
1

Crisis Event LLM

CS 4624
Virginia Tech
Blacksburg, VA
11/30/2023

Students:
● Bhargava Elavarthi
● Kunal Nakka
● Srikaran Bachu

Client:
● Dr. Mohamad Farag



2

Table of Contents:

- Table of Figures 3

- Abstract 4

- Introduction 5

- Requirements 6

- Design 7

- Implementation 9

- Testing/Evaluation 11

- User Manual 13

- Developer Manual 19

- Lessons Learned 26

- Acknowledgements 29

- References 30



3

Table of Figures:

- Figure 1: Workflow Chart 8

- Figure 2: Home Page 13

- Figure 3: BERT Page 14

- Figure 4: Model Type Selection 14

- Figure 5: Text Block for Crisis Event Name 15

- Figure 6: Adding Individual Text Blocks 15

- Figure 7: Zip File Example 16

- Figure 8: Zip File Upload 16

- Figure 9: List of Models 17

- Figure 10: Classification Page and Results 17

- Figure 11: GitLab CrisisLLM page 19

- Figure 12: Expected Directory 20

- Figure 13: Table of Required Python3 Packages 21

- Figure 14: Expected Terminal Output 22

- Figure 15: App.py Code Snippet For Port Change 22

- Figure 16: Load Model Function 23

- Figure 17: Training Function Example 25

- Figure 18: Semester Schedule 26



4

Abstract:

Navigating through the intricate landscape of understanding and classifying crisis events,
the "Crisis Events Language Model" project embarked on a comprehensive exploration
leveraging Natural Language Processing (NLP) and machine learning. With a primary focus on
utilizing BERT, a powerful PreTrained Language Model, our objective was to create an adept
classification system for textual data related to crisis events sourced from the web.

Our methodology involved the adept use of the BeautifulSoup library in Python for web
scraping, enabling the extraction of textual data from URLs associated with crisis events. This
rich dataset served as the backbone for training and evaluating our models. Post-data acquisition,
we fine-tuned BERT to align with our specific use case, adapting its output layer to meet our
unique classification goals. This strategic modification enhanced BERT's capabilities in
recognizing, interpreting, and categorizing crisis event data with precision.

Simultaneously, on the front-end development front, we constructed an intuitive interface
using HTML and CSS. This user-friendly interface not only facilitates the visualization of the
model's outputs but also simplifies user interaction and data input. The result is a practical tool
poised for deployment in real-time crisis management situations.

Anticipating multiple impacts, our project positions itself to simplify the comprehension
and categorization of crisis events. This functionality, tailored for decision-makers and crisis
management teams, promises to be a valuable asset in the face of urgent situations. Moreover, for
the participating students, the project provides a dynamic learning experience, bridging
theoretical knowledge with practical applications in NLP, text classification, and transfer
learning.

Throughout the project's duration, team members assumed diverse roles, from web
scraping and model implementation to front-end development and meticulous documentation.
This collaborative effort blended skills in programming, software engineering, Python, and
machine learning, ensuring a holistic approach to project development.

In conclusion, our project not only serves as a testament to the technical prowess and
collaboration within our team but also makes substantive contributions to the realms of crisis
management and NLP. It underscores the potential of integrating machine learning and language
models in crisis management, offering valuable insights and avenues for future exploration and
development in this critical area.



5

Introduction:

In the dynamic landscape of data and technology, the analysis of text data has emerged as
a pivotal element for a myriad of tasks, notably in text classification and natural language
processing (NLP). However, the effective handling of textual data often demands substantial
efforts and resources, particularly in the intricate process of preparing features, labels, and
datasets. This challenge becomes particularly pronounced when attempting to distill meaningful
insights from an expansive sea of unstructured text.

Amidst this, transfer learning emerges as a game-changing machine learning technique. It
involves the utilization of pre-trained language models initially designed for specific tasks and
adapts them to excel in diverse applications. This approach proves particularly advantageous in
numerous NLP applications, streamlining the development of high-performing models with
reduced upfront workload.

