Investigation of Dynamics in Turbulent Swirling Flows Aided by Linear Stability Analysis

by

Ludwig Christian Haber, B.S., M.S.

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

APPROVED:

Dr. Uri Vandsburger

Dr. William R. Saunders

Dr. Andrezj Banaszuk

Dr. Saad Ragab

Dr. Eugene Brown

October 2003

Blacksburg, Virginia

Keywords: Stability, Flow Control, Turbulence

Investigation of Dynamics in Turbulent Swirling Flows Aided by Linear Stability Analysis

Ludwig Christian Haber, Ph.D.

Virginia Polytechnic Institute and State University, 2003 Advisor: Dr. Uri Vandsburger

Abstract

Turbulent swirling flows are important in many applications including gas turbines, furnaces and cyclone dust separators among others. Although the mean flow fields have been relatively well studied, a complete understanding of the flow field including its dynamics has not been achieved. The work contained in this dissertation attempts to shed further light on the behavior of turbulent swirling flows, especially focused on the dynamic behavior of a turbulent swirling flow encountering a sudden expansion. Experiments were performed in a new isothermal turbulent swirling flow test facility. Two geometrical nozzle configurations were studied. The center–body nozzle configuration exhibits a cylindrical center–body in the center of the nozzle. The free vortex nozzle configuration is obtained when the cylindrical center–body is removed. Detailed laser velocimeter measurements were performed to map out the flow field near the sudden expansion of the 2.9" (ID) nozzle leading to the 7.4" (ID) downstream section.

In addition to presenting detailed flow profiles for both nozzle and downstream flow fields, representative frequency spectra of the flow dynamics are presented. Along with the flow time histories and histograms, the wide variety of dynamic behavior was thus described in great detail. The dynamics observed in the experiment can be classified into three main categories: coherent and large scale motion, intermittent motion and coherent periodic motion. Free vortex geometry flows, in the parameter space of the experiments (Swirl number = 0 - 0.21), exhibited mostly coherent and large scale motion. The spectra in these cases were broadband with very light concentration of spectral energy observed in some specific cases. Center-body geometry flows exhibited all three categories of flows as swirl strength was increased from zero. Flows with little or no swirl exhibited broad-band spectra similar to those for the free vortex geometry. Intermediate swirl levels resulted in a large amount of low frequency energy which, with the aid of the time histories, was identified as a large scale intermittence associated with radial movement of the annular jet as it enters the sudden expansion. Large swirl levels resulted in high magnitude coherent oscillations concentrated largely just downstream of the sudden expansion.

Linear stability analysis was used to help in the interpretation of the observed dynamics. Although, as implemented here (using the parallel flow assumption), the analysis was not successful in quantitatively matching the experimentally observed dynamics, significant insight into the physical mechanisms of the observed dynamics was obtained from the analysis. Specifically, the coherent oscillations observed for larger swirl levels were able to be described in terms of the interaction between the inner and outer shear layers of the flow field.

Acknowledgments

I would like to thank Dr. Uri Vandsburger for his patience, technical expertise and encouragement in my research. I greatly appreciate the latitude I was given in pursuing the research contained in this dissertation. The lessons I learned in the approach to research will serve me well during the rest of my research career.

I would also like to thank Dr. William Saunders for countless discussions which helped inspire the work contained in this dissertation. His help in organizing my thoughts on flow and acoustic interaction is especially appreciated.

I would like to thank the other members of my committee, Dr. Saad Ragab, Dr. Eugene Brown and Dr. Andrzej Banaszuk. I owe Dr. Ragab a lot of my advanced fluid dynamics education and he is a great teacher. Likewise, I especially remember Dr. Brown for his innovative lectures in basic fluid dynamics. I appreciate the discussions with Dr. Banaszuk and his fair no-nonsense evaluation of research ideas.

Furthermore, I want to thank Dr. Clint Dancey, Dr. William Baumann and Randy Smith for their help in designing building and troubleshooting the custom built Laser Doppler Velocimeter. I also appreciate the assistance of Adam Norberg in running some of the last experiments and his help in the refinement of the acoustic sensor design and calibration procedure. Of course, no RFL lab work will be successful without the invaluable practical advice of Steve Lepera. I too benefited from his great research experience and practical advice. Thanks also to Wajid Chishty and Adam Hendricks for many helpful discussions and encouragement. I would also like to express appreciation for the work of the Mechanical Engineering Machine Shop, especially James Dowdy who was always available for good practical advice. I want to also thank my family as well as all my friends for their support in this undertaking. Ben, thanks for being there - period. Cary and Jeff, thanks for letting me stay with you and helping me keep perspective. Thanks to my mother, father, Mike and my sister for helping me and motivating me to make it to where I am today.

Finally, I would like to thank my wife Sherrie. She has stood by me through the years of my doctoral study with love, patience, support and great friendship. I will always cherish these years during which we grew together and fell in love. Thank you.

LUDWIG CHRISTIAN HABER

Virginia Polytechnic Institute and State University October 2003 To my family

Contents

Abstra	act		ii
Ackno	wledgr	nents	iv
Nomei	nclatur	e	xiii
List of	Figur	es	xvii
List of	' Table	S	xxxi
Chapt	er 1 I	ntroduction and Background	1
1.1	Motiv	ation	2
1.2	Backg	round	2
	1.2.1	Applied combustion systems research	2
	1.2.2	Flow characteristics in gas turbine combustors	4
	1.2.3	Flow Control Opportunities	6
	1.2.4	Predictive tools for flow design	11
1.3	Exper	imental Studies in Swirling Flows	13
1.4	Linear	Stability Analysis	20
	1.4.1	Overview of results	20
	1.4.2	Basic stability problem setup	21
	1.4.3	Flow stability in cylindrical coordinates	23
	1.4.4	Stability of swirling flows	27
	1.4.5	Absolute and convective instability	31

