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Abstract

Background: Students’ ability to construct and coordinate units has been found to have far-reaching implications for
their ability to develop sophisticated understandings of key middle-grade mathematical topics such as fractions, ratios,
proportions, and algebra, topics that form the base of understanding for most STEM-related fields. Most of the related
research on unit coordination relies on time-intensive clinical interviews and teaching experiments. In this study, we
investigate the work of 93 sixth-grade students on a written assessment containing whole number and fraction
contexts using both continuous and discrete quantities, and how this work can be used to assess stages in students’
construction and coordination of units. Our investigation is guided by the following general research questions: (1)
What forms of written work evidence the construction of and operation on composite units (units made up of other
units)? (2) How does the categorization of students based on responses from a written assessment compare to written
performance on a set of tasks conveying a continuous whole number multiplicative context?

Results: We documented the different ways students represented composite units in their written work. In particular,
student written work on tasks that included figurative unit items provided the greatest variety of evidence regarding
students’ construction of and operation on composite units. However, written evidence from partitioning tasks did not
seem as promising for distinguishing student stages. Students’ performance on decontextualized bar tasks involving
continuous quantities was found to be consistent with students’ level of unit coordination based on written work
providing evidence for the validity of stage categorizations.

Conclusions: Our findings shed light on the affordances and constraints associated with particular stages in unit
construction and coordination that a student brings to bear on tasks provided in a formal, written assessment. These
findings provide promising evidence for scaling up the assessment of students construction and coordination of units

through the use of written assessments instead of time-intensive clinical interviews.

Keywords: Assessment, Middle school student learning, Number sequences, Unit coordination

Neo-Piagetian student learning researchers have long re-
lied on time-intensive clinical interviews and teaching
experiments in order to classify a student’s ways of oper-
ating. Recently, several teams of researchers have devel-
oped assessments that are meant to scale up the ability
to make such classifications: Two examples include
Clements et al. (2008) with a content focus on number,
geometry, and classification with very young children
and Hodkowski et al. (2016) with a focus on upper
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elementary multiplicative thinking. Of course, scaling up
comes with an inherent trade-off in terms of the accur-
acy of classifications with regard to any one child. None-
theless, the potential benefits from allowing a wider
group of practitioners to make classifications or for
allowing research with a larger group of subjects out-
weigh this drawback because the findings from studies
with larger numbers of participants are generally seen as
more generalizable and could potentially provide the evi-
dence needed to inform curriculum and instructional
policy and recommendations on a larger scale. We are
currently in the early stage of developing another such
written assessment, which looks at a content domain
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similar to Tzur and colleagues but focusing on sixth-
grade students. In particular, we look at students’ ability
to construct and coordinate units® (Steffe, 2010a; Ulrich,
2015, 2016a), which has been found to have far-reaching
implications for their ability to develop sophisticated un-
derstandings of key middle-grade mathematical topics
such as fractions (Hackenberg & Tillema, 2009; Norton
& Wilkins, 2009, 2010, 2012, 2013; Wilkins & Norton,
2011), ratios and proportions (e.g., Lamon, 2007; cf. a
theoretical discussion in Thompson & Saldanha, 2003),
and algebra (e.g., Hackenberg & Lee, 2015; Lee &
Hackenberg, 2014), topics that form the base of under-
standing for most STEM-related fields. In addition to
the Tzur research group, other written assessments
have been used in research that focus on unit construc-
tion and coordination. So far, they have focused on
particular contexts for unit coordination such as frac-
tions (Norton & Wilkins, 2009, 2010, 2013; Wilkins &
Norton, 2011) or whole number length problems
(Norton, Boyce, Phillips, Anwyll, Ulrich, & Wilkins, 2015).
The current study serves to set up a base of knowledge
from which to refine a written assessment that incorpo-
rates both of these contexts, along with additional whole
number contexts.

While many large-scale assessments are constructed as
multiple-choice responses or focus mainly on the cor-
rectness of numerical responses, we are seeking to lever-
age the additional information that student-written work
can give us. This would allow us to code not only for
correctness, but also for the solution type. The trade-off
is that the coding takes extra time and training when
using the assessment. In developing our assessment, one
of our first priorities is gaining a better understanding of
how student solutions on written assessments evidence
the construction and coordination of units, particularly
the construction and coordination of composite units.
Many of our items (and other researchers’ items) were
based on items used in interview settings in which the
interviewer can both provide and take away supports,
such as the ability of students to draw diagrams, write
down intermediate steps, etc. In this study, we are look-
ing at what evidence of composite unit constructions we
were able to glean when students had the chance to
write but no additional supports from the researcher. In
particular, we examine the types of student inscriptions
that evidence composite unit constructions, and we look
at the measurement utility of a series of length/area-
based tasks that were not previously used by the authors
in other settings.

Theoretical framework

In carrying out this study from a neo-Piagetian perspec-
tive, we assumed that student mathematical thinking de-
velops in hierarchical stages, in each of which some
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basic ways of operating have been adapted to underlie a
variety of mathematical schemes. In particular, we find
the stages in student construction and coordination of
units (Steffe, 2010a; Ulrich, 2015, 2016a) to be important
for exploring the mathematics of middle-grade students.
These stages were originally developed when working
with students on situations involving discrete, whole
number quantities: Steffe and colleagues (e.g., Steffe &
Olive, 2010; Steffe & Cobb, 1988) proposed a hierarchy
of stages called number sequences, which characterize
how students work with units and their coordinations
when operating on what we would call counting num-
bers. Units refer to interiorized counting acts, so they
can be used to enumerate the size of sets of visible or in-
visible items and can themselves be counted. Steffe and
Olive (2010) have also elaborated how the operations
that characterize these number sequences are reorga-
nized to form fraction schemes. Therefore, these number
sequences can now be used to help predict both whole
number and fractional operations that are within a
student’s zone of potential construction (Norton &
D’Ambrosio, 2008; Steffe, 1991). The types of number
sequences, in order of increasing sophistication, are (1)
initial number sequences (INS), (2) tacitly nested num-
ber sequences (TNS), (3) explicitly nested number se-
quences (ENS), and (4) generalized number sequences
(GNS). In our written assessment, we are attempting to
differentiate between students at the stage associated
with tacitly nested number sequences (TNS students)
and the stages before and after this stage. The following
discussion of number sequences will provide reasons for
this focus.

We will briefly give an overview of the key construc-
tions associated with the stages associated with these
first three number sequences (see also Table 1): The
construction of INS is associated with the first truly
numerical stage in that students now see numerosity as
an attribute that describes the size of a set. The con-
struction of an INS means that students can make sense
of a number word without first counting from 1 up to
that number word. This can be seen, for example, when
a student can count on from a given number by a given
amount instead of needing to reestablish the meaning of
the first number by counting from 1 (counting all) each
time. In developing our written assessment, we would
expect that all our participants would have constructed
INS by sixth grade due to our previous experience with
sixth-grade students and Steffe’s estimate that (almost)
all students will have constructed an INS by third grade
(Steffe & Ulrich, 2014). Students who are at the stage as-
sociated with INS (INS students) typically depend on
visuospatial or rhythmic patterns to count non-initial
number sequences. For example, when solving Cupcake
Task A (Fig. 1), an INS student would have trouble
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Table 1 Summary of key stages investigated
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Stage Key characteristics Possible indicators
INS + Numerical thinking - Counting on
+ Use of numerical composites « Reliance on figurative material to keep track of composite
quantities
TNS eTNS Construction of composite units during - Constrained to equi-segmenting operations when partitioning
problem-solving activity « Need to construct composite units in new problem situation
before they can be used
alNS Anticipatory use of composite units - Simultaneous partitioning operations
« Ability to mentally work with composite units
- Difficulty keeping track of multiple quantities in a problem
situation
ENS - Construction of iterable units of 1 - Equi-partitioning operations

+ (Reversible) disembedding

- Coordinating three levels of units in activity

- Construction of fractional schemes
« Ability to relate multiple levels of units mentally

keeping track of the number of times he or she counts 3
cupcakes when counting 39 cupcakes in his or her head.
We would expect an INS student to draw out 39 figura-
tive items, go back and circle subitized groups of 3 using
visuospatial patterns, and then count the groups of 3.

Over time, a student would develop the ability to re-
flect on the numerical composites formed by experien-
tially bounding counting-on activity. For example, after
counting from 8 to 12 many times, the student would
develop a tacit understanding of 8 as being nested in 12
and a tacit understanding of the numerosity of the
counting acts from 8 to 12—“9, 10, 11, 12"—as
representing how much larger 12 is than 8. This recon-
ceptualization of counting-on activity results in a
reorganization of initial number sequences into tacitly
nested number sequences. It can take more than 2 years
for students to reorganize one number sequence to con-
struct the next (Steffe & Cobb, 1988).

