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Enabling the Use of Heterogeneous Computing for Bioinformatics

Ramakrishna Bijanapalli Chakri

(ABSTRACT)

The huge amount of information in the encoded sequence of DNA and increasing interest
in uncovering new discoveries has spurred interest in accelerating the DNA sequencing and
alignment processes. The use of heterogeneous systems, that use di↵erent types of compu-
tational units, has seen a new light in high performance computing in recent years; However
expertise in multiple domains and skills required to program these systems is causing an
hindrance to bioinformaticians in rapidly deploying their applications into these heteroge-
neous systems. This work attempts to make an heterogeneous system, Convey HC-1, with
an x86-based host processor and FPGA-based co-processor, accessible to bioinformaticians.
First, a highly e�cient dynamic programming based Smith-Waterman kernel is implemented
in hardware, which is able to achieve a peak throughput of 307.2 Giga Cell Updates per Sec-
ond (GCUPS) on Convey HC-1. A dynamic programming accelerator interface is provided
to any application that uses Smith-Waterman. This implementation is also extended to
General Purpose Graphics Processing Units (GP-GPUs), which achieved a peak throughput
of 9.89 GCUPS on NVIDIA GTX580 GPU. Second, a well known graphical programming
tool, LabVIEW is enabled as a programming tool for the Convey HC-1. A connection is
established between the graphical interface and the Convey HC-1 to control and monitor the
application running on the FPGA-based co-processor.

This work was supported in part by the I/UCRC Program of the National Science Foundation
(NSF) within the NSF Center for High-Performance Reconfigurable Computing (CHREC),
Grant No. IIP-0804155.
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Chapter 1

Introduction

Genomics is one of the emerging fields that o↵ers a huge challenge to both biologists and
computer scientists due to the magnitude of data involved in a genome. For instance, the
human genome has three billion nucleotide base pairs, and it holds a great deal of information.
This huge amount of data requires constant processing for researchers all over the world to
make new discoveries in the field of genomics. These computationally intensive problems
take up a huge amount of time to execute on a serial computer. Programmers all over
the world are trying to find new ways to accelerate this process, either by formulating new
algorithms or by deploying them on unconventional systems and custom hardware to solve
these problems.

Heterogeneous computing systems are an example for these unconventional systems. These
systems use a variety of di↵erent types of computational units like a Graphics Processing
Unit (GPU), a co-processor, or a Field-Programmable Gate Array (FPGA) along with a
Central Processing Unit (CPU). Unfortunately, these heterogeneous systems bring in new
and unexplored territories to bioinformaticians and programmers, making it arduous for
them to rapidly deploy applications on these heterogeneous platforms.

1.1 Motivation

This work is motivated by the fact that the heterogeneous systems based on FPGAs with
a high potential for reconfigurability and application acceleration has been out of reach of
bioinformaticians. Programming the accelerator requires training in digital logic design,
expertise in HDL programming and a working knowledge of heterogeneous architectures
including several interfaces that are specific to these machines.

Some of the prior work involving the use of heterogeneous architectures for bioinformatics
have been made primarily for benchmarking the performance of the machine and is of little

1
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use for the bioinformaticians. The hardware design engineer lacks the skills to decipher
various biological requirements and parameters, which brings the need for bioinformaticians
to use the low level hardware interfaces from the accelerator in their applications.

The Virginia Bioinformatics Institute (VBI) owns several nodes of FPGA-based heteroge-
neous computers from Convey Computers called HC-1 and HC-1ex. Convey demonstrated
a huge performance gain with a dynamic programming based alignment algorithm called
Smith-Waterman, on their HC-1ex platform [3]. This work involves the development of ac-
celerator for Smith-Waterman. The following are the reasons for designing a custom version
of dynamic programming personality.

1. Dynamic programming kernels can be mapped e�ciently in hardware by employing
systolic arrays.

2. A custom design can be altered for one’s own benefits.

3. This can be used as a template to implement any dynamic programming solution
by modifying the source thats already there. Ex Needleman-Wunch [4] , CLUSTAL,
GeneScan.

4. Applications can be created in the host that make use of dynamic programming in
hardware. Algorithms such as BWASW [5], Swift [6] and BFAST [7] directly use
Smith-Waterman. There could be several other such algorithms that benefit from an
accelerator for dynamic programming.

Need for an Unconventional Approach
Use of conventional approach to programming heterogeneous systems involves skills in multi-
ple programming paradigms and is complicated by di↵erent platforms and di↵erent program-
ming languages. The components of the heterogeneous systems often involve sub-systems
integrated from di↵erent vendors. These often lead to di�culty in timing, synchronization
and handshake protocols. All of these problems inherent in these system provide a hindrance
to bio-scientists from using them. Thus, providing a intuitive and unified solution to pro-
gram the heterogeneous systems enables the bioinformaticians to develop applications for
these systems.

1.2 Contributions

In this work, a two-fold approach to solve the problem is proposed. One approach is to use
heterogeneous architectures for bioinformatics. Several levels of possible optimization were
made to achieve highest performance achievable. The other approach is to use unconventional
methods to make this huge computation power available to computational biologists.

2
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For the first task, a highly e�cient dynamic programming kernel for Smith-Waterman is
built. Interfaces are defined and tested for its functionality. This interface is made available
to any application that requires dynamic programming. The performance is compared with
a serial computer as well as with a similar implementation on General Purpose-Graphics
Processing Units (GP-GPUs).

For the second task, a versatile and mature graphical programming language is chosen. It
is made to work with an heterogeneous environment and tested for the functionality. A
communication channel is formed between the Graphical User Interface (GUI) based front-
end and a back-end design running on the heterogeneous system. This is finally tested from
end-to-end with hardware simulation as well as the run-time execution.

1.3 Organization

The crux of this thesis consists of four major chapters which is organized as follows,

Chapter 2 - Background: This chapter familiarizes the concepts behind DNA sequencing
and alignments, FPGA architecture, programming and its tools, Convey architecture and its
personality development environment, LabVIEW and its FPGA programming capabilities,
and finally the General Purpose Graphics Processing Units and its programming paradigm,
CUDA.

This chapter also highlights some of the previous work in the field of hardware based accel-
erations for bioinformatics applications, GP-GPU based Smith-Waterman implementations
and graphical and high level programming models for hardware.

Chapter 3 - High Performance Smith-Waterman Implementation: The implemen-
tation of first part of the contribution along with the approach taken, is provided in this
chapter. This chapter details the implementation of the Smith-Waterman cell to the final
integration with the Convey memory. This chapter ends with a description of the implemen-
tation of the Smith-Waterman algorithm on GP-GPUs.

Chapter 4 - Convey LabVIEW Interface: The implementation of the second part of the
contribution along with the approach taken is provided in this chapter. This chapter contains
elaborate details on the LabVIEW generated HDL, its interface to the Convey environment
and finally its connections to the LabVIEW VI front panel through specific interfaces.

Chapter 5 - Results and Analysis: This chapter exhibits the results obtained, and the
analysis of those results. The performance of the FPGA based Smith-Waterman is compared
to that of the GP-GPU. Finally it compares this work with some of the previous work done
in this area.

3



Chapter 2

Background

2.1 DNA Sequencing

DNA carries the genetic information in the cell and is capable of self-replication and synthesis
of RNA. DNA consists of two long chains of nucleotides twisted into a double helix and
joined by hydrogen bonds between the complementary bases adenine (A) and thymine (T)
or cytosine (C) and guanine (G). In order to read and analyze any genetic sequence, biologists
must first determine a sample DNA sequence by reading the sequence of nucleotide bases
and must compare them to a reference or a known genome. Since the human DNA is a three
billion base pair sequence, this becomes a di�cult computational problem.

To determine the sequence of base pairs, the DNA sample is first replicated to produce
approximately thirty copies of the original DNA sequence. The copies of the replicated se-
quence are then cut at random points throughout the entire length of the genome, producing
short lengths of intact chains of base pairs known as short reads [8]. DNA sequencing tech-
nology began with Sanger sequencing in 1977 and evolved to many new massively parallel
sequencing technologies such as Illumina. The Illumina/Solexa sequencing technology typi-
cally produces 50 to 200 million 32 to 100 base pair reads on a single run of the machine [9].
However, other new sequencing techniques such as Roche/454 sequencing technology has pro-
duced long reads > 400 base pair in production, Illumina is gradually increasing read length
> 100 base pair, and Pacific Bioscience generates 1000 base pair reads in early testing [5]
requiring a need for both short and long read alignments.

These massively parallel sequencing technologies produce a large volume of short reads, that
mapping all these short reads to a large genome presents a great demand to develop faster
sequence alignment programs.

4
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2.2 Sequence Alignment

Sequence alignment is defined as a process of arranging the sequences of DNA, RNA, or a
protein against a known reference to identify regions of similarity that may be a consequence
of functional, structural, or evolutionary relationships between the sequences [10]. It is the
process of mapping the reads obtained from one of the DNA sequencing techniques to a
known reference. It attempts to map reads to the reference genome in order to study the
newly sequenced DNA segment or reconstruct an entire DNA.

This process of read mapping involve huge quantities of data, demanding a large amount
of memory and computational power. This often leads to long execution times in standard
processors. Several algorithms have been developed to solve sequential alignment problems.
Dynamic programming based algorithms such as Smith-Waterman and Needleman-Wunch,
described in Section 2.2.3, provide optimal alignments in quadratic time on a serial proces-
sor [11]. Nonetheless, there have been methods proposed to reduce the computation time
by sacrificing some accuracy of the solution leading to sub-optimal alignments. Most of
these algorithms filter specific locations in reference genome to perform alignment instead
of looking for alignments over the stretch of entire genome, which is both time consuming
and redundant. Most algorithms can be categorized to accomplish this either from a type of
indexing or by Burrows Wheeler Transform (BWT).

2.2.1 Indexing Based Approach

The indexing based solutions attempt to find subsequences of each read that match perfectly
to a location in the reference genome. In this method, an index of the reference genome is
created, which maps every short subsequence, called seeds, that occurs in the reference
genome to the locations where they occur. To align a short read, all of the seeds in the read
are looked up in the index, which yields a set of Candidate Alignment Locations. These
seeds should perfectly match to at least one location in the reference genome. Because the
seeds will match perfectly to the reference, an index of the reference can be created for the
desired seed length that tells at which positions in the reference a given seed occurs. These
seeds are then extended to form a full alignment of that read. The location with the highest
score is chosen as the alignment location for a short read. BFAST [7] is an example of a
program based upon this algorithmic approach.

2.2.2 Burrows Wheeler Transform Based Approach

The second category of algorithm that attempts to solve the short read mapping problem,
uses a data compression structure called the Burrows-Wheeler Transform (BWT) [12] and
an indexing scheme known as the FM-index [13]. The core idea for searching the genome to
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find the exact alignment for a read is rooted in the su�x trie theory [14]. The BWT of a
sequence of characters is constructed by creating a square matrix containing every possible
rotation of the desired string, with one rotated instance of the string in each row. The ma-
trix is then sorted lexicographically, and the BWT is the sequence of characters in the last
column, starting from the top.