	1.4.6 Global stability \ldots \ldots \ldots \ldots \ldots \ldots	37
	1.4.7 Amplification without unstable eigenvalues	38
1.5	Summary	40
	1.5.1 Experiments	40
	1.5.2 Analysis	40
Chapt	er 2 Experimental Setup	42
2.1	Overview	43
2.2	Inlet piping	45
2.3	Inlet settling chamber	47
2.4	Flow seeder	48
2.5	Swirler	51
2.6	Test section	63
2.7	Filter chamber	67
2.8	Acoustic excitation	69
2.9	Structural undercarriage	69
2.10	Possibilities for improvement in design	69
		-0
Chapte	er 3 Experimental Methods and Data Reduction	13 74
3.1	Overview	(4
3.2	Velocity measurements	(4
	3.2.1 LDV overview	(4
	3.2.2 Velocity statistics	77
	3.2.3 Flow characterization	79
	3.2.4 Frequency domain	80
	3.2.5 Measurement error	94
	3.2.6 Frequency estimation error	97
	3.2.7 Total velocity uncertainty	98
3.3	Acoustic measurements	98
	3.3.1 Calibration	99
	3.3.2 Acoustic velocity and intensity	99

Chapte	er 4 I	Experimental Results - Statistics	103
4.1	Overv	[,] iew	104
4.2	Free v	vortex geometry flow field	106
	4.2.1	Nozzle flow field	106
	4.2.2	Post sudden expansion flow field	118
4.3	Annul	lus geometry	135
	4.3.1	Nozzle flow field	136
	4.3.2	Post sudden expansion flow field	142
Chapt	er 5 I	Experimental Results - Dynamics	160
5.1	Overv	riew	161
5.2	Overv	view of flow dynamics	162
	5.2.1	Free vortex geometry	162
	5.2.2	Annulus geometry	186
5.3	Detail	ls of selected flow dynamics	208
	5.3.1	Free vortex geometry flow without swirl	208
	5.3.2	Annulus geometry oscillations at higher swirl numbers	213
	5.3.3	Annulus geometry dynamics at lower swirl numbers	221
5.4	Acous	stics and flow dynamics	234
Chapt	er 6 I	Linear Stability Analysis	239
6.1	Overv	riew	240
6.2	Lamir	nar disturbance equations	240
6.3	Linear	r stability analysis in turbulent flow	244
6.4	Interp	pretation of results	250
	6.4.1	Description of instability analysis types	250
6.5	Soluti	on methods	252
	6.5.1	Shooting method implementation	253
	6.5.2	Chebychev collocation method implementation	256
	6.5.3	Absolute stability analysis implementation	260
	6.5.4	General procedure for linear stability analysis of a local profile	260

6.6	Bench	mark flow stability calculations	262
6.7	Linear	r stability of experimentally observed flows	269
	6.7.1	Obtaining flow profiles from experimental data	269
	6.7.2	Laminar stability analysis results	271
	6.7.3	Turbulent stability analysis	283
Chapte	er7I	Discussion, Conclusions and Recommendations	286
7.1	Overv	riew of experimental results	287
	7.1.1	Free vortex geometry	287
	7.1.2	Annulus geometry	288
7.2	Overv	riew of analytical results	290
	7.2.1	Convective stability	290
	7.2.2	Absolute stability	291
	7.2.3	Turbulent stability	292
7.3	Flow of	dynamics in turbulent flows	292
7.4	Towar	d flow control	297
7.5	Concl	usions	300
	7.5.1	Experimental findings	300
	7.5.2	Value of linear stability analysis	301
7.6	Recon	nmendations	303
	7.6.1	Experimental Setup and Methods	303
	7.6.2	Further Experiments	304
	7.6.3	Analytical work	305
Appen	dix A	LDV Measurement System Manual	319
A.1	Introd	luction	320
A.2	Princi	ples of Operation	320
A.3	Laser	Operation Alignment and Maintenance	323
	A.3.1	Laser requirements	323
	A.3.2	Basic laser alignment and maintenance	324
	A.3.3	Etalon installation and alignment	326

A.4	Laser Doppler Velocimeter Optics	330
	A.4.1 Overview	330
	A.4.2 Table optics	331
	A.4.3 Probe optics	346
	A.4.4 Receiver optics	353
A.5	Laser Doppler Velocimeter Electronics	357
	A.5.1 Photomultiplier signal conditioning	357
	A.5.2 Doppler identification and trigger circuits	360
	A.5.3 Doppler data acquisition	363
A.6	Laser Doppler Velocimeter Signal Processing	364
	A.6.1 Frequency identification and burst quality	365
	A.6.2 Conversion to velocity	367
	A.6.3 LDV velocity statistics	368
	A.6.4 Software description	369
	A.6.5 Data file formats	391
A.7	Day to day operating instructions	393
	A.7.1 Laser startup and instrument startup	393
	A.7.2 Fiber optic coupling	394
	A.7.3 Probe alignment	396
	A.7.4 Measurement setup	396
	A.7.5 Measurements	397
A.8	Improvements in the LDV design	397
A.9	List of specialized vendors	399
Appen	dix B Pressure sensors (Microphones)	402
B.1	Introduction	403
B.2	Design	403
B.3	Calibration	405
Appen	dix C Stepper motors and translation stages	408
C.1	Introduction	409

Vita		419
C.7	Supplier Contact Information	417
C.6	Mechanical Connections	416
C.5	Power Supply	415
C.4	Stepper Motors	414
C.3	Stepper Motor Driver	412
	C.2.2 Motor Control under Windows	411
	C.2.1 Motor Control under DOS	410
C.2	Computer Control	410

Nomenclature

a1,a2,	generic quantity / variable
a_M	constant in ring jet profile that helps determine location of
	maximum axial velocity (Equation 6.31)
a_q	coefficient for non-linear mapping of physical domain into
	Chebychev domain
a _k	vector of coefficients for the k-th Chebychev polynomial
А	area
A_M	swirl strength parameter in ring jet with swirl profile (Equation 6.31)
b1,b2,	generic quantity / variable
b_M	constant in ring jet swirl profile that helps determine location of
	maximum swirl velocity (Equation 6.31)
с	ω/α , the complex wave phase speed
c_t	proportionality constant in the determination of turbulent viscosity
	from k and l_m
Cal_k	calibration transfer function of microphone k, with B&K microphone
	in first channel. Includes B&K microphone sensitivity (0.0473 V/Pa)
ch_d	inter–channel delay, 5 μsec
ch_k	channel number k
COH_{12}	ordinary coherence between signals 1 and 2
CPs_{12}	cross spectrum between signals 1 and 2
D	diameter

