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Hierarchical probability models are being used more often than non-hierarchical
deterministic process models in environmental prediction and forecasting, and Bayesian
approaches to fitting such models are becoming increasingly popular. In particular, mod-
els describing ecosystem dynamics with multiple states that are autoregressive at each
step in time can be treated as statistical state space models (SSMs). In this paper, we
examine this subset of ecosystem models, embed a process-based ecosystem model into
an SSM, and give closed form Gibbs sampling updates for latent states and process pre-
cision parameters when process and observation errors are normally distributed. Here,
we use simulated data from an example model (DALECev) and study the effects chang-
ing the temporal resolution of observations on the states (observation data gaps), the
temporal resolution of the state process (model time step), and the level of aggregation
of observations on fluxes (measurements of transfer rates on the state process). We show
that parameter estimates become unreliable as temporal gaps between observed state
data increase. To improve parameter estimates, we introduce a method of tuning the time
resolution of the latent states while still using higher-frequency driver information and
show that this helps to improve estimates. Further, we show that data cloning is a suitable
method for assessing parameter identifiability in this class of models. Overall, our study
helps inform the application of state space models to ecological forecasting applications
where (1) data are not available for all states and transfers at the operational time step
for the ecosystem model and (2) process uncertainty estimation is desired.
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1. INTRODUCTION

Many ecological prediction and forecasting applications use mechanistic process-based
models to simulate the dynamics of ecosystems (Luo 2011). These process models are
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typically discretizations of ordinary or partial differential equations describing how the
system dynamics evolve over time and space. Further they are often linearly conditioned on
the value at the previous time step. These models are especially important in applications
where available data limit the use of empiricalmodels or predictions are beingmade for novel
conditions not captured in existing data. However, process-based models can be challenging
to calibrate due to the large numbers of parameters and thus robust uncertainty estimation
is also difficult (Luo 2009).

While the importance of quantifying uncertainty in process models is recognized (Dietze
2018), it canbe challenging to fully account for all important sources of uncertainty.Research
to date has largely focused on estimating and reducing uncertainty that arises from initial
conditions, parameters, and observational noise, usually through data integration techniques
[see Jiang (2018), White (2019), Baracchini et al. (2020), for examples]. Estimating and
propagating these sources of uncertainty without process uncertainty assumes that the pro-
cess model perfectly describes the temporal evolution of the ecosystem up to error in the
collection of observations. To estimate process uncertainty, state space modeling frame-
works (Petris et al. 2009; Durbin and Koopman 2012) are increasingly used to account
for stochastic elements in the system evolution. Since many ecosystem process models
already account for initial condition uncertainty, parameter uncertainty, and observational
uncertainty, it is straightforward to convert them into a state space framework by adding an
uncertainty structure to the underlying process model.

The Bayesian state space paradigm is a well-suited approach to estimate distributions
of parameters and latent states (model states that are not directly observed) in ecosystem
models using observations (Auger-Méthé 2021). As a result, it has seen a growing use
in ecological forecasting applications [see Thomas (2017), Dowd and Meyer (2003), for
examples]. State space models treat all forecast terms as probability distributions and allow
for more effective quantification, partitioning, and propagation of uncertainty in models.
Prior distributions on parameters allow ecosystem scientists to enforce strict upper and lower
bounds on parameters and incorporate biological information into the modeling process in
a principled way. This focus on uncertainty and process precision estimation prompted us
to choose a Bayesian framework over a point estimate focused method. The parameter and
latent state posterior distributions in Bayesian state space models are often estimated using
Markov chain Monte Carlo (MCMC).

The added flexibility of the state space model does come with drawbacks. Analyzing
ecosystem models as state space models increases the number of parameters that require
estimation (i.e., parameters describing the distribution of the process uncertainty) and adds
the requirement to either estimate latent states for each ecosystemmodel state, or to integrate
them out. The addition of latent state estimation can add anywhere from tens to hundreds of
thousands of additional parameters to estimate because ecosystem models commonly use a
daily time step that requires an additional parameter per state for each day of the simulation.
Additionally, a parameter is required for describing the process variance for each of the
states in the model. Finally, data for ecosystem models may only be available at timescales
that are less frequent than the model time step (i.e., annual or greater). These large gaps
between observed data may present a challenge to constraining both the latent states and
process precisions.
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Furthermore, identifiability [or equifinality (Luo 2009)] is a common concern when
estimating parameters in ecosystem process models, which often have many highly cor-
related parameters. Although problems with parameter identifiability do not necessarily
impair latent state or process variance estimation, these parameters correspond to properties
of ecosystems and often have important physical interpretation. Therefore, it is crucial to
ensure that they can be successfully identified and estimated.

Data cloning (DC) has been used to assess identifiability of parameters in phylogenetic
models (Ponciano et al. 2012) and for estimation in ecological models (Lele et al. 2007).
DC is done by applying Bayesian inference to a dataset that is constructed by duplicating
the initial dataset and treating them as r independent experiment results [as described in
Ponciano et al. (2012)]. As r increases, the resulting posterior parameter estimates approach
the maximum likelihood estimate. Data cloning can used to determine whether parameters
are non-estimable or unidentifiable through a visual investigation of posterior plots with
increasing values of r (Ponciano et al. 2012). Parameters are said to be non-estimable when
there exist different parameter values θ1, θ2, . . . , θn such that L(θ1|X) = L(θ2|X) = · · · =
L(θn|X) = argmax�L(θ |X), i.e., there are multiple sets of parameter values that maximize
the likelihood function (Lele et al. 2010; Rothenberg 1971; Ponciano et al. 2012; Cole
2020). Ponciano et al. (2012) introduce terminology for various situations where we have
parameters in the model that are not estimable: non-separability, lack of information, non-
identifiable, and identifiable but not estimable. We use Ponciano et al. (2012)’s definitions
for these terms throughout the remainder of this paper and so we introduce them here.
Non-separability occurs when the model is structured such that it is not possible to separate
parameters fromone another andmaybedue to parameter redundancy [see alsoCole (2020)].
Parameters that are non-estimable due to non-separability are referred to as non-identifiable
(NI). Lack of information occurs when the dataset does not contain sufficient information
about the parameters to estimate them, resulting in wide posterior distributions that have
not been properly constrained by observed data. Parameters that are non-estimable due to
lack of information are referred to as INE (identifiable but not estimable). A combination
of data cloning and comparison of summaries of posterior samples under different temporal
resolutions leads to a thorough analysis procedure for ecosystem state space models that
has not commonly been applied.

