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Let𝑋 be a real reflexive locally uniformly convex Banach space with locally uniformly convex dual space𝑋∗. Let 𝑇 : 𝑋 ⊇ 𝐷(𝑇) →2𝑋∗ be maximal monotone of type Γ𝜙
𝑑
(i.e., there exist 𝑑 ≥ 0 and a nondecreasing function 𝜙 : [0,∞) → [0,∞) with 𝜙(0) = 0 such

that ⟨V∗, 𝑥 − 𝑦⟩ ≥ −𝑑‖𝑥‖ − 𝜙(‖𝑦‖) for all 𝑥 ∈ 𝐷(𝑇), V∗ ∈ 𝑇𝑥, and 𝑦 ∈ 𝑋), 𝐿 : 𝑋 ⊃ 𝐷(𝐿) → 𝑋∗ be linear, surjective, and closed such
that 𝐿−1 : 𝑋∗ → 𝑋 is compact, and 𝐶 : 𝑋 → 𝑋∗ be a bounded demicontinuous operator. A new degree theory is developed for
operators of the type 𝐿+𝑇+𝐶.The surjectivity of 𝐿 can be omitted provided that𝑅(𝐿) is closed, 𝐿 is densely defined and self-adjoint,
and𝑋 = 𝐻, a real Hilbert space. The theory improves the degree theory of Berkovits and Mustonen for 𝐿 + 𝐶, where 𝐶 is bounded
demicontinuous pseudomonotone. New existence theorems are provided. In the case when 𝐿 is monotone, a maximality result is
included for 𝐿 and 𝐿+𝑇.The theory is applied to prove existence of weak solutions in𝑋 = 𝐿2(0, 𝑇;𝐻1

0 (Ω)) of the nonlinear equation
given by 𝜕𝑢/𝜕𝑡−∑𝑁𝑖=1((𝜕/𝜕𝑥𝑖)𝐴 𝑖(𝑥, 𝑢, ∇𝑢))+𝐻𝜆(𝑥, 𝑢, ∇𝑢) = 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ Q𝑇; 𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Q𝑇; and 𝑢(𝑥, 0) = 𝑢(𝑥, 𝑇), 𝑥 ∈Ω, where 𝜆 > 0,𝑄𝑇 = Ω×(0, 𝑇), 𝜕𝑄𝑇 = 𝜕Ω×(0, 𝑇),𝐴 𝑖(𝑥, 𝑢, ∇𝑢) = (𝜕/𝜕𝑥𝑖)𝜌(𝑥, 𝑢, ∇𝑢)+𝑎𝑖(𝑥, 𝑢, ∇𝑢) (𝑖 = 1, 2, . . . , 𝑁),𝐻𝜆(𝑥, 𝑢, ∇𝑢) =−𝜆Δ𝑢 + 𝑔(𝑥, 𝑢, ∇𝑢), Ω is a nonempty, bounded, and open subset of R𝑁 with smooth boundary, and 𝜌, 𝑎𝑖, 𝑔 : Ω × R × R𝑁 → R

satisfy suitable growth conditions. In addition, a new existence result is given concerning existence of weak solutions for nonlinear
wave equation with nonmonotone nonlinearity.

1. Introduction and Preliminaries

Throughout the paper, (𝑋, ‖ ⋅ ‖) denotes a real reflexive
locally uniformly convexBanach spacewith locally uniformly
convex dual space 𝑋∗. For 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋∗, the duality
pairing ⟨𝑥∗, 𝑥⟩ denotes the value 𝑥∗(𝑥). Let 𝐽 : 𝑋 → 2𝑋∗ be
the normalized duality mapping given by

𝐽 (𝑥) = {𝑥∗ ∈ 𝑋∗ : ⟨𝑥∗, 𝑥⟩ = ‖𝑥‖2 , 󵄩󵄩󵄩󵄩𝑥∗󵄩󵄩󵄩󵄩 = ‖𝑥‖} . (1)

It is well-known that 𝐽(𝑥) ̸= 0 for all 𝑥 ∈ 𝑋 because of
the Hahn-Banach Theorem. Since 𝑋 and 𝑋∗ are locally uni-
formly convex reflexive Banach spaces, it is well-known that𝐽 is single valued and homeomorphism. For a multivalued
operator𝑇 from𝑋 into𝑋∗, the domain of𝑇 denoted by𝐷(𝑇)
is given as 𝐷(𝑇) = {𝑥 ∈ 𝑋 : 𝑇𝑥 ̸= 0}. The range of 𝑇,
denoted by 𝑅(𝑇), is given by 𝑅(𝑇) = ⋃𝑥∈𝐷(𝑇) 𝑇𝑥 and graph

of 𝑇, denoted by 𝐺(𝑇), is given by 𝐺(𝑇) = {(𝑥, V∗) : 𝑥 ∈𝐷(𝑇), V∗ ∈ 𝑇𝑥}.Thefollowing definition is used in the squeal.

Definition 1. A multivalued operator 𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2𝑋∗ is
called

(i) “monotone” if, for all 𝑥 ∈ 𝐷(𝑇), 𝑦 ∈ 𝐷(𝑇), V∗ ∈ 𝑇𝑥,
and 𝑢∗ ∈ 𝑇𝑦, we have ⟨V∗ − 𝑢∗, 𝑥 − 𝑦⟩ ≥ 0,

(ii) “maximal monotone” if 𝑇 is monotone and ⟨𝑢∗ −𝑢∗0 , 𝑥 − 𝑥0⟩ ≥ 0 for every (𝑥, 𝑢∗) ∈ G(𝑇) implies𝑥0 ∈ 𝐷(𝑇) and 𝑢∗0 ∈ 𝑇𝑥0. This is equivalent to
saying that 𝑇 is “maximal monotone” if and only if𝑅(𝑇 + 𝜆𝐽) = 𝑋∗ for every 𝜆 > 0,

(iii) “coercive” if either 𝐷(𝑇) is bounded or there exists a
function𝜓 : [0,∞) → (−∞,∞) such that 𝜓(𝑡) → ∞
as 𝑡 → ∞ and⟨𝑦∗, 𝑥⟩ ≥ 𝜓 (‖𝑥‖) ‖𝑥‖ ∀𝑥 ∈ 𝐷 (𝑇) , 𝑦∗ ∈ 𝑇𝑥. (2)
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It is the goal of the paper to develop a topological degree
theory for classes of operators of the type 𝐿 +𝑇 +𝐶, where 𝐿,𝑇, and 𝐶 satisfy one of the following conditions:

(i) 𝐿 : 𝑋 ⊃ 𝐷(𝐿) → 𝑋∗ is linear, surjective, and closed
such that 𝐿−1 : 𝑋∗ → 𝑋 is compact, 𝑇 : 𝑋 ⊃ 𝐷(𝑇) →2𝑋∗ ismaximalmonotone of type Γ𝜙

𝑑
, and𝐶 : 𝑋 → 𝑋∗

is bounded demicontinuous operator.

(ii) 𝑋 = 𝐻, a real Hilbert space, 𝐿 : 𝐻 ⊃ 𝐷(𝐿) → 𝐻 is
linear, densely defined, self-adjoint, closed, and range
closed such that 𝐿−1 : 𝑅(𝐿) → 𝐻 is compact, 𝑇 : 𝐻 ⊃𝐷(𝑇) → 2𝐻 is maximal monotone of type Γ𝜙

𝑑
, and𝐶 : 𝐻 → 𝐻 is bounded demicontinuous operator.

The main reason for the need of such a theory is the
existence of nonlinear problems (i.e., nonlinear equations and
variational inequality problems) which cannot be addressed
by the existing theories under minimal assumptions on 𝐿, 𝐶,
and 𝑇. In addition, considering the classes of operators of
the type 𝐿 + 𝑇 + 𝐶, it is an essential contribution to have
a theory useful to drive existence theorems to treat larger
class of problems. Therefore, Section 2 gives a preliminary
lemma, which will be useful to extend the definition of
pseudomonotone homotopy ofmaximalmonotone operators
initially introduced by Browder [1, 2]. Section 3 deals with the
construction of the degree mapping along with basic proper-
ties and homotopy invariance results. The main contribution
of this work is providing a new degree theory for treating
nonlinear problems involving operators of type 𝐿 + 𝑇 + 𝐶,
where 𝐿, 𝑇, and 𝐶 satisfy condition (i) or (ii). In this theory,
the operator 𝐿 might not be pseudomonotone type and 𝐶
is just bounded demicontinuous operator. The well-known
degree for monotone type operators, which is attributed to
Browder [1, 2], is for operators of type 𝑇 + 𝐶, where 𝑇 :𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ is maximal monotone and 𝐶 : 𝐺 →𝑋∗ is bounded demicontinuous operator of type (𝑆+). In
view of this, the degree mapping constructed herein allows𝐶 to be bounded demicontinuous operator not necessarily
compact, bounded of type (𝑆+), or pseudomonotone. To the
best of the author’s knowledge, this degree mapping is new
and has the potential to address new classes of problems
such as wave equations with nonmonotone nonlinearities.
As a consequence of the theory, new existence results are
given for the solvability of operator inclusions of the type𝐿𝑢 + 𝑇𝑢 + 𝐶𝑢 ∋ 𝑓∗, 𝑢 ∈ 𝐷(𝐿) ∩ 𝐷(𝑇). In the last section,
examples are provided proving existence of weak solutions
for nonlinear parabolic as well as hyperbolic problems in
appropriate Sobolev spaces. For degree theories for bounded
demicontinuous (𝑆+) perturbations of maximal monotone
operators, the reader is referred to the papers of Browder
[1, 2], Kobayashi and Ôtani [3], Hu and Papageorgiou [4],
Berkovits and Mustonen [5, 6], Berkovits [7], Kartsatos and
Skrypnik [8], and Kien et al. [9] and the references therein.
For recent topological degree theories for bounded pseu-
domonotone perturbations of maximal monotone operators,
the reader is referred to the recent papers of Asfaw and
Kartsatos [10] and Asfaw [11]. Basic definitions, properties,
and existence theorems concerning operators of monotone

type can be found in the books of Barbu [12, 13], Pascali and
Sburlan [14], and Zeidler [15].

2. A Preliminary Lemma

The following lemma is useful towards the extension of
the definition of a pseudomonotone homotopy of maximal
monotone operators introduced by Browder [1, 2].

Definition 2. A family {𝑇𝑡}𝑡∈[0,1] is said to be uniformly of
type

(i) Γ𝜙
𝑑
if there exist 𝑑 ≥ 0 and a nondecreasing function𝜙 : [0,∞) → [0,∞) such that 𝜙(0) = 0 and

⟨V𝑡, 𝑥 − 𝑦⟩ ≥ −𝑑 ‖𝑥‖ − 𝜙 (󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩) (3)

uniformly for all 𝑡 ∈ [0, 1] and 𝑥 ∈ 𝐷(𝑇𝑡), V𝑡 ∈ 𝑇𝑡𝑥,
and 𝑦 ∈ 𝑋,

(ii) Γ𝑑 if there exists 𝑑 ≥ 0 such that ⟨V𝑡, 𝑥⟩ ≥ −𝑑‖𝑥‖
uniformly for all 𝑡 ∈ [0, 1] and 𝑥 ∈ 𝐷(𝑇𝑡) and V𝑡 ∈𝑇𝑡𝑥.

If 𝑇𝑡 = 𝑇 for all 𝑡 ∈ [0, 1], then the operator 𝑇 is said to be of
type Γ𝜙

𝑑
or Γ𝑑 if it satisfies either (i) or (ii), respectively.

It is easy to see that a family of monotone operators{𝑇𝑡}𝑡∈[0,1] is uniformly of type Γ𝑑 if 0 ∈ 𝑇𝑡(0) for all 𝑡 ∈ [0, 1].
It is also true that the class Γ𝑑 includes the class Γ𝜙𝑑 .The lemma
below is used in the construction of the degree.

Lemma 3. Let {𝑇𝑡}𝑡∈[0,1] be a family of maximal monotone
operators uniformly of type Γ𝑑. Then the following four condi-
tions are equivalent:

(i) For any sequences 𝑡𝑛 in [0, 1], 𝑢𝑛 ∈ 𝐷(𝑇𝑡𝑛) and 𝑤∗𝑛 ∈𝑇𝑡𝑛𝑢𝑛 such that 𝑢𝑛 ⇀ 𝑢 in𝑋, and 𝑡𝑛 → 𝑡0 ∈ [0, 1] and𝑤∗𝑛 ⇀ 𝑤∗0 in𝑋∗ as 𝑛 → ∞with lim sup𝑛→∞⟨𝑤∗𝑛 , 𝑢𝑛−𝑢⟩ ≤ 0, it follows that 𝑢 ∈ 𝐷(𝑇𝑡0), 𝑤∗0 ∈ 𝑇𝑡0𝑢, and⟨𝑤∗𝑛 , 𝑢𝑛⟩ → ⟨𝑤∗0 , 𝑢⟩ as 𝑛 → ∞.
(ii) For each 𝜀 > 0, the operator defined by 𝜓(𝑡, 𝑤) = (𝑇𝑡 +𝜀𝐽)−1𝑤 is continuous from [0, 1] × 𝑋∗ to𝑋.
(iii) For each fixed𝑤 ∈ 𝑋∗, the operator defined by𝜓𝑤(𝑡) =(𝑇𝑡 + 𝜀𝐽)−1𝑤 is continuous from [0, 1] to𝑋.
(iv) For any given pair (𝑥, 𝑢) ∈ 𝐺(𝑇𝑡0) and any sequence𝑡𝑛 → 𝑡0 as 𝑛 → ∞, there exist sequences {𝑥𝑛} and {𝑢𝑛}

such that 𝑢𝑛 ∈ 𝑇𝑡𝑛𝑥𝑛 and 𝑥𝑛 → 𝑥 and 𝑢𝑛 → 𝑢 as𝑛 → ∞.
Proof. The proof for the implications (ii) ⇒ (iii) ⇒ (iv) ⇒(i) follows from the result attributed to to Browder [1, 2]
without requiring the condition 0 ∈ 𝑇𝑡(0) for all 𝑡 ∈ [0, 1].
Next we give the proof of the implication (i) ⇒ (ii). Fix𝜀 > 0. Let (𝑡𝑛, 𝑤∗𝑛 ) ∈ [0, 1] × 𝑋∗ such that 𝑡𝑛 → 𝑡0 and𝑤∗𝑛 → 𝑤∗0 as 𝑛 → ∞. For each 𝑛, let 𝑢𝑛 = (𝑇𝑡𝑛 + 𝜀𝐽)−1𝑤∗𝑛
and 𝑢0 = (𝑇𝑡0 + 𝜀𝐽)−1𝑤∗0 . It follows that 𝑤∗𝑛 = 𝑧∗𝑛 + 𝜀𝐽𝑢𝑛 for
some 𝑧∗𝑛 ∈ 𝑇𝑡𝑛𝑢𝑛, for all 𝑛, and 𝑤∗0 = 𝑧∗0 + 𝜀𝐽𝑢0 for some
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𝑧∗0 ∈ 𝑇𝑡0𝑢0.We shall show that {𝑢𝑛} is bounded. By applyingΓ𝑑 condition on the family {𝑇𝑡}𝑡∈[0,1], we see that⟨𝑤∗𝑛 − 𝑤∗0 , 𝑢𝑛 − 𝑢0⟩= ⟨𝑧∗𝑛 + 𝜀𝐽𝑢𝑛 − 𝑧∗0 − 𝜀𝐽𝑢0, 𝑢𝑛 − 𝑢0⟩= ⟨𝑧∗𝑛 − 𝑧∗0 , 𝑢𝑛 − 𝑢0⟩ + 𝜀 ⟨𝐽𝑢𝑛 − 𝐽𝑢0, 𝑢𝑛 − 𝑢0⟩≥ ⟨𝑧∗𝑛 − 𝑧∗0 , 𝑢𝑛 − 𝑢0⟩+ 𝜀 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2 − 2 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩2)
= ⟨𝑧∗𝑛 − 𝑧∗0 , 𝑢𝑛 − 𝑢0⟩ + 𝜀 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩)2= ⟨𝑧∗𝑛 , 𝑢𝑛⟩ − ⟨𝑧∗𝑛 , 𝑢0⟩ − ⟨𝑧∗0 , 𝑢𝑛⟩ + ⟨𝑧∗0 , 𝑢0⟩+ 𝜀 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩)2≥ −𝑑 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑧∗𝑛 󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑧∗0 󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 − 𝑑 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩+ 𝜀 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩)2≥ −𝑑 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩) − (󵄩󵄩󵄩󵄩𝑤∗𝑛 󵄩󵄩󵄩󵄩 + 𝜀 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩) 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩− 󵄩󵄩󵄩󵄩𝑧∗0 󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 + 𝜀 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩)2 ∀𝑛;