D_n	nozzle diameter, 2.9"
D_h	hydraulic diameter of the nozzle with center–body, 1.9"
DD	matrix of constant coefficients for the unknowns ${\bf Q}$ not involving the
	eigenvalue (α or ω)
d_b	beam separation distance at the focusing lens
d_f	fringe spacing for the laser interference pattern
DFT	direct Fourier transform of a signal
dS	differential surface element
dt	differential amount of time
Ε	similar to DD except constants are multipliers of the eigenvalue
f(x,y,t)	perturbation function
F(y)	eigenfunction, relative distribution of the disturbance in y
F(r)	radial velocity eigenfunction
f_d	frequency estimate of Doppler burst
f	cyclical frequency (Hz)
f_l	focal length of beam focusing lens
f_m	mixing frequency used to electronically down shift the Doppler frequency
f_s	optical shift frequency applied by the Bragg cell
f_{sam}	mean sampling frequency
g	generic function
G	azimuthal (swirl) velocity eigenfunction, G(r)
Н	axial velocity eigenfunction, $H(r)$
H_{12}	actual transfer function between P_1 and P_2
H_{12}^{m}	calibration and delay corrected transfer function between ${\cal P}_1$ and ${\cal P}_2$
H_{12}^{v}	raw voltage transfer function between P_1 and P_2 sensors
i	$\sqrt{-1}$
k	turbulent kinetic energy
kl_m	model constant representing the product of a mean length scale
	with a mean turbulent kinetic energy.
l_m	turbulent length scale

m	azimuthal mode number, $\in I$, the set of integers
Ν	number of data points
Р	pressure disturbance eigenfunction, $P(r)$
P_1, P_2	Fourier transformed pressures of microphones 1 and 2
р	pressure (non-dimensionalized)
p1,p2,	profile fitting parameters
Ps	power spectrum
Psd	power spectral density
Q	volumetric flow-rate
\mathbf{Q}	solution vector including all coefficients of the Chebychev polynomials
r	radial coordinate
R_p	complex pressure reflection coefficient
Re	Reynolds number $= U_{ref} D_{ref} / \nu$
S	variable $s(r, \theta, t)$
S	swirl number
S_t	turbulent swirl number
t	time
t_t	turbulent time scale
Т	measurement period
TF_{12}	transfer function between signal 1 and 2 $$
T_k	k-th Chebychev polynomial
U,u	non-dimensionalized axial flow profile function, $(U(y) \text{ or } U(r))$
U_{oM}	back-flow parameter of ring jet profile with swirl (Equation 6.31)
\vec{u}	acoustic velocity vector
\vec{V}	velocity vector (U, V_r, W)
V_r, v_r	non-dimensionalized radial flow profile function, $\mathbf{V}(\mathbf{r})$
W,w	non-dimensionalized azimuthal (swirl) flow profile function, $\mathbf{W}(\mathbf{r})$
W_T	transmitted acoustic power
х	axial coordinate
У	direction of flow profile function

v_d	velocity corresponding to measured Doppler frequency
α	axial wavenumber
Γ	circulation, $W \cdot r$
Δr	separation distance of microphones
θ	azimuthal coordinate
$ heta_{sl}$	shear layer thickness
∇	gradient operator
λ_f	Frobenius exponent in power expansion
$\lambda_w 1, 2$	Wasow power expansion coefficients
Λ	matrix whose diagonal entries are eigenvalues
ν	kinematic viscosity
$ u_t$	turbulent viscosity
ξ	Chebychev domain coordinate $\xi in[-1,1]$
ρ	density
τ	stress tensor components
Ψ	disturbance stream function
ω	temporal frequency (radians/sec)
$\omega_{lphalpha}$	coefficient to fit dispersion relation:
	$(\omega - \omega_o) = (\omega_{\alpha\alpha}/2) * (\alpha - \alpha_o)$
Ω	angular velocity, V/r
0	indicates the wavenumber and frequency of the mode with zero group velocity
a^*	indicates complex conjugate of quantity a
\tilde{a}	indicates the fluctuating component of the quantity a
a_{rms}	indicates the RMS component of the quantity a
a_{un}	uncertainty of quantity a
a_w	quantity evaluated at the wall
\overline{ab}	indicates the time average of the product of a and b

List of Figures

1.1	Schematic of shear layers found in combustors	6
1.2	Sketch of vortex breakdown structure based on (Sarpkaya, 1971) and	
	(Harvey, 1962)	29
1.3	Pinching condition for determination of absolute stability	33
2.1	CAD Isometric view of experimental facility	43
2.2	Photograph of experimental facility	44
2.3	Inlet air pressure regulator	45
2.4	Flow rate regulating valves	46
2.5	Mass flow meter and power supply	47
2.6	Inlet flow noise muffler	48
2.7	PVC pipe settling chamber inlet	49
2.8	Settling chamber	50
2.9	Seeder schematic	52
2.10	Seeder photograph	53
2.11	Front of swirler	54
2.12	Swirler uncovered	55
2.13	Rotating joint for tilt-away maintenance of swirler	55
2.14	Swirler tilted away from settling chamber	56
2.15	Filter material added to swirler inlet	57
2.16	Swirler entrance annulus	58
2.17	Exploded view of swirler body	59
2.18	Swirler gears	60

2.19	Swirler drive gear	61
2.20	Exploded view of swirl vane connection	62
2.21	Swirl vane	63
2.22	Photograph of test section	65
2.23	Exploded view of test section assembly	66
2.24	Pipe window covers	66
2.25	Optical access windows	67
2.26	Filter chamber	68
2.27	Mounted speaker	70
2.28	Undercarriage of experimental facility	71
3.1	Ideal Poisson distribution compared to two typical LDV sample time	
	distributions	84
3.2	True second order PSD with the FFT calculated spectra of the primary	
	data series and an interpolated data series	85
3.3	PSD estimates of a second order spectrum using the primary evenly	
	spaced data series	86
3.4	PSD estimates of a first order spectrum using Poisson distributed sam-	
	ple times (16 averages)	86
3.5	PSD estimates of a first order spectrum using Poisson distributed sam-	
	ple times (256 averages)	87
3.6	PSD estimates of a second order spectrum using Poisson distributed	
	sample times (256 averages - mean frequency 75% of primary series)	88
3.7	PSD estimates of a second order spectrum using Poisson distributed	
	sample times (256 averages - mean frequency 50% of primary series)	89
3.8	PSD estimates of a second order spectrum with two sine waves using	
	Poisson distributed sample times (512 averages - mean frequency 50%	
	of primary series)	89

