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Chapter I

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Many modern aircraft and missiles designed for supersonic
speeds employ highly swept, low-aspect, delta and delta-like
wings with sharp or thin edges. Within the flight envelopes
of such wings are conditions of subsonic speeds and high
angles of attack. To accurately predict the aerodynamic
characteristics under these conditions has been a
long-standing problem. One of the principal features of
high-angle-of-attack aerodynamics 1is that the 1lift and
pitching moment are no longer linear functions of the angle
of attack. This is partly attributed to the separation of
the flow from the leading edges of the lifting surfaces.
This separation is responsible for the formation of a vortex
sheet that rolls up above the wing and contributes to a
strong spanwise, or crossflow, compcnent of velocity on the
upper surface. Therefore, a very favorable pressure cgradient
is generated, which greatly reduces the tendency of the
boundary layer to separate from the surface of the wing.

This makes it possikle to fly at high angles of attack



without aerodynamic stall. Also, the strong spanwise
component of velocity greatly increases the speed on the
upper surface and thereby is responsible for a significant
contribution to the 1lift. The actual lift can be more than
twice as much as that predicted by a linear aerodynamic
theory that fails to account for leading edge separation.
The purpose of the present work is to develop a method to
predict not only the total and distributed aerodynamic loads
but also the vorticity fields on 1lifting surfaces having
sharp-edge separation in a steady, subsonic, and inviscid
flow. The 1lifting surface is not restricted by aspect
ratios, angles of attack, planforms, or camber. In order to
achieve this purpose, continuous vorticity panels have been
placed on the wing. Also, the shapes of the wakes emanating
from the sharp edges of the lifting surfaces and the vortex
cores in the wakes have been obtained as part of the

solution.

1.2 LITERATURE REVIEW

From the very beginning of the exploration of the flow
over slender wings at large angles of attack the
experimental work has exhibited the nonlinear aerodynamic
characteristics over the angle-of-attack range. These

nonlinear relationships were found by many experimentalists.



These experimental studies of the vortex sheet separating
from the sharp edges of slender wings revealed at least
three distinct cores and 1lines of separation in the
flowfields. The flows leaving the sharp edges from the upper
and lower surfaces of the wing form free-shear layers. The
separated free-shear layers joining the leading edges of the
wing roll up spirally to form two wvortex cores above the
upper surface of the wing. This is known as the primary
vortex; it has the dominating effect on the nonlinear
relationship between the total aerodynamic load and the
angle of attack.

Due to the leading-edge vortices the flow at the wing
surface is directed outwards. A small secondary vortex is
formed by the steep pressure gradient between the minimum of
pressure and the leading-edge. The secondary vortex rolls up
spirally in anopposite sense to that of the primary vortex.
In the range of moderate to large angles of attack, <the
strength of the secondary vortex core was found to be much
smaller than that of the primary core.

The third vortex core and separation line may occur
between the lines of secondary and primary separation. The
tertiary vortex is relatively very small.

Maskell (1], and Peckham [2] found that the shape and

strength of the primary vortex are relatively independent of



Reynolds number. This relative independence of the viscous
effect suggests that the flow field can be analyzed by using
an inviscid model.

The earliest attempt to describe gqualitatively the
vorticity distribution in a delta wing with leading-edge
separation is due to Elle and Jones [3]. They mentioned
that the leading-edge vortices are much stronger and move
inboard at high angles of attack so that the flow pattern is
dominated by the separations. As a result, the vortex lines
run spanwise for a short distance on either side of the
centre line and then turn forward almost through 90 degrees.
Before the vortex lines cross the leading edges, they nearly
turn through a right angle. The vortex lines cover the
triangular regions near the wing tips by crossing the
leading edges and the trailing edge. This vorticity
distribution is shown in Fig. 1. Mangler and Smith [4] found
that the strength of the resulting reversed trailing
vorticity is about 15 per cent of that of the leading edge
vortex. A detailed comparison between laminar boundary-layer
and turbulent boundary-layer theory for the vorticity
distribution con the upper surface of a delta wing has been

\43]. It

distributions calculated by using inviscid models should be

made by Hummel suggests that the pressure

compared with the experimental results corresponding to a

turbulent boundary-layer flow.



Francis and Kennedy [6] investigated the nature of the
near surface bound vorticity distribution for rectangular
wings. They found that the vortex lines leaving the surface
layer at points of separation interact with one another and
roll up to form spiral shaped vortices whose evolution is
dependent on the local tip geometry and orientation. The
general shapes of the array of the vortex lines is
qualitatively .similar to that hypothesized in Prandtl
lifting-line theory [7].

For an-exhaustive review of the linear approaches, the
reader is referred to the articles of Ashley and Rodden [8},
and Belotserkovskii [9].

A very early nonlinear theory for rectangular wings was
presented by Bollay [10]. He studied the case of rectangular
wings with aspect ratios less than one. Although his method
gives good results, it cannot treat the case of slender
wings with arbitrary planform. Later, Gersten [ll] assumed
that the free vortex lines leave the wing outside the wing
plane in his nonlinear theory for slender wings having
general planforms and arbitrary aspect ratiocs. However,
this method cannot describe the detailed flow situation so
that the: pressure distribution cannot be predicted.

The leading-edge suction analogy presented by Polhamus

[12] provides a method suitable for calculating the



nonlinear aerodynamic characteristics of wings with pointed
tips and side edges. The suction analogy assumes that the
normal force needed for the flow around a leading edge to
reattach to the wing is equivalent to the leading-edge
suction force required to maintain the flow attached to the
leading edge in an unseparated condition. The unseparated
leading edge suction force is calculated, and is then
rotated normal to the wing to obtain the lift contribution
of the leading-edge vortex. The overall characteristics of
slender wings can be calculated with remarkable accuracy,
but the flow field details and detailed surface pressure
distributions cannot be obtained.

Several attempts had been made in the past toward more
realistic representations of the physics of the vortex
formation by Legendre [13], Brown and Michael [14], Mangler
and Smith [15], and Smith [16]. In all these methods the
assumption of conical flow is used. These models are able to
predict gqualitatively the type of pressure distributions
that had been observed experimentally. They overpredict the
experimental load distribution by a considerable amount
toward the trailing edge because the conical theory does not
satisfy the Kutta condition at the trailing edge and does
not account for the deformation of the leading-edge vortex

sheet in the chordwise direction. Many experimentalists such



as Marsden, Simpson and Rainbird {17], and Hummel [18,19]
have shown that the flow over swept wings with leading edge
vortex separation is nonconical. Therefore, in later years
conical flow methods were followed by fully
three-dimensional techniques to calculate the nonconical
flow and to fulfil the Kutta condition at the wing
trailing-edge. There are three types of methods to treat
nonconical, fully three-dimensional flow around wings with
leading edge separation, namely, single line vortex methods,

multiple line vortex methods, and vortex sheet methods. A

el sl nboetet el e
brief discussion of each is presented below.

Nonconical single line vortex methods are due to Nangia
and Hancock [20], and Matoi, Covert, and Widnall [21]. They
attempted to satisfy the zero-locad, trailing-edge condition
on a delta wing in the presence of a separated vortex sheet
from the leading edge of slender wings. These spiral vortex
sheets from the leading edge are replaced by two
concentrated line vortices of variable strength with two
feeding "cuts" between the line vortices and the respective
leading edges. They developed a numerical collocation
method, in that the vorticity distribution is described by
continuous functions with unknown coefficients. The

leading-edge vortex location 1is similarly described by

functions with unknown cocefficients. These unknowns are



found by satisfying the downwash condition and the no-force
condition on the leading-edge vortex representation. Due to
the nonlinear nature of the boundary conditions with respect
to the vortex position, the solution is obtained from an
iterative scheme based on Newton's method. They showed that
the main features of the loading predicted by the theory tie
in encouragingly with the experimental trends.

