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Chapter I

INTRODUCTION AND LITERATURE REVIEW

l.l INTRODUCTION

Many modern aircraft and missiles designed for supersonic

speeds employ highly swept, low-aspect, delta and delta—like

wings with sharp or thin edges. Within the flight envelopes

of such wings are conditions of subsonic speeds and high

angles of attack. To accurately predict the aerodynamic

characteristics under these conditions has been a

long—standing problem. One of the principal features of

high—angle—of-attack aerodynamics is that the lift and

pitching moment are no longer linear functions of the angle

of attack. This is partly attributed to the separation of

the flow from the leading edges of the lifting surfaces.

This separation is responsible for the formation of a vortex

sheet that rolls up above the wing and contributes to a

strong spanwise, or crossflow, component of velocity on the

upper surface. Therefore, a very favorable pressure gradient

is generated, which greatly reduces the tendency of the

boundary layer to separate from the surface of the wing.

This makes it possible to fly at high angles of attack

l
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without aerodynamic stall. Also, the strong spanwise

component of velocity greatly increases the speed on the

upper surface and thereby is responsible for a significant

contribution to the lift. The actual lift can be more than

twice as much as that predicted by a linear aerodynamic

theory that fails to account for leading edge separation.

The purpose of the present work is to develop a method to

predict not only the total and distributed aerodynamic loads

but also the vorticity fields on lifting surfaces having l

sharp—edge separation in a steady, subsonic, and inviscid

flow. The lifting surface is not restricted by aspect

ratios, angles of attack, planforms, or camber. In order to

achieve this purpose, continuous vorticity panels have been

placed on the wing. Also, the shapes of the wakes emanating

from the sharp edges of the lifting surfaces and the vortex

cores in the wakes have been obtained as part of the

solution.

1.2 LITERATURE REVIEW

From the very beginning of the exploration of the flow

over slender wings at large angles of attack the

experimental work has exhibited the nonlinear aerodynamic

characteristics over the angle-of-attack range. These

nonlinear relationships were found by many experimentalists.
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These experimental studies of the vortex sheet separating

from the sharp edges of slender wings revealed at least

three distinct cores and lines of separation in the

flowfields. The flows leaving the sharp edges from the upper

and lower surfaces of the wing form free-shear layers. The

separated free-shear layers joining the leading edges of the

wing roll up spirally to form two vortex cores above the

upper surface of the wing. This is known as the primary

vortex; it has the dominating effect on the nonlinear

relationship between the total aerodynamic load and the

angle of attack.

Due to the leading—edge vortices the flow at the wing

surface is directed outwards. A small secondary vortex is

formed by the steep pressure gradient between the minimum of

pressure and the leading-edge. The secondary vortex rolls up

spirally in anopposite sense to that of the primary vortex.

In the range of moderate to large angles of attack, the

strength of the secondary vortex core was found to be much

smaller than that of the primary core.

The third vortex core and separation line may occur

between the lines of secondary and primary separation. The

tertiary vortex is relatively very small.

Maskell [1], and Peckham [2] found that the shape and

strength of the primary vortex are relatively independent of
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Reynolds number. This relative independence of the viscous

effect suggests that the flow field can be analyzed by using

an inviscid model.

The earliest attempt to describe qualitatively the

vorticity distribution in a delta wing with leading-edge

separation is due to ßlle/ang_ggnes_[3]. They mentioned

that the leading-edge vortices are much stronger and move

inboard at high angles of attack so that the flow pattern is

dominated by the separations. As a result, the vortex lines

run spanwise for a short distance on either side of the

centre line and then turn forward almost through 90 degrees.

Before the vortex lines cross the leading edges, they nearly

turn through a right angle. The vortex lines cover the

triangular regions near the wing tips by crossing the

leading edges and the trailing edge. This vorticity

distribution is shown in Fig. 1. Mangler and Smith [4] found

that the strength of the resulting reversed trailing

vorticity is about 15 per cent of that of the leading edge

vortex. A detailed comparison between laminar boundary-layer

and turbulent boundary-layer theory for the vorticity

distribution on the upper surface of a delta wing has been

made by Hummel b[5]. It suggests that the pressure

distributions calculated by using inviscid models should be

compared with the experimental result;_ggr£esp2ndäEävtgma

t¤;*2e&21Ll=»¤.¤¤@«@—¤¥:éexsa£_l¤w·
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Francis and Kennedy [6] investigated the nature of the

near surface bound vorticity distribution for rectangular

· wings. They found that the vortex lines leaving the surface

layer at points of separation interact with one another and
’

roll up to form spiral shaped vortices whose evolution is

dependent on the local tip geometry and orientation. The

general shapes of the array of the vortex lines is

qualitatively .similar to that hypothesized in Prandtl

lifting·line theory [7].

For an exhaustive review of the linear approaches, the

reader is referred to the articles of Ashley and Rodden [8],

and Belotserkovskii [9].

A very early nonlinear theory for rectangular wings was

presented by Bollay [10]. He studied the case of rectangular

wings with aspect ratios less than one. Although his method

gives good results, it cannot treat the case of slender

wings with arbitrary planform. Later, Gersten [11] assumed

that the free vortex lines leave the wing outside the wing

plane in his nonlinear theory for slender wings having

general planforms and arbitrary aspect ratios. However,

this method cannot describe the detailed flow situation so

that the·pressure distribution cannot be predicted.

The leading—edge suction analogy presented by Polhamus

[12] provides a method suitable for calculating the
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nonlinear aerodynamic characteristics of wings with pointed

tips and side edges. The suction analogy assumes that the

_ normal force needed for the flow around a leading edge to

reattach to the wing is equivalent to Uthe leading-edge

suction force required to maintain the flow attached to the

leading edge in an unseparated condition. The unseparated

leading edge suction force is calculated, and is then

rotated normal to the wing to obtain the lift contribution

of the leading-edge vortex. The overall characteristics of

slender wings can be calculated with remarkable accuracy,

but the flow field details and detailed surface pressure

distributions cannot be obtained.

Several attempts had been made in the past toward more

realistic representations of the physics of the vortex

formation by Legendre [13], Brown and Michael [14], Mangler

and Smith [15], and Smith [16]. In all these methods the

assumption of conical flow is used. These models are able to

predict qualitatively the type of pressure distributions

that had been observed experimentally. They overpredict the

experimental load distribution by a considerable amount

toward the trailing edge because the conical theory does not

satisfy the Kutta condition at the trailing edge and does

not account for the deformation of the leading-edge vortex

sheet in the chordwise direction. Many experimentalists such
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as Marsden, Simpson and Rainbird [17], and Hummel [18,19]

have shown that the flow over swept wings with leading edge

vortex separation is nonconical. Therefore, in later years

conical flow methods were followed by fully

three-dimensional techniques to calculate the nonconical

flow and to fulfil the Kutta condition at the wing

trai1ing·edge. There are three types of methods to treat

nonconical, fully three-dimensional flow around wings with

leading edge separation, namely, sthgleelihe_yegtex methods,

multiple line_vortex methods, and vortexosheet methods. A

brief discussion of each is presented below.