3.9	PSD estimates of a first order spectrum with white noise using Pois-	
	son distributed sample times (512 averages - mean frequency 75% of	
	primary series)	91
3.10	PSD estimates of a first order spectrum with white noise (added after	
	interpolation) using Poisson distributed sample times (512 averages -	
	mean frequency 75% of primary series)	92
3.11	PSD estimates of a second order spectrum using a sample time dis-	
	tribution from measurements (512 averages - mean frequency 75% of	
	primary series)	93
3.12	PSD estimates of a second order spectrum with added white noise (af-	
	ter interpolation) using a sample time distribution from measurements	
	(512 averages - mean frequency 75% of primary series) $\ldots \ldots \ldots$	93
3.13	Alignment between test section and LDV probe	96
3.14	Custom microphone package	99
4.1	Comparison of nozzle mean velocity profiles at two axial locations for	
	$S=0.12, Q=50 \text{ SCFM} \dots \dots$	107
4.2	Comparison of nozzle RMS velocity profiles at two axial locations for	
	$S=0.12, Q=50 SCFM \dots$	108
4.3	Comparison of nozzle \overline{uw} stress profiles at two axial locations for	
	$S=0.12, Q=50 \text{ SCFM} \dots$	108
4.4	Comparison of nozzle mean velocity profiles for all swirl conditions at	
	x/D_n =-0.35 and Q=50 SCFM	109
4.5	Comparison of nozzle RMS velocity profiles for all swirl conditions at	
	x/D_n =-0.35 and Q=50 SCFM	110
4.6	Comparison of nozzle \overline{uw} stress profiles for all swirl conditions at	
	x/D_n =-0.35 and Q=50 SCFM	110
47	· · · · · · · · · · · · · · · · · · ·	
4.1	Comparison of nozzle mean velocity profiles at both flow rates for	
4.7	Comparison of nozzle mean velocity profiles at both flow rates for $S=0.12$ at $x/D_n=-0.35$	113

4.8	Comparison of nozzle RMS velocity profiles at both flow rates for	
	S=0.12 at x/ D_n =-0.35	113
4.9	Comparison of nozzle \overline{uw} stress profiles at both flow rates for S=0.12	
	at x/D_n =-0.35	114
4.10	Histogram of axial velocities at the centerline for x/D_n =-0.35, Q=100 SC	FM
	and S=0.12	114
4.11	Comparison of nozzle mean velocity profiles at two swirl levels (S= $0.12,0$.	16)
	for Q=100 SCFM at x/D_n =-0.35	115
4.12	Comparison of nozzle RMS velocity profiles at two swirl levels (S= $0.12, 0.3$	16)
	for Q=100 SCFM at x/D_n =-0.35	116
4.13	Comparison of nozzle \overline{uw} stress profiles at two swirl levels (S=0.12,0.16)	
	for Q=100 SCFM at x/D_n =-0.35	116
4.14	Histogram of axial velocities at the centerline for x/D_n =-0.35, Q=100 SC	FM
	and S=0.16	117
4.15	Histogram of swirl velocities outside centerline for x/D_n =-0.35, Q=100 Sector 2000 Sec	CFM
	and S=0.16	118
4.16	and S=0.16	118
4.16	and S=0.16 Comparison of combustor mean velocity profiles at all swirl levels for Q=50 SCFM at $x/D_n=0.44$	118 119
4.164.17	and S=0.16 Comparison of combustor mean velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44 Comparison of combustor RMS velocity profiles at all swirl levels for	118 119
4.16 4.17	and S=0.16 Comparison of combustor mean velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44 Comparison of combustor RMS velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44	118119120
4.164.174.18	and S=0.16 Comparison of combustor mean velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44 Comparison of combustor RMS velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44 Comparison of combustor \overline{uw} stress at all swirl levels for Q=50 SCFM	118119120
4.164.174.18	and S=0.16 Comparison of combustor mean velocity profiles at all swirl levels for Q=50 SCFM at $x/D_n=0.44$ Comparison of combustor RMS velocity profiles at all swirl levels for Q=50 SCFM at $x/D_n=0.44$ Comparison of combustor \overline{uw} stress at all swirl levels for Q=50 SCFM at $x/D_n=0.44$	 118 119 120 121
4.164.174.184.19	and S=0.16 Comparison of combustor mean velocity profiles at all swirl levels for Q=50 SCFM at $x/D_n=0.44$ Comparison of combustor RMS velocity profiles at all swirl levels for Q=50 SCFM at $x/D_n=0.44$ Comparison of combustor \overline{uw} stress at all swirl levels for Q=50 SCFM at $x/D_n=0.44$ Evolution of combustor mean velocity profiles for S=0, Q=50 SCFM.	 118 119 120 121 122
 4.16 4.17 4.18 4.19 4.20 	and S=0.16 Comparison of combustor mean velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44 Comparison of combustor RMS velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44 Comparison of combustor \overline{uw} stress at all swirl levels for Q=50 SCFM at x/D_n =0.44 Evolution of combustor mean velocity profiles for S=0, Q=50 SCFM . Evolution of combustor RMS velocity profiles for S=0, Q=50 SCFM .	 118 119 120 121 122 122
 4.16 4.17 4.18 4.19 4.20 4.21 	and S=0.16 Comparison of combustor mean velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44 Comparison of combustor RMS velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44 Comparison of combustor \overline{uw} stress at all swirl levels for Q=50 SCFM at x/D_n =0.44 Evolution of combustor mean velocity profiles for S=0, Q=50 SCFM . Evolution of combustor RMS velocity profiles for S=0, Q=50 SCFM . Evolution of combustor \overline{uw} stress profiles for S=0, Q=50 SCFM	 118 119 120 121 122 122 123
 4.16 4.17 4.18 4.19 4.20 4.21 4.22 	and S=0.16	 118 119 120 121 122 122 123 123 123
 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 	and S=0.16 Comparison of combustor mean velocity profiles at all swirl levels for Q=50 SCFM at $x/D_n=0.44$ Comparison of combustor RMS velocity profiles at all swirl levels for Q=50 SCFM at $x/D_n=0.44$ Comparison of combustor \overline{uw} stress at all swirl levels for Q=50 SCFM at $x/D_n=0.44$ Evolution of combustor mean velocity profiles for S=0, Q=50 SCFM . Evolution of combustor RMS velocity profiles for S=0, Q=50 SCFM . Evolution of combustor \overline{uw} stress profiles for S=0, Q=50 SCFM . Evolution of combustor \overline{uw} stress profiles for S=0, Q=50 SCFM . Evolution of combustor \overline{uw} stress profiles for S=0, Q=50 SCFM . Evolution of combustor \overline{uw} stress profiles for S=0, Q=50 SCFM .	 118 119 120 121 122 122 123 123 124
 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 	and S=0.16	 118 119 120 121 122 122 123 123 124 125
 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 	and S=0.16 Comparison of combustor mean velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44 Comparison of combustor RMS velocity profiles at all swirl levels for Q=50 SCFM at x/D_n =0.44 Comparison of combustor \overline{uw} stress at all swirl levels for Q=50 SCFM at x/D_n =0.44 Evolution of combustor mean velocity profiles for S=0, Q=50 SCFM . Evolution of combustor RMS velocity profiles for S=0, Q=50 SCFM . Evolution of combustor \overline{uw} stress profiles for S=0, Q=50 SCFM . Evolution of combustor mean velocity profiles for S=0, Q=50 SCFM . Evolution of combustor mean velocity profiles for S=0.12, Q=50 SCFM . Evolution of combustor RMS velocity profiles for S=0.12, Q=50 SCFM . Evolution of combustor RMS velocity profiles for S=0.12, Q=50 SCFM . Evolution of combustor \overline{uw} stress profiles for S=0.12, Q=50 SCFM . Evolution of combustor \overline{uw} stress profiles for S=0.12, Q=50 SCFM . Evolution of combustor \overline{uw} stress profiles for S=0.12, Q=50 SCFM .	 118 119 120 121 122 122 123 123 124 125 126

