the massl
transverse modes.
-
e

ne

s

For m→` the arcsin terms read as 2/m1c1(1/m3)
1c2( iv/lk2)•(1/m3) leading to

x'
R→

1

k22 iv/l1
1

6
u~ l !S c1k21c2

iv

l D /m~ l !

. ~5.28!

Herec1 andc2 are constants. Thus in the two extreme limi
the temperature dependence vanishes, and only in betw
for m( l )}O(1) can we expect a slightly temperatur
dependent behavior.

In Figs. 12 and 13 the imaginary part of the transve
susceptibility and its effective exponent with respect tok are
plotted for different temperatures. Notice that leaving t
critical temperature leads to a temperature dependence.
is caused by the coupling of the amplitudon and pha
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modes. Yet as the temperature is further reduced, the
perature dependence disappears again.

E. Relaxation rate

In this subsection we study consequences for the re
ation arising from the Goldstone anomalies present in
susceptibility. As mentioned in Sec. III, in order to gain t
relaxation rate we have to integrate over the imaginary p
of the susceptibility.

Because the transverse susceptibility is temperature
pendent, also the relaxation rate, connected with the phas
will be temperature dependent. This is of course not the c
in the mean-field analysis. As discussed in the last sect
for T→TI the susceptibility approaches the mean-field res
and thus the relaxation rate at the critical temperature is
altered.

For the relaxation rate connected with the amplitudons
changes are more subtle. Therefore we collect all the co
butions from the one-loop diagrams in a functionf (k,v),
which can be interpreted as ak- and v-dependent dimen
sionless self-energy. The susceptibility has now the follo
ing structure:

TABLE II. Different scaling laws for the longitudinal suscept
bility. The functionsf (k) denote regular functions.

v k x i
21

Ix i
21

v→0 k→0 }k →0

vÞ0 k→` }k2 }k4

Av/l,k,m(1) 2iv/l1
m~1!2k

11af~k!
}m(1)4k3

k<Av/l 2iv/l1
m~1!2k

11af~k!
}m(1)22

k→0 2iv/l1
~2k!m~1!2

a
v/l

FIG. 11. The effective exponentk of Ix i with respect tok
plotted vskAl/v for the same temperatures as in Fig. 10.
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~x i
R!215k22 iv/l1 f ~k,v!m2l 2. ~5.29!

The dependence off on k andv is plotted in Fig. 14. We see
that the real part of the effective massf is decreasing fork
→0. Thus the Goldstone anomalies lead to a reduction of
real part off . In the coexistence limit,v→0 and smallk, the
real part off tends to 0 linearly and relation~5.23! is recov-
ered. The imaginary part is onlyk dependent for very smal
k. That means that when we integrate over allk the influence
of the Goldstone anomalies can be interpreted as follo
The effective Larmor frequency is raised and the mass
lowered for smallk as compared to the mean-field descr
tion. We can easily derive this from the longitudinal rela
ation rate withf (k,v) taken into consideration:

FIG. 12. The transverse susceptibility for the critical tempe
ture T5TI and seven other temperatures plotted vskAl/v. The
temperature dependence is only present in an interim region.

FIG. 13. The effective exponentk of Ix' with respect tok
plotted vskAl/v for the same temperatures as in Fig. 12.
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1

T1
i }E k2dk

Ix i
R~k,vL!

vL

5E k2dk
1

m2l 2vL

3
ṽ2If i~ k̃,ṽ !

@ṽ22If i~ k̃,ṽ !#21@ k̃21 R f i~ k̃,ṽ !#2

5
1

m l

1

lE k̃2dk̃
12If i~ k̃,ṽ !/ṽ

@ṽ2If i~ k̃,ṽ !#21@ k̃21R f i~ k̃,ṽ !#2
,

~5.30!

where againk̃5k/m l andṽ5vL /lm2l 2. When we compare
this result to the mean-field result, the interpretation giv
above becomes clear. The relaxation rate is raised thro
the influence of the Goldstone modes. Both the transve
and longitudinal relaxation times are plotted in Fig. 1
Again we have compared our findings with experimen

FIG. 14. Real and imaginary part of the effective ‘‘mass’’~self

energy! f and itsk dependence forṽ50.01, 1, and 100.

FIG. 15. Relaxation timeT1
' ~phason dominated! and T1

i ~am-
plitudon dominated! vs reduced temperature. The NMR experime
tal data,38 again indicated by circles, are compared with the th
retical results, represented by the solid lines. As in the hi
temperature phase a crossover to the mean-field regime starti
DT'5 K is considered.
n
gh
se
.
l

data, taken from Ref. 38. In the low-temperature phase
have less freedom of choice in our theory, as the sc
T1(T5TI) and the parameters are already fixed by th
high-temperature values. Thus only one parameter is lef
be adjusted. In the vicinity ofTI we find a temperature inde
pendent region, because both the transverse and the lon
dinal susceptibility become temperature independent and
proach their mean-field values.

