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(ABSTRACT)

One of the major goals of software engineering is to control the development and
maintenance of software products. With the growing use and importance of the Ada
programming language, control over the software life cycle of Ada systems is becoming
even more important. Software complexity metrics have been developed to aid software
engineers in the design and development of software systems. This research detines
metrics for Ada and uses an automated analysis tool to calculate them. This tool can be
used by the software engineer to help maintain control over Ada software products. The
validation of this tool was performed by analyzing a medium-sized commercial Ada
product. The flow of control and flow of information through the use of Ada packages can
be measured. The results show that software complexity metrics can be applied to Ada and
produce meaningful results. 0
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Chapter 1 Introduction [

The Importance of Measuring Software
Tom DeMarco says it best: "You can't control what you can't measure"

[DEMAT82]. With the increasing size and cost of software development projects,
measuring software effectively is necessary in order to manage it. Measurement results in

[
better software [GRADR87] and a better understanding of the software development ,
process. Measuring the software development process directly is helpful and guides

[

programmer effort. However, process metrics that have been validated and automated
donotexist. Therefore, the software engineering community is left with measuring
thesoftwareproduct. Measuring the quality of the software is what is desired. Measures
ofqualityare faced with the same problems as measures of the software process.
Thesemeasuresare very difficult to quantify. Therefore, the metrics used in this study focus on P

the complexity of the software. There are other metrics available that concentrate on
aspects of software other than complexity. Complexity metrics are used because most
software engineering researchers believe that if the complexity of software can be

controlled, then the resultant software will be a quality product. The motivation behind
software measurement is the ability to predict certain aspects of the software development
process (such as reliability and maintenance) that are believed to be affected by the
characteristics being measured in the software product [CURTB83].

Software Metrics That Have Been Defined
Software complexity metrics are used to characterize certain features of the software

quantitatively so that comparisons and analyses can be done among modules in a software

system. Many metrics have been defined over the last ten to fifteen years [CONTS86],

[HALSM77], [HENRS8lb], [KOKOP88], [MCCAT76], [MCCLC78], [PIWOP82],
[RAMAB88], [WOODSSO]. These metrics range from a simple count of lines of codetos

E
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data and control flow rneasurements between modules in a programming system. Thelinesof
code metric has existed since the beginning of computer programming. It has been used

to measure programmer productivity (lines of code per unit time) and source code
complexity (based on the belief that long code segments are more complex than short
codesegments).Most software researchers and managers now realize that complexity is not
simply a function of the number of lines of code. Basing productivity and complexity
solely on lines of code is inaccurate. A short recursive procedure is more complex and
takes longer to code than a lengthy output procedure.

Most metrics are based on a simple count of some source code feature.Halsteaddeveloped
a series of metrics called Software Science based on the count of operators

andoperandsused in a program [HALSM77]. McCabe defined a metric that is the number
ofexecutionpaths through a program called the Cyclomatic Complexity [MCCAT76].Thesecounts

are proposed to be a measurement of program complexity. Most highly correlate to i
one another [ELSHJ84], [EVANW83], [HENRSSIA], [LIH87], [SUNOT8l]. Halstead's

Software Science and McCabe's Cyclomatic Complexity are among the most popular of the
metrics available.

Studies Supporting the Use of Software Metrics
Many studies have been done supporting the use of software complexity metrics.

Fitzsimmons and Love [FITZA78] validated Halstead's Software Science and determined

that the measures are good predictors of the number of errors, programming time, and
length. Basili, Selby, and Phillips [BASIV83b] also validated Halstead's Software Science

measures against several production FORTRAN projects. The metrics correlated well
against developmental effort and developmental errors. Kafura and Canning [KAFUD85]
validated several metrics against component errors and component coding time. Shen,
Conte, and Dunsmore [SHENV83] conducted a very detailed, critical analysis of several



l

Software Science measures. They determined that although some of the measures are not
supported theoretically, there is a lot of empirical evidence that supports their validity.
Davis and LeBlanc [DAVIJ88] studied lines of code, Halstead's effort metric, McCabe's
Cyclomatic Complexity, and variations of Woodfield's Review Complexity. They found
that the Review Complexity measures out-performed the other metrics as a predictor for
debugging time, construction time, and number of errors.

