Copyright by the American Physical  Society. Kaufmann, B. A.; Schwabl, F.; Tauber, U. C., "“Critical dynamics at incommensurate
phase transitions and NMRrelaxation experiments,” Phys. Rev. B 59, 11226 DOI: http://dx.doi.org/10.1103/PhysRevB.59.11226

PHYSICAL REVIEW B VOLUME 59, NUMBER 17 1 MAY 1999-|

Critical dynamics at incommensurate phase transitions and NMR relaxation experiments

B. A. Kaufmann and F. Schwabl
Institut fir Theoretische Physik, Physik-Department der Technischen Univelitachen, James-Franck-StraRe,
D-85747 Garching, Germany

U. C. Tauber
Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435
(Received 13 November 1998

We study the critical dynamics of crystals which undergo a second-order phase transition from a high-
temperature normal phase to a structurally incommensgi@emodulated phase. We give a comprehensive
description of the critical dynamics of such systems, e.g., valid for crystals oAiB&, family. Using an
extended renormalization scheme, we present a framework in which we analyze the phases above and below
the critical temperaturd,. Above T,, the crossover from the critical behavior to the mean-field regime is
studied. Specifically, the resulting width of the critical region is investigated. In the IC modulated phase, we
consider explicitly the coupling of the order parameter modes to one-loop order. Here the Goldstone anomalies
and their effect on measurable quantities are investigated. We show their relation with the postulated phason
gap. While the theory can be applied to a variety of experiments, we concentrate on quadrupole-perturbed
nuclear magnetic resonan@®MR) experiments. We find excellent agreement with these dynamical measure-
ments and provide answers for some questions that arose from recent [&163-18209)03417-1

I. INTRODUCTION appear in the dynamical spectrdmThe “amplitudon”
branch, connected with the fluctuations of the amplitude of
This paper is concerned with the critical dynamics ofthe incommensurate modulation, exhibits common soft-
crystals undergoing a second-order phase transition from @mode behavior. In addition the “phason” branch represents
high-temperature normgN) phase to a structurally incom- the massless Goldstone modes of the system, here originat-
mensuraté|C) modulated phase. In the IC phase, the transing from the invariance of the crystal energy with respect to
lational symmetry of the lattice is broken by a modulation ina phase shift. Because of the massless Goldstone ffbdes
such a way that the characteristic wave vecfois a nonra- present in the entire IC phase, new types of anomalies may
tional multiple of a basic lattice vector. The occurrence ofoccur. Examples of such anomalies were discussed in the
incommensurate modulations is in general understood as laerature beforé1° Thus we expect some peculiar features
consequence of competing interactidriEhe most important  of the dynamics in the IC modulated phase stemming from
characteristic of these systems is that the ground state do&® Goldstone modes and their coupling to the other OP
not depend on the actual phase of the incommensurate modmodes.
lation at a lattice site. This implies that the initial phase of The purpose of this paper on the one hand is to provide a
the modulation wave is arbitrary and one must take into acgeneral framework for the analysis of the critical dynamics
count a phase-shift degeneration of the ground-state energgbove and below th&l/IC phase transition. The theoretical
Consequently, not only the amplitude of the modulating vec-description of such systems is based onCH2)-symmetric
tor is required to characterize each configuration, but in adtime-dependent Ginzburg-Landau model, with purely relax-
dition the phase at a arbitrary lattice site must be fixedational behavior of the nonconserved order paranfetére
Therefore a two-dimensional order paramét@P) has to be  more generaD(n)-symmetric model has been widely stud-
employed in order to describe the phase transition fros a ied above the critical temperature by means of the dynamical
phase to an IC modulated phaskteresting static proper- renormalization group™'? Below the critical temperature,
ties, e.g., the very rich phase diagrams of systems with conthe O(n) symmetry is spontaneously broken; as mentioned
peting interactions, emerde. above parallel and perpendicular fluctuations have to be dis-
However, in this work we concentrate on dynamical prop-tinguished. We will start from the field-theoretical model of
erties. Considering fluctuations of the OP, the normal modes\commensurate phase transitions and derive the correspond-
can be expressed in terms of the transverse and longitudinalg dynamical Janssen—De Dominicis functiotiat? which
components/- and 1//“ in the two-dimensional OP spaée. provides us with the framework to calculate interesting the-
The fluctuations ofy and ¢! can be identified with the oretical properties and correlations functions, which are re-
fluctuations of the phase and the amplitude of the modulatioquired for the interpretation of experimental data.
in the crystal As a consequence of the OP being two di- Furthermore, we intend to give a comprehensive theoret-
mensional, the lattice dynamics of structurally incommensuical description that goes beyond the mean-field or quasihar-
rate phases shows some peculiar effects which are differemtonic approach for the IC phase and which is missing to
from ordinary crystalline phases. Namely, below the transi-date. We present an explicit renormalization-group analysis
tion temperaturel; two nondegenerate branches of modesto one-loop order above and below the critical temperature
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T,. The renormalization-group theory will lead us beyondwe apply the renormalization-group formalism to the low-
the mean-field picture and provide some insight on the eftemperature phase. The susceptibility, containing the critical
fects of the Goldstone modes on the dynamical propertiedynamical behavior for the amplitudon and phason modes, is
below T,. Some specific features of the Goldstone modesalculated to one-loop order. Specifically, the influence of
were discussed for the statics by Lawriand for the dynam- the Goldstone mode is investigated. In the final section we
ics in Refs. 16 and 10. In the present paper, we extend thehall discuss our results and give some conclusions.
analysis of theO(n)-symmetric model, specifically for the
casen=2. We also consider the crossover behavior from thdl. MODEL AND DYNAMICAL PERTURBATION THEORY
classical critical exponents to the nonclassical ones in detall,
both above and below the critical temperat(see also Ref.
17). We want to study second-order phase transitions from a

Furthermore, our model is employed to analyze specifidigh-temperature normdN) phase to a structurally incom-
experiments. Quadrupole-perturbed nuclear magnetic reséRensurateIC) modulated phase at the critical temperature
nance (NMR) is an established method to investigate ICT,. The real-space displacement field corresponding to the
phases ina very accurate \Ngyn this probe, the interaction one-dimensional incommensurate modulation can be repre-
of the nuclear quadrupole mome(®) of the nucleus under sented by its normal-mode coordina@éq).” We will treat
investigation with the electric-field gradiefEFG) at its lat-  Systems with a star of soft modé<onsisting only of two
tice site is measured. The fluctuations of the normal modewave vectorsy, and —q, along one of the principal direc-
give rise to a fluctuating EFG, which is related to the transi-tions of the Brillouin zone, e.g., substances of thgBX,
tion probabilities between the nuclear-spin levels. As a confamily.? Because the incommensurate modulation wave is in
sequence, the relaxation rateT/of the spin-lattice relax- Most cases, at least closeTp, a single harmonic function
ation is given by the spectral density of the EFG fluctuation®f space, the primary Fourier component®(q))e(q
at the Larmor frequency. We calculate the NMR relaxation+q;)€'# with the incommensurate wave vectotsy, are
rate with our theoretical model, and compare our findinggdominating. UsingQ(q) as a primary order parameter of the
with the experimental data. Our results may be used to intemormal-to-incommensurate phase transition in the Landau-
pret a variety of experimental findings; however, here weGinzburg-Wilson free-energy functional, diagonalization
will restrict ourselves to the analysis of NMR experiments.leads t3
The theory presented here is appropriate for the universality 1
class containing, e.g., the crystals of thgBX, family. a1 T 2\ ar
Some very precise NMR experiments on these crystals Werg[{lp"}]_ 2 0:24,,;\ fk(r°+k V(09 (=k)
performed over the past yeafs'® Above T, , these data can
be used to analyze the critical dynamics in a temperature +& 2 f
range ofT—T,=100 K more closely. Below,, an identi- 41 o = oA Jkikoksky
fication of relaxation rates, caused by fluctuations of the am-