Nonconical single line vortex methods are due to Nangia

and Hancock [20], and Matoi, Covert, and Widnall [21]. They

attempted to satisfy the zero-load, trailing—edge condition

on a delta wing in the presence of a separated vortex sheet

from the leading edge of slender wings. These spiral vortex

sheets from the leading edge are replaced by two

concentrated line vortices of variable strength with two

feeding "cuts" between the line vortices and the respective

leading edges. They developed a numerical collocation

method, in that the vorticity distribution is described by

continuous functions with unknown coefficients. The

leading-edge vortex location is similarly described by

functions with unknown coefficients. These unknowns are
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found by satisfying the downwash condition and the no—force

condition on the leading—edge vortex representation. Due to

the nonlinear nature of the boundary conditions with respect

to the vortex position, the solution is obtained from an

iterative scheme based on Newton's method. They showed that

the main features of the loading predicted by the theory tie

in encouragingly with the experimental trends.

In the area of the multiple line vortex methods (or

nonlinear Vortex;lattigg,_mgthods), Belotserkovskii [22]

developmd a method to calculate the aerodynamic loads on

wings with tip separation. The wing is replaced by a vortex

lattice and the wake by a finite number of discrete-Vortex

lines. Each discrete-vortex line consists of a finite number

of straight finite segments and one semi-infinite straight

segment. Then, through an iteration procedure, the finite

segments in the wake were made parallel to the Velocity at

their midpoints. He showed that the method gives good

results in predicting the total and distributed loads on

rectangular wings at large angles of attack. Following

Belotserkovskii, Mook and Maddox [23] demonstrated the

feasibility of using a discrete-Vortex concept to model the

steady flowfield past delta wings. To simulate the

leading—edge wake, they added a system of discrete,

nonintersecting Vortex lines to the conventional vortex
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lattice employed by Giesing [24] and co—workers. Each line

of the system was composed of a. series of short straight

segments and one (the last) semi—infinite segment. They

adjusted the position and orientation of each finite—segment

until it was force-free through iteration. These lines then

modeled the force-free vortex sheet generated by the

leading-edge separation. Subsequently, Kandil [25], and

Kandil, Mook, and Nayfeh [26] refined this approach and, for

several cases, compared the predicted results with

experimental data. They found very close agreement for lift

and moment in every case. The approach is not limited by

aspect ratio, planform, camber, thickness, or angle of

attack as long as separationeocQgggüggiywjgp¤q#¢h£—Jä§§p

@g<;g;¤¤s=l..22Qe1s.„l2u;si¢i&<}3§;¤g_;„.9ec¤r—~ neanstheiwinq-

Atta [27], and Atta, Kandil, Mook, and Nayfeh [28,29]

extended the approach to treat unsteady flows past

rectangular wings. Subsequently, Thrasher, Mook, Kandil and

Nayfeh [30], and Thrasher [3l] refined the approach to treat

flows past rectangular wings executing arbitrary maneuvers,

while Kandil, Atta and Nayfeh [32], and Atta [33] refined

~ the approach to treat- flows past delta wings executing

arbitrary maneuvers. Similar approaches were taken, for

example, by Belotserkovskii and Nisht [34], Summa [35], and

Rebach [36]. Later the general unsteady method was modified
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to treat small, harmonic oscillations around an arbitrary

constant angle of attack by Nayfeh, Mook and Yen [37]. It

was further refined by Konstandinopoulos [38].

Johnson [39] and collaborators developed a vortex-sheet

method~]or\doublet;pangl,_g__method] which employs rectangular

panels of doublets. In this method, the configuration

surface is represented by source and/or doublet singularity

panels, and the rolled-up vortex sheets and wakes are

represented by_ggublet_panels_alone. The free sheet and wake

are aligned with the local flow. The fed sheet is an

entirely kinematic extension of the free sheet and the size

of the fed sheet is chosen by experience or from the conical

flow results of _§mith__.Ll§]. The strength of the

singularities as well as the shape and position of the free

vortex sheets are computed iteratively starting with an

assumed initial geometry. During the calculations they

encountered convergence problems in many cases and

overpredicted the lift coefficients for high aspect ratio

wings.
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1.3 MOTIVATION Egg TH; PRESENT [ggg

Although the vortex—lattice technique yields the total

loads accurately, it does not always lead to accurate

predictions of the pressure distribution unless a very large

number of elements is used. However, the increase of the

number of elements causes close interaction among the

concentrated vortex) lines during the iteration procedure

which is responsible for the difficulties in achieving

convergence in the wake due to the strong algebraic

singularity associated with the Biot—Savart law. Also, it

requires substantial computational time to achieve

acceptable accuracy if the solution converges. As a result,

the natural extension and expansion of the vortex lattice

technique by replacing the lattice of discrete vortex lines

with a continuous distribution of vorticity are needed to

improve these shortcomings.

The doublet-panel method projects the actual panel onto

the plane defined by the centroid of the four corners and

the normal vector obtained from the cross product of the two

vectors connectingthe mid·points of opposite sides. (With

the present method, triangular panels are used, and hence

approximate plane panels are not needed.) Because the

doublet distribution is specified over an approximating

panel instead of the actual panel, the procedure for
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evaluating the velocity field must consider the transfer of

the integral from the approximating to the actual surface.

(With the present method, such a transfer is not needed.)

Moreover, the doublet-panel method has convergence problems

in many cases. This difficulty in obtaining convergence
is]

due to the inability to satisfy the continuity of the

derivatives of the doublet strength across the edges of

adjoining panels. Although Johnson et al. [40] later

improved the method by developing a simple least—squares

penalty technique to damp the instability that causes the

divergence, they were forced to prescribe the orientations

of the panels in the fed sheet and the "fixed design wake".

Thus, the desire to accurately predict the aerodynamic

characteristics under the conditions of subsonic speeds and

high angles of attack with highly swept, low—aspect, delta

and delta—like wings and to overcome the drawbacks and

disadvantages in the vortex lattice and the doublet panel

methods mentioned previously provide the motivation for the

present research work. Therefore, a continuous-vorticity

panel method has been developed and is presented in detail

in Chapter II.

In Chapter II, the basic continuous-vorticity panel

method for incompressible flow is introduced to predict the

steady aerodynamic loads on lifting surfaces having
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sharp—edge separation. Triangular panels with linearly

varying vorticity are used. The velocity field generated by

an individual element is obtained in closed form and an

optimization scheme is constructed for finding the vorticity

at the nodes of the elements.

In Chapter III, the panel arrangement for delta wings and

the numerical procedure for obtaining the solutions are

presented. We also present the computational results and

compare them with available experimental data and numerical

results for the purpose of examining the validity of this

model.

In Chapter IV, we apply the present method to calculate

the steady aerodynamic loads on rectangular wings. The panel

arrangement and the numerical procedure used to solve this

problem are also presented. Computational results are

compared with available experimental data and other

numerical results for both high—aspect-ratio and

low·aspect—ratio rectangular wings.

In Chapter V, some conclusions and recommendations

concerning further extensions and modifications of the

present method are presented.



Chapter II

EORMULATION OE THE PHYSICAL PHENOMENON

2.1 GENERAL

The problem of airflow around a thin, finite wing which

moves in an inviscid, incompressible fluid .by using the

continuous-Vorticity panel method is studied. As the wing,
·

or ideally the lifting surface, moves, it creates a

disturbance and sets the air in motion. As a result,

Vorticity is generated in the boundary layers on the upper

and lower sides of the lifting surface. The Vortices that

form along the sharp edges are shed and convected away from

the wing, and constitute the wake. The wing can be simulated

by a bound-Vortex sheet across which a finite pressure

difference exists and hence upon which a force acts. The

wake can be simulated by a free-vortex sheet because its

position is not specified and the pressure jump across it

does not exist.