This solution uses the FM-index, a data structure that synergistically combines the Burrows-
Wheeler transform and the su�x array, to e�ciently store information required to traverse
a su�x tree for a reference sequence. These solutions can quickly find a set of matching
locations in a reference genome for short reads that match the reference genome with a limited
number of di↵erences. However, the running time of this class of algorithm is exponential
with respect to the allowed number of di↵erences; therefore BWT-based algorithms tend to
be less sensitive than others. Bowtie and BWA [9] are examples of programs based upon
this algorithmic approach.

2.2.3 Dynamic Programming and Smith-Waterman

The problem of sequence alignment can be characterized to be solved by dynamic program-
ming algorithms where the bigger problem is broken into smaller similar problems. Because
of the similar nature of the smaller problems, one can take advantage of a highly data parallel
hardware designs. It is especially beneficial when a large amount of data has to be processed
while dealing with long sequences or a large number of smaller sequences.

Dynamic programming is used in many areas of computing and finds a great application in
finding best alignments in genome sequences. The disadvantages of DNA alignments using
dynamic programming are quadratic time and space complexities [15]. The use of parallel
execution can reduce the time complexity to linear time. One solution is to use a highly data
parallel processor like a GPU. Another solution is to design a specific processing kernel in
hardware and replicate it several times using a FPGA. These solutions can achieve massive
amounts of parallelism. Hence FPGAs and GPUs form an excellent platform for genome
alignment using dynamic programming.

Smith-Waterman [16], based on dynamic programming, is the one of the popular algorithms
for finding local alignments given a query and a reference sequence. It calculates the score
matrix for two given sequences using the equations 2.1a to 2.1d that describe the working of
the algorithm. It involves the use of a score matrix that keeps the track of the scores as the
computations are being done. The alignments are performed by tracing the path from the
highest score in the matrix to a point where the score drops to zero. This is termed as the
trace-back. Figure 2.1 shows the alignment of two sequences TTTACGT and GCCACCGT
with the score matrix for the alignment and its trace-back. Based on the score matrix, the
threshold point is chosen from where the trace-back starts to find all the possible optimal

6
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Figure 2.1: Smith-Waterman Alignment Score Matrix.

alignments.

H(i, 0) = 0, 0  i  m.......................................................................................... (2.1a)

H(0, j) = 0, 0  j  n.......................................................................................... (2.1b)

if ai = bj then w(ai, bj) = w(match) or if ai 6= bj then w(ai, bj) = w(mismatch) (2.1c)

H(i, j) = max

8
>>><

>>>:

0 ,

H(i� 1, j � 1) + w(ai, bj) Match/Mismatch,

H(i� 1, j) + w(ai,�) Deletion,

H(i, j � 1) + w(�, bj) Insertion.

(2.1d)

Needless to mention, dealing with huge genome sequences is a highly computation intensive
task. With the advent of parallel computing technologies in general and massively data
parallel architectures like FPGAs and GP-GPUs in particular, there has been a breakthrough
in solving the above mentioned alignment problem in reasonable time without sacrificing the
accuracy.

2.3 Field Programmable Gate Arrays

Field Programmable Gate Arrays or FPGAs in short are the class of semiconductor devices
that are based around a matrix of configurable logic blocks connected via programmable
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interconnects. This hardware can be reconfigured for specific applications even after the
product has been installed in the field, hence the name ”field-programmable” [17]. FPGAs
can be used to implement any logical function that an application-specific integrated cir-
cuit (ASIC) could perform, but the ability to update the functionality after shipping o↵ers
advantages for many applications.

Xilinx and Altera are the largest producers of FPGA at the time of writing. FPGA are the
crux of the user programmable accelerators which is the characteristic feature of the Convey
HC-1, the platform that is being used in this work.

2.3.1 FPGA Architecture

FPGAs have a uniform layout of logic blocks, input/output blocks and the interconnects
between them. Xilinx and Altera FPGAs have the same basic architecture but they use
di↵erent sets of tools and terminologies. As Xilinx FPGAs are used in Convey Computers,
the components and tools are defined in the context of Xilinx FPGAs.

Configurable Logic Block (CLB), the basic logic elements for Xilinx FPGAs, provide
combinatorial and synchronous logic as well as distributed memory and SRL32 shift register
capability [18]. A single CLB in Virtex-5 family of FPGAs consists of two slices: SLICEL
(logic) and SLICEM (memory). Each CLB is connected to a switch matrix which can access
a general routing (global) matrix. Every slice contains four Look-Up Tables (LUTs), wide
function MUXs, carry logic, and configurable memory elements. SLICEM support storing
data using distributed RAM and data shifting with 32-bit shift registers. Look-up tables,
implement the entries of a logic functions truth table. LUTs are used for combinational
functions or can also be used to implement small Random Access Memories (RAM). Flip
Flops (FFs)/Latches are the memory elements with programmable clock edges, set/reset
and clock enable. These memory elements can also be configured as shift registers.

I/O blocks (IOBs) provide the interface between package pins and the internal configurable
logic. Most popular and leading-edge I/O standards are supported by programmable I/O
blocks (IOBs). The IOBs can be connected to a flexible ChipSync logic for enhanced source-
synchronous interfacing. Source-synchronous optimizations include per-bit deskew (on both
input and output signals), data serializers/deserializers, clock dividers, and dedicated I/O
and local clocking resources. The Input Output Bu↵ers (IOB) are programmable for inputs
or outputs at the periphery of the FPGA chip. The I/O voltages and currents are also
configurable.

Block RAM modules provide flexible 36 Kbit true dual-port RAM that are cascadable
to form larger memory blocks. In addition, Virtex-5 FPGA block RAMs contain optional
programmable FIFO logic for increased device utilization. Each block RAM can also be
configured as two independent 18 Kbit true dual-port RAM blocks, providing memory gran-
ularity for designs needing smaller RAM blocks.
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Programmable Interconnect Network contains horizontal and vertical mesh of wire
segments interconnected by programmable switches called programmable interconnect points
(PIPs). These PIPs are implemented using a transmission gate controlled by a memory bits
from the configuration memory.

2.3.2 FPGA Tools

Described here are the tools that are used during the various stages of an application devel-
opment on FPGAs.

Simulation Tools are either the tools provided by the FPGA vendors or third party com-
panies that help in testing the functionality of the design before being downloaded on to
the FPGA. This helps in saving development time between iterations and also aids in en-
capsulating the logic flow in the design. For Convey designs, Synopses VCS is used for
simulation.

Waveform Analyzers are the tools that gather the dump files from the simulation tools
and draw the timing diagrams for the programmer to analyze the flow of data and signals
between the various design components. Convey supports Synopsys DVE tool to analyze
the waveforms.

Synthesis tools are most often provided by the FPGA vendors and is used for the entire
design flow from compilation of the source code, generation of the schematic from the source,
logic placement, routing to generation of the bit-stream that finally programs the FPGA. In
this work, Xilinx ISE 14.1 is used for all the synthesis purposes.

Debug tools, are used alike probes to debug the design on the actual hardware. Several
probing points are incorporated at the time of design and these tools lets the designers look
into the logic fabric to debug hangs and incorrect functionalities in the design. Chipscope,
a Xilinx tool, is used to debug issues on Convey HC-1 hardware.

2.3.3 Programming FPGAs

Traditionally, FPGAs were programmed using Hardware Descriptions Languages (HDLs),
but recently several high level techniques were introduced to for programming FPGAs. De-
scribed below are some of the techniques available today, to program FPGAs.

Hardware Description Languages are the traditional and most often used design lan-
guage for FPGA. VHDL and Verilog are two popularly used Hardware description languages.
The use of HDLs allow the designer to control every minute detail in the design and how
its being configured by a resource on FPGA. However programming in HDL requires the
knowledge of hardware and Digital design, which is not accessible to all.
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High Level Synthesis is a designing approach where the programmer develops hardware
in high level language such as C. Xilinx AutoESL is a tool developed by Xilinx to accomplish
this. Although this in not used in this work, it is provided here for completion.

OpenCL is similar to AutoESL with additional support to the OpenCL libraries. This is
still an area of research and no commercial tool is available at the time of writing.

CORE Generator is another high level design tool from Xilinx, primarily developed to
generate e�cient cores for some regularly used complex functions such as a floating point
computation.

Azido is one of the graphical entry tools developed by a 3rd party vendor, Data IO. This
was the tool used in the design of Bflow [19], which is used as reference for LabVIEW based
ConVI in this work.

LabVIEW is another graphical programming environment developed by National Instru-
ments primarily for their data acquisition devices. However NI extends its LabVIEW support
to various FPGA boards. This work involved use of LabVIEW for designing the accelerators
in Convey.

2.4 Convey HC-1

The Convey HC-1 is hybrid-core computer, one that improves application performance by
combining an x86 processor with hardware that implements application-specific instructions.
It uses a commodity two-socket motherboard to combine a reconfigurable, FPGA-based co-
processor with an industry standard Intel Xeon serving as the host processor. Convey uses
a mezzanine connector to extend the Front Side Bus (FSB) interface to a large co-processor
board. The architecture is shown in Figure 2.2. Convey HC-1 combines Intel Xeons CPU
and four Xilinx Virtex 5 FPGAs in its Application Engines (AE) [2].

2.4.1 Host Processor

The Host, an Intel Xeon processor executes standard x86 applications in a Linux environ-
ment. The host application communicates to the hardware accelerator by passing parameters
to the Convey assembly code which are in turn directed to the application engine through
the scalar processor and the dispatch interface.

2.4.2 Application Engine Hub (AEH)

The Application Engine Hub is made of two non-user programmable FPGAs, one that in-
terfaces to the host processor through the FSB and the other containing the scalar soft core
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Figure 2.2: Convey Architecture. Source: [1]. Used under fair use guidelines, 2011.

Table 2.1: Convey HC-1 Specifications

Parameter HC-1 HC-1ex
Clock Speed 2.13 Ghz Dual Core 2.13 Ghz Quad Core
Host Memory 4-16 DIMM max 128 GB 4-16 DIMM max 128 GB
Co-Processor Memory 8-16 DIMM max 128 8-16 DIMM max 128
AE-AE 668 MBps full duplex ring 668 MBps full duplex ring
Co-Processor (FPGAs) 4*Virtex 5 (XC5VLX330) 4*Virtex 6 (XC6VLX760)
AE-Memory 2.5 GBps link 2.5 GBps link
SG DIMM 5 GBps 5 GBps
Peak Bandwidth 20 GBps with striding 20 GBps with striding
Co-Processor Memory 16 GB 16 GB
Co-Processor Clock Speed 150 MHz 150 MHz
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and its interface to the application engines called the dispatch interface. The scalar proces-
sor runs the Convey assembly code and executes the instructions defined in the assembly
language. It then sends data and signals decoded from the instructions to the application
engine FPGAs though the dispatch interface as shown in Figure 2.3.

Figure 2.3: Convey AE Hub and the Dispatch Interface. Source: [2]. Used under fair use
guidelines, 2011.

2.4.3 Application Engines (AEs)

Four user programmable FPGAs that constitute the compute core for the co-processor are
called the Application Engines. Detailed description of the Convey application engines are
provided in Table 2.2 for the HC-1 and HC-1ex systems. The FPGA used here are the Xilinx
Virtex family of high performance FPGAs [18]. The AEs themselves are interconnected in
a ring configuration with 668 MB/s, full duplex links for AE-to-AE communication.