Our project dives deep into the exploration of the capabilities of Large Language Models
(LLMs), with a specific focus on BERT, in the context of analyzing crisis events. Concentrating
on English language models that have undergone extensive pre-training on diverse text data, we
investigate their efficacy in handling crisis-related textual data extracted from tweets and
webpages. The primary objective is to construct classifiers tailored explicitly for crises,
facilitating the identification of crucial information and sentiments during challenging situations.

As we navigate through this project, our ultimate goal is to develop a functional
application. This application is driven by a user-friendly frontend that allows one to upload a zip
file of data to be trained by a model of the user's choice (either Distilbert or BERT. Once the
model is trained, the user can type in text on the front end that can be identified by the specific
model trained. If the content pertains to a crisis event, the application should further classify the
specific nature of the crisis event, assuming it is present in the training data.

The motivation underlying this endeavor stems from the escalating need for effective
crisis event analysis. In times of crisis, the ability to swiftly and accurately comprehend
information holds significant importance. By harnessing the capabilities of LLMs and transfer
learning, we aspire to equip students with the knowledge and tools essential to confront the
intricate challenges embedded in NLP. Additionally, we aim to contribute to the ongoing
development of innovative solutions in crisis management and related fields. This paper
chronicles our journey in harnessing advanced language models for crisis event analysis,
detailing the methodologies employed, challenges encountered, and the potential impact of our
project on the broader landscape of NLP and crisis management.



6

Requirements:
The system encompasses a backend, responsible for training the specific models on a

specific crisis event as well as the process of identifying whether the specific text is related to
that crisis event. This is linked to the HTML & CSS based front end for user engagement and
interaction. The functionalities fall broadly into utilizing BERT for crisis event text
summarization and classification and providing a user interface to receive zip files of data from
the user and display coherent, summarized, or classified outputs about crisis events.

In the zip file module, the objective is to retrieve and process text data uploaded by the
user, ensuring organized storage for subsequent model training and testing. Concerning model
training and deployment, the system should ingest inputs from the scraping module, and ensure
the BERT or DistiBERT model is fine-tuned effectively. It is imperative that this fine-tuning be
oriented towards specificity for the English language and the nuances of varied crisis events. The
functionalities to be supported by the model include the summarization of multiple documents
related to a single crisis event and the classification of specifics related to the crisis events. On
the front end, a user-friendly interface, developed with HTML & CSS, must facilitate file upload
and present model outputs in a structured and understandable format. The front end should also
ensure varied, optimized interfaces for standard and administrative users.

From a non-functional standpoint, the system should exhibit usability through an intuitive
interface and provide clear, succinct outputs and instructions. Performance-wise, it must
maintain a low latency level from input to output delivery, ensuring timely responses to user
interactions. Consistent, reliable, and accurate outputs are crucial for maintaining trust and utility
in the system. Furthermore, scalability must be considered, ensuring the system can adapt to
future extensions or modifications, such as incorporating additional language models or
expanding crisis event categories. The project is very scalable and two models (BERT &
DistiBERT) can be used by the user. Future implementations of other language models can be
added in as well.

User interfaces are expected to be coherently structured with clear pathways for inputting
URLs and receiving model outputs, utilizing HTML for development. In parallel, there must be
harmonious software interfacing, ensuring streamlined communication between the front end and
the models in the back end, to facilitate a seamless user experience.

While this document outlines the foundational guidelines for project development, it is
pivotal that scalability is taken into consideration for future implementations of new models.
Periodic review and agreement upon any changes by all stakeholders ensure alignment and
minimize scope creep, keeping the project on track to stay practical and useful toward future
objectives and applications.