(4)

that is, we get

𝜀 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩)2 ≤ 𝑑 (󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩)+ (󵄩󵄩󵄩󵄩𝑤∗𝑛 󵄩󵄩󵄩󵄩 + 𝜀 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩) 󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑧∗0 󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩+ 󵄩󵄩󵄩󵄩𝑤∗𝑛 − 𝑤∗0 󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢0󵄩󵄩󵄩󵄩 ∀𝑛.
(5)

Since {𝑤∗𝑛 } is bounded, (83) implies the boundedness of the
sequence {𝑢𝑛}. Assume, without loss of generality, that 𝑢𝑛 ⇀𝑢, 𝐽𝑢𝑛 ⇀ 𝑧 as 𝑛 → ∞. Since 𝑤∗𝑛 = 𝑧∗𝑛 + 𝜀𝐽𝑢𝑛, it follows that𝑧∗𝑛 ⇀ 𝑦∗0 = 𝑤∗0 − 𝜀𝑧 as 𝑛 → ∞. By the condition in (i) and
monotonicity of 𝐽 and𝑤∗𝑛 → 𝑤∗0 as 𝑛 → ∞ and boundedness
of {𝑢𝑛}, we obtain that

lim sup
𝑛→∞

⟨𝑧∗𝑛 , 𝑢𝑛 − 𝑢⟩ = lim sup
𝑛→∞

⟨𝑤∗𝑛 − 𝜀𝐽𝑢𝑛, 𝑢𝑛 − 𝑢⟩
= lim sup

𝑛→∞
⟨𝑤∗𝑛 , 𝑢𝑛 − 𝑢⟩

− 𝜀 lim inf
𝑛→∞

⟨𝐽𝑢𝑛 − 𝐽𝑢, 𝑢𝑛 − 𝑢⟩
− 𝜀 lim inf

𝑛→∞
⟨𝐽𝑢, 𝑢𝑛 − 𝑢⟩ ≤ 0.

(6)

Consequently, we arrive at

lim sup
𝑛→∞

⟨𝑧∗𝑛 , 𝑢𝑛⟩ ≤ ⟨𝑦∗0 , 𝑢⟩ . (7)

Thus, by using conditions in (i), it follows that 𝑢 ∈ 𝐷(𝑇𝑡0),𝑦∗0 ∈ 𝑇𝑡0𝑢, and ⟨𝑧∗𝑛 , 𝑢𝑛⟩ → ⟨𝑦∗0 , 𝑢⟩ as 𝑛 → ∞, which implies

lim sup
𝑛→∞

⟨𝐽𝑢𝑛, 𝑢𝑛 − 𝑢⟩ = 0. (8)

Since 𝐽 is of type (𝑆+) and continuous, we have 𝑢𝑛 → 𝑢 and𝐽𝑢𝑛 → 𝐽𝑢 as 𝑛 → ∞, which implies 𝑦∗0 = 𝑤∗0 − 𝜀𝐽𝑢; that is,

𝑤∗0 ∈ (𝑇𝑡0 + 𝜀𝐽)𝑢, implying in turn that 𝑢 = (𝑇𝑡0 + 𝜀𝐽)−1𝑤∗0 ;
that is, 𝜓(𝑡𝑛, 𝑤∗𝑛 ) → 𝜓(𝑡, 𝑤∗0 ) as 𝑛 → ∞.This shows that 𝜓 is
continuous from [0, 1]×𝑋∗ into𝑋.Therefore, the equivalency
of the four statements is proved.

A larger class of pseudomonotone homotopies of max-
imal monotone operators is introduced below. The original
definition of pseudomonotone homotopy of maximal mono-
tone operators {𝑇𝑡}𝑡∈[0,1] is attributed to Browder [2] which
requires the family to satisfy 0 ∈ 𝑇𝑡(0) for all 𝑡 ∈ [0, 1].
Definition 4. A family {𝑇𝑡}𝑡∈[0,1] of maximal monotone oper-
ators uniformly of type Γ𝜙

𝑑
is called a “pseudomonotone

homotopy of type Γ𝜙
𝑑
” if one of the equivalent conditions of

Lemma 3 holds.

3. Degree Theory in Reflexive Banach Space
with 𝑅(𝐿) = 𝑋∗

The section deals with the main contribution of the paper. A
new topological degree mapping is constructed for operators
of type 𝑇 + 𝐶 + 𝐿, where 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ is
maximal monotone of type Γ𝜙

𝑑
, 𝐶 : 𝑋 → 𝑋∗ is bounded

demicontinuous operator, and 𝐿 : 𝑋 ⊃ 𝐷(𝐿) → 𝑋∗ is
linear, surjective, and closed such that 𝐿−1 : 𝑋∗ → 𝑋 is
compact. The construction is based on the Leray-Schauder
degree mapping for the operator 𝐼 + 𝐿−1(𝑇𝜀 + 𝐶), where 𝑇𝜀 :𝑋 → 𝑋∗ is the Yosida approximant of 𝑇. Since 𝐿 is surjective,𝐿−1 is compact, and 𝑇𝜀 is bounded continuous operator, it
follows that 𝐿−1(𝑇𝜀 + 𝐶) : 𝑋 → 𝑋∗ is a well-defined compact
operator. Next we prove the following theorem.

Theorem5. Let𝐺 be a nonempty, bounded, and open subset of𝑋. Let {𝑇𝑡}𝑡∈[0,1] be a pseudomonotone homotopy of maximal
monotone operators uniformly of type Γ𝜙

𝑑
and {𝐶𝑡 = 𝑡𝐶1 +(1 − 𝑡)𝐶2}𝑡∈[0,1] with 𝐶𝑖 (𝑖 = 1, 2) : 𝑋 → 𝑋∗ is bounded

demicontinuous operator and let 𝐿 : 𝑋 ⊃ 𝐷(𝐿) → 𝑋∗ be
linear, surjective, and closed such that 𝐿−1 : 𝑋∗ → 𝑋 is
compact. Assume, further, that 0 ∉ (𝐿+𝑇𝑡+𝐶𝑡)(𝐷(𝐿)∩𝐷(𝑇𝑡)∩𝜕𝐺) for all 𝑡 ∈ [0, 1]. Then there exists 𝜀0 > 0 such that

𝑑𝐿𝑆 (𝐼 + 𝐿−1 (𝑇𝑡𝜀 + 𝐶𝑡) , 𝐺, 0) (9)

is well-defined and independent of 𝜀 ∈ (0, 𝜀0] and 𝑡 ∈ [0, 1],
where 𝑑𝐿𝑆 denotes the Leray-Schauder degree mapping for
compact displacement of the identity and 𝑇𝑡𝜀 : 𝑋 → 𝐷(𝑇𝑡)
is the Yosida approximant of 𝑇𝑡.
Proof. Suppose the hypotheses hold. Assume to the contrary
that there exist 𝜀𝑛 ↓ 0+, 𝑥𝑛 ∈ 𝜕𝐺, and 𝑡𝑛 ∈ [0, 1] such that

𝑥𝑛 + 𝐿−1 (𝑇𝑡𝑛𝜀𝑛𝑥𝑛 + 𝐶𝑡𝑛𝑥𝑛) = 0 ∀𝑛. (10)

Since𝐿 is surjective, it follows that𝑥𝑛 = −𝐿−1(𝑇𝑡𝑛𝜀𝑛𝑥𝑛+𝐶𝑡𝑛𝑥𝑛) ∈𝐷(𝐿) and 𝐿𝑥𝑛 + 𝑇𝑡𝑛𝜀𝑛𝑥𝑛 + 𝐶𝑡𝑛𝑥𝑛 = 0 for all 𝑛. The uniform
boundedness of the family {𝐶𝑡}𝑡∈[0,1] implies the boundedness
of {𝐶𝑡𝑛𝑥𝑛}. Since 𝑇𝑡𝑛 is of type Γ𝜙𝑑 , let 𝑑 ≥ 0 and 𝜙 be as in
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Definition 2. Let V∗𝑛 = 𝑇𝑡𝑛𝜀𝑛𝑥𝑛. It is well-known that 𝐽𝑡𝑛𝜀𝑛𝑥𝑛 ∈𝐷(𝑇), V∗𝑛 ∈ 𝑇𝑡𝑛(𝐽𝑡𝑛𝜀𝑛𝑥𝑛), and 𝐽𝑡𝑛𝜀𝑛𝑥𝑛 = 𝑥𝑛 − 𝜀𝑛𝐽−1(V∗𝑛 ) for all 𝑛.
For each 𝑥 ∈ 𝑋, we see that
⟨𝐿𝑥𝑛, 𝑥𝑛 − 𝑥⟩ = − ⟨V∗𝑛 , 𝑥𝑛 − 𝑥⟩ − ⟨𝐶𝑡𝑛𝑥𝑛, 𝑥𝑛 − 𝑥⟩

= −⟨V∗𝑛 , 𝑥𝑛 − 𝐽𝑡𝑛𝜀𝑛𝑥𝑛 + 𝐽𝑡𝑛𝜀𝑛𝑥𝑛 − 𝑥⟩− ⟨𝐶𝑡𝑛𝑥𝑛, 𝑥𝑛 − 𝑥⟩
≤ −⟨V∗𝑛 , 𝜀𝑛𝐽−1 (V∗𝑛 )⟩ − ⟨V∗𝑛 , 𝐽𝑡𝑛𝜀𝑛𝑥𝑛 − 𝑥⟩+ 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥󵄩󵄩󵄩󵄩≤ −𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩2 + 𝑑 󵄩󵄩󵄩󵄩󵄩𝐽𝑡𝑛𝜀𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 + 𝜙 (‖𝑥‖)+ 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩≤ −𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩2 + 𝑑 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 + 𝑑𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩+ 𝜙 (‖𝑥‖) + 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩= (−𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩2 + 𝑑𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩) + 𝑑 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩+ 𝜙 (‖𝑥‖) + 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩= (−𝜀𝑛𝑧2𝑛 + 𝑑𝜀𝑛𝑧𝑛) + 𝑑 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 + 𝜙 (‖𝑥‖)+ 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩
≤ 𝑑2𝜀𝑛4 + 𝑑 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 + 𝜙 (‖𝑥‖)
+ 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 ≤ 𝐾1 (𝑥) ,

(11)

where 𝑧𝑛 = ‖V∗𝑛‖ for all 𝑛 and 𝐾1 is an upper bound for {𝑑2 +𝜙(‖𝑥‖) + 𝑑‖𝑥𝑛‖ + ‖𝐶𝑡𝑛𝑥𝑛‖‖𝑥𝑛‖}. Now, setting 𝑥𝑛 − 𝑥 in place
of 𝑥, we obtain that

⟨𝐿𝑥𝑛, 𝑥⟩ = ⟨𝐿𝑥𝑛, 𝑥𝑛 − (𝑥𝑛 − 𝑥)⟩ ≤ 𝑘 + 𝜙 (󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥󵄩󵄩󵄩󵄩) (12)

for all 𝑛. Since 𝜙 is nondecreasing and {𝑥𝑛} is bounded, we see
that

⟨𝐿𝑥𝑛, 𝑥⟩ ≤ 𝐾2 (𝑥) , (13)

where𝐾2(𝑥) is an upper bound for {𝑘+𝜙(‖𝑥𝑛−𝑥‖)}. By similar
argument, setting 𝑥𝑛 + 𝑥 in place of 𝑥, we get
⟨𝐿𝑥𝑛, −𝑥⟩ = ⟨𝐿𝑥𝑛, 𝑥𝑛 − (𝑥𝑛 + 𝑥)⟩ ≤ 𝑘 + 𝜙 (󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑥󵄩󵄩󵄩󵄩) (14)

for all 𝑛; that is, ⟨𝐿𝑥𝑛, 𝑥⟩ ≥ −𝑘 − 𝜙(‖𝑥𝑛 + 𝑥‖) ≥ −𝐾3(𝑥),
where 𝐾3(𝑥) is an upper bound for {𝑘 + 𝜙(‖𝑥𝑛 + 𝑥‖)}. For
each 𝑥 ∈ 𝑋, combining these two inequalities shows that
there exists 𝑁(𝑥) ≥ 0 such that |⟨𝐿𝑥𝑛, 𝑥⟩| ≤ 𝑁(𝑥) for all 𝑛.
By applying the well-known uniform boundedness principle,
we conclude that {𝐿𝑥𝑛} is bounded. Consequently, we obtain
the boundedness of {V∗𝑛 }. Since {𝐶𝑡𝑛𝑥𝑛} is bounded and 𝐿−1
is compact, we assume without loss of generality that there

exists a subsequence, denoted again by {𝐿−1(V∗𝑛+𝐶𝑡𝑛𝑥𝑛)}, such
that 𝐿−1(V∗𝑛 + 𝐶𝑡𝑛𝑥𝑛) → 𝑥0 as 𝑛 → ∞; that is, 𝑥𝑛 → 𝑥0 ∈ 𝜕𝐺
as 𝑛 → ∞. Assume without loss of generality that 𝑡𝑛 → 𝑡0 ∈[0, 1], V∗𝑛 ⇀ V∗0 , 𝐿𝑥𝑛 ⇀ 𝑦∗0 , and 𝐶𝑡𝑛𝑥𝑛 ⇀ 𝐶𝑡0𝑥0 as 𝑛 → ∞.
Since 𝑥𝑛 → 𝑥0, it follows that 𝐽𝑡𝑛𝜀𝑛𝑥𝑛 = 𝑥𝑛 − 𝜀𝑛𝐽−1(V∗𝑛 ) → 𝑥0 as𝑛 → ∞; that is,

lim sup
𝑛→∞

⟨V∗𝑛 , 𝑥𝑛 − 𝑥0⟩ = 0. (15)

