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ABSTRACT

Turbulent swirling flows are important in many applications including gas turbines,
furnaces and cyclone dust separators among others. Although the mean flow fields
have been relatively well studied, a complete understanding of the flow field including
its dynamics has not been achieved. The work contained in this dissertation attempts
to shed further light on the behavior of turbulent swirling flows, especially focused on
the dynamic behavior of a turbulent swirling flow encountering a sudden expansion.
Experiments were performed in a new isothermal turbulent swirling flow test facility.
Two geometrical nozzle configurations were studied. The center—body nozzle config-
uration exhibits a cylindrical center—body in the center of the nozzle. The free vortex
nozzle configuration is obtained when the cylindrical center-body is removed. De-
tailed laser velocimeter measurements were performed to map out the flow field near
the sudden expansion of the 2.9” (ID) nozzle leading to the 7.4” (ID) downstream
section.

In addition to presenting detailed flow profiles for both nozzle and downstream
flow fields, representative frequency spectra of the flow dynamics are presented. Along
with the flow time histories and histograms, the wide variety of dynamic behavior
was thus described in great detail. The dynamics observed in the experiment can be

classified into three main categories: coherent and large scale motion, intermittent



motion and coherent periodic motion. Free vortex geometry flows, in the parame-
ter space of the experiments (Swirl number = 0 - 0.21), exhibited mostly coherent
and large scale motion. The spectra in these cases were broadband with very light
concentration of spectral energy observed in some specific cases. Center—body geom-
etry flows exhibited all three categories of flows as swirl strength was increased from
zero. Flows with little or no swirl exhibited broad—band spectra similar to those for
the free vortex geometry. Intermediate swirl levels resulted in a large amount of low
frequency energy which, with the aid of the time histories, was identified as a large
scale intermittence associated with radial movement of the annular jet as it enters the
sudden expansion. Large swirl levels resulted in high magnitude coherent oscillations
concentrated largely just downstream of the sudden expansion.

Linear stability analysis was used to help in the interpretation of the observed
dynamics. Although, as implemented here (using the parallel flow assumption), the
analysis was not successful in quantitatively matching the experimentally observed
dynamics, significant insight into the physical mechanisms of the observed dynamics
was obtained from the analysis. Specifically, the coherent oscillations observed for
larger swirl levels were able to be described in terms of the interaction between the

inner and outer shear layers of the flow field.
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