7

Design

To begin this project, the client provided some insight as to which direction the project
should be headed and what tools were needed to accomplish the given task. After careful
consideration and research into what “Learning Language Model” should be implemented, we
decided upon BERT (Bidirectional Encoder Representations from Transformers). BERT,
introduced by Google AI researchers in 2018, stands at the forefront of natural language
processing (NLP) models, marking a revolutionary milestone in the field. Its distinctive approach
to bidirectional language understanding has catapulted it to a position of high influence,
significantly advancing the state-of-the-art across various NLP tasks. BERT's bidirectional
context modeling allows it to consider the entire context of a word, addressing limitations posed
by traditional unidirectional models. This architectural innovation has proven immensely
beneficial in tasks such as text classification, sentiment analysis, question answering, and
language understanding. The decision to leverage BERT in our project stems from its proven
track record in enhancing the efficiency and accuracy of NLP applications, aligning seamlessly
with the objectives of our crisis event analysis endeavor.

The ultimate goal of using BERT is to help understand how to classify and analyze text
that is being uploaded by the user. An in-depth analysis of how the Crisis Learning Language
model works and the flow can be seen below. There are three main phases that we will dive deep
into. The first phase (yellow) is for the front-end development. As we mentioned before, it is
done in HTML & CSS and has JavaScript for the dynamic pieces of each page. From the front
end, the user has the opportunity to upload ZIP files that contain various text files that will be
analyzed by the BERT or DistilBERT Model. The second phase (green) is the link to the
backend. The ZIP file is then connected to the backend through the use of Flask. With this link,
the model can unpack the zip file and use the data to train a model for a specific crisis event.
Phase three (purple) is the usage of the model on the front end by the user. Once a model is
trained, users can select it from the model list menu. After it is selected, the user can prompt the
model with various amounts of text and the model will identify if it relates to that specific crisis
event. Below is a diagram highlighting the workflow for the entire project. Each phase is
color-coated for easier readability.



8

Figure 1:Workflow Flowchart



9

Implementation:
To begin with, our project's front end is thoughtfully designed to provide users with an

intuitive and interactive experience. Comprising five distinct HTML pages, each page serves a
specific purpose within the workflow of the Crisis Events Language Model (CrisisLLM).
Leveraging a combination of HTML and CSS, we crafted static pages to ensure a clean and
aesthetically pleasing layout, enhancing user accessibility and navigation.

For the dynamic aspects of our front end, particularly on pages where user interactions
prompt real-time updates, we seamlessly integrated JavaScript functions. One such dynamic
feature is evident in the user interface for text classification. When users upload data and input
text for classification, the results are dynamically presented on the same HTML page. This
responsive behavior not only streamlines the user experience but also provides instant feedback,
contributing to the overall usability and effectiveness of the CrisisLLM platform.

Incorporating JavaScript functionalities has created a more dynamic and responsive front
end. For instance, the integration of asynchronous requests enhances the speed at which data is
processed, ensuring that users receive classification results promptly. Additionally, JavaScript
facilitates client-side interactions, reducing the need for constant server requests and enhancing
the overall efficiency of the user interface.

The backend of our Crisis Events Language Model (CrisisLLM) is powered by Flask, a
lightweight and efficient web framework for Python. Flask seamlessly handles the
communication between the user interface and the underlying model, providing a robust and
responsive user experience. The backend includes functionalities for model fine-tuning, text
classification, and model management.

In the fine-tuning process, users can select a pre-trained language model type, upload a
labeled dataset in a zip file, and specify the name of the newly fine-tuned model. Flask manages
the file uploads, ensuring that only allowed zip files are processed. The uploaded data is then
extracted and prepared for training the specified model type, be it BERT or DistilBERT. The
training process is orchestrated through PyTorch, utilizing DataLoader for efficient data handling
and optimizing with AdamW. The resulting fine-tuned model is serialized using Pickle and saved
for later use.

On the text classification front, users can select the desired pre-trained model, input a
block of text, and receive real-time predictions regarding whether the content is related to a crisis
event. Flask handles these requests, invoking the appropriate model and tokenizing the input text
using the corresponding tokenizer. The prediction is then returned to the user interface for
immediate feedback.



