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Characterization of Performance, Robustness, and Behavior Relationships
in a Directly Connected Material Handling System

Roger J. Anderson

(ABSTRACT)

In the design of material handling systems with complex and unpredictable dynamics, con-
ventional search and optimization approaches that are based only on performance measures
offer little guarantee of robustness. Using evidence from research into complex systems, the
use of behavior-based optimization is proposed, which takes advantage of observed relation-
ships between complexity and optimality with respect to both performance and robustness.
Based on theoretical complexity measures, particularly algorithmic complexity, several sim-
ple complexity measures are created. The relationships between these measures and both
performance and robustness are examined, using a model of a directly connected mater-
ial handling system as a backdrop. The fundamental causes of the relationships and their
applicability in the proposed behavior-based optimization approach are discussed.
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Chapter 1

Introduction

Complex systems are characterized by non-linear interactions and interdependencies among
system elements. In these types of systems, the global system behavior may not be pre-
dictable from the set of rules dictating local interactions among elements, although these
interactions may be simple in nature, making the collective behavior ‘greater than the sum
of the parts’.

These characteristics of complex systems present difficulties with respect to optimization
using traditional techniques. These techniques utilize some measure or measures of per-
formance through the identification and manipulation of relevant system variables, largely
ignoring the behavior of systems during operation. When behavior is taken into account,
only the systems exhibiting the simplest forms of behavior are typically considered, as they
represent the majority of systems expressible in a closed form. But for complex systems,
optimality may arguably be defined not only with respect to performance, but adaptability,
especially in dynamic environments.

The very same attributes that make a system complex, or result in complex behavior, and
present difficulties for conventional techniques are theoretically applicable to finding optimal
solutions - optimal with respect to performance and with respect to adaptability or robust-
ness. Evidence suggests associations exist among behavior, performance, and robustness.
Most notably, when a system has a certain combination of order and randomness, it is in a
state that offers good performance and, perhaps more importantly, the ability to adapt to
changes or variability in its environment.

The objective of this work is to identify the existence and then examine the useful relation-
ships between behavior (in terms of complexity) and performance and between behavior and
robustness as a first step towards utilizing behavior as an optimization tool. A significant
hurdle implicit in this task is the definition of quantitative applied theoretical complexity
measures of system behavior or architecture. The relationships are examined in the context
of a naval weapons elevator system, a system characterized by near deterministic cycle times,

1
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fixed operational logic sets, and deterministic input streams. Although important attributes
of this particular system that are applicable towards its optimization are revealed in the
course of analyses of the relationships between its behavior, performance, and robustness,
the objective of this work should not be interpreted as an attempt to optimize this par-
ticular system. The naval weapons elevator system is utilized as a means to an end - an
analysis of potential relationships in a system from which we can draw general conclusions,
not the relationships in this particular system. Similarly, while exhaustive simulations for
assumed control logics and a spectrum of input streams of the illustrative weapons elevator
system are performed for complete characterization of the relationships between complexity
measures, performance, and robustness, the use of exhaustive simulations is not intended to
imply exhaustive methods are a requisite for behavior-based optimization methods.

1.1 Outline of Approach

The foundation for the idea that the merits of a system can be based on its behavior,
not on measures of performance in particular situations alone, lies in evidence of relation-
ships between both complexity and performance and between complexity and adaptability
in complex systems. In many natural systems in particular, optimality with respect to both
performance (survivability) and robustness (evolution) is often observed to correspond to a
complex regime of behavior, with properties representing a mixture of simplicity and chaos.
We will investigate these relationships in Chapter 2. But before we do, we get a qualita-
tive feel for complexity and some of its attributes, using a class of simple and discrete, yet
interesting, networks known as cellular automata.

While it is fairly straightforward to quantify performance and robustness, defining a univer-
sal quantitative measure of behavior or complexity has been more elusive. In Chapter 3, we
identify some theoretical quantitative complexity measures, including algorithmic complex-
ity. Because of their theoretical nature, it is not necessarily apparent how some measures are
directly applicable in the quantification of complexity in real systems, specifically for ma-
terial handling systems. Drawing mainly from the concepts of algorithmic complexity and
component counting, we create system-specific measures, both dynamic and static, based on
simulation attributes that are readily obtainable, for the purpose of identifying correlations
between system behavior and performance and between system behavior and robustness in
the context of an aircraft carrier naval weapons elevator system. These modified complexity
measures are describable in terms of their foundations, accuracy with respect to theoretical
measures, and their advantages and disadvantages.

Since our complexity measures are system-specific, we first have to describe the system in
which they will be applied. Therefore, prior to the definition of system specific measures
in the sixth chapter, we present the problems associated with the design and optimization
of general vertical transportation systems and how they represent a complex environment
in Chapter 4. In Chapter 5, we then describe the specific case of naval weapons elevator
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systems, which has a large design space and is describable as a deterministic system. Here,
we also present how a configuration is defined in terms of its physical relationships between
system elements, the variety of input streams that are used in simulations, and the control
logic used in system evolutions. We also introduce concepts used throughout this work,
such as the definitions for valid configurations, encoding of configurations, and visualization
techniques used to interpret evolutions.

Using the results of exhaustive simulations for a set of system sizes, we construct a picture of
the relationships present between our complexity measures, performance, and adaptability
in Chapters 7 through 12 for conventional naval weapons elevators. The use of exhaustive
simulations is not intended to suggest that this approach is required when using behavior
towards optimization, but only as a means for full characterization of the possible relation-
ships. In Chapters 7 to 10, we look at dynamic measures of complexity, which rely on the
explicit evolutions of configurations. We begin with small, simple systems, then expand to
larger systems to create generalizations regarding the interrelationships between connectiv-
ity, input streams, and logic and their effects on performance and robustness. Throughout,
we examine in detail how the modified measures compare to their theoretical counterparts
and how they may be applied in an optimization technique.

The importance of connectivity is re-examined in particular in Chapter 11, in the discussion
of static complexity measures. These measures represent a powerful approach toward op-
timization, since they are not dependent on explicit simulations and indicate the potential
behavior of a system based on its defined attributes.

With a well-defined characterization of the relationships among complexity measures, perfor-
mance, and robustness, based on variations with respect to physical connectivity and input
streams, we turn our attention to the effect of changes in control logic on these relationships
in Chapters 12 and 13. While maintaining a conventional format, logic specifying the oper-
ation of shafts is varied in Chapter 12. In Chapter 13, we explore a fundamentally different
system, in which carriages are not dedicated to any particular uni-directional shaft, resulting
in mobile carriage circuits.

Finally, we examine the conclusions regarding the relationships between complexity mea-
sures and performance and robustness, for both dynamic and static measures. In summa-
rizing the results for conventional and mobile carriage systems, we see the importance of
physical connectivity, input streams, and operational logic in complexity/performance and
complexity/robustness relationships. Also offered are some thoughts regarding the potential
of complexity-based optimization techniques and general applicability.



Chapter 2

Background

2.1 Cellular Automata

The advent of electronic computers both raised and enabled the solution of many new prob-
lems, including the possibility of artificial self-reproduction, or the ability of a machine to
replicate itself. To address this question and avoid the costs associated with hardware, John
von Neumann, often considered the father of the modern computer, created an abstract
mathematical representation of a machine. Von Neumann demonstrated that the abstract
representation, known as automata, was capable of self-replication if given the proper logic
and initial conditions [60].

Cellular automata consist of a network of elements, or cells, that exist on some lattice
structure. Cellular automata networks operate by the application of a set of transition
functions, Θ, to each cell in the network. The network evolves as the transition functions
are recursively applied.

To further explain cellular automata systems, we will use one-dimensional, two state, nearest
single neighbor, closed networks with periodic boundary conditions, commonly referred to
as elementary cellular automata. This class of cellular automata represents the simplest
configuration capable of all forms of possible behavior [64, 63, 62].

2.2 Elementary Cellular Automata

One dimensional cellular automata networks consist of a line of cells, with each cell having
a neighbor to the left and right. In a closed network with periodic boundary conditions, the
cells therefore form a ring. When represented in two-dimensions, the ring must be “broken”
and unfolded to capture all information about the state of the network. In this representa-

4
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tion however, the left and right-most cells remain conceptually connected, as illustrated in
Figure 2.1.

(a) (b)

Figure 2.1: A one dimensional closed network with periodic boundary conditions forms (a)
a closed ring. Expressed in one dimension, the network is broken as in (b), but the ends A
and B remain neighbors

As a one-dimensional netwok is evolved, we can visualize the current state of the system
in two dimensions as in Figure 2.1, which is updated with each successive application of
the transition functions on all cells. To visualize a history of an evolution, we simply add
on a new row for each complete mapping. The result is a two-dimensional grid n columns
wide and t + 1 rows long, where n is the number of cells involved in the network and t is
the number of evolution steps. Evolution of the actual topography of the network shown
in Figure 2.1 results in a hollow cylinder. Since the term evolution is used to describe the
recursive mapping of the transition functions, we refer to each row in the evolution in integer
values of time, so that the state of the system at time step t1 evolves to the system state at
time step t2.

Cells in elementary cellular automata networks can exist in one of two states. In binary
terms, these values are 0 and 1, equivalent to the Boolean values of FALSE and TRUE.
In our visual representations, the 0 and 1 states are equivalent to white and black cells,
respectively.

2.2.1 Transition Functions

The transition functions associated with a cellular automata represent the conditional logic
that control the operation of the system - the set of ‘rules’ that map a neighborhood of cells
into a single state. While it is possible to have cellular automata networks with complete
connectivity, where a cell evolves based on the states of all other cells in the network, ele-
mentary cellular automata have a neighborhood with a radius of one cell, r = 1. With this
type of connectivity, a cell evolves to a state at time t + 1 based on its own state and the
states of the nearest adjacent cells at time t.
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In general, for automata with k possible states and a neighborhood of r adjacent cells to the
left and right, there are k(2r+1) combinations of cell states that form the input to the transition
functions. For elementary cellular automata with two possible states and a neighborhood of
three cells (r = 1), the number of combinations of cell states is 23 = 8, which are presented
in Figure 2.2.

Figure 2.2: The eight combinations of 3 cells with 2 possible states which define elementary
cellular automata transition function inputs

Each of these sequences can evolve to one of two states. In general, there are kk2r+1
possible

sets of transition functions. For the case of elementary cellular automata, there are 223
=

256 possible rule sets, or combinations of evolved states. This evolution structure leads
to a convenient method for expressing a rule set without explicit description of cell digit
sequences [62].

Each combination of cell sequences is assigned a decimal value equivalent to the binary
representation of cells, letting black and white equal 1 and 0, respectively. Each of these
decimal equivalents represents a single bit in an eight bit byte, with the bit evolving from the
sequence of 3 black cells representing the most significant bit and the bit evolving from the
sequence of 3 white cells representing the least significant bit. The eight bit binary sequence
of evolved cell states, converted to its decimal equivelent yields a single coded “rule number”
that completely describes the evolution logic. An example of the coding process is illustrated
in Figure 2.3 for elementary cellular automata rule 22.

0 · 27 0 · 26 0 · 25 1 · 24 0 · 23 1 · 22 1 · 21 0 · 20

0 + 0 + 0 + 16 + 0 + 4 + 2 + 0

= 22

Figure 2.3: Rule numbers for cellular automata are based on the evolved binary value (white
= 0 and black = 1) of a transition function and the corresponding bit value of the transition
function, assuming transition functions are arranged in some standard order. For elementary
rule 22, the 1st, 2nd, and 4th transition functions bits evolve to a black, or 1, state, meaning
the evolved “byte” is (00010110). The decimal representation of this binary value is 22.

2.2.2 Elementary Cellular Automata Behaviors

It might initially appear that elementary cellular automata are capable of producing only
simple behaviors because of the apparent simplicity of the rule sets. Despite their simple
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construction, elementary cellular automata are capable of producing all types of behavior
qualitatively possible in any system. Furthermore, the initial conditions required to produce
this range of behavior need not be complicated. A certain form of behavior is often inherent
to a given rule set, regardless of the initial conditions.

Depending on the source, there range from four to six qualitative classes of behavior that have
been identified in elementary cellular automata [64, 40, 38, 39]. In Wolfram’s classification
system, the four classes of behavior are as follows:

Class I: Trivial behavior. System states rapidly evolve to a uniform quiescent state.

Class II: Simple behavior. The system evolves to a non-uniform quiescent state or alternates
periodically among a limited number of states. This is the equivalent of fixed point or
limit cycle attractors.

Class III: Chaotic behavior. There are no attractors and the states are essentially random.

Class IV: Complex behavior. A mix of Class II and Class III, where similar patterns
can be found throughout the system evolution, but not according to any predictable
distribution.

To provide a better illustration of each type of behavior, we will look at examples of elemen-
tary cellular automata evolutions for each class of behavior. While some elementary cellular
automata rule sets appear to behave in an inherent manner, inherency is by no means guar-
anteed [2]. It is therefore possible for a given rule set to behave differently based on the
initial conditions of the system. For the examples shown, the behavior illustrated may not
always be associated with the rule set described.

2.2.3 Class I: Trivial

An example of trivial behavior is found in rule 0. The rule set for rule 0, shown in Figure 2.4,
maps all possible three cell neighborhoods to a white cell. As a result, rule 0 creates evolutions
of all white cells in one evolution step, regardless of the initial conditions. Rule 0 is inherently
trivial and, as a result, has very predictable evolutions. Rule 255, the ‘negative’ of rule 0 is
another example of rule set that inherently yields trivial behavior.

Figure 2.4: The rule set for elementary cellular automata rule 0. All possible combinations
of three cells maps to a white cell.
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An example of a rule set that is normally regarded as producing simple behavior, but is
capable of trivial behavior, is rule 90. Rule 90, shown in Figure 2.5, is an additive rule.
An additive rule has the property that the evolution is the spatial superposition of the
independent evolutions of each initial cell. Because of this property, rule 90 is defined as
simple despite the ability to produce apparently random evolutions. The additive property
also leads to trivial behavior in rule 90. When the number of cells, N , in the network is equal
to 2n|(n = 1, 2, 3, . . .), the evolution reaches a trivial state in exactly 2n−1 steps, regardless
of the initial conditions. Example evolutions illustrating this behavior using various system
sizes and initial conditions are shown in Figure 2.6.

Figure 2.5: The rule set for elementary cellular automata rule 90, an additive rule.

(a) (b) (c)

Figure 2.6: Trivial behavior in a non-inherently trivial rule set. Rule 90, an additive rule,
produces trivial behavior after 2n−1 evolution steps for a network with 2n cells, regardless
of the initial conditions. The evolution in (a) shows rule 90 starting from a single black cell
and N = 128, (b) from random initial conditions with a 20% black cell density and N = 256,
and (c) from random initial conditions with a 50% black cell density and N = 512

2.2.4 Class II: Simple

Many of the 256 elementary cellular automata rule sets produce only simple behavior, yield-
ing a repetitive pattern of finite limit cycles or streaks resulting from fixed point attractors.
Rule 4 provides an example of a fixed point attractor. Rule 4, shown in Figure 2.7, is known
as a ‘filter’ rule, identifying the number of white-black-white cell sequences in the initial
conditions. An example evolution of rule 4 is shown in Figure 2.8. After the first evolution
step, only rule bits 0, 1, 2, 4, and 5 are applied. The relative ratio of their application is
based on the number of streaks and the amount of white space in the evolution.

Since the number of streaks depends on the number of initial white-black-white cell sequences
in the initial conditions, the evolution of the network is very predictable if the initial condi-
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Figure 2.7: The rule set for elementary cellular automata rule 4. Rule 4 is a filtering rule,
identifying the number of white-black-white sequences.

Figure 2.8: The first 150 evolution steps of rule 4 from random initial conditions. There are
150 cells in the network.

tions are known. While the behavior of the rule is consistent with all intial conditions, the
actual states of the system in each evolution will vary with different intial conditions.

Figure 2.9 shows the transition functions for rule 94. Like rule 4, the evolution of rule 94
is dependent on the initial conditions. However, rule 94 typically has limit cycle attractors
rather than fixed point attractors. In the example evolution shown in Figure 2.10, rule 94
has a limit cycle with a period of 6 evolution steps, the first common multiple of the period
3 sequence in the left-most band and the period 2 sequences on the right bands.

Figure 2.9: The rule set for elementary cellular automata rule 94. Rule 94 often has limit
cycle attractors rather than fixed point attractors.

While the example evolution of rule 94 is more complicated than that for rule 4, the behavior
in Figure 2.10 is still considered simple. Beyond the transient response, the network falls
into a repetitive sequence of network states. Knowing the period and the states involved, it
is straightforward to predict the state of any cell in the system at any evolution step.

It should be noted that, for a given set of initial conditions, the set of network states that
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Figure 2.10: The first 150 evolution steps of rule 94 from random initial conditions. There
are 150 cells in the network.

is occupied by a simple evolution is a tiny fraction of the total network state space. In the
evolution of rule 94 in Figure 2.10, only 6 distinct sets of network states are used. However,
for a network consisting of 150 cells, there are 2150 ≈ 1045 possible states. This means that
the system visits approximately 4 · 10−43 percent of the available state space.

Nesting represents a special form of simple behavior. In a nested pattern, such as the one
shown in Figure 2.11 created from rule 90, structures are self-similar on all scales proportional
to a fractal dimension. Rule 90 has a fractal dimension of log23 [62].

Figure 2.11: Nested behavior in elementary cellular automata rule 90, started from a single
black cell.

Self-similar structures are considered simple because of the predictability of the evolution.
Knowing the fractal dimension of the evolution, it is possible to determine the state of any
cell within the evolution for those initial conditions that result in nested patterns.
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2.2.5 Class III: Chaotic

Since cellular automata are deterministic systems, it is guaranteed that any cellular automata
evolution is periodic. The behavior of a rule that creates chaotic behavior is therefore
technically not random. However, the evolution may be required to evolve through 2N

distinct states for a network consisting of N cells. For even modest size N, this means that
a rule set exhibiting random behavior locally can essentially be treated as globally random.
The period of repetition has been shown to follow 20.63N in rule 30 and 2N in rule 45. The
assumption of global randomness is applied by Wolfram towards a random number generator
in Mathematica, which uses chaotic rule 30 in a network of a few hundred cells [64].

The rule set for Rule 30 is shown in Figure 2.12. Despite the simplicity of the 8 rules defining
the rule set, rule 30 inherently produces chaotic behavior for essentially all but a trivial set
of initial conditions [2]. Example evolutions of rule 30 starting from a single black cell are
shown in Figure 2.13. It should be noted that these evolutions are slightly different from the
previous evolutions as the boundary conditions are aperiodic and the left and right edges are
not connected. Figure 2.13(a) shows the evolution after 100 steps. Looking at this evolution,
we see some periodic structure on the left of the triangle. However, on the right side, there is
no discernible pattern, although there are similar structures, inverted triangles, throughout.
These local structures are of different sizes and follow no global structure. We might at first
assume that we have not evolved the network sufficiently to observe a pattern or attractor
with a longer cycle than we have seen in simpler evolutions. But when the system is evolved
further, as in Figure 2.13(b), the same behavior is apparent. And if we were to continue to
evolve the network with no communication between the left and right edges of the network,
the result would be the same. Some structure on the left side of the evolution with locally
similar structures in no apparent pattern on the right. When periodic boundary conditions
are applied to the network started from a single black cell, all structure would eventually
disappear and the evolution would appear like the right side of the evolution in Figure 2.13
throughout. This behavior would also be qualitatively similar to a network with periodic
boundary conditions started from random initial conditions.

Figure 2.12: The rule set for elementary cellular automata rule 30. Despite the simplicity of
the rule set, rule 30 inherently produces chaotic behavior.

As with evolutions that have simple behavior, chaotic rules are sensitive to initial conditions.
The difference is that, while the state of a given cell within the simple network can be
predicted at any evolution step if the initial state of the network is known, explicit evolution
of a chaotic system is required to determine a cell state. Additionally, the rules in chaotic
systems result in information passing throughout the network - the state of one cell will
eventually affect all other cells within the network. This is the foundation for chaos theory,
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(a)

(b)

Figure 2.13: Evolutions of rule 30 starting from a single centered black cell for (a) 100
steps and (b) 500 steps. While it may appear that the evolution created from a simple rule
set should eventually settle down to some predictable pattern, especially with simple initial
conditions, longer evolutions do not reveal any regularities.
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illustrated with the classic Butterfly Effect - a butterfly flapping its wing in Australia can
result in a hurricane in the North Atlantic [20].

2.2.6 Class IV: Complex

Complex behavior represents a mixture of simple and random behaviors, and has been
described as a transition region between the two. Like a phase transition from solid to
liquid, the complex regime is a transition regime from order to chaos. This form of behavior
is illustrated in rule 110, described in Figure 2.14.