The transverse relaxation time shows a slight tempera
dependence for temperatures further away fromTI . If we
use the identical choice of parameters as for the hi
temperature phase, we find good agreement in the l
temperature phase as well. The temperature where the m
mum value of the transverse relaxation time in our theory
reached is identified with the corresponding temperature
the experiment. This temperature dependence is due to
coupling between the phason and amplitudon modes.
want to emphasize that, in agreement with the analysis
ultrasonic attenuation experiments,9,10 no phason gap has t
be introduced to explain the experimental data for Rb2ZnCl4.
However, it is important to treat the influence of the Gol
stone modes beyond the mean-field approach.

For the longitudinal relaxation time, the crossover te
perature represents additional an important scale. We u
the same rangeDT'5 K as in the high-temperature phas
for the plot in Fig. 15. Again good agreement between
periment and theory is observed. Both theory and experim
show two scaling regions, one aboveDT'5 K and one be-
low. The qualitative behavior is correctly reproduced, but
quantitative agreement for the longitudinal relaxation rate
not as good as compared to the high-temperature phas
possible reason may be the following. We calculated
coupling of the transverse and longitudinal order parame
fields to one-loop order. BelowTI , the coupling of the order
parameter is changing the susceptibility in its structu
whereas aboveTI nothing dramatic happens. One has to e
pect that belowTI this is of course only the first step beyon
mean-field theory and the two-loop corrections might lead

-
-
-
at

FIG. 16. Zero- and one-loop diagrams for the two-point ver
function that give the transverse susceptibility.

FIG. 17. Zero- and one-loop diagrams for the two-point ver
function that give the longitudinal susceptibility.
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quantitative modifications in the crossover region. Comp
ing the calculated transverse and the longitudinal relaxa
rates belowTI with the experimental data is in agreeme
with this. A slight temperature dependence is not as sens
as the scaling behavior of the longitudinal relaxation tim
which has again two regimes due to the crossover scena

As the characteristic features are reproduced correctly
may say that we understand the complex temperature de
dence belowTI in the context of the coupled order parame
modes and a careful treatment of the Goldstone modes. U
introducing thek- andv-dependent self-energyf we could in
addition provide a physical interpretation of the changes
the longitudinal relaxation time, as compared to the me
field analysis.

VI. CONCLUSIONS

In this paper we have presented a comprehensive des
tion of the critical dynamics at structurally incommensura
phase transitions. Our starting point was the time-depend
relaxational Ginzburg-Landau model withO(2) symmetry.
To be more general, we discussed theO(n)-symmetric func-
tional. Hence, we were able to study the influence of
n21 Goldstone modes accurately. We used
renormalization-group theory in order to compute the d
namical susceptibility below and above the critical tempe
tureTI to one-loop order. Thus we could venture beyond
usual mean-field description. As we calculated the renorm
ization factors in the generalized minimal subtracti
scheme,35,15we could deal with the interesting crossover sc
narios carefully.16

Our findings were used to interpret experimental d
from NMR experiments, measuring the relaxation rate. T
relaxation rate is connected with the calculated susceptib
via an integral over the wave vector, at fixed frequency.

Above the critical temperatureTI , we showed how scal
ing arguments lead to an identification of the dynamical cr
cal exponent for the relaxation rate and provide a qualita
understanding of its temperature dependence. Then we
scribed the crossover from the critical region to a hig
temperature region, where fluctuations should not change
classical critical exponents. Excellent agreement for both
critical exponents resulting from the scaling arguments
the description of the crossover regions with the experim
tal data was found. This led us to the conclusion that
experimental data should probably not be interpreted
identifying a critical region of supposed width of 100 K, b
rather through a crossover between the nonclassical cri
exponents and the mean-field exponents, taking place
temperature approximately equal toTI15 K. This conjec-
ture yields a considerably more reasonable width of the c
cal region.