10

Additionally, the backend manages the display of available models, allowing users to
explore and select pre-trained models for text classification. The integration of Flask with the
model management system ensures a seamless and organized approach to handling different
models.



11

Testing/Evaluation
We approached our testing strategy in two distinct but interconnected phases: frontend

and backend testing. Frontend testing primarily focused on ensuring the application's usability
and functionality from a user's perspective. This process involved meticulous testing of each
element on every HTML page. We rigorously tested the Flask endpoints associated with each
page, ensuring smooth and error-free interactions. Furthermore, we evaluated the overall
cohesiveness of the Flask application, paying special attention to its integration with the backend
components.

In the realm of frontend testing, our primary goal was to refine the user interface (UI) and
enhance the user experience (UX). This involved a series of iterative modifications. We
consistently evaluated component functionality, removing or tweaking elements that hampered
usability or detracted from the visual appeal. We engaged in a dynamic process with our client,
showcasing the frontend every Monday, incorporating their feedback to ensure the product
aligned with their vision and requirements. Client feedback was invaluable in guiding the UI/UX
design, leading to several pivotal changes.

Peer feedback, garnered from demonstration presentations, also played a crucial role in
shaping the frontend. A significant recommendation from a peer was the implementation of a zip
file upload feature. This replaced the less efficient manual text entry method, significantly
enhancing the application's user-friendliness and efficiency. Additionally, aesthetic feedback led
to a redesign of the homepage with more vibrant colors, substantially improving the visual
appeal and user engagement.

Our backend testing was predominantly focused on evaluating the model accuracies. We
employed a comprehensive set of evaluation methods to assess the accuracy metrics of our
various models. Given the constraints of our limited dataset, our testing had inherent challenges.
We used validation/testing sets comprising 20 elements each, evenly split between positive and
negative samples. In some instances, due to dataset limitations, we had to reuse certain negative
data points from the training set in the validation for another model. While we endeavored to
minimize this overlap, it was occasionally necessary to generate sufficient data for reliable
accuracy metrics.

The accuracy metrics employed were loss, total accuracy, and F1-score. These metrics
were automatically computed after each training epoch. The epoch yielding the lowest loss score
was selected for the final model. This process was uniformly applied across all models, ensuring
a consistent and fair evaluation. Furthermore, these metrics were made visible to users during the
model training process via the Flask app, adding a layer of transparency and user engagement.



12

Integrating the frontend and backend was another critical aspect of our testing. We
needed to ensure seamless transitions between different functionalities, such as switching
between classifying and training models. It was imperative that the correct model was loaded and
utilized for each specific user input. This required extensive manual testing, simulating a myriad
of potential user interactions to guarantee robustness and reliability.

The integration testing was particularly challenging, as it required a deep understanding
of both the frontend and backend workings. Each test case was carefully designed to mimic
real-world user scenarios. We systematically tested all possible combinations of user inputs and
actions to ensure that the application behaved as expected. This included testing for edge cases
and potential error scenarios, ensuring that the application was not only functional but also
resilient to unexpected user actions.

Our rigorous testing methodology, encompassing both frontend and backend aspects, was
instrumental in developing a robust and user-friendly application. The iterative process of
incorporating feedback from various stakeholders, including the client, peers, and our own
testing insights, led to a product that not only met but exceeded the initial requirements. This
comprehensive approach to testing and evaluation has been pivotal in ensuring the success and
reliability of our application.



13

User Manual

There are several features that have been added or are in the process of being
implemented in our project. Users will be greeted with an intuitive and user-friendly home page
intended to create a smooth and engaging experience. The main page acts as the main hub, with a
clean and structured style that grabs the user's attention right away. Several tabs are carefully
positioned at the top of this interface to assist easy navigation. These tabs serve as portals to
other areas of the website, each with its own set of features and information about the project.
Users may quickly explore and obtain the relevant material by simply clicking on the related
tabs, whether they are looking for project details, resources, or specialized functionality.