2.4.4 Dispatch Interface

The host processor communicates with the AEs through the Dispatch Interface. The com-
ponents of the dispatch interface are shown in Figure 2.3. In order to communicate with the
AEs, the host code uses API functions called co-processor calls or copcalls. The host CPU
uses this mechanism to send parameters to the AEs and receive status information from the
AEs [20]. Copcalls can either be a blocking copcall or a non-blocking copcall. In case of a
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Table 2.2: The AEs Compared

Parameters Virtex 5 (XC5VLX330) Virtex 6 (XC6VLX760)
Slices 51840 118560
LUTs Slices*4, 6 input Slices*4
Flip Flops Slices*4 Slices*8
Distributed RAM 3420Kb 8280Kb
DSP Slices 192 864
Block RAM 11664Kb 25920Kb
I/O Banks 27 30
Max I/O 960 1200

blocking call, the host application stalls until the co-processor returns control to the host
application, whereas in case of a non-blocking copcall, the host application continuous to
execute the instructions following the copcall and does not to wait for the co-processor to
complete the execution. Non-blocking copcalls execute faster and are used in certain cases
to avoid stalling the host processor.

2.4.5 Memory Interface

Convey co-processor contains eight memory controllers which are physically implemented in
non user programmable FPGAs on the co-processor board. The four AEs interface with the
eight memory controllers through a full crossbar. Each memory controller FPGA controls
two DDR2 DIMMs. Each AE has a 2.5 GB/s link to a memory controller which in turn
has a 5 GB/s link to its DIMMs. Each AE can achieve a theoretical peak bandwidth of
20 Gbyte/s when striding across eight di↵erent memory controllers. Figure 2.4 shows the
memory connections in Convey [21].

2.4.6 Management Interface

Convey HC-1 includes an independent port to the application engines called the management
or the debug interface. The management interface provides the communication path between
the Management Processor (MP) [2] and the application engines. It was designed to be used
for debugging and monitoring the status of the the FPGAs. Since this path is independent
of the instruction dispatch path from the host processor, it can be useful in interfacing the
LabVIEW VI by allowing access to the internal hardware design generated by LabVIEW
without having to interrupt the host processor. This interface is made of registers called
Control and Status Register (CSR) and these registers are grouped together to form a CSR
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Figure 2.4: Convey Memory Connections. Source: [2]. Used under fair use guidelines, 2011.

agent. This interface is instantiated in the Convey supplied libraries, along with CSR agents
in a ring topology as shown in Figure 2.5.

2.4.7 Personality

Personality is the Convey’s term for the co-processor configuration consisting of hardware
modules callable from the host by a copcall. Convey provides a personality development kit
that enables the designer to develop custom personality for application engine. Convey pro-
vides logic libraries in the PDK to interface with the scalar processor, the memory controllers
and the management processor. The developer develops the logic within this environment.
The following are the Convey provided components as the part of the custom PDK.

1. Makefiles for both synthesis and simulation design flows.

2. Support for Verilog HDL. VHDL can be incorporated by adding commands to the
existing Makefile. This comes to use while interfacing the LabVIEW modules.

3. Simulation modules for all the default interfaces provided by Convey.

4. A Programming-Language Interface (PLI) to let the host code interface with a behav-
ioral HDL simulator such as Modelsim or Synopsys.
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Figure 2.5: Convey Management interface with Signals. Source: [2]. Used under fair use
guidelines, 2011.

2.5 LabVIEW FPGA

LabVIEW (short for Laboratory Virtual Instrument Engineering Workbench) is a graph-
ical development platform from National Instruments. It has a front-end graphical inter-
face called a Virtual Instrument (VI), which contains controls and indicators to interact
with a program running in the back-end. The NI LabVIEW FPGA Module extends the
LabVIEW visual programming language to target FPGAs on NI Reconfigurable I/O (RIO)
hardware [22]. It was primarily created to configure the behavior of the reconfigurable FPGA
to match the requirements of a specific measurement and control system. This specific VI
created to run on an FPGA device is called the FPGA VI while the VI running on the host
is called Host VI. In the remainder of the document, LabVIEW HDL (LV HDL) refers to
the HDL (VHDL) generated from LabVIEW VI. The FPGA Module creates a register map,
specific to the FPGA VI, that translates to a hardware register for every control and indica-
tor used in VI. LabVIEW uses the register map internally to communicate with the FPGA
VI from the interactive front panel, host VI, through the programmatic FPGA interface
communication.

In this work, LabVIEW was chosen for the Convey’s application engines design flow, and
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its called ConVI. Designing the accelerator with LabVIEW has its inherit advantages over
conventional hardware design with HDL programming that can serve as a great benefit for
the bioinformatics community for designing their own accelerators. The following are some
of the benefits from using LabVIEW:

1. LabVIEW clearly represents parallelism in data flow, so users who are inexperienced in
traditional FPGA design can productively apply the power of reconfigurable hardware.

2. No knowledge of HDL is required to design a specific hardware solution.

3. The user can design and rapidly develop hardware components with the power of
LabVIEW graphical programming.

4. The user can use the Interactive Front Panel to communicate with the FPGAs from
the host computer to control and test the algorithm running on the FPGA device.

5. LabVIEW also allows encapsulation of common sections of code as subVIs to facilitate
their reuse on the block diagram.

6. The user can get to control and monitor data directly from the FPGA device using
Interactive Front Panel Communication by reading and writing indicators and controls.

7. Indicators can be added to the FPGA VI block diagram to monitor the internal state
of the FPGA VI. Indicators here serve the same purpose as probes for a non-HDL
designer. An indicator can be placed anywhere on the block diagram where the user
needs to see data to verify the functionality of the VI.

However, the use of LabVIEW for this work has some drawbacks. LabVIEW FPGA was
geared towards embedded systems and not towards the heterogeneous systems like the Con-
vey HC-1. There is also no prior work related to the use of LabVIEW to design the acceler-
ators of a heterogeneous systems. Thus, these challenges had to be overcome before taking
the advantage of using LabVIEW to design the accelerators for the Convey HC-1.

2.6 GP-GPUs and CUDA

Driven by the insatiable market demand for real time, high-definition 3D graphics, the
programmable Graphic Processor Unit or GPU has evolved into a highly parallel, multi-
threaded, many-core processor with tremendous computational horsepower and a high mem-
ory bandwidth. The GPU is especially well-suited to address problems that can be expressed
as data-parallel computations. Because the same program is executed for each data element,
there is a lower requirement for sophisticated flow control, and because it is executed on
many data elements and has high arithmetic intensity, the memory access latency can be
hidden with calculations instead of big data caches [23].
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Figure 2.6: NVIDIA GP-GPU Architecture.

In November 2006, NVIDIA introduced CUDA, a general purpose parallel computing plat-
form and programming model that leverages the parallel compute engine in NVIDIA GPUs
to solve many complex computational problems in a more e�cient manner than on a CPU.
The various techniques and the programming methods described in NVIDIA CUDA Pro-
gramming Guide 2.0 [24] are used in this work to enable the use of NVIDIA General Purpose
Graphics processing units (GP-GPUs) for this application.

2.6.1 Streaming Multiprocessors and CUDA Cores

Streaming Multiprocessors (SMs) are the physical execution units within the NVIDIA GP-
GPUs. Each Streaming Multiprocessor has its own set of CUDA Cores (32 in Fermi Ar-
chitecture), registers and shared memory which double up as the L1 caches for these cores.
Each CUDA core is responsible for execution of a CUDA thread and each SM is responsible
for scheduling and execution of entire CUDA thread block.

2.6.2 CUDA Memories

NVIDIA GP-GPUs have a hierarchy of di↵erent types of memories that serve the purpose of
making GPUs e�ciently execute data intensive application thereby increasing its throughput.
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Figure 2.6 shows the relationship among various memories in a GPU.

Global memory is the Graphics-DDR (GDDR) DRAM residing outside the GPU on the
Graphics card. These are made of GDDR memory as they have a wider data bus and higher
clock frequency to crater to the higher bandwidth of data required by the computation cores
of the GPU. Each access to the global memory takes approximately, 200 to 400 clock cycles,
hence the latency is high while each access can provide 128 bytes of data increasing the
throughput of access. Global memory is also the only memory accessible by the host CPU.

Local memory is a part of the GDDR DRAM that is dedicated to each of the streaming
multiprocessor. These are not accessible by the host CPU and is generally cached.

Texture and Constant memories are read only memories that reside on the GDDR DRAM
and are accessible to the host processor. Texture memory provides convenient indexing and
filtering for certain applications thereby higher bandwidth can be achieved provided there is
locality in the texture fetches.

Shared memory is the SRAM built into each of the Streaming Multiprocessors and serves
as the high speed memory for data access. The shared memory is organized into multiple
banks and avoiding bank conflicts is the key while accessing the shared memory. Shared
memory is not accessible by the host and it is dedicated only to the cores in that SM. Shared
memory is allocated either before the kernel call or at the time of the kernel call and it also
doubles up as a L2 Cache.
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2.7 Related Work

This section briefly describes some of the previous contributions in the area of the work
presented here. This section is divided into three areas: one in the area of FPGA and
heterogeneous computing based acceleration, second, acceleration of Smith-Waterman on
GP-GPUs, third, the alternate methods to program the hardware accelerators.

2.7.1 Attempts for Hardware Acceleration of Bioinformatics Ap-
plications

Due to its data and compute intensive nature, several attempts have been made in recent
years to port the bio-applications on custom hardware accelerators. While some of the work
describe implementation on just the hardware platforms, the others are on heterogeneous
systems like the Convey HC-1. These provide a good picture for porting bio-applications on
to the application engines of Convey HC-1.

Altera’s white paper on the implementation of Smith-Waterman [25] on XD1000 provides
a good insight into the implementation of Smith-Waterman on a reconfigurable hardware.
XD1000, a reconfigurable supercomputing platform similar to Convey HC-1, has a dual
Opteron motherboard with Altera Stratix II FPGA inserted directly into one of the sockets.
Due to its clear and concise description, this white paper is a good reference for hardware
implementation. The work presented here derives several low level implementation ideas
from this paper and it is described later in Section 3.1.

Another research paper presents the use of hybrid system for short read mapping employing
both FPGA-based hardware and CPU-based software [26]. The CPU handles simple tasks
of read coding, transferring the coded reads to the aligner along with its operating com-
mands and receiving the alignment results. The alignment engine designed using the custom
hardware on FPGA, accelerates the alignment process.

Several algorithms in sequence alignment that require BWT, use FM indexing. The work on
the hardware implementation of string matching using FM-Index [27], is helpful in providing
hardware acceleration to those applications that employ the use of BWT. It states that
execution of Bowtie using this approach saw two orders of magnitude increase in speedup.

Another recent work involved the implementation of BFAST on Hardware, by University of
Washington on the M501 board [28]. Of the five stages in the BFAST algorithm, two of the
most time consuming stages, ”match” and ”local align”, have been implemented in hardware.
This led to two orders of magnitude speedup versus the BFAST software, consuming just
2.16% of the energy consumed by the BFAST software.