Since {𝑇𝑡}𝑡∈[0,1] is a pseudomonotone homotopy of type Γ𝜙
𝑑
,

(iv) of Lemma 3 implies that 𝑥0 ∈ 𝐷(𝑇𝑡0), V∗0 ∈ 𝑇𝑡0𝑥0, and⟨V∗𝑛 , 𝑥𝑛⟩ → ⟨V∗0 , 𝑥0⟩ as 𝑛 → ∞. Since 𝐿 is closed, we conclude
that 𝑥0 ∈ 𝐷(𝐿) and 𝐿𝑥0 = 𝑦∗0 , which implies that 0 ∈ (𝐿+𝑇+𝐶)(𝐷(𝐿)∩𝐷(𝑇)∩𝜕𝐺). However, this is impossible.Therefore,
there exists 𝜀0 > 0 such that 𝑑LS(𝐼+𝐿−1(𝑇𝑡𝜀 +𝐶𝑡), 𝐺, 0) is well-
defined for all 𝜀 ∈ (0, 𝜀0] and 𝑡 ∈ [0, 1]. Next we prove that
there exists 𝜀1 ∈ (0, 𝜀0] such that 𝑑LS(𝐼 + 𝐿−1(𝑇𝑡𝜀 + 𝐶𝑡), 𝐺, 0) is
independent of 𝜀 ∈ (0, 𝜀1] and 𝑡 ∈ [0, 1]. Suppose this is false;
that is, there exist 𝜀𝑛 ↓ 0+, 𝛿𝑛 ↓ 0+, and 𝑡𝑛 ∈ [0, 1] such that

𝑑LS (𝐼 + 𝐿−1 (𝑇𝑡𝑛𝜀𝑛 + 𝐶𝑡𝑛) , 𝐺, 0)̸= 𝑑LS (𝐿−1 (𝑇𝑡𝑛𝛿𝑛 + 𝐶𝑡𝑛) , 𝐺, 0) (16)

for all 𝑛. For each 𝑛, we consider the homotopy

𝐻𝑛 (𝑠, 𝑥) = 𝑥 + 𝐿−1 (𝑠𝑇𝑡𝑛𝜀𝑛𝑥 + (1 − 𝑠) 𝑇𝑡𝑛𝛿𝑛𝑥) + 𝐿−1𝐶𝑡𝑛𝑥,(𝑠, 𝑥) ∈ [0, 1] × 𝐺. (17)

Since 𝐿−1 is compact and 𝑇𝑡𝑛𝜀𝑛 , 𝑇𝑡𝑛𝛿𝑛 , and 𝐶𝑡𝑛 are bounded con-
tinuous operators, we observe that {𝐻𝑛(𝑠, ⋅)}𝑠∈[0,1] is Leray-
Schauder type homotopy.We shall show that {𝐻𝑛(𝑠, ⋅)}𝑠∈[0,1] is
an admissible homotopy for all large 𝑛; that is, for all large 𝑛,
we have 0 ∉ 𝐻𝑛(𝑠, 𝜕𝐺) for all 𝑠 ∈ [0, 1]. Suppose there exists a
subsequence of {𝑛}, denoted again by {𝑛}, such that there exist𝑥𝑛 ∈ 𝜕𝐺, 𝑡𝑛 ∈ [0, 1], and 𝑠𝑛 ∈ [0, 1] such that

𝑥𝑛 + 𝐿−1 (𝑠𝑛𝑇𝑡𝑛𝜀𝑛𝑥𝑛 + (1 − 𝑠𝑛) 𝑇𝑡𝑛𝛿𝑛𝑥𝑛 + 𝐶𝑡𝑛𝑥𝑛) = 0 (18)

for all 𝑛; that is, we have
𝐿𝑥𝑛 + 𝑠𝑛𝑇𝑡𝑛𝜀𝑛𝑥𝑛 + (1 − 𝑠𝑛) 𝑇𝑡𝑛𝛿𝑛𝑥𝑛 + 𝐶𝑡𝑛𝑥𝑛 = 0 (19)

for all 𝑛. Assume without loss of generality that s𝑛 → 𝑠0 ∈[0, 1] and 𝑡𝑛 → 𝑡0 ∈ [0, 1] as 𝑛 → ∞. For each 𝑛, let V∗𝑛 =𝑇𝑡𝑛𝜀𝑛𝑥𝑛, 𝑢∗𝑛 = 𝑇𝑡𝑛
𝛿𝑛
𝑥𝑛, and 𝑧∗𝑛 = 𝑠𝑛V∗𝑛 + (1 − 𝑠𝑛)𝑢∗𝑛 . It is well-

known that V∗𝑛 ∈ 𝑇𝑡𝑛(𝐽𝑡𝑛𝜀𝑛𝑥𝑛), 𝑢∗𝑛 ∈ 𝑇𝑡𝑛(𝐽𝑡𝑛𝛿𝑛𝑥𝑛), 𝐽𝑡𝑛𝜀𝑛𝑥𝑛 = 𝑥𝑛 −𝜀𝑛𝐽−1(V∗𝑛 ), and 𝐽𝑡𝑛𝛿𝑛𝑥𝑛 = 𝑥𝑛 − 𝛿𝑛𝐽−1(𝑢∗𝑛 ) for all 𝑛. Let 𝑥 ∈ 𝑋. By
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the definition of pseudomonotone homotopy of type Γ𝜙
𝑑
and

uniform boundedness condition on {𝐶𝑡}𝑡∈[0,1], we see that
⟨𝐿𝑥𝑛, 𝑥𝑛 − 𝑥⟩ = −𝑠𝑛 ⟨V∗𝑛 , 𝑥𝑛 − 𝑥⟩ − (1 − 𝑠𝑛) ⟨𝑢∗𝑛 , 𝑥𝑛− 𝑥⟩ − ⟨𝐶𝑡𝑛𝑥𝑛, 𝑥𝑛 − 𝑥⟩ = −𝑠𝑛 ⟨V∗𝑛 , 𝑥𝑛 − 𝐽𝑡𝑛𝜀𝑛𝑥𝑛+ 𝐽𝑡𝑛𝜀𝑛𝑥𝑛 − 𝑥⟩ − (1 − 𝑠𝑛) ⟨𝑢∗𝑛 , 𝑥𝑛 − 𝐽𝑡𝑛𝛿𝑛𝑥𝑛 + 𝐽𝑡𝑛𝛿𝑛𝑥𝑛− 𝑥⟩ + 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 = −𝑠𝑛 ⟨V∗𝑛 , 𝜀𝑛𝐽−1 (V∗𝑛 )⟩− 𝑠𝑛 ⟨V∗𝑛 , 𝐽𝑡𝑛𝜀𝑛𝑥𝑛 − 𝑥⟩ − (1 − 𝑠𝑛) ⟨𝑢∗𝑛 , 𝛿𝑛𝐽−1 (𝑢∗𝑛 )⟩− (1 − 𝑠𝑛) ⟨𝑢∗𝑛 , 𝐽𝑡𝑛𝛿𝑛𝑥𝑛 − 𝑥⟩ + 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩≤ (−𝑠𝑛𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩2 + 𝑠𝑛𝑑 󵄩󵄩󵄩󵄩󵄩𝐽𝑡𝑛𝜀𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 + 𝜙 (‖𝑥‖))
+ (− (1 − 𝑠𝑛) 𝛿𝑛 󵄩󵄩󵄩󵄩𝑢∗𝑛 󵄩󵄩󵄩󵄩2 + (1 − 𝑠𝑛) 𝑑 󵄩󵄩󵄩󵄩󵄩󵄩𝐽𝑡𝑛𝛿𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩󵄩
+ 𝜙 (‖𝑥‖)) + 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 = (−𝑠𝑛𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩2
+ 𝑠𝑛𝑑𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩) + (− (1 − 𝑠𝑛) 𝛿𝑛 󵄩󵄩󵄩󵄩𝑢∗𝑛 󵄩󵄩󵄩󵄩2
+ (1 − 𝑠𝑛) 𝑑𝛿𝑛 󵄩󵄩󵄩󵄩𝑢∗𝑛 󵄩󵄩󵄩󵄩) + 2𝜙 (‖𝑥‖) + 𝑑 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 ≤ (−𝜀𝑛 󵄩󵄩󵄩󵄩√𝑠𝑛V∗𝑛󵄩󵄩󵄩󵄩2 + 𝑑𝜀𝑛 󵄩󵄩󵄩󵄩√𝑠𝑛V∗𝑛󵄩󵄩󵄩󵄩)
+ (−𝛿𝑛 󵄩󵄩󵄩󵄩󵄩√1 − 𝑠𝑛𝑢∗𝑛 󵄩󵄩󵄩󵄩󵄩2 + 𝑑𝛿𝑛 󵄩󵄩󵄩󵄩󵄩√1 − 𝑠𝑛𝑢∗𝑛 󵄩󵄩󵄩󵄩󵄩)+ 2𝜙 (‖𝑥‖) + 𝑑 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 = (−𝜀𝑛𝜏2𝑛 + 𝑑𝜀𝑛𝜏𝑛)+ (−𝛿𝑛𝜆2𝑛 + 𝑑𝛿𝑛𝜆𝑛) + 2𝜙 (‖𝑥‖) + 𝑑 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩
≤ 𝑑2𝜀𝑛4 + 𝑑2𝛿𝑛4 + 2𝜙 (‖𝑥‖) + 𝑑 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩
≤ 2 (1 + 𝜙 (‖𝑥‖)) + 𝑑 󵄩󵄩󵄩󵄩𝑥𝑛󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝐶𝑡𝑛𝑥𝑛󵄩󵄩󵄩󵄩󵄩 = 𝐾4 (𝑥) ,

(20)

where 𝜏𝑛 = ‖√𝑠𝑛V∗𝑛‖, 𝜆𝑛 = ‖√1 − 𝑠𝑛𝑢∗𝑛 ‖, and 𝐾4(𝑥) is
upper bound for {2(1 + 𝜙(‖𝑥‖)) + 𝑑‖𝑥𝑛‖ + ‖𝐶𝑡𝑛𝑥𝑛‖}. By
following the argument used in the first part of this proof,
it follows that {𝐿𝑥𝑛} is bounded; that is, {𝑧∗𝑛 } is bounded. By
the compactness of 𝐿−1, there exists a subsequence, denoted
again by {𝑥𝑛}, such that 𝑥𝑛 → 𝑥0 as 𝑛 → ∞. Assume without
loss of generality that 𝐿𝑥𝑛 ⇀ ℎ∗0 and 𝑧∗𝑛 ⇀ 𝑧∗0 as 𝑛 → ∞.
Since 𝐿 is closed, we have 𝑥0 ∈ 𝐷(𝐿) and ℎ∗0 = 𝐿𝑥0. Since{𝑧∗𝑛 } and {𝐶𝑡𝑛𝑥𝑛} are bounded and 𝑥𝑛 → 𝑥0 as 𝑛 → ∞, we
get ⟨𝑧∗𝑛 , 𝑥𝑛⟩ → ⟨𝑧∗0 , 𝑥0⟩ as 𝑛 → ∞. To complete the proof, we
consider the following cases.

Case I. {𝑠𝑛V∗𝑛 } is bounded. Since {𝑧∗𝑛 } is bounded, {(1 − 𝑠𝑛)𝑢∗𝑛 }
is also bounded. Since {𝑇𝑡}𝑡∈[0,1] is of type Γ𝜙𝑑 (i.e., of type Γ𝑑),
it follows that ⟨V𝑡, 𝑥⟩ ≥ −𝑑‖𝑥‖ for all 𝑥 ∈ 𝐷(𝑇𝑡) and V𝑡 ∈𝑇𝑡𝑥 for all 𝑡 ∈ [0, 1]. Let (𝑥, 𝑦) ∈ 𝐺(𝑇𝑡0). Since {𝑇𝑡}𝑡∈[0,1] is a
pseudomonotone homotopy of type Γ𝜙d , by (iv) of Lemma 3,
there exists a sequence (𝑦𝑛, 𝑦∗𝑛 ) ∈ 𝐺(𝑇𝑡𝑛) such that 𝑦𝑛 → 𝑥

and 𝑦∗𝑛 → 𝑦 as 𝑛 → ∞.On the other hand, the monotonicity
of 𝑇𝑡𝑛 implies

⟨V∗𝑛 − 𝑦∗𝑛 , 𝑥𝑛 − 𝜀𝑛𝐽−1 (V∗𝑛 ) − 𝑦𝑛⟩ ≥ 0 ∀𝑛; (21)

that is,

⟨V∗𝑛 , 𝑥𝑛⟩ ≥ ⟨V∗𝑛 , 𝑦𝑛⟩ + ⟨𝑦∗𝑛 , 𝑥𝑛 − 𝑦𝑛⟩ + 𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩2− 𝜀𝑛 󵄩󵄩󵄩󵄩𝑦∗𝑛 󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩 ∀𝑛. (22)

In a similar manner, we get

⟨𝑢∗𝑛 , 𝑥𝑛⟩ ≥ ⟨𝑢∗𝑛 , 𝑦𝑛⟩ + ⟨𝑦∗𝑛 , 𝑥𝑛 − 𝑦𝑛⟩ + 𝛿𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩2− 𝛿𝑛 󵄩󵄩󵄩󵄩𝑦∗𝑛 󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢∗𝑛 󵄩󵄩󵄩󵄩 (23)

for all 𝑛. Multiplying (22) and (23) by 𝑠𝑛 and (1 − 𝑠𝑛),
respectively, and adding the resulting inequalities, we get

⟨𝑧∗𝑛 , 𝑥𝑛⟩ ≥ ⟨𝑧∗𝑛 , 𝑦𝑛⟩ + ⟨𝑦∗𝑛 , 𝑥𝑛 − 𝑦𝑛⟩+ 𝑠𝑛𝜀𝑛 (󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦∗𝑛 󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩)
+ (1 − 𝑠𝑛) 𝛿𝑛 (󵄩󵄩󵄩󵄩𝑢∗𝑛 󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑦∗𝑛 󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢∗𝑛 󵄩󵄩󵄩󵄩) ∀𝑛.