. . . . 4
plitude and the phase, respectively, at special points of the N N 8 8
NMR frequency distribution is possible. Therefore the relax- Xl (k) (ko) ¢’ (Ka) 9’ (K4) 6 21 k|, (2.
ation rates IV, and 1T ,, referring to the critical dynamics
of the two distinct excitationg"amplitudons” and “pha-  with new Fourier coordinateg?(k) and y/\(k) in the OP
sons”), can be studied separately. These experiments led tepace. Here, we have introduced the abbreviatifps. .
some additional open questions. Above the critical tempera=[1/(27)9]fd% ..., andf, ...=(1/27)fdw ... .
tureT,, a large region was reported where nonclassical criti- Below the phase transition, the fluctuationsl;dT and ¢OA
cal exponents were fourfd.Below T,, the presence of a can be identified with the fluctuations of the phase and the
phason gap is discussed in order to clarify some experimenigmplitude of the displacement field, namgthason and
as well as the theoretical understandfg® We will show  amplitudon* The wave vectork indicates the derivation
how these questions can be resolved within the framework ofom the incommensurate wave vectyr, k=q¥q,. The
our theory. parameter, is proportional to the distance from the mean-
_ This paper is organized as follows: In the following sec-field critical temperaturd,,, r.xT—T.,, and the positive
tion we introduce the model free energy for a system thakoupling u. gives the strength of the isotropic anharmonic
reveals aN to IC phase transition. The dynamics of the am-term. Unrenormalized quantities are denoted by the suiffix
plitude and phase modes is described by Langevin-type sto- The functionaH[ %] describes the statics of the normal-
chastic equations of motion, and we give a brief outline ofiy_incommensurate phase transition. It represents the

the gen_eral dynamical perturbation _theory. In Sec. lll, then-component isotropic Heisenberg model: in the case2,
connection between the NMR experiments and the Suscepli js a15o referred to as théY model. For the sake of gen-

bility calculated within our theory is discussed. We shall Seeerality then-component order-parameter case will be con-
that the spectral density functions are closely related to thgidere’d in the theoretical treatment.

measured relaxation times. The high-temperature phase is
analyzed in Sec. IV. Abov@,, scaling arguments are used
to derive the critical exponents for the relaxation rate. The
crossover from nonclassical to classical critical behavior is The critical dynamics of the system under consideration is
discussed by means of a renormalization-group analysis, aregharacterized by a set of generalized Langevin equations for
we comment on the width of the critical region. In Sec. V, the “slow” variables, which in our case consist of the non-

A. Structurally incommensurate systems

B. Critical dynamics
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conserved order parameter fluctuatighecause of the criti- - U,

cal slowing-down in the vicinity of a phase transit)di The Jind L {9l ] =— Tf f 5( > ki)
purely relaxational behavittis described by the following kakakaky ] 01020304
Langevin-type equation of motion

xo| 2 wi)EB PG
iwa(k1t)=_)\ow+§a(k,t)_ (2.2) X ¥ (Kg,02) YP(K3,03) PP (K4, 04).
at ¥ SYH(—k.t) 2.7

H H ~ Cc
The damping is caused by the fast degrees of freedom, whitheN'po'm_ Green funCt'Ong""/’f"/ff(ll(’w.) and cumulant:§
are subsumed in the fluctuating forc&% According to the can be derived by appropriate derivativesZoénd InZ with
classification by Halperin and Hohenberg, we are considerrespect to the sourcée’ andh® . Thus the standard scheme

ing model A of perturbation theory can be applied. Further details can be
The probability distribution for the stochastic forcgsis  found in textbookgRefs. 26 and 27and in Refs. 14 and 16.
assumed to be Gaussian. Therefore In addition we want to list some important relations that

will be useful for the discussion. The dynamical susceptibil-
N ity gives meaning to the auxiliary fields by noting that it can
(£*(k,1))=0, be represented as a correlation function between an auxiliary
field and the order-parameter fittd

(2K, ZP(K 1)) =2N.8(k—K') S(t—t') 8, (2.3

S(d(x,1)) ~
XEP X ) = T, = (YA ONPE(X ).
where the Einstein relatio(2.3) guarantees that the equilib- Sh™(x',t') hB=0

rium probability density is given by (2.9
Notice that the generating functional of the response func-
o HIw™] tions has a different form than the one of the correlation

P[{y}]= _ (2.4  functions in Eq.(2.5.'° This leads to the factok. in Eq.

fp[{d,a}]e*H[{wf‘}] (2.8). _ _ o
° The Fourier transform of the dynamical susceptibility

XK, @) =N.G.ays(K, 2.9
Following the dynamical perturbation theory developed (k,w) gk ) 2.9

by Jansselt and De Dominicis® we want to calculate the s associated with the Green functionS.;a 6. The
dynamical properties of our system, e.g., the dynamical corfiuctuation-dissipation theorem relates the correlation func-

relation functions. First, the stochastic forces are ellmlnatedmon of the order- parameter fields and the |mag|nary part of
using Eq.(2.2) and the Gaussian distribution for the stochas-the response functidh

tic forcesZ®. After a Gaussian transformation and the intro-

duction of auxiliary Martin-Siggia-Rogefields /% , the non- Ix*P(k, )

linearities occuring in the initial functional are reduced. A Goyays(k, @)= ZT (2.10

perturbation theory analogous to the static theory can now be

implemented on the basis of the path-integral formulationwhich will enter the calculation of the NMR relaxation rate.

We define the generating functional E.g., considering only the harmonic pdg of the dynamical
functional and carrying out the functional integration gives

Ta a o a 2\,
20} 01 [ PGP Gogmpsllo ) 5 o
B . [N(r.+k») )%+
x @SN + [N dez (Al +heud) (o 5)
Finally we want to introduce the vertex functiohisy. s,
which are related to the cumulants through a Legendre trans-

where the resulting Janssen-De Dominicis functiohallg formation. For exampl&®1®

+J;nt IS split into the harmonic pady, and the interaction
partJin,

1

agal K@) = 2.1

¢ v ( ) F;,Z,a,#a(_k,_w) ( 2

Jol{wrh )= fk LEC:‘ Mgk 0) g (=K, ~ o) The vertex functions are entering the explicit calculatio of

factors and the susceptibility in the renormalization-group

— K, ) [iw+N(r.+k?)] theory. The advantage of working with vertex functions is
that they are represented by one-particle irreducible Feyn-

XYt (—k,—w)}, (2.6)  man diagrams only.
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. NMR EXPERIMENTS AND SPIN-LATTICE IV. HIGH-TEMPERATURE PHASE

RELAXATION . . . . .
In this section, the critical behavior of the incommensu-

Quadrupolar perturbed nuclear magnetic resonanceate phase transition abovig will be investigated. On the
(NMR) can be used to study the dynamics of phase transibasis of scaling arguments and the use of critical exponents,
tions from aN to an IC modulated phag.In this method calculated within the renormalization-group theory for the
the interaction between the nuclear quadrupole mon@nt XY model in three dimensions and model A, the temperature
and the electric-field gradietEFGQ) V is the dominant per- dependence of the NMR relaxation rate is analyzed in the
turbationq of the Zeeman Hamiltonian. Thus in the corre- first subsection. Next we study the crossover scenario of the
sponding Hamiltonian temperature dependence of the relaxation rate in the second

subsection by means of the renormalization-group theory.
H=Hz+Hq (3.1) Comparison with experimental data is made, and we com-
ment on the width of the critical region.
next to the dominating Zeeman terHy, one has to consider
the quadrupole interactiofo= 5= QjVj« as a perturba- A. Scaling laws for the relaxation time

tion. The quadrupole moment operatQf, is coupled lin- . )
early to the EFG tensov,, at the lattice sité®?° The fluc- Above the phase transition, the thermodynamical average
i :

tuations of Vj, can be expressed via order parameterof the order-parameter' components is zero. Because the
fluctuations, because of the dominant linear coupling of thetructure of the correlation function of the order parameter

EFG to the order paramef8rL does not change dramatically aboVge (see Sec. IVBand
the calculation of the relaxation rateT}/involves the inte-
SV (x,)=Agi:[ SUA(L) +i 8u(t) ] Pot c.c gration of the correlation function over all wave vectors, we
iji™ ij .C.

