
Lemur
(Draft last modified 12/08/2010)

1. Module name: Lemur

2. Scope

This module addresses the basic concepts of the Lemur platform that is
specifically designed to facilitate research in Language Modeling and information
retrieval.

3. Learning Objectives
By the end of work on this module, students will be able to:

a. Describe the basic workings of the Lemur Toolkit
b. Use effectively the Indri search engine, a part of the Lemur Toolkit
c. Do Language Modeling with the Lemur Toolkit
d. Cluster documents using the Lemur Toolkit

4. 5S Characteristics of the module

a. Space: The concept of space for this module includes physical. The data
collections and the Lemur application are stored in a physical space on
servers (IBM cloud computers). Lemur creates an index which uses a
vector space representation.

b. Stream: Text documents and queries are inputs that lead to result sets as

well as documents as the output of an IR system. These all are sequences
of characters.

c. Structure: Data collections are stored in a TREC or TRECWeb format

structure.

d. Scenario: These include where users/administrators and/or the system
submit queries, cluster documents, do language modeling, and retrieve
information.

e. Society: End users of the system such as researchers, journalists,

librarians, or developers who would like to use Lemur to search relevant
data or to cluster documents.

5. Level of effort required

a. Class time: 2.5 hours

b. Student time outside class:
Preparation /reading: 2 hours

6. Relationships with other modules:
Related to module 7-a, which is indexing and searching

7. Prerequisite knowledge required:

Basic Linux commands

8. Introductory remedial instruction: None

9. Body of Knowledge

a. Lemur Toolkit Description

Ø Lemur Toolkit Introduction

The Lemur Toolkit has been created for the purpose of Language Modeling
and Information Retrieval (IR). This toolkit is used for developing search
engines, text analysis tools, browser toolbars, and data resources in the area of
IR. Lemur supports the following features:
o Indexing:

§ English, Chinese, and Arabic text
§ Word stemming
§ Stop words
§ Tokenization
§ Passage and incremental indexing

o Retrieval:
§ Ad hoc retrieval (TF-IDF, Okapi, and InQuery)
§ Passage and cross-lingual retrieval
§ Language modeling

• Query model updating
• Two stage smoothing

§ Relevance feedback
§ Structured query language
§ Wildcard term matching

o Distributed IR:
§ Query-based sampling
§ Database based ranking (CORI)
§ Results merging

o Document clustering
o Summarization
o Simple text processing

The programming language used to create Lemur is C++ and it comes along
with the source files and a make file. The provided source code can be
modified for the purpose of developing new libraries. It is compatible with
various operating systems which include UNIX (Linux and Solaris) and
Windows XP.

The latest available version of the Lemur Toolkit is version 4.12.

Ø Indri Search Engine

The Indri search engine is a subset of the Lemur Toolkit which is available for
free for everyone. The query language that is used in Indri allows researchers
to index data or structure documents without writing any code. Indri offers
flexibility in terms of adaptation to various current applications. It also can be
distributed across a cluster of nodes for high performance. The Indri API
supports various programming and scripting languages like C++, Java, C#,
and PHP. The latest available version of Indri is 2.12.

b. Language Modeling and Information Retrieval Background

Language Modeling is a probabilistic mechanism to generate a text. Language
Modeling has been a subject of interest for researchers for the past few
decades, especially statistical language modeling. The information retrieval
community has proved that the language modeling approach is effective and
provides an attractive framework for building IR systems.

Ø Language Models for Text Retrieval

The very basic techniques used in language modeling have been around for a
very long time. For example in the Naïve Bayes text classification method, the
unigram language model is estimated for each class, then combined with the
class prior for classification. One problem with this approach, however, is that
it assumes independence of words, which is unrealistic, and which language
modeling overcomes.

The method of using document language models to assign likelihood scores to
queries has come to be known as the language modeling approach.

Language models can be represented using finite automata, where each word
can be represented as a state and the transitions between the different states
are depicted. In language modeling each word is dependent on the words
which occur before it. Assume a string contains four terms t1, t2, t3, and t4,
occurring as “t1t2t3t4”. Its probability is determined using the chain rule, as
shown using the equation below:

Figure 1: Chain rule equation

(Manning C. D., et al. (2009). Page 240. Chapter 12. Language models for information
retrieval. In Introduction to Information Retrieval. Cambridge University Press.)