(24)

Since {𝑧∗𝑛 } is bounded and 𝑥𝑛 → 𝑥0, it follows that ⟨𝑧∗𝑛 , 𝑥𝑛⟩ →⟨𝑧∗0 , 𝑥0⟩ as 𝑛 → ∞. Consequently, using (24), we obtain

⟨𝑧∗0 , 𝑥0⟩ = lim
𝑛→∞

⟨𝑧∗𝑛 , 𝑥𝑛⟩
≥ lim inf

𝑛→∞
(⟨𝑧∗𝑛 , 𝑦𝑛⟩ + ⟨𝑦∗𝑛 , 𝑥𝑛 − 𝑦𝑛⟩)

− lim sup
𝑛→∞

(𝑠𝑛𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑦∗𝑛 󵄩󵄩󵄩󵄩 + (1 − 𝑠𝑛) 𝛿𝑛 󵄩󵄩󵄩󵄩𝑦∗𝑛 󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑢∗𝑛 󵄩󵄩󵄩󵄩)
= ⟨𝑧∗0 , 𝑥⟩ + ⟨𝑦, 𝑥0 − 𝑥⟩

(25)

for all (𝑥, 𝑦) ∈ G(𝑇𝑡0), which yields ⟨𝑧∗0 −𝑦, 𝑥0−𝑥⟩ ≥ 0.By the
maximal monotonicity of 𝑇𝑡0 , we conclude that 𝑥0 ∈ 𝐷(𝑇𝑡0)
and 𝑧∗0 ∈ 𝑇𝑡0𝑥0.Therefore, we obtain that𝑥0 ∈ 𝐷(𝐿)∩𝐷(𝑇𝑡0)∩𝜕𝐺 and 𝑧∗0 ∈ 𝑇𝑡0𝑥0 such that 𝐿𝑥0+𝑧∗0 +𝑡0𝐶1𝑥0+(1−𝑡0)𝐶2𝑥0 =0. However, this is a contradiction.
Case II. Suppose {𝑠𝑛V∗𝑛 } is unbounded. Then there exists a
subsequence, denoted again by {𝑠𝑛V∗𝑛 }, such that 𝑠𝑛‖V∗𝑛‖ →+∞ as 𝑛 → ∞. Then {(1 − 𝑠𝑛)𝑢∗𝑛 }, {V∗𝑛 } and {𝑢∗𝑛 } being
unbounded. Assume without loss of generality that ‖V∗𝑛‖ →∞ and ‖𝑢∗𝑛 ‖ → ∞ as 𝑛 → ∞. If either {𝜀𝑛𝑠𝑛‖V∗𝑛‖2} or{𝛿𝑛(1 − 𝑠𝑛)‖𝑢∗𝑛 ‖2} is unbounded, (24) implies

⟨𝑧∗𝑛 , 𝑥𝑛⟩ ≥ ⟨𝑧∗𝑛 , 𝑦𝑛⟩ + ⟨𝑦∗𝑛 , 𝑥𝑛 − 𝑦𝑛⟩
+ 𝑠𝑛𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛 󵄩󵄩󵄩󵄩2 (1 − 󵄩󵄩󵄩󵄩𝑦∗𝑛 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩 )
+ (1 − 𝑠𝑛) 𝛿𝑛 󵄩󵄩󵄩󵄩𝑢∗𝑛 󵄩󵄩󵄩󵄩2 (1 − 󵄩󵄩󵄩󵄩𝑦∗𝑛 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑢∗𝑛 󵄩󵄩󵄩󵄩) .

(26)
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Assuming 𝜀𝑛𝑠𝑛‖V∗𝑛‖2 → ∞ or 𝛿𝑛(1 − 𝑠𝑛)‖𝑢∗𝑛 ‖2 → ∞ and
taking limits in (26) imply that⟨𝑧∗0 − 𝑦, 𝑥0 − 𝑥⟩ ≥ ∞, (27)

which is impossible. Thus, {𝜀𝑛𝑠𝑛‖V∗𝑛‖2} and {𝛿𝑛(1 − 𝑠𝑛)‖𝑢∗𝑛 ‖2}
are bounded. Consequently, we get

𝑠𝑛𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩 = 𝑠𝑛𝜀𝑛 󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩V∗𝑛󵄩󵄩󵄩󵄩 󳨀→ 0 (28)

as 𝑛 → ∞. Similarly, we have (1 − 𝑠𝑛)𝛿𝑛‖𝑢∗𝑛 ‖ → 0 as 𝑛 → ∞.
In all cases, (24) and (25) yield a contradiction. Therefore, by
using the compactness of 𝐿−1 and boundedness of 𝑇𝑡𝑛𝜀𝑛 and𝑇𝑡𝑛
𝛿𝑛
, we proved that the family {𝐻𝑛(𝑡, ⋅)}𝑠∈[0,1] is an admissible

homotopy of Leray-Schauder type; that is, 𝑑(𝐻𝑛(𝑠, ⋅), 𝐺, 0) is
independent of 𝑠 ∈ [0, 1] for all large 𝑛; that is,

𝑑LS (𝐼 + 𝐿−1 (𝑇𝑡𝑛𝜀𝑛 + 𝐶𝑡𝑛) , 𝐺, 0)= 𝑑LS (𝐼 + 𝐿−1 (𝑇𝑡𝑛𝛿𝑛 + 𝐶𝑡𝑛) , 𝐺, 0) . (29)

However, this is impossible. Therefore, there exists 𝜀1 > 0
such that 𝑑LS(𝐼 + 𝐿−1(𝑇𝑡𝜀 + 𝐶𝑡), 𝐺, 0) is well-defined and
independent of 𝜀 ∈ (0, 𝜀1] and 𝑡 ∈ [0, 1]. The proof is
completed.

Next we give the definition of the required degree map-
ping.

Definition 6. Let𝐺 be a nonempty, bounded, and open subset
of 𝑋. Let 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ be maximal monotone of
type Γ𝜙

𝑑
, 𝐶 : 𝑋 → 𝑋∗ be bounded demicontinuous operator,

and 𝐿 : 𝑋 ⊃ 𝐷(𝐿) → 𝑋∗ be linear, surjective, and closed
such that 𝐿−1 : 𝑋∗ → 𝑋 is compact. Assume, further, that𝑓∗ ∉ (𝐿 + 𝑇 + 𝐶)(𝐷(𝑇) ∩ 𝐷(𝐿) ∩ 𝜕𝐺). Then the degree of𝐿 + 𝑇 + 𝐶 at 𝑓∗ ∈ 𝑋∗ with respect to 𝐺 is given by

𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺, 𝑓∗)
= lim
𝜀↓0+

𝑑LS (𝐼 + 𝐿−1 (𝑇𝜀 + 𝐶 − 𝑓∗) , 𝐺, 0) , (30)

where 𝑑LS denotes the Leray-Schauder degree mapping for
compact perturbations of the identity and 𝑇𝜀 is the Yosida
approximant of 𝑇.

The degree 𝑑 satisfies the following basic properties and
homotopy invariance result.

Theorem 7. Let 𝐺 be a nonempty, bounded, and open subset
of 𝑋. Let 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ be maximal monotone of typeΓ𝜙
𝑑
, 𝐿 : 𝑋 ⊃ 𝐷(𝐿) → 𝑋∗ be linear, surjective, and closed such

that 𝐿−1 : 𝑋∗ → 𝑋 is compact, and 𝐶 : 𝑋 → 𝑋∗ be bounded
demicontinuous operator. Then

(i) (normalization) there exists 𝛼 > 0 such that 𝑑(𝐿 +𝛼𝐽, 𝐺, 0) = 1 if 0 ∈ 𝐺 and 𝑑(𝐿 + 𝛼𝐽, 𝐺, 0) = 0 if 0 ∉ 𝐺.
If 𝐿 is monotone, then 𝑑(𝐿 + 𝐽, 𝐺, 0) = 1 if 0 ∈ 𝐺 and𝑑(𝐿 + 𝐽, 𝐺, 0) = 0 if 0 ∉ 𝐺;

(ii) (existence) if 0 ∉ (𝐿 + 𝑇 + 𝐶)(𝐷(𝐿) ∩ 𝐷(𝑇) ∩ 𝜕𝐺) and𝑑(𝐿 + 𝑇 + 𝐶, 𝐺, 0) ̸= 0, then 0 ∈ (𝐿 + 𝑇 + 𝐶)(𝐷(𝐿) ∩𝐷(𝑇) ∩ 𝐺);
(iii) (decomposition) let 𝐺1 and 𝐺2 be nonempty and

disjoint open subsets of 𝐺 such that 𝑓∗ ∉ (𝐿 + 𝑇 +𝐶)((𝐺 \ (𝐺1 ∪ 𝐺2))).Then

𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺, 𝑓∗) = 𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺1, 𝑓∗)+ 𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺2, 𝑓∗) ; (31)

(iv) (translation invariance) let 𝑓∗ ∉ (𝐿 + 𝑇 + 𝐶)(𝐷(𝐿) ∩𝐷(𝑇) ∩ 𝜕𝐺).Then we have

𝑑 (𝐿 + 𝑇 + 𝐶 − 𝑓∗, 𝐺, 0) = 𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺, 𝑓∗) ; (32)

(v) (homotopy invariance) let {𝑇𝑡}𝑡∈[0,1] be a pseudomono-
tone homotopy of maximal monotone operators uni-
formly of type Γ𝜙

𝑑
and 𝐶𝑖 : 𝑋 → 𝑋∗ (𝑖 = 1, 2) is

bounded demicontinuous operator. Let

𝐻(𝑡, 𝑥) = 𝐿𝑥 + 𝑇𝑡𝑥 + 𝑡𝐶1𝑥 + (1 − 𝑡) 𝐶2𝑥, (33)

(𝑡, 𝑥) ∈ [0, 1] × (𝐷(𝐿) ∩ 𝐷(𝑇𝑡) ∩ 𝐺).Then 𝑑(𝐻(𝑡, ⋅),𝐺, 0) is independent of 𝑡 ∈ [0, 1] provided that 0 ∉𝐻(𝑡, 𝐷(𝐿) ∩ 𝐷(𝑇𝑡) ∩ 𝜕𝐺) for all 𝑡 ∈ [0, 1].
Proof. (i) Suppose the hypotheses hold. Since 𝐿−1 : 𝑋∗ → 𝑋
is continuous, there exists 𝑑 > 0 such that ‖𝐿𝑥‖ ≥ 𝑑‖𝑥‖ for
all 𝑥 ∈ 𝐷(𝐿). Let 𝛼 ∈ (0, 𝑑) and 𝐻(𝑡, 𝑥) = 𝑥 + 𝑡𝐿−1(𝛼𝐽𝑥),(𝑡, 𝑥) ∈ [0, 1] × (𝐷(𝐿) ∩ 𝐺). If there exist 𝑡0 ∈ [0, 1] and𝑥0 ∈ 𝜕𝐺 such that 0 = 𝑥0 + 𝑡0𝐿−1(𝐽𝑥0), then it follows that𝑥0 ∈ 𝐷(𝐿) and 𝐿𝑥0 + 𝑡0𝛼𝐽𝑥0 = 0. Since 𝑑‖𝑥0‖ ≤ ‖𝐿𝑥0‖ ≤𝑡0𝛼‖𝑥0‖ ≤ 𝛼‖𝑥0‖ (i.e., (𝑑 − 𝛼)‖𝑥0‖ ≤ 0), this gives 𝑑 ≤ 𝛼 or𝑥0 = 0. But these are impossible because 0 ∈ 𝐺 and 𝑑 > 𝛼.
Since {𝑡𝐿−1(𝛼𝐽)}𝑡∈[0,1] is a family of compact operators from𝐺 into 𝑋 such that 𝐻̃(𝑡, 𝑥) = 𝑡𝐿−1(𝛼𝐽𝑥), (𝑡, 𝑥) ∈ [0, 1] × 𝐺, is
uniformly continuous in 𝑡 ∈ [0, 1] uniformly for all 𝑥 ∈ 𝐺, it
follows that {𝐼 + 𝑡𝐿−1(𝛼𝐽)}𝑡∈[0,1] is an admissible homotopy of
Leray-Schauder type; that is,

𝑑 (𝐻 (𝑡, ⋅) , 𝐺, 0) = 𝑑LS (𝐼 + 𝑡L−1 (𝛼𝐽) , 𝐺, 0) (34)

is independent of 𝑡 ∈ [0, 1]. Therefore, we obtain that 𝑑(𝐿 +𝛼𝐽, 𝐺, 0) = 𝑑(𝐻(1, ⋅), 𝐺, 0) = 𝑑(𝐼, 𝐺, 0) = 1 if 0 ∈ 𝐺 and𝑑(𝐿 + 𝛼𝐽, 𝐺, 0) = 0 if 0 ∉ 𝐺.
(ii) Suppose 0 ∉ (𝐿 + 𝑇 + 𝐶)(𝐷(𝐿) ∩ 𝐷(𝑇) ∩ 𝜕𝐺) and𝑑(𝐿+𝑇+𝐶, 𝐺, 0) ̸= 0. By the definition of the degreemapping𝑑, we see that 𝑑LS(𝐼 + 𝐿−1(𝑇𝜀 +𝐶), 𝐺, 0) ̸= 0 for all sufficiently

small 𝜀 > 0; that is, for each 𝜀𝑛 ↓ 0+, there exists 𝑥𝑛 ∈ 𝐷(𝐿) ∩𝐷(𝑇) ∩ 𝐺 such that

𝑥𝑛 + 𝐿−1 (𝑇𝜀𝑛𝑥𝑛 + 𝐶𝑥𝑛) = 0 ∀𝑛. (35)

By the arguments used in the proof of Theorem 5, one can
easily show that 0 ∈ (𝐿+𝑇+𝐶)(𝐷(𝐿)∩𝐷(𝑇)∩𝐺).The details
are omitted here.
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(iii) Suppose the hypotheses hold. The definition of the
degree mapping 𝑑 and decomposition property of the Leray-
Schauder degree 𝑑LS imply

𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺, 𝑓∗)
= 𝑑LS (𝐼 + 𝐿−1 (𝑇𝜀 + 𝐶 − 𝑓∗) , 𝐺, 0)
= 𝑑LS (𝐼 + 𝐿−1 (𝑇𝜀 + 𝐶 − 𝑓∗) , 𝐺1, 0)
+ 𝑑LS (𝐼 + 𝐿−1 (𝑇𝜀 + 𝐶 − 𝑓∗) , 𝐺2, 0)= 𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺1, 𝑓∗) + 𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺2, 𝑓∗)

(36)

for all sufficiently small 𝜀 > 0. This completes the proof of
(iii). The proof of (iv) follows from the translation invariance
property of Leray-Schauder degree.

(v) Let 𝐶𝑡(𝑥) = 𝑡𝐶1𝑥 + (1 − 𝑡)𝐶2𝑥, (𝑡, 𝑥) ∈ [0, 1] × 𝐺. The
proof ofTheorem 5 confirms the existence of 𝜀1 > 0 such that𝑑LS(𝐼 + 𝐿−1(𝑇𝑡𝜀 + 𝐶𝑡), 𝐺, 0) is well-defined and independent
of 𝑡 ∈ [0, 1] and 𝜀 ∈ (0, 𝜀1]; that is, by the definition of the
degree, we get that

𝑑 (𝐻 (𝑡, ⋅) , 𝐺, 0) = lim
𝜀↓0+

𝑑LS (𝐼 + 𝐿−1 (𝑇𝑡𝜀 + 𝐶𝑡) , 𝐺, 0) (37)

is well-defined and independent of 𝑡 ∈ [0, 1]. The details are
omitted here.

Consequently, we prove the following new existence
result.

Theorem 8. Let 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ be densely defined
maximal monotone with 0 ∈ 𝑇(0) and of type Γ𝜙

𝑑
, 𝐿 : 𝑋 ⊃𝐷(𝐿) → 𝑋∗ be linear monotone, surjective, and closed such

that 𝐿−1 : 𝑋∗ → 𝑋 is compact, and 𝐶 : 𝑋 → 𝑋∗ be bounded
demicontinuous operator. Let 𝑓∗ ∈ 𝑋∗. Assume, further, that
there exists 𝑅 > 0 such that

⟨𝐿𝑥 + V∗ + 𝐶𝑥 − 𝑓∗, 𝑥⟩ > 0 (38)

for all 𝑥 ∈ 𝐷(𝐿) ∩ 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0) and V∗ ∈ 𝑇𝑥. Then 𝑓∗ ∈(𝐿 + 𝑇 + 𝐶)(𝐷(𝐿) ∩ 𝐷(𝑇) ∩ 𝐵𝑅(0)). In addition, 𝐿 + 𝑇 + 𝐶 is
surjective if 𝐿 + 𝑇 + 𝐶 is coercive.