One strength of the data that we use to fit ecosystem models is that observations are
available on both the stocks (components of the state vector of the latent process) and the
fluxes (transfer rates between components of the latent process). There has been much work
done for state space models with multiple data streams in the population modeling literature
[e.g., integrated population models (Copyright 2022)] and fisheries literature [e.g., Nielsen
and Berg (2014)]. Integratingmultiple data streams can help tomake parameters identifiable
that would otherwise be unidentifiable with only one of the component data sources (Riecke
2019).

To address challenges estimating latent states and parameters when applying Bayesian
state space modeling frameworks to ecosystemmodels, we present a simulation study using
a forest ecosystem state space model that predicts carbon cycling among multiple states
(a.k.a. “stocks” in the carbon cycling model). Using synthetic data with introduced data
gaps, we address three questions focused on different temporal resolutions of the state
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Figure 1. A schematic of the DALECev model with boxes denoting stocks of carbons and arrows denoting fluxes
of carbon.

process, temporal resolutions of observations on the states, and the level of aggregation
of observations on the fluxes and their impact on estimation of precision parameters, latent
states, and process parameters. (1) How does varying the observation time resolution change
estimates of process parameters precisions, process precisions, and latent states with a daily
state process resolution and all flux data available? (2) How does changing the temporal
resolution of the state process from daily to monthly change estimates of process precisions,
process parameters, and latent states? and 3) Can we determine when model parameters are
identifiable under different levels of aggregation of flux data using data cloning? Our study
is designed to help inform the application of ecosystem state space models to ecological
forecasting applications where process uncertainty estimation is desired, and where data are
not available for all stocks and transfers at the ecosystem model operational time-step (i.e.,
a daily time-step), such as data collected through the U.S. National Ecological Observatory
Network (NEON).

2. METHODS

2.1. PROCESS MODEL

We used the Data Assimilation Linked EcosystemCarbonmodel designed for simulating
forests composed of evergreen trees [DALECev (Williams et al. 2005)]. It is a simple model
describing carbon dynamics (Fig. 1) and is similar to other ecosystemmodels used in carbon
stock forecasting applications, for example PnET (Aber and Federer 1992), 3PG (Landsberg
and Waring 1997), and TECOS (Xu et al. 2006). The model can be written as a set of
equations that are approximately linear and autoregressive in time. While DALECev has
been widely used (Williams et al. 2005; Smallman et al. 2017; Fox et al. 2009; Bloom and
Williams 2015), it is not traditionally fit as a state space model as we do here.

DALECev models the amount of carbon stored in five components within an evergreen
forest ecosystem at a daily time step, t . These five components, called stocks, include: carbon
stored in foliage,C (t)

f ; carbon stored in woody stems and coarse roots,C (t)
w ; carbon stored in

fine roots, C (t)
r ; carbon stored in litter, C (t)

li t ; and carbon stored in soil organic matter C (t)
som .

The DALECev model includes 11 process parameters, pi , for i ∈ 1 . . . 11, each represent-
ing the daily rate of an ecological process (e.g., turnover, decomposition, or soil organic
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Table 1. Information on the physical interpretations, upper and lower bounds, units, and values used for simulation
for the eleven process parameters, five process precisions, andfive observation precisions used to generate
our synthetic data using DALECev

Param. Description Lower Upper Units Sim. value

p1 Scaled daily decomposition rate 1.1e−05 0.11 day−1 0.002
p2 Fraction of GPP respired 0.2 0.7 unitless 0.27
p3 Fraction of NPP allocated to foliage 0.01 0.5 unitless 0.15
p4 Fraction of NPP after foliage allocation allocated to roots 0.01 0.5 unitless 0.33
p5 Daily turnover rate of foliage 1e−04 0.1 day−1 0.00137
p6 Daily turnover rate of wood 1e−06 0.01 day−1 1.1e−04
p7 Daily turnover rate of roots 1e−06 0.01 day−1 0.00137
p8 Scaled daily mineralization rate of litter 1e−06 1 day−1 0.1
p9 Daily mineralization rate of soil organic matter 1e−06 0.01 day−1 1.096e−05
p10 Parameter for temperature dependent rate parameter 0.05 0.2 ◦C −1 0.1725
p11 Nitrogen use efficiency parameter 1 20 (gN gC−1 d−1)−1 3
φ f C f process precision 0 ∞ m4 gC−2 0.2975
φw Cw process precision 0 ∞ m4 gC−2 0.00618
φr Cr process precision 0 ∞ m4 gC−2 0.06
φli t Cli t process precision 0 ∞ m4 gC−2 3.625
φsom Csom process precision 0 ∞ m4 gC−2 0.075
τ f C f observation precision 0 ∞ m4 gC−2 0.25†

τw Cw observation precision 0 ∞ m4 gC−2 0.0625†

τr Cr observation precision 0 ∞ m4 gC−2 1†

τli t Cli t observation precision 0 ∞ m4 gC−2 1†

τsom Csom observation precision 0 ∞ m4 gC−2 0.04†

Parameter descriptions are taken from the REFLEX project supplemental material (Fox et al. 2009). Simulation
values were chosen such that stock data, leaf area index (LAI), and NEE were reflective of what we expect at the
simulation site
†Is used to denote parameters that are known a priori and not estimated during modeling

matter mineralization), an allocation of a particular flux (transfer rate between stocks), or
a parameter used in the calculation of a flux. Information on the physical interpretations of
the process parameters, bounds, units, and values used during simulations is in Table 1.