In the area of the multiple line vortex methods (or
ncnlinear vortex-lattice methods), Belotserkovskii [22]
developed a method to calculate the aerodynamic loads on
wings with tip separation. The wing is replaced by a vortex
lattice and the wake by a finite number of discrete-vortex
lines. Each discrete-vortex line consists of a finite number
of straight finite segments and one semi-infinite straight
segment. Then, through an iteration procedure, the finite
segments in the wake were made parallel to the velocity at
their midpoints. He showed that the method gives good
results in predicting the total and distributed loads on
rectangular wings at large angles of attack. Following
Belotserkovskii, Mook and Maddox [23] demonstrated the
feasibility of using a discrete-vortex concept to model the
steady flowfield past delta wings. To simulate the
leading-edge wake, they added a system of discrete,

nonintersecting vortex 1lines to the conventional vortex



lattice employed by Giesing {24] and co-workers. Each line
of the system was composed of a series of short straight
segments and one (the last) semi-infinite segment. They
adjusted the position and orientation of each finite-segment
until it was force-free through iteration. These lines then
modeled the force-free vortex sheet generated by the
leading-edge separation. Subsequently, Kandil [25], and
Kandil, Mook, and Nayfeh [26] refined this approach and, for
several cases, compared the predicted results with
experimental data. They found very close agreement for lift
and moment in every case. The approach is not limited by
aspect ratioc, planform, camber, thickness, or angle of
attack as long as separation--occurs only along-the sharp
edges and vortex bursting does not occur-near the wing.

Atta [27], and Atta, Kandil, Mook, and Nayfeh [28,29]
extended the approach to treat unsteady flows past
rectangular wings. Subsegquently, Thrasher, Mook, Kandil and
Nayfeh [30], and Thrasher [31] refined the approach to treat
flows past rectangular wings executing arbitrary maneuvers,
while Kandil, Atta and Nayfeh [32], and Atta [33] refined
the approach to treat‘ flows past delta wings executing
arbitrary maneuvers. Similar approaches were +taken, for
example, by Belotserkovskii and Nisht [34], Summa [35], and

Rebach [36]. Later the general unsteady method was modified



to treat small, harmonic oscillations around an arbitrary
constant angle of attack by Nayfeh, Mook and Yen [37]. It
was further refined by Konstandinopoulos [38].

Johnson [39] and collaborators developed a vortex-sheet
method (or doublet-panel method) which employs rectangular
panels of doublets. In this method, the configuration
surface is represented by source and/or doublet singularity
panels, and the rolled-up vortex sheets and wakes are
represented by doublet panels alone. The free sheet and wake
are aligned with the 1local flow. The fed sheet is an
entirely kinematic extension of the free sheet and the size
of the fed sheet is chosen by experience or from the conical
flow results of _Smith _[16]. The strength of the
singularities as well as the shape and position of the £free
vortex sheets are computed iteratively starting with an
assumed initial geometry. During the calculations they
encountered convergence problems in many cases and
overpredicted the lift coefficients for high aspect ratio

wings.
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1.3 MOTIVATION FOR THE PRESENT WORK

Although the vortex-lattice technique yields the total
loads accurately, it does not always lead to accurate
predictions of the pressure distribution unless a very large
number of elements is used. However, the increase of the
number of elements causes close interaction among the
concentrated vortex Llines during the iteration procedure
which 1is responsible for the difficulties 1in achieving
convergence in the wake due to the strong algebraic
singularity associated with the Biot-Savart law. Also, it
requires substantial computational time to achieve
acceptable accuracy if the solution converges. As a result,
the natural extension and expansion of the vortex lattice
technique byﬂgeplacing the lattice of discrete vortex lines
with a continuous distribution of vorticity are needed to
improve these shortcomings.

The doublet-panel method projects the actual panel onto
the plane defined by the centroid of the four corners and
the normal vector obtained from the cross product of the two
vectors connectingthe mid-points of opposite sides. (With
the present method, triangular panels are used, and hence
approximate plane panels are not needed.) Because the
doublet distribution is specified over an approximating

panel instead of the actual panel, the procedure for
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evaluating the velocity field must consider the transfer of
the integral from the approximating to the actual surface.
(With the present method, such a transfer is not needed.)
Moreover, the doublet-panel method has convergence problems
in many cases. This difficulty in obtaining convergence is.
due to the inability to satisfy the continuity of the
derivatives of the doublet strength across the edges of
adjoining panels. Although Johnson et al. [40] later
improved the method by developing a simple least-squares
penalty technique to damp the instability that causes the
divergence, they were forced to prescribe the orientations
of the panels in the fed sheet and the "fixed design wake".

Thus, the desire to accurately predict the aerodynamic
characteristics under the conditions of subsonic speeds and
high angles of attack with highly swept, low-aspect, delta
and delta-like wings and to overcome the drawbacks and
disadvantages in the vortex lattice and the doublet panel
methods mentioned previously provide the motivation for the
present research work. Therefore, a continuous-vorticity
panel method has been developed and is presented in detail
in Chapter II.

In Chapter 1II, the basic continuous-vorticity panel
method for incompressible flow is introduced to predict the

steady aerodynamic loads on lifting surfaces having
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sharp~-edge separation. Triangular panels with linearly
varying vorticity are used. The velocity field generated by
an individual element is obtained in closed form and an
optimization scheme is constructed for finding the vorticity
at the nodes of the elements.

In Chapter III; the panel arrangement for delta wings and
the numerical procedure for obtaining the solutions are
presented. We also present the computational results and
compare them with available experimental data and numerical
results for the purpose of examining the validity of this
model.

In Chapter IV, we apply the present method to calculate
the steady aerodynamic loads on rectangular wings. The panel
arrangement and the numerical procedure used to solve this
problem are also presented. Computational results are
compared with available experimental data and other
numerical results for both high-aspect-ratio and
low-aspect-ratio rectangular wings.

In Chapter V, some conclusions and recommendations
concerning further extensions and modifications of the

present method are presented.



Chapter 1I1I

FORMULATICN OF THE PHYSICAL PHENCMENON

2.1 GENERAL

The problem of airflecw around a thin, finite wing which
moves in an inviscid, incompressible fluid by using the
continuous-vorticity panel method is studied. As the wing,
or 1ideally the 1lifting surface, moves, it creates a
disturbance and sets the air in motion. As a result,
vorticity is generated in the boundary layers on the urpper
and lower sides of the lifting surface. The vortices that
form along the sharp edges are shed and convected away from
the wing, and constitute the wake. The wing can be simulated
by a bound-vortex sheet across which a finite pressure
difference exists and hence upon which a force acts. The
wake can be simulated by a free-vortex sheet because its
position is not specified and the pressure jump across it
does not exist.

The total velocity field generated by the vortex sheet
must satisfy the continuity eguation, which for an

incompressible fluid is

v-V=20 (2.1)

14
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subject to the following boundary conditions:
1. The disturbance created by the wing must die out with
increasing distance away from the wing and its wakes.

Hence,
|V| -0 away from S, ¢ and Sw

where S g denotes the area of the lifting surface and
Sw the area of the wake.