The total Velocity field generated by the vortex sheet

must satisfy the continuity equation, which for an

incompressible fluid is

v·x7=0 (2.1)

14
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subject to the following boundary conditions:

1. The disturbance created by the wing must die out with

increasing distance away from the wing and its wakes.

Hence,

-• o away from SLS and SW

where SLS denotes the area of the lifting surface and

Sw the area of the wake.

2. The fluid particles cannot penetrate the surface of

the wing; thus, the normal component of the relative

Velocity must vanish at the wing surface. That is,

(Ü - ÜLS)·ä=O on SLS

where Ü is the Velocity of the fluid particle, ÜLS is

the Velocity of the lifting surface, and E is the

unit vector normal to the surface.

In addition to the boundary conditions, several other

conditions must also be satisfied:

1. The vorticity field must be divergenceless; hence,

div ( Ö ) = div ( curl Ü ) E O.

2. The Kutta condition must be satisfied along the sharp

leading and trailing edges of the wing. This

condition requires that the pressure jump across the

lifting surface vanish at the edge.
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3. For an inviscid fluid, the Kelvin—Helmho1tz theorem

requires that all vorticity be transported with the

fluid particles. This condition forces a force-free

wake and is used to obtain the position of the wake.

2.2 DESCRIPTION gg ggg CONTINUOUS-VORTICITY METHOD

This section presents the panel development. The goal is

to derive an expression for the induced velocity at an U
arbitrary point in the space due to an assumed vorticity

distribution on the panel.

The first step in panel development is the definition of

panel geometry. Kelly [41] examined different shapes for

the elements of the lattice on the lifting surface and found

that rectangular elements give the best results. Hence, the

rectangular element is assumed. Each rectangular element is

then divided into four triangular elements. All four corners

of a rectangular element do not, in general, lie in the same

plane. As a result, the method is not restricted to planar

lifting surfaces. For each triangular element, a local

rectangular Cartesian coordinate system is introduced such

that the x—axis and z—axis lie in the plane of the element.

Referring to Eig. 2, the three corners of a typical

triangular element are labelled 1, 2, and 3 according to a

clockwise convention. The origin of the local reference
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frame always coincides with 1. The coordinates of the other

two corners are denoted by corresponding subscripts. The

velocity field is first calculated in this local reference

frame and then transformed into the global reference frame.

Three local, planar, shape functions are introduced and

defined as follows:

f1 = a1E + b1( + l (2.la)

fz = azi + b2( (2.lb)

fa (2.lc)

where .U
a1=(<3·<2)/D, b1 = (E2 ·E; )/D (2-Za)

a2 = -C3/D, b2 =E3 /D (2.2b)

aa =(2 /D, bg = -E2/D (2.2c)

and

D =£3(2 -E2(3 (2.2d)

Thus, the function f1 has the values of unity at l and zerol

at 2 and 3, the function fz has the values of unity at 2 and

zero at l and 3, while the function f3 has the values of

unity at 3 and zero at 1 and 2.

We represent the vorticity of the vortex sheet as

follows:

5 =¤„ä +5, 11 (2.3;.1)
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where

0, = X,f, + Xzfz + Xsfa (2.3b)

¤z = Z,f1 + Zzfz + Z3f3 (2.3c)

and the Xn and}Zn are constants, the basic unknowns in the

problem. They represent the X-component and Z—component of

the Vorticity at the corners, or nodes, of the elements.

The Xn and the Zn are not independent; it follows from

div 6 = 0

that

6 6 °
§a¤><¤ =—Zb¤Zi (2-4>
I1 jzl

We refer to Eq. (2.4) as the conservation equation. The

control point for each triangular element is defined to be

the centroid of its corners.

2.3 VELOCITY EIELD GENERATED gg VORTICITY DISTRIBUTED OVER
A TRIANGULAR PANEL

The Velocity generated at an arbitrary point P by the

Vcrticity distributed over one of the elements is given by

(e.g., Karamcheti [42]) '

z,
•P

->

¤‘ *·
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where ¤ is the area of the element, E = xT + y? + ZÄ is the

position vector of point P, and § = ii +< Ä is the position

vector of a point in.¤. Substituting Eqs. (2.3) into Eq.

(2.5), we obtain

3 —
* * „ (2.6)\/ =CurI Z (ln} "‘ Zn*<)3n(X•Y•·-)

n=l °

where

· 1ß„ =;·[a„I( +bnI;,+ (6m+a6x +bnz)I,] (2.7)

I;(x,y,z) = (2,6)
0

_ (2.9)

° (2.10)
ld~ !a(x„y„z) = %and 6

·"=<€·¤}*+>·*+(c-z>*

Substituting Eq. (2.7) into Eq. (2.6), we find

3 ößn‘
:Ix ng] Zn Sy (2'll)

3 GB
l

38
”

(2.12)
y H;] n de n „xJ

(2.13)
3 88, _ nG · ·Z xn 7n=\
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It follows from Eq. (2.7) that in order to obtain the

three partial derivatives of the Bn, we need the following

ten quantities:

al' all 9T· BI; 31; BIZ ai, al;__ d YM ay az_ ax * ay ‘ az ‘ ax · ay az an °
In the next three paragraphs the expressions for these ten

quantities are developed.

Referring to Fig. 3, we can write
C . d

C b ·a « 2 21/·_ fc = [(¤•¥+·?§)""Y*(C·Z)] ‘d§
1* ' O Ei c i

0 I (2.14)
C · 2 2 2JQÜC ‘*) +.v +(c-2)}/‘d;

Differentiating Eq. (2.14) and then integrating the results,

we obtain the following

ii, - ii -. E _

2 2.16lm ‘ ’

(2.17Hz * ZÜH • H1) )

where ·
c

V b ' 7 7
‘

"

‘|l·n=f [(<1·><+—T:J—;)‘+;1‘+(;-:)‘]/‘d.;
0

r- °.18= --1 p_n<_..C*‘ll..‘,._~=,l¤ * Val! W) (A )
Q11 vd;} V3 ' Gl?

AC • 2 1 2 Q

0
-1, r ° r E-vv+ (C ·

Z)2] /‘ ädé = ‘&;TT‘l
I clk nl
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C _ _x

2H: [Qi- ¤)·· +y‘ + (c - 2)·] /· c;
*0

C- 2.20

Fx • +122
¢ 2 . -* .Hwf [Qi-·x)·+y’+(c-2)*1 Lcd): z

Q __ _ (2.21)
„L'.z.;..'I.L+E.2.z.H1

GZI G2)
,1 C (X: C yz 2

221)/2 (2.22)

. rz = [(b — x)= + y2 . (C _ 2):)% @23)

*°¤ =[(a ·x)‘+y*+z=]E/2 (2.24)

-
b'ü)z (b-a)(a- x)GII2

.
<7·:x=]*%, azz=z+?-

Again referring to Fig. 3, we can write

$5.