Figure 2: Home Page

The carefully developed design guarantees that users, regardless of their knowledge of
the project, can easily comprehend the structure of the website and navigate it. Each tab has clear
and short names, fostering a user-friendly experience for both novice and expert users. Users
may anticipate an interactive and visually appealing home page to serve as the beginning point
for a complete investigation of the project's different features as they go across the website.

The 'Fine Tune BERT' option takes visitors to an interactive website where they may
enter data and actively participate in the project, tailoring the BERT model to their exact
requirements. If visitors are looking for a certain model, the 'Model List' tab takes them to a
dedicated page with a variety of alternatives, each with their own set of features. For those
curious about the minds behind the project, the 'About Us' tab provides insights into our team's
expertise and collaborative efforts. To ensure users make the most of our project, the 'Manual' tab



14

allows for easy access to a downloadable user manual, offering detailed instructions and
guidelines. In the following sections, we will go further into each tab, offering a thorough
examination of its features.

Figure 3: Bert Page

When users first enter the website they will want to input their own data in order to train
their own model, they will do such on the Fine Tune Bert page, pictured above. There are several
ways to do this. One of the first things that the user must do is select whether they want to train
the model using DistilBert or Bert.

Figure 4:Model Type Selection

There are several differences between the two models that the user should consider before
making a choice. The primary difference lies in their scale and computational efficiency. BERT,
or Bidirectional Encoder Representations from Transformers, is a large and powerful model that



15

captures intricate contextual information from both the left and right sides of a word. However,
its sheer size demands significant computational resources. In contrast, DistilBERT, short for
Distill BERT, is a distilled version of BERT, created to maintain similar performance while
significantly reducing the model's size and computational requirements. DistilBERT achieves
this by removing certain components and reducing the number of parameters. While BERT may
outperform DistilBERT on certain complex tasks due to its larger capacity, DistilBERT serves as
a more efficient alternative.

Figure 5: Text block for Crisis Event Name

Next, users have the pivotal task of specifying the crisis event they wish to train the
model on. This step is crucial for tailoring the model to address specific nuances and
characteristics associated with different crisis events. Upon pressing the submit button at the
bottom of the page, a significant operation takes place behind the scenes—the model is
fine-tuned with the dataset related to the specified crisis event. Importantly, the resulting pickle
file for the trained model is dynamically named as "crisiseventname_modeltype". This
nomenclature ensures clear identification and organization, tying the model to its specific crisis
event for future reference. Subsequently, this uniquely named pickle file becomes a key
component presented in the Model List page on the next tab. This approach enhances user
experience and facilitates easy navigation, allowing users to quickly identify and select the
trained model associated with their specified crisis event when exploring the Model List.

Figure 6: Adding Individual Text Blocks
Users are empowered to refine the model's understanding by inputting individual text

blocks and categorizing them as either "Crisis Event" or "Not a Crisis Event." This interactive
process allows users to actively shape the model's comprehension of relevant textual data. The
presence of an "Add Text Block" button facilitates a dynamic experience, enabling users to input
as many text blocks as necessary for robust training. Each added text block serves as a data
point, contributing to the model's learning process. Once users have meticulously defined these
text blocks, they can seamlessly press the "Finished" button on the page. At this point, the
system collects and compiles all the inputted text blocks, utilizing them to fine-tune the model.



16

This iterative and user-driven approach ensures that the model is trained with a diverse range of
examples, enhancing its ability to accurately distinguish between crisis and non-crisis events
based on the patterns learned from user-provided text blocks.

The last feature on this page is the main feature that we want users to use. This feature allows
users to input their own zip file of documents that are pre-classified as Crisis Events and Not
Crisis Events. Below is a picture of what the zip file should look like. In the zip file, there should
be two folders, labeled “0” and “1”. 0, represents the text documents that are not Crisis Events
and 1 represents the documents that are Crisis events.