2. The fluid particles cannot penetrate the surface of
the wing; thus, the normal component of the relative

velocity must vanish at the wing surface. That is,
(\7 - ‘7[_3)'1—"!.:0 on SLS

where V is the velocity of the fluid particle, VLS is
the velocity of the lifting surface, and n is the
unit vector normal to the surface.
In addition to the boundary conditions, several cther
conditions must also be satisfied:

1. The vorticity field must be divergenceless; hence,
div (4 ) = div ( curl V ) = O.

2. The Kutta condition must be satisfied along the sharp
leading and trailing edges of the wing. This
condition requires that the pressure jump across the

lifting surface vanish at the edge.
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3. For an inviscid fluid, the Kelvin-Helmholtz theorem
requires that all vorticity be transported with the
fluid particles. This condition forces a force-free

wake and is used to obtain the position of the wake.

2.2 DESCRIPTION OF THE CONTINUOUS-VORTICITY METHOD

This section presents the panel development. The goal is
to derive an expression for the induced velocity at an
arbitrary point in the space due to an assumed vorticity
distribution on the panel.

The first step in panel development is the definition of
panel geometry. Kelly [41] examined different shapes for
the elements of the lattice on the lifting surface and found
that rectangular elements give the best results. Hence, the
rectangular element is assumed. Each rectangular element is
then divided into four triangular elements. All four corners
of a rectangular element do not, in general, lie in the same
plane. As a result, the method is not restricted to planar
lifting surfaces. For each triangular element, a local
rectangular Cartesian coordinate system is introduced such
that the x-axis and z-axis lie in the plane of the element.
Referring *to Fig. 2, the three corners of a typical
triangular element are labelled 1, 2, and 3 according to a

clockwise convention. The origin of the local reference
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frame always coincides with 1. The coordinates of the other
two corners are denoted by corresponding subscripts. The
velocity field is first calculated in this local reference
frame and then transformed into the global reference frame.
Three local, planar, shape functions are introduced and

defined as follows:

£, = a8 + b T + 1 (2.1a)

£, = a5t + byt (2.1b)

f3 = azg¥l + byt (2.1c)
where

ay = (¢3-%, )/D, by = (&, -%3 )/D (2.2a)

a, = -{3/D, b, =&3 /D (2.2b)

az; ={, /D, by = -8, /D (2.2¢)
and

D =88, -%,(3 (2.24)

Thus, the function £, has the values of unity at 1 and zero
at 2 and 3, the function £, has the values of unity at 2 and
zero at 1 and 3, while the function f3; has the values of
unity at 2 and zero at 1 and 2.

We represent the vorticity of the vortex sheet as

follows:

@ =a,1 +0, k (2.3a)



where

0

x = Xqfq + Xpfy, + Xafg (2.3b)

Q,

|
N
I
+

Zofy + Zgf, (2.3c)

and the X, and Z, are constants, the basic unknowns in the
problem. They represent the X-component and Z-component of
the vorticity at the corners, or nodes, of the elements.

The X, and the Zpj are not independent; it follows from
diva =0
that

(2.4)

M
!
:pq
o
N

We refer to Eg. (2.4) as the conservation egquation. The
control point for each triangular element is defined to be

the centroid of its corners.

2.3 VELOCITY EFIELD GENERATED BY VORTICITY DISTRIBUTED OVER
A TRIANGULAR PANEL

The velocity generated at an arbitrary point P by the
verticity distributed over one of the elements is given by

(e.g., Karamcheti [242])

7= Curl fo(S)dC’ (2.5)
Ir -
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where o is the area of the element, ¥ = xi + yT + zk is the
position vector of point P, and § = {E + k is the position
vector of a point in ¢ . Substituting Egs. (2.3) into Eq.

(2.5), we obtain

3
v T b g . -
v = Curl n; ('(nl, + an)gn(x'y“) ( )
where
B - lmra Lo +b I, + (35 +ax+b 2)l 5 o
n 47 -%pt! n'? n anx nz 3] (2.7)
hyz) = ff%&d—“ (2.8)
a
Lo (x,y,2) =ff LL'_'Z'E@_; (2.9)
) (2.10)
‘ s(x,y,2) =ff d_f_i‘z
and
G
rhE g - x)F eyt (g )
Substituting Eqg. (2.7) into Eqg. (2.6), we find
3 ¢B,_
' "z‘ nEy (2.11)
; » 8, | (2.12)
Vo= I l% =T - I, 5y
Y= [n g n a)(--i
3 8 (2.13)
3
/o= -] X i}
- n=‘ n .)y
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It follows from Eg. (2.7) that in order to obtain the
three partial derivatives of the B, we need the following

ten quantities:

‘o
IH
IH
(V)
—y
9]
—
~
QJ
——
[~
Qi
"
L3
Q.
—
Ed
Q
—y
-
o9 |
r—

k|

, and I;
b4

Y]
>
-
s
<
-
~N
-
|
.
>
<
-
[

In the next three paragraphs the expressions for these ten
quantities are developed.

Referring to Fig. 3, we can write

J‘c E:E-C+a i:;__zlﬂéﬂE. J‘ [(a - X + ; a c)« 3 yz + (C - Z)2]1/: d;
I, =
0

(2.14)
f[ - x)T 4yt (g - 7)) /zdg

Differentlatlng Egq. (2.14) and then integrating the results,

we obtain the following

aly Loy, a'b . +P.
Ix (7 a)H; + ( )Hz (H] Hl. (2.15)
al, - ulu. - (2.16)
3y y(da Hx)
2.17
iy -y + 2( - Hy) (2.17)
where

C
q‘—f [fa - x+ 2 L)t eyt e (g -2 0

0

. 2n<C“!1 - wis * YAy r-) (2.18)

Yo ',a—l_lrl‘a

*C . 2 s 2.19
H,=j [(@a-x+— ;) vyt (2.12)

0

+ ]/: -d(-—J—-ﬁd—n‘
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- —‘ -
T R S L e
v
— 2.20
- 1 (Cg-.y - az; * rag r‘:) ( )
V(‘I.z; \ vQ-l ry = 422
1
H..sf [( +y2+( -2/ g _
(2.21)
_2__...\.+_3.1.H3
2y a2y
\ 2.22
PUs (x4 oy s z:)l/z ( )
- , 1
ra = [(b - x)% + y2, (¢ - 2)?] /2 (2.23)
rr = [{a-x)?+ y2 o+ Z:]"/: (2.24)
- b - a)? (b - a){a - x)
an '“Lc"_' @1z =2 - c (2.25)
= b2
@;‘l']"?' azz=z+%‘.
Again referring to Fig. 3, we can write
oo [ 7 s
(e-alc
+faf b-a (g - z)dedE (2.26)
b vQ r
Integrating once, then differentiating the results, and
finally integrating a second time, we obtain
Ma s p, v xFy 4 ry -y - Fy b xFL
X (2.27)
22 y(F - By R (2.28)
ay
al, C ac - .
e = zf - g e - 2Fy (T 2)F + 3 S—F, (2.29)

where
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f (g - 0t +yf v (o0 g

a (bGLL' 12 + /By r. ) (2.30)
’311 Ciy ry - 312
b
= - . c <!
J; (5 - x)2 + 57+ (B2 - )21 /2 g
= -r L B (2.31)
81 B, !
: +
F;=I ({5 - x)” +y* + 2¢7 /2 d = in _’-;_X- x".x
‘ (2.32)
Jr ((g - x)* + y? + (5 C ¢ - )ZJ-X/: .
b -} 4 dg
3-4::.N1§§LL‘ Br0 ¥ jfl_ra (2.33)
vB2) BB2; - Ba2 F B2y Iy
a -
F"f [(5 - )2 = y2 + (g5 e - 2] U1 eag
° (2.34)
= r’ - r" e 3?2 Fu
T Bn 22 :
: €2 a2+
81 = 1 %— 312 = X'FE— B2 1 'TE—TETT' {(2.35)

ac c
322 xr (2 g3) g
To develop I3 and its derivatives, we follow Hess

Smith [43]. They show that

Iy = hiaQiz + hyiQas + haiQyy + y] (Jiz *das +d5y -}X}AS) (2.
. C
where
Q = In(r’ * rJ * d’J
1] \T; *r.-d,.
o U (2.
-
Pl (2) _ (1)
RO Bl AN e e A (2.
H r.r.h?. 21(!)1§?7

and

36)