Fluxes represent a number of physical processes thatmove carbon through the ecosystem,
including respiration (R), photosynthetic allocation (A), turnover (L), and transfer to another
stock (D). Themodel uses a submodel, theAggregatedCanopyModel (ACM) fromWilliams
et al. (1997), to simulate the input of carbon through gross photosynthetic production [GPP;
G in Eqs. (2)–(3))]. Following Fox et al. (2009), all parameters in the ACM submodel were
fixed except for p11. Thus, G is a function of p11 and meteorological driver inputs D(t).
Drivers include daily maximum and minimum temperatures, radiation, and atmospheric
carbon dioxide. For theDALECevmodel, a given carbon stockCs at time t can be generically
expressed as the carbon at time t − 1 minus the turnover and respiration (carbon lost from
the system) or transfer to another stock, plus carbon gained by through the allocation of
photosynthesis (carbon gained from outside the system) or transfer from another stock:

C (t)
s = C (t−1)

s − L(t−1)
s − R(t−1)

s + A(t−1)
s ± D(t−1)

s + εt−1,s, εt,s ∼ N (0, φs). (1)
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Here, εt−1,s is process variation that allows normally distributed stochastic deviations from
the mean system behavior. Thus, the system of equations for the expected stock evolution
through time, the deterministic skeleton, are:

E[C (t)
f ] = C (t−1)

f − L(t−1)
f + A(t−1)

f

= C (t−1)
f − p5C

(t−1)
f + G(D(t), p11)(1 − p2)p3 (2)

E[C (t)
r ] = C (t−1)

r − L(t−1)
r + A(t−1)

r

= C (t−1)
r − p7C

(t−1)
r + G(D(t), p11)(1 − p2)(1 − p3)p4 (3)

E[C (t)
w ] = C (t−1)

w − L(t−1)
w + A(t−1)

w

= C (t−1)
w − p6C

(t−1)
w + G(D(t), p11)(1 − p2)(1 − p3)(1 − p4) (4)

E[C (t)
li t ] = C (t−1)

li t − R(t−1)
li t − D(t−1)

li t + A(t−1)
li t

= C (t−1)
li t −

[ p1 p8 exp(p10T̄ (t))

2
− p1(1 − p8) exp(p10T̄ (t))

2

]
C (t−1)
li t

+
[
p5C

(t−1)
f + p7C

(t−1)
r

]
(5)

E[C (t)
som] = C (t−1)

som − R(t−1)
som + D(t−1)

som + A(t−1)
som

= C (t−1)
som − p9

2
exp(p10T̄

(t))C (t−1)
som

+ (p1 − p1 p8)

2
exp(p10T̄

(t))C (t−1)
li t + p6C

(t−1)
w , (6)

where T̄ (t) is the average temperature for day t . These updates are referred to as the process
model. For any carbon stock C the process model can be written in the form

E[C (t)|C (t−1)] = AtC
(t−1) + bt , (7)

where At , bt are coefficients that can vary with time. Any stocks that cannot be written in
this way can be approximately written in this form using a linearization.

The fluxes, the building blocks for Eqs. (2)–(6) in the DALECev model, are:

R(t)
li t = .5 exp(p10T̄

(t))p1 p8C
(t−1)
li t (8)

R(t)
som = .5 exp(p10T̄

(t))p9C
(t−1)
som (9)

R(t)
a = G(D(t), p11)p2 (10)

A(t)
f = G(D(t), p11)(1 − p2)p3 (11)

A(t)
r = G(D(t), p11)(1 − p2)(1 − p3)p4 (12)

A(t)
w = G(D(t), p11)(1 − p2)(1 − p3)(1 − p4) (13)

L(t)
f = p5C

(t−1)
f (14)

L(t)
w = p6C

(t−1)
w (15)

L(t)
r = p7C

(t−1)
r (16)

D(t)
li t = .5 exp(p10T̄

(t))p1(1 − p8)C
(t−1)
li t , (17)
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where subscripts pertain to different carbon stocks, and a represents autotrophic. These
fluxes can be combined to form net fluxes. Since some of the individual fluxes, for example
Rlit , are unlikely to be measured directly, net fluxes can provide us with information on
these processes at the cost of having to isolate them from the net process. One important net
flux is net ecosystem exchange (NEE) that is measured using eddy covariance techniques
(Baldocchi 2014) and deployed in many ecological observation networks (Metzger and
Others 2019). NEE is the net of G and Eqs. (8)–(10) and is given by:

NEE (t) = R(t)
som + R(t)

li t + R(t)
a − G(D(t), p11)

= .5 exp(p10T̄
(t))p1 p8C

(t)
li t + .5 exp(p10T̄

(t))p9C
(t)
som − G(D(t), p11)(1 − p2)

(18)

Additionally, soil respiration, Sr , is a net flux that is commonly measured in ecosystem
studies. Sr is the net of autotrophic respiration by roots [a component of Eq. (10)] and
heterotrophic respiration by soil micro-organisms [Eqs. (8), (9)):

S(t)
r = R(t)

som + R(t)
li t − cR(t)

a

= .5 exp(p10T̄
(t))p1 p8C

(t)
li t + .5 exp(p10T̄

(t))p9C
(t)
som − cG(D(t), p11)p2, c ∈ [0, 1]

(19)

For this study, we have fixed the value of c to be 0.3. In practice, c must either be specified
or given a very strong prior, as it can be challenging to constrain by other available data.

2.2. STATE SPACE MODEL

We estimate the stocks for the DALECev model using a state space model (Hamilton
1994; Petris et al. 2009; Durbin and Koopman 2012; Auger-Méthé 2021). In the state
space framework, we treat the five carbon stocks as components of the state vector, and
the additional flux data collected on respiration, photosynthetic allocation, turnover, and
transfers as operations on the state vector. Let C denote the vector of carbon stocks from
the model and Cobs denote the observations of the stock, with observations at a subset of
time points I ⊂ {1, ..., T }. Then, Eq. [(2)–(6)] can be written using matrix notation as:

E[C(t)] = MtC(t−1) + P(t), where (20)

C(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

C (t)
f

C (t)
r

C (t)
w

C (t)
li t

C (t)
som

⎤
⎥⎥⎥⎥⎥⎥⎦

, Mt =

⎡
⎢⎢⎢⎢⎢⎣

(1 − p5) 0 0 0 0
0 (1 − p7) 0 0 0
0 0 (1 − p6) 0 0
p5 p7 0 (1 − p1

2 Q(t)) 0

0 0 0 p1(1−p8)
2 Q(t)

(
1 − p9

2 Q(t)
)

⎤
⎥⎥⎥⎥⎥⎦

,
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P(t) =

⎡
⎢⎢⎢⎢⎢⎣

G(D(t), p11)ψ1

G(D(t), p11)ψ2

G(D(t), p11)ψ3

0
0

⎤
⎥⎥⎥⎥⎥⎦

,

with Q(t) = exp(p10T̄ (t)),ψ1 = (1− p2)p3, ψ2 = (1− p2)(1− p3)p4,ψ3 = (1− p2)(1−
p3)(1 − p4).