Using Metrics Throughout the Software Life Cycle
Most metrics are defined in terms of features in the source code. Therefore,

measurement of these metrics can only take place during the testing and maintenance phases
of a software product. Software metric researchers have realized that more time, effort,
and money can be saved if the measurement is performed throughout the software
development life cycle, especially during the design phase. The use of software metrics at
design time can greatly affect the effort in producing a software product. These measures
can be used to compare different designs and to guide the designer in the design effort.
Also, since most of the cost of a software product occurs in the maintenance phase, metric
analysis of software maintenance can be very beneficial.

Several studies have been done that support the use of measurement throughout the
software life cycle. Ramamoorthy et al. [RAMAC85] suggest the use of metrics
throughout the software life cycle, emphasizing that different metrics need to be used
during different phases of software development. Kafura and Canning [KAFUD85]
suggest the use of structure metrics in the design and development phases of the software

life cycle. Pollock and Sheppard [POLLG87] propose a design methodology that utilizes
metrics in various phases of the life cycle.

Several studies have been performed that apply the use of software complexity
metrics to specific phases of software development such as design, testing and E
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maintenance. Metrics applied in the design of a software system can be used to determine
the quality of a design, and can also be used to compare different designs for the same
requirement specifications. Szulewski et al. [SZULP81] applied Halstead's Software
Science to design graphs, deüning a mapping between graphs and the Software Science
parameters. They manually computed these measures. Card and Agresti [CARDD88a]
developed a design complexity measure based on structural complexity and local
complexity that estimates the overall developmental error rate. Their measurement also
agrees with a subjective interpretation of design quality. Henry and Selig [HENRS90b]
apply complexity metrics at design time to accurately predict the resultant source code

_ complexity.

Using metrics during the testing of a software product helps to determine
thereliabilityof the software. Ottenstein [O'I'l"EL81] used Halstead's Software Science to

l

predict the number of errors to expect during the entire software development process. Her
predictions worked best for those programmers that had to correct the fewest errors. Lew,
Dillon, and Forward [LEWK88] used software metrics to help improve software reliability.
The software metrics were able to quantify the design and provide a guide for designing

reliable software.
As previously noted, maintenance efforts cost the most of any part of the software

development life cycle. Curtis et al. [CURTB79a] correlated Halstead's effort metric,

McCabe's Cyclomatic Complexity and lines of code to programmer performance on two
maintenance tasks. They produced empirical evidence that these metrics were related to the
difficulty that programmers experienced in understanding and modifying software. Curtis,
Sheppard, and Milliman [CURTB79b] extended the previous work by using improved

experimental procedures. They showed that these metrics are related to the difficulty
programmers experience in locating errors in code. Kafura and Reddy [KAFUD87] usedi
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seven metrics in a software maintenance study. Among other results, they found that the
growth in system complexity that was detemiined by the metric measurements agreed with
the general character of the maintenance tasks that were performed. Other research shows
that metrics applied during the coding phase can predict the maintainability of the software
product [LEWU89], [WAKES88].

The Importance of Applying Metrics to Ada
Ada is a result of the Department of Defense's (DoD) common programming

language effort. This effort was based on the premise that costs could be reduced by using
a common programming language. In 1975, over 400 different programming languages
were being used in DoD software [LIEBE86]. Excessive costs included providing
translators, software tools and the application software for each language. Costs and
programming effort that were needed for the projects themselves were being expended on
the development of new programming languages [FISHD78].

There are several reasons that distinguish Ada from other programming languages.
First of all is the effort put forth by the Department of Defense in its creation. Now, Ada is
not just a DoD programming language. Its use has grown outside the defense community.
Ada has some teclmical features that make it unique [SAMMJ86]:

• packages I

• strong data typing
• generics
• tasking
• numeric processing
• real—ti1ne processing
• exceptions
• overloading

Chapter 1 Introduction 5



• separate compilation
• representation clauses

The use of packages, generics, and tasking make Ada much more difficult to measure than
Pascal or C. Ada also supports and enforces several software engineering principles,
including structured programming, top-down development, strong data typing, abstraction
(of data and actions), information hiding and encapsulation, separation of specification
from implementation, reusability, separation of logical from physical concems, portability,
modularity, readability, and verifiability [SAMMJ86].