Figure 2.14: The rule set for elementary cellular automata rule 110. Rule 110 results in
complex behavior, a mixture of order and chaos.

Figure 2.15 illustrates an example evolution of rule 110 from random initial conditions for
the first 300 evolution steps. After a transient period, the system settles down to a regular
background, through which random structures meander and collide to form new structures
with different trajectories. As with chaotic evolutions, the system is deterministic and will
therefore have a repetition period. Like chaotic systems, this limit cycle is often very long,
making complex evolutions unpredictable. To determine the state of a given cell at a specific
evolution step, explicit evolution of the network from initial conditions is therefore required.

Figure 2.15: The first 300 evolution steps of rule 110 from random initial conditions. There
are 300 cells in the network.

John Conway discovered a two-dimensional cellular automata with similar characteristics
to rule 110 which is commonly known as the Game of Life [18]. The Game of Life has
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been shown to be capable of self-reproduction, exactly the objective of John von Neumann.
Closely associated with this is the concept of universality, or the ability of a system to
emulate any other system. A familiar example of a universal system is a general purpose
computer program, such as C or Mathematica. Given the proper code and initial conditions,
a computer program can emulate any real system, including itself.

Despite its apparent simplicity, with only eight rules and two states, it has also been shown
that rule 110 is universal [64]. It has also been suggested that all systems that exhibit
class IV behavior share the property of universality, resulting from the ability to transfer
information throughout a network without the degradation associated with randomness. The
characteristic of universality suggests a certain degree of adaptability, through the ability to
connect remote network components meaningfully, that other types of behaviors lack.

To provide additional evidence for the hypothesis that complex behavior is somehow asso-
ciated with adaptability because of the universality that is believed to be inherent in this
class of systems, we turn to the biological sciences, particularly evolutionary processes. We
are not without precedent in looking to evolutionary processes towards application in engi-
neering. Genetic algorithms, originally intended as a model for natural evolution, rely on
the complex interactions of “schema” to search through intractable design spaces [42, 24].

2.3 Complexity in Natural Systems

The real reason for looking at natural systems is that they show a strong correlation between
complex behavior and adaptability. In natural systems, we will see that adaptability, not
necessarily performance in a given environment, implies optimality. Biological systems are
the area where arguably the most work with complexity theory has occurred. This is largely a
result of the fact that biological processes involve dynamic systems that almost always consist
of, for all practical purposes, an intractable number of interacting elements that often yield
non-linear behavior. To illustrate the association between complex behavior, adaptability
and optimality in biological systems, we will investigate evolutionary theory and the models
used to study evolution. Fundamental to the relationships of these attributes is the context
of the network topology.

2.3.1 Co-evolution

We will discuss two models that both indicate that the process of co-evolution - the simul-
taneous evolution of interdependent species - evolves to a complex regime, at the transition
region between order and chaos. More importantly, we will see that the complex regime cor-
responds to optimal performance in terms of fitness in one of the models. The first model,
described by Kauffman [30], shows that by tuning the parameters that determine how genes
affect the fitness within an organism and among species, it is possible to create a continuum
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of evolutionary strategy behaviors, from stable to chaotic. In addition, the model shows that
when the co-evolution is in a complex regime, the aggregate fitness of all co-evolving species
is at a maximum. The second model, created by Holland [42, 17] uses a simulated ecosystem
with no external measures of fitness, but still exhibits evolution towards complex regimes.

Coupled Fitness Landscapes

Kauffman describes two ultimate behaviors that can occur in a co-evolving system of inter-
dependent species. The first is known as the Evolutionary Stable Strategy (ESS) regime of
behavior. An ESS describes a Nash equilibrium [43], where each agent will always have at
least one ‘Nash’ strategy. The Nash strategy has the property that an agent will be better
off following it as long as all other agents involved follow their own Nash strategy. In terms
of fitness landscapes, all species have found a suitable local peak from which they have no
incentive to move.

One drawback often associated with Nash equilibria is that the overall fitness of agents
at an equilibrium point may not be very good - the classic example being the Prisoner’s
Dilemma [42]. Furthermore, little exploration of the landscape occurs, since all strategies
and performance remain unchanged. In evolutionary terms, species remain fixed, barring
external inputs, and overall fitness remains low, with all species at local peaks.

The second region of behavior is the Red Queen, or chaotic regime. In this regime, the
co-evolutionary process continually changes as a species deforms the fitness landscape of
another. This second species in turns deforms the landscape of the first species, forming a
feedback loop. This process becomes even more complicated as more species are added to
the web of interactions. This form of co-evolution manifests itself as a ‘biological arms race’
as a species reacts to changes in competitors/adversaries that result in shifts in the balance
of advantages. This form of behavior is known as Red Queen behavior in reference to Lewis
Carrolls, Through the Looking Glass, where the Queen of Hearts instructs Alice, “it takes all
of one’s effort just to stay in one place”.

Both the ESS and chaotic regimes result in low overall fitness for all species. In ESS behavior,
species remain frozen at low local peaks on their fitness landscapes while in chaotic co-
evolution, the landscape of each species constantly changes and a species that has found a
peak is soon knocked off as the landscape is deformed by changes in other species. Whether
a co-evolutionary process is ESS or chaotic depends on the movement of a species on its own
landscape relative to the deformability of the landscape resulting from the interdependence
with other species.

Kauffman uses a four parameter model to explore the relation between the relative rates
of fitness landscape deformability and movement within a landscape and the resulting co-
evolutionary behavior with coupled fitness landscapes. The first parameter, N, describes the
number of genes (or traits) that defines each organism. The values for each trait or gene are
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taken to be binary.

The second parameter, K, describes the number of epistatic couplings between genes within
an organism’s genome. Epistatic coupling describes the fitness contribution of one allele (0 or
1) of one gene in relation to other specific genes in the genome. That is, one gene alone does
not determine behavior or fitness. Fitness is a function of several genes acting collectively.
Each gene in the collective is assumed to contribute a certain fraction of the overall fitness
however. And this fitness contribution can vary for different combinations of alleles (binary
values) of the group of genes. The fitness contribution of each gene for each combination of
alleles is determined through assignment of a random decimal value from 0.0 to 1.0.

A key assumption of the model is that a gene of one species impacts on the fitness of another
species through several of the N genes. To define how genes interact between species and how
fitness landscapes are coupled, the model uses a co-evolution coupling parameter C which
indicates how each of the N genes in one species makes a fitness contribution that depends
on C genes, again modeled as binary values, in each of the other connected species.

Fitness landscapes are coupled by assuming the fitness of one gene depends on the gene
itself, K other traits in that organism, and C genes of another species. Like the fitness
contributions with intra-species epistatic couplings, the fitness contribution of a gene for
each combination of alleles of the C genes in another species is determined using a random
decimal value between 0.0 and 1.0.

The final parameter necessary in the model describes the number of species found in the
ecosystem, S. Closely associated with this parameter is the connectivity between species,
or how many other species affect the fitness landscape of a given species. Kauffman uses
both complete connectivity, where all species within an ecosystem are interdependent, and
finite connectivity, where a species is affected only by species in a finite neighborhood on an
arbitrary lattice.

The entire population of each species is considered genetically identical and all species are
“updated” each generation/evolution step. At each generation, the genotype of each species
is changed by random mutation of a single gene to its opposite allele (0 to a 1, 1 to a 0).
If the new genotype results in a fitter organism, the mutation is adopted. Otherwise, the
species remains unchanged. Only one mutation occurs per species per generation.

Varying the values of the number of genes in each species, the number of intra-species
epistatic couplings, the number of inter-species gene couplings, and the species population
in an ecosystem, it is possible to produce different evolutionary behaviors. When either the
number of epistatic couplings, K, are high, or the number of inter-species gene couplings, C,
are low, the ecosystem tends to settle to an evolutionary stable strategy where all species
have found peaks in their fitness landscapes such that no mutation leads to increased fitness.
When K is high, the landscape is rugged, resulting in many peaks for a species to get trapped
on. When C is low, landscape deformation of species A that results from an adaptive walk
of species B is minimal, so that the peak that A had found remains a peak. Behavior in
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the ESS regime also arises when the number of species in the ecosystem, S, is low. This
result follows the logic that, the fewer the species that can deform the landscape, the less
the landscape has the potential to change. Kauffman identifies ESS behavior by plotting
fitness of species through successive generations. When an ecosystem reaches a steady state
condition, no changes in fitness occur throughout the population which indicates no changes
in genotypes. The ecosystem has found a Nash equilibrium, where all species have found
their optimal configurations with respect to the configurations of the rest of the population.

Chaotic behavior results when K is low (when there are few peaks to get trapped on), when
C is high (many interdependencies exist between species so that a change in one species
can have a significant effect on another species’ landscape), or when S is high (so that each
ftiness landscape is directly affected by many other species). In this regime of behavior,
the peaks on each fitness landscape move away faster than the species can chase them and
overall fitness is low.

The model indicates that the number of inter-species gene couplings and the number of
species comprising an ecosystem has the greatest effect on the behavior of the co-evolutionary
process. When C is high, a single move by one species has significant impact on the fitness
landscapes of other species because the chance that the genotype of a species is affected by
a mutated gene in another species is greater than if C is low. Similarly, when the number
of species in an ecosystem is high and connectivity is complete so that many species affect
the fitness of a single species, there is a greater chance of a single landscape being deformed
and, the landscape is also subject to the collective effects of multiple deformations.

These results indicate that both stable and chaotic regimes can exist in the same system, with
the type of behavior dependent on the values of the input parameters. Tuning the parameters
results in a trasition between regimes, much like the change from simple to chaotic behavior
observed when the value of the λ parameter, a characteristic of a rule set that indicates
the level of activity and discussed later, is increased in cellular automata systems. In this
transition regime, as in cellular automata networks, co-evolution is a mixture of ESS and
chaotic behaviors.

To illustrate this mixture of behaviors, Kauffman uses a set of ecosystems co-evolved with the
same model parameter values. Multiple sets are used to demonstrate the effect of varying the
number of epistatic couplings. The observed values are the number of ecosystems, evolved
with the same number of epistatic couplings, that have found a Nash equilibrium within a
specified number of generations. Each set of 50 ecosystems is assumed to contain 25 species,
arranged in an arbitrary 5 by 5 lattice. Connectivity is not complete, but is restricted to the
nearest neighbors to the north, east, south, and west. Boundary conditions are not periodic
and species in the corners and on the edges of the lattice have 2 and 3 neighbors, respectively.
The number of inter-species couplings is fixed to a single gene.

The results of varying the number of epistatic couplings indicate that, for low values of K, the
co-evolution process is always chaotic, with all 50 ecosystems in a state of perpetual variation
at the end of 200 generations. Conversely, with K sufficiently high, all 50 ecosystems will
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find Nash equilibria within the 200 generations available. The rate at which the species
approach their equilibria increases with increasing values of K. When K is at a value of 10
however, a percentage of the 50 trial ecosystems has not reached a stable strategy in the 200
generations available. This indicates a transition region from ordered to chaotic behavior
for this set of parameters with respect to a time scale as the number of epistatic couplings
increases.

As parameters are changed, the aggregate fitness also varies. As K is increased from low
values, the average fitness of an ecosystem at first increases, and then decreases. Absolute
values of fitness are also affected by the number of epistatic couplings. The most important
result here, and key to the assumptions in this work, is that, unlike in cellular automata
networks, where tuning the λ parameter corresponds to qualitative changes in behavior, a
correlation exists between the behavior of the co-evolution process and the performance of
the species within the ecosystem, measured in terms of fitness. The highest average fitness
occurs when the co-evolution process is in a complex regime, in the transition region between
ESS and chaotic behavior.

ECHO

Echo, short for eco-system, is a model created by Holland to capture the fundamental dy-
namics of ecologies involving interacting species. Echo is characterized by the absence of en-
dogenous fitness measures. Agents move about a discrete two-dimensional landscape based
on environmental pressures. Located throughout the landscape are resources, which provide
agents with “nutrients” necessary for survival and shape the genotypes and behaviors of
agents. If an agent lives through an evolution step without gaining resources, it randomly
moves to a nearby location. In their journeys, agents eventually encounter each other, and
interact in a way that depends on their combined genotypes and what traits each agent can
see of another. Agents interact through combat, trade, or mating, all of which involve some
transfer of resources and a resultant change in the genotype of the interacting agents.

Since there is no external aggregate fitness measure for agents in Echo as for species in
coupled fitness landscapes, it is not clear if the agents in Echo evolve to an optimal ecology
in the sense of optimally fit species. However, the agents in Echo tend to evolve to a
complex regime, in which they are optimally adaptive - continuously evolving to respond
to changes in the genotypes of interacting agents in the ecosystem, but not to the point
where a single species dominates or where each agent represents a distinct species. The
complex and adaptive behavior of the model is evident in the distribution of populations of
distinct species, which decreases logarithmically when species are ranked according to their
abundance. This distribution is similar to the shape of rank-abundance plots in some real
ecologies [42].
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2.3.2 Organizational Size

In another model addressing “externalities”, or interconnections between agents, the optimal
organizational size of groups is examined [37]. Like the co-evolution model, intra-connections
and inter-connections exist. Instead of connected genes however, connections between mem-
bers of the same group and between different groups are considered. The configurations of
group members are described by sequences of binary variables. The collective set of these
member configurations determines the group payoff, a generic term intended to capture any
measure of group welfare (cost, effort, time, profit, etc. . . ). Payoffs for each configuration
are defined by a randomly generated look-up table. Group members change their configu-
rations through random movements in their configuration space in the search for optimal
group payoffs.

The model shows that optimal group size is related to both the number of externalities and
the length of the search period. When the number of externalities is low, individuals acting in
groups eventually benefit, but optimal group sizes are small. As the number of externalities
increases, optimal group size also increases, largely attributed the ability of large group sizes
to buffer inputs from a large amount of external sources. A large amount of external inputs
also provides a means for escaping local optima.

For long search periods, smaller organizations are desirable, as long as the number of inter-
group connections is relatively low. With a small number of members, each group has a
relatively small number of possible states to search through and a long search results in a
larger fraction of searched states and a greater possibility of finding optimal configurations
as compared to larger organizations. Conversely, larger sized organizations are optimal when
short search periods are available as a large number of initial experiments in the configuration
space are possible. With longer searches however, large organizations have a greater potential
to remain in sub-optimal local optima.

The most critical result shows that, regardless of the constraints (search periods, group size,
and the number of externalities), the optimal organizational configuration always evolves to
a regime of behavior bordering between order and chaos. As the search period increases with
large group sizes, the groups adopt stable strategies, reducing the uncertainty associated with
complexity. Smaller groups operate well with small numbers of inter-group connections. As
this number of interconnections increases, the complexity increases and the groups have the
potential to stray into chaotic behavior, unless the group size increases.

2.3.3 Adaptation to a Complex Regime

Implicit in the co-evolution models described above is the process of selection. If a mutation
results in a less fit variant, it is not adopted as the new genotype. This process of selection is
common to adaptive processes, and is the basis for the genetic algorithm. In a more abstract
model, Packard applies a genetic algorithm to find cellular automata that best perform
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a computational task [45]. The result is adaptation to rules that are capable of complex
behavior.

Packard defines the process of adaptation as the constant changing of the makeup of a
population which is subject to selection where only the fittest members of the population
survive. Given this definition, the ecosystem is defined by a description of the individuals
comprising the population, the means by which they change, and how the fitness of the
population is measured.

The population considered is a set of cellular automata rules. Under the application of a
genetic algorithm, using mutation and crossover as adaptive agents, the cellular automata
rules change to best accomplish a computational task. In the case of this model, the compu-
tational task is to determine whether a sequence of binary values has a density of 1’s greater
or less than 0.5. This task is modeled after the Gacs cellular automata rule (a radius 3,
2 state rule), which indicates the density of the initial set of states through the final state
of the network. If the initial density is less than 0.5, the network evolves to all 0’s and, if
greater than 0.5, it evolves to all 1’s. The fitness of a rule is measured by observing if the
density of 1’s in the network increases or decreases for various initial conditions.

Packard begins with a population of rules with a uniform mixture of λ values, where λ is
defined as the fraction of transition functions that evolve to a quiescent state (this concept
is discussed further in the following section). As the genetic algorithm is applied to the
population of rules, they tend to cluster to areas corresponding to critical λ values. These
critical values are associated with qualitatively complex behavior. Two transition regions
corresponding to critical values of λ exist. The first as λ is increased from 0 and the second
as λ is decreased from 1 and represents the ‘negative’ of the first. The transitions from order
to chaos are based on the difference spreading rate, a measure of the chaos in an evolution.

Packard suggests that the evolved rules are independent of the computational goal. Instead,
rules evolve to a population that is the most computationally effective for a fixed task. The
relevant result to this work is that the computationally effective rules correspond to complex
behavior. As with co-evolution, there exists a correlation between performance and behav-
ior. The explanation for adaptation towards a complex regime to complete a computational
objective is attributable to information propagation. In simple evolutions, no information
in the form of patterns is transmitted across boundaries in the network. In chaotic evolu-
tions, too much information is spread, making it impossible to maintain coherent structures
capable of storing and passing information. In network evolutions showing complex behav-
ior, information can prpogate throughout the network while maintaining its structure as
boundaries are flexible yet defined.

Similar applications of genetic algorithms to the evolution of cellular automata rules for the
purpose of performing computational tasks have also been performed [25, 16]. As in the
evolution of cellular automata rules as density calculators, these models also yield cellular
automata rules that correspond to a complex regime of behavior.
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Genetic algorithms are applicable in other complex adaptive systems, including market based
models. In a resource economics model describing how selfish agents with no information
regarding the state of other agents or the resource regeneration rate, genetic algorithms bring
systems to a range of behaviors [19]. Results indicate that shorter application periods of the
genetic algorithm (which affects the potential of resource consumption) leads to chaotic
behavior. Conversely, longer application periods result in more stable behavior with near
optimal payoff.

The results from a virtual market model indicate similar results [29]. Frequent changes in
investment stategies for all market participants result in a chaotic and inefficient market, with
frequent bubbles and crashes in prices. As investment strategies are changed less often, the
aggregate profit of market members increases and ordered, efficient markets result with longer
term trends. The results also indicate a market equilibrium point corresponding to a Nash
equilibrium, where no change in any market participant’s strategy update period results in
additional benefits. This point, which represents a stable strategy of all members, however,
corresponds to a sub-optimal market. This result is analogous to the sub-optimal Nash
equilibrium that can be achieved in the classic game theory Prisoner’s Dilemma problem,
where both participants defect.

2.3.4 Scale-Free and Distributed Networks

Strongly related to the behavior of a system is the structure of the connections between
entities. Two network topologies that have been associated with complex behaviors while
also exhibiting optimality with respect to either adaptability or performance are scale-free
networks and distributed networks.

Network topologies are defined in part by the connectivity between nodes, or the probability
P (k) that a network is connected to k other nodes. In random networks, the connectivity
distribution, P (k), peaks at an average value of links 〈k〉 and decays exponetially with
increases in k. For this reason, this class of networks is also known as exponential networks.

On the other end of the topology spectrum are structured networks (like cellular automata
networks) which have homogeneous connectivity, where each node has the same number of
connections. In addition, the path length between nodes is a constant.

In between these two topologies are scale-free networks, which have a connectivity distrib-
ution that follows a power law given in Equation 2.1, where φ(k/ξ) results in a cut-off at
some characteristic scale ξ and k represents the number of connections.

P (k) ∼ k−γφ(k/ξ)
(2.1)

In these networks, most nodes are sparsely connected but a limited number of “hubs”, or
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highly connected nodes exist resulting in an inhomogeneous distribution of connections.
Scale-free networks have been described as bearing the stamp of natural selection, sharing
the charateristic of adaptability [56]. Mutations are typically considered random and natural
selection favors systems that tolerate these random variations. Since the majority of nodes
in scale-free networks are not highly connected, these networks are robust with respect to
random failures of nodes [4, 1, 56, 54]. Evidence of this robustness has been shown in
protein interactions in yeast cells [27], within the World Wide Web [4], in linguistics [10],
and in electronic circuit design [9]. Scale-free networks have been shown to represent an
optimal structure as well as being created through local optimization procedures [59]. Scale-
free networks exhibit minimization of both the link density and the path length between
nodes, resulting in the minimization of the costs associated with connections and optimal
communication among system units.

By definition, the connectivity of a scale-free network exhibits a power law relationship. The
power law relationship has been demonstrated to exhibit a close association with the concept
of self-organization and arise in fractals, cellular automata, and statistical measures of the
frequency and intensity of natural phenomena such as earthquakes, avalanches, floods, and
forest fires [51]. Self-organization is a characteristic that requires meaningful information
transfer through a network, which is associated with complex behavior. Evidence of this
relationship exists in cellular automata [64, 36, 35] and in autocatalytic sets, networks of
interactions that are self-sustaining [30, 31].