The query likelihood language model constructs a language model for every
document and calculates the probability of the document being generated by
the query, i.e., P(q|d). The equation depicting the query likelihood language
model is:

Figure 2: Query Likelihood Language Model Equation

(Manning C. D., et al. (2009). Page 245. Chapter 12. Language models for information
retrieval. In Introduction to Information Retrieval. Cambridge University Press.)

where Md is the language model for the document, Mc is the language model
for the collection, d is a document, t is a term, q is a query and λ is a constant
such that 0< λ<1.

Ø KL Divergence

KL Divergence is a non-symmetric ranking function which measures how bad
the probability distribution Mq is at modeling Md. It captures the term
occurrence distribution much better than the multinomial approach.

Figure 3: Scoring function used by KL Divergence

(ChengXiang Zhai, (2007). Notes on the KL-divergence retrieval formula and
Dirichlet prior smoothing.)

Where d is document, w is word, p(w|θQ) is a query model, is estimated
query, p(w|C) is the collection language model, ps(w|d) is the smoothed
probability of a word seen in the document, αd is a coefficient controlling.

Ø Dirichlet smoothing

Smoothing methods are defined as avoiding zeros for the query words in the
document. Dirichlet smoothing is one of the Bayesian justified smoothing
methods; it uses a general smoothing scheme.

Figure 4: General Smoothing Method

(ChengXiang Zhai, (2007). Notes on the KL-divergence retrieval formula and
Dirichlet prior smoothing.)

Where ps(w|d) is the smoothed probability of a word seen in the document, w
is word, d is document, C is collection , αd is a coefficient controlling

The Dirichlet prior determines the amount of smoothing based on a
document’s length and performs better than fixed linear interpolation.

Ø Jelinek-Mercer (JM) Smoothing

JM smoothing is a traditional linear interpolation method. It focuses on
mixing unigram maximum likelihood estimators with unigram background
models. JM smoothing methods produces a movement of probability mass
from seen terms in the documents.

Figure 5: Retrieval Score of JM Smoothing Divergence

	
 	
 (Advances in Multilingual and Multimodal Information Retrieval: 8th
Workshop)	

Where	
 it	
 uses	
 coefficient	
 λ	
 to	
 control	
 the	
 influence,	
 w	
 is	
 the	
 word,	
 d	
 is	
 the	

given	
 document	
 and	
 C	
 is	
 collection	
 of	
 documents.	

	

Ø OKAPI

OKAPI ranks documents based on their estimated relevance regarding the
given query.

Figure 6: Scoring function used by OKAPI

Where f(qi,D) is qi's term frequency in the document D, | D | is the length of
the document D in words, and avgdl is the average document length in the text
collection from which documents are drawn. k1 and b are free parameters,
usually chosen as k1 = 2.0 and b = 0.75. IDF(qi) is the IDF (inverse document
frequency) weight of the query term qi.

Ø Relevance Feedback

Relevance feedback (RF) involves the user in the retrieval process so as to
improve the final result set. In particular, the user gives feedback on the

relevance of documents in an initial set of results. There are different methods
such as probabilistic relevance feedback and the Rocchio algorithm relevance
feedback.

Ø Wildcard queries

A wildcard query is a term that contains “*”. It is used when the user
is uncertain of a query term or the user seeks documents containing variants
of a particular term.

Ø Galago
Every search engine supports some kind of query language, but Galago takes the
query language concept a bit further than most. In Galago, the query language
defines the ranking function. In other systems you might consider changing the
ranking code to get a desired result, but in Galago you usually just change the
query.

Ø Lemur Query Toolbar
The Lemur Query Log Toolbar is a FireFox Add-On and alternatively, a plugin
for IE, that captures user browsing behavior specifically when loading web pages
and generating search engine requests. A set of configuration options enable
researchers and users to specify toolbar behavior.

Ø XML Retrieval
XML Retrieval, or XML Information Retrieval, supports documents structured
with XML (eXtensible Markup Language). As such it is used for estimating the
relevance of XML documents.

Ø Cross-language Information Retrieval
Cross-language information retrieval (CLIR) is a subfield of information retrieval
dealing with retrieving information written in a language different from the
language of the user's query. For example, a user may pose their query in English
but retrieve relevant documents written in French.

Ø Pseudo Relevance Feedback
Pseudo relevance feedback, also known as blind relevance feedback, provides a
method for automatic local analysis. It automates the manual part of relevance
feedback, so that the user gets improved retrieval performance without an
extended interaction. The method is to do normal retrieval to find an initial set of
most relevant documents, add their terms to the query, and then repeat this
process and finally return what hopefully are the most relevant documents.