4.27	Evolution of combustor \overline{uw} stress profiles for S=0.21, Q=50 SCFM $$.	128
4.28	Flow field asymmetry at S=0.21 and Q=50 SCFM with and without	
	large window	129
4.29	Comparison of combustor mean velocity profiles at all swirl levels for	
	Q=100 SCFM at $x/D_n=0.44$	129
4.30	Comparison of combustor RMS velocity profiles at all swirl levels for	
	Q=100 SCFM at $x/D_n=0.44$	130
4.31	Comparison of combustor \overline{uw} stress at all swirl levels for Q=100 SCFM	
	at $x/D_n=0.44$	131
4.32	Evolution of combustor mean velocity for S=0.16, Q=100 SCFM	132
4.33	Evolution of combustor RMS velocity for S=0.16, Q=100 SCFM	132
4.34	Evolution of combustor \overline{uw} stress profiles for S=0.16, Q=100 SCFM .	133
4.35	Comparison of nozzle mean velocity profiles at two axial locations in	
	the annulus geometry at S=0.60 and Q=50 SCFM	137
4.36	Comparison of nozzle RMS velocity profiles at two axial locations in	
	the annulus geometry at S=0.60 and Q=50 SCFM	137
4.37	Comparison of nozzle \overline{uw} stress profiles at two axial locations in the	
	annulus geometry at S=0.60 and Q=50 SCFM	138
4.38	Histogram of swirl velocities at x/D_h =-1.06, S=0.6 and Q=50 SCFM	138
4.39	Comparison of nozzle mean velocity profiles for all three swirl levels at	
	x/D_h =-0.53, Q=50 SCFM	139
4.40	Comparison of nozzle RMS velocity profiles for all three swirl levels at	
	x/D_h =-0.53, Q=50 SCFM	140
4.41	Comparison of nozzle \overline{uw} stress profiles for all three swirl levels at	
	x/D_h =-0.53, Q=50 SCFM	140
4.42	Comparison of nozzle mean velocity profiles in annulus geometry for	
	two flow rates at S=0.28 $\dots \dots \dots$	141
4.43	Comparison of nozzle RMS velocity profiles in annulus geometry for	
	two flow rates at $S=0.28$	142

4.44 Comparison of nozzle \overline{uw} stress profiles in annulus geometry for two	
flow rates at S= 0.28	142
4.45 Comparison of combustor mean velocity profiles in annulus geometry	
for all swirl conditions at $x/D_h=0.68$, Q=50 SCFM	144
4.46 Comparison of combustor RMS velocity profiles in annulus geometry	
for all swirl conditions at $x/D_h=0.68$, Q=50 SCFM	145
4.47 Comparison of combustor $\overline{u'w'}$ stress distributions in annulus geometry	
for all swirl conditions at $x/D_h=0.68$, Q=50 SCFM	146
4.48 Evolution of combustor mean velocity profiles in annulus geometry for	
S=0, Q=50 SCFM \ldots	147
4.49 Evolution of combustor RMS velocity profiles in annulus geometry for	
S=0, Q=50 SCFM \ldots	147
4.50 Evolution of combustor $\overline{u'w'}$ stress profiles in annulus geometry for	
S=0, Q=50 SCFM \ldots	148
4.51 Evolution of combustor mean velocity profiles in annulus geometry for	
$S=0.28, Q=50 SCFM \dots$	149
4.52 Evolution of combustor RMS velocity profiles in annulus geometry for	
$S=0.28, Q=50 SCFM \dots$	150
4.53 Evolution of combustor $\overline{u'w'}$ stress profiles in annulus geometry for	
$S=0.28, Q=50 SCFM \dots$	150
4.54 Evolution of combustor $\overline{u'w'}$ stress profiles in annulus geometry for	
S=0.28, Q=50 SCFM (zoom to +/- 0.02)	151
4.55 Comparison of axial velocity profiles at $x/D_h=4$ and $x/D_h=4.79$ for	
S=0.28, Q=50 SCFM \ldots	152
4.56 Evolution of combustor mean velocity profiles in annulus geometry for	
S=0.60, Q=50 SCFM \ldots	153
4.57 Evolution of combustor RMS velocity profiles in annulus geometry for	
S=0.60, Q=50 SCFM \ldots	154
4.58 Evolution of combustor $\overline{u'w'}$ stress profiles in annulus geometry for	
$S=0.60, Q=50 SCFM \dots$	154