(3.2) will derive a form of the correlation function using scaling
arguments. Thus we are able to discuss the universal features

We now briefly sketch how the OP fluctuations determine®! the relaxation rate behavior when approachingfrom
the relaxation rate. The spin-lattice relaxation describes th@P0Ve. In the harmonic approximation we immediately get
return of the nuclear-spin magnetizativhin the direction of the correlatllon function, which turns out to be the propagator
the external field back to its ts%ermal equilibrium value fol- Of our functionalJ, [see Eq(2.1D]:
lowing a radio frequency puls&.During that time the en- @ PN ) N
ergy of the spin system is transferred to single modes of the (k) g2k 1)) = 8kt K) S0+ 1) 3Gk @),
lattice fluctuations?® Because the EFG fluctuations can be
written as OP fluctuations, the spin-lattice relaxation is de- G.(k,w)= 2\. _ (4.1
termined by the spectral density functions of the local OP ' [N.(r.+k?)]%+ w?
fluctuations at the Larmor frequeney= w, . The transition
probabilities for nuclei with spii=3 in three dimensions
are given by**

The suffixe will be omitted in the following discussion of
this subsection, because no renormalization will be consid-

ered here.
5 We want to exploit our knowledge about the critical re-

1 3 1\ = . . . . )

—=W| =5+ = —[I(Vyy,00) +I(Vy,00)] gion. The static scaling hypothesis for the static response

Ty 2 2/ 3 function states

IxP(k, o Al - B
o D [Tkee ppalondk, 33 X0 =Ax (k=1 42
BZ O 02 R
with the scaling functiony, a constant prefactof,, the
with the spectral density of the EFG fluctuations scaling variablex=(k&)™! (¢ denoting the correlation

length, and the critical exponeny. Neglecting a frequency
° dependence for the kinetic coefficiefitorentzian approxi-
J(Vjj,0)= f_wvij(t)vﬁ(t+ re 'idr, (B4  mation, the dynamic scaling hypothesis for the characteris-
tic frequency of the OP dynamics states

and [ inticating the integration over the respective Bril- _ 2
louin zone. Measuring the spin-lattice relaxation thus yields @ o(K)=A (k) x (k) =K 4.3
information on the susceptibility of the local fluctuations of and we can deduce
the order parameter.

The spin-lattice relaxation was studied in great detail by A(K)=AN(X)kZ2H7, (4.9
means of echo pulse methods both below and afipv¥° .
Below the critical temperatur®, , it is possible for the pro- With A(x) being the scaling function for the kinetic coeffi-
totypic system REZnCl, to identify the relaxation ratesT}  cient andA, a constant pr??factor. Notice that for fixed wave
and 1T¢, dominated in the plane-wave limit by the ampli- VECtork Eq. (4.3) leads td
tudon and phason fluctuations, respectiVélherefore the o (K)~ &7 (4.5)
dynamical properties of the order-parameter fluctuations can ¢ ' '
be studied below the phase transition as well, and separatelyhe correlation functionrG(k,w) can now be rewritten in
for the two distinct excitations. scaling form
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G(k,w)zAm?(fu,x), (4.6)
with
282 . Ao 1
TR AR TR
sa s N/ X(X)
f = = =, 4,
e X R o0 P+ a2 @0

where the Lorentzian line shape is retained. Abdye this
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TABLE |. Critical exponents in thed(2) symmetric¢? field
theory in three dimension&Refs. 23 and 27

v=0.6695 n=0.033 z=2.024

find

1 T_T| —0.663
This can be compared with the experimental results for
Rb,ZnCl, by Holzeret al.?° who found for the leading scal-

ing behavior of the relaxation rate, following the

not a very crucial approximation, because the shape of thfémperature—independent region, the exponeat625.
correlation function does not change in a first-order

renormalization-group analysis, as we will see in the next
section. To calculate the relaxation ratel1/one has to

evaluate the integrdbee Eq(3.3)]

! Alsz K, o )dk
% aKcteo

ocAf k2dkk= 22+ 7f (kw| Y2 k&), (4.8
BZ

With u=ke, ¥ andv =k¢ we introduce new variables

0= VuZ+vi=kyw P+ £ (4.9
and
v 3
tanp= TR (4.10
W)
This leads to the relation
1 .
T—1=A<Jw[z’z+§2>1*1*’7lg(f<e,<p>), (4.1

2. Slow-motion limit(w, /w,>1)

In the vicinity of the critical temperatur€, critical slow-
ing down will occur. This means that the characteristic fre-
quencyw,, is approaching zero and will fall below the value
of the Larmor frequency Thus the characteristic time scale
of the OP fluctuations is slower than the experimental time
scale. For the temperature dependence of the relaxation rate

Timl\{fz[(ffz/wdz’“r 1IpE = 72,, (419
1

we now obtain

(4.1

Taking the values for the critical exponents from Table |
again,

(4.17

This is in good agreement with the experimental réSult

where the integral, does not contribute to the leading tem- for Rb,ZnCl, that the value of the relaxation rate neBr

perature dependence.

scales aso *° for different Larmor frequencies.

The temperature dependence of the relaxation rate can We want to stress that the transition from the fast- to the
now easily be found in the limits where the Larmor fre- slow-motion limit is a property of the integral entering the
quency or the frequency, of the critical fluctuations, respeccalculation of the relaxation rate. Because the susceptibility

tively, dominate the integral and its prefactor.

1. Fast-motion limit(w, /w,<1)

is evaluated at fixed, , there exists for a lower boundary
for the integralT~T,. This means that the transition from
the temperature-dependent to the temperature-independent

For temperatures very far above the critical temperatur@€havior neaf is fixed by the scale,_. It should also be
T,, the characteristic frequency is larger than the Larmoimentioned that our results reproduce those obtained earlier

frequency. Thus the temperature dependence of the OP fluby

Holzeret al. (see Ref. 2)) when the van Hove approxi-

tuations determines the temperature dependence of the reld®@tion forzis used g~2).
ation rate; the value of the Larmor frequency should not play

any role** For the integral

1
T_l:A{wEZIZ[l+(leg—Z)ZIZ]}(Z—l—n)/ZI 0 (412)

we obtain with tap = const[see Eq.(4.10]

T_T| —v(z—1-7)
) (4.13

1
_ocnglfn: -
T, ( T

B. Renormalization-group analysis aboveT,

Our investigations concerning the critical behavior above
T, in the last section led to fair agreement with experimental
data. It was possible to gain the critical exponents for the
frequency and temperature dependence of the relaxation rate
in a quantitatively accurate way. Furthermore, we obtained a
qualitative understanding of the transition of the relaxation
rate 1, from the slow- to the fast-motion limit. This tran-
sition is caused by the characteristic frequency of the order-

Taking the values for the critical exponents from Table I, weparameter dynamice, approaching zero, i.e., the critical
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slowing down neaifT,. This renders the Larmor frequency new temperature variable, being zero at the critical tempera-

o, the dominating time scale, T{ becomes temperature- ture T, is performed. This new variable will be denoted

independent nedr, . again asr.. The only renormalized quantities are then writ-
At this point we want to consider what happens uponten as

leaving the region near the transition temperature and going

to higher temperatures. Our resuliis12) for the fast-motion T= ZflTo,sz,
limit are based on the assumption that fluctuations are very
important. We used nonclassical exponents and scaling argu- u=2z, Yu.Agu 2. (4.18

ments valid in the critical region. The question arises how,
large this region of temperature, where the system display'§|
the nonclassical behavior calculated in the last section, will
be. Increasing temperature diminishes the effect of fluctua-
tions. One would expect that at some temperature Gaussian
behavior should emerge. We shall apply the renormalization-
group theory to one-loop approximation in order to describe For the nontrivialZ factors one finds in the generalized
the transition from the fluctuation-dominated behavior neaminimal subtraction procedur@ee the Appendjx