Ø Krovetz Stemmer
 The Krovetz Stemmer was developed by Bob Krovetz, at the University of
Massachusetts, in 1993. It is quite a 'light' stemmer, as it makes use of inflectional
linguistic morphology.

Ø Porter Stemmer
The Porter stemming algorithm (or ‘Porter stemmer’) is a process for removing
the commoner morphological and inflexional endings from words in English. Its
main use is as part of a term normalization process that is usually done when
setting up Information Retrieval systems.

Ø Using the Lemur Toolkit:

A. Introduction

i. The Lemur Toolkit has been installed, compiled, and is ready to

use on the cloud instance. Apart from the basic utilities of Lemur,
the clustering plugin also has been installed. Lemur has a wide
variety of plugins one can install. You can look up
http://sourceforge.net/apps/trac/lemur/wiki/Compiling%20and%20
Installing for details about the other available plugins.

B. Indexing

The first step before you start searching is to index all the data you
have. Explained below are the data formats supported for your data
and the different types of parameters you can set before you begin
indexing.

i. Data Format

The Lemur Toolkit accepts data in two formats -TRECTEXT and
TRECWEB format. Following are examples, one for each of these
formats.

TRECTEXT Format

<DOC>
<DOCNO>1</DOCNO>
<TEXT>
document content
</TEXT>
</DOC>

TRECWEB Format

<DOC>
<DOCNO>...</DOCNO>
<DOCHDR>
... e.g. URL
and other metadata information

</DOCHDR>
... HTML content
</DOC>

ii. Parameters

There are a number of parameters you can set before you begin
indexing, like the memory, the type of stemmer to be used, the
location of the corpus on your file system, etc. These are depicted in
the example below:

<parameters>
<memory>200m</memory>
<index>/path/to/outputIndex-v4.11</index>

<metadata>
<forward>docno</forward>
<backward>docno</backward>
</metadata>

<stemmer>
<name>krovetz</name>
</stemmer>

<corpus>
<path>/path/to/collection1/</path>
<class>trectext</class>
</corpus>
<corpus>
<path>/path/to/collection2/</path>
<class>trecweb</class>
</corpus>

<field><name>title</name></field>
<field><name>date</name><numeric>true</numeric><parserName
>DateFieldAnnotator</parserName></field>

</parameters>

The purposes of the parameters are as follows:
Memory parameter - defines a rough limit for RAM memory
consumption by the indexer.

Metadata - the forward tag helps define fast forward retrieval and
the backward tag helps define fast backward retrieval.

Stemmer - The Lemur toolkit provides two types of stemmers:
Krovtz and Porter.

Field - The columns mentioned in the field tags can be searched
using Indri.

Corpus - Indicates the location of the corpus in your filesystem.

iii. Indexing Command

After the data is in its correct format and the parameters have been
set, indexing can be done using the following command:

lemur-4.11/app/obj/IndriBuildIndex parameter_file

C. Retrieval

Similar to setting parameters for indexing, one must set parameters
for batches of queries too before retrieval.

i. Query parameter file

Given below is an example of how the query can be specified
between the text tags.

<parameters>
<query>
<type>indri</type>
<number>751</number>
<text>
#combine(popular scrabble players)
</text>
</query>
<query>
<type>indri</type>
<number>752</number>
<text>
#combine(dam removal environmental impact)
</text>
</query>
</parameters>

Where <number> indicates QueryID, #combine indicates OR
operation on the specified query.

ii. Retrieval Command

The command for retrieval is:

lemur-4.11/app/obj/IndriRunQuery query_parameter_file -
count=1000 -index=/path/to/index -trecFormat=true > result_file

-count is used to specify the number of output files to be displayed as
result of the query which is executed by the user.
-index specifies the location of the index in the filesystem
-trecFormat = true specifies that the file is in TREC format

D. Evaluation

The Lemur Toolkit also allows you to perform evaluation of your
results using the following command:

trec_eval -q QREL_file Retrieval_Results > eval_output

where the QREL_file contains the ideal results and
Retrieval_Results contains the results returned by the Lemur Toolkit.

E. Clustering

In the beginning of this section it was mentioned that on the cloud
instance apart from the basic lemur Toolkit, the clustering plugin has
also been installed. Here is a brief description of how to perform
clustering using the Lemur Toolkit.

Ø Lemur Clustering
o Overview

Document clustering is the action of assembling documents in a same
group. Lemur supports different types of clustering algorithms such as
probabilistic latent semantic analysis (PLSA), agglomerative hierarchical,
K-means, and bisecting K-means. With the exception of Probabilistic
Latent Semantic Analysis (PLSA), all use cosine similarity in the vector
space model as their metric.