The construction of a TNS is marked by constructing
composite units of counting acts (like the composite unit
of 4 that represented the subsequence from 8 to 12) that
can be used in further operations (like the repeated use
of “counting by 3” as a unit of measure in Cupcake Task
A). In general, composite units are units composed of
multiple smaller units such that the student can treat
them as a single unit while remaining aware of the con-
stituent units contained within it. Therefore, when solv-
ing Cupcake Task A, a student who has constructed a
TNS can form the goal of figuring out how many times

they count by 3, a composite unit, to get to 39. In gen-
eral, use of a TNS would be indicated by skip counting
or repeated addition to solve multiplication or division
problems® (Olive, 2001; Ulrich, 2015).

In Steffe and Cobb’s (1988) study with K-2 students in
which the number sequences were first theorized, oper-
ating with a TNS was thought to be a transitional stage
that students would move through quickly as various
tacit quantitative relationships were made explicit upon
repeated exposure and reflection. In Steffe and Olive’s
(2010) work with grade 3-5 students, the stage associ-
ated with construction of a TNS clearly lasted many
months but was still seen as transitional. In working
with middle-grade students (Ulrich, 2012; Ulrich &
Phillips, 2015), we have begun to suspect that some
students remain at this stage for multiple years: We have
found students who can utilize composite units in unex-
pected ways, implying a great familiarity with composite
units, and yet have not yet moved to the next stage of
unit construction and coordination (Ulrich, 2016b). One
indication of a student’s familiarity with composite units
is an ability to anticipate the results of constructing
composite units before they construct them. For in-
stance, this student would be able to form the goal of
counting by 3s to 39 before constructing a composite
unit of 3 to stand in for a box of cupcakes in Cupcake
Task A. Despite this anticipatory use of composite units,
the fact that they are constrained to the stage associated
with the TNS is made clear through several serious

boxes will you fill?

You have baked 39 cupcakes and you will put the cupcakes in boxes of three. How many

Laura Strickland)

Fig. 1 Cupcake Task A (For this task and all other tasks in this study involving cupcakes, the cupcake image is used courtesy of MyCuteGraphics.com ©
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constraints in their mathematical thinking (see Ulrich,
2016b). Because we are interested in what percentage of
middle-grade students are constrained to these kinds of
advanced operations with a TNS, we broke the stage as-
sociated with a TNS into two substages when designing
the written assessment: (1) students who are still early in
the stage (éTNS students) and (2) students who can do
advanced operations within this stage (aTNS students).

One result of the fact that aTNS students can operate
fluently with composite units is that they can use com-
posite units as a template for partitioning a whole into
small numbers of equal parts. INS and €TINS students
would, in contrast, attempt to equi-segment (Steffe,
2010b) a fractional whole by making a guess as to the
size of one segment and then using that segment as a
template for measuring off further pieces. This generally
results in slow and inaccurate partitioning operations.
An aTNS student can mentally visualize a composite of
continuous units, project that onto the unpartitioned
whole, and then mentally adjust the sizes of the continu-
ous units in the composite to get a much better initial
estimation than an €TINS student would. This is called
simultaneous partitioning (Hackenberg, Norton, &
Wright, 2016; Steffe, 2010b) because of the simultaneous
awareness of all the partitions before the student acts on
the visible whole.

Finally, students who have constructed an ENS are
characterized by the development of a reversible disem-
bedding operation and an iterable unit of 1 (Ulrich,
2016b; cf. Steffe, 1992, 2010a). The iterable unit allows
students to reconceptualize their number words to a
single multiplicative relationship instead of a sequence
of counting acts. For example, 5 can be thought of as
five times 1 instead of a sequence of five distinct count-
ing acts. This ability to hold in mind 1 of the five units
in 5 and then compare it to its containing unit of 5 is
indicative of the more general act of disembedding that
characterizes ENS operations. In general, students can
utilize an ENS to simultaneously consider a composite
unit and one of its component parts and compare them,
even if that component part is itself a composite unit.
For example, a student at this stage might note that a
composite unit of 20 is made up of 5 composite units of
4 (see Fig. 2). While a TNS student may be able to deter-
mine that they count by four 5 times to get to 20, the
ENS student can actually reconceptualize 20 as being
made up of 5 copies of a composite unit of 4 in the
course of solving a problem. This is a subtle distinction,

[ ]

Fig. 2 Twenty as a composite unit made up of 5 composite units
of 4
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but it allows ENS students to more frequently operate on
the results of iterating composite units during problem-
solving activity (Steffe, 1992; sometimes called construc-
ting three levels of units in activity, see Hackenberg &
Tillema, 2009). The efficiency in conceptualizing whole
numbers as iterations of a single iterable unit is thought
to allow many of these more advanced mathematical
constructions students make after construction of an
ENS. Therefore, students at this stage would not only be
able to solve Cupcake Task A (see Fig. 1), but they would
be able to then operate on their 13 groups of 3s to add or
subtract boxes. We would also expect ENS students
to be able to solve a problem such as Cupcake Task
B (see Fig. 3) with very little, if any, written work.

The ability to understand composite units as multiplica-
tively related to a unit of 1 is mirrored by the ability of
ENS students to understand the results of their partition-
ing activity as unit fractions in a multiplicative relationship
with the fractional whole: a student can use a unit fraction
“as if it were an iterable fractional unit that was on par
with his iterable unit of 1” (Steffe, 2010c, p.101). This type
of partitioning is called equi-partitioning (Hackenberg,
Norton, & Wright, 2016; Steffe, 2010b). In contrast, simul-
taneous partitioning results in partitions that are equal in
size but are not seen as potentially resulting from itera-
tions of each other by the student. Therefore, the simul-
taneous partitioner would think about the fractional
whole as being made of n different but congruent
partitions while the equi-partitioner would construe the
fractional whole as # times as long as the partition and/or
the partition as 1/m times as long as the fractional
whole. The resulting way of viewing fraction notation
is called a partitive unit fraction scheme (see Steffe,
2010b, 2010c%; see Fig. 4 for an example of a task that
students are not usually successful on until they have
a PUFS, e.g., Norton, Wilkins, & Xu, in press). Once
the ENS student is aware of both inherent multiplica-
tive relationships before creating the partitions, we say
that the student has constructed a splitting operation
(Hackenberg, 2007; Steffe, 2010b; Wilkins & Norton,
2011). For example, the task in Fig. 5 would elicit a
student’s splitting operation. In order to solve this
task, a student would need to recognize that although
the wording of the task implies iteration, the solution
requires partitioning the whole. In contrast to equi-
partitioning and the partitive unit fraction scheme,
the student’s operations of partitioning and iterating
occur simultaneously when using the splitting operation
(Steffe, 2002; Wilkins & Norton, 2011).

We will not differentiate between construction of ENS
and GNS in this study, so an ENS student will through-
out imply the construction of at least an ENS but does
not imply that the student is limited to that number
sequence construction.
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How many cupcakes are there all together?

Below there are 3 rows of 7 cupcakes unboxed. In the box there are 4 more rows of 7 cupcakes.

Fig. 3 Cupcake Task B

J

Purpose of study

The purpose of the analysis reported in this article is to
gain a better understanding of specific aspects of students’
written work on our assessment that could be useful as
evidence of student constructions and coordinations of
units. Our investigation is guided by the following general
research questions: (1) What forms of written work evi-
dence the construction of and operation on composite
units? (2) How does the categorization of students based
on responses from a written assessment compare to writ-
ten performance on a set of tasks conveying a continuous
whole number multiplicative context? Answering the first
research question provides a better base for coding student
solutions in future iterations of similar written assess-
ments. The second research question tests the association
between a category of items that have increasingly been
used in written assessments of unit coordination and items
that the researchers had previously utilized in clinical in-
terviews and teaching experiments. All of this information
will help with revisions of a written assessment that will
allow a scaling up of the more time-intensive clinical inter-
views that are usually used to determine a child’s number
sequence constructions.

Methods

Participants and overview

The analysis described here is based on data from the
administration of the first version of a written assessment
of students’ stages of unit construction and coordination.
This written assessment was administered to 109 sixth-
grade students from five sixth-grade classrooms in the same
school all taught by the same teacher. One classroom was

identified as Advanced (# = 26) and the other four class-
rooms were identified as Regular. The school is in a small
town in the southeastern USA. Of these 109 students, 15
did not give written consent for their data to be used in
analysis. One additional student provided written consent
but did not complete the assessment due to schedule con-
flicts. The data from these 16 students were removed from
the study resulting in a working sample of 93 students.