37)

)

8)
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The gquantities fi are defined in Egs. (2.22)-(2.24). The
remaining quantities (dii , hyo, 12), and zﬁ)) are defined in
terms of the coordinates of the nodal points of the
triangular area ( &4= {4 =0; & = b and {; = ¢, and &3 = a
and {3 = 0):

(1)

gt By - xICy (g - 2)Sy; (2.39)
(2) _ p . -z
1y \gJ. x)Cij + (cj L)S1J (2.40)
E.} = E1
ij T (2.41)
J dij
Cﬁ = ;‘i
S:; = ——— (2.42)
iJ dij
dij =/(Ej 'E.i)" "’(CJ- ‘Ci)T (2.43)
h.. = (x - £.)5.. - -
i T oS- AL (2.44)
Finally,
2% 1f the projecticn of P onto the plane
Ao =

of the triangle lies inside o

0
otherwise (2.45)

It can be shown [43] that

2.46
%%L= S12Q12 + S25Qz3 + S1iln ( )
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%LL = -sgn{y) (a8 - Jyz - Js3 - Jd1)
y (2.47)
ol . -C12Q12 - C:3Q23 - €3:Q5. (2.48)

[-Y)
N

One example of a closed-form expression for the velocity
generated at an arbitrary point P by the vorticity

distributed over a triangular panel is given in Appendix C.

2.4 VORTEX CORES AND SEMI-INFINITE PANELS

In addition to the triangular panels described in Section
2.2, vortex cores and semi-infinite panels have been used to
represent moré realistically the physics of the vortex
formation. In this section, we describe these and develop

expressions for the velocity fields they generate.

A. Vortex Cores

In Fig. 4 we represent a flat sheet of linearly varying
vorticity, being fed by a straight vortex core alcng its
edge. rM(x) is the variable circulation around the core and
v(x) is the continuously varying product of the vorticity
and the thickness of the sheet. Since vorticity is a

divergenceless field, we have

dgﬁ s nde =0 (2.49)

o]
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where ¢ is a simple closed surface, O is the vorticity, and
n is a unit vector normal too . Applying Eg. (2.49) to an

infinitesimal length of core in Fig. 4, we obtain

g_;', ~v(x) (2.50)

In the present application, Y(x) is always linear; thus,

vy has the form

-y = Ax + 8 (2.51)

where A and B are constants. It follows that

rs g AXT v Bx 4 g (2.52)

where C is the constant of integration.

Referring to Fig. 5, we note that the velocity generated

at point P by the action of the vortex core alone is [42]

¥ = m " sing dB (2.53)
9
where
§.2xh
la x Y'l!

and W is a vector parallel to the vcriex core.

Substituting Eg. (2.52) into Eg. (2.53) yields

- 3 62 '
Vo s ! (; Ax? + Bx + C)sing dg (2.54)

4wh Jol tg
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X can be represented as a function of e:

x = T - heots (2.33)

After substituting Eqg. (2.55) into Eq. (2.54) and

integrating, we obtain
"-é 1 2 a : . .
1= gop 7 Arifcos2e (cos8, - casé:) + sinZe,(sine, - sing,)

] - 8,)sing 5
ts - cosZel)Zn(E} - 2329;3:;:6;)} + 8r (1 - cos(s, - €;2)]
(2.56)

+ C{cos8, - COSGZE}

B. Semi-Infinite Panels

Here we consider semi-infinite panels in which the
vorticity varies linearly and is parallel %o the length. The
situation is represented in Fig. 6. We develop expressions
for the derivatives of the Bn by considering the limit as
the coordinate a in Fig. 3 approaches infinity.

It follows from Egq. (2.2) that as a -> o

3. =0 for all n (2.57)

and

1
i~ -2, b, %. and b3 -0 (2.58)

’ ’

and hence from Eg. (2.7) that
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! 2.59
Bn i [anz + (Jln. + an)Il] ( )

In order to develop expressions for the derivatives of the

B,, the following seven quantities are needed:

S &

o
o
3
I
&
|

The expressions for the 1limits of these gquantities are
developed next.
It follows from Eg. (2.22)-(2.24) that as a increases,

ry and r, remain unchanged and
(2.60)

3 =43 -x+ .

(We note that a is always positive.) From Eg. (2.35) we

find that B4; and B4 remain unchanged while
Bay = 1 and 822 = x (2.61)

Hence F; and F; remain unchanged while

23
F;#ln(——rl = X) (2.62)
Fo = 2n(p—2d— ) (2.63)
‘ b - X *r,
P 2a (2.64)
sTasxd xuﬂb - x + rz)

Substituting Egs. (2.62)-(2.64) into Egs. (2.27)-(2.29)

vields
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o - Fr-ry (2.85)
s .ot - X

3y y(F, + Jn(m)] (2.66)
3l

azz = ¢+ zF, - % F; + zan(ry - x) (2.67)

- (z-c)in(b + r, - x) - c2n(2a)
It follows from Egs. (2.37) and (2.38) that Q4, and

Jy2 remain unchanged while

Jag » tan-‘[ig - )lvi(b - x - Pz)]

ra(z - ¢)7 + y¥(b - x) (2.68)

a tan-ir2lyliry + x) 2.69
Jair > tan [ 2 - m i~J ( )
- In(—23 2.70
Q23 ?-ﬂ(‘,.2 o — x) ( )
~ pn(-—-223 2.71

Q1 ln(rl - x) ( )

Substituting Egs. (2.68)-(2.71) into Egs. (2.46)-(2.48), we

obtain
[
%;l - 512Q:.
(2.72)
s+ sqnly) (a8 - diz - )
ay - TS9n(yia8 - Jiz - Jay - o) (2.73)
al r- +b - 2.74
;ZJ = =Ci2Qy2 + 2"(-‘;T—71;J£) ( )
And from Eg. (2.36) we obtain
l3 = hya + (2 -¢lin +b -~
12Q4 2 ( Jan(ry + b - x) (2.75)

- zan(ry - x) + cin(2a)

+ ‘yt(\-}lz + Jz; - J;x - ;‘.9)
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Differentiating Eq. (2.59) and then substituting Egs.