The extended Smith-Waterman using Associative Massive Parallelism, SWAMP+ [29], shows
BLAST like sub alignments with Smith-Waterman like sensitivity. This was introduced in
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three di↵erent parallel architectures: Associative Computing (ASC), the ClearSpeed co-
processor, and the Convey Computer FPGA co-processor. Here the unmodified Convey
Smith-Waterman program, cnysws, was called in a python script to perform the sub align-
ments.

Grigorios Chrysos et al. [30] presented an in-dept look at the potential for FPGA in bioin-
formatics algorithms. Here the NCBI BLAST was profiled and the most time consuming
part of the software was mapped on to the Convey HC-1’s AEs and the results validated.
Although it is yet to be optimized, it is expected to o↵er atleast one order of magnitude
speedup against the NCBI implementation running on the Host Processor.

Bakos et al. [20] extended the BEAGLE API for Phylogenetic Likelihood Function (PLF) on
Convey HC-1. These APIs include optimized algorithms for various parallel architectures.
Due to a high arithematic intensity of 130 floating point operations per 64 bytes of data,
this implementation gave 78 GFOPS of performance, which is a 40x speedup compared to
the CPU implementation on the Convey host.

Oliver et al. [31] performed the SW algorithm on a standard Virtex II FPGA board, using
a linear systolic array, achieving a peak performance of about 5 GCUPS using a�ne gap
penalties.

Li et al. [32] used the Altera Nios II soft-processor to implement the algorithm. This was
optimized by using the FPGA fabric to compute the value of each cell of the score matrix
through a custom instruction. This accelerated the algorithm’s computation time by up to
160 folds compared to a pure software implementation.

Allred et al. [33] demonstrated an implementation of the Smith-Waterman algorithm in
a novel FSB module using the Intel Accelerator Abstraction Layer. They modified the
SSEARCH35, an industry standard open-source implementation of the Smith-Waterman
algorithm, to transparently introduce a hardware accelerated option to users. They demon-
strated a performance of nine billion cell updates per second using this technique.

2.7.2 Work on GP-GPUs

Recently, many GP-GPU implementations of Smith Waterman [34] have been proposed with
the advent of CUDA and general purpose computing on CUDA. Most of them involve finding
the most similar sequence in a genomic database for a given query sequence. When necessary,
the full alignment is obtained in CPU, which does not cause a bottleneck when the sizes of
the sequences are small.

One of the early CUDA Smith-Waterman implementations [35], saw the potential of GP-GPU
in genome alignment and it was claimed to be 2 to 30 times faster than the implementations
of Smith-Waterman on commodity hardware. Speeds of more than 3.5 GCUPS (Giga Cell
Updates Per Second) was achieved on a workstation running two GeForce 8800 GTX.
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Smith-Waterman programs like CUDA SW++ [36] optimizes the algorithm using various
GPU centric techniques such as coalesced access of the global memory and the use of tex-
ture memories for a faster access. The same was further improved using SIMT abstraction
and partitioned vectorized algorithm in CUDA SW++ 2.0 [15] to achieve up to 1.76 times
performance improvement compared to CUDA SW++. Finally their latest version, CUDA
SW++3.0 [34] uses GPU PXT SIMD instructions and CPU SSE instructions to achieve a
speedup of around 2.9 over CUDA SW++ 2.0 on NVIDIA Kepler Architecture.

However some of the recent work involved dealing with specific problems like aligning longer
sequences and dealing with trace-back on GP-GPUs.

A GPU algorithm, CUDAlign [37], that is able to compare Megabase biological sequences
with an exact Smith-Waterman a�ne gap variant was proposed. CUDAlign was implemented
in CUDA and tested on two GPU boards, separately. A peak performance of 20.375 GCUPS
was reported showing potential scalability of this approach.

Later in 2011, the same authors obtained alignment on GPU in linear space [38]. Here, the
emphasis was to obtain a complete alignment for long sequences on GPU. This work solves a
specific case of aligning a long genome sequence to another in steps to conserve the memory
usage.

Another recent work [39] introduces stripped and chunked alignments to align a pair of long
sequences. They reduced the shared memory usage, global memory per SM and the I/O
tra�c between them, in turn achieving an order of magnitude reduction in run time relative
to competing GPU algorithms.

Sequence Alignment on the PlayStation-3, CBESW [40], was designed for the Cell/BE-
based PlayStation-3 (PS3) by Warawan et al. This achieved a peak performance of about
3.6 GCUPS demonstrating that the PlayStation-3 console can be used as an e�cient low
cost computational platform for high performance sequence alignment applications.

Another implementation of Smith-Waterman on Cell-Broadband Engine [41] involved scaling
of the algorithm across multiple Cell-BE nodes on both the IBM QS20 and the PlayStation-3
Cell cluster platforms to achieve a maximum speedup of 44, when compared to the execution
times on a single Cell node. Here, the Smith-Waterman algorithm was also optimized on GP-
GPU by including optimal data layout strategies, coalesced memory accesses and blocked
data decomposition techniques to achieve a maximum speedup of 3.6 on the NVIDIA GP-
GPU when compared to the performance of the naive implementation of Smith-Waterman.

2.7.3 Unconventional Hardware Programming

The project ConVI, described in Chapter 4, was inspired by an application called Bflow [19],
developed a year ago. Bflow uses a specific graphical entry tool tailored for hardware design,
called Azido. The hardware designed from Azido was deployed on Convey HC-1 and was
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interfaced with the Azido’s front-end graphical interface. Below is the the Azido-Convey
interface involving the use of COM objects to communicate with the telnet server in Bflow.
The MPIP is the telnet server that communicates with the management processor.

Azido <=> COM Object <=(SSH Tunnel)=> Relay (Convey) <=> MPIP Telnet Server
<=> Management Interface (CSR Ring)

The COM object makes a connection to a local socket, which is tunneled to a port on the
Convey box, on which the azprobe utility listens.

Another approach to programming accelerators involved the use of OpenCL [42]. OpenCL
libraries were used to program the Convey HC-1 system. This work was later extended
to incorporate systolic arrays and Smith-Waterman in hardware [43]. This approach has
the high level programming characteristics against which the current proposed work can be
compared.
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Chapter 3

High Performance Smith-Waterman
Implementation

In this implementation, an attempt has been made to harness the re-configurable hardware
of the Convey systems. Dynamic programming was chosen as it maps e�ciently with the
hardware and for all the advantages discussed in Section 1.1. The design was implemented
using the bottom-up approach.

At first, a single cell of Smith-Waterman Processing Element (PE), is built in hardware. The
design is then extended to a cascade of PEs to form a systolic array. Then the systolic arrays
are duplicated to occupy the entire fabric of the FPGAs. Every systolic array is connected to
the memory controllers through the Convey-provided FIFOs. The AEs are finally interfaced
to the dispatch interface to receive the source and destination pointers. The flow of data to
and from the dispatch interface, memory controllers and the systolic arrays are controlled
by a state machine.

3.1 Smith-Waterman Processing Element

The Processing Element (PE) is the smallest module in this design. Each PE controls the
value of a single cell of the scoring matrix at a time. The block diagram of the PE is shown
in Figure 3.1. It takes values from three neighboring cells in the scoring matrix, computes
their respective scores, compares the results and stores the maximum.

Each PE then moves on to compute the value of the cell that is immediately below the cell
that was just computed. Di↵erent PEs have the task of computing the values of the cells
in di↵erent columns in the scoring matrix. The PEs are cascaded to one another as shown
in Figure 3.2. Each PE gets the value of the neighboring cells to the cell being executed as
follows,
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• Value of upper cell from itself, delayed by a clock cycle.

• Value of the left cell from the adjacent PE.

• Value of the diagonal cell from the adjacent PE delayed by a clock cycle.

Figure 3.1: A single Smith-Waterman Processing Element.

3.2 Systolic Array

The cascade of PEs continue such that the number of PEs in the cascade is equal to the
length of the query sequence. This cascade of PEs computes the entire Smith-Waterman
scoring matrix in hardware and its termed as the ”systolic array”. The systolic array is a
module thats holding the Smith-Waterman PEs together. Each application engine has several
independent systolic arrays, each capable of computing 32 base pair sequence alignments.
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Figure 3.2: Cascading of the Smith-Waterman PEs.
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Figure 3.3: Hierarchical design of PEs and their interface to FIFOs in each of the AEs.

Each column in the score matrix is controlled by the same PE. This implementation is based
on the white paper by Altera Corp [25].

Each application engine in Convey has multiple systolic arrays to compute the scores of
multiple sequences in parallel. This was done to optimize the resource usage in the FPGA
while utilizing the maximum memory bandwidth. Figure 3.3 shows each application engine
with systolic arrays where each systolic array has its own independent memory interface.
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3.3 FIFO Interface

Convey co-processor memory supports DDR2 DRAM modules. These memory modules are
interfaced to the co-processors through eight memory controllers as explained in Section 2.4.5.
The data between the memory controllers and the AEs can be queued in Convey supplied
FIFO modules to streamline the memory accesses. The FIFOs use either the Block-RAMs
available on the FPGAs or SRAM in the LUTs. This can be configured based on the depth of
the FIFO required and the speed required by the application. Three FIFOs are used in this
design for each one of the systolic arrays. One FIFO is used to queue the reference sequence,
another is used to queue the query sequence and the last FIFO is used to queue the scores
before they go back into the memory. Figure 3.4 shows the FIFO interface provided in the
Convey PDK.

1 fifo #(.DEPTH(32), .WIDTH(64), .AFULLCNT(28)) op1_fifo (

2 .clk (clk), // clock to fifo

3 .reset (r_reset), // reset to fifo

4 .push (op1_wea), // push operand 1

5 .din (r_mc_rsp_data), // data in

6 .afull (op1_fifo_afull), // almost full

7 .full (),

8 .cnt (),

9 .oclk (clk), // output clock

10 .pop (pop_fifo), // pop signal

11 .dout (op1_ram_out), // output to ram

12 .empty (op1_qempty), // empty fifo

13 .rcnt ()

14 );

Figure 3.4: FIFO Interface

These FIFOs interface to the eight independent memory controllers depending on the cross-
bar configuration. Turning on the crossbar makes any memory controller accessible to the
FIFOs in any of the AEs. This might improve the bandwidth but requires proper packing
of sequences in the co-processor memory. Figure 3.5 shows the interconnections between the
FIFOs in each of the AEs to their respective memory controllers when crossbar is disabled.

3.4 Dispatch Interface

In the Smith-Waterman application, the dispatch consists of three pointers to the co-processor.
Two of the pointers point to the memory location where the query and the reference sequences
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Figure 3.5: Final structure of the Smith-Waterman design showing the connections to the
memory and the dispatch on Convey HC-1.

are stored in the co-processor memory and the third pointer points to the location in the co-
processor memory where the resultant scores are stored. A blocking copcall is made to pass
these parameters to the AEs through the dispatch interface. The host processor stalls until
the AEs complete the execution and returns control to the host. The host application then
copies the scores from co-processor memory and writes it to a file as shown in Figure 5.4.