The LEMUR clustering supports two principal APIs, the Cluster API, that
defines the clusters themselves, and the ClusterDB API, that defines how
clusters are persistently stored.

o Applications
§ Cluster

Performs the basic online clustering task. The parameters accepted
by Cluster are:

• Index -- the index to use. Default is none.

• clusterIndex -- the name of the cluster database index to
use. Default is none.

• clusterdb_type -- One of flatfile (simple cluster database) or
keyfile (btree based).

• clusterType -- Type of cluster to use, either agglomerative
or centroid. Centroid is agglomerative using mean which
trades memory use for speed of clustering. Default is
centroid.

• simType -- The similarity metric to use. Default is cosine
similarity (COS), which is the only implemented method.

• docMode -- The scoring method to use for the
agglomerative cluster type. The default is max (maximum).
The choices are:

• max -- Maximum score over documents in a cluster.
• mean -- Mean score over documents in a cluster. This is

identical to the centroid cluster type.
• avg -- Average score over documents in a cluster.
• min -- Minimum score over documents in a cluster.
• threshold -- Minimum score for adding a document to an

existing cluster. Default is 0.25.
§ Offline Cluster

Performs the basic offline clustering. The parameters accepted by
OfflineCluster are:

• index -- the index to use. Default is none.
• clusterType -- Type of cluster to use, either agglomerative

or centroid. Centroid is agglomerative using mean which
trades memory use for speed of clustering. Default is
centroid.

• simType -- The similarity metric to use. Default is cosine
similarity (COS), which is the only implemented method.

• docMode – The scoring method to be used for the
agglomerative cluster type. The default is max (maximum).
The choices are:

o max -- Maximum score over documents in a cluster.
o mean -- Mean score over documents in a cluster.

This is identical to the centroid cluster type.
o avg -- Average score over documents in a cluster.
o min -- Minimum score over documents in a cluster.

• numParts -- Number of partitions to split into. Default is 2.
• maxIters -- Maximum number of iterations for k-means.

Default is 100.
• bkIters -- Number of k-means iterations for bisecting k-

means. Default is 5.

§ PLSA

Performs Probabilistic Latent Semantic Analysis (PLSA) on a
document collection to build three probability tables: P(z), P(d|z),
and P(w|z).

The parameters accepted by PLSA are:

• index -- the index to use. Default is none.
• numCats -- the number of latent variables (categories) to

use. Default is 20.
• beta -- The value of beta for Tempered EM (TEM). Default

is 1.
• betaMin -- The minimum value for beta; TEM iterations

stop when beta falls below this value. Default is 0.6.
• eta -- Multiplier to scale beta before beginning a new set of

TEM iterations. Must be less than 1. Default is 0.92.
• annealcue -- Minimum allowed difference between

likelihood in consecutive iterations. If the difference is less
than this, beta is updated. Default is 0.

• numIters -- Maximum number of iterations to perform.
Default is 100.

• numRestarts -- Number of times to recompute with
different random seeds. Default is 1.

• testPercentage -- Percentage of events (d,w) to hold out for
validation.

• doTrain -- whether to construct the probability tables or
read them in. Default is true.

o Clustering API

§ Cluster
Provides an abstraction over a collection of clusters.

§ ClusterDB
Provides for interactions with persistent collections of cluster
objects.

§ Similarity Method
SimilarityMethod is an abstraction over comparing two ClusterRep
(vector space representation) cluster objects. To add a new
SimilarityMethod, one needs to do the following:

1. In ClusterParam.hpp add a symbol for the new method in

the simTypes enum.
2. In ClusterParam.hpp add an else if to test the

simTypeString for equality with the new method type
parameter.

3. In SimFactory.hpp add an include statement for the new
method's header file.

4. In SimFactory.hpp add a case for the new method symbol
to makeSim that makes an instance of the new method.

5. Recompile your Lemur library.
(http://www.cs.cmu.edu/~lemur/3.1/cluster.html#applicatio
n)

o Instructions:

a. Indexing

Index the data to be clustered as described in the previous sections.

b. Clustering Parameters

The parameters for clustering must be specified as follows:

<parameters>
<index>/path/to/your/index/file</index>
<clusterType>centroid</clusterType>
<docMode>max</docMode>
</parameters>

The cluster type tag specifies the type of clustering to be performed.

c. Command for clustering

The command for clustering using the Lemur Toolkit is:

Cluster centroid_cluster.OfflineCluster.xml >
centroid_cluster_last.log

where the centroid_cluster.OfflineCluster.xml file contains the
parameters described in the previous section and
centroid_cluster_last.log is the file to which the output is written.