(2.65)~(2.67) and (2.72)-(2.74) into the results, we find

that r
lim (iﬁﬂ) . (b (xF: - F.xf// )
dow X g LEpttTe 2°= T
+-(éxn + bn2)51201:] (2.76)
tin (28 = L g D= X
lim (5 = (b y(F + 7»"(W—x)]
(2.77)
- 59“(3)(51n + an)(iQ = diz = dz3 - dn)}
]m,(fEﬂ‘: l«(b ¢
w32 T T ale * 2P - TP 4 haQue (2.78)

+ yl(dis + Jay +# gy - 28)]

r:. +bh - 1
+ (8 _+ bnz)[ln('37i—ff—‘is) - Ci2Qi2 1}

\n X

2.5 DETERMINATION OF THE VORTICITY

fter knowing how to obtain the induced velocities in
terms of the closed-form expressions mentioned above, we are
ready to find the values of the vorticity components at the
corners of the triangular elements by satisfying the
no-penetration boundary condition, the conservation
condition Eg. (2.4), and the Kutta condition simultaneously.

Ideally, the component of the velocity normal +o the
lifting surface should vanish everywhere on the surface. But

this is impossible with a finite number of triangles to
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satisfy other conditions. In fact, it is impossible <+o
satisfy the no-penetration condition at all the control
points simultaneously. Thus, we resort to a scheme that
finds the vorticity distribution corresponding to a minimum
of some measure of the flow through the lifting surface and
satisfying the conservation and Kutta conditions as
constraints.

We begin by calculating a set of influence coefficients
that provides the normal components of the velocities at the
control points of triangular elements on the lifting surface
generated by the shape functions of all the triangular
panels, semi-infinite panels, and the concentrated vortex
cores. Using these coefficients, we can set up an influence
coefficient matrix A, for the vector of unknown components
of the ~worticity U, such that A, U, the vector of
contributions from the free stream V, and the vector of
normal components of the velccity E at the conirol points

are related by

AU+ =€ (2.79)

The vector E may be interpreted as a deviation vector from
the no-penetration boundary condition. This is discussed in

detail in Appendix A.
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The present scheme determines U such that the square of a
weighted magnitude of E is a minimum, subject to the
constraints imposed by the conservation and Kutta -
conditions. To obtain the quantity that is to be minimized,
we pre-multiply both sides of Eg. (2.79) by the product of

the transpose of E and a symmetric weighting matrix, W:

WAWAU + UAWV + VWAU + VWY = EweE

Since each term 1s a scalar, each term equals its own

transpose. We have

T,T

uaTwau + 2vTwau + vTwv = ETiE = 5 (2.80)

Then the method ¢f Lagrange multipliers is used to form the

augmented function ®,:

T

dp =4+ ALY+ AT (2.81)

kKU
where A, and Ax are the vectors of Lagrange multipliers, and
the matrices C and K are used to express the conservation

condition
Cy =20 (2.82)
(see also Eg. (2.4)) and the Kutta condition

K = 0 (2.83)
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For the Kutta condition, we require the pressure jump
across the lifting surface to vanish at the edge. It then
follows that the vorticity and velocity fields should be
parallel along the edge. To impose this condition of
parallel fields requires an iteration in addition to that
required to locate the wake. However, from the
experimentally determined vorticity fields of Hummel [5],
and Francis and Kennedy [6], and Elle and Jones [3], it
appears that the vortex lines are orthogonal to the edges
where the Kutta condition is imposed, i.e., to the edges
where wakes are attached. Thus, we require the vortex lines
to be orthogonal to these edges.

The details of the present optimization scheme are given
in Appendix B.

Then the vectors U, A, and A are found by solving the

following simultaneous algebraic equations

v T (2.84)
A = 0

oo = 2T + 24T + chc + K

and Egs. (2.82) and (2.83). After these equations have been
solved, we can calculate the pressure distribution and the

resultant loads.
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2.6  CALCULATION OF LOADS

After the vorticity at the nodes and the shape of the
wake have been obtained, the loads are calculated. To
calculate the loads, we first need to find the velocity
generated at the control point by the free stream and all
the panels of vorticity; this is labelled V. The jump in the

tangential velccity across the vortex sheet is given by

-

AV = nxQ " (2.85)

where A is the unit vector normal to the surface. Thus, on

the upper side of the element,
vV =v + 1.0 2.86a
Vu V"‘ZAV ( )
while on the lower side

ioav-la (2.860)

Here we are concerned with a uniform stream, having the
speed U, , passing over the 1lifting surface. Then, from
Bernoulli's equation, it follows that, at the control point,

the pressures on the upper and lower surfaces are given by

Pu =P+ g. (u? - v:) (2.87a)

and

- v;) (2.87b)
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The nondimensional pressure jump across the lifting surface
is given by

P, =P V2.2
ACp=]£ i (2.88)
70 - |

Substituting Egs. (2.86) into Eg. (2.88) leads to

acy = 2V - avyud (2.89)

After the pressure 1is calculated, the force on the
triangular element is obtained by multiplying the pressure
jump at the control point by the area. Then the lift force

and the pitching moment can be calculated.



Chapter III

DELTA WINGS

3.1 PANEL ARRANGEMENT

A lattice of lines is placed on a delta wing as indicated
in Fig. 7. This lattice 1is the same one used in the
uniform-element, discrete-vortex technique. Then each
rectangular element is divided into four triangular panels.
Also, the leading-edge vortex sheet is modeled by first
forming a lattice of 1lines as in the general discrete
vortex-lattice method, and then dividing each quadrilateral
element into two triangular panels, as shown in Fig. 7. The
vorticity is perpendicular to the leading edge due to the
Kutta condition and varies linearly across each element. For
example, in Fig. 7, the vorticity is perpendicular to line
AB and varies linearly from point A to point B. In the
wake, the vorticity wvaries linearly (between the same two
values) from point A' to point B', etc. Moreover, the
vorticity in triangle A'A''B' is parallel to line A'A''
which in turn is aligned with the vorticity at the centroid
of triangle A'A''B'. At the end of each row of finite-length

elements in each wake line, we add a semi-infinite panel

35
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with the vorticity aligned parallel to the free-stream
velocity. Because the wake rolls up tightly at high angles
of attack, a concentrated vortex core is also used to

represent the leading-edge vortex core.

3.2 NUMERICAL PROCEDURE

The boundary-value problem of Chapter II iﬁé?nlinear
because the shapes of the separated vortex sheets as well as
the wvorticity distributions over the wing surface and wakes
are unknown. Therefore, an iterative method is required.
Initially, we guess the coordinates of the end points of the
short, straight segments in the 1lines representing the
free-vortex sheets. Then we form the lattice by
connecting@E} ends of adjacent segments in different lines,
and from the lattice we form the triangular panels. The
influence coefficients of the induced velocity at each
control point are calculated for all the triangular panels,
semi-infinite panels, and the concentrated vortex core by
using the closed-form expressions of Chapter II. Then the
values of the vorticity components at the corners of the
triangular panels on the wing surface and in the wake are
determined by minimizing the square of a weighted magnitude
of the deviation vector E from the no-penetration boundary

condition, subject to the constraints imposed by the
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conservation and Kutta conditions. The satisfaction of the
conservation equation in the shaded triangular panels, as
shown in Fig. 7, forces its satisfaction in the unshaded
panels also. The solution of the set of simultaneous
algebraic equations yields the vorticity distribution.