3.5 Interface to the Bio-applications

In this work, one of the primary goals of the Smith-Waterman application is to provide accel-
erated dynamic programming API to any bio-application that has a dynamic programming
phase. Many bio-applications can be partitioned into segments where the dynamic program-
ming portion of the application is ported into Convey co-processor through the copcalls,
while the rest of the code can reside and execute on the host processor.
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3.6 General Purpose-GPUs

The design for Smith-Waterman is implemented in NVIDIA GP-GPUs, GTX 580 and GT
440 using the Fermi architecture. This work began with two implementations for computing
the score matrix. One where each thread computes the score for a single cell and the other
where each thread computes the score for the an entire row of the Smith-Waterman score
matrix. In both cases the implementation was first done on a global memory and then
transferred to a shared memory location for a faster memory access. CUDA 5.0 was used
for these implementation.

Since only the maximum scores are tracked, the transfer of the score matrix back and forth
between host and the GPU is not required and the matrix is used as a scratch pad.

3.6.1 One Thread per Cell

This is a simpler implementation as shown in Figure 3.6 where each thread continuously
updates a single cell of the matrix. As each cell is processed by its own thread, the indexing
is simpler and there is no change in the index with iterations over a kernel call.

Figure 3.6: One Thread per cell.

However this implementation has an inherit disadvantage that most of the threads are idle.
For a m� length query and a n� length reference, the total number of threads required is
m ⇤ n while the number of threads in use is limited to the size of the query m. Thus, at any
given time, (m � 1) ⇤ n threads are idle. The thread requirement also scales quadratically
with the query and the reference sizes.

3.6.2 One Thread per Row

This is one of the solutions to utilize threads e↵ectively. Here the entire row of cells is
computed by a single thread. Hence the number of threads launched is equal to the number
of rows which is in turn equal to the query length m. In Figure 3.7, the thread number
computing each cell is shown, the thread number is constant across a row as seen.
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Figure 3.7: One Thread per Row.

This approach is similar to the Altera’s implementation [25] on a FPGA. This approach has
an index update with each iteration within a kernel. The number of threads are fixed and
are equal to the size of the queries. The reference sequences of any size can be used as the
number of threads does not depend on the size of the reference sequences.
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Chapter 4

Convey-LabVIEW Interface

This work plays a part in the development of Convey with Virtual Instruments (ConVI)
design flow. Here, the LabVIEW programming environment is demonstrated as a viable
platform to build bio-applications on Convey. This work tries to simplify the task of using
heterogeneous systems with re-configurable devices for bioinformatics researchers.

While LabVIEW o↵ers one of the potential design environment for non-hardware design
engineers, it is naively supported to only run on National Instruments FPGA targets, called
the Re-configurable I/O (RIO) devices. It is built to work on embedded platforms and not
on data centers. Thus, comes the challenge to interface LabVIEW to high performance
system such as Convey. The Interactive Front Panel communication on LabVIEW uses a
polling-based method of communicating between the Host VI and the FPGA VI by reading
and writing indicators and controls [22]. This feature also calls for a robust low latency
communication channel between the host VI and the FPGA VI.

To accomplish this task, this work builds on the existing work on the Bflow application
working on the Azido-Convey interface. Going further, the JTAG interface is exploited to
enable the remote access of the application from the LabVIEW front panel.

4.1 LabVIEW FPGA Communication

The LabVIEW front panel communicates with FPGA with constant monitoring of the status,
command and data registers in its generated HDL. An Host VI can control and monitor data
passed through the FPGA VI front panel. The values that do not have controls or indicators
cannot be accessed on the wires on the FPGA VI block diagram unless the data is stored
in a DMA FIFO. Read/Write Control function reads and writes controls and indicators in
the order they appear in the Read/Write Control function on the block diagram [22]. The
FPGA Module creates a register map, specific to the FPGA VI, that includes a hardware
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Figure 4.1: ConVI Overview.

register for every control and indicator.

4.2 Connections and Bit-Mapping

Here, the Convey’s management interface is used to connect the signals to the generated
LabVIEW HDL though a wrapper logic. The CSRs are written through the telnet commands
at the host from the LabVIEW server. The data in CSRs are passed to the LabVIEW HDL
through its data input ports. The output from the LabVIEW HDL is written to a CSR
which is retrieved by a CSR read command. This setup is used for run-time communication
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Table 4.1: Request and Response formats

Request

Bits : 00� 32 : 4-byte data for the LabVIEW registers
Bits : 33� 42 : 11-bit Address of the LabVIEW registers
Bit : 48 : Read Strobe
Bit : 52 : Write Strobe
Bits : 56� 57 : 2-bit Message ID

Response

Bits : 00� 32 : 4-byte data for the LabVIEW registers
Bit : 48 : Ready
Bit : 52 : Data Valid
Bits : 56� 57 : 2-bit Message ID

between Convey and the LabVIEW front panel.

The bit encoding for both CSR and AEG registers, that carry the commands from the MPIP
telnet server to the LabVIEW HDL are shown in Table 4.1 and in Table 4.2.

Here, the Message ID can take four values: 0,1,2,3 and they need to be cycled between
consecutive messages to be taken in as a new request. The Message ID for the response will
be the same as the message ID for the request.

4.3 Simulation of ConVI

During simulation, the AEG registers in the dispatch are used in place of CSR for the
transactions due to the lack of interface from the simulator to the management interface.
The AEG registers are written through non-blocking copcalls thereby not a↵ecting the host
application code running on the x86 processor. Figure 4.2 shows the Convey assembly
code implementing a non-blocking copcall to write and read values from AEG registers that
connect to the ports of LabVIEW HDL.

4.4 LabVIEW HDL Wrapper

A wrapper is a piece of code that abstracts the use of another piece of code. Wrappers are
used to adapt an existing design to have a di↵erent interface. Due to the heterogeneous
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1 ##----------------------------------

2 .globl lvload

3 .type lvload. @function

4 .signature pdk=4

5

6 lvload: # function that loads the personality and polls for read/write requests

7 loop:

8 ld.uq $run(%a0),%a20 # Exit the loop if run = 0

9 cmp.uq %a20, %a0, %ac0 # Check for loop complete

10 br %ac0.eq, done # Stop

11

12 ld.uq $mode(%a0),%a22 # load the mode register to decide which action to

be performed

13

14 cmp.uq %a22, $0, %ac0 # 0 for polling back for a different mode

15 br %ac0.eq, loop # Poll

16

17 br loop # stall

18 ##----------------------------------

19 write_lv:

20 ld.uq $Payload_In(%a0),%a30 # load the payload into a30

21 mov.ae0 %a30,$0,%aeg # move the payload into aeg0 to dataport in

22 st.uq %a0, $mode(%a0) # change mode back to 0 for polling

23 br loop # stall and wait for next request

24

25 read_lv:

26 mov.ae0 %aeg,$0,%a30 # read the dataport out through aeg0

27 st.uq %a30,$Data_Out(%a0) # store the value into Data out

28 st.uq %a0, $mode(%a0) # change mode back to 0 for polling

29 br loop # stall and wait for next request

30 ##----------------------------------

31 done:

32 rtn

33

34 lvloadEnd:

35 .globl lvload

36 .type lvload. @function

37 .cend

38 ##----------------------------------

Figure 4.2: Non-blocking copcall in Convey assembly code
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Table 4.2: The Bit Mapping for LabVIEW Commands through 64-bit CSR and AEG Reg-
isters.

64 bits of the CSR/AEG registers CSR 0x8007 CSR 0x8008 Mask

7 6 5 4 3 2 1 0 Data-LSB Data-LSB FF
15 14 13 12 11 10 9 8 Data-LSB Data-LSB FF
23 22 21 20 19 18 17 16 Data-MSB Data-MSB FF
31 30 29 28 27 26 25 24 Data-MSB Data-MSB FF
39 38 37 36 35 34 33 32 Address-LSB X/X FF
47 46 45 44 43 42 41 40 X/Address-MSB X/X 07
55 54 53 52 51 50 49 48 Write/Read Valid/Ready 11
63 62 61 60 59 58 57 56 X/Msg-ID X/ Msg-ID 03

nature of Convey, LabVIEW does not have a built-in support to interface the peripherals
of the Convey computers. Hence, a wrapper is used to interface the LabVIEW generated
HDL to Convey’s top-level HDL called cae pers. Figure 4.3 gives the block diagram of the
wrapper. The wrapper serves the purpose of interfacing the HDL generated from LabVIEW
to the Convey environment. The LV HDL has three input ports, and three output ports.
Each of the three pairs of input/output ports are used to interface to the memory, dispatch
and the management interfaces. As shown in Figure 4.3, the wrapper consists of these parts:

1. A stub to connect to all the I/O ports coming out of LabVIEW HDL that connects to
the originally intended Spartan-3E board: This stub simulates the environment of the
Spartan-3E board for the LabVIEW HDL.

2. An interface to the streamer source and sink HDLs to stream data in and out of the
co-processor memory: The input port interfaces with the source streamer that streams
the data from the co-processor memory into FPGAs, which in turn is streamed to the
LV HDL block. This interface is used to fetch the sequences from memory. The output
port interfaces with the sink streamer which streams the alignment scores generated
in the LV HDL to the co-processor memory.

3. Interface to the AEG registers through the I/O in the modified XML resource file:
These are used to interface the LV HDL to the dispatch interface. These are used to
transfer data from the host application to the LV HDL. In this application, the input
data can be a pointer to the memory location where the sequences are stored.

4. Interface to the BPORT IN and BPORT OUT ports, which are the interfaces to the
LabVIEW HDL from the VI Front panel: These are interfaced to the management
processor. Here the input port is used to send the commands to read/write the registers
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Figure 4.3: Wrapper interfacing LabVIEW-generated HDL to Convey’s top-level CAE pers.
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from the LabVIEW front panel and an output port is used to send the data back to
the front panel as explained in Section 4.2.

4.5 Designing using LabVIEW

After designing the LabVIEW-Convey communication channel and the wrapper, LabVIEW
is used for designing applications for the hardware accelerator. To demonstrate this design
flow using LabVIEW, a 16-PE Smith-Waterman pipeline is designed in LabVIEW. First,
a single PE of Smith-Waterman is designed using the LabVIEW graphical programming
language as shown in Figure 4.4. This PE is replicated using LabVIEW VI scripting [44] to
generate a 16-PE pipeline as shown in Figure 4.5. Running this application generates the
HDLs for this design, which are copied to a directory with other files from Convey PDK
for simulation and synthesis using Convey tools. This design runs on the Convey HC-1
accelerator and communicates with the LabVIEW front panel thereby providing the user to
control and monitor the accelerator using the LAbVIEW’s graphical interface as shown in
Figure 4.6. Thus, the complex job of designing the accelerator for Convey HC-1 is simplified
by using LabVIEW.

Figure 4.4: Smith-Waterman PE designed using LabVIEW.
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Figure 4.5: A 16-PE pipeline generated using LabVIEW VI Scripting.

Figure 4.6: LabVIEW front panel with controls and indicators for Smith-Waterman appli-
cation running on Convey HC-1.
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Chapter 5

Results and Analysis

This chapter focuses on the results of the high performance Smith-Waterman implemen-
tations and the implementation of LabVIEW’s interface to Convey HC-1. This chapter is
divided into the following sections. The first and the second sections deal with the results of
the high performance Smith-Waterman on Convey HC-1 and NVIDIA GP-GPU respectively.
Then the performance of these implementations are compared with the recent work done in
this area. Finally, the results of the LabVIEW based interface to Convey, called ConVI, is
discussed.