To relate our observations for an arbitrary carbon stock C (t)
s,obs to the latent carbon stock

C (t)
s , we assume the following relationship:

C (t)
s,obs = C (t)

s + εobs,t , t ∈ I, εobs,t ∼ N (0, τs) (21)

In an ecological context, we are assuming that our observed carbon stock is normally dis-
tributed and unbiased (Auger-Méthé 2016), with a center at the true (latent) carbon stock,
and a fixed precision τs . Similar to how adding the process variation term for the DALECev
model was an acknowledgement of imperfect process knowledge, adding an error term for
the observations is an acknowledgement of measurement error in the data that we observe.

The state spacemodel has twokey assumptions: the state process is first orderMarkov, and
the observations are independent conditional on the latent states. Using normally distributed
error terms for the processmodel and the observations, we canwrite these assumptions using
the matrix notation above as:

C(t)|C(t−1) ∼ MVN(MtC(t−1) + P(t), �), t = 1, . . . , T

C(t)
obs |C(t) ∼ MVN(C(t), τ ), t ∈ I, where

� =

⎡
⎢⎢⎢⎢⎣

1/φC f 0 0 0 0
0 1/φCr 0 0 0
0 0 1/φCw 0 0
0 0 0 1/φClit 0
0 0 0 0 1/φCsom

⎤
⎥⎥⎥⎥⎦

,

τ =

⎡
⎢⎢⎢⎢⎣

1/τC f 0 0 0 0
0 1/τCr 0 0 0
0 0 1/τCw 0 0
0 0 0 1/τClit 0
0 0 0 0 1/τCsom

⎤
⎥⎥⎥⎥⎦

with all τ parameters assumed to be known. This assumption is not uncommon in terrestrial
carbon models, as the measurement error is generally well understood. Fixing the mea-
surement error can also lead to better estimation of other precisions, process parameters,
and states (Auger-Méthé 2016). The combination of a linear process model, normally dis-
tributed process error, and normally distributed measurement error means that we are fitting
DALECev as a normal dynamic linear model (NDLM) (West and Harrison 1997).

The fluxes [Eqs. (10)–(17)] are modeled with an observation model. For a given flux Fj ,
with flux data collected at a subset I j ⊂ {1, ..., T } and observation Fj,obs , we assume the
relationship
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F (t)
j,obs |F (t)

j ∼ N (F (t)
j , δ j ), t ∈ I j , (22)

where δ j is a known precision. Fluxes are assumed to follow the functional forms given in
Eqs. (10)–(17), for example R(t)

a |R(t)
a,obs ∼ N (G(D(t), p11)p2, δRa ). This specification for

the fluxes assumes that flux observations are unbiased but contain measurement error. Each
flux has different observation time points I j to account for the fact that fluxes are measured
using different methods, and the methods may work on different timescales, as well as to
give flexibility in the case of data collection failure.

With models assigned for our physical process, observations, and fluxes, we can write
the complete data likelihood for parameters �, p1:11 and the latent states C(1:T ):

L (C(1:T ), �, p1:11|D(1:T ), τ, δ1:J ,Cobs,Fobs)

∝
T∏
t=1

MVN(MtC(t) + P(t), �) ×
∏
t∈I

MVN(C(t), τ ) ×
( J∏

j=1

∏
t∈I j

N (F (t)
j , δ j )

)
(23)

Many prior studies using terrestrial carbon models include observational uncertainty,
but do not include process variation, e.g., Jiang (2018). The state space approach used
here is designed specifically to help isolate the process uncertainty from observational and
parameter uncertainty. This partitioning of uncertainty is critical in understanding the system
because no one source or type of uncertainty is likely to dominate total model uncertainty
across all of ecological applications (Dietze 2018) and these uncertainties influence the
forecast in different ways, e.g., process uncertainty propagates from one time step to another
while observation uncertainty does not. The Bayesian state space paradigm outlined here
allows for quantification of multiple sources of uncertainty (process, initial conditions,
observations, and parameters) in the context of temporal gaps in observations, and the state
space model gives a natural setting to leverage multiple data streams with process based
models.

2.3. INFERENCE FOR PARAMETERS AND LATENT STATES

We estimate the stocks and process parameters for the DALECevmodel using a Bayesian
state space model (Reich and Ghosh 2019). Process parameters and latent states were esti-
matedwithMCMC(Robert andCasella 2005).MCMC is a flexiblemethod that usesMarkov
chains to generate samples of the parameters from their posterior distribution. Parameter
uncertainty is usually inherently included in MCMC methods, and the samples from the
posterior can be used to calculate credible intervals for parameters. In addition to the like-
lihood [Eq. (23)], we need to specify prior distributions for process parameters, process
precisions, and initial conditions for model states. We assume uniform priors for process
parameters with limits informed by the range of values gathered from expert opinion in the
Reflex project supplemental material (Fox et al. 2009) and adjusted to approximate a site in
TalladegaNational Forest (see description below). The values for p(L) and p(U ) can be found
in Table 1. Each process precision was given a univariate conjugate Jeffreys prior (Jeffreys



Assessing Ecosystem State Space Models 451

1946), to allow for closed form Gibbs sampling of the process precision parameters. Thus,
the priors are given by

pi ∼ Unif(p(L)
i , p(U )

i ), i = 1, . . . , 11 (24)

C (0)
k ∼ N (μ

(0)
k , φ

(0)
k ), k ∈ { f, r, w, li t, som} (25)

π(φk) ∝ 1

φk
, k ∈ { f, r, w, li t, som} (26)

We can derive the full conditional distribution for all latent stocks and precision param-
eters from these likelihood and priors. The full conditional distributions for latent carbon
stocks at interior (between the initial and final) time steps with observed data are:

C (t)
k |C (t)

−k ,C
(t)
k,obs , · ∼ N

(φk(AtC
(t−1)
k + bt + At+1(C

(t+1)
k − bt+1)) + τkC

(t)
k,obs

φk(1 + A2
t+1) + τk

, φk(1 + A2
t+1) + τk

)
.