Next, with the known vorticity distribution, we calculate
the velocity at the centroids of each of the triangular
elements in the leading row of the wake. Then we align the
edges of the triangles that form the borders of the leading
row with the velocities at the centroids of the same
triangles. In the remaining rows of elements in the wake,
we calculate the velocity at the centroids at every other
triangular element, starting with the second element in each
row. Then we align the edges of the triangles that form the
rearward boarder of the row with the velocities at the
centroids of the same triangles. Thus the shape and the
orientation of the triangular panels representing the wake
are changed. Also, at high angles of attack the wake rolls
up tightly so that we employ a concentrated core of
vorticity to simulate the leading-edge-vortex core and its
feeding sheet. The procedure for adding a concentrated
vortex core is summarized below

First, we specify the X-components ¢f the positions of

the end points of each of the finite~length segment in the
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first and second wake lines emanating from the leading edge.
Then we compare the Z-components of the positions of the
points in the first wake line with those of the points
having the same X-components of positions in the second wake
line. As the wake rolls up tightly, the second wake line
may cross the first wake line. If this happens, the
Z-component of the position of point A will be larger than
that of point B, which are shown in Fig. 8. Then we make
the panels on the right-hand side of the line AC collapse
into a discrete core. In fact, the line AC and the
semi-infinite line CD is the leading-edge vortex core being
fed by the remaining vortex panels in the wake.

After we relocate the wake, one iterative cycle is
accomplished. Then we redetermine the vorticity field on the
wing and in the wake; and then we relocate the wake. Several
iterative cycles are performed until the shape of the wake
converges. After the vorticity at the nodes and the shape of
the wake have been obtained, the total loads and pressure
distributions <can be <calculated by using Bernoulli's
equation. The details of all the calculations required

above are given in Chapter II.



39

3.3 NUMERICAL RESULTS

In Fig. 9, we compare the vorticity £field observed by
Elle and Jones (3] with that computed by the present method
for a delta wing of 1.87 aspect ratio. The present results
were computed for 15° argle of attack. The precise value of
the angle 0f attack for the observation of Elle and Jones
was not given; they simply stated that it was high
incidence. We note that the observed verticity is nearly
perpendicular to <the leading edge, so we use this
requirement'as the Kutta ccndition for the present mcdel.
The two vorticity fields appear to be consistent.

In Fig. 10, the actual solution of the positions of the
finite segments in the wake for a delta wing of unizt aspect
ratio for 1C° angle of attack is shown in two views. The
converged solution shows the leading-edge core and :i<%s
feeding ree-vortex sheets. As the angle o¢£f attack
increases, the vortex sheet rolls up more tightly. In Fig.
11, the actual solution for the same delta wing is shcwn for
15° angle of attack. Eere we can see <that the first and
second wake lines emanating £rcm the leading edge cross each
cther earlier than those for 10 angles of attack.
Semi-infinite segments and panels are alsc used.

Each component in the deviation vector E measures the

degree of the inaccuracy in satisfying the no-penetration
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boundary condition at the corresponding control peint. The
ratio of the magnitude of the maxi@um component in the
vector E to the free stream speed is denoted by 3. Numerical
examples are given for a delta wing of 1.46 aspect ratio.
The values of » are 0.148, 0.159, and C.195 for the angles
of attack of 10°, 15°, and 20°, respectively. The maximum
component in the vector E always corresponds to the control
point nearest the apex. Our numerical experience shows that
putting a small weight on the corresponding element ia the
symmetric weighting matrix W not only reduces this maximum
deviation (i.e. spreads the errors all over the control
points on the wing surface more evenly) but also increases
the convergence. As a matter of fact, however, these small
deviations do not significantly influence +the calculated
loads in the present method as seen in Eg. (2.89) because AV
is the tangential velocity on the wing surface and hence the
dot product cf ¥ and AV eliminates the T-component of v.

In Fig. 12, the normal-force coeificient is given as a
function of the angle of attack for a delta wing of unit
aspect ratio. The numerical results obtained by the present
method are ccmpared with the experimental values of Peckham
{2] and Tosti [44], and the numerical results of XKandil et
al [26], Weber et al [45], Mehrotra and Lan [46], and Lamar

and Glecss [47] over a range from 0° to 20°. There is fairly
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gocd agreement among the present results, all of +the
experimental data, and the other numerical results. The
effect of increasing the number of rows for the present
method is also shown in this figure. One can see that the
curves based on the lattices having three rows zand four rows
are almest coincident. In Figs. 13-13, the same coefficients
are given as functions of the angle of attack for delzta
wings having various aspect ratios. For 1.46 aspect ratio,
the normal-force coefficients predicted by the present
method compare well with the data of Wentz and Kohlman [48]
and the numerical results of Mehrotra and Lan [46], Lamar
and Gloss [47], and Weber et al [45] in the angle of attack
range from 0® to 20°. For 1.67 aspect ratio, the present
results for normal-force coefficient agree closely with the
exrerimental data oé Peckham (2] and Bergesen and Dorter
[49] and numerical results of Kandil et al [26], as shown in
Fig. 14. The agreement of the present results for 2.0 aspect
ratio with the exrerimental data of 3Bartletit and Vidal [50]
and numerical results of XKandil et al [26] is also goed, as
shown in Fig. 1S.

gs. 1l6-17, we show the variation of the theoretical

e

In ¥

normal-Zorce coefficient for delta wings with aspect ratio
. -] o . -

at fixed angles of attack of 15 and 20 , respectively. The

results predicted by the present method are compared with
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the suctiorn analogy [47] which is known to be a gocd
estimator of the actual nermal-force coefficient. Good
agreement between the present method and the suction analogy
occurs in the range of aspect ratios of 1.0 < A < 2.0.

The pitching-moment coefficient for a flat delta wing of
unit aspect ratio is shown in Fig. 18. The results otbtained
by the present method agree closely with the experimental
data of Peckham (2] and Tosti [44] and the numerical results
of Weber et al [45] and Mehrctra and Lan [46]. In Fig. 19,
we compare the pitching-moment coefficient for a flat delta
wing of 1.46 aspect ratio predicted by the present methcd
with other numerical results and with ekxperimental data. The
agreement of our results with those of Weber et al [45] and
Menrotra and Lan [46] is quite good. The agreement of our
results with the experimental data presented by Wentz and
Kohlman [48] is very good for angles of attack lower than 15?

One of the most important features of the present method
is the ability to compute surface pressure distributicns. A
comparison of detailed pressure distributions are shecwn :in

Figs. 20, 21 and 22. In Fig. 20, the spanwise pressure

ct

distributions for a flat delta wing of asvect ratio 1.46 a

Qo . . .
14 angle of attack are compared with the experimental dat

Y

of Marscden et al [17] and numerical results of Mehrotra and



Lan (48], and Weber et al [45] at two chordwise stations.
The general agreement of our results with +he experimental
data 1is quite good. The present method predicts the
completely three-dimensional non-conical load distribution
very well including the location of the pressure peak
induced by <the vortex core. We also compare spanwise
pressure distributions predicted by the present method based
on two criteria for the formation of the vortex core. One
can see that the tight criterion (Appendix D) gives the
results in closer agreement with the exXperimentally obtained
values as shown in Fig. 20. So the vortex core sﬁould be
modeled more realistically by using the tight criterion.
This can be seen in Tig. 24 which shows the actual soluticn
of the positions of the finite segments in the wake for a
delta wing of 1.48 aspect ratio for a 14° angle of at*tack.
Fig. 21 compares the spanwise pressure distributions
predicted by the present methcd with other numerical results
for a flat delta wing of unit aspect ratio at lS° angle cf.
attack. The results are in good agreement a% X/Cr = C.7 and
X/Cy = 0.82, except the peak values of ACp, given by the
numerical results of Weber et al [{4S5] seem to ke higher. The
spanwise pressure distributions predicted by <+he pesent
method, shewn in Fig. 22, cn an aspect ratio 1.0 delta wing

-] P
at an angle of. attack of 20 ars compared with the
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experimental data of Hummel ([5]. The agreement of the
present results with the experimental data is good. The

decrease of the load toward the trailing edge is predicted

well.