As part of our ongoing validation and improvement of
our written assessment, the second author chose nine stu-
dents from the 93 to participate in follow-up clinical inter-
views carried out by the second author. The first author
then used the clinical interview data to classify the nine
students and gain information on how students were
thinking about various items. This data has been used to
inform future iterations of the written assessment. These
nine students were chosen based on written parental con-
sent and distribution across the five classes. All research
procedures were approved by our institution’s Institutional
Review Board for research involving human subjects.

We classified students’ stages of unit construction and
coordination based on their responses in the written as-
sessment using a previously developed coding and scor-
ing system. Our first research question was answered
through a qualitative analysis of the written responses
on the assessment, and our second research question
was answered through a comparison of performance on
various items in the written assessment.

In the following sections, we will describe our initial
development of the written assessment and scoring
system as well as our analysis methods for the specific
research questions we are examining in this article.

‘What fraction is the smaller stick out of the longer stick?

Fig. 4 Example of a task used to elicit a student’s partitive unit fraction scheme
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The stick shown below is 6 times as long as another stick. Draw the other stick.

Fig. 5 Example of a task used to elicit a student’s splitting operation

Development of written assessment

The development of our written assessment and associ-
ated coding guide and scoring rubric proceeded through
several stages. We describe the stages of this process
here. We include a detailed discussion of specific types
of tasks in the next section.

Initial task development

Our goal in developing the assessment instrument was
to provide a battery of tasks from a variety of contexts
to assess students’ current stages of unit construction
and coordination, associated with the number sequences
described earlier (INS, eTNS, aTNS, and ENS/GNS).
Based on previous research on number sequences (e.g.,
Steffe, 1992; Steffe & Olive, 2010; Ulrich, 2012), we
designed or selected tasks for the written assessment
that would invoke students’ actions associated with each
of the number sequences. Many of the tasks allow for
multiple types of written work, regardless of whether the
final answer was correct or incorrect. For example, in
Cupcake Task B (Fig. 3), students could write the answer
with no work shown; they could draw out all the hidden
cupcakes or they could just represent hidden rows. In
addition, multiple tasks were included that could indi-
cate or contraindicate various stage constructions. We
wanted to limit the number of questions so that a sixth-
grade student could be expected to comfortably
complete all questions in a 50-min class period. In the
end, we developed 25 tasks covering the following gen-
eral types of questions: discrete versus continuous unit
items, whole number versus fractional values, problems
involving (to the observer) multiplicative situations, or
problems involving only additive situations. The differ-
ent types of tasks were distributed across the entire
assessment. However, the assessment was written to be
administered in two parts (11 tasks in the first part and
14 tasks in the second part), to prevent students from
returning to some tasks intentionally placed earlier (i.e.,
in Part I) in the assessment to test for more advanced
ways of thinking. For example, a task in Part I might re-
quire students to work with composites of composite
units (e.g., see Fig. 9, to be discussed later), whereas a
similar task might require less sophisticated reasoning
with composite units (e.g., see Fig. 3). These two tasks
were purposely placed in Part I and Part II, respectively,
in order to control for potential learning during the test,

in which case, students could potentially return and
make changes to the earlier tasks if they were not
administered separately.

Development of the coding guide

The research base was also used to inform the design of
a preliminary coding guide that identifies types of solu-
tion strategies for each task that could be useful in mak-
ing stage classifications later on. Next, we asked a
mathematics educator who is an expert in the theory to
review the tasks on our written assessment and the ini-
tial codes associated with each task to confirm that the
tasks were measuring what we intended. Tasks and
codes were revised after this consultation.

Development of the scoring rubric

Finally, formulas were created for each of the number
sequences: ENS/GNS, aTNS, €TINS, or INS (or less ad-
vanced). These formulas use the task codes to determine
whether or not construction of the particular number
sequence in question should be attributed to a student.
We refer to the set of classification formulas as the scor-
ing rubric and to the result of the classification formulas
as the stage classification.* The formulas take into ac-
count both indications and contraindications, weighted
by differing strength of inference—strong (weighted 1),
moderate (weighted 0.6), or weak (weighted 0.3)—based
on prior research (Steffe, 1992; Steffe & Olive, 2010;
Ulrich, 2012). Indications were given a positive value
and contraindications were given a negative value. The
result of this strategy is that one strong indication will
outweigh multiple weak contraindications. In the end,
our intent was for the student’s most complex uses of
composite units to determine the stage classification.
However, even strong inferences are still just inferences.
Therefore, we thought it was important that, as in a clin-
ical interview, a pattern of strong contraindications be
given importance as well.

As an example of how indications and contraindica-
tions can play out in the stage classification of a particu-
lar student, consider the work of Student 4. Student 4
exhibited three, related weak contraindications of having
constructed an aTNS by drawing in all the items in three
fairly easy tasks, including Cupcake Task A and another
task that required simple subtraction. However, these
contraindications were outweighed by one strong, one
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moderate, and one weak indication of having con-
structed an aTNS. The strong indication was the correct
solution of two out of three splitting tasks (the splitting
operation is not available until after the construction of
equi-partitioning; aTNS students can solve splitting tasks
through the strategic use of simultaneous partitioning,
see Ulrich, 2016b for an example). The moderate indica-
tion was a correct solution to Cupcake Task B (involving
operating on the results of a unit coordination) without
showing any work to support the unit coordination
needed to enumerate the hidden cupcakes. The weak in-
dication was a characteristic conflation when trying to
name a fraction based on an incomplete partition that
shows an awareness of multiple levels of units but an
inability to keep track of them. Therefore, the stage
formula for aTNS indicates that Student 4 should be
classified as having constructed an aTNS.

In contrast, Student 4 showed no indications of having
constructed an ENS but did show three weak contraindi-
cations. One involved an incorrect solution when naming
a proper fraction based on an incomplete partitioning.
The other two involved incorrectly solving tasks that were
meant to require operating on the results of a unit coord-
ination. One of these tasks was Cupcake Task C (note that
answering the wrong question and giving the total number
of cupcakes was not coded as incorrect, so the error was
more fundamental) and a problem involving ice cream
sundaes with smaller numbers than Cupcake Task C but
no picture. Therefore, the stage formula for ENS indicated
that we should not attribute the construction of an ENS
to Student 4. This means that the stage classification for
Student 4 was aTNS.

As one can imagine, students will sometimes fail to
use advanced schemes and operations at particular times
or in particular contexts even though they have con-
structed and used these schemes and operations at other
times or in other contexts. As a result, the written data
from the assessment can only be interpreted as provid-
ing positive evidence or absence of evidence when classi-
fying students’ number sequence. These classifications
as determined by the scoring rubric should be under-
stood as a lower bound. Therefore, our assessment could
underestimate the sophistication of students’ construc-
tions on any particular day.

Administration of the written assessment

The finalized written assessment was administered to
students in May 2015. After data collection was
complete, the written assessments were de-identified
by removing student names and labeled with a num-
ber. This was done to mask the identification of the
students during the analysis of the clinical interviews,
described below.
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Coding and scoring of written assessment

We randomly selected and coded 10 of the 93 written
assessments (approximately 10%) using the coding guide.
The first author then did a face-value check of the task
responses to give a qualitative analysis of the stage
classification for these 10 students. We then compared,
discussed, and reconciled our task codes. Based on this
discussion, we reworded the coding guide for coding
practicality and consistency. We also used the scoring
rubric to make stage classifications for these 10 students
and compare those with the qualitative stage classifica-
tions of the first author. Based on this exercise, we re-
vised some of the indicators or weights used in the
scoring rubric to maintain consistency with the theory
associated with number sequences (e.g., Steffe, 1992;
Steffe & Olive, 2010; Ulrich, 2016a, b). For example, we
had not anticipated that students would actually parti-
tion a bar into 21 pieces to successfully make a bar of
length 14 based on a bar of length 21. Therefore, we had
inappropriately made successful completion of this task
a strong indication of ENS when, in fact, an aTNS
student could solve by partitioning into units of 1. We
adjusted the scoring formula for ENS to distinguish
between different correct solutions to the task.

We then independently coded the remaining 83
students and calculated stage classifications for both
sets of codes.

To assess the overall agreement (inter-rater reliability)
for student classifications (i.e.,, ENS, aTNS, €TINS, or
INS) we calculated a weighted kappa statistic, K, for the
83 students. The weighted kappa statistic for stage clas-
sification is 0.95 which represents “almost perfect”
agreement (Landis & Koch, 1977, p. 165). This estimated
kappa was not found to be due to chance (p < .05 for
the significance test). This statistic provides evidence of
strong reliability for rater classifications based on the
written assessment.