Closely related to the topology of scale-free networks is the small-world network structure,
which exhibits large clustering of nodes and minimal vertex-vertex distance and link length.
The characteristics of a small-world structure mean that nodes may not be directly con-
nected, but the number of indirect connections between any two nodes is typically low,
resulting in short communication distances. Networks exhibiting the small-world structure
have been found in both natural and artificial systems including the neural network of the
worm Caenorhabditis elegans, which is the sole example of a completely mapped natural
neural network, the power grid of the western United States, and the collaboration graph
of film actors, which is popularly referred to as “six degrees of Kevin Bacon” and serves as
a model for a social network. Because of their complex architecture, small-world networks
demonstrate enhanced signal-propagation speed, computational power, and synchronizabil-
ity [61].

Distributed networks are another topology that has been shown to exhibit complex behavior
and adaptability. In a distributed network, nodes are connected only to nearby neighbors
and a node’s actions are dictated by the state of these neighbors. The elementary cellular
automata described earlier are a classic example of a distributed network, with each cell
connected to neighbors within a radius r. Although this type of connectivity is not inherently
associated with any one type of behavior, cellular automata networks exhibit a complete
range of behaviors, even with small local networks.

In natural systems, distributed networks have been used as an accurate model of flocking



Roger Anderson Chapter 2. Background 23

and herding behavior [48, 6, 8, 23, 49, 57]. Despite the limited connectivity of flock and herd
members, these systems are capable of exhibiting complex global behaviors not necessarily
predictable from the simple,local rules dictating the reaction of members to neighbors. At
the same time, these distributed networks are robust and adaptable with respect to failure
for the same reasons as those for scale-free networks. The random failure of a single entity
does not cause the entire system to fail because no single entity controls the actions of the
entire network.

2.4 Summary

The models described above are evidence of some relationship present between behavior and
optimality, where optimality can be defined with respect to either performance, adaptability,
or robustness. Given the freedom to evolve their characteristics, systems with complex
interactions have been shown in many cases to evolve to a complex regime, which offers a
combination of stability to take advantage of niche environments and adaptability to respond
to environmental changes, which can be indirectly self-induced. The same characteristics of
complex behavior that result in adaptability also result in good performance. The stability
allows a system to remain at optimal or near optimal fitness peaks while sufficient flexibility
permits state space exploration in search of greater performance.

The indication of a meaningful relationship between system behavior and optimality sug-
gests that behavior can provide a means for searching for solutions in large design spaces of
complex systems. However, this relationship must be quantitative, not qualitative in order
to take advantage of it. While performance measures are easily quantified, a universal quan-
titative definition of behavior is more elusive, requiring an examination of various complexity
measures.



Chapter 3

Measures of Complexity

Thus far, all examples of behavior we have seen have had a qualitative nature associated with
them. We have been able to classify the behavior mainly through our intuitive perceptive
abilities [64, 26]. In the example cellular automata evolutions shown in Figure 3.1, it is
apparent that (b) is the most complex of the three evolutions. Figure 3.1(a) is simple to
represent by describing the fixed point attractor state while Figure 3.1(c) is indistinguishable
from a series of states generated from a simple pseudorandom state generator.

(a) (b) (c)

Figure 3.1: Three qualitative behaviors from elementary cellular automata rule sets. Evo-
lution (a) is from rule 4 and represents simple Class II behavior. Evolution (b) is Class IV
complex behavior from rule 110. Class III random behavior is in (c) from rule 45.

Intuitively, we sense a continuum of complexity with a maximum lying in a region between
maximum order and chaos. In addition, our intuition indicates the greatest complexity in
systems where many components interact to create coherent but unpredictable behavior. In
real systems, we can judge that the modern economy is more complex than a fiefdom, or
that a jet engine is more complex than a vacuum cleaner. This perception of complexity,
while powerful, is often subjective and only an objective measure of complexity provides an
absolute description of a system that can validate intuition.

To date, there exists no universal quantitative definition of complexity. However, several

24
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measures, both static and dynamic, have been proposed. A static measure of complexity
is based on the architecture of the system or the strengths of the associations between
components. Dynamic complexity measures the describe the computational effort required
to describe the information content of a state or entity in a system. In practice, we can say
that static complexity measures describe the potential types of behavior that a system can
support while dynamic complexity measures describe the behavior that has emerged from
a system. Static measures have the advantage of quantifying complexity with relatively
little computational effort since large scale system simulations are not required for analysis.
However, the “rules” of the system must be known, which are not always available. The
dynamic measures act independently of known rules and use the actual behavior of the
system, making them a truer measure of system behavior.

While many measures of complexity have been proposed, we will limit ourselves to the most
commonly known and applied measures presented in Table 3.1.

Table 3.1: Proposed static and dynamic measures of complexity

Static measures Shannon’s Information
λ parameter
Hierarchical complexity
Simplicial complexes
Component counting

Dynamic measures Mutual information
Algorithmic complexity
Computational complexity
Logical depth

3.1 Shannon’s Information

Shannon’s information, or Shannon’s entropy, originates from information theory as a means
for measuring the information content in telecommunications [53]. The information content
of a system of N parts is defined in Equation 3.1.

I = −K
∑

N
i=1pilog2pi (3.1)

where pi is the probability of the ith part/event/state occurring and K is a constant that
accounts for units of measure. The logarithm is used because it satisfies the property that
information is additive for independent events. With two independent sets of events, N1 and
N2, the total set of possible outcomes is N = N1 · N2. The information content of N , I(N)
is the sum of the information in each independent set of events, as in Equation 3.2.



Roger Anderson Chapter 3. Measures of Complexity 26

I(N) = I(N1) + I(N2) (3.2)

As a simple example, we can consider the case of a system with two possible outcomes. The
entropy of two outcomes with probabilities p and q = 1 − p is given by Equation 3.3.

I = −(plog2p + qlog2q) (3.3)

This simple case describes the entropy in the elementary cellular automata described in the
previous chapter with k = 2 states. Entropy is maximal when pblack = 0.5 for a given cell,
as is the case for evolutions of rules 30 and 45 (Figure 3.1(c), both chaotic rules. Entropy
is 0 when either p = 0(q = 1) or p = 1(q = 0). In general, entropy is maximal for random
systems and minimal for ordered ones.

Shannon shows the following attributes as support for entropy as a measure of informa-
tion [53]. First, that I = 0 if and only if all pi but one are 0. This pi has a value of 1 (like
evolution to a trivial quiescent state (all 0’s or all 1’s) in a cellular automata) and implies a
certainty in the outcome. For all other combinations of pi, information is positive. Second,
for a set of events, n, the information is maximal and equal to log(n) when all pi = 1

n
(like

chaotic cellular automata evolutions) since the most uncertainty exists for all outcomes.

Entropy can be defined in both spatial and temporal dimensions, the results of which are
not necessarily equivalent. A cellular automata evolution exhibiting repetitive behavior for
instance may have minimal spatial entropy and maximal temporal entropy.

Some criticisms of using entropy as a measure of complexity are related to its additive
properties, its inability to measure a single state, and the fact that it defines not what
is known, but what information is missing from a system [26]. Furthermore, entropy as a
measure of complexity runs counter to intuition regarding what qualitative form of behavior is
most complex. Maximum entropy occurs when a system exhibits randomness while intuition
suggests that random behavior has minimal complexity.

3.2 The λ parameter

The λ parameter, introduced by Langton, is intended as a method for parameterizing the
cellular automata rule space [36, 35, 65, 39]. The λ parameter describes the number of cell
neighborhoods, or transition functions, of the 22r+1 possible neighborhoods, that evolve to a
given state and acts as an indicator of the potential activity of evolutions. The λ parameter
is defined formally in Equation 3.4, where m is the number of active cell neighborhoods.

λ =
m

22r+1
(3.4)
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The λ parameter represents an extremely powerful measure of behavior because it is deter-
mined independent of any explicit evolution. Since it is based on the evolution rules, not the
evolution itself, behavior can be (approximately) determined with much less computation
and provides the potential for designing behavior with only knowledge of the rules governing
the evolution process.

For λ = 0 (and λ = 1, essentially a ‘negative’ image of λ = 0 for k = 2 systems), there is no
potential activity. This value of λ corresponds to all neighborhoods mapping to the 0 state
(or 1 state) and describes the trivial rule sets 0 (and 255). As the value of λ is increased
to 0.5, the corresponding behavior goes through fundamental changes. Low values of λ
correspond to evolutions with fixed point to limit cycle attractors. With λ = 0.5, evolutions
are chaotic, with no attractors. As λ is increased from low to high values of potential
activity, the behavior of evolutions passes through a transition region at some critical range
that corresponds to a complex regime.

This transition region and the correspondence of λ to behavior is difficult to observe in two-
dimensional elementary cellular automata because of the low resolution of cells comprising a
neighborhood. With only k = 2 states and a neighborhood of three cells, there are only eight
neighborhood combinations and a λ resolution of 0.125. With larger neighborhoods and more
possible states, the resolution increases (its scale decreases). In his original investigations,
Langton uses 8 state, 5 neighborhood cellular automata, with a λ resolution of 1

85 = 1
32768

.
It is important to note that, for k > 2, λ is no longer symmetric about λ = 0.5 and that the
number of neighborhoods mapping to a quiescent state is (1 − λ)k2r+1 with the remaining
λk2r+1 neighborhoods mapping to any one of the non-quiescent states. With an arbitrary
definition of which state is quiescent, it is therefore still possible to have multiple equivalent,
‘negative’ images with k > 2.

λ has been shown to have correlations with other complexity measures such as difference
pattern spreading rates, single site temporal entropy, and mutual information [39]. All
correlations indicate a critical value of λ associated with a ‘phase transition’ from ordered
to random behavior.

While the λ parameter is useful for describing the static behavior potential in cellular au-
tomata networks, it is of limited value in other systems. It is most applicable in homogeneous
systems, where all elements are identical, and the set of rules controlling system behavior is
known in detail.

3.3 Hierarchical Complexity

The complexity of Hierarchical systems is based on the idea of clustering system components
according to the strength of their mutual interactions. The most strongly interacting com-
ponents are associated with upper parts of the hierarchy, followed by progressively weaker
associated components.
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Complexity in a Hierarchical system is based on a measurement of the system described
by the number of interactions between and within subtrees of a hierarchy. Complexity of a
hierarchy is quantified as in Equation 3.5.

C(T ) = log2D(T ) = log2{f(kT )
k∏

j=1

D(Tj)} (3.5)

The diversity of tree T , denoted by D(T ), is found by counting all distinct interactions
within clusters, or subtrees of T . If the tree branches to a single leaf or set of single leaves,
the diversity of each leaf is 1, as is the diversity of the root. The diversity becomes greater
than 1 when at least two subtrees from one (sub)root have different structures. The number
of interactions is the product of all diversities of branches and, in the case of branches to
single leaves (a set of which will always be found at the bottom tier of the hierarchy), the
resulting diversity of the subtree is 1. The form factor, fT describes the number of distinct
subtrees stemming from a given (sub)root. It is calculated as the number of ways, Nk that
k subtrees can interact and is given as 2kT − 1. A tree with a constant branching ratio has
only one distinct subtree at every tier and therefore has a diversity of 1 and a complexity of
0. This follows intuition as a constant branching ratio represents an ordered structure.

3.4 Simplicial Complex

A simplicial complex (here, complex is used as a noun to denote structure, not behavior)
is constructed by combining elementary networks, or simplicies, which themselves define
associations between elements. The dimension of a simplex is defined by the number of nodes
in the simplex. An n-simplex will have n + 1 nodes. A 1-simplex is therefore comprised of
two nodes connected via a common thread and a 0-simplex is simply a point.

As an example, consider two sets X = (x1, x2, x3, . . . , xn) and Y = (y1, y2, y3, . . . , yn). We
can suppose that x1 and x2 are both associated to some common member of set Y , say y1.
In this example, x1 and x2 are nodes in a 1 dimensional simplex. If x3 is associated with only
one member of set Y that no other members of X are associated with, it forms a 0-complex.

It is quite possible for a single node to be a member of multiple distinct simplices, or for
multiple nodes from one simplex to be common to multiple simplices. Because of this non-
uniformity, a single edge between nodes may be shared by many simplices. This relation
between simplices is characterized by the simplices’ q-connectivity, which describes the mini-
mum number of shared edges between two particular simplices. The structure of a simplicial
complex (the set of all simplices) is described with the use of the first structure vector,
→
Q= {QD, QD − 1, . . . , Q0} that describes the number of q-connected simplices for each value
of q for 0 ≤ q ≤ D, where D represents the largest dimension simplex of the simplicial
complex.
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The complexity measure, K(C) of a simplicial complex, based on the first structure vector,
→
Q, is given by equation 3.6.

K(C) =
2

(D + 1)(D + 2)

D∑
i=0

(i + 1)Qi (3.6)

which satisfies the properties that the complexity of a complex consisting of a single simplex
is 1, the complexity of a sub-complex can not be greater than the complexity of the entire
complex, and that the complexity of the complex formed by two complexes is less than or
equal to the sum of the individual complexes.

3.5 Number of Components

As a means for establishing rough estimates of complexity, Bar-Yam utilizes component
counting as a complexity measure [3]. The rationale behind component counting is that
complexity is a function of the interactions between elements and with greater numbers of
interacting elements comes greater potential for complex behavior.

Key to using component counting as a complexity measure is the identification of relevant
components and the scale of observation. The determination of what is relevant to complexity
is often subjective and can greatly affect the estimates of complexity. Similarly, scale has
an important effect. Bar-Yam asserts that microscopic scales set an upper bound on system
complexity, which decreases with increasingly macroscopic views dependent on the behavior
of the system at those levels.

In general, complexity is maximal on microscopic scales and decreases as the scales increase
in size. The rate of the decrease and the shape of the complexity profile depends on the
behavior of the system. For simple systems, such as a crystal, complexity decreases rapidly at
scales above the atomic level because there is no additional information required to describe
the system at larger scales. The complexity of a human is high at small and large scales
however when societies are considered at a macroscopic scale.

Measuring complexity through component counting fails to address the behavior of the sys-
tem and only presents the potential character of behavior that might be supported by a
system. In addition, it often ignores the connectivity between elements, which is an im-
portant consideration. For low connectivity, behavior is typically simple while for complete
connectivity, behavior tends towards randomness [30].
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3.6 Mutual Information

Mutual information describes the correlations that exist between variables and can be used to
describe how well information is communicated through a system. The mutual information
between two probability distributions {pi} and {pj} is given by Equation 3.7, using the joint
probability {pij}.

M =
∑

i

∑
j

pijlog
pij

pipj
(3.7)

If the two probability distributions are statistically independent, the mutual information
between them is zero and if the distributions are correlated, the mutual information is non-
zero, the value of the mutual information dependent on the strength of the correlation.

Like entropy, mutual information can be determined in both spatial and temporal dimen-
sions. In application to cellular automata, spatial mutual information is based on the state
probabilities of two sites, or two blocks of sites separated by d cells. The temporal mu-
tual information is based on the correlation of a single site at two points in its evolution
history [39].

For evolutions with fixed point attractors, mutual information is zero. No correlations can
exist between sites, which are divided by the deterministic ‘boundaries’ that form in simple
evolutions. The lack of information transfer across the network also accounts for low mutual
information in evolutions with finite limit cycle attractors. In disordered dynamics, mutual
information is low because each site deals with conflicting inputs from multiple other sites
and any coherent information is rapidly degraded. In a statistically random evolution, low
correlation between two random variables is expected.

Mutual information is maximal when spatial structures are present and coherent information
has the ability to move through a system. This maximum corresponds to qualitatively
complex dynamics at the phase transition between ordered and chaotic dynamics (and is a
requisite for the associated property of universality) [39].

Like the measure of Shannon’s information, mutual information relies on statistical properties
of a system evolution and is therefore an ensemble characterization. It can therefore not
account for local dynamics and can not measure the complexity of a single state.

Mutual information follows intuition regarding the relationship between qualitative behavior
and quantitative complexity. Highly ordered systems that are intuitively non-complex have
low mutual information. Similarly, random systems also have low mutual information which
again matches intuition. Maximal mutual information occurs in the complex regime, between
these two regimes.
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3.7 Algorithmic Complexity

The concept of algorithmic complexity was introduced by Solomonoff, Kolmogorov, and
Chaitin [12, 13, 11]. The algorithmic complexity IC(s) of a binary string, s, is defined to
be the shortest program p that produces the output s on a universal computer U . This is
presented formally in Equation 3.8.

IU(s) = minU(p)=slog(p) (3.8)

By Solomonoff, algorithmic complexity was meant to address the conciseness of a mathe-
matical theorem. By definition, a theorem is a simpler means of describing a more com-
plex phenomena. The smaller the theorem, the more concise and therefore the greater the
understanding of the phenomena and the more capable of the theorem for making future
predictions about the phenomena. Random phenomena that are not predictable can not
be explained by a theorem or any other shorter form and the most concise method for
representing the phenomena is a direct reiteration of the observations.

It should be noted that the value of IC(s) is dependent on the universal computer used
because of different operating characteristics of the machines. However, since the computers
are universal, they are by definition capable of emulating each other with only some finite
sized ‘translation’ code. The difference between algorithmic complexities on universal com-
puters U1 and U2 is therefore bounded by the addition information, τU1U2 required for each
computer to emulate the other, as in equation 3.9

|IU1(s) − IU2(s)| ≤ |τU1U2 | (3.9)

As the length of the binary string, s, increases, the difference between the two complexities
becomes a decreasing fraction of the program length and is eventually considered negligible.

Application of the algorithmic complexity measure is illustrated with a comparison of two
binary digit sequences shown in Figure 3.2.

(a) 10101010101010101010
(b) 10111001001010011010

Figure 3.2: Two binary digit sequences. Sequence (a) can be compressed to a short program
<Print ‘10’ ten times> and has low algorithmic complexity while the sequence in (b) is
incompressible and requires a program approximately as long as the digit sequence itself to
represent it, resulting in high algorithmic complexity.

In sequence (a), there is a repetitive pattern of the ‘10’ digit sequence. This sequence lends
itself to a compressed format and can be generated by a program < Print ‘10’ ten times >.
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Because of its representation by a simpler program, sequence (a) has a low algorithmic com-
plexity. A digit sequence of ‘10’ repeated a billion times would therefore have approximately
the same algorithmic complexity, with the difference only in the bits in the exponent of
the program < Print ‘10’ 109 times >. In contrast, digit sequence (b) is in a relatively
incompressible form and the shortest representation of the digit sequence is the sequence
itself.

Despite its name, algorithmic complexity is more of a measure of randomness than com-
plexity as described in the context of elementary cellular automata. In random strings, the
algorithmic complexity is maximal, which runs counter to our intuitive description.

It has been demonstrated that most numbers are random (algorithmically random) and that
the number of strings of a given binary length that are algorithmically simple are rare, so
that for an arbitrary lower bound on complexity of n−x bits in an n bit number, the fraction
of simple numbers is 2n−x

2n = 2−x and for a greater upper bound on complexity, there are
exponentially fewer simple numbers. For a typical incompressible random binary string, s,
the algorithmic complexity, I(s), is given in Equation 3.10

I(s) ≈ |s| (3.10)

and for the decimal equivalent of s, denoted n, the algorithmic complexity is given in Equa-
tion 3.11 [68].

I(n) ≈ log2|n| (3.11)

The algorithmic complexities in Equations 3.10 and 3.11 are related approximately to the
numbers because of the additional bits required for the encoding of the program to represent
the numbers. For large digit sequences however, this additional information is negligible.

Often critical in the complexity of the representation of a system is the scale of the system
and how much detail is required or desired in the system description [3]. The algorithmic
information content of a human described by the DNA ‘program’ is on the order of 1010 bits
while a human described on its atomic level is on the order of 1030 bits. A human described
on the level of the number of organs may be estimated by 102 bits. Complexity profiles on
both time and length scales describe these relationships.

In practice, it is often difficult to establish absolute values of algorithmic complexity for
a given system for a reason related to Gödel’s incompleteness theorem that no formal de-
scriptive system can encompass all true theorems. For numbers, no number can be proven
random unless the complexity of the number is less than that of the formal system used
to describe it. The information in a formal system is always finite and is therefore always
incapable of proving whether a number with greater complexity is random. This argument
originates from the paradox formed from a statement of the form, “this sentence describes a
positive integer of complexity which to be specified requires greater complexity than exists
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in this sentence.” If this integer exists, it can be described in a more concise form by the
sentence above, meaning it is not of greater complexity than the sentence allows, so that the
sentence itself is a self-contradiction [12].