Chapter IV

RECTANGULAR WINGS

4.1 PANEL ARRANGEMENT

A. High-Aspect Rectangular Wings

We divide a typical rectangular wing into m'rows and n
columns, that is, (m-1)(n-1l) rectangular elements. Each
rectangular element is then divided into four triangular
panels, as shown in Fig. 25. For a high-aspect wing, the
wing-tip vortices appear not to influence strongly a
significant percentage of the surface of the wing. Hence,
along the wing tips and the leading edge a concentrated core
of vorticity is employed to simulate the wing-tip vortex and
the flow around a small radius leading edge. Vorticity
enters and leaves this core at all points along the wing
tips and leading edge, but not in the wake. The vorticity
along the trailing edge is taken to be perpendicular to the
edge as the Kutta condition. The free vortex sheet emanating
from the trailing edge is represented by a flat sheet which
is composed of a series of connected triangular panels, as
shown 1in Fig. 25. This flat sheet is aligned with <the
velocity of the free stream.

45



B. Low-Aspect Rectanqular Wings

The same lattice of lines is placed.on the wing surface
as the one for high-aspect ratios. For low-aspect wings, the
wing-tip vortices play an important role in the ncnlinear

ffects predicting the aerodynamic characteristics.
Therefore, the Kutta condition imposed along the wing tips
requires that the vorticity be perpendicular to the wing
tips and vary linearly frem point A to point B. The wake
emanating from the wing tips is represented by a series of
triangular panels whose orientation in space is determined
as part of the solution, as shown in Fig. 25. Semi-infinite
panels are added to the end of each row of finite-length
elements in each wake line. For the rectangular wing of unit
aspect ratio at 15° angle of attack, the first +two wake
lines emanating from the wing tips do not cross each other
until they rass the trailing edge. Therefore, we don'<%t
eamploy a concentrated core of vorticity to represent the

ing-tip wvortax core which appears to form Lehind <he
trailing edge and not <+*o have much influence on <he

aerodynamic icads.
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4.2 NUMERICAL PROCEDURE

For high-aspect wings, the boundary-value problem can be
treated as a linear, two-dimensional problem. Hence, no -
iteration 1is needed to adjust the wake shape. The only
unknowns are the vorticity distributions over the surface of
the wing. The solution can be obtained by first forming an
influence matrix in which the influence coefficients of the
induced velocity at each control point are calculated for
all the triangular panels and semi-infinite panels. Also,
the conservation equation being satisfied in the shaded
triangular panels forces the conservation equation to be
satisfied in the unshaded panels, as shown in Fig. 25. Then
we apply the same optimization scheme as in the case of the
delta wing to minimize the errors from the no-penetration
boundary condition with Kutta and conservation equations as
the constraints. This involves the setting up of a
coefficient matrix and selecting a solver for the
simultaneous algebraic egquations. Then the vorticity
distributions over the 1lifting surface for high aspect
ratios can be obtained.

For low-aspect wings, we need to determine the wake shape
emanating from the wing tips in addition to the vorticity
distributions over the wing surface. The numerical

procedure for obtaining these solutions is similar to the
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one used to treat delta wings, except no concentrated core
of vorticity is added to the wake lines emanating from the

wing tips.

4.3 NUMERICAL RESULTS

In Fig. 28, we show the vorticity fields simulating
rectangular wings of differen= high-aspect ratios. The
arrows point in the direction of the vorticity and their
lengths are proportional to the magnitude. We note that the
vorticity along the trailing edge is weak everywhere except
in a small region near the tips. The vorticity fields
depicted are actual solutions obtained by using eight
rectangular elements. Symmetry was not imposed a priori;
thus, the program can treat asymmetric flows. The vorticity
fields are qualitatively consistent with the observations of
Francis and Kennedy (6], except near the midspan where their
experimental observations were influenced by the wall of the
Tunnel.

In Fig. 27, the normal-force coefficient :is given as a
function of the aspect ratio for a 15° angle of attack. The
present resulls agree closely with experimental data when
the aspect ratio is larger than 3. Below this value, i<
appears that the wing tip vortices strengly influence a

significant percentage of the surface of the wing and a
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better model of the wing tip vortices for low-aspect ratio
is then needed.

Fig. 28 shows the wake shape in two views for a
rectangular wing of unit aspect ratio in symmetric steady
flow at a 15° angle of attack. Symmetry was not imposed a
priori; thus, the program can treat asvmmetric flows. is
figure is similar to those obtained by Belotserkovskii [22]
and Rehbach [51].

In Fig. 29, the normal force coefficient is given as a
function of the angle of attack. The present results are in
gcod agreement with the numerical results of Bradley et zal
[S3] and with the experimental data of Ermolenko [52] and
Lamar [54]. The differences in experimental data can be
attributed to the different construction of the wing tip.

In Fig. 30, the pitching-moment coefficient is given as a
function of the angle of attack. The agreement is good
between the predictions given by the present method and the
experimental data of Ermolenko [52].

In Fig. 31, the normal-force coefficient is given as a
function of aspect ratio for a low-aspect rectancgular wing
at 15° angle of attack. The present results agree closely
with the experimental data of Lamar {34] and numerical
results of Xandil [25]. Combining Tig. 27 with Fig. 31, the
whole range of the normal-force coefficient given as a

function of the aspect ratio carn be displayed.
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Fig. 32 shows the vorticity fields simulating the
rectangular wing of unit aspect ratio. In order to include
the significant influence of the wing-tip vortices on the
surface of the wing, the Kutta condition for the present
method has been employed so that the vorticity is
perpendicular to the wing tips and the trailing edge. The
arrows indicate the direction of the vorticity and their

lengths are proportional to the magnitude.



Chapter V

CONCLUSICONS AND RECOMMENDATIONS

A continuous-vorticity panel method that can predict the
steady aerodynamic loads on lifting surfaces has been
developed. The method is based on the assumption that vortex
bursting does not occur in the vicinity of the wing and
separation occurs only along sharp edges. The method employs
an inviscid-flow model in which the wing and the wake are
replaced by triangular panels and semi-infinite panels with
linearly varying vorticity. 1If the wake rolls up tightly,
vortex cores are modeled by the present method.

For moderate and high angles of attack, for small aspect
ratios, and for highly swept sharp leading edges, This
method which models the wakes with force-free continuous
vortex sheets has succeeded in predicting the distributed as
well as the total aerodynamic characteristics. The present
method is not restricted by aspect ratio, angle of attack,
planform, or camber. Moreover, for a delta wing, the
present method can model the leading-edge vortex core and
its feeding sheet. For a rectangular wing of high aspect
ratio, a concentrated core of vorticity along the wing tips

and the leading edge can provide an accurate model.
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The present method predicts vorticity fields for
rectangular and delta wings which are gualitatively
consistent with experimental results. The normal-force and
pitching-moment coefficients are in good agreement with
experimentally obtained values. Moreover, the present method.
is capable of predicting the detailed surface pressure
distributions on thin, sharp-edged wings better than the
vortex-lattice methods. The results show good agreement with
available experimental data.

The method is general, and it can treat lifting and
nonlifting flows. It can be used to predict loads on any
control surface, including diving planes and sails on
submarines.

The following are areas for improving and extending the
present method:

1. Discretizing the continuous time variation to treat
unsteady flows. At each discrete time step, the
solution is obtained in a manner similar to that for
treating steady flows.