5.1 High Performance Smith-Waterman

The Smith-Waterman algorithm was designed for the Convey HC-1 accelerator with a single
Smith-Waterman PE first, then the design was cascaded into a pipeline to form a com-
plete systolic array. The pipelines were replicated as much as possible to take the complete
advantage of the available logic resources and the memory bandwidth in the system.

As the number of PEs in a FPGA directly translates to the performance, emphasis here is
to maximize the number of PEs contained in each of the AEs. Hence, the Section 5.1.1 deals
with the area and resources in the fabric used for building the accelerator. The amount of
data consumed per cycle by the application engines is directly proportional to the number
of PEs in the design; thus, a theoretical estimate of the bandwidth is presented in the Sec-
tion 5.1.2. Finally, this design is tested by simulating it using the Convey’s HDL simulator.
The waveforms in the timing diagram are analyzed using the Synopsys DVE tool to verify
the assumptions. These are reported in the Section 5.1.3.
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5.1.1 Area Occupancy

In the implementation of the accelerator, the number of PEs are increased in steps to ac-
commodate the highest number of PEs in each of application engine. Several designs were
attempted before arriving at an optimal configuration for the Convey HC-1.

Although the co-processor board has several non-user programmable FPGAs for memory
controllers, dispatch and other modules, a small portion of the application engine fabric is
used to create the interfaces to these modules. Another portion of the fabric is used in the
implementation of the skeleton that supports the PEs and seamlessly connects them to the
memory and the dispatch interfaces. The remainder of the the fabric area is used for building
the PEs in the systolic array.

Figure 5.1: Resource consumption by the Smith-Waterman accelerator on Convey HC-1.

The resource consumed on the fabric for di↵erent implementations are shown in Figure 5.1.
The resource consumption on the FPGA is evaluated in terms of Slice Registers, Slice LUTs,
the percentage of LUTs that are used for logic in the design, the percentage of the LUTs
that are used as memory, the total number of slices used and finally the amount of BRAM
used in the design. As seen in the figure, the pre-existing interfaces that connect to the
other modules in co-processor board occupy 20% � 40% of the total fabric available on the
XC5VLX330 FPGA. A skeleton to support 32 PEs per FPGA, increased the occupancy to
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40%� 60%. This design was populated with 32 PEs to increase the occupancy by 5%� 10%
greater than the existing skeleton. This structure was replicated in the design until it could
support 512 PEs per AE with an occupancy of 80%� 99%.

This implementation involved a pipeline with 32 processing elements, and 16 pipelines per
AE, giving rise to 16 ⇤ 4 ⇤ 32 = 2048 processing elements to achieve a peak theoretical
throughput of 2048 PE * 150 MHz = 307 GCUPS (Giga Cell Updates per Second). The
synthesis report of this design on the AEs is attached below. The report shows that this is
a proper fit for the XC5VLX330 FPGA.

1 Release 14.1 Map P.15xf (lin64)

2 Xilinx Mapping Report File for Design ’cae_fpga’

3

4 Design Information

5 ------------------

6 Command Line : map -intstyle xflow -pr b -detail -ignore_keep_hierarchy -xe n

-w -t 1 -ol high -o cae_fpga.ncd

7 cae_fpga.ngd

8 Target Device : xc5vlx330

9 Target Package : ff1760

10 Target Speed : -2

11 Mapper Version : virtex5 -- $Revision: 1.55 $

12 Mapped Date : Wed Apr 17 19:28:48 2013

13

14 Design Summary

15 --------------

16 Number of errors: 0

17 Number of warnings: 425

18 Slice Logic Utilization:

19 Number of Slice Registers: 136,336 out of 207,360 65%

20 Number used as Flip Flops: 135,792

21 Number used as Latches: 544

22 Number of Slice LUTs: 187,057 out of 207,360 90%

23 Number used as logic: 166,244 out of 207,360 80%

24 Number using O6 output only: 127,283

25 Number using O5 output only: 5,744

26 Number using O5 and O6: 33,217

27 Number used as Memory: 19,578 out of 54,720 35%

28 Number used as Dual Port RAM: 19,290

29 Number using O6 output only: 2,098

30 Number using O5 output only: 1,153

31 Number using O5 and O6: 16,039

32 Number used as Shift Register: 288

33 Number using O5 and O6: 288

34 Number used as exclusive route-thru: 1,235
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35 Number of route-thrus: 7,307

36 Number using O6 output only: 6,866

37 Number using O5 output only: 328

38 Number using O5 and O6: 113

39

40 Slice Logic Distribution:

41 Number of occupied Slices: 51,652 out of 51,840 99%

42 Number of LUT Flip Flop pairs used: 200,442

43 Number with an unused Flip Flop: 64,106 out of 200,442 31%

44 Number with an unused LUT: 13,385 out of 200,442 6%

45 Number of fully used LUT-FF pairs: 122,951 out of 200,442 61%

46 Number of unique control sets: 4,732

47 Number of slice register sites lost

48 to control set restrictions: 8,591 out of 207,360 4%

49

50 A LUT Flip Flop pair for this architecture represents one LUT paired with

51 one Flip Flop within a slice. A control set is a unique combination of

52 clock, reset, set, and enable signals for a registered element.

53 The Slice Logic Distribution report is not meaningful if the design is

54 over-mapped for a non-slice resource or if Placement fails.

55 OVERMAPPING of BRAM resources should be ignored if the design is

56 over-mapped for a non-BRAM resource or if placement fails.

57

58 IO Utilization:

59 Number of bonded IOBs: 861 out of 1,200 71%

60 Number of LOCed IOBs: 861 out of 861 100%

61 IOB Flip Flops: 1,016

62 IOB Master Pads: 20

63 IOB Slave Pads: 20

64

65 Specific Feature Utilization:

66 Number of BlockRAM/FIFO: 122 out of 288 42%

67 Number using BlockRAM only: 122

68 Total primitives used:

69 Number of 36k BlockRAM used: 97

70 Number of 18k BlockRAM used: 33

71 Total Memory used (KB): 4,086 out of 10,368 39%

72 Number of BUFG/BUFGCTRLs: 26 out of 32 81%

73 Number used as BUFGs: 2

74 Number used as BUFGCTRLs: 24

75 Number of IDELAYCTRLs: 18 out of 34 52%

76 Number of DCM_ADVs: 1 out of 12 8%

77 Number of LOCed DCM_ADVs: 1 out of 1 100%

78 Number of ISERDESs: 356

79 Number of OSERDESs: 20
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80 Number of PLL_ADVs: 2 out of 6 33%

81 Number of LOCed PLL_ADVs: 2 out of 2 100%

82 Number of SYSMONs: 1 out of 1 100%

83

84 Number of RPM macros: 72

85 Average Fanout of Non-Clock Nets: 3.65

86

87 Peak Memory Usage: 5857 MB

88 Total REAL time to MAP completion: 3 hrs 25 mins 30 secs

89 Total CPU time to MAP completion: 3 hrs 24 mins 33 secs

Figure 5.2: Resource allocation for each of the components in the design.

Figure 5.2 shows the allocation of resources for each of those components in the optimum
design for HC-1 with 512 PEs per AE. It can be seen that the major chunk of the fabric is
occupied by the 512 PEs. Most of the LUTs (55%) are used to implement logic functions
and few of them (5%) are used for memory in the PE designs while the opposite is true in
the case of the systolic array skeleton. The Convey-provided interface has up to 40% of used
slices as seen before.

Figure 5.1 also shows a final implementation with 1024 PEs per FPGA. This attempt involved
a pipeline with 64 processing elements, and 16 pipelines per AE, giving rise to 16⇤4⇤64 = 4096
processing elements to achieve a peak theoretical throughput of 4096 PE * 150 MHz = 614
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GCUPS (Giga Cell Updates per Second). The red box in the figure indicates that the design
goes out of bounds for the XC5VLX330 FPGA. However this design can be used to program
the Convey HC-1ex platform, since it contains the XC6VLX760 FPGA, which has more than
twice the number of resources as the XC5VLX330 [45].

5.1.2 Bandwidth Requirements

As both HC-1 and the HC-1ex have the same memory bandwidth capacity, both the plat-
forms have the same calculation.

Inputs
Each PE requires 4 bits from memory: 2 for query and 2 for database.
Each PE requires a single byte character from the block RAM for scoring.
Each PE requires a 2-byte short integer max score and five scores for computation.

Outputs
Each PE sends out a 3-bit direction vector to memory.
Each PE sends out its own value.

Assumptions
Each PE update is done in one clock cycle.
The design runs at maximum clock speed of 150 MHz.
The entire query sequence resides on the FPGA after a initial phase.
With striding enabled, the peak bandwidth available = 20 GB/sec [1].
Aggregate bandwidth for 4 AEs = 640 Gigabits/sec.

AE-Memory bandwidth required without trace-back
Number of bits per cycle per AE = 4 bits.
Number of bits for all the 4 AEs = 16 bits.
Therefore bandwidth required = 150 ⇤ 106 ⇤ 16 = 2.4 Gigabits/sec.
This fits well within the maximum supported bandwidth.

Bandwidth required to store the trace-back vectors
Number of bits to send the directions information per cell = 3 bits.
Bandwidth required for Trace-back Vectors = 150 ⇤ 106 ⇤ 3 ⇤ 2048 = 921.6 Gigabits/sec.
This is a high value to be practically incorporated on Convey HC systems.
Hence, trace-back is not used.

Thus, this is a compute-bound problem in Convey when trace-back is not performed in
hardware. With trace-back, memory bandwidth becomes the bottleneck in the system.
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Figure 5.3: Timing diagram showing the alignment score calculations.
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Figure 5.4: The output of the accelerator: the sequence numbers with the scores of their
pairwise alignment.

5.1.3 Simulation

The designs were simulated on Convey HDL simulator using the Synopsys tools. Figure 5.3
shows the timing diagram for the resultant scores being stored back to the memory. Every
spike in the lower part of the diagram represents the availability at the compute cores and
the start of an alignment. The steady and continuous flow of data and availability of results,
represents a streamlined memory access. Thus, the assumptions made in the previous section
are verified here.

Figure 5.4 shows the resultant scores generated from the simulation of 2000 sequences against
another 2000 sequences. Each systolic array in the accelerator finds the pairwise alignment
scores between two sequences and stores the scores in order in the co-processor memory.
The scores were read from the co-processor memory and printed on to a file. These scores
were verified from a software implementation and was tested for 100% accuracy in the values
obtained.

5.2 Performance with GP-GPU

The GP-GPU programs were executed on two di↵erent devices, the NVIDIA GeForce GTX
580 and the NVIDIA GeForce GT 440. Both of these units are based on the NVIDIA Fermi
Architecture [46]. However, some of the di↵erences between them is highlighted in Table 5.1.
Analysis were performed on the time taken for the program execution. The results and their
analysis is discussed below.