T, to a temperature region where the mean-field description

should be valid. It is obvious that the properties of the inte- n+8 B 1

gral, responsible for the transition between the slow and the Zy=1+ 5= U.Aqu sm'

fast motion limit, will account for the crossover of the lead- T lK
ing scaling behavior when the temperature is increased. In

order to discuss the crossover within this analysis a modified 7 =1+ Eu we 1 (4.20
minimal-subtraction prescription is employed. This scheme ' 6 U (14 riu?)e? '

was first introduced by Amit and Goldschmitiand subse- ) N o

quently explored by Lawrie for the study of Goldstone Setting7.=0 ttlle familiar renormalization constants for the
singularitiest® It can comprise exact statements in a certainf-componeni)™ model are recovered. In general35r1ere, how-
limit. Below T,, this is the regime dominated by the Gold- €Ver, theZ factors are functions of botbo and. To. In'the
stone modes alone; in the region abdie which we will next step the fact that the unrenorma_thzl’écbomt functions
consider in this section, the mean-field result is used. In thi§o not depend on the scaje is exploited and the Callan-
scheme, in addition the standard field-theoretical formulatiorsymanzik equations are derivétThe idea behind that is to
of the renormalization group is neatly reproduced. FollowingConnect via the renormalization-group equations the uncriti-
the arguments of Schloms and Dotand Ref. 16 we can ca_l_theory, Wh|<_:h can bg treated _perturbatlonally, with '_[he
refrain from thes expansion, withe =4—d defining the dif- crmc_:al theory dllsplaymg. infrared dlvergences._ The resulting
ference from the upper critical dimension of t#é model. partial dlffergnyal equations can be solveq Wlth the method
This is motivated by the following. Abov&, the Gaussian ©f characteristic u(l)=ul]. With the definition of Wil-

or zero-loop theory becomes exact in the high-temperaturé®n’s flow functions
limit. The critical fixed point, i.e., the Heisenberg fixed point,

ere, the geometric factak, is chosef’ as

I'(3—d/2)

d

dominating the behavior of the system near the critical tem- ZT(U:Mi Inl,

perature is calculated to one-loop order. The main interest TP

here lies in the crossover behavior between these two fixed

points, which is calculated to one-loop order, too. Thus no d

further approximations are necessary to be consistent. 5u(|)::“@ OU’ (4.2

Very close to the critical temperatuiig an ¢ expansion
or Borel resummatioff would of course be inevitable in or- we proceed to the flow dependent couplings) and u(l)
der to obtain better values for the critical exponents. A de{see Eqs(4.18]:
scription of the generalized minimal subtraction scheme is

for example given in Refs. 35, 15, 16, and 37. A crossover ar(l)
into an asymptotically Gaussian theory is described by this IT:T(I)Q(')’
method in Ref. 17.
. au(l)
1. Flow equations |T =By, (4.22

Our aim is to calculate the wave number and frequency
dependence of the susceptibility to one-loop order. The fiel@iven by the first-order ordinary differential equations
renormalization is zero to one loop order. Thus we will not
take into account corrections to the static expongrand ar(l)
corrections to the mean-field value of the dynamic exponent IT: T(I)( —2+ 6 u(l) [1+ T(|)]1+e/2) ’
z~2. This leavesr. and u, as the only quantities to be
renormalized’ | 8
There is a shift of the critical temperature from the mean- |‘9u_() —u()| —e+ n+ u(l) )
field resultT., to the “true” transition temperaturd, . In al 6 [1+7(1)] "2
order to take this shift into account, a transformation to a (4.23
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and the initial conditions7(1)=7 and u(l1)=u. The 1 o1 Ixr(k @)

asymptotic behavior is determined by zeros of fhéunc- T—ch kdk———

tion, giving the fixed points of the renormalization group. ! L

Here, we find the Gaussian fixed poinf=0 with (&= j ) 1 1
—2 and the Heisenberg fixed poinf;=6¢/(n+8) with = wf/)\2+[k2+7(|)ﬂ2|2]2x

(5= —2+¢. These fixed points are of course well knotdn,

but in the generalized minimal subtraction scheme it is now

possible to describe the crossover between these two fixed =— —f k2 ~2~—,
points. We are interested in the theory in three dimensions pl wi +[K2+7(1)]?

and will henceforth discuss this case={1). - .

First we investigate the crossover of th@) flow. It is ~ Wherek=k/ul and w = w /\u?1>.
possible to recover the universal crossover in the flow by Keepingr(l) fixed (it is set to } the relaxation rate Th
plotting 7(I) against the scaling variableompare Refs. 10, is proportional tol ~* for largel. Whenl approaches zero a
16, and 17 constant value of the integral and hence of the relaxation rate

1/T, will be reached, because of the fixed time scaie, 1/
The physical reason is that in the slow-motion limit the char-
B | 4. acteristic time scale (&/,) becomes larger than the experi-
X= (1)Y2- e 429 ental time scale #/_ . In Fig. 2 the logarithmid depen-
‘ ‘ dence of the integral

4.27

In Fig. 1 the effective exponent for thedependence of(l) 1 (. . 1
is depicted for ten different values ef1) [with fixed u(1) dln TJ Kdk=y——>——
and n=2], coinciding perfectly. There is a crossover from | dInTy —_ ® w +(k*+1)
the regionl—0 with the exponent-2 to the regionl —1 1 aind dlnl
with the exponent-2+ (n+2)/(n+8). (4.28
Next we find, with the scaling variablge (k&) 1, the
effective exponent; of the temperature dependence of the
correlation length

is plotted against the scaling variable

A

oot ] (4.29
1 2 |—0 Vou

7(1)oc] ~Vrettm — = n+2 I~1 (4.29  We regain the transition from thkindependent regimel (
Veft 2- n+s = —0) (and therefore of the temperature-independent regime

to the regimd ;I (I — ). This corresponds to the transition
from the slow-motion to the fast-motion limit; a changel of
Thus with the generalized minimal-subtraction scheme wgs equivalent to a change of, .

can describe the crossover from the nonclassical critical be- However, we are rather interested in the dependence of
havior to the Gaussian behavior, e.g., as a function of theéne relaxation rate from the physical temperatu¢é) than
temperature variable. from the flow parameter. This may be obtained as follows.
Knowing the solution of the flow equationgl) and u(l),
2. Matching we can find al; for a given7(1) that fulfills the equation

To one-loop order, only the tadpole graph enters in theT(Il):l' Inverting this relation;r(1) for a givenl, with

X . 7 N 7(l1)=1 can be found. It is not possible to write down an
two-point function(seeT'sy,, in the appendix shifting the_ .analytical expression, but numerically this relationship is
critical temperature as stated above. Thus the suscept|bll|:!yeadil obtained. Thus we are led to Tr(1)]
does not change its form and the renormalized version reads y .

: : ) =T ,{l4[r(1)]}. To connect the theory in a region where
\évgrh Eq. (2.9, Bq.(2.12, and the appendix to one-loop or the perturbation expansion is valid with the interesting re-

gion, we match the temperature variabl¢) to 1, thus im-
posing the crossover behavior of the flol) to the effec-
-1 2 212 tive exponent of the relaxation timeTl/.
Xr- (K@) =Ktk () w15 (4.28 In Fig. 3 the resultingT,(T) dependence is used to fit
experimental NMR data for BEnCl, (measured points are
Yet what we gained in the last subsection was the temperandicated by circles from Mischo et al*® Two parameters
ture dependence of the coupling constants. We have to tak&ave to be fixed in the theory. First, the prefactor relating the
into consideration this temperature dependence in order ttelaxation rate and the integral over the imaginary part of the
discuss the changes resulting from the fluctuation correcsusceptibility in Eq.(4.27) must be determined. Thus the
tions. One now has to ask the question: how does the flowalue of 1T,(T=T,) is set. The second parameter is the
enter the physical quantities measured in an experiment? scale of o, compared to the coupling «. With this the
With the flow dependence of the coupling constants, theelative temperaturd T, where the transition between slow-
relaxation rate to one-loop order beconfisse Eq.(3.3)] and fast-motion limit takes place, is adjusted.
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FIG. 1. The flow of the renormalized mass parame(éy vs the FIG. 2. Logarithmic derivative of the integral in E@t.27) with

scaling variablex=1/7(1)%%2° for ten different values ofr(1)  respect td, plotted vs the scaling variable= | u\ Y% .
<0.1 [u(1)=0.6n=2].