Proof. By the continuity of 𝐿−1, there exists 𝑑 > 0 such that𝑑‖𝑥‖ ≤ ‖𝐿𝑥‖for all 𝑥 ∈ 𝐷(𝐿). Let 𝜀 ∈ (0, 𝑑) and
𝐻(𝑡, 𝑥) = 𝐿𝑥 + 𝑇𝑥 + 𝑡 (𝐶𝑥 − 𝑓∗) + 𝜀𝐽𝑥,(𝑡, 𝑥) ∈ [0, 1] × (𝐷 (𝐿) ∩ 𝐷 (𝑇)) . (39)

Since 0 ∈ 𝑇(0) and 𝐿(0) = 0, we see that 𝐻(𝑡, 𝑥) can be
rewritten as

𝐻(𝑡, 𝑥) = 𝑡 (𝐿𝑥 + 𝑇𝑥 + 𝐶𝑥 + 𝜀𝐽𝑥 − 𝑓∗)+ (1 − 𝑡) (𝐿𝑥 + 𝑇𝑥 + 𝜀𝐽𝑥) , (40)

(𝑡, 𝑥) ∈ [0, 1] × (𝐷(𝐿) ∩ 𝐷(𝑇)). Since 𝐿 and 𝑇 are monotone
with 0 ∈ 𝑇(0), we get⟨𝐿𝑥 + V∗ + 𝑡 (𝐶𝑥 − 𝑓∗) + 𝜀𝐽𝑥, 𝑥⟩

= ⟨𝑡 (𝐿𝑥 + V∗ + 𝐶𝑥 − 𝑓∗) , 𝑥⟩
+ ⟨(1 − 𝑡) (𝐿𝑥 + V∗) + 𝜀𝐽𝑥, 𝑥⟩

≥ ⟨(1 − 𝑡) (𝐿𝑥 + V∗) + 𝜀𝐽𝑥, 𝑥⟩ ≥ 𝜀 ‖𝑥‖2 > 0
(41)

for all 𝑡 ∈ [0, 1], 𝑥 ∈ 𝐷(𝐿) ∩𝐷(𝑇) ∩ 𝜕𝐵𝑅(0), and V∗ ∈ 𝑇𝑥; that
is, we have ⟨𝑡 (𝐿𝑥 + V∗ + 𝐶𝑥 + 𝜀𝐽𝑥 − 𝑓∗)

+ (1 − 𝑡) (V∗ + 𝐿𝑥 + 𝜀𝐽𝑥) , 𝑥⟩ > 0 (42)

for all 𝑥 ∈ 𝐷(𝐿) ∩ 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0), 𝑡 ∈ [0, 1], and V∗ ∈ 𝑇𝑥;
that is, 0 ∉ 𝐻(𝑡, 𝐷(𝐿) ∩𝐷(𝑇) ∩ 𝜕𝐵𝑅(0)) for all 𝑡 ∈ [0, 1]. Since{𝑇𝑡 = 𝑇}𝑡∈[0,1] is a pseudomonotone homotopy of maximal
monotone operators of type Γ𝜙

𝑑
, (v) ofTheorem 7 implies that𝑑 (𝐿 + 𝑇 + 𝐶 + 𝜀𝐽, 𝐵𝑅 (0) , 𝑓∗)= 𝑑 (𝐿 + 𝑇 + 𝜀𝐽, 𝐵𝑅 (0) , 0) . (43)

Next we show that 𝑑(𝐿 + 𝑇 + 𝜀𝐽, 𝐵𝑅(0), 0) = 1. We consider𝐾 (𝑡, 𝑥) = 𝐿𝑥 + 𝑡𝑇𝑥 + 𝜀𝐽𝑥,
(𝑡, 𝑥) ∈ [0, 1] × (𝐷 (𝐿) ∩ 𝐷 (𝑇) ∩ 𝐵𝑅 (0)) . (44)

Following the above arguments, it is not difficult to show that0 ∉ 𝐾(𝑡, 𝐷(𝐿) ∩ 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0)) for all 𝑡 ∈ [0, 1]. Since𝑇 is densely defined, it is well-known that {𝑇𝑡 = 𝑡𝑇}𝑡∈[0,1]
is a pseudomonotone homotopy of type Γ𝜙

𝑑
; that is, (v) of

Theorem 7 gives𝑑 (𝐿 + 𝑇 + 𝜀𝐽, 𝐵𝑅 (0) , 0) = 𝑑 (𝐿 + 𝜀𝐽, 𝐵𝑅 (0) , 0) = 1. (45)

Consequently, we get𝑑 (𝐿 + 𝑇 + 𝐶 + 𝜀𝐽, 𝐵𝑅 (0) , 𝑓∗)= 𝑑 (𝐿 + 𝑇 + 𝜀𝐽, 𝐵𝑅 (0) , 0) = 𝑑 (𝐿 + 𝜀𝐽, 𝐵𝑅 (0) , 0)= 1; (46)

that is, for each 𝜀𝑛 ↓ 0+, there exist 𝑥𝑛 ∈ 𝐷(𝐿) ∩𝐷(𝑇) ∩ 𝐵𝑅(0)
and V∗𝑛 ∈ 𝑇𝑥𝑛 such that𝐿𝑥𝑛 + V∗𝑛 + 𝐶𝑥𝑛 + 𝜀𝑛𝐽𝑥𝑛 = 𝑓∗ ∀𝑛. (47)

By using Γ𝜙
𝑑
condition on 𝑇 and boundedness of 𝐶, we can

follow the arguments used in the proof of Theorem 5 to
conclude that 𝑓∗ ∈ (𝐿 + 𝑇 + 𝐶)(𝐷(𝐿) ∩ 𝐷(𝑇) ∩ 𝐵𝑅(0)).
Furthermore, 𝐿 + 𝑇 + 𝐶 is surjective provided that 𝐿 + 𝑇 + 𝐶
is coercive. The proof is completed.

Next we give the following important theorem on max-
imality of 𝐿 and 𝐿 + 𝑇 without requiring (i) 𝑇 or 𝐿 to be
quasibounded and 0 ∈ 𝐷(𝐿) ∩ 𝐷(𝑇) and (ii) 𝐷(𝐿) ∩ ∘𝐷(𝑇) ̸=0. The maximality condition (i) and (ii) are attributed to
Browder and Hess [16] and Rockafellar [17], respectively.
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Theorem 9. Let 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ be densely defined
maximal monotone of type Γ𝜙

𝑑
and 0 ∈ 𝑇(0) and 𝐿 : 𝑋 ⊃𝐷(𝐿) → 𝑋∗ be linear monotone, surjective, and closed such

that 𝐿−1 : 𝑋∗ → 𝑋 is compact. Then 𝐿 + 𝑇 is maximal
monotone.

Proof. Let 𝑓∗ ∈ 𝑋∗. By the boundedness and continuity of 𝐽
and monotonicity of 𝐿 and 𝑇 with 0 ∈ 𝑇(0), it follows that
there exists 𝑅 > 0 such that ⟨𝐿𝑥 + V∗ + 𝐽𝑥 − 𝑓∗, 𝑥⟩ ≥ ‖𝑥‖2 −‖𝑓∗‖‖𝑥‖ for all 𝑥 ∈ 𝐷(𝐿)∩𝐷(𝑇) and V∗ ∈ 𝑇𝑥; that is, 𝐿+𝑇+𝐽
is coercive. By Theorem 8, we conclude that 𝑅(𝐿 + 𝑇 + 𝐽) =𝑋∗; that is, 𝐿 + 𝑇 is maximal monotone. The maximality of 𝐿
follows by setting 𝑇 = {0}.
4. Degree Theory in a Real Hilbert Space with𝑅(𝐿) ≠ 𝐻
The content of this section outlines the construction of the
degree mapping for operators of the type 𝐿 + 𝑇 + 𝐶 in the
setting of a real Hilbert space, where 𝑇 and 𝐶 are as in
Section 3 and 𝐿 : 𝐻 ⊇ 𝐷(𝐿) → 𝐻 is linear densely defined,
self-adjoint, closed, and range closed. The closedness of 𝑅(𝐿)
is achieved if we assume 𝑅(𝐿) = 𝑁(𝐿)⊥, where𝑁(𝐿) denotes
the null space of 𝐿. Under this condition, one can easily see
that the restriction of 𝐿 to𝐷(𝐿) ∩𝑅(𝐿) is one to one and onto𝑅(𝐿). Let 𝑃 : 𝐻 → 𝑁(𝐿) be the orthogonal projection onto𝑁(𝐿). In addition, it is well-known that 𝐻 = 𝑁(𝐿) ⊕ 𝑅(𝐿).
For each 𝜀 > 0, it follows that 𝐿𝜀 = 𝜀𝑃 + 𝐿 : 𝐻 ⊃ 𝐷(𝐿) → 𝐻
is linear and surjective. For further properties of operators
of type 𝐿, the reader is referred to the paper by Brézis and
Nirenberg [18]. In the following lemma, we shall show that𝐿−1𝜀 : 𝐻 → 𝐻 is compact for suitable 𝜀 > 0.
Lemma 10. Let 𝐿 : 𝐻 ⊇ 𝐷(𝐿) → 𝐻 be linear, densely defined,
and self-adjoint and 𝐿−1 : 𝑅(𝐿) → 𝐻 be compact. Then there
exists 𝛼 > 0 such that, for each 𝜀 ∈ (0, 𝛼), the operator 𝐿𝜀 :𝐻 ⊃ 𝐷(𝐿) → 𝐻 is surjective and 𝐿−1𝜀 : 𝐻 → 𝐻 is compact.

Proof. By the property of the orthogonal projection 𝑃 onto𝑁(𝐿), it is well-known that 𝑃 is nonexpansive; that is, ‖𝑃𝑥 −𝑃𝑦‖ ≤ ‖𝑥−𝑦‖ for all 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐻. Since 𝐿−1 : 𝑅(𝐿) → 𝐻
is compact (i.e., it is continuous and linear), there exists 𝛼 > 0
such that󵄩󵄩󵄩󵄩𝐿𝑥 − 𝐿𝑦󵄩󵄩󵄩󵄩 ≥ 𝛼 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 ∀𝑥 ∈ 𝐷 (𝐿) , 𝑦 ∈ 𝐷 (𝐿) . (48)

For each 𝜀 ∈ (0, 𝛼), we see that󵄩󵄩󵄩󵄩𝐿𝜀𝑥 − 𝐿𝜀𝑦󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩(𝐿𝑥 + 𝜀𝑃𝑥) − (𝐿𝑦 + 𝜀𝑃𝑦)󵄩󵄩󵄩󵄩= 󵄩󵄩󵄩󵄩(𝐿𝑥 − 𝐿𝑦) + 𝜀 (𝑃𝑥 − 𝑃𝑦)󵄩󵄩󵄩󵄩≥ 󵄩󵄩󵄩󵄩𝐿𝑥 − 𝐿𝑦󵄩󵄩󵄩󵄩 − 𝜀 󵄩󵄩󵄩󵄩𝑃𝑥 − 𝑃𝑦󵄩󵄩󵄩󵄩≥ 𝛼 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 − 𝜀 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩= (𝛼 − 𝜀) 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩
(49)

for all 𝑥 ∈ 𝐷(𝐿) and 𝑦 ∈ 𝐷(𝐿), which implies that 𝐿𝜀 is
expansive; that is, 𝐿−1𝜀 : 𝐻 → 𝐻 is continuous. Next we

show that 𝐿−1𝜀 is compact. Let {𝑥𝑛} be bounded in 𝐻 and𝑦𝑛 = (𝜀𝑃 + 𝐿)−1𝑥𝑛 for all 𝑛; that is, (𝜀𝑃 + 𝐿)𝑦𝑛 = 𝑥𝑛 for all𝑛; that is, 𝑦𝑛 = 𝐿−1(𝑥𝑛 − 𝜀𝑃𝑦𝑛) for all 𝑛. The boundedness of{𝑦𝑛} follows because of the expansiveness of (𝜀𝑃 + 𝐿)−1. Since𝐿−1 is compact, we assume by passing to a subsequence that𝑦𝑛 = 𝐿−1(𝑥𝑛−𝜀𝑃𝑦𝑛) → 𝑦0 as 𝑛 → ∞; that is, the compactness
of 𝐿−1𝜀 is proved.

As a consequence of Lemma 10, it follows that 𝐿−1𝜀 𝐵
is a compact operator provided that 𝐵 : 𝐻 → 𝐻 is a
bounded operator.Theorem 11 gives analogous result like that
of Theorem 5.

Theorem 11. Let 𝐺 be a nonempty, bounded, and open subset
of 𝐻. Let 𝐶𝑡𝑥 = 𝑡𝐶1𝑥 + (1 − 𝑡)𝐶2𝑥, (𝑡, 𝑥) ∈ [0, 1]× ∈ 𝐺,
where 𝐶𝑖 (𝑖 = 1, 2) : 𝐻 → 𝐻 is bounded demicontinuous
operator. Let 𝐿 : 𝐻 ⊃ 𝐷(𝐿) → 𝐻 be linear, densely defined,
self-adjoint, closed, and range closed such that 𝐿−1 : 𝑅(𝐿) → 𝐻
is compact. Suppose {𝑇𝑡}𝑡∈[0,1] is a pseudomonotone homotopy
of maximal monotone operators uniformly of type Γ𝜙

𝑑
. Assume,

further, that 0 ∉ (𝐿 + 𝑇𝑡 + 𝐶𝑡)(𝐷(𝐿) ∩ 𝐷(𝑇𝑡) ∩ 𝜕𝐺) for all𝑡 ∈ [0, 1].Then degree 𝑑𝐿𝑆(𝐼+𝐿−1𝜀 (𝑇𝑡𝜀+𝐶𝑡), 𝐺, 0) is well-defined
and independent of sufficiently small 𝜀 > 0 and 𝑡 ∈ [0, 1].
Proof. Since 𝐿−1𝜀 is compact and 𝐶 and 𝑇𝜀 are bounded
demicontinuous operators, it follows that 𝐿−1𝜀 (𝑇𝜀 + 𝐶) : 𝐻 →𝐻 is a compact operator. Suppose there exist 𝑥𝑛 ∈ 𝜕𝐺 and𝑡𝑛 ∈ [0, 1] such that 𝑥𝑛 + (𝜀𝑛𝑃 + 𝐿)−1(𝑇𝜀𝑛𝑥𝑛 + 𝐶𝑡𝑛𝑥𝑛) = 0 for
all 𝑛; that is, 𝜀𝑛𝑃𝑥𝑛 + 𝐿𝑥𝑛 + 𝑇𝑡𝑛𝜀𝑛𝑥𝑛 + 𝐶𝑡𝑛𝑥𝑛 = 0 for all 𝑛. Since𝜀𝑛𝑃 + 𝐿 is surjective, it follows that 𝑥𝑛 ∈ 𝐷(𝐿), 𝐿𝑥𝑛 ∈ 𝑅(𝐿),
and 𝜀𝑛𝑃𝑥𝑛 + 𝑇𝑡𝑛𝜀𝑛𝑥 + 𝐶𝑡𝑛𝑥𝑛 ∈ 𝑅(𝐿) for all 𝑛; that is, we get

𝑥𝑛 + 𝐿−1 (𝜀𝑛𝑃𝑥𝑛 + 𝑇𝑡𝑛𝜀𝑛𝑥 + 𝐶𝑡𝑛𝑥𝑛) = 0 ∀𝑛. (50)

Since 𝐶1, 𝐶2, and 𝑃 are bounded and {𝑇𝑡}𝑡∈[0,1] is uniformly
of type Γ𝜙

𝑑
, we can follow the arguments in the proof of

Theorem 5 to conclude that {𝐿𝑥𝑛} and {𝑇𝑡𝑛𝜀𝑛𝑥𝑛} are bounded.
As a result, the compactness of 𝐿−1 implies the existence of a
subsequence, denoted again by {𝐿−1(𝜀𝑛𝑃𝑥𝑛 + 𝑇𝑡𝑛𝜀𝑛𝑥 + 𝐶𝑡𝑛𝑥𝑛)},
such that

𝑥𝑛 = −𝐿−1 (𝜀𝑛𝑃𝑥𝑛 + 𝑇𝑡𝑛𝜀𝑛𝑥 + 𝐶𝑡𝑛𝑥𝑛) 󳨀→𝑥0 ∈ 𝜕𝐺 as 𝑛 󳨀→ ∞. (51)

Since 𝐶 and 𝑃 are bounded and the family {𝑇𝑡} is
uniformly of type Γ𝜙

𝑑
, the proof can be completed by following

exactly similar arguments as in the proof of Theorem 5. The
details are omitted here.