(27)

The full condition distribution for latent carbon stocks at interior time stepswithout observed
data at those time points can be written as:

C (t)
k |C (t)

−k, · ∼ N
(φk(AtC

(t−1)
k + bt + At+1(C

(t+1)
k − bt+1))

φk(1 + A2
t+1)

, φk(1 + A2
t+1)

)
. (28)

The full conditional distributions for the initial latent state and final latent states are:

C (0)
k |C (0)

−k · ∼ N
(

φk(A1C
(1)
k − A1b1 + φ

(0)
k μ

(0)
k )

φk A2
1 + φ

(0)
k

, φk A
2
1 + φ

(0)
k

)
(29)
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where 1T∈I is an indicator function that is 1 if there is an observation for Ck at the final
time point, and 0 otherwise. Finally, the full conditional distributions for the precisions are:
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2
,
1

2
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t=1

(C (t)
k − f (C (t−1)

k ))2

)
, (31)

where � is the univariate gamma distribution using the rate parameterization.
We estimated the posterior distributions of latent states, process parameters (p1:11), and

process parameters using MCMC (Reich and Ghosh 2019) in the R programming language
(R Core Team 2016). After burn in, we sampled parameters for 500 iterations where we
jointly sampled highly correlated process parameters using a truncated normal proposal
that accounts for their covariance. We recalculated the empirical covariances used in the
block updates every 500 iterations. We updated the latent states using their Gibbs sampling
updates given in Eqs. (27)–(31), the process precisions using their Gibbs sampling, and
initial conditions using a Gibbs sampler (Geman and Geman 1984). We updated process
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parameters updated using Random Walk Metropolis-Hastings. Including burn-in, 20,000
total posterior samples were collected.

Initial latent state estimates were generated using piece-wise linear interpolation. More
involved methods for latent state initialization were considered and tested, but our MCMC
routine did not give evidence of being sensitive to the choice of initial latent state estimates.
Thus, the piecewise linear interpolation method was preferred for its simplicity.

2.4. SIMULATION STUDY

Weuse simulations to evaluate the ability of standardMCMCmethods to estimate process
precisions, latent states, and process parameters for the DALECev model, and to identify
and address potential problems that may arise when using these methods for the types of
(sometimes sparse) data that are available. More specifically, we had three primary objec-
tives. The first was to look at how changing the observation time resolutions (gaps between
observations of the stocks/states) impacts parameter estimates, and whether we can success-
fully recover parameters under extreme (annual) observation time resolution. The second
was to examine how changing the state process resolution (time step of the process model)
changes parameter estimates, with a particular focus on an annual observation resolution.
Third, we wanted to assess parameter identifiability (via data cloning) when fitting the mod-
els to different data that are available and use this information to help inform data collection
schemes.

We began by generating a set of synthetic datasets for use in our analysis. Our simulation
study was created to emulate conditions at the Talladega National Forest in Alabama, USA
(32.95046◦ N, −87.39327◦ W). We chose this site for two reasons. First, the site has a
canopy dominated by evergreen tree species (longleaf pine (Pinus palustris), loblolly pine
(Pinus taeda), and slash pine (Pinus elliottii)) that matches the canopy type expected by the
DALECev model. Second, the site is part of NEON and thus has ongoing data collection
that can be used in future applications of the methods described here. For the synthetic data
set, initial conditions and driver data for the carbon stocks were derived from NEON data
(National Ecological Observatory Network 2020), with specified initial mean and initial
uncertainty. Process parameter values for simulations were chosen such that carbon stock
data, leaf area index (LAI), and NEEwere reflective of what would be expected at Talladega.
The chosen parameter values for the simulations are shown in Table 1. Random initial
conditions to generate the simulations were drawn from their respective prior distributions.
At each time, step process noise is added to the states, with observational noise added to the
latent states at the end of the model run to create a dataset of observations. Data gaps for
synthetic datasets were created by removing observations that are not in the analysis time
step.
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2.5. IMPACT OF VARYING OBSERVATION DATA RESOLUTION ON ESTIMATION OF

PARAMETERS AND LATENT STATES

The ability to estimate process precision is crucial in ecosystem models, as that is often
the main source of uncertainty (Dietze 2018; Thomas 2017). Poor estimation of process
precision may lead to more uncertainty in estimates of process parameters and of latent
states, which can then affect forecasts andmake them unreliable. For models like DALECev,
gaps between observations of the states are commonly greater than 1 year, a much slower
time scale than the assumed process dynamics, resulting in many unobserved states. In
order to reliably apply DALECev in practice, estimation of model parameters and latent
state should be robust to annual or longer data gaps.

To analyze the effect of observationgaps on estimationof parameters (process parameters,
process precisions, and latent states), we examined three different observation scenarios:
daily state observations, monthly state observations, and yearly state observations, eachwith
daily flux observations. In the context of our study objectives, we are analyzing the effects
of varying the data observation resolution while fixing the state process resolution at a daily
time step. We drew initial conditions from the prior distributions, and used driver data from
Talladega to run eachmodel for six years.We repeated the generation of the synthetic dataset
15 times. For each dataset, observations were removed to introduce synthetic data gaps that
matched the different observation scenarios.

We evaluate the impact of varying the data observation resolution with a fixed daily state
process resolution on estimates of process parameters by looking at summaries of their
marginal posterior distributions. In particular, we look at the percent bias of the parameters
(100(·E[θ ]−θ )/θ ) and at visualizations of the posterior variance of process precision param-
eters. In an ideal situation, we would expect to see little bias in our process parameters, with
the variance of the marginal posterior distributions increasing as gaps between observations
increase.

To evaluate the quality of parameter estimation under different gaps in data, we used
MCMC (as described above) to estimate posterior parameter distributions for each synthetic
dataset and analyzed the bias and variance of the resulting marginal posterior distributions.
We identified the data gaps where a large degradation in parameter estimation occurred.