0 0
’°

(g·a)c1_'(°a2(‘ b-a gg - z)dcd§ (2.26)
¤ 0

‘°

Integrating once, then differentiating the results, and

finally integrating a second time, we obtain

2 XFN
3* (2.27)

2i2= M. — F: + 2.) @28)
¤Y

gn - ZF, + (5%+ um + 5%:. @23)

where
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b „ 2 * Q — •l/~F1= 0 [(2 · x) +y· + (L, ··z>·1 —¢a

Vßll “B11 V1 · 312
b 1F2 UE · ><>* + v’ + (§$ - z>*]° (Z sd;

B11 311 rl
a

· ; „ -‘/
a - x + p-F,= L(£·><)+y-+2*]’d€=Z¤0

‘
(2.32)

a
s

_
Z ' Ö 1 •! «

bßll · 822 Y 'ßll V2
a 1

r °
2‘.’°/

b
Q (2.34)

B11 (371 C;
2

L (2-35)

@·::'**(Z+Ei?"§)F%°E
To develop I3 and its derivatives, we follow Hess and

Smith [43]. They show that

I! ° hlzqxz * h23Q2l "' hllqll * [Y] (J1: + J23 + J;1 ·wA9) (2-36)

. Lwhere

IV,} + 1*.+ d.,Q,. = ]n(L;.J.)
J (VL + I'. · d.,

· J ‘J
(2.37)

•—
__s.| (2) _ (J)

JJ 2 2 (UX?)ririhü + Y 113 la;



23

The quantities ri are defined in Eqs. (2.22)—(2.24). The

remaining quantities (du , hn , , and
ßii,)

are defined in _

terms of the _ coordinates of the nodal points of the

triangular area ( S1= (1 =O; S2= b and (2 = c, and gs = a

and (3 = O):

.(\) - ,*13 ' (*71 ' *)*13 ’ (L1 ° ·)S13 (2.39)

.. / _ 4. , ~ S(ij „€j· X)Cij (Cj Ö (J (2.40)

Cij = —~· (2.41)
U

S., =
—¤—

(2.42)TJ dij

d.,

=h..=.-.,.- -... .(z (2 44)

Finally,

ZK if the projection of P onto the plane
A 9 =

of the triangle lies inside c

0
otherwise (2.45)

It can be shown [43] that

(2.46
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°‘· — .1 .1 .1 1§‘*" *$9n(Y)(Ö9 ' 12 ' :1 • llY (2.47)

2.48
CIIQJX

( )

One example of a closed—form expression for the Velocity

generated at an arbitrary point P by the vorticity

distributed over a triangular panel is given in Appendix C.

2.4 VORTEX CORES AND SEMI-INFINITE PANELS

In addition to the triangular panels described in Section

2.2, vortex cores and semi—infinite panels have been used to

represent more realistically the physics of the vortex

formation. In this section, we describe these and develop

expressions for the Velocity fields they generate.

A. Vortex Cores

In Eig. 4 we represent a flat sheet of linearly varying

Vorticity, being fad by a straight vortex core along its

edge. F(x) is the variable circulation around the core and

v(x) is the continuously Varying product of the vorticity

and the thickness of the sheet. Since vorticity is a

divergenceless field, we have

(2.49)
J
0
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where o is a simple closed surface, Ö is the vorticity, and

5 is a unit vector normal toc . Applying Eq. (2.49) to an

infinitesimal length of core in Fig. 4, we obtain 4

d(°„ (2.50)
dx "Y(X) '

In the present application, v(x) is always linear; thus,

vhas the form

·Y=Ax +3 (2.51)

where A and B are constants. It follows that

V=%Ax2 +3X+C (2-52)

where C is the constant of integration.

Referring to Fig. 5, we note that the Velocity generated

at point P by the action of the Vortex core alone is [42]

- 3 f°= dV = ——— P süß B (2.53)Anh al
where

[Ü Ä r|[

and G is a vector parallel to the Vortex core.

Substituting Eq. (2.52) into Eq. (2.53) yields

-
‘ 62 ”

v - -?-- V gl A12 + Bx + C)sine de (254)
41111 Jo r

-1
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x can be represented as a function of 8:

X = { _ hcotg (2.55)

After substituting Eq. (2.55) into Eq. (2.54) and

integrating, we obtain

. T-
’

1/=
äii? Ar%licss29„(c¤s6i · casöz) + sin2e,(sine, — sine,)

1 1 · cos6,)sin61 «+
2

E2).! _

(2.56)

+ C(c¤s81 · COSGz% ‘

B. Semi—Infinite Panels

Here {we consider semi-infinite panels in which the

vorticity varies linearly and is parallel to the length. The

situation is represented in Fig. 6. We develop expressions

for the derivatives of the Bn by considering the limit as

the coordinate a in Fig. 3 approaches infinity.

It follows from Eq. (2.2) that as a —>¤

%T* O for all n (2.57)

and

b1 •
- é, bz „ %, and bg · O (2.58)

and hence from Eq. (2.7) that
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‘ ·
2.59[uni, + (6111.+ bnZ)!:] ( )

In order to develop expressions for the derivatives of the

Bn, the following seven quantities are needed:

BI; at; at; öl; QL QL 15X'3y’az’6x’3y°az'
’

The expressions for the limits of these quantities are

developed next.

It follows from Eq. (2.22)—(2.24) that as a increases,

r1 and r2 remain unchanged and

ra, a_
XL In (2.60)

(We note that a is always positive.) From Eq. (2.35) we

find that B11 and B12 remain unchanged while

311
• ] and gzz

- X (2.6l)

Hence F1 and F2 remain unchanged while

ZaFL+1n(——T_I_ X) (2.62)

F
_

2n( Za 1 (2.63)
k b ·X+Y';

FS
- a , X I

XLnF___gg____) (2.64)
b ·x +rL

Substituting Eqs. (2.62)—(2.64) into Eqs. (2.27)-(2.29)

yields
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3I** •
· --5;**- xF( F_

T}Q2.:-_'°¤__,__‘X
ay

’[F· + mb 1- rz - xn (2.66)

· (Z · ¤)F•¤(b + fz · x) · c.v.n(2a)

It follows from Eqs. (2.37) and (2.38) that Q12 and

(L2 remain unchanged while

J23+ an
[*‘z(Z·C'+y‘(b-xl (2-68)

J -1 5Ly!(r1+ )Q_ (2.69)J ;1‘•Cü¤ [ rip-jjp} Ä

, Za (2.70)Q2:

-• 9_n(?_.éL;) (2.71)

Substituting Eqs. (2.68)—(2.71) into Eqs. (2.46)-(2.48), we

obtain
I

%;l‘°S\2Q1l‘
(2.72)

‘I
äyl * ‘$9n(Y)(A5 • J1: ' J2: ' J:1) (2-73)

— -6..0,, + 111(————'°=„jä ; ") (2%)

And from Eq. (2.36) we obtain

IJ
· ¤1¤<)•z + (z · c)u1(¤ + b · ¢<) (2.75)

- Z2¤(V1 - x) + c2n(2a)

* )Y((-}1: * J2:
‘ J:) • Ü-9)
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Differentiating Eq. (2.59) and then substituting Elqs.