We discussed and reconciled any disagreements to
create one final classification for each student. Of the 93
students, 44 were classified as ENS; 39 were classified as
aINS; 6 as €INS; and 4 as INS. Including all 109
students surveyed, 40% were classified as ENS; 36% as
aTNS; 6% as €INS; 4% as INS; and 15% did not
participate.

Analysis of clinical interviews

Structured clinical interviews were conducted with nine
students by the second author and analyzed by the first
author (student identification was masked in order to
maintain anonymity of student work during analysis and
subsequent comparison with the written assessment).
The interviews followed a structured protocol involving
a smaller selection of tasks similar to those found on the
written assessment. The goal of these interviews was to
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provide a baseline indication of the potential for the
written assessment to be used for categorizing students
into the stages. Based on the students’ responses and
actions, the first author was able to make a strong infer-
ence as to the stage classification for six of the nine
students. For the other three students, the first author
gave a range of two classifications. We would later find
that the scoring rubric gave the same classification or a
classification within the designated range for eight of the
nine students.

Before looking at the classifications from the written
assessment, the research team further discussed the
three inconclusive students to settle on a final classifica-
tion. The assessment classifications matched the clinical
interview classifications for five out of the six students
with conclusive classifications and one out of the three
students with inconclusive classifications, representing a
moderately strong relationship between the two classifi-
cations. The one student who had a conclusive classifica-
tion from the clinical interviews that did not match the
classification based on the written assessment showed
strong indications of ENS during the interview but was
classified as aTNS based on the written assessment. We
examined her written work and found one task answered
incorrectly on the written assessment that would have
given a decisive indication of an ENS. In the interview,
she drew a correct answer for this same task and pro-
vided a correct explanation.

Discussion of reliability and validity

Through this step-by-step process, we gained confidence
that our written assessment was measuring what we had
intended. This process enabled us to provide evidence
for the reliability of the stage classifications based on the
written instrument. In addition, the alignment of our
tasks with prior research and the review and consult-
ation with an expert in the field provides evidence for
the face validity and content validity of the written in-
strument and associated coding guide and scoring ru-
bric. Finally, the comparison of the stage classifications
from the clinical interviews with those based on the
written assessment provides evidence for the predictive
validity of the stage classifications based on the written
assessment.

Description of tasks
We will now provide a detailed description of the
various types of tasks included in the assessment.

Tasks assessing fraction schemes and operations

The tasks borrowed or modified from previous written
assessments of students’ fraction schemes and operations
included four tasks that elicit a student’s partitive unit
fraction scheme (e.g., Fig. 4; Steffe, 2010b) and four tasks
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that elicit a student’s splitting operation (e.g., Fig. 5;
Hackenberg, 2007; Steffe, 2010b; Wilkins & Norton,
2011), both of which imply a construction of an ENS
(Steffe, 2010b), and two tasks that elicit students’ parti-
tioning operations (see Norton & Wilkins, 2012, 2013;
Wilkins & Norton, 2011; for further discussion of these
tasks). Note that we avoided the use of powers of 2 in
tasks involving partitioning because that partitioning can
be carried out by a series of halving actions, which is
available to students before simultaneous or equi-
partitioning operations are available. Furthermore, stu-
dents will sometimes be able to use small numbers, such
as 2, 3, and 4, in much more complex ways than the
other numbers in their number sequence, so behavior
when partitioning with 3 and 4 may be more advanced
than other partitioning behavior. For that reason, we
used a variety of number of partitions, including 3, 4, 5,
6, 7, and 9, with multiple problems using partitions of 5
and 6. The partitioning tasks were only coded based on
whether there were an appropriate number of partitions
and whether those partitions were approximately equal
in size.

In addition to these tasks, we adapted one other frac-
tion task from clinical interview protocols in which
students have to interpret the results of partitioning a
partition. In clinical interviews and teaching experi-
ments, the use of appropriate fractional language has
always indicated the construction of at least a partitive
fraction scheme (Ulrich, 2016b; Steffe, 2010b).

Tasks involving discrete composite quantities

Two tasks involving discrete quantities presented an
unknown number of marbles being added to a cup of
marbles. These tasks were meant to help differentiate
between INS and €INS. The rest of the tasks involving
discrete quantities required multiple applications of a
composite unit. In Cupcake Task A (Fig. 1), the compos-
ite units were boxes. In Cupcake Tasks B (Fig. 3) and C
(Fig. 9), the composite units were rows. In both situa-
tions, there were also boxes that represented a compos-
ite of composite units (3-level unit) that had to be
operated on in some way. There were two other prob-
lems involving composite discrete units. One involved
Legos made into Lego houses. The other involved scoops
of ice cream in sundaes. In many of these problems, the
ability of a student to do the problem mentally without
writing down any intermediate steps or supporting work
was taken to indicate a higher number stage construc-
tion. However, we recognize that some students might
routinely show their work because of teacher expecta-
tions and not out of need for figurative material. There-
fore, we do not count the use of figurative drawings
(e.g., drawing out cupcakes) “against” students for higher
stage attributions (i.e., give a negative score for this
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work). For example, if they do some of the more com-
plex problems mentally, that would indicate ENS, but if
they show work, it does not contraindicate ENS.

Task for partitioning a composite continuous quantity
There was one task meant to provide an opportunity for
students to show whether they assimilated tasks with
composite units or three-level units. In this task, one bar
was said to be 14 units long and the student was asked
to draw a bar that was 21 units long. If the student were
to utilize 7-unit lengths to draw the bar, then they would
show that they could think of 14 and 21 as made up of
multiples of composite units before operating and utilize
that knowledge to plan a solution strategy. That would,
in fact, imply a stage higher than the ENS stage but
certainly would be a decisive indication of ENS. Simply
solving that problem would require assimilation with
composite units, which implies at least an aTNS.

Note that in this and other problems, a student’s lack of
fluency with multiplication would make the more sophis-
ticated solution strategy unlikely, even though they might
have constructed an ENS or GNS. Nonetheless, we find
these items valuable in that it gives students who are
relatively fluent in multiplication to give indications that
would help us differentiate between aTNS and ENS. As
such, the fact that a student does not use the most sophis-
ticated strategy to solve this or another problem does not
by itself count against the student in determining a given
stage construction. However, it can give a decisive indica-
tion that will count strongly towards attributing the more
sophisticated number sequence construction.
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Bar tasks

There were six tasks on the assessment that show two
bars such that the length (and area) of one bar is a whole
number multiple of the other. Sometimes partitions are
used to show the iterations of the smaller bar in the lar-
ger bar, and sometimes they are not. In all tasks, the
length of one bar is given and we ask for the length of
the other. In all five tasks analyzed in this paper, the
smaller bar’s length is itself a composite unit. We refer
to these tasks as the bar tasks. We used five of these
tasks in our analyses (see Fig. 6). Based on the kappa (K)
statistic, overall rater agreement (inter-rater reliability)
was either perfect or almost perfect (Landis & Koch,
1977) for the five bar tasks: B1(K = .95); B2 (K = 1.00);
B3 (K = 1.00); B4 (K = .98); B5 (K = .93), representing
high reliability for rater agreement. These tasks are not
dissimilar to those used by other researchers to study unit
coordination (Kosko & Singh, in press; Norton, Boyce,
Phillips, Anwyll, Ulrich, & Wilkins, 2015; Norton, Boyce,
Ulrich, & Phillips, 2015), but they are different enough
that we did not feel comfortable using them to categorize
students according to the stages of unit construction and
coordination. Therefore, we instead developed some
hypotheses regarding their difficulty relative to each other
and relative to the other tasks that we can now test.

Data analysis methods for the current study

To answer the first research question, the first author
noted tasks with a variety of student work that illustrate
students’ use of composite units. All of the promising
tasks involved discrete units or partitioning. She chose
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Fig. 6 Bar tasks
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one task involving discrete units and one partitioning task
to fully analyze. For these two tasks, question by question,
she laid out all responses from students who had received
an INS classification based on the assessment rubric, all
responses from students who had received an €TINS classi-
fication based on the rubric, the first 10 responses from
students categorized as aINS, and the first 10 responses
from students categorized as ENS. Throughout the re-
mainder of the paper, we will use the term probable to
refer to classifications based on the assessment rubric. She
then identified all distinct types of written evidence for the
use of composite units (or contraindications), selecting
student responses that exemplified these types of written
evidence. For each of the selected exemplars, the first
author then went through each assessment in full to quali-
tatively determine whether the student responses seemed
representative of what she would expect of a student with
the assigned stage classification. When her classification
did not match up with that of the assessment rubric, she
randomly selected other responses at the given stage until
she found one in which the classifications did match up.
In that way, we feel fairly confident about the stage classi-
fications of each student whose work is shown in the
“Results and discussion” section. She additionally looked
through all other student responses to these questions to
find any additional types of written evidence. Finally, she
looked through all 33 of the originally chosen assess-
ments in full to see if there were other types of
written evidence that were not included in selected
student solutions to the original two tasks. There
were, and so the same procedure was carried out with
an additional task of each type (discrete unit and par-
titioning). In the end, all types of evidence were
covered using both discrete unit tasks and the second
partitioning task.