As this is not a universal feature other scenarios are pos-

The two fit curves presented in Fig. 3 show a crossover tgible. It may happen that the scale @f is very large and
the mean-field regime starting AfT~10 K (a) and atAT  thus only the Gaussian exponents are found. We omitted the
~5 K (b). A very good agreement, not only for the transi- contribution of higher Raman processes, as discussed by
tion from the slow- to the fast-motion limit, but also for the Holzer et al,?° leading to an additional®> dependence for
high-temperature behavior, is found in the second case. Wie relaxation rate. These would bend the curves downward
want to discuss this issue now in more detail. even more and explain the deviation present at the highest
measured temperatures. Not taking these additional contribu-
tions into consideration, however, clarifies the crossover as-
pect.

Some experiments report large regions in which nonclas-
sical exponents for the temperature dependence of the relax-
ation rate are observed. For example, in Ref. 20 the range V. LOW-TEMPERATURE PHASE
above T, where nonclassical exponents are foundAi$ _ . .
~100 K. These findings have to be understood by means of This section is devotgq to the incommensurate ordered
the Ginzburg-LevanyudR“°argument, which states that only Phase below the critical ~temperaturd,. In the
near to the critical temperature the nonclassical critical ex©(n)-symmetrical model a spontaneous breaking of a global
ponents should be valid. Fluctuations should contribute onlfPONtinuous symmetry occurs and the expectation value of the
near the critical point and change the mean-field pictur@rder parameter becomes nonzero. Now parallel and perpen-
there. dicular fluctuations with respect to the nonzero order param-

The property of the integral quantity T, in the region eter have to be distinguished. As a consequence there appear

where a crossover between the nonclassical critical expdl—1 massless Goldstone modes which lead to infrared sin-
nents and the mean-field exponents occurs, was studied gplar|t|es7fgr all temperatures beloWy in certain correlation

the last subsection. We now comment on the four regiondunctions.” We investigate how these Goldstone modes in-
that can be identified and are indicated by numbers 4 in ~ fluénce the dynamical properties of the quantities we are in-
Fig. 4. terested in, e.g., the NMR relaxation rate. To do so, we first

Very close toT,, there is a temperature-independent re_derive_ the dynami_cal functional appropriate beldw In the
gion (1), because of the dominating scaig . Here, the following subsection some comments about the Goldstone
probing frequencyw, is too fast to grasp the critical behav- anomal_|es are made. Wg will then treat the dynamlcs of the
ior. Upon going to higher temperatures, after a transitionfluctuations parallelamplitudons and perpendiculatpha-
region(2), a temperature dependence with nonclassical critiSONS 0 the order parameter. Again a renormalization-group
cal exponents emergés). For even higher temperatures one calculatlon_to one-loop_ qr_der is presented._We W|II_ discuss
finds a crossover to the mean-field exponents, in red#ne the (_jynamlcal susceptlblllty before evaluatlng the integrals
In Fig. 4 this crossover takes place betwefi~5 K and leading to the relaxation rate. In the last section, we compare
AT~20 K. From Fig. 3, we find that the crossover at IowerWith experimental data. We also comment on the existence

temperatures, here starting&T~5 K, leads to a better fit ©f & Phason gap.
of the experimental data. Thus the reported large region,

where supposedly nonclassical exponents are fétiigljn

our opinion not an indispensable conclusion that can be

drawn from the experimental data. The plausible scenario of Let us assume that the spontaneous symmetry breaking
an extended crossover regime beyond the truly asymptotibelow T, appears in thath direction of the order-parameter
region of widthAT~5 K is in fact in perfect agreement space. As usual, new fields’, «=1,...,n—1, ando.

with the data. are introduced?

3. Width of the critical region

A. Dynamical functional
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FIG. 3. Relaxation timd, vs the deviatiom\ T from the critical FIG. 4. Relaxation timd; in a logarithmic plot vs the deviation

temperatureT,. The NMR experimental daff, indicated by AT from the critical temperatur€, . The NMR experimental datd
circles, are compared with the theoretical results, represented by tigircles are compared with the theoretical result, represented by the
solid lines. A crossover to the mean-field regime starting\@t  solid line. A crossover to the mean-field regime startingAat
~10 K[line (8] and atAT~5 K [line (b)] is considered here. ~5 Ks considered. The four labeled temperature regimes are dis-

( lpo ) ( T, ) ( l,bo )
lpon g, , ¢o

a

s _ 3
i3 (5.1) b.= \Em (5.3

with Thusa. corresponds to the longitudinal, and to the trans-
verse fluctuations.
(7)y=(0.)=0. (5.2) Inserting these transformations into the functiofal?)
leads to a new functional of the formd=Jy+Ji,;+J1
The order parameter is parametrized as + const with®

Jol{mt o {75}, 0]

:U ’E N (K@) Tk, = @) A (K)o (—k, — 0) = X 7K, )

2

. m - _ 3m?
X|iw+\, rt,+7+k2 74—k, —w)—o.(K,w)| io+\, r°+T+k2

ao(—k,—w)}, (5.9

Jind {7} 0. {75}, 0.]

1

:_g)\ouof f 5(2 k|>5(2 wi)
kq1kokgky J wjwowzwy i i

+ 2 Ty, 01) T (Ka, ) 0u(Ks, 03) 0u(Kg, 04) + 2, 0(Ky,01) T(Kg, 02) T (K3, w3) 0.(Kg, w04)

—\. \/%mo J ke f wlwma( 2. ki) 5( EI wi)

X| 2 27Ky, 01) T (Kp,2) 0u(Kg, w3) + Dy 0(Ky,@1) T (Kp, 00) (K, w3) + 30, (Ky, 1) 0.(Ka, 05) 0 (K3, @3) |,

> 7Ky, 1) T(Ky,w0) TP (K3, w3) (K, 04)

apB

+0.(Ky,01) 0.(Ky, ) 0.(Ka, 03) 0. (Kg, 04)

(5.5
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and
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- %)\ouo
- \/? m?
=— — +
\]1[0'0] )\0 uOmo r, 2 ﬂ
s
. ~o _ V3uo of
><J f T(—k,— ) 5(K,w). (5.6) T 3 AoTMod
kJ o g
Equation(5.2) ({o.)=0) yields a perturbative identity that e
ives the relation between and m,, reading to one-loo 5
grdell5 ? P o — e ‘Z"° Ao 6P
Trﬂ
m?  n-1 f 1 1 f 1
R L T . T
ro+— +k2 ro+ —— +k2 & — Vuey
2 2 2 ollbo
(5.7 4
In the followingr, is replaced bym.. Notice that by using FIG. 6. Vertices belowT,. The tensoiF has the formF«£7®
the variablem,, the shift of T, is already incorporatefsee = 3(5°F57%+ 527552+ 5*°5P7).

Eqg. (5.3)]. We can now write down the basic ingredients

needed to apply the recipe for the dynamical perturbatioring the temperature, means that the fluctuations of the longi-
theory belowT,. The emerging propagators, vertices, andtudinal modes(amplitudon$ become negligible, because
counterterms are listed with their graphical representation ithese modes are massiva.j. In contrast the phasons re-

Figs. 5, 6, and Tsee Ref. 1§ main massless and hence their fluctuations will dominate.
Yet a different way of describing the dominance of the
B. Goldstone theorem and coexistence limit fluctuations of the Goldstone modes is to consider the spheri-

As mentioned before. the particulari of the cal model limif n—o. In this case of “maximal”’ symmetry
: . ' parti vy ._breaking, the Goldstone modes are weighted with the factor
O(n)-symmetric functionals below the critical temperature IS 1 o

:2; (;(;;Jur:znc;z a s%fy g (_;) clgi?gﬁo?gge;n;? trif rtaenlilirri dl?g\r/- As mentioned above, beloW, coexistence anomalies are
b P i 9y q present. They arise from the fact that the-1 transverse

an infinitesimal quasistatic rotation of the order parametermodes are massless. In the lirkit-0 andw—0 for T<T,

the transverse correlation length diverges in the limit of Ze1Qu: . manifests itself in tvoical infrared divergences. An im-
external field. The corresponding massless modes are the yp 9 .