The speedup is calculated by comparing the parallel version of the program on GPU over the
serial version of the program running on a x86 processor with the following specifications:
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Table 5.1: Key features of the platforms used
Features GT440 GTX580

CUDA Capability 2.1 2.0
Total no of MPs 3 16
CUDA Cores/MP 48 32
GPU Clock Rate 1189 MHz 1544 MHz

Shared Memory per Block 49152 bytes 49152 bytes
Max Threads per Multiprocessor 1536 1536

Max Threads per Block 1024 bytes 1024
Registers Per Block 32768 32768

Model name : Intel(R) Core(TM) i7 CPU
CPU frequency : 960 @ 3.20GHz
Cache size : 8192 KB

The parallel version of the program was executed on GTX580 and Figure 5.5 shows the

Figure 5.5: Kernel speedup with number of target and search sequences over x86.

raw kernel speedup attained with various query and reference database sizes over the serial
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x86 processor. Speedup of up to 4500x were observed as seen in Figure 5.5. The overhead of

Figure 5.6: Overall speedup attained by using the GP-GPU over x86 processor.

transferring the data back and forth between the host and the device memory and the over-
head of memory allocations on the GPU were considered while analyzing the overall trade
o↵ of using GPU parallel application. The graph plotted is seen in Figure 5.6. Speedup
of up to 1100x have been attained for specific configurations of query and database sizes.
This is partly due to the fact that in this approach, the score matrix is not involved in the
memory copy overhead.
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5.3 Performance Compared With Recent Work

This section compares the Smith-Waterman implemented in this work with some of the
other recent contributions discussed in Section 2.7. The Table 5.2 compares the maximum
throughput in GCUPS that can be attained with these implementations. Of the total sixteen
implementations, seven of them are based on GP-GPUs, eight of them are based on FPGAs
and one of them on Cell Broadband Engine. Of the seven GP-GPU based implementations,
two of them are dual GPUs on a single graphics card.

Figure 5.7 shows the plot of these values on a bar chart. Logarithmic scale is used to
accommodate the large scale ranging from 3.5 GCUPS on GeForce 8800 GP-GPU to 768
GCUPS in Convey HC-1ex with four Virtex-6 FPGAs. The red colored bars indicates the
implementations from this work. It can be seen that Convey’s implementation of their
application cnysws comes close in performance to the Smith-Waterman implemented in this
work. The graph however is dominated by the Convey’s cnysws on HC-1ex with a throughput
of 768 GCUPS followed by two other implementations on HC-1. The performance in the
GTX 580 falls short of the other GP-GPU implementation, due to the lack of any changes
to the native algorithm.

Table 5.2: Performance comparison with related work on heterogeneous computers.
Name Platform Peak Performance (GCUPS)

Issac et al. [32] Altera Stratix EP1S40 23.8
Wirawan et al. [40] Cell-Broadband Engine (BE) 3.6

Convey [3] Convey HC-1 259
This Work Convey HC-1 307.2
Convey [3] Convey HC-1ex 768

CUDA++ [36] NVIDIA GTX 295 (dual) 16.087
CUDA++3.0 [34] NVIDIA GTX690 (dual) 185.6
Svetlin et al. [35] NVIDIA GeForce 8800 GTX 3.5

This Work NVIDIA GTX 580 9.98
CUDA Align 2.0 [38] NVIDIA GTX285 23

CUDA++ [36] NVIDIA GTX 280 9.66
CUDA++2.0 [15] NVIDIA GTX 280 17
CUDA++3.0 [34] NVIDIA GTX680 119

Altera white paper [25] XtremeData XD1000 25.6
Allred et al. [33] XtremeData IXD2000i 9.0
Oliver et al. [31] Xilinx XC2V6000 5.0
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Figure 5.7: Throughput comparison of recent work on high performance Smith-Water Im-
plementation.

5.4 LabVIEW Convey Interface

The LabVIEW Convey interface was successfully deployed with the ConVI design flow. A
wrapper was built around the LabVIEW generated HDL, it was interfaced to the AEG
registers and streamers successfully. The BPORT IN and the BPORT OUT were connected
to the CSR and AEG registers. The updates from the VI front panel controls are passed
through the ConVI execution server to the CSR/AEG resisters to update the values within
the LabVIEW HDL. The values of the indicators were transferred from the LV HDL to the
front panel.

ConVI as a design flow and LabVIEW as a HDL design tool was put to test during the VBI-
NSF workshop. A team of five participants from di↵erent backgrounds were provided with
a half-day training on NI LabVIEW. The team was provided with a basic Smith-Waterman
LabVIEW implementation and was asked to make modifications to the design. The team
was able to successfully come up with the modifications without any detailed knowledge of
Convey PDK or HDL experience. Finally, the use of this tool for accelerator development
received a positive response from the team.
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The following subsections compare ConVI to other high level programming paradigms dis-
cussed in Section 2.7.

5.4.1 Comparing ConVI with Bflow

Design Environment: LabVIEW was primarily made for Virtual Instruments while Azido
was specific to HDL design on Xilinx FPGA. Although Azido seems to have an advantage
here, the LabVIEW design environment is more mature and stable and has a library of
modules specially designed for FPGA implementations.

Design Files: ConVI runs on LabVIEW generated HDL while Bflow runs on Azido gener-
ated EDIF files. HDL files have the advantage where the source can be analyzed and can be
modified. Wrappers can be easily designed for HDL files. EDIF files are netlists and they
cannot be modified and does not have the flexibility that is present in HDL source files.

Interface Objects: Bflow connects to the hardware through COM objects while LabVIEW
generates registers in hardware for every control and indicator. LabVIEW again has the
advantage here since the register interface is independent of the design. This makes it easier
to design the wrappers for the design as the interface is left unchanged and the LabVIEW
communicates directly with the registers.

5.4.2 Comparison with OpenCL Smith-Waterman

OpenCL is another high level programming model that is used to program the di↵erent types
of processors in an heterogeneous computer in a single programming paradigm. OpenCL
was initially developed by Apple inc to support general purpose computing on GPUs across
di↵erent vendors. This was later being extended to other platforms. Although OpenCL is a
proven solution to program heterogeneous systems, the programmer still requires skill sets
in parallel programming and must be architecture aware to deploy an application e↵ectively.

LabVIEW o↵ers the advantages of visualizing the modules and the parallelism in the al-
gorithm. Architecture independent programming, real time monitoring and the ability to
generate C code, places LabVIEW above OpenCL programming paradigm for FPGAs and
FPGA based heterogeneous systems.

50



Chapter 6

Conclusion and Future Scope

This work demonstrated some of the ways of enabling the use of heterogeneous systems for
bio-informatics applications. Here is an abridgment of the contributions from this work.

1. An e�cient implementation of dynamic programming based Smith-Waterman was
achieved. This work aimed to accelerate bio-applications by e�cient usage of het-
erogeneous systems. The performance in GCUPS attained is higher than Convey’s
personality on HC-1.

2. A similar approach was used to implement Smith-Waterman on NVIDIA GP-GPUs
using CUDA. This was compared to the performance of Smith-Waterman on Convey
HC-1 and other GP-GPU/FPGA based systems.

3. The design of accelerator using LabVIEW was demonstrated. This proved to be a
highly viable option to design and control the accelerator without of the domain knowl-
edge and HDL skills. The ultimate aim of this work is to enable the bioinformaticians
to be able to work free of hardware design engineers.

There is however many potential enhancements that can be incorporated in the future. The
next three sections discusses the scope for future improvements in each of the tasks performed
in this work.

6.1 Dynamic Programming Environment on Convey

With a dynamic programming personality being setup in Convey, one may use it for a wide
variety of applications that have dynamic programming phase in them. BFAST and BWASW
are the examples of two algorithms that accelerates the native Smith-Waterman. BFAST
uses indexes to filter seeds while BWASW uses BWT to filter the number of alignment
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locations. Following is the description of the di↵erent phases of these two algorithms and
how the Smith-Waterman hardware implementation can be incorporated. A similar approach
can be followed for any algorithm with a Smith-Waterman phase in it.

6.1.1 Burrows-Wheeler Aligner Smith-Waterman (BWASW)

BWASW [5] involves the use of Burrows Wheelers Transform [47] to pre-process the genome
sequences. A prefix tree is built from the reference sequence and a Prefix Dynamic Acyclic
Word Graph (DAWG) is formed from the query sequence. The prefix DAWG is parsed
over the prefix tree to find the alignment locations. The seeds are expanded using the
Smith-Waterman algorithm making it suitable for long reads up to 100,000 base pair from
Roche/454 sequencing technologies. The following are the steps in this algorithm,

1. Formation of Prefix trie of the reference sequence.

2. Formation of the Prefix-DAWG of the query sequence.

3. Aligning Prefix trie against Prefix DAWG.

4. Acceleration by the standard Smith-Waterman algorithm.

Figure 6.1: Proposed BWA-SW on Convey HC systems.

Figure 6.1 shows the proposed implementation of BWASW on Convey HC-1. As seen in the
figure, the Hardware Align phase consists of Smith-Waterman which can be e�ciently accel-
erated in the FPGA. The dotted line indicates a further enhancement to the applications.
Depending on the load distribution, BWT phase can also be mapped to hardware [48] to
optimize the performance.
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6.1.2 BLAT like Fast and Accurate Search Tool (BFAST)

BFAST [7] aims to attain more accuracy by employing Smith-Waterman expansion. BFAST
pre-computes an index of all non overlapping k-mers in the genome. This index fits inside the
RAM of inexpensive computers, and need only be computed once for each genome assembly.
It supports both Illumina and ABI’s SOLiD reads. The following are the steps followed by
BFAST,

1. Preprocessing the reference sequence.

2. Indexing process for the reference genome.

3. Matching the query with the indexed reference genome.

4. Local alignment using the Smith-Waterman algorithm.

5. Post processing and performing the alignments.

Figure 6.2: Proposed BFAST on Convey HC systems.

Figure 6.2 shows the proposed implementation of BFAST on Convey. The Align stage of
BFAST can benefit from this Smith-Waterman implementation in the hardware. Depending
on the parameters used, the match phase can be time consuming and would benefit from
o✏oading it to hardware as demonstrated by Corey et al. [28].

6.2 Dynamic Parallelism using Kepler GP-GPUs

Dynamic Parallelism in CUDA is supported via an extension to the CUDA programming
model that enables a CUDA kernel to create and synchronize new nested work [49]. Basically,
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a child CUDA kernel can be called from within a parent CUDA kernel and then optionally
synchronize on the completion of that child CUDA kernel. The parent CUDA kernel can
consume the output produced from the child CUDA kernel, all without the CPU involvement.
Use of dynamic parallelism in Kepler architecture can further eliminate use of more threads
by dynamically making decisions for launching threads within a kernel call. This would also
enable the reuse of the scoring matrix.