With regards to the second research question, we hy-
pothesized the following hierarchy and correspondences
between the bar tasks (Fig. 6) and stage classifications:
(H1) The bar tasks will follow a hierarchy of increasing
difficulty—B1, B2, B3, B4, B5; (H2) success rates on each
task will be positively associated with stage classification;
(H3) B1 would be possible for some students who had
not yet constructed composite units (INS); (H4) B2
would be possible for students who had constructed
composite units (€TNS); (H5) B3 and B4 would be pos-
sible for students who could assimilate using composite
units (aTNS); and (H6) B5 would be possible for stu-
dents who had constructed iterable units (ENS). Evi-
dence for the hierarchy was based on percent correct for
each task. Additionally, the magnitude and patterns of
association between student performance on each of the
five bar tasks and stage classification was assessed using
the gamma statistic (G). G is appropriate for assessing
the association between two ordinal measures (e.g., Bl
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versus stage classification; Siegel and Castellan, 1988).
Hypotheses 3 through 6 were evaluated through an in-
vestigation of the associated contingency tables. Given
evidence of an association between task and stage,
step-like patterns in the tables were used to identify the
classification for which tasks were accessible.

Results and discussion

For the purposes of the present study, we were primarily
interested in finding out what aspects of student-written
work are most promising as evidence of constructing
and operating on composite units and how performance
on the written assessment compared to performance on
a battery of decontextualized tasks involving length
(i.e., the bars tasks).

Evidence of construction of and operation on composite
units

While we can always look at whether students got a
problem wrong or right as an indication of certain ways
of operating, we chose to feature student responses that
would highlight the range of responses involving figura-
tive representation of or inferred internalized use of
composite units in solving the tasks. The focus of the
discussion of the responses in this section are not meant
to reflect classification strategies as student responses to
a single item are not sufficient to classify students. Any
stage constructions we attribute to students in the
“Results and discussion” section are based on their
overall performance on the assessment and a qualitative
analysis of the entire assessment by the first author. The
purpose of the responses we share here is to highlight
aspects of student written work that indicated the con-
struction of and operation on composite units. In par-
ticular, we will highlight two ways that this showed up in
written responses: partitioning and operating on com-
posites of composite units.

Partitioning

In our coding for the assessment, we were only focused
on whether the student had formed the correct number
of partitions and whether the partitions were approxi-
mately equal in size. However, within our 93 student
responses, we noticed a variety of written evidence
regarding the use of composite units while partitioning
that we wish to share with the reader. Many of these
pieces of evidence regard subtle distinctions in student
work and inferences about the order of student work;
therefore, we have yet to determine which of them may
be feasible to bring into our codings for future assess-
ments. It is more likely that these indications will be
useful for smaller scale studies in which researchers can
record the sequence of student-written work.
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Figure 7a shows a probable INS student who shows no
evidence of using a composite unit to complete the task.
This student segmented the bar into a bunch of fairly
equally sized small pieces (i.e., 26 pieces). Once the bar
had been segmented in this way, the student appears to
draw a diagram that represents divvying out these pieces
to seven stick figures. Note that the number of pieces
created by segmenting the bar is not a multiple of 7, and
so after divvying out 21 whole pieces, the student repre-
sents giving out a piece of a piece by segmenting the
final row of pieces to create shares of 3 and a little bit
more for each friend. Alternatively, the student could
have realized that 28 pieces was more pieces than were
available to divvy up and crossed out the last row and
given up. But in either case, based on these actions, we
hypothesize that this student is not able to use compos-
ite units and anticipate the segmenting of the bar into 7
pieces but is aware that the bar will need to be broken
into smaller pieces and shared equally. We further
hypothesize that the similarity in length of the pieces
was monitored by either visual estimates of similar size
or by attempts to use a similar horizontal movement to
get from each mark to the next.
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In the next student example (Fig. 7b), a probable eTNS
student appears to be attempting to coordinate the goal
of making seven equal-sized pieces with the goal of
exhausting the whole. We infer that the student tried
the bottom attempt first, crossed it out, and then made
the top attempt. We can see that the first (crossed-out)
attempt to segment started with the right-hand segment,
which was far too small, followed by the student’s at-
tempt to equi-segment the remainder of the bar, keeping
the segments about the same size. When the student
sees that the resulting seventh piece is far too big, the
student is then able to correctly determine that the first
six pieces need to be longer and the last one shorter.
The poor initial first guess at the necessary length for the
segments indicates that the student is constrained to cre-
ate the composite unit of 7 in activity before strategizing.
The second attempt is similar and also, from the ob-
server’s perspective, unsuccessful. We hypothesize that
the student was aware of the great disparity that remained
between the first and last segments and therefore aware
that he or she did not meet the goal of making equal-sized
pieces but decided to move on to the next task. This diffi-
culty in planning accurate partitioning behavior observed

among 7 friends.
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Fig. 7 Six solutions to a partitioning task




Ulrich and Wilkins International Journal of STEM Education (2017) 4:23

in both attempts may be due to the fact that the probable
€TINS student cannot use a mental re-presentation of
seven to guide them in planning out the segmenting
activity. When utilizing a mental re-presentation (e.g.,
Glasersfeld, 1991), students are able to mentally visualize
seven partitions and then project them onto the given
length of bar in order to make an estimate for where a
partitioning line should be placed. While seven is a large
number to clearly visualize, the simultaneous partitioner
would be able to make an estimated visualization of seven
partitions (or equally spaced objects) and “spread them
out” until they exhausted the whole of the bar. Steffe
refers to this use of re-presentation as a partitioning
template (Steffe & Olive, 2010).

None of the probable INS or €TINS students made
more than two attempts to partition the bar. While not
all students categorized as INS or €TINS in our study
have solutions like those shown in Fig. 7 (a and b), all
but one of these students was unsuccessful in coming up
with a good partitioning, which we judged by using a
minimum and maximum size for each of the partitions.

Recall that a student who is using equi-partitioning
understands the whole as resulting from iterations of a
partitioned unit, a multiplicative relationship in which
the whole is seen as # times as long as the partition. In
contrast, a student who is using simultaneous partition-
ing understands that the partitions need to be equal in
size, but the whole is not seen as resulting from itera-
tions of one of the created units. The simplest evidence
of the assimilatory use of composite units is the ability
to partition the bar fairly well on the first (written) try.
Note that the students whose solutions are shown in
Fig. 7c—f make better initial estimates and better adjust-
ments than the probable eINS student. This pattern held
for many probable aTNS and ENS students. Figure 7c, d
shows such first attempts by probable aTNS students.
Note these students also used their ability to simultan-
eously attend to all partitions to make efficient adjust-
ments to their initial partitioning. In these solutions,
students appear to make partitions all at once without
estimation or prior to adjustment. In other words, each
partition is made to be visually similar, instead of finding a
unit that will exhaust the whole when iterated. This is evi-
denced by the lines that are marked out. These lines likely
represent an initial attempt to divide the bar into 7
similar-sized pieces all at once. Once the student finishes,
they recognize that the pieces are not visually similar and
then adjust them to be smaller or larger to better repre-
sent equal-sized pieces. Figure 7e, f shows solutions by
probable ENS students who evidence equi-partitioning
through dots or small tick marks made to keep track of
iterations of an initial partition in order to ascertain
whether seven iterations produced the bar. We infer that
this iterating behavior occurred before the final
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partitioning was drawn and that these dots would not be
enough to help students visualize all seven pieces. This is
a key difference between aINS and ENS solutions that
has been noted in teaching experiments and clinical inter-
views: Both groups of students can make good adjust-
ments, but in the case of aTNS students, their goal is to
make the seven pieces visually similar in size (Ulrich,
20164, b; Steffe, 2010b). Therefore, they prefer to draw out
all seven partitions and visually compare them to make
their adjustments. ENS students who are equi-partitioning
have been theorized (Steffe, 2010b) to have the goal of
making sure the bar consists of seven iterations of the first
partition, so they use fingers, dots, or tick marks to keep
track of their iterations. They are not focused on visually
comparing partitions.