Figure 7: Zip file Example

Users will then input the zip file and press the finish button. When the finish button is
pressed, a Model will be trained on the data set for the user to use on the “Model List” page.

Figure 8: Zip file Upload

As the zip file containing relevant data is submitted, the backend initiates the training procedure.
Behind the scenes, the model undergoes a series of epochs, with each epoch representing a
complete pass through the training dataset. This iterative training process allows the model to
gradually refine its understanding and adapt to the nuances present in the provided data. The



17

uploaded zip file serves as a comprehensive source of information, enabling the model to learn
and generalize patterns associated with crisis and non-crisis events. his automated and
streamlined approach ensures that the model is continuously fine-tuned based on the
user-provided dataset, optimizing its predictive capabilities for accurately discerning
crisis-related content. The training of the model will take some time.

After the model has been trained, it will appear on the model list page with the
appropriate name as aforementioned. Here there will be a list of models that have been trained
and users can click on.

Figure 9: List of Models

When the user clicks one of these models, they can now classify text to see if it relates to
the crisis event. In the example below, the model that was the Monterey Shooting that was
trained using BERT. Included in the text bar is an example of text that is classified as that relates
the the monterey park shooting. When the classify button is pressed it will print the result of the
classification.

Figure 10: Classification page and result



18

Our application's design philosophy revolves around simplicity and user accessibility. We
have adopted a minimalistic interface for the following reasons: Clarity: By reducing clutter and
unnecessary elements, we aim to provide a clean and unambiguous user experience. Ease of Use:
The minimalistic design ensures that users can quickly locate and access the essential features
without distractions. Accessibility: We prioritize accessibility by using clear typography,
intuitive navigation, and high contrast elements to accommodate users with diverse needs.
Efficiency: The streamlined interface minimizes the learning curve, allowing users to focus on
their primary task—identifying and understanding crisis events from URLs.



19

Developer Manual

Step 1: Clone the repository

Open a new terminal and cd into an empty directory where you want the project to be cloned
into.

Run the following command:

git clone https://git.cs.vt.edu/bhargava/crisisllm

This will clone the git repo of this gitlab page below:

Figure 11: Gitlab CrisisLLM page

If everything is properly cloned the directory should look like the figure below:

https://git.cs.vt.edu/bhargava/crisisllm


20

Figure 12: Expected Directory



21

Step 2: Python+Packages installation

Install a version of Python 3.7 or higher. We used Python 3.9.12 for our version.

Next the necessary python packages must be installed as shown below:

Package Version

Flask 3.00

Werkzeug 3.00

torch 2.1.0

transformers 4.35.0

scikit-learn 1.3.2

Figure 13: Table of Required Python3 Packages

To easily download the packages, you can run the following command:

pip3 install -r requirements.txt

3. Running the flask app

To start the flask application run the app.py file.

This can be accomplished by running the following command:

python3 app.py

The console output should look like this



22

Figure 14: Expected Terminal Output

You can change the port (optional) by making this change in app.py - line 309:

Figure 15: app.py code snippet for port change

To run the flask app command+click(mac) or control+click(windows) on the server link (in our
case Running on http://127.0.0.1:5000).

4. System Architecture & File Structure

Backend:

● /app.py: Script for running Flask application
● /bert.ipynb: Script for model training and bert Initialization
● /models: Folder filled with models that have been trained on the FrontEnd

○ These models were created and saved in the folder by app.py
● /user_zips: Folder filled with zips that were input by the users

Frontend:

● /templates: Folder filled with html files that are loaded on the front end
○ fine_tune.html
○ about_us.html
○ index.html

http://127.0.0.1:5000


23

○ model_list.html
○ monterey_classification.html
○ result.html

app.py:

App.py is a Python script is a Flask web application designed for fine-tuning and
deploying BERT and DistilBERT models for text classification tasks, specifically geared towards
crisis event identification.