Goldstone modes;n this context called phasons. They are portant point to remember is that in order to gain these co-

manifest in nonanalytical behavior of correlation functions,exIStence an_omglles, one can glso study the oase=. In
the renormalization scheme it is shown that the flow of the

for example the longitudinal static susceptibility diverges e
P 9 ptibility g ass parametemn, tends to infinity as the momentum and

and changes its leading behavior from being proportional t
k2 to!8:15.16 requency tend to zero.

From this it is plausible, and was also provedhat in the
i H(k,0) ke, (5.9) coexistence limit the result for the two-point vertex functions
are identical with the results arising from the spherical model
Before discussing the details of the renormalization theorjimit n—oo.
belowT,, we summarize some important aspects, which ex- These findings render an expansion unnecessary in the
plain why below T, an ¢ expansion can be avoided. For coexistence limit k—0, w—0 at m,>0), because the
more details see Ref. 16. asymptotic theonyfthe spherical modglis exactly treatable
Leaving the critical temperature regidi=T,, which is and reduces to the zero- and one-loop contributions. Of
characterized in the nonperturbed casay 0, and lower- course, one has to make sure that the properties of the
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FIG. 7. Counter term below, .

asymptotic functional will be reproduced in the respective
limit. Within the generalized minimal subtraction scheme
this is possible. As stated in Sec. IVB Lawrie’s method
and its dynamical extension in Ref. 16 lead beyond these
limits and allow for a detailed study of the crossover behav-
ior.

The behavior of the correlation functions in our case is
driven by the crossover between the three fixed points
present belowl, . Besides the Gaussian fixed point one finds
the Heisenberg fixed point

. FIG. 8. The effective exponenig=[dInm(l)/dInl] of the
Uy =6€/(n+8) (5.9 flow of the renormalized mass parameiefl) vs | for seven dif-

< — 102 * — _
and the coexistence fixed pO]ilr’]t ferentm(1)<1 belowT, [u(1)=10 “uf.n=2e=1].

=6€/(n—1). (5.10 au(l) 3 u(l)
. . . . . l =u(h) _8+ ( )+ 2 211+¢/2
We will again employ the generalized minimal subtraction [1+m(1)“]
scheme to study the crossover between these fixed points. (5.14
Wilson'’s flow equationg3,, and ¢, now read
C. Renormalization-group analysis belowT, ] ) 1
om
1. Flow equations | —— i m(l)gm(l)
Below T,, using only the one-loop diagrams, again the

field renormalization vanishes. Hence, the only nontrival au(l)
factors are the ones for the temperature scale and the cou- ' =BulD). (5.19

pling constant: i ) )
Three fixed points have now to be taken into

m?=ZtmZu "2, consideratiort>*® Next to the Gaussian fixed poin=0
with {%s=—2, we find in the critical limit (n.—0) the
u=2,'uAqu". (5.11) infrared stable Heisenberg fixed poinf=6s/(n+8) with

{ry=—2+¢. In the coexistence limim,—c, we find in
addition to the still ultraviolet-stable Gaussian fixed point the
coexistence fixed point, identified by Lawrfieu =6s/(n

Because we usm instead ofr an important relationship can
be stated, which is true independently of the loop offer:

Z0-2,=7,. (5.12 —1)2Wi.th {ny=—2+e¢, \which is infrareijzftal?le. Thus
m(l)< diverges asymptotically fok—0 asl e if e<2.
To one-loop orderZ,=1) we find (see the Appendjx® Indeed, the coexistence limit is described by a divergent
mass parameter.
n—1 .. 3 . 1 In Figs. 8 and 9 the flow fom(l) andu(l) is plotted. We
Zy=Zp=14 —7—UAgu °+ —UAqu °*—————-.  find for the flowu(l) a crossover between the coexistence
6e 2¢e (1+m? u?) : S .
° (5.13 fixed point, inversely proportional to the number of Gold-
' stone modesr(— 1), and the Heisenberg fixed point
Here, the contribution of the transverse loops lead to differ-
ent divergences manifest in the change of ZHactors com- u(l)= 6e/(n—1) 1-0 (5.16
pared to those above, [see Eq.(4.20]. We recover the 6e/(n+8) I~1. '

familiar renormalization constant in the critical region by
settingm,=0. When considering the coexistence limit
—oo, the weight of the effective critical fluctuations is re- . ; . ; ; :
duced fromn+8 to n— 1, the number of Goldstone modes. N€&r the Helseg?grg fixed point regime. The scaling variable
Asymptotically (n—c) the Z factors are exact. In the [or u(l)is heré?
crossover region they are an approximation to the order
u2/(1+m, /2)e/216 e
From this we directly derive the flow-dependent cou- m(1)2(2=#)’
plings

That means that fom(1)<1 the coexistence limit is not
approached directly for— 0, but for a while the flow stays

(5.19

again leading to perfectly coinciding curves when plotted vs
X.

N A From the relation stated in E¢6.12 one can deduce the
2 [1+m()2]i*eR)’ renormalization-group invari

am(l) 1 n—-1 3 u(l)
|T=§m(|) - +—U()
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m(1)2 m(1)? D. Susceptibility
2= (5.18 . _ _
u(l) u(l) ’ In order to determine the renormalized dynamical suscep-

. . . . tibility, we evaluate the one-loop diagrams for the two-point
which |mmed|§1tely gives us the scaling oK) that can be cumulants, which can be easily derived from the one-loop
observed in Fig. 8,

vertex functions listed in the appendi.Below T,, the

2_¢ -0 structure of the susceptibility does change to one loop order,
. 1 compared to the mean-field results. We write in a general
m(l)2ec] et with — = n+2 form
Vetf —_—_— | ~1.
n+8
(5.19 B —iw
_ . . . xokw)=——+k+fkw), (520
Notice that the value of L in the first case is the same as .

1/v for the spherical model. The mass parametetiverges . | . _—
for 1—0, m(l)2ecl~2%2 with e<2. with the self-energyf;"" containing the contributions of the

From now on we will concentrate on three dimensionsone-loop diagrams. The explicit form 6f'! is gained from
(e=1) andn=2. the calculation of the two-point vertex function in the appen-
dix and Egs.(2.9) and(2.12. We then obtain the renormal-
2. Matching ized susceptibilityxﬁfL by inserting theZ factors with the
eﬂow dependent coupling constant$§l) and m(l). Because

In order i h i ibility wi h ' S :
order to discuss the static susceptibility we use t no field renormalization is present, we can replacevith A

matching conditionul =k. This relation connects the depen-

dence of the renormalized quantities on the momentum scat% thisrgzgelrdﬂz"s IS giﬁaulfek\j”a the flu<|:_tuat1.t|on-d|55|pat|on
© with the k dependence, in which we are interested. corem(z. 29, 4\ an € field renormalizations are con-

For the integrated value, we are interested in the temperfﬂeCted'
ture dependence rather than the dependence on the flow pa-
rameter|l or the wave vectok. Thus after integration we
have to again match the resultihglependent relaxation rate In d=3 the longitudinal susceptibility characterizing the

1. Amplitudon modes

with the physical temperaturesee Sec. IV R amplitudon modes is given By
R (k) 1 L 1 u(hm(hH?|n—1 ™ eI
, = — t+arcsit/—
X e it 12Pm(D)2Zo() | (KR—iwin) 212+ m(1)2 2Kiul | 3 |2 k2—iw/\
' , i w/\ p2l? + s (K2—iw/\)/ u212 )
arcsin arcsin .
[([K2—iw/\]/ u?1?)?+4m(1)%k? w?12]22 [([K®=iw/N] w?1?)%+4m(1)%k?] w?l12]Y2