Some aTNS and ENS students did not have a well-
developed partitioning scheme, despite the fact that it
would theoretically be within their zone of proximal
construction to have constructed one. This was not
surprising to us based on Lamon’s (1996, 2007) calls to
include more partitioning opportunities in US class-
rooms beyond introductory activities in around third
grade. As Watanabe (2007) points out, even the intro-
ductory activities often involve pre-partitioned figures,
circumventing the need for partitioning behavior. The
lack of experience many US students get with partition-
ing partially explains why it took many probable aTNS
and ENS students multiple tries to get a good partition-
ing or why they did not attempt to make an accurate
partitioning. In fact, the vast majority of probable aTNS
and ENS students simply made a single partitioning and
did not attempt to adjust it. If the original partitioning
was not particularly accurate, we cannot glean much in-
formation about the students’ use of composite units in
their partitioning schemes from these solutions.

Operating on composites of discrete units

Tasks involving discrete units in which figurative repre-
sentations of units and (to the observer) composite units
were provided seemed to elicit a greater variety of
written solutions. We will use student solutions from
two of these tasks to illustrate how use of composite
units can be evidenced with written work. The first task
was useful for differentiating the use of composite units
in activity or assimilation. For this task, there are
marked differences between the types of figurative sup-
port used by the students at different stages. The second
task was useful for differentiating the use of composites
of composite units in activity or assimilation.

Cupcake Task A (Figs. 1 and 6) was meant to be po-
tentially accessible to all students in that students could
draw out all 39 cupcakes and create triplets from there.
In fact, two out of the four probable INS students drew
out all the cupcakes, and three out of the four were able
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to successfully arrive at the answer of 13. Figure 8a is
representative of both INS responses in which all cup-
cakes were drawn. In both, the student drew boxes of
three cupcakes until 39 cupcakes were completed. In
Fig. 8a, if you look closely, you can see that the student
counted the individual cupcakes in the boxes, evidenced
by pen marks in the circles. For the boxes that were
drawn earlier, we can see numerous pen marks in the
cupcakes, showing that the student counted those boxes
numerous times. This indicates that the boxes did not
stand in for composite units of three. Instead, the indi-
vidual cupcakes were the predominant unit for the stu-
dent. We hypothesize that the student did not attend to
the boxes as units until all 39 cupcakes were counted.
At that point, the student switched to counting boxes by
1. There is no indication that the student was aware of
counting the number of 3s in 39. You can see that the
drawing both here and in Fig. 8b (a probable €TINS
solution) is very literal, with rectangles representing
boxes and circles representing cupcakes.

Figure 8b is a solution from a probable eINS student.
It is similar to Fig. 8a, but the student does not give indi-
cations of recounting individual cupcakes. This implies
that the student was keeping track of the 39 units of 1
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as he or she made the boxes of 3 cupcakes: a simultan-
eous awareness of the composites of 3 and units of 1.
Finally, the student numbers the boxes, which explicitly
identifies them as countable units. Taken together, this
gives strong indications that the student was construct-
ing composite units of 3 in activity. Figure 8c shows a
probable aINS student who begins very similarly to the
solution in Fig. 8b but who is able to curtail the produc-
tion of individual cupcakes and only keep track of
groups of 3. This points to an increasingly assimilatory
use of composite units, consistent with advanced use of
a TNS.

Figure 8d shows the solution of a probable aTNS
student who uses a much less literal representation of
the situation, with tally marks representing a counted
cupcake and circles representing a completed box.
Furthermore, this student seems to have been aware that
he or she would be making multiple groups of 3 and
counting them before drawing. This can be seen in the
more organized nature of the drawing. Our hypothesis
would be that this student was using the figurative
material to keep track of the number of times three
counts were made. This all implies an awareness of com-
posite units of 3 in planning solution activity. Figure 8e
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Fig. 8 Student solutions to Cupcake Task A
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shows the solution of a probable aTNS student who does
not draw any figural representation of individual cup-
cakes. As in Fig. 8b—d, the student is working with com-
posite units of 3, but the absence of units of 1 in the
written work implies that these composite units did not
need to be built up in activity, as in Fig. 8b—c. Note that
aINS students may use more literal representations.
However, Fig. 8d, e shows that aINS students are not
constrained to using more literal representations.

Finally, some students (7 out of 44 students catego-
rized as ENS; 2 out of 39 students categorized as
aTNS) simply write the answer as in Fig. 8f. This im-
plies the ability to assimilate the situation in terms of
composite units of 3 and keep track of the number of
composite units of 3 in the sequence from 1 to 39
with no figurative support. Clearly, this problem was
relatively easy for aTNS and ENS students, so we will
examine student solutions to a more complicated task
that was meant to help differentiate between the TNS
and ENS students.

Page 14 of 20

In Cupcake Task C (Fig. 9), hidden cupcakes, shown
cupcakes, and the total numbers of cupcakes are each
composite units containing composite units (rows) of 6
cupcakes each. This complexity is meant to engender
operations on composites of composite units. The quan-
titative complexity of the situation appears to be over-
whelming for most INS or eINS students, who usually
leave the question blank or make a guess of how to com-
bine the printed numbers: 3, 6, and 9. Only one €TINS
(or INS) student successfully solved it after drawing all
of the cupcakes in, similarly to the solution in Fig. 9a.
The solutions shown in Fig. 9 are drawn from students
categorized as aTNS (Fig. 9a—d) and ENS (Fig. 9e—f).

In Fig. 9a—d, we can see a common characteristic of
aTNS solutions to these types of tasks: The students
have all reduced the cognitive load of the problem by
writing down intermediate calculations or using figura-
tive material to keep track of hidden rows and/or
cupcakes. In fact, in Fig. 9a, b, both students have drawn
out all 36 hidden cupcakes. However, note that even in

many cupcakes are hidden in the box?

There are 3 rows of 6 cupcakes that are unboxed. If there are 9 rows of cupcakes in all, how
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Fig. 9 Six solutions to Cupcake Task C




Ulrich and Wilkins International Journal of STEM Education (2017) 4:23

Fig. 9a, there is evidence of the use of a composite unit
in assimilation, not just the experiential figurative com-
posite formed by rows. In particular, the first two things
the student seems to have drawn are (a) the first column
of circles to represent the 6 hidden rows and (b) the en-
tire top row. While the order of these actions is unclear,
it is clear that the students operated on the composite
unit of rows very early in solution activity in order to
determine how many hidden rows there were before
unpacking rows into their constituent units by drawing
out the rest of the cupcakes in each row. Figure 9b more
explicitly represents quantification of several units in-
cluding the number of rows, the running subtotal of
cupcakes in rows, and the total of shown cupcakes.
Figure 9¢, d was drawn by students who do not need the
figurative support but do need to write down several
intermediate calculations. In particular, in Fig. 9c, the
student can now represent the composite unit of 6
cupcakes in a row by simply writing “6.” The composite
unit does not need to be unpacked to show individual
cupcakes. In Fig. 9d, the student also does not use
figurative units of 1. However, note that the solution
strategy simplifies the structure of the problem by im-
mediately calculating the number of individual cupcakes
in all so that the answer of 36 can be reached without
attending to the number of hidden rows. In other words,
for the student whose solution is shown in Fig. 9d, the
composite unit of hidden cupcakes does not necessarily
contain the intermediate composite units of 6 rows.
Another interesting aspect of the solutions in Fig. 9b,
c is that the students show no indication of disembed-
ding the 6 hidden rows and operating on that composite
unit of rows separately. In fact, the 6 hidden rows are
explicitly identified as the fourth through ninth row in
both solutions. This is consistent with the general lack
of reversible disembedding when working with a tacitly
nested number sequence. In contrast, the solution by a
probable ENS student in Fig. 9e, involves six hidden
rows that are potentially disembedded from the se-
quence of nine total rows and operates on these six rows
multiplicatively to determine the answer. Finally, Fig. 9f
shows a common response for probable ENS students,
who often only write the answer. In contrast, only one
of the 39 probable aTNS students correctly answered
this task without using an intermediate step or drawing.
We claim that this is not simply indicative of a desire of
the probable aTNS students to be thorough but rather is
indicative of their need to decrease the cognitive load of
the problem. This is further supported by the fact that
even if aTNS students reduced the cognitive load, they
were still more likely than students working at any of
the other stage classifications to conflate quantities on
this task. Presumably, this is because they have trouble
keeping track of all of the levels of units involved in the
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problem but still attempt to do so. Note that ENS stu-
dents might show work or drawings in order to be more
thorough. Therefore, showing work is not a contraindi-
cation of an ENS, even though not showing work is an
indication.