3.8 Computational Complexity

Computational complexity is a measure closely related to algorithmic complexity. However,
instead of measuring the minimal sized program required by a universal computer, compu-
tational complexity measures the minimal time or memory required by a universal computer
to solve a particular problem. In a simple instantiation, this might involve finding the total
number of elementary binary mathematical operations (+,−,×,÷) required for algorithm
A to evaluate a function f .

This definition is extendable by relating the time/steps required to solve a problem with the

size of the problem. If Σ
(i)
N is the initial state of a size-N problem with a final state solution

using function f of Σ
(f)
N , then the computational complexity, HC(Σ

(f)
N ) is the time required,

τ , for the program, P , running on a universal computer, U , to reach state Σ
(f)
N from initial

state Σ
(i)
N . This relation is presented in Equation 3.12.

HC(Σ
(f)
N ) = min

U(P )=Σ
(f)
N

τU (P ) (3.12)

Problems are classified based on how the computational complexity changes with respect to
changes in the problem size. The computational complexity of class P problems increases
with a polynomial relation to the problem size, as described in Equation 3.13.

HC(Σ
(f)
N ) ≤ O(Nα) | α < ∞ (3.13)

In class NP problems, the time required to test possible solutions is on the order of a
polynomial function of the problem size, but the time required to find the solution is not
necessarily related polynomially to the problem size.

The spatial measure of computational complexity is the memory required to solve a particular
problem. The PSPACE class describes problems that require memory on the order of a
polynomial relation to problem size. The time required to solve a problem of this class is
not necessarily known.

Computational complexity treats all complexity measures in terms of functions. A drawback
to this approach is that not all systems are describable in terms of functions. The complexity
of a given system state or a particular object may be undefinable in this context, or of a
level of abstractness that the complexity of the function no longer represents the complexity
of the object.
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3.9 Logical Depth

The concepts of algorithmic complexity and computational complexity are combined in the
measurement of logical depth. Logical depth, DL

U describes the time, τ required for a univer-
sal computer, U to execute a minimal program, P ∗ to generate some output representative
of object, O, as in Equation 3.14. In Equation 3.14, S(O) is the binary string representation
of object O.

DL
U(O) = τU(P ∗) where U(P ∗) = S(O) (3.14)

Like algorithmic complexity, the value of the logical depth is dependent on the universal
machine being used to run P ∗. However, as the lengths of the minimal programs increases,
the difference between the logical depths on two universal machines becomes negligible.

Logical depth combines the advantages of both algorithmic complexity and computational
complexity. For simple objects, logical depth is low because the program required to create
the object (or bit string representation of the object) is small because of the amount of
available compression. Similarly, a random object could be created by a short, stochastic
based program or a < Print > function. Complex objects however, can not be represented
by simple programs such as < Print > because they contain internal evidence of having
been the result of a long computation. In addition, these types of objects can not plausibly
have originated by any other method than a long computation or slow-to-simulate dynamical
process [7].

Logical depth suffers from disadvantages also seen in algorithmic complexity. First, it is
not directly apparent how to represent all objects as a bit string or program, particularly
physical systems or processes. Second, the scope of the program affects the program size
and computational effort required to represent a system. Any measure of logical depth must
therefore be made in the context of the level of detail involved in simulating a system, at
which point the logical depth of the program and not the system itself is measured [26].



Chapter 4

Elevator Group Control and Naval
Weapons Elevators

4.1 General Vertical Transport

Elevator group control is a class of problems that has long been recognized as being non-
deterministic and capable of exhibiting complicated behavior [5, 55]. However, many at-
tempts have been made to optimize elevator group control through various methods.

When elevators first appeared in buildings, they were manually controlled by the passenger.
To call an elevator, a passenger would pull a rope running the interior length of the shaft
that was linked to a hydraulic control valve. The control rope was also used inside the
elevator to control direction. Since passengers dictated the control of the car, service was
essentially limited to one passenger (or call) at a time. Manual control was replaced by
electric signaling in conjunction with attendants dedicated to a specific car. The attendant
made decisions regarding which floors to service as well as the sequence of stops, based on the
signals received and the destinations of passengers. The limitations of control by attendants
resulted in fully automatic push button elevator systems. But with the elimination of the
attendant came a requirement for a new form of car control.

The simplest form of automatic car control is single call automatic control. In this method,
passengers are served on a first-come-first-served basis and passengers in the car have priority
over passengers still demanding service. Upon selection of a destination, an elevator proceeds
directly to the destination, bypassing any intermediate floors with landing calls, or passengers
requiring service. When a car is free, it proceeds directly to the next (longest waiting) landing
call. This control is reminiscent of the manually operated control valve, but eliminates the
possibility of any altruistic intermediate landing calls.

Collective control systems are intended to reduce the inefficiencies resulting from bypassing
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landing calls in single call systems. Collective control is categorized as either single-button
or two-button. In single-button systems, the direction of the passenger is not considered and
a car with a passenger will stop at all floors on its way to its destination regardless of the
desired direction of travel of the passenger at that floor. A passenger may enter an elevator
that is traveling in the opposite direction of the desired direction. The desired direction
of travel is accounted for in two-button collective control systems. In directional collective
control, landing calls describe the desired direction of travel. An elevator stops to service
both car calls and landing calls in the current direction of travel and will bypass landing
calls in its path if the directions do not match the current direction of the elevator. When
no more calls exist ahead of the car that match the current direction of travel, the elevator
reverses direction and answers all calls corresponding to its new direction.

In all of these control systems, we are only considering a system with a single elevator. But a
single elevator is not always capable of handling a system’s traffic. When multiple elevators
are used, we encounter the problem of interconnecting the elevators to operate collectively.
While multiple elevators could operate independently, the resulting performance would be
inefficient, as several elevators could answer a single call. The coordinated, supervisory
control of multiple elevators is known as elevator group control. In a group control system,
elevators share a signaling system and serve common areas according to some set of rules.

Rules for controlling elevator groups take many forms and are often designed to accommodate
specific traffic conditions. Common traffic conditions encountered in elevator systems are
up-peak, down-peak, and inter-floor traffic conditions. Up-peak and down-peak conditions
are common in commercial office buildings that operate according to a standard schedule.
An up-peak, or incoming traffic condition occurs when passengers arrive at work and travel
from a common location (the lobby) to individual destinations (upper floors). Down-peak
traffic occurs when passengers leave the building from multiple floors, destined for a common
location. Inter-floor traffic, or two-way traffic, involves passengers moving from multiple
locations to multiple destinations. It is often assumed that an elevator system designed to
handle an up-peak traffic condition will be able to accommodate down-peak traffic [5].

The approaches taken in dealing with the elevator group control problem can be divided into
four main categories: reductionism, heuristics, non-linear optimization, and adaptive control.
The approaches are not necessarily distinct and a control system can involve elements from
two or more approaches.

Reductionism is a common approach taken in the design of linear, and sometimes non-linear
systems. Reductionism involves the identification of relevant physical variables. In the case
of elevator group control, examples of these variables are elevator acceleration and velocity
capabilities, number of elevators involved in a system, number of floors served, and maximum
car capacity. The effect of each variable is determined by varying it within a fixed frame of
reference, where all other variables remain constant. Schroeder [52] presents a reductionist
approach in the control of a down-peak traffic condition, using passenger boarding rate, and
performance parameters such as waiting time, destination time, and load upon arrival at
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the lobby as functions of the number of boarding stops during a round trip. Schlemmer
et al. [50] consider the trade-offs between maximum power required and passenger comfort
constraints related to acceleration/deceleration in the minimization of transit times. The
time-optimal path is built into a control algorithm that accounts for sensed passenger loads
and destinations.

Heuristic methods utilize operational rules that are assumed to provide optimal performance.
Heuristics, while in operation can be effective, do not necessarily guarantee globally optimal
behavior and can only be measured in the context of other control strategies. Heuristic con-
trol techniques emerged concurrently with the advent of automatic car control, and in some
respects, are found in attendant controlled systems. Strakosch [55] presents heuristics for
up-peak, down-peak, and inter-floor traffic conditions, including the up-peak zoning control.
Barney and dos Santos [5] presents multiple supervisory group control algorithms, including
directional collective control, Duplex/Triplex control, fixed sectoring priority timed, fixed
sectoring common-sector, dynamic sectoring, minicomputer based system (minimization of
expected car journey times), and call allocation with known destinations. These methods
account for the allocation of cars to requests for elevators (landing calls), the assignment
of direction to predetermined or variable zones of control, the availability of elevators for
requests, and local optimization with respect to the minimization of passenger waiting time
or journey time. Newell [44] further investigated the fixed sectoring heuristic and demon-
strated that the number of elevators serving a sector affects the total journey time (waiting
+ riding time). Newell also proposed a limit on the number of floors served per trip and
the effect of revisiting identical floors in successive trips for a given elevator. Pang [46] de-
scribes the use of a blackboard architecture for traffic control of elevators in a multi-story
building. The method applies heuristics and basic elevator scheduling rules in a structure
that accounts for large amounts of diverse and incomplete knowledge in a real time decision
making process. A threshold policy, where elevators wait for a minimum number of passen-
gers before departing, is demonstrated by Pepyne et al. [47] to be optimal with respect to
the minimal aggregate passenger waiting time. This policy is applicable to systems involved
in an up-peak traffic condition. Recently, fuzzy logic has been applied to elevator group
control [33, 67, 28, 58, 22, 32].

Non-linear optimization techniques are best described as local optimization procedures that
utilize some form of simulation. Yoneda et al. [66] use a genetic algorithm, which is itself
a heuristic, as an intelligent elevator supervisory control system. Genetic algorithms were
originally intended for application to adaptive systems, specifically biological evolutionary
systems. Elevator group control systems must ‘adapt’ to changes in traffic conditions and
passenger arrival rates, while accounting for their current physical configuration. This adap-
tive control utilizes multiple parameters in the definition of an objective function. Clark
et al. [14] created a knowledge-based control system, similar in operation to Pang. The
system uses multiple heuristics that can be compared through simulation to obtain optimal
scheduling of elevators. Optima in this system were defined by passenger throughput and
individual passenger waiting time.
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Traffic patterns in a given building are not fixed, and may change several times during the
course of a day. A given heuristic, or optimization technique may provide good performance
in one traffic condition at the expense of others. The use of multiple appropriate policies in
conjunction with traffic pattern recognition has been investigated [21, 41]. Neural networks
learn to identify traffic patterns that are matched to pre-specified traffic patterns, resulting
in the selection of an appropriate control algorithm. Identification of traffic patterns does
not necessarily require matching to pre-specified traffic patterns. Kim et al. [34] proposed
a system that utilizes cameras and call allocation with known destinations to determine
traffic conditions. The traffic conditions are used to create a dispatch function through a
genetic algorithm with an adaptive objective function. The dispatch function accounts for
the distance between an elevator’s current location and a floor where a request has been
issued, the destinations of elevators relative to the request, the current number of elevator
passengers, and the number of destinations between an elevator’s current location and the
request. Crites et al. [15] use reinforcement learning agents to control a group of elevators
in a collective learning algorithm.

4.2 Naval Weapons Elevators

A weapons elevator system, like any elevator system, consists of four types of elements:
entities (passengers or materiel), elevators, queues, and destinations. The principal function
of the weapons elevator system is to transport ordnance from queues to their destinations.
The flow of material is bi-directional and is associated with distinct operations, presented in
Figure 4.1. In strike-down operations, ordnance is moved from the main deck to the ship’s
magazines for storage. In this scenario, the queue(s) is located on the main deck and the
magazines are the destinations. Strike-up operations remove ordnance from the magazines
(queues) and bring it to the main deck (destination). Strike-down and strike-up scenarios
are similar to the up-peak and down-peak traffic conditions commonly found in commercial
office buildings with the exception that retrograde of packing material is often involved
in strike-down operations which may affect the operation of the system. Additionally, in
an office building, the same number of passengers is typically involved in both up-peak
and down-peak traffic, but in a weapons elevator, strike-down often involves more traffic
volume than a strike-up operation. However, like the performance of an elevator group in
up-peak and down-peak conditions, the performance of a weapons elevator during strike-
up and strike-down can be significantly different. Because of the analogy with building
traffic conditions, we will only consider strike-down operations for the moment. As up-peak
empirically provides the greatest limitations on system performance, we will assume that its
analogy, strike-down, behaves similarly.

The ultimate measure of the performance of the weapons elevator system is its ability to
complete the function of transporting items, which can be equated to total cycle time. It is
in the best interest of the carrier in both traffic conditions to complete transfer operations in
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Figure 4.1: Strike-down and strike-up weapons transfer scenarios.

the shortest amount of time. During strike-down operations, it is advantageous to minimize
the length of time ordnance remains on the main deck, in a relatively unsecured location.
Ordnance on the main deck also inhibits flight operations, which is the primary function of
the carrier. In strike-up, it is desirable to bring ordnance to the main deck at a rate that
matches the demand of flight operations. If the performance of the weapons elevator were
not adequate, it would again inhibit the primary function of the carrier.

4.2.1 Current Configuration

The current configuration of the weapons elevator system can be described in terms of its
physical characteristics, its operational method, and the queuing of items for transport.

In an aircraft carrier, there are multiple weapons elevators, each of which serves a number of
magazines. Each elevator shaft operates in a single carriage, which always remains within the
confines of the shaft and has only a vertical degree of freedom. The shafts are located along
transverse watertight bulkheads, which serve to isolate compartments. The elevator shafts,
which are also considered watertight, typically provide access to two compartments, one of
which is through a transverse watertight bulkhead, as in Figure 4.2. It is therefore possible
for a shaft to access multiple compartments at the same level. This approach provides a level
of redundancy with respect to the access to a given space and also increases the versatility
of transfer operation scheduling.

The doors at the interfaces between the elevators shafts and magazines are also watertight, to
completely isolate the shaft from the compartments when the doors are closed. Additionally,
there are two hatches located within the elevator shaft to isolate regions within the shaft. The
main deck and ballistic hatches are shown in Figure 4.3, along with examples of magazine
doors.

The actual operation of the weapons elevator system involves multiple elevators, magazines,
and queues that have significant interaction. With variability in the scheduling and order of
items, the performance of the system is complicated. However, the basic operational logic
of the system can be illustrated by the sequence of events in a strike-down operation in one
elevator cycle in a system consisting of a single queue, carriage, and magazine. This sequence
is presented in Table 4.1, where the platform is initially located one level below the main
deck (2nd level) and all doors and hatches are closed. A detailed description of the sequence
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Figure 4.2: Plan view of a magazine layout. WT indicates a watertight partition.
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Figure 4.3: Elevation of magazine and shaft layout, showing ballistic hatches and doors.
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Table 4.1: Current weapons elevator transfer operation events.

Step Event
1 Open main deck hatch
2 Move carriage to the main deck
3 Load carriage
4 Move carriage to the 02 level
5 Close main deck hatch
6 Open ballistic hatch
7 Move carriage to the magazine (below ballistic hatch)
8 Open magazine door
9 Unload carriage
10 Close magazine door
11 Move carriage to the 02 level
12 Close ballistic hatch

of events in the model used for simulations, illustrating individual cycle times, is found in
Appendix A. This description represents a modification of the baseline scenario to reflect
advanced system hardware.

4.2.2 Comparison with Commercial Elevators

The most significant differences between a naval weapons elevator system and a commercial
elevator system are with respect to the queues and the ballistic safety features of the weapons
elevator system.

The queues in a commercial elevator system are widely recognized as stochastic [5, 55].
The rate at which items in the queue (passengers) enter the system, often described as the
passenger inter-arrival time, is typically modeled as a Poisson distribution. The probability
of n calls being registered in the time interval T for an average rate of arrivals λ is

pr(n) =
(λT )n

n!
e−λT (4.1)

Depending on the traffic condition (up-peak, down-peak, inter-floor), the average rate of
arrivals will change and will vary from floor to floor. Because of the stochastic nature of the
queues in a commercial building, the number of passengers carried during any given trip, de-
pending on the method of control, is also stochastic. The utilization of commercial elevators
therefore typically varies significantly during its operation. In a weapons elevator system,
more information is known about the queues. Queues are often prearranged in an attempt



Roger Anderson Chapter 4. Elevator Group Control and Naval Weapons Elevators 42

to minimize the time associated with bringing items to a waiting carriage. However, due to
several reasons, including the number of steps required to arrange the queues, incomplete
information about the state of magazines prior to a strike-down, and conflicting shipboard
requirements, the queues are often not ideal and can experience variability. The operation of
weapons elevators is usually threshold based, and an elevator will not leave for a magazine
until a limit on volume or weight is encountered.

Unlike a commercial building, the transportation of items in a weapons elevator system
requires resources such as fork trucks and personnel to conduct loading and unloading oper-
ations at the queues and in the magazines. Resources normally operate in one magazine at
any given time, to keep resource utilization as high as possible and to account for a limited
number of resources. A strike-down operation that involves ordnance with various desti-
nations therefore appears like an up-peak traffic condition globally, but locally, the traffic
pattern is equivalent to trips where all passengers share a common destination and a desti-
nation is visited repeatedly until no passengers remaining in a queue are destined for that
destination. If items, or groups of items defining a load, bound for the same destination
are not transported successively, then the system is slowed as resources move among various
destinations.

A weapons elevator shaft contains physical zones, bounded by the ballistic hatches and
ballistic magazine doors. Ballistic doors and hatches are a requirement for the protection
of ordnance in transport and the isolation of compartments. To the elevator, the hatches
appear as car calls, with deterministic waiting times and doors appear as times associated
with unloading at a destination. In a round trip below the lower ballistic hatch, an elevator
is guaranteed to experience four virtual car calls, two at each of the ballistic hatches in a
shaft, with the current interlock system operated serially.



Chapter 5

Naval Weapons Elevator Simulations

The physical layout and mode of operation currently employed in naval weapons elevators
represents one out of an extremely large but finite number of system configurations. In
such a large design space corresponding to systems with non-linear dynamics, the process
of reductionism, creating generalizations regarding the effects of a single variable, is not
applicable. Without these generalizations, there are no predictive shortcuts to indicate
the performance or behavior of a given configuration without explicit simulation of that
configuration, although there exist some configurations where prediction is trivial such as a
system with a single queue, shaft, and magazine. Cases like this represent a small fraction
of the typically more complex design space, just as solutions to mathematical and physical
problems are solvable under specific conditions, but offer no general closed form solution.
As an example, consider the three body gravitational problem.

It must be remembered that the measured performance/behavior of a simulation is not the
performance/behavior of the actual system, but of the simulated system only. How well
the simulation results reflect reality depends on the accuracy and detail of representation
of the system model, which is partially described in the system configurations. While any
system configuration must be considered as a whole, it can be defined in terms of its physical
characteristics, operational logic, and the system inputs.

5.1 Physical Characteristics

Physical characteristics encompass the arrangement and interactions between fixed physical
spaces that correspond to various system functions. The three types of spaces found in
a weapons elevator system are queues, shafts1, and destinations. During the strike-down

1The term shaft is used to indicate a space rather than the more common term elevator to distinguish
between a fixed and mobile entity as the term elevator is typically synonymous with the terms shaft and
carriage. We will introduce configurations where the carriage can exit a shaft, and the distinction between
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scenario, where items are transported for storage, queues are areas located on the main deck
(hanger deck) and destinations are the magazines (stowage compartments). In a strike-up
scenario, where ordnance is removed from storage, the roles of the main deck areas and
the magazines are reversed. The simulation models used in this work consider strike-down
scenarios only, which are equivalent to the worst-case, up-peak traffic condition.

The definition of the physical configuration describes the interactions between spaces, but
does not include any physical metrics. If this information were included, the design space
of physical configurations would be infinite and practically unsearchable. Describing the
relationships between spaces is a simple, abstract means for expressing physical orientations
without explicit definition of geometries or dimensions.

The relationships between spaces are described using incidence matrices. With three types
of spaces, there are three distinct incidence matrices. Two of the matrices, the shaft-queue
(SQ) matrix relating shafts and queues and the shaft-magazine (SM) matrix relating shafts
and magazines, are defined as 0th order incidence matrices, because they describe a direct
physical relationship between spaces. The order of an incidence matrix is defined to be
the number of indirect paths required to relate a given space to another. The 0th order
incidence matrices therefore indicate a direct physical relationship between two spaces. A
1st order incidence matrix describes the indirect relationship between spaces, separated by
one commonly shared space. A 1st order incidence matrix of importance is the 1st order
queue-magazine matrix (QM) that shows the relationships between queues and magazines
through shafts. The 1st order QM matrix is related to the 0th order SQ and SM matrices by
the expression in Equation 5.1.