(5.29

First we want to discuss some limits in order to becomedisplaying the coexistence anomaly. When keeping the fre-
acquainted with this complex form of the susceptibility. quencyw>0 fixed (k—0, w#0) the imaginary part of the

It is important to notice the change of the structure of thesusceptibility approaches a constant value
renormalization-group susceptibility that results from the

one-loop contribution of the perturbation theory. To clarify Xﬁ?:h(a)), (5.24
this, we state the asymptotic susceptibility, which is evalu-
ated for nonzero frequenck {0, »>0): whereh(w) is a function ofw only. We can now turn to the
full susceptibility. The imaginary part of the susceptibility is
R 1 plotted for different temperatures in Fig. 10. The structure of
X = 1 (5.22 fo changes dramatically as compared to the mean-field re-
k*—iw/\+ m(l)zkm sult, as to be expected. The contributions of the phason and

amplitudon loops are given by the terms in brackets of Eq.
with a constant@a and a functiong(k) that is regular fok  (5.21). They give rise to a qualitatively different behavior of
—0. From this limit, it becomes clear that we have to expecb([*. Different scaling regions can be identified. Expanding

changes of the scaling behavior. the imaginary part oj(ff yields analytical expressions for the
In the coexistence limitg=0,k—0) we recover the ex- scaling regions, as listed in Table Il. While thke-o and
act asymptotic resultd=3, e=1) k—0 behavior reproduces the mean-field result, the correct

- treatment of the Goldstone anomalies lead to an additional
X[ <K (5.23 k3 pehavior in the intermediate regiaf/x<k<m(1). A
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FIG. 9. Flow of the coupling constan(l) vs| for five different k %
u(1) belowT, [m(1)=0.01,n=2,¢=1]. The coexistence and the
Heisenberg fixed point are marked on thexis. FIG. 10. The longitudinal susceptibility for the critical tempera-

ture T=T, and seven other temperatures plottedky&\/w. The
scaling regions listed in Table Il are valid for temperatures not too
plateau appears for smalleand temperatures far away from close toT, .

the critical temperatur@, . The effective exponent of thek

dependence cﬁxﬁ‘ is plotted in Fig. 11. One can therefrom

easily identify the scaling regions presented in Table II.
The influence of the Goldstone modes is therefore to alter 2. Phason modes

the k dependence of the susceptibility not only in the coex-  For the transverse susceptibility characterizing the phason
istence limit, but also in intermediate regions. In order tomodes one find§

derive the temperature dependencexﬁf, in addition the
flows of m(l) andu(l) need to be considered.

m(l)
Kkl

T  —ie/pP2+m(l)?
— —alcsin
2 (KP=iw/\) w212+ m(1)?

1 u(hym(l)/6
R(k,w)= 1-
X o | (= aln) 212

+ arc i/ \ w2124 m(1)2
arcsin
{[(K2=iw/\) 22— m(1)2]2+am(1)2k% u 21212
(K2—iw)/Au?2—m(1)2

i . 5.2
+arcsm{[(k2—iw/)\)/u2|2_m(|)2]2+4m(l)2k2/,u2|2}1/2)H -

Here the problem lies in the cancellation of terms with re- For m— the arcsin terms read as nfc;(1/m°)
spect to theik dependence, hidden in the complex structure+ c,(i w/\k?) - (1/m3) leading to
of Eg. (5.295. Hence we start again with considering the
coexistence limit k— 0, «—0)
1

R
XTOCk_Z’ (526) X1 , 1 , o . (528)
ke—iw/\+ gu(l) cq1k +C2T /m(l)
which is easily found. The results f&—0, o #0 are more
difficult to obtain, because the arcsin terms cancel tkeir

dependence against each other. In two limits this can be dorféérec; andc, are constants. Thus in the two extreme limits,
analytically. Form—0 one gets the temperature dependence vanishes, and only in between,

for m(l)cO(1) can we expect a slightly temperature-
dependent behavior.
1 (5.27) In Figs. 12 and 13 the imaginary part of the transverse
k?—iw/\ susceptibility and its effective exponent with respeck tare
plotted for different temperatures. Notice that leaving the
reproducing the mean-field susceptibility for the masslessritical temperature leads to a temperature dependence. This
transverse modes. is caused by the coupling of the amplitudon and phason

X3 Xor =
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TABLE II. Different scaling laws for the longitudinal suscepti-
bility. The functionsf(k) denote regular functions. 10" |
@ K XIT1 3X\T1 Imx. T=T;
w—0 k—0 ok —0 .
10
T=T —
w#0 K k2 ok T:T;_?&T
m(1)%k 4,3 T=T;-3%67
IN<k<m(1 —i _ aem(1)*k
Jo D) oo (1) o | ToTi 3350
m(1)%k T =T -3%sr
k<\o/\ it ——— =m(1)? T="T;—3%67
1+af(k) T=T; - 37 6r
2kym(1)? ‘ . . .
k—0 —iw/)\.l,_% wl\ 10 106 10'4 10'2 100 102

10°
ky2
modes. Yet as the temperature is further reduced, the tem- FIG. 12. The transverse susceptibility for the critical tempera-

perature dependence disappears again. ture T=T, and seven other temperatures plottedky&/w. The
temperature dependence is only present in an interim region.

E. Relaxation rate

In this subsection we study consequences for the relax- (xP) =Kk =TI\ + f(k,w) u?l2. (5.29
ation arising from the Goldstone anomalies present in the
susceptibility. As mentioned in Sec. lll, in order to gain the
relaxation rate we have to integrate over the imaginary part
of the susceptibility. The dependence dfonk andw is plotted in Fig. 14. We see

Because the transverse susceptibility is temperature der4: the real part of the effective mak# decreasing fok

pendent, also the relaxation rate, connected with the phasonio_ Thus the Goldstone anomalies lead to a reduction of the
W'” be tempe(ature depe.ndent. Th's is of course not the Cas@al part off. In the coexistence limitp— 0 and smalk, the
in the mean-field analysis. As discussed in the last section . . .
2O . real part off tends to O linearly and relatiofs.23 is recov-

for T—T, the susceptibility approaches the mean-field result, . . :
ered. The imaginary part is onkydependent for very small

and thus the relaxation rate at the critical temperature is un: . .
altered. . That means that when we integrate oveikahe influence

For the relaxation rate connected with the amplitudons th@f the Goldstone anomalies can be interpreted as follows.
changes are more subtle. Therefore we collect all the contril € €ffective Larmor frequency is raised and the mass is
butions from the one-loop diagrams in a functibfk, »), lowered for smallk as compared to the mean-field descrip-
which can be interpreted aska and o-dependent dimen- tion. We can easily derive this from the longitudinal relax-
sionless self-energy. The susceptibility has now the follow-ation rate withf(k,w) taken into consideration:
ing structure:

00 T T
K 00
10 | . K
10}
20 | :
20
30 | .
30|
T=T;
-4.0 . ' ' . . s ‘ ‘ ‘ ‘
10°  10*  10°  10° 10" 10° 100 10° A 0t 107 10t -
/2 A
k2 ki 5
FIG. 11. The effective exponent of Jy; with respect tok FIG. 13. The effective exponent of Jy, with respect tok

plotted vsky\/w for the same temperatures as in Fig. 10. plotted vsk\\/w for the same temperatures as in Fig. 12.
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—Im f(k,w)

FIG. 14. Real and imaginary part of the effective “madself
energy f and itsk dependence fow=0.01, 1, and 100.
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FIG. 16. Zero- and one-loop diagrams for the two-point vertex
function that give the transverse susceptibility.