6.3 Unified Programming with LabVIEW for Convey

Apart from the HDL generating capabilities of LabVIEW, it can create a C code that
represents the algorithm developed graphically in LabVIEW [50]. With the LabVIEW C
Generator, no target knowledge is required because the software generates ANSI C code
from a LabVIEW application instead of generating target-specific binary code. This can
be used to the advantage in generating the host code for Convey along with the hardware
design. This enables the unification of the development platforms for both host and the
FPGAs in Convey HC-1. Thus, LabVIEW has a great potential to be the development tool
for programming heterogeneous platforms.
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Appendix A

Smith-Waterman State Machine

1 // State machine for Smith Waterman

2 always @*

3 begin

4 case(sw_pstate)

5 INITIAL:

6 begin // Initial state to begin at every reset

7 sw_hold = 1’b1; // the pipe is on hold

8 push_result = 1’b0; // the fifo are not used

9 pop_fifo = 1’b0;

10 sw_enable = 1’b0;

11 if(c_result_vld) // when the valid signal is seen , FSM goes

to IDLE

12 begin

13 sw_nstate = IDLE;

14 pop_fifo = 1’b1;

15 end

16 else

17 sw_nstate = INITIAL;

18 end

19

20 IDLE: // Default state ar every wait time

21 begin

22 sw_hold = 1’b1; // the pipe is on hold

23 push_result = 1’b0; // the fifo are not used

24 pop_fifo = 1’b0;

25 if(c_result_vld) // When both the fifo have the data

26 begin

27 sw_nstate = LD_PIPE; // go to load the pipe

28 end

29 else
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30 sw_nstate = IDLE;

31 end

32

33 LD_PIPE: // state to load the pipes with data

34 begin

35 sw_enable = 1’b1; // the pipes are enabled

36 pop_fifo = 1’b1; // the value from the fifo are popped out

37 sw_nstate = START; //go to start of processing

38 end

39

40 START:

41 begin

42 pop_fifo = 1’b0;

43 sw_hold = 1’b0;

44 sw_enable = 1’b1;

45 if (sw_count > 6’d32) // stay in start until all the data is pushed

into the pipes

46 sw_nstate = STOP; // move to stop after all data is streamed into the

pipes

47 else

48 sw_nstate = START;

49 end

50

51 STOP:

52 begin

53 sw_enable = 1’b0 ; // Set enable to zero to disable the cells in the

pipes one by one

54 if (pipe_done) // Wait until the computation is done

55 begin

56 sw_hold = 1’b1; // hold the values

57 sw_score[63:0] = {49’b0,pipe_score[UMAX:0]}; // get the maximum score

from the pipe

58 sw_nstate = STORE; // store the score

into the fifo

59 end

60 else

61 begin

62 sw_nstate = STOP;

63 end

64 end

65

66 STORE: // four

67 begin

68 r_result[63:0] = sw_score[63:0]; // copy the result to the

fifo register



69 push_result = 1’b1; // push the result into the fifl

70 sw_nstate = IDLE; // go back to idle

71 end

72

73 default: sw_nstate = IDLE;

74 endcase

75 end



Appendix B

Smith-Waterman PE and Pipeline
Modules

1 // Systolic Array: Cascaded Smith-Waterman Processing Elements

2 genvar i;

3 generate

4 for (i = 0; i < NUM_CELLS; i = i + 1)

5 begin:SW_Cell

6

7 // SW Cell

8 sw_cell swc (

9 .t_in (pipe_t_in[i]), // target sequence in from

previous cell

10 .max_in (pipe_max_in[i]), // maximum in from previous cell

11 .v_in (pipe_v_in[i]), // cell value in from previous

cell

12 .st_in (pipe_st_in[i]), // search sequence in from

previous cell

13 .clr_in (pipe_clr_in[i]), // clear signal in from previous

cell

14 .hold_in(pipe_hold_in[i]), // hold signal in from

previous cell

15 .s_in (s),

16 .clk (clk), // clock to the cell

17 .t_out (pipe_t_in[i+1]), // target out to the next cell

18 .max_out(pipe_max_in[i+1]), // max out to the next cell

19 .v_out (pipe_v_in[i+1]), // score out to the next cell

20 .st_out (pipe_st_in[i+1]), // search sequence out to the next

cell

21 .clr_out(pipe_clr_in[i+1]), // clear out to the next cell
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22 .hold_out(pipe_hold_in[i+1]) // hold signal in from

previous cell

23 );

24

25 end

26 endgenerate

27

28 //------------------------------------------------------------

29

30 // Smith-Waterman Pipeline

31 sw_pipe swp(

32 .t(pipe_t), // operand 1

33 .s(pipe_s), // operand 2

34 .en(sw_enable), // enable signal

35 .hold(sw_hold), // hold signal

36 .start(sw_start), // start signal

37 .clk(clk), // clock signal

38 .score(pipe_score), // operand 3

39 .done(pipe_done) // pipe done signal

40 );

41 defparam swp.NUM_CELLS = NUM_CELLS;

42 defparam swp.SMAX = SMAX;

43 defparam swp.UMAX = UMAX;

44 defparam swp.GAP_OPEN = GAP_OPEN;

45 defparam swp.GAP_EXT = GAP_EXT;

46 //------------------------------------------------------------



Appendix C

Smith-Waterman Host Code

1 //-------------------------------------------------------------------------------

2 // Institute: Virginia Tech

3 // Author: Ramakrishna

4 //-------------------------------------------------------------------------------

5 #include <convey/usr/cny_comp.h>

6 #include <ctype.h>

7 #include <stdlib.h>

8 #include <string.h>

9

10 #undef DEBUG

11

12 typedef unsigned long long uint64;

13 extern long cpSWM();

14 extern int cpXbar();

15 void usage (char *);

16 void load_memory(uint64 *a1, long , char* );

17

18 int main(int argc, char *argv[])

19 {

20 long i;

21 long size;

22 uint64 *a1, *a2, *a3;

23 uint64 act_sum;

24 uint64 exp_sum=0;

25 int index;

26 char* filename = "scores.txt";

27 FILE *output_file;

28

29 // check command line args

30 if (argc == 1)
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31 size = 2000; // default size

32 else if (argc == 2)

33 {

34 size = atoi(argv[1]);

35 if (size > 0)

36 {

37 printf("Running SmithWaterman.exe with size = %lld\n", size);

38 }

39 else

40 {

41 usage (argv[0]);

42 return 0;

43 }

44 }

45 else

46 {

47 usage (argv[0]);

48 return 0;

49 }

50

51 // Get personality signature

52 cny_image_t sig2;

53 cny_image_t sig;

54 int stat;

55 if (cny_get_signature)

56 cny_get_signature("pdk", &sig, &sig2, &stat);

57 else

58 fprintf(stderr,"ERROR: cny_get_signature not found\n");

59

60 if (stat) {

61 printf("***ERROR: cny_get_signature() Failure: %d\n", stat);

62 exit(1);

63 }

64

65 // check interleave

66 // this example requires binary interleave

67 if (cny_cp_interleave() == CNY_MI_3131) {

68 printf("ERROR - interleave set to 3131, this personality requires binary

interleave\n");

69 exit (1);

70 }

71

72 // read AEG control register to see if crossbar is present

73 int crossbar_enabled = 0;

74 crossbar_enabled = i_copcall_fmt(sig, cpXbar, "");



75 #ifdef DEBUG

76 printf("UserApp: crossbar_enabled = %d\n", crossbar_enabled);

77 #endif

78

79 // Allocate memory

80 // if the crossbar is enabled in the hardware, use malloc

81 // if no crossbar, the memory must be aligned on MC 0

82 if (crossbar_enabled) {

83 if (cny_cp_malloc) {

84 a1 = (uint64 *) (cny_cp_malloc)(size*8);

85 a2 = (uint64 *) (cny_cp_malloc)(size*8);

86 a3 = (uint64 *) (cny_cp_malloc)(size*8);

87 }

88 else

89 printf("malloc failed\n");

90 }

91 else {

92 cny_cp_posix_memalign((void**)&a1, 512, size*8);

93 cny_cp_posix_memalign((void**)&a2, 512, size*8);

94 cny_cp_posix_memalign((void**)&a3, 512, size*8);

95 }

96

97 #ifdef DEBUG

98 printf("a1 = %llx MC = %lld \n", a1, ((uint64)a1>>6)&7);

99 printf("a2 = %llx MC = %lld \n", a2, ((uint64)a2>>6)&7);

100 printf("a3 = %llx MC = %lld \n", a3, ((uint64)a3>>6)&7);

101 #endif

102

103 // populate operand arrays with sequences, initialize a3

104 load_memory(a1, size , "sequences1.fasta");

105 load_memory(a2, size , "sequences2.fasta");

106

107 // Smith-Waterman copcall

108 act_sum = l_copcall_fmt(sig, cpSWM, "AAAA", a1, a2, a3, size);

109 output_file = fopen(filename, "w+"); // write mode

110

111 for ( index =0; index < size ; index+=4)

112 fprintf(output_file,"\na3[%d]= %lld,%lld,%lld,%lld",index,

a3[index],a3[index+1],a3[index+2],a3[index+4]);

113 fclose(output_file);

114

115 for ( index =0; index < 20 ; index++)

116 printf("\na1[%d]= %lld a2[%d]=%lld",index,

a1[index],index,a2[index]);

117



118 return 0;

119 }

120

121 // Print usage message and exit with error.

122 void

123 usage (char* p)

124 {

125 printf("usage: %s [count (default 100)] \n", p);

126 exit (1);

127 }

128

129 void load_memory(uint64 *a1, long size , char* filename)

130 {

131 char ch[80];

132 FILE *in;

133 long i;

134 int n=0,m=0;

135 unsigned long zero = 0 ,one = 1 ,two = 2 ,three = 3;

136

137 in = fopen(filename,"r+"); // read mode

138

139 if( in == NULL )

140 {

141 perror("Error while opening the file.\n");

142 exit(EXIT_FAILURE);

143 }

144

145 for(n=0;fgets(ch,80,in) && n < size;)

146 {

147 if((ch[0] != ’a’) && (ch[0] != ’g’) && (ch[0] != ’t’) && (ch[0] != ’c’))

148 continue ;

149

150 a1[n] = 0;

151 for( i=0 ; i<32; i++)

152 {

153 if (ch[i] == ’a’) a1[n] = a1[n]|(zero<<(2*i));

154 else if (ch[i] == ’t’) a1[n] = a1[n]|(one<<(2*i));

155 else if (ch[i] == ’g’) a1[n] = a1[n]|(two<<(2*i));

156 else if (ch[i] == ’c’) a1[n] = a1[n]|(three<<(2*i));

157 }

158 n++;

159 }

160 }



Appendix D

LabVIEW HDL Connection

1 assign aeg_flag = aeg_lv_in[60];

2 always @(posedge clk) begin

3

4 new_aeg_id [1:0] <= aeg_lv_in[57:56];

5 old_aeg_id [1:0] <= new_aeg_id [1:0];

6 new_csr_id [1:0] <= csr_lv_in[57:56];

7 old_csr_id [1:0] <= new_csr_id [1:0];

8

9 if (new_aeg_id != old_aeg_id) begin

10 data_in[31:0] <= aeg_lv_in[31:0];

11 rd_in <= aeg_lv_in[48];

12 wr_in <= aeg_lv_in[52];

13 address_in[10:0] <= aeg_lv_in[42:32];

14 ret_id <= new_aeg_id;

15 end

16 else if (new_csr_id != old_csr_id) begin

17

18 data_in[31:0] <= csr_lv_in[31:0];

19 rd_in <= csr_lv_in[48];

20 wr_in <= csr_lv_in[52];

21 address_in[10:0] <= csr_lv_in[42:32];

22 ret_id <= new_csr_id;

23 end

24 else begin

25 rd_in <= 1’b0;

26 wr_in <= 1’b0;

27 end

28 end

29

30 always @(posedge clk) begin
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31 if (valid) begin

32 csr_lv_out[31:0] <= data_out[31:0];

33 csr_lv_out[57:56] <= ret_id[1:0];

34 end

35 csr_lv_out[48] <= ready;

36 csr_lv_out[52] <= valid;

37

38 end

39
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