(QM) = (SQ)T (SM) (5.1)

0th order incidence matrices consist of only binary values indicating the presence or lack
of interactions. However, elements in higher order incidence matrices are not necessarily
only binary values. The entries in the 1st order QM matrix indicate not only a relationship
between queues and magazines, but also the number of shafts by which the spaces are
related. It is not explicitly apparent however, which shafts connect a queue and magazine.
The maximum value of any entry in the QM matrix is equal to the number of shafts in the
system.

As a simple example of the use of incidence matrices, consider a conventional elevator system
with carriages fixed in shafts consisting of 2 shafts, 2 queues, and 3 magazines with the 0th

order SQ and SM incidence matrices defined in Figure 5.1. The resulting 1st order QM
matrix is therefore calculated in Figure 5.2.

The QM matrix indicates that all magazines can receive items from the 1st queue. For

the fixed space, shaft, and the mobile platform becomes important. To avoid confusion, the term elevator is
never used except as a description of a vertical material handling system in general, the term shaft denotes
a physical location, and the term carriage denotes the transport vehicle.
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(SQ) =

(
1 0
1 1

)
(SM) =

(
1 1 1
0 0 1

)

Figure 5.1: In the example 0th order incidence matrices, the first shaft is connected only to
the first queue while the second shaft is connected to both queues. The first shaft is connected
to all three magazines but the second shaft is connected only to the third magazine.

(QM) =

(
1 1
0 1

)(
1 1 1
0 0 1

)
=

(
1 1 2
0 0 1

)

Figure 5.2: The QM matrix is determined from the SQ and SM matrices. The connectivity of
the first shaft results in many of the connections between the first queue and all magazines.
Since the first shaft is not connected to the second queue and the second shaft is only
connected to the third magazine, there is no connection between the second queue and the
first and second magazines.

the third magazine, there are two paths from the first queue, the first and second shafts.
Furthermore, the matrix shows that the second queue only serves the 3rd magazine and that
the 1st and 2nd magazines are only served by the 1st shaft.

A conventional elevator system uses carriages that are fixed within shafts, requiring the
bi-directionality of shafts. Bi-directionality implies that incidence matrices are undirected
- that is, if space A communicates with space B, it is possible to reach A from B as well
as B from A. Less conventional systems might involve uni-directional shafts, which result
in directed incidence matrices, where it may be possible to reach A from B, but not B
from A. In descriptions of these systems, information regarding the directionality of shafts is
included as a shaft direction vector (SDV) and the 0th order directed incidence matrices are
determined by row by row scalar multiplication of each element in the shaft direction vector
(or 1 minus the element) with the SQ and SM matrices, as shown in Equations 5.2 to 5.5.

−→
SQUPi

= SDVi

−→
SQi {i|i = 1 . . . s} (5.2)

−→
SQDOWNi

= (1 − SDVi)
−→
SQi {i|i = 1 . . . s} (5.3)

−→
SMUPi

= SDVi

−→
SM i {i|i = 1 . . . s} (5.4)

−→
SMDOWNi

= (1 − SDVi)
−→
SM i {i|i = 1 . . . s} (5.5)

Because of their importance and the fact that no additional 0th order incidence matrices
besides the SQ and SM matrices and no additional 1st order incidence matrices other than
the QM matrix are used in this work to describe relationships between spaces, the description
of the order is dropped in all subsequent references to these matrices and are referred to
simply as the SQ, SM, and QM matrices.
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The SQ and SM matrices are synthesized and are the only two matrices that are required
to define a configuration. Physical configurations are generated systematically based on the
number of each type of physical space in a system. The quantities of physical space types
are used as a sort of “base” system which is used in the encoding/decoding of configurations,
described in further detail later in this chapter. For a system with q queues, s shafts, and
m magazines (base q-s-m), there are theoretically 2sq SQ incidence matrices and 2sm SM
incidence matrices, for a total of 2sq ·2sm = 2sm+sq = 2s(m+q) possible physical configurations.
Included in these possible configurations however, are invalid configurations. For instance,
every possible system size contains SQ and SM incidence matrices with all 0 entries, which
represents a null system. Valid configurations are based on the following rules:

1. All shafts must be associated with at least one queue and magazine (no all zero rows
in the SQ or SM incidence matrices)

2. All queues and magazines must communicate with at least one shaft (no all zero
columns in the SQ or SM incidence matrices)

3. SM matrices must be in the lowest energy state with respect to shafts and magazines

4. SQ matrices must be in the lowest energy state with respect to queues

5. Any rows in the SQ matrix corresponding to repeated rows in SM must be in the lowest
energy state

If a shaft does not communicate with any queue or magazine, it is a ‘dead-end’ shaft with
no source and/or destination for items and is therefore not a meaningful part of the system.
Similarly, if a queue or magazine has no access to any shaft, it is an isolated space and
therefore not a part of the system.

A corollary to the second rule for valid configurations exists for systems with uni-directional
shafts:

2A. All queues and magazines must be associated with at least one up-shaft
and one down-shaft

With at least one input and output, no space is isolated in a uni-directional shaft system.
This rule implies that, in systems with uni-directional shafts, the total number of shafts
must be greater than 1 and that there must be at least one up-shaft and one down-shaft for
a valid configuration.

The arbitrary numeration of physical spaces results in the repetition of logically equivalent
configurations, assuming that all spaces of each type are identical. As an example, consider
the two SM matrices in Equation 5.6.
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SM1 =

(
1 0 1
0 1 1

)
SM2 =

(
0 1 1
1 0 1

)
(5.6)

For simplicity, if the corresponding SQ matrices are assumed to have all 1 entries, then
SM1 is equivalent to SM2 with only an interchange of the two rows. Instead of naming
the shaft corresponding to the first row ‘shaft 1’, it is just as arbitrary to name it ‘shaft
2’ and perform a row interchange as long as the shafts are identical (and as long as the
corresponding rows are interchanged in the SQ matrix). Similarly, an interchange of the first
and second columns in SM1 yields the logical equivalent of SM2. To avoid the repetition of
physical configurations due to arbitrary nomenclature, the SM matrices are required to be
in their ‘lowest energy state’ with respect to shafts and magazines (rows and columns)2.

The lowest energy state with respect to row (columns) is defined to be the minimum value
of the decimal representation of the flattened matrix with the most significant bits corre-
sponding to the first row (column) and least significant bits corresponding to the last row
(column) over all permutations of row (column) interchanges. Another way to think of the
lowest energy state is through the decimal representations of the bytes formed by the rows
of the matrix and its transpose. If the decimal representation of bits comprising each row
{i|1 ≤ i ≤ s} of the matrix is denoted by σi and the decimal representation of the bit
sequences of each row {j|1 ≤ j ≤ m} of the transpose of the matrix is denoted by µj, then
the elements of the vectors �σ∗ ∈ {σi|1 ≤ i ≤ s} and �µ∗ ∈ {µj|1 ≤ j ≤ m} must be ordered
to satisfy the conditions in Equations 5.7 and 5.8 to be in the lowest energy state.

σi−1 ≤ σi {i|1 ≤ i ≤ s} (5.7)

µj−1 ≤ µj {j|1 ≤ j ≤ m} (5.8)

In the example SM matrices in Equation 5.6, the ‘energy’ vectors are presented in Equa-
tion 5.9.

�σ∗
1 = {5, 3} �σ∗

2 = {3, 5}
�µ∗

1 = {2, 1, 3} �µ∗
2 = {1, 2, 3} (5.9)

For a given valid SM matrix, the names of shafts are no longer arbitrary as the positions are
fixed in their lowest energy states. The SQ matrix does not therefore have to be in a lowest
energy state with respect to shafts (except for identical shafts). However, the identities of
queues remains arbitrary and the SQ matrix must be in its lowest energy state only with
respect to queues to be a valid matrix. A valid SQ matrix satisfies the requirement in

2The SM matrix is used by convention. It would be equivalent to reverse the roles of the SQ and SM
matrices for configuration identification
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Equation 5.10, where νk is the decimal equivalent of the byte formed by each row, {k|1 ≤
k ≤ q} in the transpose of SQ.

νk−1 ≤ νk {k|1 ≤ k ≤ q} (5.10)

When rows in the SM matrix are identical (two or more shafts serve identical magazines),
the shaft numbering is arbitrary for the identical shafts within the SM matrix, but not
necessarily in the SQ matrix (unless the shafts that serve identical magazines also serve
identical queues). To distinguish between valid and repeated configurations, the sub-matrix
consisting of the rows in SQ corresponding to identical rows in SM must be in their lowest
energy state with respect to shafts. In the example configuration in Figure 5.3, the second
and third shafts are identical with respect to magazines and the SQ matrices are equivalent
with respect to a single row interchange. The sub-matrices sq1 and sq2 are formed from the
second and third rows in SQ1 and SQ2 respectively and are shown in Figure 5.4. The sq1

sub-matrix is in its lowest energy form and therefore indicates that SQ1 represents the valid
configuration of the logically equivalent SQ1 and SQ2 matrices.

SM1 = SM2 =




0 1 1
1 0 1
1 0 1




SQ1 =


 0 1 1

1 0 1
1 1 1


 SQ2 =


 0 1 1

1 1 1
1 0 1




Figure 5.3: Example configurations 1 and 2 are equivalent with respect to connectivity when
location names are arbitrary. Since the two rows corresponding to the 2nd and 3rd shafts
are identical, only a row interchange distinguishes the SQ matrices of the configurations. To
avoid repetitions, incidence matrices are required to exist in their lowest energy state.

sq1 =

(
1 0 1
1 1 1

)
sq2 =

(
1 1 1
1 0 1

)

Figure 5.4: The lowest energy states of the sub-matrices of SQ matrices consisting of rows
corresponding to shafts with identical connectivity with respect to magazines determine
which configuration is a repeat.

The number of valid configurations with respect to system base size is shown in Table 5.1.
The number of valid configurations is typically a small fraction of the total number of possible
configurations. However, this fraction does not represent the number of configurations that
are logically correct, but are simply repeats of valid configurations.

While all valid configurations are logically valid, they are not necessarily physically realizable.
For example, in a conventional shaft, a carriage may theoretically serve four magazines (one
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Table 5.1: The number of valid configurations and percentages of total possible configurations
for various system sizes. The last three system sizes are not used in simulations and are only
intended to indicate the change in the potential configuration with increases in the number
of components.

System Base (q-s-m) Possible Configs Valid Configs Valid Fraction
1-1-1 4 1 0.25
1-1-2 8 1 0.125
1-1-3 16 1 0.0625
1-2-1 16 1 0.0625
1-2-2 64 3 0.0469
1-2-3 256 6 0.0234
1-3-1 64 1 0.0156
1-3-2 512 6 0.0117
1-3-3 4096 24 0.0059
2-1-1 8 1 0.125
2-1-2 16 1 0.0625
2-1-3 32 1 0.0313
2-2-1 64 3 0.0469
2-2-2 256 11 0.0430
2-2-3 1024 23 0.0225
2-3-1 512 6 0.0117
2-3-2 4096 57 0.0139
2-3-3 32768 270 0.0082
3-1-1 16 1 0.0625
3-1-2 32 1 0.0313
3-1-3 64 1 0.0156
3-2-1 256 6 0.0234
3-2-2 1024 22 0.0215
3-2-3 4096 46 0.0112
3-3-1 4096 24 0.0059
3-3-2 32768 241 0.0074
3-3-3 262144 1165 0.0044
4-4-4 ≈ 4.3 · 109 ? ?
5-5-5 ≈ 1.13 · 1015 ? ?
6-6-6 ≈ 4.72 · 1021 ? ?
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magazine per shaft face). A configuration with a shaft connected to five magazines on one
level is therefore unrealizable. These systems remain valid because the physical assumptions
are ignored as the constraints are self-imposed and physically unrealizable systems might be
constructed when common assumptions are disregarded and unconventional configurations
are employed. In the previous example, the constraint regarding one door per shaft face
assumes a rectangular shaft. We might equally consider a circular shaft that is capable of
serving as many magazines per level as doors can be physically constructed around the shaft.

5.2 Operational Logic

The operational logic of the elevator system is the set of ‘rules’ that are recursively applied
to evolve a system from its initial state to a final state. In terms of discrete event simulation,
the operational logic determines the evolution of states.

Cellular automata provide a simple example for illustrating the application of rule sets in
discrete event evolutions. Elevator system evolutions can be thought of as inhomogeneous
cellular automata, where cells are not identical and have different transition functions and
connectivities. A given cell in the elevator system is dependent only on systems states (often
including itself) that are relevant to it.

In the homogeneous cellular automata presented earlier, a complete set of all possible tran-
sition functions is created by computing all combinations of inputs and outputs, resulting
in kkn

rule sets. The rules for elevator systems can also be created in this manner, as long
as the size of the system, i.e. the number of states required to accurately define the sys-
tem, is known. In an inhomogeneous system in which system states reflect physical realities,
searching through all possible rule sets with various connectivities, irrespective of it being
a practical impossibility, would result in a large number of meaningless rules. For example,
the state of a door is represented explicitly by four bits describing whether it is opening,
open, closing, or closed. There is only one rule set using this representation that reflects
reality3, shown in Figure 5.5.

Figure 5.5: The only meaningful states and evolutions of the four bits representing door
states. The bits indicate whether the door is opening, open, closing, or closed.

To say a door evolves to an opening state from an opening state or that a door is closing and
opening simultaneously is an invalid physical representation. Out of the (216)2 ≈ 4.3 billion

3This rule set excludes the case of a door closing/opening midway through the opening/closing state
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possible rule sets, only one, or 2.3 · 10−8% of these provide a meaningful representation of
reality. The use of unconstrained rule sets would require a search for the meaningful results,
but with the difficulty of defining what constitutes a meaningful result, the search for valid
rule sets becomes impossible. Rather than using unconstrained rule sets, specific rule sets
are built up rather than decomposed such that the evolution of states reflects meaningful
physical changes.

This approach is describable in terms of cellular automata evolutions. Cellular automata use
local rules, where a given state is connected to a typically small fraction of the total number
of states. If the evolutions of entire system states are specified, kN rules would be required
to define a single rule set. To specify all rule sets would require (kN)kN

evolution definitions,
which equates to a large amount of information for even a moderately number of cells, N .
This approach is the programming equivalent of specifying an ‘if-then’ statement involving
all system states for all combinations of system states: “if bit 1=0 and bit 2=1 and bit 3=1
. . . and bit N=1, then bit 1=1 and bit 2=1 and bit 3=0 . . . and bit N=1”. Of course, this
is not the technique applied in typical conditional programming, which is reducible to local
rules where variables are dependent on a typically small fraction of system states. This is
analogous to homogeneous cellular automata, which use local rules with local connectivity.
Inhomogeneous cellular automata like the one used in the discrete evolutions of the elevator
system only differ in that their connectivity is distributed and varies for different system
states.

There are two categories of decision logic that are used in the elevator system simulations.
General logic is common to all elevator systems and represents the actual state changes in an
evolution. An example of this type of logic is requiring that a carriage go up if its destination
is above its current position and it is free to do so without collision. Another example is
requiring a hatch to go from an opening to open state when its cycle is complete.

Specific operational logic is not explicitly visible in a system evolution. It controls the tim-
ing of general logic or, in other words, permits the application of certain sets of general
logic. Specific logic is analogous to the control policies of commercial elevator systems.
Specific operational logic is not common to all configurations and therefore defines the op-
erational behavior of the system. The two primary operational logic parameters that relate
to the operation of carriages and hatches are the serial/parallel operation of carriages and
doors/hatches, and interlock logic.

Both the general and variations in specific operational logic originate from the baseline strike-
down operation cycle of the existing naval weapons elevator system, which is presented in
Appendix A. Although the baseline case represents an over-simplification of the actual
operation of weapons elevator system, it not only serves as a basis for operational logic,
but also in part as a means for validation of the simulation code, which is presented in
Appendix B for this simple case consisting of a single queue, shaft, and magazine with serial
carriage and hatch/door operations and the use of interlocks. Appendix B also presents
validation of the model using more complex variations.
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In order to bring a weapons elevator carriage from one level to another, several steps are
required involving the movement of the carriage in concert with the logical sequencing of
hatches and doors. In a serial system, these events are performed sequentially, with the
completion of one event serving as the trigger for the next. As a result, no carriage can move
in a shaft while a door or hatch in its ‘line of sight’ is opening or closing. Conversely, no
door or hatch associated with a shaft can open or close while the carriage is moving in that
shaft. The expression line of sight as used here describes the region within a shaft bounded
by all closed doors and hatches. If the lower ballistic hatch is open, opening, or closing, the
line of sight includes both upper and lower shafts, regardless of the position of a carriage.
If the lower ballistic hatch is closed, the line of sight is the upper shaft if the carriage is
in the upper shaft and is the lower shaft if the carriage is in the lower shaft. It is possible
to define line of sight to include magazines in addition to shafts, which has the effect of
additional safety, but more restricted operations. In a parallel system, carriage movement
and door/hatch cycling can occur simultaneously, but the timing of the operations for both
serial and parallel logic is dependent on the use of interlocks.

Interlocks are intended to isolate sections of the elevator system for damage control. Isolation
is accomplished through the proper sequencing of hatches and doors. Without interlocks,
the extent of isolation changes, depending on the timing of events and the cycling rate of
doors/hatches.

The combinations of operational logic variables, if considered binary, create distinctly dif-
ferent modes of operation and can result in different performance and behavior for a system
with identical architecture. The sequencing of doors/hatches and the use of interlocks are two
of many specific operational logic parameters that define a configuration and affect perfor-
mance and behavior. Examples of other parameters include what determines end conditions
of the transfer operation, how items are rejected from the system if they do not belong,
how resources are allocated, if carriages are fixed within a shaft or are mobile, and if local
optimization in decision making is employed. In this work, many of these logical variables
are fixed and we concentrate on the effects of serial/parallel carriages/hatches and interlocks.
Resources are modeled in this work as a limit on the number of carriages served at any space
at any given time, but the problem of allocating mobile resources to targeted spaces is not
addressed. All spaces are assumed to have non-zero resources capable of performing the
functions associated with the spaces and resource allocation is not a factor in determining
carriage destinations and item selection4.

The issue of fixed versus mobile carriages is closely related to, but not synonymous with
bi-directional and uni-directional shafts as there can be mobile carriages in a system with
bi-directional shafts, a case not considered in this work. The logic required for uni-directional
shaft systems is more complicated than for bi-directional shafts mainly because the decisions
required for item and path selection are not relevant in systems with bi-directional shafts.

The specific control logic combinations that are considered in this work account for shaft

4These assumptions are more realistic when automation is considered
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directionality, serial/parallel shaft operations, and the use of interlocks, resulting in eight
logic combinations, listed below.

1. Bi-directional, serial shafts, interlocks

2. Bi-directional, serial shafts, no interlocks

3. Bi-directional, parallel shafts, interlocks

4. Bi-directional, parallel shafts, no interlocks

5. Uni-directional, serial shafts, interlocks

6. Uni-directional, serial shafts, no interlocks

7. Uni-directional, parallel shafts, interlocks

8. Uni-directional, parallel shafts, no interlocks

5.3 Input Streams

The input stream in a weapons elevator system is defined to be all of the elements to be
transported by the system. These elements can be considered as individual items, or a
load of items with a common destination. The four major characteristics defining an input
stream are the number, type, and order of items in the queues and the arrival rate of items
throughout an evolution. In this work, queues are assumed to contain all items at the start
of an evolution and the inter-arrival rate of items is zero.

The number of items involved in a typical input stream in an actual strike-down scenario
is fairly large. As a result, the possible permutations of items within a single queue is also
quite large, following n! for n distinct items. Even for a small number of items, the number
of permutations of distinct items can be too large to consider practically. With a dozen
distinct items, there are already nearly 500 million possible input streams for one queue.
The addition of queues increases the number of possible input streams as the items are
distributed between queues and the orders of these distributions are permuted.

When two queues are considered, the first queue holds v1 items, ranging from 0 to all n
items, which can be arranged in v1! ways. For v1 distinct items, there are P n

v1
distinct sets,

so that the number of distinct item sets and arrangements, R1, for v1 items in the first queue
is described by Equation 5.11

R1 = P n
v1

v1! (5.11)
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The second queue holds v2 items, which is the difference between the total number of items
and those held in the first queue (v2 = n − v1). There is only one subset of these items,
P n−v1

v2
= P v2

v2
= 1, and the total number of possible orders for the second queue, denoted by

R2, is given in Equation 5.12.

R2 = v2! (5.12)

The total number of possible input streams, RT , is the combination of all variations of
the first and second queues, described by the product of Equations 5.11 and 5.12 as in
Equation 5.13.