4.59	Flow rate comparison: S=0.60 and x/ D_h =1.47 - Mean axial and swirl	
	velocity	156
4.60	Flow rate comparison: S=0.60 and x/D_h =1.47 - Axial and swirl RMS	
	velocity	156
4.61	Flow rate comparison: S=0.60 and x/ D_h =3.05 - Mean axial and swirl	
	velocity	157
4.62	Flow rate comparison: S=0.28 and x/D_h =1.47 - Mean axial and swirl	
	velocity	157
4.63	Flow rate comparison: S=0 and x/D_h =3.06 - Axial mean and RMS	
	velocity	158
5.1	Power spectra of axial and swirl velocity for $r/D_n=0.07$, $x/D_n=-0.35$,	
	Q=50 SCFM	163
5.2	Power spectrum of pressure fluctuations near expansion	164
5.3	Time histories of velocity for all swirl conditions inside nozzle at $r/D_n=0.0$	07,
	x/D_n =-0.35, Q=50 SCFM	165
5.4	Radial comparison of spectra for S=0.21, x/ D_n =-0.35, Q=50 SCFM .	166
5.5	Comparison of spectra for two flow rates at S=0.12, x/ D_n =-0.35	167
5.6	Radial comparison of spectra for S=0.12, x/D_n =-0.35, Q=100 SCFM	168
5.7	Radial comparison of spectra for S=0.12, $\mathbf{x}/D_n \texttt{=-0.35},$ Q=50 SCFM .	169
5.8	Axial comparison of spectra for S=0.12, r/ D_n =0.31, Q=100 SCFM $$.	170
5.9	Radial comparison of power spectra for $x/D_n=0.44$, S=0, Q=50 SCFM	
	(inner flow)	172
5.10	Radial comparison of power spectra for $x/D_n=0.44$, S=0, Q=50 SCFM	
	(outer flow)	172
5.11	Radial comparison of power spectra for $x/D_n=0.44$, S=0.12, Q=50 SCFM	1
	(inner flow)	174
5.12	Radial comparison of power spectra for $x/D_n=0.44$, S=0.12, Q=50 SCFM	1
	(outer flow)	174

5.13	Radial comparison of power spectra for $x/D_n=0.44$, S=0.21, Q=50 SCFM	1
	(inner flow)	175
5.14	Radial comparison of power spectra for $x/D_n=0.44$, S=0.21, Q=50 SCFM	1
	(outer flow)	176
5.15	Time history of axial and swirl velocity for $r/D_n=0.41$, $x/D_n=0.44$,	
	S=0.21, Q=50 SCFM	177
5.16	Time history of axial and swirl velocity for $r/D_n=0.83$, $x/D_n=0.44$,	
	S=0.21, Q=50 SCFM	178
5.17	Radial comparison of power spectra for $x/D_n=0.44$, S=0.12, Q=100 SCF.	М
	(inner flow)	179
5.18	Radial comparison of power spectra for $x/D_n=0.44$, S=0.12, Q=100 SCF.	М
	(outer flow)	179
5.19	Radial comparison of spectra for x/ $D_n{=}0.97,$ S=0.12, Q=50 SCFM $$.	180
5.20	Time history of axial and swirl velocity for $r/D_n=0.07$, $x/D_n=0.97$,	
	S=0.12, Q=50 SCFM	181
5.21	Radial comparison of spectra for x/ $D_n{=}0.97,$ S=0.21, Q=50 SCFM $$.	182
5.22	Radial comparison of spectra for x/ D_n =3.14, S=0, Q=50 SCFM	183
5.23	Radial comparison of spectra for x/ $D_n{=}3.14,$ S=0.12, Q=50 SCFM $$.	184
5.24	Radial comparison of spectra for x/ D_n =3.14, S=0.12, Q=100 SCFM .	184
5.25	Radial comparison of spectra for x/ $D_n{=}3.14,$ S=0.21, Q=50 SCFM $$.	185
5.26	Comparison of power spectra for all swirl levels for $r/D_h=0.42$, $x/D_h=-$	
	0.53, Q=50 SCFM \ldots	187
5.27	Radial comparison of spectra for x/D_h=-0.53, S=0, Q=50 SCFM $$	188
5.28	Radial comparison of spectra for x/ $D_h{=}{-}0.53,$ S=0.28, Q=50 SCFM .	188
5.29	Radial comparison of spectra for x/ $D_h{=}{-}0.53,$ S=0.60, Q=50 SCFM .	189
5.30	Axial comparison of power spectra for r/ D_h =0.50, S=0, Q=50 SCFM	190
5.31	Axial comparison of spectra for r/D_h=0.50, S=0.28, Q=50 SCFM $$.	190
5.32	Axial comparison of power spectra for r/ D_h =0.50, S=0, Q=50 SCFM	191
5.33	Comparison of power spectra from both flow rates at $r/D_h=0.50$, $x/D_h=-0.50$,	
	0.53, S=0	192