Cupcake Task C is indicative of six tasks on the assess-
ment in which the student is given a situation that
involves a composite of composite units. Generally, ENS
students can operate effectively in these situations.
Because of the lack of efficiency with which eTNS stu-
dents conceptualize composite units, creating and then
operating on composites of composite units creates an
unsustainable cognitive load. However, aTNS students’
ability to anticipate the use of composite units opens the
door for them to make sense of these tasks, even if they
have trouble carrying out the mental operations to
complete them effectively. This was evident in the fact
that over 56% of students categorized as aTNS made a
reasonable attempt at solving the majority of these tasks.

Comparison of performance on the assessment and the
bar tasks
Here we discuss the findings from comparing student
performance on the bar tasks with stage classifications
based on the rest of the assessment instrument (see
Table 2). The data supported the hierarchy of bar task
difficulty we had hypothesized; the overall percentages
correct were as follows: B1, 82%; B2, 72%; B3, 71%; B4,
55%; and B5, 46%. Furthermore, the magnitude of the
association between each of the tasks and the four stages
were found to be positive, strong, and statistically signifi-
cant based on the G statistic: B1, .76; B2, .72; B3, .62; B4,
.77; and B5, .82. These associations are also reflected in
the step-like patterns highlighted through shading in
Table 2. These patterns highlight the stage classification
for which tasks tend to become accessible. For example,
the step-like pattern for task B2 suggests that the task is
not accessible to INS or €TINS students but that the task
becomes accessible to students operating with an aTNS.
However, further investigation of the contingency
tables (see Table 2) revealed some unsuspected relation-
ships: B1 (iterating a length of 3 units) corresponded in
difficulty to the tasks that identify €TINS, not INS (as
predicted by H3) and B2 (iterating a length of 8 units)
corresponded in difficulty to tasks used to identify aTNS,
not €INS (as predicted by H4). When we created our
hypotheses, we thought that INS students would be able
to construct a numerical composite (supported by a
visuospatial pattern, for example) for a small number,
such as 3, in activity and then iterate that numerical
composite in activity in order to solve Bl. Similarly, we
thought that €TNS students would be able to construct
a composite unit in activity and then iterate it in order
to solve B2. We furthermore thought that the presence
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Table 2 Association between performance on bar tasks and stage
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Task
BI” B2 B3 B4 B5
Stage 0 1 0 1 0 1 0 1 0 1
INS 4 0 4 0 4 0 4 0 4 0
(100)  (0.0)  (100) (0.0) (100) (0.0) (100) (0.0) (100) (0.0)
eTNS 1 4 4 2 4 2 5 1 6 0
(20.0) (80.0) (66.7) (33.3) (66.7) (33.3) (83.3) (16.7) (100) (0.0)
aTNS 9 29 13 26 12 27 24 15 28 11
(23.7) (76.3) (33.3) (66.7) (30.8) (69.2) (61.5) (38.5) (71.8) (28.2)
ENS 2 42 5 39 7 37 9 35 12 32
(4.5) (955) (11.4) (88.6) (15.9) (84.1) (20.5) (79.5) (27.3) (72.7)
% 82 72 71 55 46
G .76 72 .62 17 .82

Note: The numbers in parentheses represent the percentage of children answering correctly (1) versus incorrectly (0) for each task within stage.

*Two of the 93 students did not complete Task B1

of the numerical symbol for the composite—3 in the
case of Bl and 8 in the case of B2—would be sufficient
to elicit these constructions. However, it appears that an
anticipatory use of composite units is necessary to
recognize a single partition as representing a composite.
Students did not appear to take the numeral as an im-
petus to construct a composite within the partition. In
fact, this fits better with theory than our original hypoth-
eses: Theoretically, an aTNS student is more advanced
than an €TINS student precisely because they have an
awareness of the results of producing composite units
before carrying out the physical or mental actions that
produce them. Without this awareness, there was no
reason for INS or €TINS students to form the goal of
constructing them to solve the bar tasks. Note that we
are assuming students do not have difficulty in counting
by 3s or carrying out repeated addition with 3 by this
point in their mathematical career.

Another surprising result was that the presence of
visible partitions in B2 did not greatly decrease the diffi-
culty when compared to B3 (72 versus 71%). When
iterating a composite unit, as in B2 and B3, there was
only a net total of one more student who could solve the
tasks when partitions (representing the number of itera-
tions needed) were present. We had hypothesized that
the need to determine the number of iterations needed
would cause students who were creating composite units
in activity (€INS students) to conflate the various com-
posite units at play. The fact that eTNS students were
not able to solve either task would explain why B3 did
not greatly increase in difficulty. When solving the re-
verse version of the bar task in which students were
given the total length of the longer bar and asked to find
the length of the shorter bar (the iterated composite
unit), as in B4 and B5, the presence of partitions gave a
jump in the number of correct attempts, a net total of 5
more students—1 more in €INS and 4 more in

aTNS—who correctly solved the task (consistent with
H6, in that B5 was hypothesized to be substantially more
difficult than B4, particularly for aTNS students). In this
case, students who were coordinating composite units in
activity included both aTNS and ENS students, and so
the added level of complexity helped to distinguish those
with more efficient unit structures (ENS students) from
those who had less efficient unit structures and so were
more likely to conflate the various types of composites.

Nonetheless, by far, the task difference that showed
the greatest increase in difficulty was the transition from
tasks in which students were given the size of the bar
being iterated (B1-3) and those in which the size of the
result of iterations was given (B4-5). While this does
not contradict H5 because 38.5% of probable aTNS
students were still able to solve B4, we were interested
to see that a much higher percentage of ENS students
(79.5%) solved it. Regardless, the jump in difficulty was
not surprising in that students had to construct or
assimilate with a composite unit made up of iterations
of a composite unit and then further operate on that
composite unit to solve B4. In the first three tasks, the
student would not need to unitize the result of iterating
because no further operation was necessary. Given the
realizations discussed above and adjustment of our
hypotheses, we found that the classified stages do align
relatively well with the performance on the bar tasks.
These relationships provide further evidence for the
validity of the stage classifications.

Conclusions

Summary of findings

In our analysis of students’ written work on the assess-
ment, we found that written work on tasks that included
figurative unit items, such as cupcakes, boxes, and/or
rows on the cupcake tasks, provided the greatest variety
of evidence regarding students’ construction of and
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operation on composite units. Furthermore, a situation
that would represent a simple division situation (Cup-
cake Task A) was most useful in helping determine
whether the students had constructed composite units
and/or were using composite units anticipatorily in plan-
ning solution activities. These distinctions are important
for distinguishing between INS, €TINS, and aTNS
students.

The other two cupcake tasks that involved reasoning
about composites of composite units (groups of rows of
cupcakes) were not generally solvable for INS or €TINS
students, so they were in that way useful for differentiat-
ing between €INS and aTNS. However, we focused on
how correct solutions differed, which helped us distin-
guish between aINS and ENS students. Overall, we
found the following types of evidence in correct solu-
tions of cupcake tasks: Solutions that lacked evidence of
the construction of composite units (possible for INS
students) included pen marks from counting and
recounting units of 1, indicating a focus on counting
units of 1 and not the figurative composites. Solutions
that showed evidence of constructing composite units in
activity (possible for €INS students) included written
counts of composite units, indicating the explicit aware-
ness of composites as countable units. Solutions that
showed evidence of an anticipatory use of composite
units (possible for aTNS students) included (a) the
complete or partial curtailment of drawing figurative
units of 1 and/or a single symbol to represent a compos-
ite unit; (b) using composite units to organize diagrams
(Figs. 8d and 9a); (c) written coordinations of multiple
counts, such as counts of composite units and total units
of 1; and (d) immediate unpacking of composites of
composite units into units of 1, bypassing further opera-
tions on composite units. Solutions that indicated the
ability to construct and potentially operate on in activity,
composites of composite units (possible for ENS stu-
dents) included (a) disembedding (lack of embedding) of
a composite of composite units (ENS) and (b) the ab-
sence of written supports (no intermediate calculations
or figurative items). It is important to remember that
students may not use the most sophisticated strategies
available to them on any particular problem, so that ru-
brics need to give more weight to the most sophisticated
use of composite units that is evidenced. Moreover, be-
cause students’ written responses can only be interpreted
as providing positive evidence or absence of evidence,
the number sequence classifications for students based
on these tasks represent a lower bound in terms of their
reasoning with composite units.