RT = P n
v1

v1!v2! = P n
v1

v1!(n − v1)! (5.13)

For more than two queues, a given queue k with the exception of the ‘last’ queue, holds

from 0 to n −∑k−1
j=1 vj items, of which there are P

n−
∑k−1

j=1
vj

vj distinct subsets. The number of
distinct arrangements for q > 2 is presented in Equation 5.14.

RT =
n∑

v1=0

P n
v1

v1!


n−v1∑

v1=0

P n−v1
v2

v2!


n−v1−v2∑

v3=0

P n−v1−v2
v3=0 v3! · · ·




n−
∑k−1

j=1
vk∑

vk

P
n−
∑k−1

j=1
vk

vk vk! · · ·




n−
∑q−3

j=1
vj∑

vq−2

P
n−
∑q−3

j=1
vj

vq−2 vq−2!




n−
∑q−2

j=1
vj∑

vq−1

P
n−
∑q−2

j=1
vj

vq−1 vq−1!


n −

q−1∑
k=1

vk


!




 · · ·


 · · ·




 (5.14)

The apparent size of the possible arrangements of input streams is somewhat misleading.
While there exist a large variety of types of ordnance stored on an aircraft carrier, each
item is ordinarily not distinct as multiple items of the same type are typically found. The
order of these identical items is therefore not important, resulting in a significant reduction
of the total number of possible input streams. Additionally, ordnance of the same type is
commonly stored together and is often placed in the same queue. Compatibility between
certain types of ordnance is another factor that results in grouping of identical items in
queues. These constraints result in the ability to make generalized statements about the
contents or arrangements of queues, reducing the total number of possible arrangements of
items in queues.
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The arrangement of items within the queues during a strike-down operation is often in-
fluenced by the initial state of the magazines, which are rarely empty or loaded identically.
While the state of the magazines can impose constraints on the initial contents of the queues,
mainly because of compatability constraints, it also increases the total number of initial con-
ditions of the system, depending on the number and type of items stored, the compatability
rules, and the number and types of items in the queues.

The ordering of items assumes only one item is available at a time and items are treated
serially. This assumption significantly increases the design space of the input streams and is
associated with the factorial terms in Equation 5.14. The factorial terms disappear when the
queues are assumed to be parallel - that a carriage has access to all items in a queue. The
assumption of parallel queues is not unrealistic if a queue is composed of a limited number
of item types. A carriage may not be able to access all items simultaneously, but as long as
it can access one item of each type, the queue is effectively parallel. In the parallel queue,
items/destinations are selected by the carriage based on some decision logic intended, but
not guaranteed, to minimize total operation time. The decision logic assumed in this work is
based on the availability of destinations and the current state of the queues and magazines.
For configurations with mobile carriages, shaft availability is also considered.

The order that items are selected in an evolution using a parallel queue represents only one
case out of the large input stream design space. However, it does define a near upper bound
on performance for the given configuration. How near the resulting performance is to the
actual upper bound is dependent on the decision logic (heuristic) used, but is arguably better
than establishing a bound based on a small random selection of input streams with a serial
queue and is significantly lest costly than fully characterizing performance with one set of
items in one configuration based on testing all possible input streams, which is a practical
impossibility in most cases.

The validation of a heuristic applied in a parallel queue corresponding to near optimal
performance for a set of items is based on determining the effects of perturbations of the ideal
queue in systems using serial queues. The ideal queue is defined as the order in which items
are selected in a parallel queue. If items are ordered as in the ideal queue in a system using
serial queues, the resulting system performance is identical to the performance of a system
with a parallel queue with the same set of items. The concept of the ideal queue therefore
makes it possible to emulate a parallel queue with its associated heuristic in a serial queue
for a given set of items. This concept also yields performance corresponding to the heuristic
which is arguably better than random selection of one of the n! item arrangements. By
perturbing the ideal queue at various percentages of random re-orderings, the sensitivity of
performance to item order can be determined in simulations using serial queues with identical
item sets. This analysis also provides an indication of the robustness of the heuristic.

The parallel queue concept that eliminates the factorial term in Equation 5.14 does not
affect the combination terms and their product, which alone result in a large set of input
streams. The combination terms arise from having distinct queues which can hold all varieties
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of numbers and types of items from a common set. If all queues are assumed identical
with respect to the number and type of items, the design space of input streams decreases
significantly. Using this assumption, input streams are generated based on the relative ratios
of item types. The values of the ratios are dependent on the number of item types, which is
equal to the number of destinations. Ratios are systematically varied in 20% increments with
the constraint that the percentages of all item types must sum to 100%. The total number
of items in any queue for all configurations is assumed constant and the actual number of
items of any type is the nearest integer value to the product of the corresponding percentage
and the total number of items per queue.

For a discontinuous performance landscape where a single change in the make-up of the
input stream has the potential to significantly affect performance, it would be necessary to
test all item ratios to fully characterize a configuration’s performance with a given set of
items and identical queues. It is assumed however, that the limited set of ratios created
with 20% increments is capable of defining the general bounds of performance/behavior for
a given configuration with a practical consideration to computability. Additionally, evidence
in cellular automata systems suggests that behavior is often inherent for a rule set and can
be characterized by a limited number of evolutions [2]. In systems with greater numbers
of magazines, the set of possible distributions of item types increases as does the set of
valid physical configurations. It is the product of these two sets that determines the total
configuration design space and the limitations of the problem exploration.

With a fixed number of items allowed in a queue, it is possible that different queues in the
same configuration initially contain different numbers of items and that different configura-
tions have a different total number of items in their input streams. These differences are
attributed to the incomplete connectivity between queues and magazines in some systems
and the item rejection logic. If an item bound for a certain destination is located in a queue
with no access to that destination, it is considered non-system inventory and is rejected.
This rejection occurs in any physical configuration with any non-zero QM incidence matrix
entry. It is possible to consider logic to relocate these items to appropriate queues, keeping
the total number of items in all configurations with the same number of magazines identical.
However, redistribution ignores the physical limits of queue capacity and the rejection of
items indicates a lower potential performance.

5.4 Summary of Assumptions

The common motives for the number of assumptions used in the simulation model are to
simplify the search space while offering complete characterization of the ranges of behavior
and performance. These assumptions occur with respect to physical attributes, operational
logic, and input streams.

In the description of physical arrangements, only the connectivity between spaces is consid-
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ered. Actual distances between spaces are not specified and the vertical distance between
each queue and magazine is identical, reducing the design space to a tractable size. While
this simplification means the model may not accurately reflect the performance and be-
havior of the actual naval weapons elevator system, we must recall that our goal is not to
evaluate the performance of the actual system towards its optimization. Our objective is
the identification of the causes of the relationships between behavior and performance and
robustness, which is facilitated by stripping configurations to their essential architectures.
Cycle times are fixed and deterministic for the same reasons. While making the model more
accurate increases the accuracy of its predictions of the real system, variability may veil the
fundamental causes of useful correlations.

The operational logic used in the simulation model represents a small set out of a large design
space intended to reflect the basic operation of the actual current weapons elevator system,
recognizing that carriages, not a central controller (the ordnance handling officer), dictate the
operation and behavior of the system. The differences that result from automatic, distributed
control may result in faults in system operation - we will see later that evolutions can “freeze”
and that carriages can be “tricked” into entering empty queues. However, our objective is
not to design or search for the optimal rules or configuration. We might therefore consider
our approach as not using the naval weapons elevator for characterization of relationships,
but only as the basis for creating a system we can use for searching for correlations between
behavior and performance or robustness. That is, we need not use the weapons elevator
system specifically for this task. It is simply a means to an end and any similar system could
also serve as the basis for our analysis.

In another attempt to limit the design space, in this case from an infinite space, we assume
a set of queues based on predetermined ratios of item types. Additionally, all queues contain
identical item distributions at the start of a given simulation. In an actual system, we would
not expect identical item distributions in queues, but rather distributions suited to the
specific connectivities of individual queues. However, we are interested not in finding rules
for distributing items that result in efficient system operation, but complete characterization
of how the elevator systems described respond in variable environments, such as a range of
item distributions, in order to relate behavior and performance to robustness or adaptability.
By varying item ratios systematically however, each configuration is bound to experience
queue distributions that both are and are not suited to its specific connectivity, which could
be thought of as varying the level of perturbation in input streams from ideal sets. Identical
queues of systematically varied item distributions are therefore intended to offer complete
characterizations of the range of behavior and performance while limiting the set of required
simulations to tractable levels.
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5.5 Encoding

With a large configuration design space, an encoding process is used to systematically define
and identify alternatives. Encoding enables the expression of a configuration in the compact
form of a decimal number rather than a cumbersome, explicit description. This encod-
ing process is analogous to the encoding of evolution rules in cellular automata, described
previously.

A configuration code is based on the system size, or base value, described in Section 5.1. The
values in the base description represent, in order, the number of queues, number of shafts,
and number of magazines. A 3-1-2 base system for example, therefore consists of 3 queues,
1 shaft, and 2 magazines. The total number of bits, b, required to describe the physical
configuration in a particular base is equal to the sum of the product of the number of queues
and shafts and the product of the number of magazines and shafts, which is equal to the
total number of entries in the SQ and SM incidence matrices. This relationship is expressed
in Equation 5.15. The maximum decimal value for b bits is 2b − 1, the maximum number of
distinct configurations corresponding to a given base.

b = s · q + s · m = s(q + m) (5.15)

Valid configurations are determined by systematically creating and testing all configurations
corresponding to codes 0 to 2b − 1. Configurations are constructed from a decimal value
by first converting the decimal value to a binary digit sequence, buffered if necessary with
zeros in higher significant bit locations to create a sequence b digits long. As an example,
consider code 119 for base 3-2-1. The total number of bits for this base is 2(3 + 1) = 8. The
binary equivalent of code 119 with 8 bits is 01110111. To derive the SQ and SM matrices,
the digit sequence is partitioned into two bytes, with lengths equal to the number of entries
in the SQ and SM matrices. The first byte is s · q bits long and is comprised of the most
significant bits of the total binary sequence. The second byte, s ·m bits long, consists of the
least significant bits. These bytes are themselves partitioned into s equal length bits. This
equates to s, q-length bytes from the first byte and s, m-length bytes from the second byte.
In the example system, the partitioning process is illustrated in Figure 5.6.

01110111 → (011101)(11) 011101 → (011)(101) 11 → (1)(1)
(a) (b) (c)

Figure 5.6: The partitioning of the binary digit sequence representing code 119 into SQ and
SM bytes (a). These bytes are in turn partitioned to form bytes corresponding to rows in
the SQ matrix, (b), and SM matrix, (c).

The SQ and SM matrices are built up from these partitioned bytes. In each case, the first byte
corresponds to the first row in the matrix with subsequent bytes corresponding to following
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rows. The assembly of the SQ and SM matrices for the example system is illustrated in
Figure 5.7.

(011)(101) →
(

0 1 1
1 0 1

)
= SQ

(1)(1) →
(

1
1

)
= SM

Figure 5.7: The assembly of the SQ and SM matrices from the partitioned bytes.

The encoding process is simply the reverse of the decoding process. In the encoding process
however, the system base need not be explicitly stated since the system size is implicitly
known from the dimensions of the incidence matrices. For all coded configuration descrip-
tions, the code number and the base system are provided along with a description of the
operational logic used in a binary format, letting serial shaft operations equal 0, parallel
shaft operations equal 1, the lack of interlocks equal 0, the use of interlocks equal 1. The dis-
tribution of item types may also be included if a description of the input stream is required.
A full description of the example system might therefore appear as in Figure 5.8, where the
0-1 indicates parallel carriage and door/hatch operations and the use of interlocks.

119 3-2-1 0-1 (100)

Figure 5.8: The coded description of system 119, consisting of 3 queues, 2 shafts, and a
single magazine. The system has parallel shaft operations and uses interlocks. 100% of the
items in the queue are bound for the single magazine.

5.6 Visualization Techniques

The evolution of a weapons elevator configuration with a given input stream reveals both
the performance (in terms of metrics such as total cycle time, throughput, and elevator
utilization) and the behavior of the system. For our temporally-based model, throughput is
defined as the ratio of the number of items transported at the end of an evolution to the total
length (time) of the evolution, where cycle times are defined in Appendix A. Utilization
of a single carriage is defined as the fraction of the evolution length that the carriage is
moving while transporting in a loaded condition. While performance measures are easily
expressed as numbers, a numerical representation does not necessarily fully characterize the
behavior of the evolution and provide a means for involving subjective human perceptive
abilities. Since many of the evolutions are not simply repetitive, they have relatively low
compression and conceptually high algorithmic complexity so that a full representation of the
evolution requires explicit description of all system states. For evolutions with sufficiently
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long evolutions, explicit state representations, especially in terms of verbal descriptions, is a
practical impossibility, requiring the use of more compact visual representations.

There are several visualization techniques that can be used to present evolutions. We primar-
ily will use evolution histories, with respect to both temporal and logical evolution lengths,
of both system states and the states of individual carriages. However, for completeness, we
also discuss cellular evolutions and state evolution trajectories. These techniques are not
used extensively, although they have unique characteristics that may be advantageous for
particular conditions.

5.6.1 Cellular Representations

Cellular evolution representations are analogous to the cellular automata evolutions pre-
sented earlier. Like cellular automata evolutions, elevator system attributes are represented
by colored cells. Unlike cellular automata, the elevator system is inhomogeneous, with cells
representing distinct system attributes. A row in a cellular representation represents the
system state at a given instant and a column of cells presents the history of a single system
attribute, with time advancing down the page. The width of the evolution is proportional
to the number of attributes required to completely describe the system and increases with
larger system sizes. For any single evolution, the width can also vary, depending on the level
of detail desired in the system description. As stated in Section 5.2, if all system attributes
are included, no two system states will ever be identical and no strictly defined pattern will
ever emerge. For consistency, all cellular representations are composed of only the attributes
listed in Table 5.2 along with a description of their possible states.

Many of the system attributes are not mutually exclusive and therefore require declaration of
all states. For example, if a hatch is not open, it does not imply that the hatch is necessarily
closed. The hatch could be opening, closing, or closed. This explains why several apparently
‘opposite’ states are listed in Table 5.2.

All of the system states are binary variables and are represented by a colored cell (black=true,
white=false). For carriage direction, a black cell indicates up and a black cell indicates down.
Destination types are coded so that a queue equals a white cell and a magazine equals a black
cell. Carriage locations are described by one of h states, where h indicates the maximum
number of levels in the carrier that encompass all queues and magazines. Colors indicating
levels are scaled so that a white cell represents a carriage located at the main deck and
a black cell indicates a carriage at the lowest possible level. Without fully describing the
positions of attributes, the configuration, or the input stream, the cellular representation
provides an indication of the behavior of the evolution. Repeated patterns in the cellular
representation provide evidence of simplicity while the inability to shorten the description
of the evolution indicates complex or chaotic behavior.

While the cellular representations represent a powerful means for visualizing an evolution
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Table 5.2: System attributes included in cellular representation visualization techniques.

Attribute Possible States
Carriage location integer level
Carriage movement true/false
Destination type queue/magazine
Direction up/down
Carriage loading true/false
Carriage unloading true/false
Upper ballistic hatch opening true/false
Upper ballistic hatch open true/false
Upper ballistic hatch closing true/false
Upper ballistic hatch closed true/false
Lower ballistic hatch opening true/false
Lower ballistic hatch open true/false
Lower ballistic hatch closing true/false
Lower ballistic hatch closed true/false
Magazine door opening true/false
Magazine door open true/false
Magazine door closing true/false
Magazine door hatch closed true/false
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and its behavior, it is not particularly compact and is physically cumbersome for longer
evolutions, even for compressed cellular representations. Evolution trajectories address this
space issue while still illustrating behavior patterns (or lack thereof).

5.6.2 Evolution Trajectories

With b binary bits defining the state of an elevator system evolution, there are 2b decimal
values that define all possible system states. Conversion of the evolution of binary states to
encoded decimal form yields a one-dimensional (temporal) vector describing the trajectory
of system states. This trajectory is visualized by constructing a list of coordinates of the
form (st−1, st) for (t|1 ≤ t ≤ tf ) where st is the decimal representation of the state of the
system at time step t and st=0 is the initial state of the system. An example trajectory plot
is presented in Figure 5.9(a) for an evolution corresponding to a 1-1-1 base conventional
system for 100 time steps. Since there is only one item type, one source of items, and one
carriage, the evolution is repetitive and will follow the same evolution trajectory regardless
of the number of items or length of the evolution.
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Figure 5.9: Example evolution trajectories for the simple 1-1-1 size system. There are only
four states entered by the single carriage. For the evolution trajectory using the temporal
evolution in (a), repeated states are encountered, so all edges are parallel. Each step in the
logical trajectory in (b) corresponds to a state change.

The edges of the trajectory are all parallel in this evolution, (except from the initial state)
because it corresponds to the states of the full evolution which may contain many state
repetitions (st−1 = st). These repetitions are attributable to the duration of timers. The
removal of these additional nodes corresponds to the trajectory of the compressed evolution,
which shows the logical rather than temporal progression of states and requires that at least
one system attribute changes with every evolution step such that st−1 	= st. The compressed
evolution trajectory of the same system evolved in Figure 5.9(a) is shown in Figure 5.9(b).
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5.6.3 Evolution Histories

Evolution trajectories represent an extremely compact graphical representation. All infor-
mation and patterns are presented simultaneously in one space, which is particularly advan-
tageous for long evolutions with many patterns. However, the price of compactness is the
loss of the temporal or logical sequence of states. To retain the information associated with
the sequencing of states, evolution histories are used. These histories are similar to cellular
evolutions, except states are represented as encoded values like those used for trajectories
rather than graphic equivalents of binary values. Because the evolutions considered in this
work are sufficiently short and the number of states is sufficiently small, we are able to use
evolution histories and retain the sequence and timing of state changes, which is useful for
determining the reasons for pattern changes and the complexity of patterns.

As with evolution trajectories, evolution histories can be presented with respect to both
the temporal evolution length and the logical evolution length. The compressed evolution
history, which uses the logical evolution length, removes repeated runs of identical states,
illustrating only the logical sequence of states. The full and compressed evolution histories
are both used, based on which form is suitable to the complexity measure being discussed.
For example, the logical evolution history is typically used in analyses of evolutions with
respect to logical complexity, which is a normalization of the number of unique states by the
logical evolution length.

Evolution histories can be presented in terms of both system states and individual carriage
states. When using system states, global, system level patterns are apparent. However,
because of the representation of a state with an encoded value, carriages that correspond
to bits with more significance in the binary state description tend to dominate a pattern
and pattern changes in less significant carriages are difficult to visualize. A solution to this
inequality is to present the individual carriage histories, either independently or superposed,
so that each corresponding bit in each bit stream describing each carriage has the same sig-
nificance. While global patterns may be more difficult to identify, the patterns of individual
carriages are apparent.

The number of possible states that define valid history or trajectory points is dependent
on the system size as well as the arbitrary level of detail used to describe the system. The
finest detail considers all system states, including timers and item locations and no states
are ever identical. As the detail becomes coarser, not all information is present and repeated
states are possible. The differences in detail affect the qualitative complexity of the evolution
trajectories and the level of detail must be selected to correspond to the scale of interest.

In this work, the level of detail is fairly coarse and only attributes relevant to defining
carriage states are considered. In conventional systems, the carriage attributes used to
define a carriage state are presented in Table 5.3 along with the number of bits required to
describe each attribute.

These attributes are used to describe a carriage in five possible carriage states, listed in
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Table 5.3: The carriage attributes used to define evolution states in conventional elevator
systems

Attribute Number of Bits
Global destination type 1

Global destination number Max(Ceiling(log2q), Ceiling(log2m))
Current location type 2 (0=queue, 1=magazine, 2=shaft)

Current location number Max(Ceiling(log2q), Ceiling(log2m))
Loading 1

Unloading 1
Up direction 1

Down direction 1
Magazine reservation number Ceiling(log2m)

Queue reservation number Ceiling(log2q)
Carriage unsure of queue 1

Table 5.4.

Table 5.4: The five carriage states used in conventional elevator systems.

State Number State
1 Carriage loading
2 Moving down to destination magazine
3 Carriage unloading
4 Moving up with a known destination
5 Moving up without a known destination

In conventional elevator systems, shaft selection by carriages is not a factor in the item
selection or destination selection process as carriages are fixed in shafts and carriage and
shaft designations are synonymous. In the selection and reservation of queues that occurs
after the unloading process, carriages may have multiple options. If all candidate queues
are reserved or busy, a carriage remains undecided regarding a destination queue. Rather
than remain idle, the carriage moves to the main deck while continually searching for an
available queue as the same shaft is always used regardless of the queue selection. This state
is regarded as sufficiently distinct from moving up with a queue reserved as it affects the
validity of the combinations of carriage states. State 5 is therefore required in addition to
state 4.