The load_model function in app.py serves as a crucial component for initializing and
configuring language models within the CrisisLLM Flask application. When the function
receives a model string as a parameter, it intelligently determines the model type based on the
string, allowing users to choose between BERT, DistilBERT, or a custom fine-tuned model. In
the case of BERT, the function initializes a BERT-based sequence classification model and its
corresponding tokenizer using the popular 'bert-base-uncased' pre-trained weights. Similarly, for
DistilBERT, it employs the 'distilbert-base-uncased' pre-trained weights to set up a DistilBERT
sequence classification model and its tokenizer. In the event of a custom model specified by a
file path, the function loads the pre-trained model using the pickle module, discerns its type
(BERT or DistilBERT), and configures the appropriate tokenizer accordingly. This dynamic
model loading capability enhances the adaptability of the CrisisLLM application, allowing users
to seamlessly switch between different state-of-the-art language models. You can see the
function below:

Figure 16: Load model function



24

In the DistilBERT training function, the model is loaded along with its tokenizer. The labeled
text data, extracted from the uploaded zip file, undergoes preprocessing and is divided into
training and validation sets. The model is then trained over a specified number of epochs, with
each epoch comprising a training loop where gradients are computed, backpropagation is
performed, and the model parameters are updated. The training progress, including loss and F1
score, is printed to the console. Following training, the model's performance is evaluated on a
validation set, and the resulting F1 score is printed. The trained model is serialized using
pickle.dump and saved to a specified file path.

Similarly, the BERT training function follows a comparable structure, where the BERT model
and tokenizer are loaded, and the dataset is split for training and validation. The model undergoes
training over multiple epochs, and training metrics are printed for monitoring. After validation,
the trained BERT model is serialized and saved.

Both training procedures include essential components such as data loading, model initialization,
optimization using AdamW, loss calculation with cross-entropy, and performance evaluation
using F1 score. These functions collectively contribute to the training pipeline, enabling the
models to learn and generalize from the provided labeled data for subsequent classification tasks.



25

Figure 17: Training function example



26

Lessons Learned:

The journey of developing the Crisis Events Language Model (CrisisLLM) has been an
enriching experience, marked by the exploration of various technologies, unexpected challenges,
and continuous learning. Reflecting on our journey, several key aspects emerge, including the
timeline, encountered problems, solutions devised, and the invaluable lessons gained from our
endeavors.

Timeline/Schedule

9/14-10/1 Planned workflow and techstack, setup
environments, identified techstack, created
basic frontend. Began model training

10/1 - 10/15 Backend: BERT tokenizes sentences and
returns ID and index of small classifications
for testing. Began web scraping from google
custom engine using beautifulsoup.
Frontend: Finalized all pieces of frontend,
needed to link to backend.

10/16-11/1 Frontend: Successfully added in zip file input
and linked to backend, submitted interim
report.
Backend: Continuing to finetune with new
data. Lost a team member, scope of project
changed.

11/1-11/30 Backend: Linked to frontend with Flask,
Incorporated DistilBERT.

Frontend: Changed frontend to incorporate all
models. Small touches made for
presentability.

Figure 18: Semester Schedule

The unexpected departure of a team member presented an intricate challenge,
necessitating a reevaluation of our project scope and workflow distribution. This unforeseen
setback prompted us to adapt and restructure our approach to accommodate the reduced team
size. This led to us changing the scope of the project and working with text file data, instead of
web scraped data from different websites. Ultimately, we were able to overcome this milestone
with strong communication, and a good plan of attack.



27

In response to the unexpected challenge, we opted for an agile project management
approach, swiftly adjusting the project scope to align with the reduced team size. The decision to
temporarily set aside the URL-based text classification and web scraping components allowed us
to focus on the core aspects of CrisisLLM, ensuring progress and minimizing disruption.