2.6. EFFECTS OF CHANGING THE STATE PROCESS RESOLUTION ON ESTIMATION

OF PARAMETERS AND LATENT STATES

It can be difficult to obtain information about parameters and latent states when there
are large gaps between observed data points. We explored whether changing the latent state
time resolution is a solution for alleviating problems with estimation of parameters and
latent states. These problems may arise from differences in the flux data and observation
data likelihoods having different time steps. To analyze these differences, we generated data
using DALECev with daily latent state resolution and analyzed the synthetic data using a
simplified model being run with a monthly latent state resolution. Consider an NDLM with
daily process resolution for carbon stock C , with a process model that takes the form of
Eq. (7). Let T ∗ = {ti , i = 1, .., I } be a proper subset of the time steps of the model. For
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an NDLM with a process model of the form in Eq. (7), state transitions can be rewritten as:

C (ti )|C (ti−1) ∼ N
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A j

)
C (ti−1) +
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( ∏ti
m=k+1 A

2
m

)
)

. (32)

This allows the stocks of the model to operate on a different time step than the fluxes, so that
daily flux information can be used without requiring estimation of a large number of latent
states that have very little data to constrain them. It also gives the model more flexibility,
allowing models to change time steps for inference purposes, to decrease computational
costs, and to allow for varying time steps across the stocks themselves. For values for A that
are constant or similar through time, like we have here, and approximately uniformly spaced
entries of T ∗, we may treat the precision in Eq. (32) as a fixed value φmonthly . Applying this
approach, we follow the advice given in Auger-Méthé (2021), who say “make simplifying
assumptions when data are limited.”

To examine how parameter and latent state estimates are influenced by changing the
state process resolution, we used two different synthetic datasets. The first synthetic dataset
is a set of 15 synthetic time-series that have monthly carbon stock observations and daily
flux observations. The second synthetic dataset is a set of 15 synthetic time-series that have
annual carbon stock observations and daily flux observations. We analyzed each of these
data sets using MCMC with our simplified monthly time step model and looked at the
percent bias of the process parameters and latent states. Here, we were especially interested
in annual carbon stock availability, as it is the most common case when working with actual
data.

2.7. PARAMETER IDENTIFIABILITY UNDER DIFFERENT FLUX DATA AVAILABILITY

Identifiability of parameters was assessed using data cloning to analyze three synthetic
datasets with annual carbon stock observations. Each dataset had different levels of flux
data observations: (1) all fluxes observed; (2) only fluxes available from NEON with
GPP data (G, L f , Lw, A f , Aw, Sr ); 3) only fluxes available from NEON with NEE data
(NEE, L f , Lw, A f , Aw, Sr ). These were chosen so that we could compare the ideal case
to data that would be more commonly available for terrestrial carbon models. Our MCMC
inference procedure was performed on each of the synthetic datasets with, once with no
additional replication, and then with r = 25 data cloning replicates (Lele et al. 2007, 2010).
Posterior distributions of p2, p3, p4, p11 were analyzed across datasets and levels of repli-
cation.

Revisiting Eqs. (11)–(13), we see that Ar , A f and Aw give additional information for
p2, p3, and p4, parameters that are highly correlated due to their entanglement in the carbon
update equations. The absence of one or more of these fluxes, like when using NEON data
only, may make these parameters difficult to identify. For scientists, a data cloning analysis
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can servemore purposes than just assessing identifiability of parameters. Simulated data can
be used a priori to determine what data are most important to collect in their experiments.

3. RESULTS

3.1. IMPACT OF VARYING OBSERVATION DATA RESOLUTION ON ESTIMATION OF

PARAMETERS AND LATENT STATES

We expected that as observation data become less frequent, the variance in our posterior
estimates of parameters would increase. While this was the case for some parameters (e.g.,
φ f and p11), we also found other outcomes. Parameters that receive much of their constraint
from flux data, such as p3, had very similar posterior variance independent of the frequency
of observations on the stocks. This was not surprising to us, as while p3 appears in multiple
state update equations, there is little additional information that is not contained in the
daily flux data. Another outcome that we observed was that parameters such as p5 had
similar posterior variance for daily and monthly observations, but had substantially larger
posterior variance for yearly observations. In φli t , we found a very interesting result. As
the observation frequency went from daily to monthly, the posterior variance increased
and the direction of the bias went from φli t being over-estimated to being under-estimated.
Further, as the observation frequency went from monthly to yearly, the variance decreased
but the posterior mean moved very far from the true value of φli t = 3.625. Lastly, we found
that some parameters, such as p9, have increasing posterior variance and small bias as the
observation frequency went from daily to monthly. As the observation frequency became
yearly the posterior variance continued to increase, but the bias also increased considerably.
Indeed, we find that it is very challenging to estimate process parameters and precisions with
a daily state resolution and yearly observations. Visualizations of these posterior variances
as boxplots can be found in Fig. 2.

Ideally, we would hope that as the observation resolution goes from daily to monthly
to yearly, there would be negligible bias in estimates of the process parameters, process
precisions, and latent states. While this was true for a number of process parameters (e.g.,
p2, p5, p7, p11), process precisions (φ f , φr ), and latent states (C f , Cw, Cr , Csom), there
were notable exceptions. In particular, for the yearly observation synthetic datasets, there
were large percent biases in the estimates of p1, p8, φli t , and the Clit latent states. One
possible explanation is that Clit is the most dynamic latent process in DALECev. Since
direct observations are only available annually, the model needs to rely on the available
flux observations to constrain it. These flux observations are a function of three different
parameters and the temperature, which may make it difficult to capture Clit dynamics.
This would likely influence estimates of process precision and the related parameters as
well. Overall we found that the percent bias in estimates of process parameters, process
precisions, and latent states was small for the daily observation resolution and the monthly
observation resolution analyses, but not necessarily for the yearly observation resolution
analyses. Percent biases that were averaged across each of the 15 synthetic datasets can be
found in Table 2.
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Figure 2. Boxplots of post-burn-in MCMC chains of six different process parameters and precisions, with the
observation resolution varying between daily observations, monthly observations, and annual observations. Red
(bottommost boxplots) indicates daily observations; blue (middle boxplots) indicates monthly observations; green
(upper most boxplots) indicates yearly observations (Color figure online)..