Based on Theorem 11, the definition of the degree map-
ping is given below.

Definition 12. Let 𝐺 be a nonempty, bounded, and open
subset of𝐻. Let 𝑇 : 𝐻 ⊃ 𝐷(𝑇) → 2𝐻 be maximal monotone
of type Γ𝜙

𝑑
,𝐶 : 𝐻 → 𝐻 be bounded demicontinuous operator,
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and 𝐿 : 𝐻 ⊃ 𝐷(𝐿) → 𝐻 be linear, densely defined, self-
adjoint, closed, and range closed such that 𝐿−1 : 𝑅(𝐿) → 𝐻
is compact. Assume, further, that 𝑓∗ ∉ (𝐿 + 𝑇 + 𝐶)(𝐷(𝑇) ∩𝐷(𝐿) ∩ 𝜕𝐺). Then the degree of 𝐿 + 𝑇 + 𝐶 at 𝑓∗ ∈ 𝐻 with
respect to 𝐺 is defined by

𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺, 𝑓∗)
= lim
𝜀↓0+

𝑑LS (𝐼 + 𝐿−1𝜀 (𝑇𝜀 + 𝐶 − 𝑓∗) , 𝐺, 0) , (52)

where 𝐿𝜀 = 𝜀𝑃 + 𝐿, 𝑃 : 𝐻 → 𝑁(𝐿) is the orthogonal
projection onto𝑁(𝐿), 𝑑LS denotes the Leray-Schauder degree
mapping for compact perturbations of the identity, and 𝑇𝜀 is
the Yosida approximant of 𝑇.

The basic properties and homotopy invariance results
like that of Theorem 5 and existence theorems analogous to
Theorems 8 and 9 can be proved in Hilbert space setting by
using the surjectivity of 𝜀𝑃+𝐿 instead of the surjectivity of 𝐿.
The degree satisfies the following properties.

Theorem 13. Let 𝐺 be a nonempty, bounded, and open subset
of𝐻. Let 𝑇 : 𝐻 ⊃ 𝐷(𝑇) → 2𝐻 be maximal monotone of typeΓ𝜙
𝑑
, 𝐿 : 𝐻 ⊃ 𝐷(𝐿) → 𝐻 be linear, densely defined, self-adjoint,

closed, and range closed such that 𝐿−1 : 𝑅(𝐿) → 𝐻 is compact,
and 𝐶 : 𝐻 → 𝐻 be bounded demicontinuous operator. Then

(i) (normalization) there exists 𝛼 > 0 such that 𝑑(𝐿 +𝛼𝐽, 𝐺, 0) = 1 if 0 ∈ 𝐺 and 𝑑(𝐿 + 𝛼𝐽, 𝐺, 0) = 0 if 0 ∉ 𝐺.
If 𝐿 is monotone, then 𝑑(𝐿 + 𝐽, 𝐺, 0) = 1 if 0 ∈ 𝐺 and𝑑(𝐿 + 𝐽, 𝐺, 0) = 0 if 0 ∉ 𝐺;

(ii) (existence) if 0 ∉ (𝐿 + 𝑇 + 𝐶)(𝐷(𝐿) ∩ 𝐷(𝑇) ∩ 𝜕𝐺) and𝑑(𝐿 + 𝑇 + 𝐶, 𝐺, 0) ̸= 0, then 0 ∈ (𝐿 + 𝑇 + 𝐶)(𝐷(𝐿) ∩𝐷(𝑇) ∩ 𝐺);
(iii) (decomposition) let 𝐺1 and 𝐺2 be nonempty and

disjoint open subsets of𝐺 such that𝑓∗ ∉ (𝐿+𝑇+𝐶)((𝐺\(𝐺1 ∪ 𝐺2))).Then

𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺, 𝑓∗) = 𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺1, 𝑓∗)+ 𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺2, 𝑓∗) ; (53)

(iv) (translation invariance) let 𝑓∗ ∉ (𝐿 + 𝑇 + 𝐶)(𝐷(𝐿) ∩𝐷(𝑇) ∩ 𝜕𝐺).Then we have

𝑑 (𝐿 + 𝑇 + 𝐶 − 𝑓∗, 𝐺, 0) = 𝑑 (𝐿 + 𝑇 + 𝐶, 𝐺, 𝑓∗) ; (54)

(v) (homotopy invariance) let {𝑇𝑡}𝑡∈[0,1] be a pseudomono-
tone homotopy of maximal monotone operators uni-
formly of type Γ𝜙

𝑑
and𝐶𝑖 : 𝐻 → 𝐻(𝑖 = 1, 2) is bounded

demicontinuous operator. Let

𝐻(𝑡, 𝑥) = 𝐿𝑥 + 𝑇𝑡𝑥 + 𝑡𝐶1𝑥 + (1 − 𝑡) 𝐶2𝑥, (55)

(𝑡, 𝑥) ∈ [0, 1] × (𝐷(𝐿) ∩ 𝐷(𝑇𝑡) ∩ 𝐺).Then 𝑑(𝐻(𝑡, ⋅),𝐺, 0) is independent of 𝑡 ∈ [0, 1] provided that 0 ∉𝐻(𝑡, 𝐷(𝐿) ∩ 𝐷(𝑇𝑡) ∩ 𝜕𝐺) for all 𝑡 ∈ [0, 1].

Proof. Theproofs can be easily completed as in the arguments
used in the proofs of Theorems 5 and 7.

This part of the theory improves the degree theory
developed by Berkovits and Mustonen [19] for operators
of the type 𝐿 + 𝐶, where 𝐶 is bounded demicontinuous
pseudomonotone. In the present paper, we only assumed
that 𝐶 is bounded demicontinuous operator. Berkovits and
Mustonen [19, Theorem 10, p. 959], gave an existence result
for solvability of operator equations of the type 𝐿𝑥 + 𝑐𝑥 +𝐶𝑥 = ℎ, where 𝐶 is bounded demicontinuous operator
with bounded range, 𝑐 > 0 such that −𝑐 ∈ 𝜎(𝐿) (where𝜎(𝐿) denotes the set of all eigenvalues of 𝐿), 𝑐𝐼 + 𝐶 is
pseudomonotone, and the recession function (cf. Brézis
and Nirenberg [18]) corresponding to 𝐶 given by 𝐽𝐶(𝑢) =
lim inf 𝑡→∞,V→𝑢⟨𝐶(𝑡V), V⟩ satisfies ⟨ℎ, V⟩ < 𝐽𝐶(V) for all V ∈
Ker(𝐿+𝑐𝐼)with ‖V‖ = 1.However, for 𝑐 = 0, these conditions
on 𝐶 and 𝐿 exclude the possibility that Ker 𝐿 = {0}. If 𝑅(𝐶) is
bounded and 𝑐 is any constant, we can easily see that 𝑐𝐼 + 𝐶
is sublinear for all 𝑥 satisfying ‖𝑥‖ ≥ 1 (i.e., ‖𝑐𝑥 + 𝐶𝑥‖ ≤𝑐‖𝑥‖ + (𝑑/‖𝑥‖)‖𝑥‖ ≤ (𝑐 + 𝑑)‖𝑥‖ = 𝜏‖𝑥‖ for all ‖𝑥‖ ≥ 1, where𝜏 = 𝑐 + 𝑑 and 𝑑 = sup{‖𝐶𝑥‖ : 𝑥 ∈ 𝐻} < ∞). As a result of
Theorem 14 below, the surjectivity of 𝐿+𝑐𝐼+𝐶 follows under
mild assumption on the constant 𝑐 omitting both conditions
such that 𝑐𝐼 + 𝐶 is pseudomonotone and −𝑐 ∈ 𝜎(𝐿).
Theorem 14. Let 𝐿 : 𝐻 ⊇ 𝐷(𝐿) → 𝐻 be linear, densely
defined, self-adjoint, closed, and range closed such that 𝐿−1 :𝑅(𝐿) → 𝐻 is compact and 𝐶 : 𝐻 → 𝐻 be bounded
demicontinuous operator. Assume, further, that there exist
nonnegative constants 𝜏 ∈ (0, 𝛼) and 𝜃 such that ‖𝐶𝑥‖ ≤𝜏‖𝑥‖ + 𝜃 for all 𝑥 ∈ 𝐷(𝐿) with sufficiently large ‖𝑥‖, where𝛼 is the largest positive constant satisfying 𝛼‖𝑥‖ ≤ ‖𝐿𝑥‖ for
all 𝑥 ∈ 𝐷(𝐿). Then 𝐿 + 𝐶 is surjective. If a reflexive Banach
space𝑋 is used instead of a real Hilbert space𝐻, then the same
conclusion holds provided that 𝐿 is surjective.
Proof. Let 𝑓 ∈ 𝐻 and 𝜀 ∈ (0, 𝛼 − 𝜏) (i.e., 𝜀 ∈ (0, 𝛼)). Consider
the homotopy equation given by𝐻(𝑡, 𝑥) = 𝐿𝑥 + 𝑡 (𝐶𝑥 − 𝑓) + 𝜀 (1 − 𝑡) 𝐽𝑥,(𝑡, 𝑥) ∈ [0, 1] × 𝐷 (𝐿) . (56)

Consequently, we have‖𝐻 (𝑡, 𝑥)‖ = 󵄩󵄩󵄩󵄩𝐿𝑥 + 𝑡 (𝐶𝑥 − 𝑓) + 𝜀 (1 − 𝑡) 𝐽𝑥󵄩󵄩󵄩󵄩≥ ‖𝐿𝑥‖ − 𝑡 󵄩󵄩󵄩󵄩𝐶𝑥 − 𝑓󵄩󵄩󵄩󵄩 − (1 − 𝑡) 𝜀 ‖𝐽𝑥‖≥ ‖𝐿𝑥‖ − 󵄩󵄩󵄩󵄩𝐶𝑥 − 𝑓󵄩󵄩󵄩󵄩 − 𝜀 ‖𝑥‖≥ ‖𝐿𝑥‖ − 𝜏 ‖𝑥‖ − 𝜃 − 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 − 𝜀 ‖𝑥‖
= ‖𝐿𝑥‖(1 − (𝜏 + 𝜀) ‖𝑥‖‖𝐿𝑥‖ − 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 + 𝜃‖𝐿𝑥‖ )
= ‖𝐿𝑥‖(1 − 𝜏 + 𝜀𝛼 − 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩 + 𝜃‖𝐿𝑥‖ )

(57)

for all 𝑥 ∈ 𝐷(𝐿) \ {0} and 𝑡 ∈ [0, 1]. Since 𝜀 ∈ (0, 𝛼 − 𝜏)
(i.e., 1 > (𝜏 + 𝜀)/𝛼) and the right hand side of this inequality
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is independent of 𝑡 ∈ [0, 1], letting ‖𝑥‖ → ∞ implies that
there exists 𝑅 = 𝑅(𝑓) > 0 such that ‖𝐻(𝑡, 𝑥)‖ > 0 for all𝑥 ∈ 𝐷(𝐿) ∩ 𝜕𝐵𝑅(0) and 𝑡 ∈ [0, 1]. Consequently, by using (i)
and (v) of Theorem 13, we conclude that𝑑 (𝐻 (𝑡, ⋅) , 𝐵𝑅 (0) , 0) = 𝑑 (𝐻 (1, ⋅) , 𝐵𝑅 (0) , 0)= 𝑑 (𝐿 + 𝐶 − 𝑓, 𝐵𝑅 (0) , 0)= 𝑑 (𝐻 (0, ⋅) , 𝐵𝑅 (0) , 0)= 𝑑 (𝐿 + 𝜀𝐽, 𝐵𝑅 (0) , 0) = 1;

(58)

that is, 𝑓 = 𝐿𝑥 + 𝐶𝑥 is solvable in 𝐷(𝐿). Since 𝑓 ∈ 𝐻 is
arbitrary, we conclude that 𝐿 + 𝐶 is surjective. The proof is
completed.

In the case when 𝑅(𝐶) is bounded, we can apply Theo-
rem 14 to conclude that 𝐿 + 𝑐𝐼 + 𝐶 is surjective because of
the sublinearity of 𝑐𝐼 + 𝐶 with 𝜏 = 𝑐 + 𝑑 ∈ (0, 𝛼) and 𝐶
is demicontinuous operator. As a result, it follows that 𝑐 can
be zero and 𝐿 + 𝐶 is surjective if 𝛼 > 𝑑 without 𝐶 being
pseudomonotone. In [19], Berkovits and Mustonen gave an
existence theorem for the surjectivity of operators of the type𝐿+𝐶, where𝐿 satisfies conditions ofTheorem 14 and𝐶 : 𝐻 →𝐻 is bounded demicontinuous pseudomonotone satisfying
the following: (i) ⟨𝐿𝑥, 𝑥⟩ ≥ −(1/𝛼)‖𝐿𝑥‖2 for all 𝑥 ∈ 𝐷(𝐿),
where 𝛼 is the largest positive constant, (ii) there exist 𝑐1 > 0
and 𝜂 > 0 such that ‖𝐶𝑥‖ ≥ 𝜂‖𝑥‖ − 𝑐1 for all 𝑥 ∈ 𝐷(𝐿), and
(iii) there exist 𝛾 ∈ (0, 𝛼) and 𝑐2 > 0 such that ⟨𝐶𝑥, 𝑥⟩ ≥(1/𝛾)‖𝐶𝑥‖2 − 𝑐2 for all 𝑥 ∈ 𝐷(𝐿). By combining (ii) and (iii),
we can easily see that

‖𝐶𝑥‖ ≤ 𝛾 ‖𝑥‖ + 𝛾𝑐2 (59)

for all 𝑥 satisfying ‖𝑥‖ ≥ (1 + 𝑐1)/𝜂, which is a sublinearity
condition used in Theorem 14. This shows that conditions
(ii) and (iii) used by Berkovits and Mustonen [19, Theorem
8, p. 957] give stronger conditions on 𝐶 as compared with
the sublinearity of 𝐶. However, Theorem 14 does not need
condition (ii) or (iii). The last but the main improvement
of Theorem 14 over that of Berkovits and Mustonen [19] is
dropping the requirement of 𝐶 to be pseudomonotone. It is
worth mentioning here that the same conclusion holds in
Theorem 14 if the sublinearity condition on 𝐶 holds for all𝑥 ∈ 𝐷(𝐿) with sufficiently large ‖𝑥‖. As a result, we get the
following corollary.