The development of the backend using Flask introduced our team to the world of web
application frameworks. Learning Flask, with its powerful features and flexibility, enabled us to
seamlessly integrate our machine learning models into a robust and scalable web application.
This experience enhanced our proficiency in web development and equipped us with valuable
skills applicable to future projects.

Navigating the complexities of BERT (Bidirectional Encoder Representations from
Transformers) and DistilBERT was a significant learning curve for our team. Understanding the
intricacies of these state-of-the-art natural language processing models required in-depth
exploration of transformer architectures, attention mechanisms, and transfer learning. Another
lesson we learned was during the finetuning process of changing our language model, BERT,
output layers. This was new to us and required us to get better at using transfer learning. We
were able to learn pyTorch TensorDataset library and leverage that to finetune our model. The
knowledge gained from working with BERT and DistilBERT has broadened our understanding
of advanced NLP techniques, paving the way for future endeavors in language modeling.

Looking ahead, our future work involves delving deeper into the realm of advanced
language models. Expanding beyond BERT and DistilBERT, we aspire to explore models such as
RoBERTa, GPT-3, and XLNet. Each of these models offers unique architectures and training
methodologies, presenting opportunities for enhanced crisis event classification and analysis.

To further augment the CrisisLLMs capabilities, we envision integrating multimodal data
sources. This involves combining textual information with visual and auditory cues, fostering a
more comprehensive understanding of crisis events. Exploring this avenue will contribute to a
more holistic and nuanced analysis of complex situations.

Future iterations of CrisisLLM will prioritize real-time adaptability by exploring the
integration of streaming data sources. Incorporating technologies that enable the model to
dynamically adjust to events will enhance the system's responsiveness and contribute to timely
predictions.

Ensuring the longevity of CrisisLLM's effectiveness requires a commitment to
continuous improvement. Implementing mechanisms for ongoing model evaluation, monitoring
for potential drift, and regular model updates will be essential for maintaining optimal
performance over time.

The journey of developing the Crisis Events Language Model not only expanded our
technical skills but also underscored the significance of adaptability, resilience, and collaborative
problem-solving. Learning to navigate unexpected challenges, mastering new technologies like
Flask and advanced language models, and envisioning future enhancements have collectively
shaped a transformative learning experience. The CrisisLLM stands as a testament to the team's



28

dedication, adaptability, and ongoing pursuit of excellence in the dynamic field of machine
learning and natural language processing.



29

Acknowledgements

Our client was our professor, Mohamed Farag. Dr. Farag is a research associate in the Center for
Sustainable Mobility (CSM). Our group met with Dr. Farag every week to improve clarity on
requirements and display our progress. During every meeting we gained greater clarity on the
specifications of the application and specific modifications that were required. Professor Farag
can be reached at mfarag@vtti.vt.edu.



30

References

James. "Classify Text with BERT." TensorFlow, October 2023.
https://www.tensorflow.org/text/tutorials/classify_text_with_bert.

Pham, Khang. "Text Classification with BERT." Medium, May 9th, 2023.
https://medium.com/@khang.pham.exxact/text-classification-with-bert-7afaacc5e49b.

Maximilien Roberti. "Fastai with Transformers (BERT, RoBERTa)." Towards Data Science,
Nov 27, 2019.
https://towardsdatascience.com/fastai-with-transformers-bert-roberta-xlnet-xlm-distilbert-4f41ee
18ecb2.

Roberti, Marco. "Fastai with Transformers (BERT, RoBERTa)." Kaggle, 2019.
https://www.kaggle.com/code/maroberti/fastai-with-transformers-bert-roberta.

Saini, Amar. "NLP from Scratch with PyTorch, FastAI, and HuggingFace." Epoching Blog, 27
June 2021.
https://amarsaini.github.io/Epoching-Blog/jupyter/nlp/pytorch/fastai/huggingface/2021/06/27/NL
P-from-Scratch-with-PyTorch-FastAI-and-HuggingFace.html.