(2.65)-(2.67) and (2.72)-(2.74) into the results, we findthat V ·
. 38:1 Y F, - 1-,)

+_(6m + bnZ)$1z01:] (2-76)

1im(ä!-)=L'b '“*‘*
- (2.77)

' + b„z)(aé • J1: · J1: • J1;))
A

]jm ; L- C
au

J2: * J11 • i5)]

* (61,, + ¤„z)[¤-¤(%-Ei?) · (11:01:])
2.*5

DETERMINATION Q §_HE_ VORTICITY

After knowinq how to obtain the induced Velocities in

terms of the closed-form expressions mentioned above, we are

ready to find the values of the vorticity components at the

corners of the trianqular elements by satisfying the

no—penetration boundary condition, the conservation

condition Eq. (2.4), and the Kutta condition simultaneously.

Ideally, the component of the Velocity normal to the

lifting surface should Vanish everywhere on the surface. But

this is impossible with a finite number of triangles to
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satisfy other conditions. In fact, it is impossible to

satisfy the no-penetration condition at all the control

points simultaneously. Thus, we resort to a scheme that

finds the vorticity distribution corresponding to a minimum

of some measure of the flow through the lifting surface and

satisfying the conservation and Kutta conditions as

constraints.

We begin by calculating a set of influence coefficients

that provides the normal components of the velocities at the

control points of triangular elements on the lifting surface

generated by the shape functions of all the triangular

panels, semi—infinite panels, and the concentrated vortex

cores. Using these coefficients, we can set up an influence

coefficient matrix A, for the vector of unknown components

of the vorticity U, such that A, U, the vector of

contributions from the free stream V, and, the vector· of

normal components of the velocity E at the control points

are related by -

The vector E may be interpreted as a deviation vector from _

the no-penetration boundary condition. This is discussed in

detail in Appendix A.
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The present scheme determines U such that the square of a

weighted magnitude of E is a minimum, subject to the

constraints imposed by the conservation and Kutta·

conditions. To obtain the quantity that is to be minimized,

we pre-multiply both sides of Eq. (2.79) by the product of

the transpose of E and a symmetric weighting matrix, W:

QTJWAU +_uETwv + vTwAu + vTwv =sTwE

Since each term is a scalar, each term equals its own

transpose. We have

UTATHAU +ZVTHAUThen

the method of Laqrange multipliers is used to form the

augmented function ¢A:

2 T T (2.81)¢A ¢ + ACCU + ARKU

where AC and AK are the vectors of Lagranqe multipliers, and

the matrices C and K are used to express the conservation

condition

CU , O (2.82)

(see also Eq. (2.4)) and the Kutta condition

KU 2 0 (2.83)
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For the Kutta condition, we require the pressure jump

across the lifting surface to vanish at the edge. It then

follows that the vorticity and Velocity fields should be

parallel along the edge. To impose this condition of

parallel fields requires an iteration in addition to that

required to locate the wake. However, from the

experimentally determined vorticity fields of Hummel [5],

and Francis and Kennedy [6], and Elle and Jones [3], it

appears that the vortex lines are orthogonal to the edges

where the Kutta condition is imposed, i.e., to the edges

where wakes are attached. Thus, we require the vortex lines

to be orthogonal to these edges. -

The details of the present optimization scheme are given

in Appendix B.

Then the Vectors U, AC and AK are found by solving the

following simultaneous algebraic equations

vU¢A = 2(ATHA)U + ZATWV + JA: + Nik = 0 (2-84)

and Eqs. (2.82) and (2.83). After these equations have been

solved, we can calculate the pressure distribution and the

resultant loads.
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2.6 CALCULATION gg LOADS

After the vorticity at the nodes and the shape of the

wake have been obtained, the loads are calculated. To

calculate the loads, we first need to find the velocity

generated at the control point by the free stream and all

the panels of vorticity; this is labelled V. The jump in the

tangential velocity across the vortex sheet is given by

AV =j;x Ö
' (2.85)

where 5 is the unit vector normal to the surface. Thus, on

the upper side of the element,

’ ,‘ 7 ·· 2.86aVU V +2,Ay ( )

while on the lower side

. -• _·• T ·* (2.86b)V1- V -2 LV

Here we are concerned with a uniform stream, having the

speed U„, passing over the lifting surface. Then, from

Bernoulli's equation, it follows that, at the control point,

the pressures on the upper and lower surfaces are given by

= Q ZPU (2.87a)

and

- ¤ 2 2Pl - Pm+ä-(U_- vz) (2.87b)
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The nondimensional pressure jump across the lifting surface

is given by

P -P
v“-vz

AgP I U2 UZp=· “’ '
Substituting Eqs. (2.86) into Eq. (2.88) leads to

- -
2.89Acp =2v · Av/ui ( )

After the pressure is calculated, the force on the

triangular element is obtained by multiplying the pressure

jump at the control point by the area. Then the lift force

and the pitching moment can be calculated.



Chapter III

DELTA WINGS

3.1 QAQEL ARRANGEMENT

A lattice of lines is placed on a delta wing as indicated

in Fig. 7. This lattice is the same one used in the

uniform·element, discrete-vortex technique. Then each

rectangular element is divided into four triangular panels,

Also, the leading-edge vortex sheet is modeled by first

forming a lattice of lines as in the general discrete

vortex—lattice method, and then dividing each quadrilateral

element into two triangular panels, as shown in Fig. 7. The

vorticity is perpendicular to the leading edge due to the

Kutta condition and varies linearly across each element. For

example, in Fig. 7, the vorticity is perpendicular to line

AB and varies linearly from point A to point B. In the

wake, the vorticity varies linearly (between the same two

values) from point A' to point B', etc. Moreover, the

vorticity in triangle A'A"B' is parallel to line A'A"

which in turn is aligned with the vorticity at the centroid

of triangle A'A"B'. At the end of each row of finite-length

elements in each wake line, we add a semi-infinite panel

35
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with the Vorticity aligned parallel to the free-stream

Velocity. Because the wake rolls up tightly at high angles

of attack, a concentrated Vortex core is also used to

represent the leading-edge vortex core.

3.2 NUMERICAL PROCEDURE

The boundary—value problem of Chapter II isjpnlinear

because the shapes of the separated vortex sheets as well as .

the Vorticity distributions over the wing surface and wakes

are unknown. Therefore, an iterative method is required.

Initially, we guess the coordinates of the end points of the

short, straight segments in the lines representing the

free—Vortex sheets. Then we form the lattice by

connectingéhé ends of adjacent segments in different lines,

and from the lattice we form the triangular panels. The

influence coefficients of the induced Velocity at each

control point are calculated for all the triangular panels,

semi—infinite panels, and the concentrated Vortex core by

using the closed-form expressions of Chapter II. Then the

Values of the Vorticity components at the corners of the

triangular panels on the wing surface and in the wake are

determined by minimizing the square of a weighted magnitude

of the deviation vector E from the no-penetration boundary

condition, subject to the constraints imposed by the
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conservation and Kutta conditions. The satisfaction of the

conservation equation in the shaded triangular panels, as

shown in Fig. 7, forces its satisfaction in the unshaded

panels also. The solution of the set of simultaneous

algebraic equations yields the vorticity distribution.