Each carriage state is defined by a unique combination of some carriage attributes in Ta-
ble 5.4. Combinations of the possible values of carriage attributes determines the possible
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variations of each state. Combinations of these state variations in turn define system states,
the validity of which is based upon the physical limitations and constraints imposed on
the system. The attribute combinations defining each of the five states are presented in
Figure 5.10.
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State 1 1xx00xx1010xx000
State 2 1xx10000001xx000
State 3 1xx01xx010100000
State 4 0xx1000001000xx0
State 5 0xx1000001000001

Figure 5.10: The five possible state descriptors and bit locations for a conventional system.
The x’s indicate variable bits that can be filled with binary values corresponding to possible
attribute values. The length of x’s are not fixed and depend on the system size. Possible
state variations are found by finding valid combinations of possible bytes indicates by x’s.

The x’s indicate variable bits that specify the global destination numbers, current location
numbers, magazine reservation numbers, and queue reservation numbers and provide more
detail to the state of the carriage and determine the validity of carriage state combinations.
The values of the variable bytes depend on the system size.

The combinations of variable bits within a single carriage state and the combinations of
several carriage states defining a system state are tested to verify their physical and logical
validity. The number of valid rules is dependent on the system size and physical limitations
of the system, such as the maximum occupancy limits and resource availabilities.

The technique for visualizing the evolution histories in systems with mobile carriages and
uni-directional shafts (virtual conveyor systems) is identical to the technique used for con-
ventional systems. However, the differences between the systems result in differences in the
attributes used to define carriage states and in the number of carriage states.

In virtual conveyor systems, a carriage must wait to select an available queue before moving
up from a magazine since the selection of a queue depends on the selection of an appropri-
ate shaft. The ‘CarriageUnsureOfQueue’ bit in conventional systems seen in Table 5.3 is
therefore not required in virtual conveyor systems.

Rather than using explicit definition of directions, direction is implied based on the type of
shaft (up/down) the carriage is in, which is associated with the load. The virtual conveyor
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systems assume that a carriage travels in a down-shaft while loaded and up in a shaft when
unloaded. Virtual conveyors therefore use a bit describing if the carriage is loaded and
eliminate the direction bits used in conventional system state descriptions. The resulting
attributes used to describe carriage states in virtual conveyors are listed in Table 5.5 along
with the number of bits required to describe each attribute.

Table 5.5: The carriage attributes used to define evolution states in virtual conveyor elevator
systems.

Attribute Number of Bits
Global destination type 1

Global destination number Max(Ceiling(log2q), Ceiling(log2m))
Current location type 2 (0=queue, 1=magazine,

2=upper shaft, 3=lower shaft)
Current location number Max(Ceiling(log2q), Ceiling(log2m))

Loading 1
Unloading 1

Magazine reservation number Ceiling(log2m)
Queue reservation number Ceiling(log2q)

Carriage loaded 1

With mobile carriages, it is possible to have multiple carriages in a single shaft, magazine, or
queue. To account for the physical constraints associated with having multiple carriages in
the same location, virtual conveyors are divided into zones, each with a maximum occupancy
limit. The zones in a virtual conveyor are listed along with a description of their boundaries
or the state of the carriages within them in Table 5.6.

The use of zones results in an increase in the level of detail of state representations and the
number of possible carriage states. In a virtual conveyor system, there are eleven carriage
states, described in Table 5.7.

The qualitative nature of an evolution’s behavior is captured from an evolution history
plot based on the system patterns, or the combined patterns of indivdual carriages. In the
simplest evolutions, the same states are visited and a single repetitive pattern is present. As
the complexity of the evolutions increases, the number of distinct patterns increases and the
system shifts between multiple ‘steady-states’. Highly complex or chaotic trajectories lose
the cyclic patterns and most points correspond to distinct system states. The number of
states visited is larger and the ratio of states visited to the total number of possible states
is larger than a simple evolution in a system with an equivalent number of valid states.

The qualitative descriptions of evolution histories are loosely related to the concept of algo-
rithmic complexity. In a simple evolution, it is possible to describe the patterns that emerge
in a compressed form, while for the most complex trajectories, a description of the pattern is
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Table 5.6: Zone definitions for virtual conveyors. Zones are defined by physical boundaries
or the state of carriages within them.

Queue Contains carriage loading or waiting to load.
Queue to Shaft All carriages are loaded. Bounded by the upper

ballistic hatch of the destination shaft.
Upper Shaft From the upper to lower ballistic hatch.
Lower Shaft From the lower ballistic hatch to all magazine

doors in that lower shaft.
Shaft to Magazine Loaded carriages moving from the magazine door

connected to the down shaft to the magazine
unloading area.

Magazine Carriage are unloading or waiting to unload.
Magazine to Shaft From the magazine unloading area to the selected

up shaft door. All carriages are unloaded and
have selected their queue and shaft.

Table 5.7: The eleven possible carriage states used in a virtual conveyor elevator system.

State Number State
1 Carriage loading
2 Moving from queue to shaft
3 Moving down in upper shaft
4 Moving down in lower shaft
5 Moving to magazine

(includes entering magazine from shaft)
6 Unloading
7 Finished unloading and

unsure of destination
8 moving from magazine to shaft

with known destination queue
9 Moving up in lower shaft

10 Moving up in upper shaft
11 Moving to queue

(includes entering queue from shaft)
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incompressible and explicit representation is required to describe the pattern without losing
information. Of course, the evolution history plots are intended as a visualization technique
only and rely on human perceptive abilities. Their interpretation is therefore subjective and
provide no quantitative measure of complexity by themselves. However, the same tools used
in their construction can be used to create objective, quantitative measures of the complexity
of the evolutions.



Chapter 6

Measures of Complexity for Weapons
Elevator Simulations

The problems with complexity measures discussed in Chapter 3 are that they are often ab-
stract and difficult, if not impossible, to implement. For instance, the concept of hierarchical
complexity has no direct analog in elevator systems, with distributed control.

Algorithmic complexity has a great potential for application towards quantifying behavior
in elevator systems. The algorithm governing the operation of the elevator system, the
simulation code, is not the measure of the complexity as there is no means for proving
the simulation code is the shortest form and, more importantly, the complexities of all
simulations are equivalent if the same code is used as the basis for measure. However,
algorithmic complexity is applicable to the evolutions, and provides the basis for several
measures used to describe the compressibility of evolutions and algorithmic complexity is
used throughout analyses of these measures as an indication of their validity.

Like the complexity definitions in Chapter 3, both static and dynamic measures are used
for the elevator systems. Static measures are made a priori to any evolution and, lacking
information on the actual evolution, describe the potential complexity of the system. The
measures used to quantify the complexity of elevator systems that are potential measures
are those describing the total number of possible valid states the system can enter, the
physical connectivity, and the logical connectivity of the system. Dynamic measures are
based on explicit evolutions and describe not potential, but “as-is” complexity. Because they
are based on actual evolutions, dynamic measures are intrinsically more accurate, but the
accuracy comes with a cost. In this case, the cost is the time/computational cost associated
with evolving candidate systems. As described in Chapter 5, the complete design space of
elevator systems is quite large and is cumbersome even for the limited space considered in
this work. The use of static versus dynamic measures and relative accuracy is therefore
of great significance. The static and dynamic measures used in this work are presented in
Table 6.1.

69
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6.1 Total Number of Possible States

The counting of the total number of possible states as a measure of complexity is based on
the counting of states as an estimate of complexity used by Bar-Yam [3] and discussed in
Chapter 3. When used as a static measure, all potential system states are counted, rather
than the number of states a system exists in during an evolution.

Valid states are determined and enumerated following the same approach described in Sec-
tion 5.6.2 for establishing the coordinates of evolution trajectories for visualization of quali-
tative evolution behavior. As with evolution trajectories, the total number of possible states
is dependent on the scale of the system representation and the desired level of detail. As
mentioned in Section 5.6.2, the level of detail used is relatively coarse, with only 5 distinct
carriage states for conventional systems and 11 distinct carriage states for virtual conveyors.
To describe each carriage state, approximately one dozen carriage attributes are required
per carriage.

Although the resolution of states affects the absolute number of valid states, it must be
remembered that the measures of complexity are being used in the context of their relation-
ships with system performance. Therefore, the level of detail used is not overly critical as
the relative complexity, rather than the absolute complexity is of importance and, as long
as the level of detail is constant, comparison is possible.

The use of the total number of possible states follows an intuitive notion of complexity.
With more physical spaces (queues, shafts, and magazines), the number of possible states
increases. With a greater number of valid states, the evolution has a greater potential for
exploration, affecting the corresponding dynamic measures of complexity. The addition of
carriages has a more significant impact on the number of states than the number of physical
spaces, as the number of possible systems states is related to the possible individual carriage
states as in Equation 6.1, where I is the number of possible states for an individual carriage
and n is the number of carriages. The actual number of system states is always less than
or equal to the number of combinations of carriage states because of the invalidity of some
combinations.

Table 6.1: Static and dynamic measures of complexity specific to elevator systems

Static Dynamic
Total Number of Possible States Number of Unique States Used
Average Physical Connectivity Fraction of States Used
Fraction of Potential Connectivity Logical Complexity
Average Logical Connectivity State Complexity

Compressed State Complexity
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Figure 6.1: An example of two completely different architectures with equivalent average
physical connectivity. Since the numbers of connections are identical, both systems have
the same average connectivity, but the distribution of those connections are significantly
different.

Total V alid States ≤ In (6.1)

6.2 Average Physical Connectivity

The average physical connectivity is loosely associated with the λ parameter, described in
another format with connectivity by Kauffman [30]. Kauffman used the λ parameter as a
measure analogous to the thermodynamic properties used to describe the state of a gas, like
temperature or pressure. Kauffman concludes that, for systems with low connectivity with
one or two connections, behavior can only be trivial or simple. For systems with complete
connectivity, behavior is almost always chaotic except for the simplest of initial conditions.
In between, complex behavior is found with the proper tuning of the λ parameter and the
system connectivity.

Average physical connectivity is also related to the complexity of simplices, described in
Section 3.4. The connectivity does not describe the existence and interrelations between
sub-networks, but does provide an indication of system architecture.

Physical connectivity is calculated from the SM and SQ incidence matrices and measures
the accessibility between spaces. Because different spaces typically access different numbers
of spaces, the most descriptive single measure of the system connectivity is the average con-
nectivity of all spaces. The average does not give a complete description of the accessibility
of the entire system, and completely different architectures may have identical average phys-
ical connectivities, as for the example systems in Figure 6.1. However, it does provide an
indication of how spaces are connected and the potential behavior of a system.

The expression used to calculate average physical connectivity is presented in Equation 6.2.
The total number of physical connections considers queues, magazines and shafts. The
connection between a queue and shaft, for instance, indicates a connection for the shaft and
a connection for the queue. This apparent double counting of connections requires the total
number of incidences in SQ and SM be increased by a factor of two. However, the total
number of connections is averaged over the total number of spaces, s + q + m.
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Average Physical Connectivity =

2
(∑s

i=1

∑q
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∑s
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k=1 SMik

)
s + q + m

=

2
∑s

i=1

(∑q
j=1 SQij +

∑m
k=1 SMik

)
s + q + m

(6.2)

Average physical connectivity is an absolute measure and is not normalized to account for
system size. Increases in system size therefore enable greater potential average connectivity,
which follows intuition. Access to a greater number of spaces results in a greater number
of destination options, which results in a greater number of valid system states. However,
because the physical connectivity is a potential measure, larger connectivity and valid state
spaces do not necessarily equate to greater complexity and the actual states visited in an
evolution are ultimately dependent on the dynamics of the system.

6.3 Fraction of Potential Physical Connectivity

The fraction of potential connectivity represents the normalization of the average physical
connectivity with respect to the maximum average physical connectivity for a system with
the same number of physical spaces. The expression for the maximum average physical con-
nectivity is given in Equation 6.3. The expression for the fraction of physical connectivity is
the ratio of the average physical connectivity to the maximum average physical connectivity
and is shown in Equation 6.4. Since both the actual and maximum average physical con-
nectivities are averaged over the same number of queues, shafts, and magazines, the fraction
of potential connectivity is equivalent to the ratio of the total number of connections in the
system to the maximum number of connections in the system.

Maximum Average Physical Connectivity =
2 (sq + sm)

s + q + m
(6.3)

Fraction of Potential Connectivity =

∑s
i=1

(∑q
j=1 SQij +

∑m
k=1 SMik

)
sq + sm

(6.4)

The normalization of the average physical connectivity runs counter to intuition regarding
larger systems’ capability for supporting greater complexity. However, normalization is useful
for comparisons of potential complexity in identically sized systems. If a system size is fixed,
as it might be in an aircraft carrier with little to no flexibility for physical rearrangements,
the fraction of potential physical connectivity indicates how associations may affect behavior.
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6.4 Average Logical Connectivity

In a cellular automata network, physical connectivity is evident in the structure of the
network, where each cell is associated with 2r + 1 neighbors. The connectivity can also
be thought of in terms of the evolution rules, which describe the logical connectivity of the
system - how many bits are required to evolve a given bit representing a system attribute. In
homogeneous cellular automata, where system “attributes” are identical and follow the same
evolution rules, the physical and logical connectivities are synonymous and are defined by
the system neighborhoods. However, in inhomogeneous systems like the weapons elevator,
logical connectivity is distinct from physical connectivity.

Logical connectivity describes the amount of information comprising an evolution rule as-
sociated with a system attribute. A simple example of a description of logical connectivity
is the neighborhood definition in cellular automata. In the elementary cellular automata
described in Section 2.2, each cell bases its evolution on a neighborhood consisting of 2r + 1
cells. Each cell requires 2r + 1 bits of information describing the states of the cells in its
neighborhood to fully determine its evolved state. Elementary cellular automata represent
a somewhat trivial example of logical connectivity, as all cells are identical and share the
same logical connectivity. In an inhomogeneous system, like the elevator system, where the
system attributes can be thought of as analogous to the cells of a cellular automata network,
the amount of information required to evolve system attributes is variable and connections
to a single attribute may be distributed over a wide range of the attribute “network”, not
restricted to a local neighborhood.

Logical connectivity is determined by searching through the simulation code and identifying
the number of variables that are involved in the decision logic for each attribute. For example,
consider the Mathematica code given in Figure 6.2 from a conventional system that checks
whether upper ballistic hatches should open.

Three conditions must be met for an upper ballistic hatch to start opening when the oper-
ational logic specifies serial shaft operations with the use of interlocks (OLV[[serial]]=1

and OLV[[interlocks]]=1). A hatch will start opening if the carriage within the shaft
has requested an open hatch, the carriage is stopped, and the magazine doors above the lower
ballistic hatch as well as the lower ballistic hatch itself are closed. To determine if the carriage
is stopped, one bit each in the ‘CarriageUpMovementVector’ and ‘CarriageDown-

MovementVector’ are queried. One bit corresponding to the shaft in question is required
to determine if the lower ballistic hatch is closed and the states of m magazine doors are
examined to identify whether the doors of those magazines that access the upper shaft are
closed. Another single bit from the ‘CarriageWantingUpperBallisticHatchOpen-

Vector’ is required to indicate whether an request to open the hatch has been made. The
required information is therefore 4 + m bits/attributes to determine whether an upper bal-
listic hatch in a single shaft begins to open. When the upper ballistic hatch begins to open,
four attributes are affected: three bits describing the state of the upper ballistic hatch and
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CheckForUpperBallisticHatchToStartOpening:=

Scan[

Module[{carriageID},carriageID=#

If[(IsUpperBallisticHatchClosed[carriageID]∪
IsUpperBallisticHatchClosing[carriageID])∩
Switch[OLV[[serial]],

0,True,

1,¬IsCarriageMoving[carriageID]]∩
Switch[OLV[[interlocks]],

0,True,

1,(IsEveryMagazineInUpperShaftClosed[carriageID]∩
IsLowerBallisticHatchClosed[carriageID])],

UpperBallisticHatchOpeningVector[[#]]=1;

UpperBallisticHatchClosedVector[[#]]=0;

UpperBallisticHatchClosingVector[[#]]=0;

UpperBallisticHatchOpeningTimer[[#]]=

TimeToOpenUpperBallisticHatch-

UpperBallisticHatchClosingTimer[[#]];]]&,

Union[Complement[

CarriageWantingUpperBallisticHatchOpenVector,{{}}]]]

Figure 6.2: Example code for checking when to open an upper ballistic hatch to illustrate log-
ical connectivity. The attributes that are changed in a section of code are logically connected
to the attributes in the conditional statements.

the timer indicating the cycle time of the upper ballistic hatch. Each of these attributes is
therefore connected to 4 + m other system attributes through this piece of evolution logic.
The total connectivity of any attribute is the sum of all individual connectivities across evo-
lutionary logic algorithms, so the 4 + m connectivity for each of the affected attributes in
the example code represents a component of the total logical connectivity.

Since different evolution logic may be used depending on the control logic, the values of log-
ical connectivity may vary. In the example code, affected attributes are logically connected
to a single attribute when the control logic specifies parallel shaft operation without inter-
locks. Serial shaft operations and interlocks require additional logic and increase the logical
connectivity of the code. The expressions for the logical connectivities for conventional and
virtual conveyors for the various control logics are presented in Table 6.2, where l is the
number of items carried per carriage load.

In addition to the operational logic, the values of the logical connectivities are dependent on
the system size. This dependence illustrates the fact that more entities affect the evolution
of an attribute in larger systems, increasing the complexity of the system towards chaos.
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Table 6.2: The average logical connectivity for tested operational logics. The logical connec-
tivity is dependent on system size as well as the operational logic employed.

Operational Logic Average Logical Connectivity

Conventional, Serial, Interlocks 335+59n+l+68m+10q
42

Conventional, Serial, No Interlocks 329+59n+l+38m+10q
42

Conventional, Parallel, Interlocks 296+59n+l+51m+10q
42

Conventional, Parallel, No Interlocks 290+59n+l+22m+10q
42

VirtualConveyor, Serial, Interlocks 507+346n+53m+6q+50s
58

VirtualConveyor, Serial, No Interlocks 491+331n+20m+6q+44s
58

VirtualConveyor, Parallel, Interlocks 502+228n+41m+6q+50s
58

VirtualConveyor, Parallel, No Interlocks 476+211n+8m+6q+44s
58

It also illustrates that the information comprising the inputs to evolution logic is typically
distributed across a network and is not restricted to a local neighborhood as with homoge-
neous cellular automata. The expressions in Table 6.2 indicate that the logical connectivity
is constant for a fixed system size and control logic, regardless of any physical or structural
differences among the systems of that size. In this respect, the average logical connectiv-
ity is analogous to the measure of the maximum average physical connectivity of a system,
measuring the potential complexity of a system size. Unlike physical complexity, it is dif-
ficult to define configuration-specific logical connectivity as all referenced values are used,
regardless of their value. A dynamic measure of logical connectivity is possible that would
vary for systems of the same size with different architectures. This measure would require
the counting of all states referenced per changed attribute, averaged over all evolution steps
(similar to identifying the number of actual neurons firing to trigger a memory in models of
the brain), which is costly in large simulations and is not considered in this work.

The expressions and values of average logical connectivity are also dependent on the evolu-
tion logic and number of attributes considered. The evolution logic is not absolute - there
are many ways to code the same simulation. Included in this variability are the attributes
selected to define a system. For example, if resources are considered as relevant to accurately
describing a system, the logical connectivity may be considerably different than in an equiv-
alent model where resources are ignored. Logical connectivity remains applicable despite
the differences that might arise from model scope and instantiation because the code for
all conventional configurations and the code for all virtual conveyor configurations remain
constant, allowing comparison between configurations using the same code.

As for average physical connectivity, it is intuitive that greater values of logical connectivity
correspond to greater potential complexity. Work with connectivity has demonstrated that
sparse connectivity often corresponds to simple behavior only [30]. Beyond a low threshold of
connectivity, it is possible to obtain complex behaviors. The elementary cellular automata
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from Section 2.2 demonstrate this phenomena. However, at high values of connectivity,
near and including complete connectivity, chaos is often encountered. Above this transition
region of connectivity, the use of connectivity as a measure of complexity is counterintuitive
as greater values often correspond to the low complexity associated with chaos. For this
reason, connectivity is used as a potential measure only.

6.5 Number of Unique States Used

The number of states visited in an evolution is the dynamic equivalent to the static measure
of the total number of possible states comprising an evolution state space. The number of
visited states is also based on the complexity estimation technique of Bar-Yam, but, since
it is based on the actual evolution, is a more accurate measure of the complexity than a
potential measure [3].