3.2. EFFECTS OF CHANGING THE STATE PROCESS RESOLUTION ON ESTIMATION

OF PARAMETERS AND LATENT STATES

We found that by changing from a daily state process resolution model to a monthly state
process resolution model, we were able to improve the estimation of our process parameters
(p1:11) and latent states, particularly for the case of a yearly observation resolution. When
using a daily state process resolution, we found considerable biases in estimates of p1,
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Table 2. Percent bias for each parameter for daily, monthly, and yearly observation resolutions

Param. Daily obs Monthly obs Yearly obs

p1 −1.17 −2.06 −3.16e01
p2 −5.28e−02 −5.27e−02 −3.88e−02
p3 −8.03e−02 −7.74e−02 −1.55e−03
p4 −1.15e−01 −1.13e−01 −5.91e−02
p5 5.76e−01 4.89e−01 −1.17
p6 1.711e−02 −5.25e−03 −2.94e−02
p7 3.18e−03 −1.31e−02 9.55e−02
p8 −3.45 −3.619 −1.66e01
p9 −3.69 −5.40 1.11e02
p10 8.33e−01 1.23 −1.57e01
p11 −8.76e−03 −9.42e−03 −1.61
φ f −1.90 4.19 3.67e01
φw −1.22 7.67 −8.04e01
φr 4.51e−01 10.4 1.34e01
φli t 2.08 −1.92 −9.74e01
φsom −1.40 6.65 −9.73e01
C f −2.04e−03 −7.95e−03 1.33
Cw −3.62e−04 1.28e−02 −2.62e−01
Cr −3.61e−04 1.58e−02 −1.24-01
Clit 5.43e−03 −5.95e−01 1.65e02
Csom −3.09e−04 5.49e−04 −2.31e−01

Percent bias is computed by taking the posterior means of the MCMC chains after burn-in, subtracting the true
value used for data simulation, and then dividing by the true value. For each of the five latent states, the average
is taken across all 2190 days. Results are averaged across 15 synthetic datasets

p9, and Clit . For our monthly state process resolution model, these biases were negligible,
but there was significant bias introduced into estimates of p5, which was not present when
using the daily state process resolution model. Biases in parameter estimates obtained from
the monthly state process resolution model were similar for the case of monthly observa-
tions and yearly observations, and were much better overall than the parameter and latent
state estimates that we received from our daily state process resolution model with yearly
observations (Table 3).

In addition to estimating the process parameters, an important goalmotivating the analysis
of ecosystem process models using a state space framework is to track and predict the
evolution of latent states through time. In Fig. 3, we show posterior latent state estimates for
carbon stock data observed annually, with all flux data observed daily and themodel running
on a monthly state process resolution. Our monthly state process evolution model was able
to accurately capture the dynamics of each of the carbon stocks in our model, even with
only yearly observations on the states. Overall, we found that our monthly time resolution
model was able to estimate process parameters and latent states with less bias than its daily
time resolution counterpart.
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Figure 3. a–eEstimates for carbon density latent states for amonthly time resolutionwith annual data observations
(left) alongwith histograms of correspondingmarginal estimated process precision post-burn-in (right). Each panel
corresponds to a particular carbon stock: C f represents foliage carbon, Cw represents wood carbon, Cr represents
root carbon, Clit represents litter carbon, and Csom represents soil organic matter carbon .
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Table 3. Percent bias for each parameter and latent state estimate for monthly and yearly observation resolutions,
estimated using our monthly state process resolution model

Param. Monthly obs Yearly obs

p1 −4.25e−01 2.92
p2 −1.04e−01 −1.02e−01
p3 −2.32e−01 −3.23e−01
p4 −2.20e−01 −9.22e−02
p5 −2.77e01 −2.86e01
p6 −2.23e−02 −4.95e−02
p7 3.50e−02 2.42e−01
p8 −5.58e−01 2.12
p9 −2.27 5.46
p10 5.16e−01 −1.13
p11 −7.57e−03 −7.57e−03
C f −2.69e−02 6.72e−01
Cw 1.94e−03 4.71e−02
Cr 2.41e−03 −2.25e−01
Clit −1.794e−01 2.08
Csom −5.23e−04 3.28e−02

Results are averaged across 15 different synthetic datasets. Percent bias is computed by taking the posterior means
of the MCMC chains after burn-in, subtracting the true value used for data simulation, and then dividing by the
true value. For each of the five latent states, the average is taken across all 72 latent states. Precision estimates are
excluded, as the data was generated under a misspecified model and thus there are no “true” precision values

3.3. PARAMETER IDENTIFIABILITY UNDER DIFFERING FLUX DATA AVAILABILITY

Our analysis of the data cloning results involves three primary considerations. First, for
identifiable parameters, we expect that as r increases the variance of the resulting esti-
mate decreases. This can be seen when the resulting posteriors grow tighter around the
mean as values of r get larger. Second, identifiable but non-estimable parameters (INE) are
parameters that may be identifiable, but do not have a necessary amount of data to estimate
the precise values. These are characterized by relatively flat posterior distributions (Pon-
ciano et al. 2012). Third, parameters that are non-identifiable (NI) tend to have multi-modal
posterior distributions, with several values of the parameter that produce high values of
the likelihood. Functions of multiple non-identifiable parameters can be estimable, but the
individual parameters themselves are not [for a simple example see Ponciano et al. (2012)].

We found that data cloning served as an effective way to assess identifiability of param-
eters. However, the results of our data cloning analysis demonstrate that NEON flux data
with NEE will require additional flux observations in order to estimate four of the model
parameters: p2, p3, p4 and p11. In Fig. 4 (top row), we show that the posterior is bimodal as
r (the number of data cloning replicates) increases for parameter p2 for the NEE case—that
is, it is non-identifiable with the observed flux data for the NEE case. For the GPP case, the
posterior distribution for p2 gets more narrow as r increases, indicating that it is identifiable.
For parameter p3, the posterior distributions for both cases narrow as r increases, indicating
that p3 is identifiable in both cases, with posterior estimates falling near the true simulated
value for both NEE and GPP flux data. The parameter p4 is similarly identifiable in both
the NEE and GPP cases. However, in the NEE case, estimates for p4 are not near the true
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Figure 4. Marginal posterior distributions of data cloning for selected process parameters under the two NEON
data flux scenarios, with 1 data cloning replicate (r = 1) and 25 data cloning replicates (r = 25). Blue circular
marks on the x axis denote simulation (true) value of the parameter. Red triangular marks denote the upper and
lower bounds of the uniform priors given to the process parameters .

simulation value, hovering close to the lower boundary, even for the highest r examined
(r = 25). Similarly p11 was identifiable for both the NEE and GPP cases, but in the NEE
case our estimates were not near the true simulation value. The poor estimates of p2, p4
and p11 may be related for the NEE case, as they appear together in Eqs. (12) and (13) and
there is insufficient data to identify p2 or estimate p11 well without GPP flux data available.
In the NEE scenario, p2, p4, and p11 all exhibit extreme bias. Our findings illustrate one
of the shortfalls of using data cloning: though we are able to determine whether parameters
are estimable or identifiable, we cannot be sure our analysis is producing good estimates of
the parameters.