Next, with the known vorticity distribution, we calculate

the velocity at the centroids of each, of the triangular

elements in the leading row of the wake. Then we align the

edges of the triangles that form the borders of the leading

row with the velocities at the centroids of the same

triangles. In the remaining rows of elements in the wake,

we calculate the velocity at the centroids at every other

triangular element, starting with the second element in each

row. Then we align the edges of the triangles that form the

rearward boarder of the row with the velocities at the

centroids of the same triangles. Thus the shape and the

orientation of the triangular panels representing the wake

are changed. Also, at high angles of attack the wake rolls

up tightly so that we employ a concentrated core of

vorticity to simulate the leading-edge-vortex core and its

feeding sheet. The procedure for adding a concentrated

vortex core is summarized below

First, we specify the X-components of the positions of

the end points of each of the finite·length segment in the
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first and second wake lines emanating from the leading edge.

Then we compare the Z—components of the positions of the

points in the first wake line with those of the points

having the same X·components of positions in the second wake

line. As the wake rolls up tightly, the second wake line

may cross the first wake line. If this happens, the

Z—component of the position of point A will be larger than

that of point B, which are shown in Fig. 8. Then we make

the panels on the right-hand side of the line AC collapse

V into a discrete core. In fact, the line AC and the

semi-infinite line CD is the leading—edge vortex core being

fed by the remaining vortex panels in the wake.

After we relocate the wake, one iterative cycle is

accomplished. Then we redetermine the vorticity field on the

wing and in the wake; and then we relocate the wake. Several

iterative cycles are performed until the shape of the wake

converges. After the vorticity at the nodes and the shape of

the wake have been obtained, the total loads and pressure

distributions can be calculated by using Bernoulli's

equation. The details of all the calculations required

above are given in Chapter II.
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3.3 NUMERICAL RESULTS

In Fig. 9, we compare the vorticity field observed by

Elle and Jones [3] with that computed by the present method

for a delta wing of 1.87 aspect ratio. The present results

were computed for l5° angle of attack. The precise value of

the angle of attack for the observation of Elle and Jones

was not given; they simply stated that it was high

incidence. We note that the observed ‘vorticity is nearly

perpendicular to the leading edge, so we use this

requirement as the Kutta condition for the present model.

The two vorticity fields appear to be consistent.

In Fig. 10, the actual solution of the positions of the

finite segments in the wake for a delta wing of unit aspect

ratio for lC° angle of attack is shown in two views. The

converged solution shows the 1eading—edge core and its

feeding free-vortex sheets. As the angle of attack

increases, the vortex sheet rolls up more tightly. In Fig.

ll, the actual solution for the same delta wing is shown for

l5° angle of attack. Here we can see that the first and

second wake lines emanating from the leading edge cross each

other earlier than those for 10° angle of attack.

Semi—infinite segments and panels are also used.

Each component in the deviation ‘vector· E measures the

degree of the inaccuracy in satisfying the no—penetration
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boundary condition at the corresponding control point. The

ratio of the magnitude of the maximum component in the

vector E to the free stream speed is denoted by 6. Numerical

examples are given for a delta wing of 1.46 aspect ratio.

The values of 6 are 0.148, 0.159, and 0.195 for the angles

of attack of l0°, l5°, and 20°, respectively. The maximum

component in the vector E always corresponds to the control

point nearest the apex. Our numerical experience shows that

putting a small weight on the corresponding element in the

symmetric weighting matrix W not only reduces this maximum

deviation (i.e. spreads the errors all over the control

points on the wing surface more evenly) but also increases

the convergence. As a matter of fact, however, these small

deviations do not significantly influence the calculated

loads in the present method as seen in Eq. (2.89) becausez§Ü

is the tangential Velocity on the wing surface and hence the

dot product of Ü andLÄÜ eliminates the Y—component of G.

In Fig. 12, the normal-force coefficient is given as a

function of the angle of attack for a delta wing of unit

aspect ratio. The numerical results obtained by the present

method are compared with the experimental values of Peckham U
[2] and Tosti [44], and the numerical results of Kandil et

al [26], Weber et al [45], Mehrotra and Lan [46], and Lamar

and Gloss [47] over a range from 0° to 20°. There is fairly
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good agreement among the present results, all of the

experimental data, and the other numerical results. The

effect of increasing the number of rows for the present

method is also shown in this figure. One can see that the

curves based on the lattices having three rows and four rows

are almost coincident. In Eigs. 13-15, the same coefficients

are given as functions of the angle of attack for delta

wings having various aspect ratios. For 1.46 aspect ratio,

the normal-force coefficients predicted by the present

method compare well with the data of Wentz and Kohlman [48]

and the numerical results of Mehrotra and Lan [46], Lamar

and Gloss [47], and Weber et al [45] in the angle of attack

range from 0° to 20°. For 1.67 aspect ratio, the present

results for normal-force coefficient agree closely with the

experimental data of Peckham [2] and Bergesen and Porter

[49] and numerical results of Kandil et al [26], as shown in

Fig. 14. The agreement of the present results for 2.0 aspect

ratio with the experimental data of Bartlett and Vidal [50]

and numerical results of Kandil et al [26] is also good, as

shown in Eig. 15.

In Eigs. 16-17, we show the variation of the theoretical

normal-force coefficient for delta wings with aspect ratio

at fixed angles of attack of l5°and 20°, respectively. The

results predicted by the present method are compared with
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the suction analogy [47] which is known to be a good

estimator of the actual normal—force coefficient. Good

agreement between the present method and the suction analogy

occurs in the range of aspect ratios of 1.0 < A < 2.0.

The pitching-moment coefficient for a flat delta wing of

unit aspect ratio is shown in Fig. 18. The results obtained

by the present method agree closely with the experimental

data of Peckham [2] and Tosti [44] and the numerical results

of Weber et al [45] and Mehrotra and Lan [46]. In Fig. 19,

we compare the pitching-moment coefficient for a flat delta

wing of 1.46 aspect ratio predicted by the present method

with other numerical results and with experimental data. The

agreement of our results with those of Weber et al [45] and

Mehrotra and Lan [46] is quite good. The agreement of our

results with the experimental data presented by Wentz and

Kohlman [48] is very good for angles of attack lower than 15T

One of the most important features of the present method

is the ability to compute surface pressure distributions. A

comparison of detailed pressure distributions are shown in

Figs. 20, 21 and 22. In Fig. 20, the spanwise pressure

distributions for a flat delta wing of aspect ratio 1.46 at

14° anqle of attack are compared with the experimental data

of Marsden et al [17] and numerical results of Mehrotra and
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Lan [46], and Weber et al [45] at two chordwise stations.

The general agreement of our results with the experimental

data is quite good. The present method predicts the

completely three-dimensional non-conical load distribution

very well including the location of the pressure peak

induced by the vortex core. We also compare spanwise

pressure distributions predicted by the present method based

on two criteria for the formation of the vortex core. One

can see that the tight criterion (Appendix D) gives the

results in closer agreement with the experimentally obtained

values as shown in Fig. 20. So the vortex core should be

modeled, more realistically* by using the tight criterion.

y This can be seen in Fig. 24 which shows the actual solution

of the positions of the finite segments in the wake for a

delta wing of 1.46 aspect ratio for a l4° angle of attack.