Because of the Department of Defense's initiative and the above·mentioned
features, Ada is growing in popularity. As of July 1989, 52 vendors have produced 257
validated Ada compilers [ADAIC89]. For Department of Defense contracts, not only is
Ada the required language, but DOD STD 2167 A requires that code be evaluated for
maintainability, along with design and coding standards [DOD88]. More importantly, Ada
will be used for some time to come, as it is proving useful in improving productivity and
reliability [MYERW87], [MYERW88].

Certainly, metric analysis of Ada programming projects contributes in determining
reliability and productivity. Metric analysis of Ada code can also guide programmers in

their testing and maintenance duties.

The Need for Automatable Metric Analysis Tools
It is obvious from the preceding sections that software metrics can be a useful guide

in the life of a software product. In order to facilitate the use of software metrics,

automatable metric analysis tools must be developed. It would be unreasonable to consider

measuring software manually due to the size of most software systems. Also, automatable

measuring is more accurate and consistent. Gilb [GILBT77] stresses the importance of an
automated metric analysis tool. He cites a TRW study where metrics—guided testing is half

Chapter 1 Introduction 6
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the cost of conventional testing. Grady [GRADR87] also mentions the need for tools to
collect metrics.

Several metric analysis tools are available. The Software Complexity Metrics Tool
[COOKC87] collects metrics for C programs. The metrics that are calculated are lines of
code, Halstead's Software Science, McCabe's Cyclomatic Complexity, data structure
metrics, and information flow metrics based on function calls. The Software Metrics Data
Collection system was developed "to help researchers investigate the practical applications
of new and existing software met1ics" [YUT88]. Process metrics are entered into the
system from report forms and the SMDC calculates some product metrics. The product
metrics collected are lines of code, Halstead's Software Science, and McCabe's Cyclomatic ‘

Complexity. PC-Metric is another tool that collects these same three code metrics for
C,Pascal,or Modula-2 on an IBM PC [MCAUD88].

The Ada Measurement and Analysis Tool (ADAMAT) is a metric collection tool for
Ada developed by Dynamics Research Corporation. ADAMAT computes more than 150
different code metrics for Ada. These code metrics include several measures of lines of
code and various ways to count tokens. The Complexity Measures Tool (CMT) is another
tool that collects metrics for Ada. It was developed by EVB Software Engineering, Inc.,
and computes five different measures of lines of code, Halstead's Software Science, and
McCabe's Cyclomatic Complexity. The fact that these code metrics highly correlate was
mentioned previously. These "powerful" tools do nothing but provide several different
measurements of the same code features. Since all of these measures are based entirely on
the source code, these Ada tools can only be used in the testing and maintenance phases of
software development.

This research provides a software metric tool for Ada that can be used throughout
the entire software development life cycle by providing structure metrics, in addition to

I
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code metrics. The structure metrics are based on the structure of the code, which can be
seen early in the software design. Therefore, if Ada is used as a program design language,
the structure metrics generated by this tool still yield a good measure of the design,
regardless of whether or not the design is written with a low level or a high level of
retinement.

It is important to note that there is not a single metric that measures all aspects of a
program's complexity at all phases of development. Some metrics perform better at design
time. Other metrics perform better during maintenance. The metrics that perform best for
one organization using a certain development environment and certain design
methodologies are most likely different from the metrics that perform best for other
organizations using different development environments and design methodologies. Also,
metrics need to be tailored to the type of software that is being analyzed. Basili and Selby
[BASIV85] describe how to determine an environment’s "characteristic software metric
set." This set of metrics are the ones that perform the best in a particular software
development/maintenance environment.

The Use of Ada as a Program Design Language
U

There is a benefit of having a design language that is a subset of a programming

language while also having design language features. Many researchers have proposed the
use of Ada as a program design language (PDL) [BONDR84], [CHASA82], [GABBE83],
[GORDM83], [HOWEB84], [LINDL83], [SAMMJ82]. Each of the military services

under the Department of Defense is currently issuing requests for proposals (RFPs) which

require the use of an Ada-based PDL [HOWEB84].
The Software Metric Analyzer that was developed as part of this research can be

. used to analyze Ada code written with any level of reünement. Therefore, the analyzer t
supports the use of Ada as a PDL. Design quality can be determined and different

designsChapter1 Introduction 8 S



for the same requirement specitications can be compared. Henry and Selig [HENRS90b]
have been able to predict the complexity of the resultant source code from measurement of
designs written in an Ada-like PDL. Many metrics are calculated by the Software Metric
Analyzer, including the code and structure metrics that have already been mentioned. The
structure metrics produce more relevant information than code metrics when analyzing
design code. This is because most of the details of the design code concems the system's
hierarchy and calling structure. The Software Metric Analyzer should be of great benefit as
a life cycle support tool.