Corollary 15. Let 𝐿 : 𝐻 ⊇ 𝐷(𝐿) → 𝐻 be linear, densely
defined, self-adjoint, closed, and range closed such that 𝐿−1 :𝑅(𝐿) → 𝐻 is compact and 𝐶 : 𝐻 → 𝐻 be bounded
demicontinuous operator. Assume, further, that there exist
nonnegative constants 𝜇 and 𝛽 such that 0 ≤ 𝜇 ≤ 𝛽𝛼 − 1 and

⟨𝐶𝑥, 𝑥⟩ ≥ 𝛽 ‖𝐶𝑥‖2 − 𝜇 ‖𝑥‖ ∀𝑥 ∈ 𝐻, (60)

where 𝛼𝛽 ≥ 1 and 𝛼 is the largest positive constant such that𝛼‖𝑥‖ ≤ ‖𝐿𝑥‖ for all 𝑥 ∈ 𝐷(𝐿). If ‖𝐶𝑥‖ → ∞ as ‖𝑥‖ → ∞,
then 𝐿 + 𝐶 is surjective. If a reflexive Banach space 𝑋 is used
instead of a real Hilbert space 𝐻, then the same conclusion
holds provided that 𝐿 is surjective.

Proof. By the side condition on 𝐶, we see that
𝛽 ‖𝐶𝑥‖2 ≤ 𝜇 ‖𝑥‖ + ⟨𝐶𝑥, 𝑥⟩ = 𝜇 ‖𝑥‖ + ‖𝐶𝑥‖ ‖𝑥‖∀𝑥 ∈ 𝐻. (61)

Consequently, we get

‖𝐶𝑥‖ ≤ 𝜇 ‖𝑥‖𝛽 ‖𝐶𝑥‖ + 1𝛽 ‖𝑥‖ ∀𝑥 ∈ 𝐻 \ {0} . (62)

Since ‖𝐶𝑥‖ → ∞ as ‖𝑥‖ → ∞, there exists 𝑅 > 0 such that‖𝐶𝑥‖ ≥ 1 for all ‖𝑥‖ ≥ 𝑅; that is, we have
‖𝐶𝑥‖ ≤ 𝜏̃ ‖𝑥‖ ∀𝑥 with ‖𝑥‖ ≥ 𝑅, (63)

where 𝜏̃ = (𝜇 + 1)/𝛽. Since 𝜏̃ ∈ (0, 𝛼) by the hypotheses, we
can apply Theorem 14 with 𝜃 = 0 and 𝜏 = 𝜏̃ to conclude that𝐿 + 𝐶 is surjective. The proof is completed.

We can observe that the largest positive constant 𝛼 used
in the hypotheses of Theorem 14 satisfies the condition

⟨𝐿𝑥, 𝑥⟩ ≥ − 1𝛼 ‖𝐿𝑥‖2 ∀𝑥 ∈ 𝐷 (𝐿) . (64)

In [18], Brézis and Nirenberg [18, Theorem III.2, p. 270]
proved that 𝑓 ∈ ∘𝑅(𝐿 + 𝐶) provided that the following
conditions hold:

(i) dim𝑁(𝐿) < ∞ and there are positive constants 𝛾 < 𝛼,𝜇, and 𝜆 such that

⟨𝐶𝑥 − 𝑓, 𝑥⟩ ≥ 1𝛾 ‖𝐶𝑥‖2 − 𝜇 ‖𝑥‖ − 𝜆 (󵄩󵄩󵄩󵄩𝑢1󵄩󵄩󵄩󵄩 + 1) , (65)

where 𝑢 = 𝑢1 + 𝑢2, 𝑢1 ∈ 𝑁(𝐿), and 𝑢2 ∈ 𝑅(𝐿).
(ii) 𝐽𝐶(V) > ⟨𝑓, V⟩ + 𝑐0‖V‖ for all V ∈ 𝑁(𝐿) with V ̸= 0,

where 𝑐0 > 0, 𝛾 < 𝛼(1+𝜇/𝑐0)−1, and 𝐽𝐶 is the recession
function of 𝐶.

In view of these, Corollary 15 does not require dim𝑁(𝐿) <∞ or (ii). In conclusion, Theorem 14 and its corollary gave
new surjectivity results with weaker assumptions on 𝐿 and𝐶.
In addition, we note here that Berkovits and Mustonen [19]
proved surjectivity of 𝐿 + 𝐶 under weak coercivity condition
of the type ‖𝐶𝑥‖ ≥ 𝜂‖𝑥‖ − 𝑐1 for all 𝑥 ∈ 𝐷(𝐿), for some 𝜂 > 0
and 𝑐1 ≥ 0, and condition of type (i) with the possibility of
having infinite dimensional null space of 𝐿.
5. Applications

In this section, we shall apply the abstract existence results
to prove existence of weak solutions for nonlinear parabolic
and hyperbolic problems such as wave and minimal surface
equations. In these examples, the main contribution is that
the Leray-Lion condition which guarantees pseudomono-
tonicity of the nonlinear term(s) is dropped. This will help
to treat larger class of nonlinear equations and inequalities
in appropriate Sobolev spaces. In the following examples, the
norm of 𝑢 ∈ 𝐻, where𝐻 = 𝐿2(0, 𝑇; 𝑉), where 𝑉 = 𝐻10 (Ω), is
denoted by ‖𝑢‖.
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Example 16 (nonlinear parabolic equation). Let 𝐻 = 𝐿2(0,𝑇;𝑉), where 𝑉 = 𝐻10 (Ω). We prove the existence of weak
solution for the nonlinear parabolic problem given by

𝜕𝑢𝜕𝑡 − 𝑁∑
𝑖=1

( 𝜕𝜕𝑥𝑖𝐴 𝑖 (𝑥, 𝑢, ∇𝑢)) + 𝐻𝜆 (𝑥, 𝑢, ∇𝑢)= 𝑓 (𝑥, 𝑡) in 𝑄𝑇,𝑢 (𝑥, 𝑡) = 0 (𝑥, 𝑡) ∈ 𝜕Q𝑇,𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝑇) 𝑥 ∈ Ω,
(66)

where 𝑄𝑇 = Ω × (0, 𝑇),Ω is a nonempty, bounded, and open
subset of R𝑁 with smooth boundary, 𝜕𝑄𝑇 = 𝜕Ω × (0, 𝑇),𝜆 > 0, 𝐴 𝑖(𝑥, 𝑢, ∇𝑢) = (𝜕/𝜕𝑥𝑖)𝜌(𝑥, 𝑢, ∇𝑢) + 𝑎𝑖(𝑥, 𝑢, ∇𝑢),𝐻𝜆(𝑥, 𝑢, ∇𝑢) = −𝜆Δ𝑢 + 𝑔(𝑥, 𝑢, ∇𝑢), and 𝑏𝑖 = 𝜕𝜌(𝑥, 𝜂, 𝜉)/𝜕𝑥𝑖
(𝑖 = 1, 2, 3, . . . , 𝑁) for all (𝑥, 𝜂, 𝜉) ∈ Ω ×R ×R𝑁. Suppose the
following hypotheses are satisfied:

(i) 𝑎𝑖 (𝑖 = 1, . . . , 𝑁), 𝑏𝑖 (i = 1,2,. . ., N), and 𝑔 : Ω ×
R × R𝑁 󳨃→ R are Carathéodory functions; that is,𝑥 󳨃→ 𝑎𝑖(𝑥, 𝜂, 𝜉), 𝑥 󳨃→ 𝑏𝑖(𝑥, 𝜂, 𝜉), and 𝑥 󳨃→ 𝑔(𝑥, 𝜂, 𝜉) are
measurable functions for almost all (𝜂, 𝜉) ∈ R × R𝑁

and (𝜂, 𝜉) 󳨃→ 𝑎𝑖(𝑥, 𝜂, 𝜉), (𝜂, 𝜉) 󳨃→ 𝑏𝑖(𝑥, 𝜂, 𝜉), and(𝜂, 𝜉) 󳨃→ 𝑔(𝑥, 𝜂, 𝜉) are continuous for almost all 𝑥 ∈Ω.
(ii) There exist 𝑘1 ∈ 𝐿2(𝑄) and 𝑐1 ≥ 0 such that

max {󵄨󵄨󵄨󵄨𝜌 (𝑥, 𝜂, 𝜉)󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨∇𝜌 (𝑥, 𝜂, 𝜉)󵄨󵄨󵄨󵄨}≤ 𝑘1 (𝑥, 𝑡) + 𝑐1 (󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨) ,
𝑁∑
𝑖=1

𝜕𝜕𝑥𝑖 𝜌 (𝑥, 𝜂, 𝜉) 𝜉𝑖 ≥ 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2
(67)

for all (𝑥, 𝜂, 𝜉) ∈ Ω × R, where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) ∈
R𝑁 and

∇𝑥𝜌 (𝑥, 𝜂, 𝜉) = (𝜕𝜌 (𝑥, 𝜂, 𝜉)𝜕𝑥𝑖 )𝑁
𝑖=1

. (68)

(iii) There exist 𝑘2 ∈ 𝐿2(𝑄) and 𝑐2 ≥ 0 such that󵄨󵄨󵄨󵄨𝑎𝑖 (𝑥, 𝜂, 𝜉)󵄨󵄨󵄨󵄨 ≤ 𝑘2 (𝑥, 𝑡) + 𝑐2 (󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨) (69)

for all 𝑖 = 1, . . . , 𝑁 and (𝑥, 𝜂, 𝜉) ∈ Ω ×R ×R𝑁.
(iv) There exist 𝑘3 ∈ 𝐿2(𝑄) and 𝑐3 ≥ 0 such that󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝜂, 𝜉)󵄨󵄨󵄨󵄨 ≤ 𝑘3 (𝑥, 𝑡) + 𝑐3 (󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨) (70)

for all (𝑥, 𝜂, 𝜉) ∈ Ω ×R ×R𝑁.
(v) There exists 𝑘0 ∈ 𝐿2(𝑄) such that

𝑁∑
𝑖=1

𝑎𝑖 (𝑥, 𝜂, 𝜉) 𝜉𝑖 ≥ −𝑘0 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 (71)

for all (𝑥, 𝜂, 𝜉) ∈ Ω ×R ×R𝑁, where 𝜉 = (𝜉𝑖)𝑁𝑖=1.

Let 𝐿 : 𝐻 ⊇ 𝐷(𝐿) → 𝐻 be given by 𝐿𝑢 = 𝑢󸀠 − 𝜆Δ𝑢, 𝑢 ∈ 𝐷(𝐿),
where 𝜆 > 0 and𝐷(𝐿) = {𝑢 ∈ 𝐿2 (0, 𝑇;𝐻2 (Ω) ∩ 𝐻10 (Ω)) : 𝑢󸀠

∈ 𝐿2 (𝑄) , 𝑢 (0) = 𝑢 (𝑇)} ; (72)

that is, we have

⟨𝐿𝑢, 𝜙⟩ = ⟨𝑢󸀠, 𝜙⟩ + 𝜆∫
𝑄
∇𝑢 (𝑥, 𝑡) ∇𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡, (73)

𝜙 ∈ 𝐻, 𝑢 ∈ 𝐷(𝐿), where 𝑢󸀠 is understood in the sense that

∫𝑇
0
𝑢󸀠 (𝑡) 𝜙 (𝑡) 𝑑𝑡 = −∫𝑇

0
𝑢 (𝑡) 𝜙󸀠 (𝑡) 𝑑𝑡 (74)

for all 𝜙 ∈ 𝐶∞0 (0, 𝑇) and <, > is the inner product in 𝐿2(𝑄).
The norm of 𝑢 in𝐻 is given by

‖𝑢‖ = (∫𝑇
0
‖𝑢 (𝑡)‖2𝑉 𝑑𝑡)1/2 , (75)

where ‖𝑢(𝑡)‖𝑉 = (‖𝑢(𝑡)‖𝐿2(Ω) + ‖∇𝑢(𝑡)‖𝐿2(Ω))1/2, 𝑡 ∈ [0, 1].
It is well-known that 𝐿 is surjective maximal monotone and𝐿−1 : 𝐻 → 𝐻 exists and is continuous. As a consequence
of the compact embedding of 𝐻10 (Ω) into 𝐿2(Ω), it is not
difficult to show that𝐿−1 is compact. In addition, themaximal
monotonicity of 𝐿 implies the closedness of graph of 𝐿; that
is, 𝐿 is closed. Let 𝐴 : 𝐻 → 𝐻 be given by

⟨𝐴𝑢, 𝜙⟩ = ∫
𝑄
∇𝜌 (𝑥, 𝑢, ∇𝑢) ∇𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡, (76)

𝜙 ∈ 𝐻, 𝑢 ∈ 𝐻 and 𝐵 : 𝐻 → 𝐻 be given by

⟨𝐵𝑢, 𝜙⟩ = 𝑁∑
𝑖=1

∫
𝑄
𝑎𝑖 (𝑥, 𝑢, ∇𝑢) 𝜕𝜙 (𝑥, 𝑡)𝜕𝑥𝑖 𝑑𝑥 𝑑𝑡, (77)

𝜙 ∈ 𝐻, 𝑢 ∈ 𝐻. By conditions (i) through (iv), it well-known
that 𝐴 and 𝐵 are bounded continuous operators; that is, 𝐶 :𝐻 → 𝐻 given by 𝐶 = 𝐴+𝐵 is bounded continuous operator.
A weak solution in𝐻 of (66) is understood in the sense of the
following definition.

Definition 17. Let 𝑓 ∈ 𝐿2(𝑄). An element 𝑢 ∈ 𝐻 is called a
“weak solution” of (66) if⟨𝐿𝑢 + 𝐶𝑢, 𝜙⟩ = ⟨𝑓, 𝜙⟩ ∀𝜙 ∈ 𝐻; (78)

that is, 𝑢 satisfies the functional equation
⟨𝑢󸀠, 𝜙⟩ + ∫

𝑄
(∇𝑢 (𝑥, 𝑡) ∇𝜙 (𝑥, 𝑡)

+ 𝑁∑
𝑁

𝑎𝑖 (𝑥, 𝑢, ∇𝑢) 𝜕𝜙 (𝑥, 𝑡)𝜕𝑥𝑖 )𝑑𝑥𝑑𝑡
= ∫

𝑄
(𝑓 (𝑥, 𝑡) − 𝑔 (𝑥, 𝑢, ∇𝑢)) 𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

(79)

for all 𝜙 ∈ 𝐻. The following existence result holds.
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Theorem 18. Suppose conditions (i) through (v) are satisfied.
Then, for each 𝑓 ∈ 𝐿2(𝑄), (66) admits at least one weak
solution in𝐻.