Fig. 21 compares the spanwise pressure distributions

predicted by the present method with other numerical results

for a flat delta wing of unit aspect ratio at lS° angle of

attack. The results are in good agreement at X/Cr = 0.7 and

X/Cr = 0.82, except the peak values of«ßCP given by the

numerical results of Weber et al [45] seem to be higher. The

spanwise pressure distributions predicted by the pesent

method, shown in Fig. 22, on an aspect ratio 1.0 delta wing

at an angle of. attack of 20° are compared with the
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experimental data of Hummel [5]. The agreement of the

present results with the experimental data is good. The

decrease of the load toward the trailing edge is predicted

well.



Chapter IV

RECTANGULAR WINGS

4.l ARRANGEMENT

A. High-Aspect Rectangglar gings

We divide a typical rectangular wing into m rows and n

columns, that is, (m-1)(n—1) rectangular elements. Each

rectangular· element is then divided into four triangular

panels, as shown in Fig. 25. For a high-aspect wing, the

wing—tip Vortices appear not to influence strongly a

significant percentage of the surface of the wing. Hence,

along the wing tips and the leading edge a concentrated core

of Vorticity is employed to simulate the wing-tip Vortex and

the flow around a small radius leading edge. Vorticity

enters and leaves this core at all points along the wing

tips and leading edge, but not in the wake. The vorticity

along the trailing edge is taken to be perpendicular to the

edge as the Kutta condition. The free vortex sheet emanating

from the trailing edge is represented by a flat sheet which

is composed of a series of connected triangular panels, as

shown in Fig. 25. This flat sheet is aligned with the

Velocity of the free stream.

45
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B. Low·Aspect Rectangglar Wings

The same lattice of lines is placed on the wing surface

_ as the one for high—aspect ratios. For low·aspect wings, the

wing-tip vortices play an important role in the ncnlinear

effects predicting the aerodynamic characteristics.

Therefore, the Kutta condition imposed along the wing tips

requires that the vorticity be perpendicular to the wing

tips and vary linearly from point A to point B. The wake
l

emanating from the wing tips is represented by a series of

triangular panels whose orientation in space is determined

as part of the solution, as shown in Fig. 25. Semi—infinite

panels are added to the end of each row of finite·length

elements in each wake line. For the rectangular wing of unit

aspect ratio at l5° angle of attack, the first two wake

lines emanating from the wing tips do not cross each other

until_ they pass the trailing edge. Therefore, we don’t

employ‘ a concentrated core of vorticity to represent the

wing—tip vortex core which appears to form behind the

trailing edge and not to have much influence on the

aerodynamic lcads.
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4.2 NUMERICAL PROCEDURE

For high-aspect wings, the boundary-value problem can be

treated as a linear, two—dimensional problem. Hence, no·

iteration is needed to adjust the wake shape. The only

unknowns are the vorticity distributions over the surface of

the wing. The solution can be obtained by first forming an

influence matrix in which the influence coefficients of the

induced velocity at each control point are calculated for

all the triangular panels and semi-infinite panels. Also,

the conservation equation being satisfied in the shaded

triangular panels forces the conservation equation to be

satisfied in the unshaded panels, as shown in Fig. 25. Then

we apply the same optimization scheme as in the case of the

delta wing to minimize the errors from the no—penetration

boundary condition with Kutta and conservation equations as

the constraints. This involves the setting up of a

coefficient matrix and selecting a solver for the

simultaneous algebraic equations. Then the vorticity

distributions over the lifting surface for high aspect

ratios can be obtained.

For low—aspect wings, we need to determine the wake shape

emanating from the wing tips in addition to the vorticity

distributions over the wing surface. The numerical

procedure for obtaining these solutions is similar to the
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one used to treat delta wings, except no concentrated core

of vorticity is added to the wake lines emanating from the

wing tips.

4.3 NUMERICAL RESULTS

In Fig. 25, we show the vorticity fields simulating

rectangular wings of different high—aspect ratios. The

arrows point in the direction of the vorticity and their

lengths are proportional to the magnitude. We note that the

vorticity along the trailing edge is weak everywhere except

in a small region near the tips. The vorticity fields

depicted are actual solutions obtained by using eight

rectangular elements. Symmetry was not imposed a priori;

thus, the program can treat asymmetric flows. The vorticity

fields are qualitatively consistent with the observations of

Francis and Kennedy [6], except near the midspan where their

experimental observations were influenced by the wall of the

tunnel.

In Fig. 27, the normal—force coefficient is given as a

function of the aspect ratio for a l5° angle of attack. The

present results agree closely with experimental data when

the aspect ratio is larger than 3. Below this value, it

appears that the wing tip vortices strcngly influence a

significant percentage of the surface of the wing and a
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better model of the wing tip vortices for low-aspect ratio

is then needed.

Fig. 28 shows the wake shape in two views for a

rectangular wing of unit aspect ratio in symmetric steady

flow at a 15° angle of attack. Symmetry was not imposed a

priori; thus, the program can treat asymmetric flows. This

figure is similar to those obtained by Belotserkovskii [22]

and Rehbach [51]. .

In Fig. 29, the normal force coefficient is given as a

function of the angle of attack. The present results are in

good agreement with the numerical results of Bradley et al

[S3] and with the experimental data of Ermolenko [52] and

Lamar [54]. The differences in experimental data can be

attributed to the different construction of the wing tip.

In Fig. 30, the pitching—moment coefficient is given as a

function of the angle of attack. The agreement is good

between the predictions given by the present method and the

experimental data of Frmolenko [52].

In Fig. 31, the normal—force coefficient is given as a

function of aspect ratio for a low—aspect rectangular wing

at l5° angle of attack. The present results agree closely

with the experimental data of Lamar [54} and numerical

results of Kandil [25]. Combining Fig. 27 with Fig. 31, the

whole range of the normal·force coefficient given as a

function of the aspect ratio can be displayed.
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Fig. 32 shows the vorticity fields simulating the

rectangular wing of unit aspect ratio. In order to include

the significant influence of the wing—tip vortices on the

surface of the wing, the Kutta condition for the present
l

method has been employed so that the vorticity is

perpendicular to the wing tips and the trailing edge. The

arrows indicate the direction of the vorticity and their

lengths are proportional to the magnitude.



Chapter V

CONCLUSIONS AND RECOMMENDATIONS

A continuous-vorticity panel method that can predict the

steady aerodynamic loads on lifting surfaces has been

developed. The method is based on the assumption that vortex

bursting does not occur in the vicinity of the wing and

separation occurs only along sharp edges. The method employs

an inviscid—flow model in which the wing and the wake are

replaced by triangular panels and semi—infinite panels with

linearly varying vorticity. If the wake rolls up tightly,

vortex cores are modeled by the present method.

For moderate and high angles of attack, for small aspect

ratios, and for highly swept sharp leading edges, This

method which models the wakes with force·free continuous

vortex sheets has succeeded in predicting the distributed as

well as the total aerodynamic characteristics. The present

method is not restricted by aspect ratio, angle of attack,

planform, or camber. Moreover, for a delta wing, the

present method can model the leading—edge vortex core and

its feeding sheet. For a rectangular wing of high aspect

ratio, a concentrated core of vorticity along the wing tips

and the leading edge can provide an accurate model.

51
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The present method predicts Vorticity fields for

rectangular and delta wings which are qualitatively

consistent with experimental results. The normal-force and

pitching—moment coefficients are in good agreement with

experimentally obtained values. Moreover, the present method.

is capable of predicting the detailed surface pressure

distributions on thin, sharp—edged wings better than the

Vortex-lattice methods. The results show good agreement with

available experimental data.