5.34 Comparison of power spectra from both flow rates at r/ D_h =0.50, x/ D_h =-
$0.53, S=0.28 \dots 193$
5.35 Comparison of power spectra from both flow rates at r/ D_h =0.61, x/ D_h =-
$0.53, S=0.28 \dots 193$
5.36 Comparison of power spectra from both flow rates at $r/D_h=0.50$, $x/D_h=-$
$0.53, S=0.60 \dots 194$
5.37 Radial comparison of power spectra at x/ D_h =0.68 for S=0, Q=50 SCFM
(inner flow field) $\ldots \ldots 196$
5.38 Radial comparison of power spectra at $x/D_h=0.68$ for S=0, Q=50 SCFM
(outer flow field) $\ldots \ldots 196$
5.39 Radial comparison of power spectra at $x/D_h=0.68$ for S=0.28, Q=50 SCFM
(inner flow field) $\ldots \ldots 197$
5.40 Radial comparison of power spectra at $x/D_h=0.68$ for S=0.28, Q=50 SCFM
(outer flow field) $\ldots \ldots 198$
5.41 Radial comparison of power spectra at x/ D_h =0.68 for S=0.6, Q=50 SCFM
(inner flow field) $\ldots \ldots 199$
5.42 Radial comparison of power spectra at x/ D_h =0.68 for S=0.6, Q=50 SCFM
(outer flow field) $\ldots \ldots 199$
5.43 Radial comparison of power spectra at $x/D_h=1.47$ for S=0.28, Q=50 SCFM
(inner flow field) $\ldots \ldots 201$
5.44 Radial comparison of power spectra at $x/D_h=1.47$ for S=0.28, Q=50 SCFM
(outer flow field) $\ldots \ldots 201$
5.45 Radial comparison of power spectra at $x/D_h=1.47$ for S=0.29, Q=100 SCFM
(inner flow field) $\ldots \ldots 202$
5.46 Radial comparison of power spectra at $x/D_h=1.47$ for S=0.29, Q=100 SCFM
(outer flow field) $\ldots \ldots 202$
5.47 Radial comparison of power spectra at x/ D_h =1.47 for S=0.60, Q=50 SCFM
(inner flow field) $\ldots \ldots 203$
5.48 Radial comparison of power spectra at $x/D_h=1.47$ for S=0.60, Q=50 SCFM
(outer flow field) $\ldots \ldots 204$

5.49	Radial comparison of power spectra at $x/D_h=1.47$ for S=0.60, Q=100 SC	FM
	(inner flow field) $\ldots \ldots \ldots$	204
5.50	Radial comparison of power spectra at $x/D_h=1.47$ for S=0.60, Q=50 SCF	Ъ
	(outer flow field)	205
5.51	Radial comparison of spectra at x/ $D_h{=}4.79$ for S=0, Q=50 SCFM	206
5.52	Radial comparison of spectra at $x/D_h=4.79$ for S=0.28, Q=50 SCFM	207
5.53	Radial comparison of spectra at x/ D_h =4.79 for S=0.60, Q=50 SCFM	207
5.54	Axial development of $St=0.4$ instability at the center of the flow field	
	$r/D_n=0, Q=50 \text{ SCFM}$	209
5.55	Radial "cut-off" of St=0.4 instability, x/ D_n =1.48, Q=50 SCFM	210
5.56	Radial profiles of instability energy for several axial locations, $Q=50$ SCF.	М,
	St=0.4	211
5.57	Axial development of instability energy, Q=50 SCFM, St=0.4 \ldots .	211
5.58	Histogram of velocities, $r/D_n=0.02$, $x/D_n=3.14$, Q=50 SCFM	212
5.59	Time history of velocities, r/ D_n =0.02, x/ D_n =3.14, Q=50 SCFM	212
5.60	Radial distribution of oscillation magnitude - S=0.6, Q=50 SCFM	214
5.61	Velocity profiles for S=0.6 and Q=50 SCFM \ldots	215
5.62	Instability frequency vs. flow rate for S=0.60	216
5.63	Instability frequency vs. swirl number for Q=50 SCFM \ldots	216
5.64	Radial distribution of oscillation magnitude for several swirl numbers	
	at $x/D_h=0.68$, Q=50 SCFM	217
5.65	Velocity profiles for several swirl numbers at x/D_h=0.68, Q=50 SCFM	218
5.66	Time histories of axial and swirl velocity at r/ D_h =0.50, x/ D_h =0.68,	
	S=0.6, Q=50 SCFM \ldots	219
5.67	Histograms of axial and swirl velocity at r/ D_h =0.50, x/ D_h =0.68, S=0.6,	
	Q=50 SCFM	219
5.68	Time history of velocity at $r/D_h=0.02$, $x/D_h=0.68$, S=0.6, Q=50 SCFM	1220
5.69	Histograms of axial and swirl velocity at r/ D_h =0.02, x/ D_h =0.68, S=0.6,	
	Q=50 SCFM	220
5.70	Mean velocity profiles in combustor for S=0.29, Q=50 SCFM	222

5.71	Radial comparison of power spectra inside inner shear layer at $x/D_h=0.68$	З,
	S=0.29, Q=50 SCFM \ldots	222
5.72	Radial comparison of power spectra inside inner shear layer at $x/D_h=1.47$,
	S=0.29, Q=50 SCFM	223
5.73	Radial comparison of power spectra inside inner shear layer at $x/D_h=1.47$,
	S=0.30, Q=100 SCFM	224
5.74	Radial comparison of power spectra inside inner shear layer at $x/D_h=2.26$	і,
	S=0.29, Q=50 SCFM	225
5.75	Radial comparison of power spectra inside inner shear layer at $x/D_h=2.26$	ί,
	S=0.30, Q=100 SCFM	225
5.76	Intermittence at x/ D_h =1.47, r/ D_h =0.34, S=0.29, Q=50 SCFM	226
5.77	Intermittence at x/ D_h =1.47, r/ D_h =0.34, S=0.29, Q=100 SCFM	226
5.78	Intermittence at x/ D_h =1.47, r/ D_h =0.42, S=0.30, Q=100 SCFM	227
5.79	Intermittence at x/ D_h =1.47, r/ D_h =0.16, S=0.29, Q=50 SCFM	228
5.80	Intermittence at x/D _h =1.47, r/D _h =0.68, S=0.30, Q=100 SCFM	228
5.81	Intermittence at x/ D_h =0.68, r/ D_h =0.16, S=0.29, Q=50 SCFM	230
5.82	Lack of intermittence for x/ D_h =0.68, r/ D_h =0.16, S=0, Q=50 SCFM	231
5.83	Mean velocity profiles at $x/D_h=0.68$ for low swirl numbers with flow	
	rate of Q=50 SCFM \ldots	232
5.84	Noise spectra at various axial locations for S=0.6 and Q=50 SCFM $$.	234
5.85	Operating deflection shapes of combustor pressures at four frequencies	236
5.86	Coherence and phase between two circumferentially spaced microphones	
	for S=0.6, Q=50 SCFM \ldots	237
5.87	Pressure oscillation power around 100 Hz as a function of flow rate $~$.	238
6.1	3-D plot of saddle constructed from model branches around a saddle	
	point	252
6.2	Calculated and modeled branches around a saddle point	253
6.3	Tanh jet profile analyzed for Figures 6.4 to 6.7	263