We also examined written work on partitioning tasks
to find indications of equi-segmenting (no indication of
the use of composite units), simultaneous partitioning,
or equi-partitioning. We found two types of solutions
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that showed equi-segmenting fairly clearly. In the first
type of written work, students focused on breaking the
bar into equal-sized pieces but did not attempt to match
the number of pieces to the number of partitions de-
sired. In the second type of written work, students made
a poor estimate for the size of the first partition and
then used that to make visually similar pieces. The final
piece was often far too big or the correct number of
pieces did not fit in the bar. This could be followed by
an appropriate adjustment. However, we found that the
students who gave clear indications of equi-segmenting
and were probable INS or €TINS students did not do
more than two attempts at segmenting and did not ar-
rive at an adequate partitioning. We hypothesize that
such students abandoned time-consuming equi-
segmenting behavior because they lacked the ability to
operate on a simultaneous awareness of all partitions in
order to accurately adjust their approximations. Indica-
tions of equi-partitioning included curtailment of draw-
ing partitions in favor of merely marking lengths to test
out the appropriateness of a first partition’s length. In
contrast, simultaneous partitioners drew out the parti-
tion and then adjusted the drawn partitions to even out
their lengths. In many cases, it was difficult to determine
the partitioning operations used on any one particular
problem because students only made one partitioning
with no intermediate attempts or marks evident. There-
fore, written evidence is not as promising on these tasks.

We found that the hierarchy of difficulty for the bar
tasks supported our conceptual framework. The tasks
were useful in distinguishing between students at each
of the four classifications. In particular, tasks in which
an unpartitioned bar was identified with a larger com-
posite unit were only successfully assimilated by prob-
able aTNS students, implying that these tasks do a good
job of testing a student’s ability to assimilate with com-
posite units. Furthermore, we found that partitions that
would scaffold a multiplicative comparison of the two
bars did not greatly reduce the difficulty of the prob-
lems, implying that students who can assimilate a task
with composite units do not have difficulty making and
interpreting (what is to the observer) a multiplicative
comparison of the composite units. Our findings imply
that the bar tasks could be a powerful addition to assess-
ments measuring a student’s stage in constructing and
coordinating units.

Implications

Future assessments

We believe that the findings in this study can help us
and others better establish children’s current stage of
ability to construct and coordinate units based on writ-
ten work. One broad implication of our findings is that
problems that include figurative unit items in the
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prompt could be particularly valuable in assessing stu-
dent work. This could give practitioners, for example,
additional ways to interpret student mathematical be-
havior outside of face-to-face questioning. It would also
help communicate to practitioners what students at vari-
ous stage classifications might “look like” in class. For
example, if teachers know that students are consistently
drawing out units of one, they may suspect that the
student is working with an INS and can make appro-
priate interventions. Alternatively, a teacher may note
that a student is able to curtail drawing out individual
items, indicating the construction of composite units
and a TNS.

Our more detailed findings about which problems
students were able to independently solve, given their
approximate stage classifications, and which problems
seemed useful to differentiating between students at
different stages, gives us and other researchers some
insight into what types of problems may be useful when
making a similar written assessment. Certainly, we have
already used these results to figure out which items to
keep and how to interpret student solutions in the ru-
bric for the second iteration of this instrument.

Supporting the transition to multiplicative thinking
The transition from purely additive reasoning to multi-
plicative thinking and, ultimately, proportional reasoning
is a key transition students are expected to make in
middle-grade mathematics (see Lamon, 2007, 2012, for
thorough discussions of these transitions). Just as pro-
portional reasoning refers to more than the solving of
proportions (Lamon, 2007, 2012), we use the term
multiplicative thinking to refer to more than solving a
multiplication problem. We refer to it as an awareness
of a multiplicative relationship between two quantities.
As documented by Steffe (1992), even INS students
can solve, what is to the observer, a multiplication prob-
lem. Certainly, TNS students can solve multiplication
problems, and this corresponds to what Hackenberg and
colleagues (e.g., Hackenberg & Lee, 2015; Hackenberg &
Tillema, 2009) have popularized as the first multiplica-
tive concept (see also Steffe, 1992). However, as Steffe
(1992) explains, students with the first multiplicative
concept cannot reinterpret the situation in terms of the
results of their multiplicative unit coordination. That is
to say, a student may determine the numerosity of “eight
times seven” by counting by seven eight times and yet
not be aware of the result, 56, as being in a multiplica-
tive relationship with 7. The awareness of a multipli-
cative relationship does not start to emerge until the
iterable unit of 1 that characterizes an ENS is con-
structed (e.g., Hackenberg & Lee, 2015; Ulrich, 2016a),
and it is restricted to a multiplicative relationship be-
tween 1 and composite units at the ENS stage. Because
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this awareness of a multiplicative relationship is required
for the type of multiplicative thinking outlined by
Lamon (2012) in which students must be aware of
not just the relationship but the intensive quantity
representing that relationship (eight times as big as in
this example), TNS students’ lack of awareness of
multiplicative relationships bodes poorly for their ability
to make a smooth transition to multiplicative thinking
and proportional reasoning.

Therefore, we find students at the aTNS stage during
middle school a particularly interesting and important
group to identify and study because they have multi-
plicative schemes and yet will face a serious obstacle in
trying to engage in truly multiplicative thinking. If we
and other researchers could help teachers identify writ-
ten indicators of this transition, that would give teachers
one more way to be able to identify interventions for
these students before they stumble in understanding
proportional reasoning and algebraic symbolization of
multiplicative relationships. Because aTNS students, in
the cupcakes tasks, for example, can often get to the
correct numerical answer and ENS students may give an
incorrect numerical answer due to misreading, being
attuned to other signals, like the amount of written work
students use, can help teachers determine which stu-
dents are which: aTNS students who may struggle with
multiplicative thinking or ENS students who may be
ready for such thinking. The large number of students
classified as aTNS surprised even us. Given that aTNS
students do not reason multiplicatively, this could have
implications for appropriate teaching interventions at
the sixth grade, where proportional reasoning is often
introduced in the USA. However, we will need to further
validate our instrument before making stronger claims.

Limitations and future research

The findings from this study will be used to further refine
our instrument and further validate its performance as an
assessment tool. We have already used the results of this
study to guide revisions of our assessment instrument and
are currently revising our coding guide and scoring
rubrics. We recognize a need for additional items that
specifically focus on the differentiation between aTNS and
ENS. In addition, we recognize a need to consider add-
itional items that are more streamlined and less affected
by extraneous factors unrelated to the assessment focus of
the tasks. For example, in a future study, it might be help-
ful to test whether students’ facility with whole-number
factor-product combinations is related to their perform-
ance when reasoning with composite units. By using
multiple sets of bar tasks varied with different number
combinations, we could test for this association, which
may provide additional information for the selection of
tasks for future assessment instruments.
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We are also carrying out an increased number of
clinical interviews to strengthen the validation efforts for
our revised assessment and to test our hypotheses about
what written evidence reveals about student thinking.
The structured clinical interviews used in the current
study constrained the interviewer from asking additional
probing questions that could have provided additional
evidence to make strong inferences about the number
sequences available to the children. In our ongoing re-
search, we are conducting semi-structured clinical inter-
views that allow for more focused follow-up questioning.
This way, we may be better able to make strong infer-
ences about children’s number sequences based on the
interviews and, thus, stronger validity claims based on
the match between findings from interviews and chil-
dren’s written work.

This study provides an initial baseline estimate for the
percentage of children classified with the different num-
ber sequences. However, the generalizability of this esti-
mate is limited by the fact that our sample is made up of
only sixth graders from one school. Thus, we would
like to continue to look at these percentages as we
refine our instrument and work with larger groups of
students. Furthermore, we would like to see develop-
mental patterns of middle-school children over time
to give us further insight into needed learning sup-
port and appropriate curricular goals.

Endnotes

'In particular, we are looking at arithmetic units
(Steffe, 2010a; Ulrich, 2015), which are interiorized
counting acts.

’It should be noted that this is not at all trivial for
younger students who have constructed a TNS.

*Note that fractions do not represent fully multi-
plicative relationships from the student’s perspective
until they have constructed an iterative fraction scheme
(IFS, see Steffe, 2010b). For example, a student with a
partitive fraction scheme would interpret “3/5” as some-
thing like “3 pieces out of 5, any one of which could be
iterated 5 times to form the whole.” In contrast, a stu-
dent who had constructed an iterative fraction scheme
would interpret “3/5” as something like “3 times the
amount that can be iterated 5 times to form the whole.”
In the case of the IFS, the numerator and the denomin-
ator represent multiplicative relationships, while only
the denominator represents a multiplicative relationship
for a student with a partitive unit fraction scheme.

*We do not include the actual formulas and codes in
this report as we are continuing to revise them based on
new data and intend to publish more explicit discussion
of the formulas in future work. The interested reader is
encouraged to contact the authors for additional infor-
mation about the formulas and codes.
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Abbreviations

ENS: Explicitly nested number sequence; G: Gamma statistic;

GNS: Generalized number sequence; INS: Initial number sequence;
TNS: Tacitly nested number sequence
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