Like the total number of possible valid states, the measure of the number of visited states
is dependent on the scale of the definition of the attributes used to define system states.
For a given evolution, a coarser resolution results in fewer system states visited as similar
states are indistinguishable without additional information. As the resolution becomes finer,
more possible states become distinct and a greater number of unique states are found in
an evolution. For the finest resolution, where all relevant system attributes are included,
all evolution states are distinct and the number of visited states is equal to the number of
evolution steps. Due to the subjectivity associated with the definition of system states, the
number of visited states is not an absolute measure. Its applicability as a relative measure
is possible within a fixed scale of state representation.

A greater number of visited states is an indication of greater complexity. In the simplest
of evolutions, the system cycles through a limited number of states in sequence. Simple
repetition is not limited to smaller systems with one carriage but can also occur in systems
with multiple carriages that essentially act as independent subsystems with synchronized
simple cycles. Complexity increases in repetitive cycles as synchronization breaks down. If
each carriage effectively remains an independent subsystem, but the state cycles of different
carriages have different repetition periods, the system as a whole visits unique states until
the time step corresponding to the least common multiple of all carriage repetition periods.
As an example, consider a system with two carriages. The first carriage cycles through three
states (A, B, and C) and the second carriage cycles through three different states (D, E, and
F). The system states, formed by joining carriage states together then follows the progression
in Figure 6.3(a), where a state change is assumed to occur at each evolution step for each
carriage.

If the number of states in the repetition cycle of the second carriage is changed to four
(D, E, F, and G), the collective period of repetition changes as illustrated in Figure 6.3(b)
and the evolution visits twelve distinct states rather than four. Despite the insignificant
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Time step Carriage States
1 AD
2 BE
3 CF
4 AD
5 BE
6 CF
7 AD
8 BE
9 CF
10 AD
11 BE
12 CF
13 AD

14
...

Time step Carriage States
1 AD
2 BE
3 CF
4 AG
5 BD
6 CE
7 AF
8 BG
9 CD
10 AE
11 BF
12 CG
13 AD

14
...

(a) (b)

Figure 6.3: Two scenarios for simple cycles involving essentially independent carriages are
possible. In (a), the repetition periods for both carriages are identical and the carriages are
synchronized. In (b), each carriage cycles through a sequence of states, but the carriage
sequences are not synchronized, resulting in a repetition period equal to the least common
multiple of the carriage repetition periods. Despite the simplicity of independent repetitions,
unsynchronized cycles result in greater measured complexity when counting the number of
states used
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difference between synchronized and unsynchronized independent carriage evolutions, the
complexity as measured by the number of distinct systems states visited is significantly
higher for an unsynchronized evolution. However, this increase in measured complexity
does not necessarily make the number of states an invalid measure. By an interpretation of
algorithmic complexity, the amount of information required to describe the unsynchronized
cycles is greater than that for the synchronized cycles. This extra information takes the
form of a description of the phase shift, an explicit description of the two cycles, or a
description of the complete, higher order repetition pattern of the entire system. Whether the
difference between the number of unique states for synchronized and unsynchronized simple
evolutions is equal to the additional information required to describe an unsynchronized
evolution is subject to interpretation. If an unsynchronized combination of independent
carriage cycles is expressed as a description of the entire higher order repetition pattern
formed using all system attributes, the measure of complexity in terms of the number of
states is indistinguishable from an evolution involving an equivalent number of unique states,
but resulting from the interactions between carriages. The additional information required
to express an unsynchronized combination of independent carriage states lies between the
difference between the complexities of an evolution resulting from carriage interactions and
an evolution with synchronized, independent carriage cycles, implying that the number of
states can be an overestimation of complexity in some cases.

6.6 Fraction of States Used

The measure of the fraction of states used is truly a mixture of dynamic and static complexity
measures. However, since explicit simulation is required, it is defined as a dynamic measure.
The expression for the fraction of states used is presented in Equation 6.5.

Fraction of States Used =
Number of Unique States Used

Total Number of Possible States
(6.5)

The number of valid system states is a measure of the potential complexity - the greater
the number of valid states, the greater number of evolution trajectories and the greater the
potential complexity. A large potential space does not however guarantee higher complexity
of the evolution, only the possibility of higher complexity. A comparison of the actual space
explored to the potential space indicates how the actual evolution “lives up” to its potential.
The comparison also validates the use of the total number of possible states as a potential
measure of complexity.

Normalizing the number of unique states visited in an evolution with respect to potential
states (which is essentially a normalization with respect to system size because of the relation-
ship between system size and the number of valid states) allows comparison of complexities
between systems of different sizes. A smaller system that explores a larger fraction of its
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possible space may be arguably considered more complex than a larger system that visits a
larger absolute number of states but a lower fraction of its potential space. Similarly, a small
and large system could both visit the same number of states, having the same complexity
in the context of the number of unique states visited. However, with a greater potential for
complexity, the larger system does not explore a proportionate amount of its potential space.

The validity of this argument and this measure depends on the scalability of actual states
visited. If the system definitions result in different expansion rates for unique states visited
and potential system states, comparison across different size systems is invalid, although for
systems of the same size, comparisons are valid, being nothing more than a scaled comparison
of the number of unique states visited.

The validity and usefulness of this measure is also dependent on the subjective definitions of
validity of states and the composition of the attributes used to define a state, much like the
quantification of the absolute number of states and potential states. If the number of unique
states visited for an evolution remains constant when the validity conditions are changed
to result in more potential states, the fraction of unique states visited implies the same
evolution has different complexity in the context of different definitions of valid states. But,
as for the static and dynamic complexity measures involving states, consistency is essential
for comparing evolutions and the rules for determining the validity of states are constant for
all configurations.

6.7 Logical Complexity/Logical Compression

The logical complexity is a normalized complexity measure enabling comparison of evolutions
of systems of different sizes. Unlike the measure of the fraction of states used or the fraction
of physical connectivity, normalization in this case does not necessarily violate intuition
regarding complexity. The logical complexity, CxL, describes the amount of information
required to express the logical sequence of states and is defined in Equation 6.6.

CxL =
Logical Evolution Length

Temporal Evolution Length
(6.6)

Related to the logical complexity is the logical compression, which describes the amount of
redundant information in an evolution with respect to the logical sequence of states. The
logical compression, CmL, is defined in Equation 6.7.

CmL = 1 − Logical Evolution Length

Temporal Evolution Length
= 1 − CxL (6.7)

The logical complexity is similar to the number of unique states used. However, the sequenc-
ing of states, not just their presence in an evolution, is relevant. The logical evolution length
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is defined as the length of an evolution logically equivalent to an evolution history but with
at least one system attribute change per evolution step. The logical evolution therefore does
not change the sequencing of states, but removes the temporal dependence. A logical evo-
lution by definition is always less than or equal to the equivalent temporal evolution length
and the logic complexity and compression therefore range from 0 to 1.

Comparison of logical evolution lengths as absolute measures is not valid, as evolutions may
have different numbers of items to transport and the steps required are no indication of
complexity. A simple system with a long, repetitive evolution is not more complex than
a complex system with a short, non-repetitive evolution. Similarly, a comparison of the
evolution created by a system operating on a queue with n identical items and the evolution
of the same system with n + 1 identical items shows that no significant difference exists
between the evolutions, despite the additional logical steps resulting from the larger queue.
Normalization with respect to the evolution length addresses this discrepancy and provides
a relative means to apply the evolution length to the quantification of complexity.

The amount of logical compression is dependent on the cycle times of elevator operations. For
instance, an increase in the hatch cycle times in a simple system will increase the total number
of evolution steps, but the number of logical state changes remains constant, effectively
increasing the amount of logical compression and decreasing the logical complexity, despite
no change in actual complexity. In more complex systems however, the changes in cycle
times do not affect overall evolution length or logical sequences linearly. That is, changes in
cycle times may lead the evolution on a completely different trajectory. In addition, different
systems may respond differently to changes in cycle times. To avoid the non-linear effects
of changing cycle times, they are assumed fixed for all configurations. It should be noted
that, when the cycle times are reduced to equate to a single time step, the logical evolution
is equal to the temporal evolution and no compression is possible as a state change occurs at
every step in the temporal evolution. For this reason, the time steps are set to a low value (1
second) and cycle times for elevator operations are all greater than 1 second, approximating
their values in practice. The amount of compression is also dependent on the attributes
required for state definitions and the scale of system analysis. A fine level of detail results
in state changes at all temporal evolution steps with no redundancies, resulting in minimal
compression.

Logical complexity/compression is based fundamentally on the measure of algorithmic com-
plexity. Algorithmic complexity is greatest when the ‘algorithm’ is incompressible - there
is no shorter program for representing an output. An evolution with repeated states can
be compressed by substituting the explicit state representations with a description of the
number of repetitions, resulting in significantly less required information. The information
reduction is greatest as the information required to describe a state and the number of
repetitions increases. The information compression for a single repeated state follows the
expression in Equation 6.8, for a state composed of b bits with p repetitions.
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1 − b + p

bp
(6.8)

For states composed of a large number of attributes, the additional information required to
describe the number of repetitions in the compressed form becomes negligible, and Equa-
tion 6.8 reduces to Equation 6.9, which essentially states that any information additional to
the declaration of the first state is redundant.

1 − 1

b
(6.9)

An evolution with no state change at every temporal evolution time step is incompressible
and no shortcuts exist to describe the evolution - the shortest description of the evolution is
the evolution itself.

The use of measures based on algorithmic complexity suffer from the same limitations of
algorithmic complexity - primarily that the maximum algorithmic complexity corresponds
to chaotic behavior, not necessarily complex behavior. In this respect, the logical complexity
is applicable as a filter of simpler behaviors, but can not necessarily distinguish between
complex and chaotic behaviors.

Another inherent drawback of using logical complexity/compression as a complexity measure
is related to the sequential nature of the evolutions. The logically compressed form of the
temporal evolution filters out runs of repeated states, but does not capture runs of repeated
sets of states. That is, the compression identifies local, “first-order” repetitions, but does
not identify global, higher order patterns.

(a) 111222333111222333
(b) 456456456456456456

Figure 6.4: Despite the identical form of their logically compressed states, indicating a higher
order repeating pattern, sequences (a) and (b) have different logical complexities. The first
order pattern in sequence (a) is identified, resulting in a logical complexity of 1 − 6

18
= 2

3
,

but does not account for the second order pattern in (b), giving a complexity of 1.

The compression of the sequences in Figure 6.4 are therefore not equivalent, despite the
obvious similarity between their global patterns. To account for the compression possible
from identification of global patterns, it is necessary to ignore sequential patterns and utilize
the number of unique states visited. This technique is done in the state complexity and
compressed state complexity measures.
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6.8 State Complexity/State Compression

State complexity is another application of algorithmic complexity. However, unlike logical
complexity, the state complexity accounts for global patterns as well as local patterns. Rather
than identify the number of partitions of identical states, the state complexity identifies the
number of unique states in an evolution, indicating the information necessary to represent
both runs of identical states and possible global sequences. The number of unique states is
normalized with respect to the temporal evolution length, as in Equation 6.10, where the
state complexity is denoted by CxS.

CxS =
Number of Unique States Used

Temporal Evolution Length
(6.10)

The state compression, CmS, describes the amount of redundant information in a temporal
evolution when the local and global patterns are taken into account, and is related to the
state complexity as in Equation 6.11. Following the definition of algorithmic complexity,
maximum complexity occurs when there is no redundant information and each state in
the temporal evolution is unique. Compression is minimal (CxS = 1, CmS = 0) and the
evolution is, by definition, random. Minimal complexity occurs in the trivial case of an
evolution composed of a single repeated state (CxS ≈ 0, CmS ≈ 1).

CmS = 1 − Number of Unique States Used

Temporal Evolution Length
= 1 − CxS (6.11)

In strictly repetitive evolutions, the global repetitions normally missed by logical compression
are accounted for by identifying the sets of repeated states. The information required to
express the evolution completely is reduced to the bits required to express the set of repeated
states and the number of repetitions, which is assumed negligible when compared to the
product of unique states comprising a set and the number of bits defining each state. For a
given evolution length, as the number of states comprising a set defining a sequence grows,
or multiple repetitive sets emerge, the amount of compression decreases, corresponding to
greater complexity.

In a truly deterministic evolution of states, state complexity will account for global patterns.
In a repetitive cycle of a set of states, any one of the states leads to a unique state within the
set. Following this logical progression, only “second-order” repetitions are possible - that is,
no higher order global patterns, like nesting, are possible. Evolutions of strictly determin-
istic systems will therefore only consist of a single repetitive sequence or no repetition at
all1. While the elevator rules are deterministic, the representations of the evolutions are not

1This includes the possibility that the evolution involves a repeating sequence, but the sequence period
is greater than the length of the evolution. If the evolution were given sufficient time, the sequence would
repeat.
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necessarily deterministic, because not all system information is included in the composition
of system states. For example, all of the information which affects a carriage decision to
select a queue is not included in the attributes defining a system state. The inventories of
candidate queues and the number of carriages that can be accommodated in a given queue
are two examples of excluded information. It is therefore possible for a single system state to
evolve to multiple states, depending on the logical connectivities of the evolvable attributes.
In these “non-deterministic” evolutions, patterns are not limited to second-order repetitions,
and more complex patterns may emerge, including multiple repetition sequences. A single
state may therefore be a member of multiple sets of repeating sequences. The extent of the
non-determinism is dependent on the subjective scale of the state definitions, which remains
constant for all configurations. The effectiveness of the state complexity in identifying global
patterns towards quantifying algorithmic complexity is therefore diminished as it underes-
timates the amount of information required to represent an evolution. For instance, if the
same state occurs in two distinct sets of repeating sequences, additional information is re-
quired to indicate that the state occurs in both sequences, which is neglected in a counting
of unique states.

The number of unique states visited is normalized by the length of the temporal evolution to
obtain a complexity measure corresponding to the actual evolution. For a simple repeating
sequence consisting of a set of states, additional repetitions increase the temporal evolution
length, but do not increase the number of unique states visited, since the same set of states is
always used in each additional repetition. An evolution with a greater number of repetitions
of the same sequence will therefore have lower state complexity, since it is more compressible,
despite having nearly equivalent algorithmic complexity. The difference in algorithmic com-
plexity between two evolutions with different numbers of repetitions of the same sequence of
states is only the number of bits required to describe the additional number of repetitions,
which is negligible when compared to the bits required to express the set of unique states.

The discrepancy is most apparent when the number of unique states comprising a repetitive
cycle is on the same order of magnitude of the evolution length, as the ratio of the number
of unique states to the evolution length is closer to unity. The rate of change of the state
complexity with respect to increases in the evolution length, keeping the set of unique states
visited constant, is described in Equation 6.12, where the evolution length is denoted by T
and the number of unique states is denoted by U . The magnitude of the rate of change of
the complexity is greatest for low values of T relative to U . Since, by definition, U ≤ T , the
maximum rate of change occurs when U is on the same order of magnitude as T .

∣∣∣∣∣∂ CxS

∂T

∣∣∣∣∣ = U

T 2
(6.12)

In practice, the number of unique states in a repetitive set is low in comparison to the
evolution length, attributable to the length of elevator operation cycle times and the amount
of items in the queues. Elevator operation cycle times are typically much greater than one
second. For a given repetitive sequence, greater cycle times effectively increase the temporal
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evolution length with respect to the number of unique states. The number of repetitions is
dependent on the number of items in the queues of a given type. For sufficient numbers of
items, the number of states defining a repetitive sequence is low compared to the number of
sequence repetitions - a ratio on the order of the inverse of the number of items of a type.
The combined effects of realistic operation cycle times and numbers of items in the queue
result in negligible effects on the complexity due to additional repetitions as the change in
the state complexity is proportional to a constant number of unique states and the inverse
of the square of the length of the temporal evolution.

The dependence of the state complexity on the elevator operation cycle times also implies that
the state complexity is affected by changes in the cycle times. As described in Section 6.7,
changes in the cycle times may result in non-linear changes in the evolution and therefore
the measure of complexity. As for logical complexity, the effects of the dependency are
minimized by using constant values of operation cycle times for all configurations, permitting
comparison between evolutions. To eliminate the effects of constant ratio changes of timers
on the state complexity, the compressed state complexity is used.

6.9 Compressed State Complexity/Compressed State

Compression

The compressed state complexity is identical to the state complexity, except that the number
of unique states visited in an evolution is normalized by the length of the logical evolution,
rather than the length of the temporal evolution. The resulting expression for the compressed
state complexity, CxC , is given in Equation 6.13.

CxC =
Number of Unique States V isited

Logical Evolution Length
(6.13)

The amount of redundant information in the logical evolution is described by the compressed
state compression, CmC , which is related to the compressed state complexity by the rela-
tionship in Equation 6.14.

CmC = 1 − Number of Unique States V isited

Logical Evolution Length
= 1 − CxC (6.14)

The compressed state complexity is related to the logical complexity and the state complexity
by the expression in Equation 6.15. This relation states that the compressed state complexity
is the ratio of the information required to account for local and global patterns to the
information required to account for local patterns only. The amounts of compression are not
related in this manner, and the compressed state compression does not represent the excess
information describing repetitions of global patterns.
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CxC =
CxS

CxL
(6.15)

As with state complexity, the number of unique states visited in an evolution is never greater
than the length of the evolution (in this case the logical evolution). The values of compressed
state complexity therefore range from a minimum of approximately 0, corresponding to a
trivial evolution consisting of a single repeated state, to a maximum of 1, corresponding to
an evolution composed completely of unique states.

As an application of the definition of algorithmic complexity, compressed state compression
ignores the additional information associated with sequentially repeated states attributed to
operation cycle times. Compressed state complexity therefore only accounts for the infor-
mation required to express higher order, more global patterns. While the complexity of the
“actual” evolution is lost, it must be recalled that operation cycle times are variable and
scaling them by constant ratios changes temporal evolution length, but does not alter the al-
gorithmic complexity. The first order, sequential state repetitions can be assumed to be less
critical as the higher order patterns in affecting the algorithmic complexity. The compressed
state complexity, because it is based on the logical evolution, might therefore represent a
truer application of algorithmic complexity than the state complexity, which includes the
first order patterns. For an equivalent evolution, the complexity associated with the logi-
cal evolution will be greater than that for a temporal evolution, indicating the differences
between the information required to describe higher and first order patterns, assuming first
order patterns exist.

Compressed state complexity shares the advantages of state complexity over logical complex-
ity by accounting for higher order patterns as well as first order patterns, though compressed
state complexity accounts for higher order patterns by means of an evolution that has already
accounted for first order repetitions. However, compressed state complexity also shares the
disadvantage of underestimating complexity through the over-compression associated with
non-deterministic evolutions and the discrepancies between state complexities of equivalently
complex evolutions due to additional sequence repetitions.

In the case of longer evolutions resulting from a greater number of repetitions of a single
sequence of states, the relative values of the fraction of unique visited states that a set of
repeating states comprises, the number of states in the set of repeated states, the number
of repetitions of the set, and the original logical evolution length collectively affect the
complexity. The compressed state complexity is generalized in Equation 6.16, where u is the
number of unique states visited in the evolution excluding the states comprising the set of
repeating states, x. The original number of logical evolution steps, TL, increases with each
additional repetition, ρ, of the x states.

CxC =
u + x

TL + ρx
where u + x ≤ TL (6.16)
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In the simplest repetitive pattern, where all unique states are involved in the repeating
sequence, (u = 0), the plot of complexity values, shown in Figure 6.5(a) indicates that larger
repetition periods have a greater effect on complexity. For all repetition periods however, the
effect of the number of additional repetitions on the complexity diminishes as the number of
repetitions increases. This trend is validated by determining the derivative of the complexity
with respect to the number of additional repetitions, presented in Equation 6.17 and plotted
in Figure 6.5(b) for a range of repetition periods and sizes.
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Figure 6.5: The effect of changes in the number of additional repetitions and the lengths of
their periods with TL = 100 and u = 0 on (a) the compressed state complexity and (b) the
rate of change of the compressed state complexity with respect to the number of additional
repetitions. Lower repetition periods diminish the effects of additional repetitions. As the
number of repetitions increases, the effect on the complexity decreases.

∂ CxC

∂ρ
= − x (u + x)

(TL + ρx)2 =
−x2

(TL + ρx)2

∣∣∣∣∣
u=0

(6.17)

As the number of unique states visited not contained in the set of states in additional
repetitions increases, the trend remains the same - more repetitions have a diminishing effect
on complexity and larger repetition periods have a greater impact on complexity. However,
for greater values of u, the magnitude of the change of complexity increases, evident in a
comparison of Figures 6.5 and 6.6. The magnitudes of the effects of these variables are all
dependent on the length of the original evolution, TL. For greater values of TL, the effects
of the changes of any other variables are diminished.
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