The method is general, and it can treat lifting and

nonlifting flows. It can be used to predict loads on any

control surface, including diving planes and sails on

submarines.

The following are areas for improving and extending the

present method:

1. Discretizing the continuous time Variation to treat

unsteady flows. At each discrete time step, the

solution is obtained in a manner similar to that for

treating steady flows.

2. Generalizing the present code to handle planforms

other than the delta and rectangular planforms.

3. Including the thickness and camber effects.

4. Taking into account the compressibility effects by

using a Prandtl·Glauert transformation based on

freestream or local conditions.
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5. Combining the present code with a boundary·layer

program to predict separation, transition, etc.

6. Combining the present code with a stress and/or

deflection code to calculate the deformation of wings

under aerodynamic loads.
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Appendix A

INFLUENCE COEFEICIENTS

The induced velocity generated by the vorticity

distributed over a triangular panel or a semi—infinite panel

has been derived in Chapter II and can be expressed as a

linear function of the basic unknowns Xn and Zn, the

X-component and Z-component of the vorticity at the corners

of the panels in the local reference frame. Thus, referring

to Eqs. (2.l1)—(2.13), we have

V = ZB (A.1)Sx nz] n ny

-26] (**-2)
y nz] n nz n nx

3
v„= -§ x 6 (**-3)“

n=1 n ny

.. :3än .=@¤. zßän. - ~where Bnx ax , Bny ay , and Bnz az . Then the velocity is

transformed into the global reference frame

= + A.4VX Vxexx Vyeyx + Vzezx I
( )

=* + ¤ (A-5)VY IxexY VyeyY + Vz'zY

V = V . .6Z Xexz * Vyeyz + vzgzz (A )
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where e,x , eyx , ezx , exv , eyv , ezY , exz , eyz , and ezz

represent the direction cosines of the x, y, and z axes in

the global coordinate system (X, Y, Z system). In a similar

way, the vorticity components Xn and Zn at the corners of

the panels in the local coordinate system can be transformed

into the expressions in terms of the vorticity components

Xng and Zng at the corresponding corners of the panels in

the global coordinate

system.Therefore,the normal component of the induced velocity

at the control pbint on the lifting surface in the global

reference frame can be represented by a linear function of

the vorticity components Xng and Zng at the corners of the

panels. That is

3
VY <xngcnX + ZngCnz) (A.7)

Q .
where Cnx and Cnz can be calculated and are known values.

Then application of the no—penetration boundary condition

at all the control points on the lifting surface leads to a

set of simultaneous algebraic equations whose matrix form

can be written as

AU + V = E

where A is called the influence coefficient matrix, U is a

vector which is composed of the unknowns Xng and Zng
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representinq the vorticity components at the nodes of the

panels, V is the vector of contributions from the freestream

velocity, and E is a deviation vector from the

no·penetration boundary condition. _



Appendix Q

OPTIMIZATION SCHEME

To minimize the error in the no-penetration boundary

codition subject to the conservation and Kutta conditions as

the constraints, we first obtain the matrix forms of these

conditions and then apply the method of Lagrange

multipliers. The unknowns Xng, Zng, and the Lagrange

multipliers are obtained by solving a set of simultaneous

algebraic equations.

We can rewrite Eq. (2.4), which is known as the

conservation equation, as a linear function of the vorticity

components Xng and Zng at the nodes of the panels in a

global reference frame by using the same transformation

technique as that in Appendix A. The matrix form of the

conservation condition is

CU = O

where C may be interpreted as the conservation coefficient

matrix.

The Kutta condition is taken into account when we form

the influence coefficient matrix A; that is, the vortex

lines are required to be orthogonal to the edges where the

64
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Kutta condition is imposed, to the edges where wakes are

attached. Therefore, along these edges the orientation of

the vorticity at a node is known so that only one unknown at

this node is counted rather than two.

Then the augmented function ¢A (Eq.(2.8l)) and Eq. (2.84)

are reduced to

;=¢+gTCU (B.l)A c

and

To find the vectors U and AC, we need to solve the combined

simultaneous algebraic equations (B.2) and (2.82). The

matrix form of these combined simultaneous algebraic

equations is

T 7 -ZA AA C U -z¤'wv
_ _ (B-3)

C O Ac Q



Appendix Q

A CLOSED-FORM EXPRESSION EOR THE VELOCITY
GENERATED BY THE VORTICITY DISTRIBUTED OVER A

TRIANGULAR PANEL

Here we take the X-component of the induced velocity as

our example and show how its closed-form expression is

obtained.

Referring to Eq. (2.11), we have

v=zX Ä ay + ZZ
cy +

Z]SubstitutingEq. (2.7) into Eq. (C.1) gives
3 2

Tx.4w {En;1 n n gy
’

HÄ1 bnzn &y (C.2)
3

'

+Thensubstituting Eqs. (2.16), (2.28), and (2.47) into Eq.

(C.2), we obtain

1 3
1

3‘
: i x _

- °
·‘_ ‘IX qm, J H3)

¤=l (cz.2)

3— sgn(y)(A5 · J1: · J1: • J31)[%L + Z_ (änx 7 bnZ)Zgl;§
H=l J
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Appendix Q

TIGHT CRITERION FOR THE FORMATION OF THE VORTEX
CORE

In section 3.2 we have described the procedure of adding

a concentrated vortex core into the wake by comparing the

Z-components of the positions of the end points of each

finite-length segment in the first wake line with those in

the second wake line. In addition to the comparisons

mentioned above, the tight criterion requires more

comparisons for the Z-components of the positions of the end

points of each finite—length segment in all the wake lines

emanating from the leading edge.

Referring to Fig. 23, for example, the points A in the

first wake line, C in the second wake line, and E in the

third wake line have the same X-components as the points B

in the second wake line, D in the third wake line, and F in

the fourth wake line, respectively. Then their Z-components

are compared. As the wake rolls up tightly, the second wake

line will cross the first and the third wake line will cross

the second and so forth. Therefore, the Z-components of the

positions of points A, C, and E are larger than those of

points B, D, and F, respectively. If this situation happens,

the panels on the right—hand side of the zigzag line AG are
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merged into a discrete vortex core. This criterion is more

strict than the previous criterion described in section 3.2.

The tight criterion gives better distributed aerodynamic

loads, though the total aerodynamic loads obtained by both

criterions are almost the same.
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A CONTINUOUS VORTICITY PANEL METHOD FOR THE PREDICTION

OF STEADY AERODYNAMIC LOADS ON LIFTING SUREACES

ALBERT TIENGTSUNG YEN

(ABSTRACT)

A continuous vorticity panel method is developed and utilized

to predict the steady aerodynamic loads on lifting surfaces having

sharp-edge separation. Triangular and semi-infinite panels with

linearly varying vorticity are used. The velocity field generated

by an individual element is obtained in closed form. A concentrated

core of vorticity is employed to simulate the leading-edge-vortex

core and its feeding sheet. An optimization scheme is constructed

for finding the vorticity at the nodes of the elements. The method

is not restricted by aspect ratios, angles of attack, planforms,

or camber. The numerical results are in good agreement with the

experimental data for both rectangular and delta wings for incom-

pressible flows.