Below the critical temperature, we analyzed the dyna
cal susceptibility calculated to one-loop order in t
renormalization-group theory in considerable detail. T
coupling of the OP modes was considered explicitly. W
thus gained insight into the influence of Goldstone modes
the structure of the susceptibility and its temperature dep
dence. As a result we found that the relaxation rate of
r-
n

t
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,
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e
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f
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phason fluctuations becomes temperature-dependent.
temperature dependence disappears in the two limits w
either the temperature approaches the critical tempera
TI , or the temperature is very low. For the amplitud
modes the influence of the Goldstone modes is more su
We summarized the effect in a wave-vector- and frequen
dependent ‘‘mass’’ and showed that this can be interpre
as a bending down of the temperature-dependent relaxa
time as compared to a hypothetic situation where no Go
stone modes are present. All experimental findings are w
understood treating the OP modes beyond their mean-
description. As reported from the analysis of ultrasonic
tenuation experiments for Rb2ZnCl4 before,9,10 no phason
gap had to be introduced. Recently however, the direct
servation of a ‘‘phason gap’’ has been reported for a mole
lar compound~BCPS!.41 This ‘‘phason gap’’ was observed
in inelastic neutron-scattering experiments for very high f
quencies. Again, the low-frequency dynamics probed
NMR did not reveal any gap.42

Thus an interesting application of theO(2)-symmetric
model is presented here, in terms of a crossover descrip
and a discussion of the fullk andv dependence of the sus
ceptibility calculated to one-loop order. We found very go
agreement with experimental data. Besides the precise ca
lation of critical exponents as one strength of t
renormalization-group theory, also detailed analysis of cro
over scenarios and the effect of the anharmonic coupling
modes is possible. We want to stress how successfully
results of the renormalization-group theory can be applied
specific experimental findings. In addition, we emphas
that the choice of two fit parameters in the phase aboveTI
already essentially determined the curves in the incomm
surate phase.

The theory presented here is formulated in a general w
Therefore it could be readily used to analyze further exp
ments, especially below and nearTI .
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APPENDIX

In this appendix we list analytical results for the two-poi
vertex functions and their singularities (1/« poles! in the
generalized minimal subtraction scheme, following from t
dynamical functional~2.6!. Below TI , the corresponding
zero- and one-loop contributions are stated. For the exp
calculation of the integrals in the generalized minimal su
traction scheme we refer to Ref. 43. All integrations ov
internal frequencies have already been performed by me
of the residue theorem. We restrict ourselves to the thr
dimensional case («51).

T.TI : Here only the simplest one-loop graphs enter
diagrammatic expansion.
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G +c̃c~k,v!5l +S k21 iv/l +1t +1
n12

6
u+E

q

1

t +1q2D 5l +S k21 iv/l +1t +F12
n12

6«
u+Adm2«

t +

~11t + /m2!«/2G D
5l +~k21 iv/l +1t + /Zr !, ~A1!

G +c̃ccc~k i50,v50!5u+2
n18

6
u+E

q

1

~t +1q2!2
5u+F12

n18

6«
u+Adm2«

1

~11t + /m2!«/2G5u+ /Zu . ~A2!

T,TI . The diagrammatic expressions for the vertex functions are depicted in Figs. 16 and 17.

G +p̃p~k,v!5 iv1l +S k21
1

3
u+m+

2E
q

1

q2~m+
21q2!

D 2l +

1

3
u+m+

2E
q

1

S k

2
2qD 2

1m+
2

1

iv/l +1S k

2
1qD 2

1m+
21S k

2
2qD 2

2l +

1

3
u+m+

2E
q

1

S k

2
2qD 2

1

iv/l +1S k

2
1qD 2

1m+
21S k

2
2qD 2 5 iv1l +S k21

1

3
u+Adm+D

1l +

1

3
u+m+

2Ad

2

1

k S arcsin
2 iv/l +1m+

2

A4m+
2k21~k21 iv/l +2m+

2!2
1arcsin

k21 iv/l +2m+
2

A4m+
2k21~k21 iv/l +2m+

2!2D
1l +

1

3
u+m+

2Ad

2

1

k S p

2
2arcsin

iv/l +1m+
2

k21 iv/l +
21m+

2D , ~A3!

G +s̃s~k,v!5 iv1l +~k21m+
2!2l +

n21

3
u+m+

2E
q

1

S k

2
2qD 2

1m+
2

•

1

iv/l +1S k
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1qD 2

1S k
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2qD 2

2l +3u+m+
2E

q

1

S k

2
2qD 2

1m+
2

•

1

iv/l +1m+
21S k

2
1qD 2

1m+
21S k

2
2qD 2 5 iv1l +~k21m+

2!

1l +

n21

3
u+m+

2Ad

2

1

k S p

2
1arcsin

2 iv/l +

k21 iv/l +

D 1l +3u+m+
2Ad

2

1

k S arcsin
2 iv/l +

A4m+
2k21~k21 iv/l +!

2

1arcsin
k21 iv/l +

A4m+
2k21~k21 iv/l +!

2D . ~A4!
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