jet profile for three Reynolds numbers with $m = 1 \dots \dots \dots$ Plot of the least stable eigenfunction in the tanh jet for the case $\alpha = 1$, m=1, Re = 250	264 264
Plot of the least stable eigenfunction in the tanh jet for the case $\alpha = 1$, m=1, Re = 250	264
1, m=1, Re = 250	264
	204
Plot of spatial growth rate as a function of real frequency for the tanh	
jet profile for three Reynolds numbers with $m=0\ .\ .\ .\ .$.	265
Plot of wavenumber as a function of real frequency for the tanh jet	
profile for three Reynolds numbers with $m = 0 \ \ldots \ \ldots \ \ldots \ \ldots$	266
Plot of maximum growth rate as a function of Reynolds number for	
the fully developed jet profile	266
Trailing line vortex for $q = 0.6$	267
Plot of temporal growth rate as a function of Reynolds number at α	
= 1.34 and q=0.6, m=-2	268
Ring jet profile analyzed in Figure 6.12	269
Variation of absolute growth rate with swirl strength for the ring-jet	
profile shown in Figure 6.11	270
Hyperbolic tangent jet - stability characteristics as a function of shear	
layer thickness - m=1	272
Hyperbolic tangent jet - stability characteristics as a function of shear	
layer thickness - m=0	273
Analytical profile fit and experimental data for nozzle S=0.21 profile .	274
Least stable mode for nozzle S=0.21 flow profile $\ldots \ldots \ldots \ldots$	274
Eigenfunctions at least stable point for nozzle velocity profile	275
Analytical profile fit and experimental data in the combustor for S=0.21 $$	
at $x/D_n=0.44$	276
Comparison of azimuthal wavenumber stability characteristics in com-	
bustor for S=0.21	277
Stability characteristics of S=0.21 axial flow profile w/o swirl	277
Wake mode stability as a function of swirl fraction	279
	Plot of spatial growth rate as a function of real frequency for the tanh jet profile for three Reynolds numbers with $m = 0$ Plot of wavenumber as a function of real frequency for the tanh jet profile for three Reynolds numbers with $m = 0$ Plot of maximum growth rate as a function of Reynolds number for the fully developed jet profile

6.22	Analytical profile fit and experimental data in the combustor for S=0.60 $$	
	at $x/D_n=0.44$	279
6.23	Absolute frequency and growth rate for annulus geometry as a function	
	of swirl strength	280
6.24	Eigenfunctions for full swirl saddle point	281
6.25	Modeled and actual turbulent kinetic velocity distribution for S=0.21,	
	Q=50 SCFM	284
6.26	Results of turbulent stability analysis for nozzle S=0.21 profile (m=-1) $$	285
A.1	Velocity vector measured by a given laser beam pair	321
A.2	Photograph of single 514 nm diffraction pattern	321
A.3	Photograph of the 2-D diffraction pattern	323
A.4	Front of the laser head assembly	324
A.5	Rear of the laser head assembly	325
A.6	Rear of the laser head assembly	327
A.7	Top beam steering, beam collimator and dispersion prisms	332
A.8	First beam target located near dispersion prisms	332
A.9	Second beam target located near first blue polarization beam splitter	333
A.10	Top beam steering, beam collimator and dispersion prism assembly .	333
A.11	Top view of Brewster prism assembly	334
A.12	Redirect mirror giving necessary path length for separation	335
A.13	Laser beam pick-off mirrors	336
A.14	Green beam conditioning components	337
A.15	Blue beam conditioning components	338
A.16	Bragg cell drivers	340
A.17	Fiber coupler assembly	344
A.18	Polarization maintaining fiber key–way	345
A.19	LDV probe with components labeled	347
A.20	Probe collimator mounting platform	350
A.21	Probe polarization rotator mounts	351

A.22	Probe collection fiber translation stage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	354
A.23	Collection fiber image series	354
A.24	Fiber alignment monitor photodiode	355
A.25	Photodiode amplifier circuit	355
A.26	LDV receiver optics	356
A.27	Transimpedance Amplifier Circuit	358
A.28	Instrumentation box	359
A.29	RF generator	359
A.30	Trigger circuit	361
A.31	Trigger circuit diagram	361
A.32	Trigger logic circuit diagram	363
A.33	Comparison between FFT and autoregressive frequency identification	
	for simulated data	366
A.34	Comparison between FFT and autoregressive frequency identification	
	for actual data	366
A.35	LDVinstCTRL front panel	370
A.36	Unsteady-Velocity front panel	374
A.37	MeasGrid front panel	377
A.38	Oscilloscope front panel	380
A.39	DisplayData front panel	381
A.40	Spectrum display front panel	384
A.41	Histogram display front panel	385
B.1	Condenser microphone internal and external circuit layout	404
B.2	Complete microphone assembly	404
B.3	Microphone calibration rig	405
B.4	Sample microphone calibrations	407
C.1	Translation stage setup	409
C.2	CAD isometric view of 3-D traverse for LDV probe	417

List of Tables

4.1	Summary of experimental conditions studied in detail	106
A.1	Optical parameters required for frequency to velocity conversion	368
A.2	Structure of the "TIM" binary data file	392
A.3	Specialized vendors and products: Electronics	399
A.4	Specialized vendors and products: Optics	400
A.5	Specialized vendors and products: Optoelectronics	400
A.6	Specialized vendors and products: Data acquisition	401
A.7	Specialized vendors and products: Hardware	401