2. Generalizing the present code to handle planforms
other than the delta and rectangular planforms.

3. Including the thickness and camber effects.

4. Taking into account the compressibility effects by
using a Prandtl-Glauert transformation based on

freestream or local conditions.
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Combining the present c¢ode with a boundary-layer
program to predict separation, transition, etc.

Combining the present code with a stress and/or
deflection code to calculate the deformation of wings

under aerodynamic loads.
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Appendix A

INFLUENCE COEFFICIENTS

The induced velocity generated by the vorticity
distributed over a triangular panel or a semi-infinite panel
has been derived in Chapter II and can be expressed as a
linear function of the basic unknowns Xn and 2p, the
X~component and Z-component of the vorticity at the corners
of the panels in the local reference frame. Thus, referring

to Egs. (2.11)-(2.13), we have

3
v, = a.l
X nzl anny (A.1)
v=§[xa -28 ] (A.2)
Y 57 nonz n-nx
3
v = . (A.3)
Iz n§] Xany
B 2B B

where Bp,=<=, Bpy=700 and an=%hf¥ Then the velocity is

transformed into the global reference frame

= \ - A.4
VX Ixexx VyeyX * vzezx , ( )
= ! - \ a (A-S)
VY IxeXY V}leyY + Iz 2y
Vo=V + .6
Z XeXZ Vy vz + Vzezz (A )
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where ey , © , e e

¥x XY ¢ Cyy 1 v . €47, ey, . and e,z

zX
represent the direction cosines of the x, y, and z axes in
the global coordinate system (X, Y, Z system). In a similar
way, the vorticity components X and 2, at the corners of
the panels in the local coordinate system can be transformed
into the expressions in terms of the vorticity components
Xng and Zng at the corresponding corners of the panels in
the global coordinate system.

Therefore, the normal component of the induced velocity
at the control pbint on the lifting surface in the global
reference frame can be represented by a linear function of
the vorticity components Xng and Zpg at the corners of the

panels. That is

Yy =n 1 <Xngcnx i ancnz) (A.7)

o
where Cpy and Cp, can be calculated and are known values.

0w

Then application of the no-penetration boundary condition
at all the control points on the lifting surface leads to a
set of simultaneous algebraic equations whose matrix form

can be written as
AU + V = E

where A is called the influence coefficient matrix, U is a

vector which 1is composed of the unknowns Xng and 2Zpg
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representing the vorticity components at the nodes of the
panels, V is the vector of contributions from the freestream

velocity, and E is a deviation vector from the

no-penetration boundary condition.



Appendix B
OPTIMIZATION SCHEME

To minimize the error in the no-penetration boundary
codition subject to the conservation and Kutta conditions as
the constraints, we first obtain the matrix forms of these
conditions and then apply the method of Lagrange
multipliers. The unknowns xng/ an, and the Lagrange
multipliers are obtained by solving a set of simultaneous
algebraic equations.

We can rewrite Egq. (2.4), which is known as the
conservation equation, as a linear function of the vorticity
components Xng and an at the nodes of the panels in a
global reference <frame by using the same transformation
technique as that in Appendix A. The matrix form of the

conservation condition is
CU =20

where C may be interpreted as the conservation coefficient
matrix.

The Kutta condition is taken into account when we form
the influence coefficient matrix A; that is, the vortex

lines are required to be orthogonal to the edges where the
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Kutta condition is imposed, to the edges where wakes are
attached. Therefore, along these edges the orientation of
the vorticity at a node is known so that only one unknown at
this node is counted rather than two.

Then the augmented function ¢, (Eg.(2.81)) and Eg. (2.84)

are reduced to

R |
% ¢vxccu (B.1)

and

Vo4 = 20ATA0 + 28Ty + ¢y = g (B.2)

/\C
To find the vectors U and A, , we need to solve the combined
simultaneous algebraic equations (B.2) and (2.82). The
matrix form of these combined simultaneous algebraic

equations 1is

[ oaTua T
(B.3)

(]
Q
P

O




Appendix C
A CLOSED-FORM EXPRESSION FOR THE VELOCITY

GENERATED BY THE VORTICITY DISTRIBUTED OVER A
TRIANGULAR PANEL

Here we take the X-component of the induced velocity as
our example and show how its closed-form expression is
obtained.

Referring to Eg. (2.11), we have

vo=7z, 3B 38y 38; (C.1)
Lyt y Th

Substituting Eg. (2.7) into Eg. (C.1l) gives

DA
Vis— a,\ &
x. &r niy o/ 3 g. 2,2, 5y (C.2)

3

Then substituting Egs. (2.16), (2.28), and (2.47) into Eqg.

~1

3
+Z;+Z(ax-b Z
n=1

(C.2), we obtain

v, = {[( [ e, ) Hy - Hj) +(n§] bnzn)(& - Fy ¢ Fg):}

- sgn(y)(as - J1z2 - Jas - Jll)[%L +
n
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Appendix D

TIGHT CRITERION FOR THE FORMATION OF THE VORTEX
CORE

In section 3.2 we have described the procedure of adding
a concentrated vortex core into the wake by comparing the
Z-components of the positions of the end points of each
finite-length segment in the first wake line with those in
the second wake line. In addition to the comparisons
mentioned above, the tight criterion requires more
comparisons for the Z-components of the positions of the end
points of each finite-length segment in all the wake lines
emanating from the leading edge.

Referring to Fig. 23, for example, the pecints A in the
first wake line, C in the second wake line, and E in the
third wake line have the same X-components as the points B
in the second wake line, D in the third wake line, and F in
the fourth wake line, respectively. Then their Z-components
are compared. As the wake rolls up tightly, the second wake
line will cross the first and the third wake line will cross
the second and so forth. Therefore, the Z-components of the
positions of points A, C, and E are larger than those of
points B, D, and F, respectively. If this situatiocn happens,

the panels on the right-hand side of the zigzag line AG are
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merged into a discrete vortex core. This criterion is more
strict than the previous criterion described in section 3.2.
The tight criterion gives better distributed aerodynamic

loads, though the total aerodynamic loads obtained by both

criterions are almost the same.



Figure 1: Vortex patterns in the surface of a cdelta wing at
high angles of attack from Elle and Jones [3].
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Figure 4: Vortex core and attached vortex sheet.



Figure 5: Vortex core and fileld point P where the velccity
is being determined.
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Figure 7: The arrangement of the panels for a delta wing.
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Figure 8: The arrangement of the vortex core.
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tight criterion.
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of attack.
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Figure 32: Vorticity field for a rectangular wing with
vortex sheet attached to the wing tip, AR=1,
angle of attack 15°.
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A CONTINUOUS VORTICITY PANEL METHOD FOR THE PREDICTION

OF STEADY AERODYNAMIC LOADS ON LIETING SURFACES

ALBERT TIENGTSUNG YEN

(ABSTRACT)

A continuous vorticity panel method is developed and utilized
to predict the steady aerodynamic loads on lifting surfaces having
sharp-edge separation. Triangular and semi-infinite panels with
linearly varying vorticity are used. The velocity field generated
by an individual element is obtained in closed form. A concentrated
core of vorticity is employed to simulate the leading-edge-vortex
core and its feeding sheet. An optimization scheme is constructed
for finding the vorticity at the nodes of the elements. The method
is not restricted by aspect ratios, angles of attack, planforms,
or camber. The numerical results are in good agreement with the
experimental data for both rectangular and delta wings for incom-

pressible flows.