4. DISCUSSION

Estimating the posterior distributions of parameters in multi-state state space models can
be challenging when observations of the states are not readily available. This is especially
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apparent in ecological models where observations on the states have a coarser temporal
resolution than the states, resulting in many latent states without direct constraint from
corresponding observations. Here, we introduce a method for changing the time resolution
used for generating latent states in a process model so that it is coarser than the operational
time step of the process model (i.e., time step of the difference equations). Our analysis
revealed a large increase in the quality of process parameter estimates, while still capturing
the dynamics of the latent states. One strength of this approach is that it preserves the
operational time of the process model used to simulate the ecosystem dynamics. As a result,
no adjustments were required to the process model. Another strength is that the equations
used to change the time resolution of the latent states do not require the new time steps to
be equally spaced, giving the flexibility to allow the latent states of the model to operate
on any time scale. However, changes to the latent state time resolution do influence the
interpretation of the process uncertainty parameters because they represent the distribution
of process error that propagates from one latent state to the next—longer time-intervals
between latent states will likely lead to process error distributions with larger variance.

Beyond data gaps in time, gaps in data where particular states and/or fluxes are never
observed presents challenges in the ability to estimate the posterior distributions of param-
eters (identifiability). To examine identifiability in DALECev, we confirmed that we were
able to successfully recover process parameters and process precisions when all states and
fluxes were observed at all time steps and then in the case where there were annual temporal
gaps in the observations of states. This indicates that under ideal data collection the param-
eters are identifiable using the approach presented here. However, a lack of identifiability
occurred when a subset of the flux data were not available to constrain model parameters, as
is the case in applications using real observations. In this case, our approach had difficulty
recovering multiple process model parameters in the DALECev model. In particular, p2
was non-identifiable with NEE data, and p3, and p4 were difficult to estimate without all of
the related fluxes used to constrain them. These parameters govern the proportional alloca-
tion of photosynthesis (GPP) to respiration, foliage, and roots [Eqs. (2)–(4)], thus requiring
observations of their individual production in order to constrain the individual parameters.

Our inference about identifiability of process parameters was based on the application
of data cloning (DC). Other methods of assessing identifiability were considered, including
Hessian methods (Viallefont et al. 1998; Little et al. 2009) and symbolic algebra methods
(Cole 2019; Cole and McCrea 2016). Here, we consider long time series, which would lead
to problemswith numerical stabilitywhen using theHessianmethod (Bulla andBerzel 2008)
and lack of computational resources to perform the symbolic algebra calculations inMAPLE
(Cole 2019). Identifiability is a problem that has long plagued ecological and biological
modeling (Luo 2009), and DC is a simple method that can be used with simulated data prior
to the design of an experiment to assist the design of data collection schemes that mitigate
identifiability challenges, encouraging scientists to elicit data rather than eliciting priors.
Our simulation study used DC with observed flux data that would be available from NEON
and showed that additional flux data are required to constrain a subset of model parameters.
The types of data measured at a NEON site are not atypical for a terrestrial ecosystem
study, particularly those in the Ameriflux and Fluxnet networks, therefore the results are not
specific to a NEON site. Our analysis also illustrated that while some parameters are shown
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to be identifiable through data cloning, they are not necessarily unbiased. With simulation
results showing that some parameters are not identifiable or identifiable but non-estimable,
it is crucial that scientists have access to methods to help them assess whether they can trust
the results they obtain from their modeling framework.

Data cloning has other uses aside from assessing identifiability and aiding in experimental
data collection for ecosystem modelers. A well documented problem with soliciting prior
distributions for parameters in Bayesian analyses is that non-informative prior distributions
on one scale may become highly informative prior distributions when transformed [see
Lele (2020) and references within for a thorough treatment]. These falsely non-informative
priors can lead to biases in parameter estimation and prediction, in turn leading to incorrect
decisions made by stakeholders and policy makers (Lele 2020). Data cloning methods
can be used to expose accidental biases introduced through using these priors that are
non-informative on one scale, as the data cloning posterior will approach the maximum
likelihood solution as r increases, and maximum likelihood estimation is invariant to re-
parameterizations.

Our study focused on the development and evaluation ofmethods, and sets the foundation
for futurework. First,while simulation studieswith data synthesized from theDALECmodel
is necessary to test our methods, it is important to test the performance of these methods
with real observations. Second, the results for latent state updates discussed here were for
the univariate case where covariance between states is not considered, though the states can
be updated en blocwith multivariate normal Gibbs updates. Multivariate latent state updates
could be complemented with conjugate Gibbs updates for the covariance matrix, allowing
full estimation of the covariance structure and (potentially) better latent state estimates.
Third, the Gibbs updates shown in this paper are applicable to state spacemodels where both
the observation and process model errors are normally distributed. While this is a common
assumption in terrestrial carbon models (Thomas 2017), other applications may have error
structures that do not meet this assumption and may not have access to Gibbs sampling. For
example, error structures may be needed to maintain ecological realism, such as positivity
of a particular latent state, and thus require non-normal error structures for values near
zero. More complex error structures or model dynamics require alternative fitting methods.
Some possible fitting methods include (but are not limited to): particle methods [see Kantas
et al. (2014), for a thorough review], Gaussian process regression (Turner and Deisenroth
2010), hybridizations of MCMC and particle methods (Chopin and Papaspiliopoulos 2020),
iterated filtering methods (Ionides et al. 2011), and Laplace approximation (Auger-Méthé
et al. 2017). Finally, we have shown that it may not be possible to identify or recover process
parameters for the DALECev model under yearly data gaps when using only data available
from NEON. However, it is likely that integrating additional data not observed by NEON,
such as satellite-derived leaf area index (e.g., MODIS LAI), and incorporating stronger
priors that reflect general ecological principles will help to constrain model parameters
further (Bloom and Williams 2015).

In conclusion, to address the growing popularity of state space modeling in ecological
forecasting research (Auger-Méthé 2021), we propose methods that help to assess and
fix problems with process precision estimation and identifiability of process parameters
that frequently arise in ecosystem state space modeling when observations are scarce. The
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state space framework augmented with data cloning to assess identifiability of parameters
presented here is flexible enough to be adapted for a broad range of problems including non-
normal-normal error structures, nonlinear process models, and spatiotemporal models. The
methods discussed here will allow practitioners to more effectively and efficiently address
and overcome common suites of problems that arise when using state space models.
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