Ø Relationship to Chapters from the textbook

Lemur uses some of the concepts described in the IR textbook Chapters 6, 7
and 12 like:

o Word stemming
o Stop words
o Tokenization
o Ad hoc retrieval (TFIDF, Okapi, and InQuery)
o Language modeling
o Relevance feedback
o Structured query language
o Wildcard term matching
o Query-based sampling
o Document clustering

o Simple Text processing

10. Resources

Required reading for students

• Manning C. D., et al. (2009). Chapter 12. Language models for information

retrieval. In Introduction to Information Retrieval. Cambridge University
Press.

• Manning C. D., et al. (2009). Chapter 9. Relevance feedback & query

expansion. In Introduction to Information Retrieval. Cambridge University
Press.

• Manning C. D., et al. (2009). Chapter 11. Probabilistic information retrieval.

In Introduction to Information Retrieval. Cambridge University Press.
• Manning C. D., et al. (2009). Chapter 16. Flat clustering. In Introduction to

Information Retrieval. Cambridge University Press.

• Manning C. D., et al. (2009). Chapter 17. Hierarchical clustering. In
Introduction to Information Retrieval. Cambridge University Press.

Recommended reading for students

• Lemur web page http://www.lemurproject.org/
• Lemur wiki page http://sourceforge.net/apps/trac/lemur/wiki
• Lemur Toolkit Documentation

http://www.lemurproject.org/doxygen/lemur/html/index.html

11. Concept map

Figure 5: Lemur concept map

12. Exercises/Learning activities

TRECEVAL	
 is	
 a	
 program	
 to	
 evaluate	
 TREC	
 results	
 using	
 the	
 standard,	
 NIST	

evaluation	
 procedures.	
 The	
 dataset	
 used	
 for	
 solving	
 the	
 exercise	
 questions	
 given	

below	
 is	
 a	
 part	
 of	
 the	
 TRECEVAL	
 dataset	
 from	
 CD-­‐1.	
 It	
 contains	
 a	
 set	
 of	
 articles	

from	
 various	
 technical	
 journals.	

Mr. David is a data analyst, whose primary job is to keep track of the content
being published by the technical magazines and to report any interesting
observations he finds. Mr. Davis is currently using the Lemur Toolkit for his
work.

1. Mr. David would like to study the Microsoft vs. Apple trend and see
which of these two companies has more coverage in the magazines. But
Lemur offers multiple ways to analyze the data present:-

i. Simple TF-IDF
ii. TF-IDF with feedback retrieval
iii. Simple Okapi
iv. Language Modeling with various smoothing methods like JM
Smoothing and Dirichlet Smoothing

Your duty is to run each of these methods in Lemur, which will help him
in his study.
(HINT:
Step 1: Index the data provided in the collections folder.
Step 2: Run each of the methods from i. to iv., with the query term as
‘Microsoft’.
Step 3: Repeat Step 2, with query term as ‘Apple’.
Step 4: Compare results in Steps 2 and 3.)

2. Mr. David wants to study all the articles published by PC Magazine.
Use the Language Modeling feature available in Lemur to help him
retrieve all the articles published by PC Magazine.

3. Matzkin is considered one of the most popular technical writers of the
current era. Help Mr. David to locate the articles written by Matzkin.

4. Your final task if to help Mr. David to cluster all the articles available
from the TREC EVAL data set provided to you. Use the centroid
clustering method.

13. Evaluation of learning achievement
At the end of this module, students must understand the working of the Lemur
Toolkit. They must be able to formulate queries, execute searches, cluster
documents, and evaluate the results.

14. Glossary

• Collection: A group of items, often documents.

• Feature: Information extracted from an object and used during query
processing.

• Index: A data structure built for the documents to speed up searching.

• Information Retrieval: Part of Computer Science that studies retrieval of

information (not data) from a collection of written documents.

• Metadata: Attributes of a data or a document.

• Query: The expression of the user information need in the input language
provided by the information system.

• Relevance feedback: An interactive process of obtaining information from the

user about the relevance and the non-relevance of retrieved documents.

• Language Model: A statistical language model assigns a probability to a

sequence of m words by means of a probability distribution.	

• Cluster: a grouping of a number of similar things

15. Contributors

a. Iccha Sethi
b. Serdar Aslan
c. Dr. Edward Fox

Information Storage and Retrieval CS 5604
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061 USA