Proof. Let 𝐿, 𝐴, and 𝐵 be as defined in (73), (76), and (77),
respectively. It is well-known that 𝐿 : 𝐻 ⊇ 𝐷(𝐿) →𝐻 is surjective maximal monotone (i.e., graph closed) and𝐿−1 : 𝐻 → 𝐻 is compact and 𝐶 = 𝐴 + 𝐵 is bounded
continuous operator. By applying Hólder’s inequalities along
with conditions (i) through (v), monotonicity of 𝑢󸀠, and
coercivity of 𝐿 we can see that

⟨𝐿𝑢 + 𝐶𝑢 − 𝑓, 𝑢⟩ = ⟨𝐿𝑢, 𝑢⟩ + ⟨𝐶𝑢 − 𝑓, 𝑢⟩
= ⟨𝑢󸀠, 𝑢⟩ − ∫

𝑄
Δ𝑢 (𝑥, 𝑡) 𝑢 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫
𝑄
(∇𝜌 (𝑥, 𝑢, ∇𝑢) ∇𝑢 (𝑥, 𝑡)) 𝑑𝑥 𝑑𝑡

+ 𝑁∑
𝑖=1

∫
𝑄
𝑎𝑖 (𝑥, 𝑢, ∇𝑢) 𝜕𝑢𝜕𝑥𝑖 𝑑𝑥 𝑑𝑡− 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖𝑢‖𝐿2(𝑄)

≥ ∫
𝑄
|∇𝑢 (𝑥, 𝑡)|2 𝑑𝑥 𝑑𝑡 + ∫

𝑄
|𝑢 (𝑥, 𝑡)|2 𝑑𝑥 𝑑𝑡

− ∫
𝑄
𝑘0 |∇𝑢| 𝑑𝑥 𝑑𝑡 − 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖𝑢‖𝐿2(𝑄)

≥ ‖𝑢‖2 − 󵄩󵄩󵄩󵄩𝑘0󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖∇𝑢‖𝐿2(𝑄) − 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖𝑢‖𝐿2(𝑄)≥ ‖𝑢‖2 − 󵄩󵄩󵄩󵄩𝑘0󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖𝑢‖ − 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(𝑄) ‖𝑢‖
= ‖𝑢‖2(1 − 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝐿2(𝑄) + 󵄩󵄩󵄩󵄩𝑘0󵄩󵄩󵄩󵄩𝐿2(𝑄)‖𝑢‖ )

(80)

for all 𝑢 ∈ 𝐷(𝐿) \ {0}. Since the right side of the above
inequality tends to∞ as ‖𝑢‖ → ∞, there exists 𝑅 = 𝑅(𝑓) > 0
such that

⟨𝐿𝑢 + 𝐶𝑢 − 𝑓, 𝑢⟩ > 0 (81)

for all 𝑢 ∈ 𝐷(𝐿) ∩ 𝜕𝐵𝑅(0); that is, the boundary condition
in Theorem 8 is satisfied with linear operator 𝐿, maximal
monotone operator 𝑇 = {0}, and bounded continuous
operator 𝐶. Therefore, we conclude that the problem 𝑓∗ =𝐿𝑢 + 𝐶𝑢 is solvable in 𝐷(𝐿), where 𝑓∗ is a functional on 𝐻
generated by 𝑓 ∈ 𝐿2(𝑄). Since 𝑓 ∈ 𝐿2(𝑄) is arbitrary, there
exists 𝑢 ∈ 𝐷(𝐿) such that

⟨𝐿𝑢 + 𝐶𝑢, 𝜙⟩ = ⟨𝑓, 𝜙⟩ ∀𝜙 ∈ 𝐻, (82)

that is, (66) admits at least one weak solution in 𝐷(𝐿). The
proof is completed.

One of the main advantages of this theory concerning
parabolic problems of type (66) is dropping the requirement

for 𝐶 to be pseudomonotone type, that is, dropping the
condition

𝑁∑
𝑖=1

(𝑎𝑖 (𝑥, 𝜂, 𝜉󸀠) − 𝑎𝑖 (𝑥, 𝜂, 𝜉)) (𝜉󸀠𝑖 − 𝜉𝑖) ≥ 0; (83)

for all (𝑥, 𝜂, 𝜉󸀠) and (𝑥, 𝜂, 𝜉) in Ω ×R ×R𝑁.

Example 19 (minimal surface equation). Let𝐻,Ω,𝑄𝑇 = Ω×(0, 𝑇), and 𝜕𝑄𝑇 = 𝜕Ω × (0, 𝑇) be as in Example 16. Let 𝛽𝑖 :Ω ×R ×R𝑁 → R be given by

𝛽𝑖 (𝑥, 𝜂, 𝜉) = 𝜉𝑖√1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 ∀ (𝑥, 𝜂, 𝜉) ∈ Ω ×R ×R
N

(84)

for all 𝑖 = 1, 2, . . . , 𝑁. It follows that 𝛽𝑖 (𝑖 = 1, 2, . . . , 𝑁)
satisfies (i) and |𝛽𝑖(𝑥, 𝜂, 𝜉)| ≤ |𝜉| ≤ |𝜂| + |𝜉|, that is, condition
(iv) of Example 16 with 𝑘3(𝑥, 𝑡) = 0 for all (𝑥, 𝑡) ∈ 𝑄 and𝑐3 = 1. We notice here that

− div( ∇𝑢√1 + |∇𝑢|2)
= − 𝑁∑

𝑖=1

𝜕𝜕𝑥𝑖 ( 1√1 + |∇𝑢|2 𝜕𝑢𝜕𝑥𝑖), 𝑢 ∈ 𝐻.
(85)

Let 𝐿 = 𝜕/𝜕𝑡 − 𝜆Δ, 𝐴̃ : 𝐻 → 𝐻, 𝐵̃ : 𝐻 → 𝐻, and 𝐶 = 𝐴̃ + 𝐵̃
be defined by

⟨𝐴̃𝑢, 𝜙⟩ = 𝑁∑
𝑖=1

∫
𝑄
𝛽𝑖 (𝑥, 𝑢, ∇𝑢) 𝜕𝜙 (𝑥, 𝑡)𝜕𝑥𝑖 𝑑𝑥 𝑑𝑡,

⟨𝐵̃𝑢, 𝜙⟩ = ∫
𝑄
𝑔 (𝑥, 𝑢, ∇𝑢) 𝜙 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡. (86)

𝑢 ∈ 𝐻 and 𝜙 ∈ 𝐻. By using the operators 𝐿 and 𝐶
and following analogous arguments used in the proof of
Theorem 18, for each𝑓∗ ∈ 𝐻, we can show that𝑓∗ = 𝐿𝑢+𝐶𝑢
is solvable in 𝐷(𝐿); that is, 𝑢 ∈ 𝐷(𝐿) satisfies ⟨𝐿𝑢 + 𝐶𝑢, 𝜙⟩ =⟨𝑓, 𝜙⟩ for all𝜙 ∈ 𝐻 provided that 𝑓 ∈ 𝐿2(𝑄). Equivalently, we
conclude that the minimal surface equation, given by

𝜕𝑢𝜕𝑡 − 𝜆Δ𝑢 − div( ∇𝑢√1 + |∇𝑢|2)+ 𝑔 (𝑥, 𝑢, ∇𝑢)
= 𝑓 (𝑥, 𝑡) in Q𝑇,𝑢 (𝑥, 𝑡) = 0 (𝑥, 𝑡) ∈ 𝜕𝑄𝑇,𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝑇) 𝑥 ∈ Ω,

(87)

admits at least one weak solution in 𝐻 provided that 𝜆 >0, 𝑓 ∈ 𝐿2(𝑄) and 𝑔 satisfies conditions (i) and (iv) of
Example 16, and𝑔(𝑥, 𝜂, 𝜉)𝜂 ≥ |𝜂|2 for all (𝑥, 𝜂, 𝜉) ∈ Ω×R×R𝑁.
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Example 20 (nonlinear wave equation). Let𝐻 = 𝐿2(Ω), Ω =(0, 2𝜋) × (0, 𝜋). We shall show existence of weak solutions in𝐻 of the wave equation given by𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑔 (𝑡, 𝑥, 𝑢) = 𝑓 (𝑥, 𝑡) (𝑡, 𝑥) ∈ Ω,𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0 𝑡 ∈ (0, 2𝜋) ,𝑢 (𝑥, 0) = 𝑢 (𝑥, 2𝜋) 𝑥 ∈ (0, 𝜋) ,𝑢𝑡 (𝑥, 0) = 𝑢𝑡 (𝑥, 2𝜋) 𝑥 ∈ (0, 𝜋) ,
(88)

where 𝑓 ∈ 𝐿2(Ω) and
(a) 𝑔 : Ω ×R 󳨃→ R is Carathéodory function;
(b) there exist 𝑐0 > 0 and 𝑘0 ∈ 𝐿2(Ω) such that󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥, 𝑢)󵄨󵄨󵄨󵄨 ≤ 𝑘0 (𝑡, 𝑥) + 𝑐0 |𝑢| ∀ (𝑡, 𝑥) ∈ Ω. (89)

A weak solution 𝑢 ∈ 𝐻 of (88) is understood in the sense of
the following definition.

Definition 21. Let 𝑓 ∈ 𝐿2(Ω). An element 𝑢 ∈ 𝐻 is called a
“weak solution of (88)” if 𝑢 satisfies⟨𝑢, 𝜙𝑡𝑡 − 𝜙𝑥𝑥⟩ + ⟨𝐶𝑢, 𝜙⟩ = ⟨𝑓, 𝜙⟩ ∀𝜙 ∈ 𝐶2𝜋 (Ω) , (90)

where𝐶2𝜋 (Ω) = {𝜙 ∈ 𝐶2 (Ω) : 𝜙 (0, 𝑡) = 𝜙 (𝜋, 𝑡)
= 0, 𝜙 (𝑥, 0) = 𝜙 (𝑥, 2𝜋) , 𝜙𝑡 (𝑥, 0) = 𝜙𝑡 (𝑥, 2𝜋)} ; (91)

that is,

∫2𝜋
0
∫𝜋
0
𝑢 (𝜙𝑡𝑡 − 𝜙𝑥𝑥) 𝑑𝑥 𝑑𝑡

+ ∫2𝜋
0
∫𝜋
0
𝑔 (𝑡, 𝑥, 𝑢) 𝜙 𝑑𝑥 𝑑𝑡

= ∫2𝜋
0
∫𝜋
0
𝑓 (𝑥, 𝑡) 𝜙 𝑑𝑥 𝑑𝑡

(92)

for all 𝜙 ∈ 𝐶2𝜋(Ω).
Next we prove the following existence theorem.

Theorem 22. Suppose 𝑔 satisfies conditions (a) and (b), and
let 𝐶 : 𝐻 → 𝐻 be given by 𝐶𝑢 = 𝑔(⋅, ⋅, 𝑢), 𝑢 ∈ 𝐻. Then, for
each 𝑓 ∈ 𝐻, (88) admits at least one weak solution in𝐻.

Proof. By the sublinearity of 𝑔, we can easily see that𝐶 : 𝐻 →𝐻 is bounded continuous operator and ‖𝐶𝑢‖ ≤ ‖𝑘0‖𝐿2(Ω) +𝑐0‖𝑢‖ for all 𝑢 ∈ 𝐻. The abstract representation of the wave
operator 𝜕2/𝜕𝑡2 − 𝜕2/𝜕𝑥2 in𝐻 = 𝐿2(Ω) is the linear operator𝐿 : 𝐻 ⊇ 𝐷(𝐿) → 𝐻 given by

𝐿𝑢 = ∑
𝑚∈𝑍,𝑛∈𝑍+

(𝑛2 − 𝑚2) 𝑢𝑚𝑛𝜑𝑚𝑛,
𝑢 = ∑

𝑚∈𝑍,𝑛∈𝑍+

𝑢𝑚𝑛𝜑𝑚𝑛, (93)

where 𝑢𝑚𝑛 = ⟨𝑢, 𝜑𝑚𝑛⟩, 𝜑𝑚𝑛(𝑡, 𝑥) = 𝜋−1 exp(𝑖𝑚𝑡) sin(𝑛𝑥), and
𝐷 (𝐿) = {{{𝑢 ∈ 𝐻 : ∑

𝑚∈𝑍,𝑛∈𝑍+

󵄨󵄨󵄨󵄨󵄨𝑛2 − 𝑚2󵄨󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝑢𝑚𝑛󵄨󵄨󵄨󵄨2 < ∞}}} . (94)

If 𝑢 ∈ 𝐻2(Ω), then, by using successive integration by parts,
we see that 𝑢 ∈ 𝐷(𝐿) is a solution of 𝐿𝑢 + 𝐶𝑢 = 𝑓 if and
only if 𝑢 satisfies (90). It is well-known that 𝐿 is linear densely
defined, self-adjoint, and closed and 𝑅(𝐿) = 𝑁(𝐿)⊥ (i.e., 𝑅(𝐿)
is closed), the restriction of 𝐿 to 𝐷(𝐿) ∩ 𝑅(𝐿), denoted again
by 𝐿, is one to one onto 𝑅(𝐿), and 𝐿−1 : 𝑅(𝐿) → 𝐻 is
compact. Since 𝐿−1 is continuous, there exists 𝑑 > 0 such
that 𝑑‖𝑢‖ ≤ ‖𝐿𝑢‖ for all 𝑢 ∈ 𝐷(𝐿). Let 𝛼 > 0 be the largest
positive constant to satisfy this condition. If 𝑐0 ∈ (0, 𝛼), then,
by applying Theorem 14 with 𝜃 = ‖𝑘0‖𝐿2(Ω) and 𝜏 = 𝑐0, we
conclude that there exists 𝑢 ∈ 𝐷(𝐿) such that

⟨𝐿𝑢 + 𝐶𝑢, 𝜙⟩ = ⟨𝑓, 𝜙⟩ ∀𝜙 ∈ 𝐻; (95)

that is, (88) admits a weak solution in 𝐷(𝐿). The proof is
completed.

It is important to notice that the monotonicity assump-
tion on 𝑔 is not required to establish existence of weak
solutions for (88). For existence of weak solutions under
the requirement that 𝑔 is monotone, the reader is referred
to the papers by Rabinowitz [20], Brézis and Nirenberg
[18, 21], Brezis [22], and Barbu and Pavel [23] and the
references therein. In an attempt to remove the monotonicity
assumption on 𝑔, Coron [24] used additional assumption
on 𝑁(𝐿); that is, he assumed the existence of a closed
subspace 𝐻1 of 𝐻 such that 𝑁(𝐿) ∩ 𝐻1 = {0} and 𝐻1 is
invariant under 𝐿 and 𝑔. For further results on nonmonotone𝑔, the reader is referred to the papers by Coron [24] and
Hofer [25]. Consequently, Theorem 22 provides a new result
concerning existence of weak solution for the nonlinear wave
equation with lower order nonlinear part 𝑔 satisfying only
continuity and sublinearity conditions. In conclusion, we like
to mention that various examples of pseudomonotone type
operators under Leray-Lion type growth conditions along
with (83) can be found in the papers of Landes andMustonen
[26], Mustonen [27], and Mustonen and Tienari [28] and
the references therein. Existence results for perturbations of
maximal monotone operator 𝑇 by bounded demicontinuous
operator of type (𝑆+) or bounded pseudomonotone can be
found in the papers of Browder and Hess [16], Kenmochi
[29], Kartsatos [30], Asfaw [31–33], and Le [34] and the
references therein. For detailed study of ranges of sums of
perturbed operators in Hilbert space and more examples
and properties of elliptic, parabolic, and hyperbolic linear
operators, we mention the papers by Brézis and Nirenberg
[18] and Berkovits and Mustonen [19] and the references
therein.
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