T e

data, taken from Ref. 38. In the low-temperature phase we
have less freedom of choice in our theory, as the scale
T,(T=T,) and the parameters are already fixed by their
high-temperature values. Thus only one parameter is left to
be adjusted. In the vicinity of, we find a temperature inde-
pendent region, because both the transverse and the longitu-
dinal susceptibility become temperature independent and ap-
proach their mean-field values.

The transverse relaxation time shows a slight temperature
dependence for temperatures further away from If we
use the identical choice of parameters as for the high-
temperature phase, we find good agreement in the low-
temperature phase as well. The temperature where the maxi-
mum value of the transverse relaxation time in our theory is
reached is identified with the corresponding temperature in
the experiment. This temperature dependence is due to the
coupling between the phason and amplitudon modes. We

want to emphasize that, in agreement with the analysis of
ultrasonic attenuation experimerit¥ no phason gap has to
be introduced to explain the experimental data foy Ri€l,.
However, it is important to treat the influence of the Gold-
(5.30 stone modes beyond the mean-field approach.

where agairk=k/ul and@= w, /\ u2I2. When we compare For the longitudinal r(_al.axation ti_me, the crossover tem-
this result to the mean-field result, the interpretation giverP€rature represents additional an important scale. We used
above becomes clear. The relaxation rate is raised through® Same rangaT~5 K as in the high-temperature phase
the influence of the Goldstone modes. Both the transversi®r the plot in Fig. 15. Again good agreement between ex-
and longitudinal relaxation times are plotted in Fig. 15.Perimentand theory is observed. Both theory and experiment
Again we have compared our findings with experimentalshow two scaling regions, one abod@~5 K and one be-
low. The qualitative behavior is correctly reproduced, but the
quantitative agreement for the longitudinal relaxation rate is
T not as good as compared to the high-temperature phase. A
100 | ] possible reason may be the following. We calculated the
coupling of the transverse and longitudinal order parameter
fields to one-loop order. Below, , the coupling of the order
parameter is changing the susceptibility in its structure,
whereas abové&, nothing dramatic happens. One has to ex-
pect that belowT, this is of course only the first step beyond
mean-field theory and the two-loop corrections might lead to

~ __f T2k 1-3fl(k, )/ o
7Y [o— 3K, @) 2+ [Ke+ R fl(K, )]’

10 |

Q TIO
1 . , , , Xo xj ' (=k,—w) = Tozo(k,w)
10’ 10° 10 10? 10° — o a
T —T —W~ . -
a a
T toa ( 2 & T ( 2 &

FIG. 15. Relaxation tim& (phason dominatedand T} (am-
plitudon dominatepvs reduced temperature. The NMR experimen-
tal data®® again indicated by circles, are compared with the theo-
retical results, represented by the solid lines. As in the high-
temperature phase a crossover to the mean-field regime starting at FIG. 17. Zero- and one-loop diagrams for the two-point vertex
AT~5 K is considered. function that give the longitudinal susceptibility.
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guantitative modifications in the crossover region. Comparphason fluctuations becomes temperature-dependent. This
ing the calculated transverse and the longitudinal relaxatiotemperature dependence disappears in the two limits when
rates belowT, with the experimental data is in agreementeither the temperature approaches the critical temperature
with this. A slight temperature dependence is not as sensitiv€,, or the temperature is very low. For the amplitudon
as the scaling behavior of the longitudinal relaxation time,modes the influence of the Goldstone modes is more subtle.
which has again two regimes due to the crossover scenaridVe summarized the effect in a wave-vector- and frequency-
As the characteristic features are reproduced correctly, wdependent “mass” and showed that this can be interpreted
may say that we understand the complex temperature depeas a bending down of the temperature-dependent relaxation
dence belowl, in the context of the coupled order parametertime as compared to a hypothetic situation where no Gold-
modes and a careful treatment of the Goldstone modes. Upatone modes are present. All experimental findings are well
introducing thek- and w-dependent self-enerdywe could in  understood treating the OP modes beyond their mean-field
addition provide a physical interpretation of the changes oflescription. As reported from the analysis of ultrasonic at-
the longitudinal relaxation time, as compared to the meantenuation experiments for RBnCl, before?'® no phason
field analysis. gap had to be introduced. Recently however, the direct ob-
servation of a “phason gap” has been reported for a molecu-
lar compound(BCP9S.* This “phason gap” was observed
in inelastic neutron-scattering experiments for very high fre-
VI. CONCLUSIONS quencies. Again, the low-frequency dynamics probed by
NMR did not reveal any gaf?

In this paper we have presented a comprehensive descrip- 1hUS an interesting application of th@(2)-symmetric
tion of the critical dynamics at structurally incommensurateModel is presented here, in terms of a crossover description

phase transitions. Our starting point was the time-depender@nd & discussion of the fuk and» dependence of the sus-
relaxational Ginzburg-Landau model with(2) symmetry. ceptibility cal<_:u|ated to one-loop order. We found very good
To be more general, we discussed @)-symmetric func- ~adreement with experimental data. Besides the precise calcu-
tional. Hence, we were able to study the influence of thdation of critical exponents as one strength of the
n—1 Goldstone modes accurately. We used thg€normalization-group theory, also detailed analysis of cross-
renormalization-group theory in order to compute the dy-OVer scenarios and the effect of the anharmonic coupling of
namical susceptibility below and above the critical tempera0des is possible. We want to stress how successfully the

ture T, to one-loop order. Thus we could venture beyond thdesults of the renormalization-group theory can be applied to

usual mean-field description. As we calculated the renormafSPECific experimental findings. In addition, we emphasize
ization factors in the generalized minimal subtractionth@t the choice of two fit parameters in the phase abbve

schemé®Bwe could deal with the interesting crossover Sce_aIready essentially determined the curves in the incommen-
narios carefully*® surate phase.

Our findings were used to interpret experimental data The theory presented here is formulated in a general way.

from NMR experiments, measuring the relaxation rate. The! herefore it could be readily used to analyze further experi-

relaxation rate is connected with the calculated susceptibilityn€nts, especially below and nefy.
via an integral over the wave vector, at fixed frequency.

Above the critical temperaturg, , we showed how scal-
ing arguments lead to an identification of the dynamical criti- ACKNOWLEDGMENTS
cal exponent for the relaxation rate and provide a qualitative
understanding of its temperature dependence. Then we de- We benefited from discussions with E. Frey, J. Petersson,
scribed the crossover from the critical region to a high-and D. Michel. B.AK. and F.S. acknowledge support from
temperature region, where fluctuations should not change tH8€ Deutsche Forschungsgemeinschaft under Contract No.
classical critical exponents. Excellent agreement for both th&chw. 348/6-1,2. U.C.T. acknowledges support also from the
critical exponents resulting from the scaling arguments andPeutsche Forschungsgemeinschaft.
the description of the crossover regions with the experimen-
tal data was found. This led us to the conclusion that the
_expe_rirr_lental qlf_;\ta sho_uld probably not_be interpreted by APPENDIX
identifying a critical region of supposed width of 100 K, but
rather through a crossover between the nonclassical critical In this appendix we list analytical results for the two-point
exponents and the mean-field exponents, taking place atwertex functions and their singularities ¢1poles in the
temperature approximately equal T9+5 K. This conjec- generalized minimal subtraction scheme, following from the
ture yields a considerably more reasonable width of the critidynamical functional(2.6). Below T,, the corresponding
cal region. zero- and one-loop contributions are stated. For the explicit

Below the critical temperature, we analyzed the dynami-<alculation of the integrals in the generalized minimal sub-
cal susceptibility calculated to one-loop order in thetraction scheme we refer to Ref. 43. All integrations over
renormalization-group theory in considerable detail. Theinternal frequencies have already been performed by means
coupling of the OP modes was considered explicitly. Weof the residue theorem. We restrict ourselves to the three-
thus gained insight into the influence of Goldstone modes oklimensional cases(=1).
the structure of the susceptibility and its temperature depen- T>T,: Here only the simplest one-loop graphs enter the
dence. As a result we found that the relaxation rate of theliagrammatic expansion.
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T<T,. The diagrammatic expressions for the vertex functions are depicted in Figs. 16 and 17.
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