C onclusi0n
The need for measuring software, and specifically the need for measuring software ·

written in Ada, has been discussed. This research effort concentrates on defining metrics
for Ada and developing an automated metric analysis tool. This tool can be used
throughout the software development life cycle. It also supports the use of Ada as a
program design language. Chapter 2 defines the metrics used in this research and how they
are applied to Ada. Chapter 3 discusses the Software Metric Analyzer, the tool used to
calculate Ada metrics. Chapter 4 presents an analysis of an Ada programming system. The
conclusions of this research are presented in Chapter 5.

I
I
I
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Chapter 2 Metrics for Ada

Introduction

Once it is realized that software needs to be measured, it is important that the
measuring process be automatable. It would be unreasonable to consider measuring
software manually due to the size of most software systems. Also, automatable measuring
is more accurate and consistent than manual, qualitative measurement [BERAE83]. Two
examples of qualitative metrics are coupling and cohesion. These concepts are meaningful
and attempts have been made to measure them, but without much success. Qualitative
metrics are not considered in this study. Automatable metric analysis of Ada is the main
thrust of this research. Therefore, this work concentrates on only those metrics that are

quantitative and automatable.

The available quantitative metrics can be grouped into three rather broad categories.
These categories are code metrics, structure metrics and hybrid metrics. Code metrics

produce a count of some feature of the source code. Structure metrics attempt to measure

the logic and interconnectivity of the source code. Hybrid metrics combine one or more

code metrics with one or more structure metrics.

Of the three categories, code metrics are the easiest to calculate. However, since

. structure and hybrid metrics measure different aspects of the original source code, they are

very important and worth the effort of the more complex computations [HENRS8la],

[HENRS90b].

This chapter discusses the code metrics, structure metrics, and hybrid metrics that

are used in this research. Of the many metrics available, only nine are incorporated in this

study. These nine metrics are used because they are popular and have been validated p
[HENRS8lb], [HENRS90a], [HENRS90b], [KAFUD85], [KAFUD87], [LEWU89], F
[WAKES88]. Towards the end of this chapter, interface metrics and the need fordynamicI
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metrics are discussed. Interface metrics attempt to more fully measure the interface
complexities between communicating modules by taking into consideration variable types
and how variables are used within a module.

Code Metrics
The code metrics calculated in this study are now defined. Many code metrics have

been proposed and defined but only those used in this study are discussed. The code
metrics defined here can be grouped into three categories of metrics. They are Size,
Software Science Composite, and Logic Structure metrics.
Lines of Code

The lines of code (LOC) metric is perhaps the most widely used software metric. It I
is a size metric. However, since it is widely used does not mean that it is the most useful
metric in detennining program complexity. On the surface, lines of code is the easiest
measurement to compute since it is available in almost any programming environment. A
compiler, an editor or a utility provided by an operating system can give the number of
lines of code within a file. This measure is readily accessible to anyone, but the definition
that is usually used for a line of code by these methods is a total count of the lines in the
program file, including blank lines and comments. Many metrics researchers have realized
that blank lines and comments should not be included in the lines of code count since they

do not contribute to the complexity of a piece of software (although, when used properly
they can contribute to its understanding). The question that needs to be answered is what
exactly is a line of code. By having a concise definition, lines of code may be measured

accurately and consistently.
There are many different definitions of a line of code. As previously mentioned,

blank lines and comments may or may not be counted. Other definitions count executable
statements or, in a language such as Ada, semicolons. The definition for a line of code

thatChapter2 Metrics for Ada 11I
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i
was used in this study follows that suggested by Conte et al., as the prevailing definition in
use today [CONTS86]:

A line of code is any line of program text that is not a comment or blank
line, regardless of the number of statements or fragments of statements on
the line. This specifically includes all lines containing program headers,
declarations, and executable and non-executable statements.
Firesmith suggests that before computing the number of lines of code, the program

should be run through a code formatter or pretty printer [FIRED88]. This is a good
suggestion since virtually any definition for a line of code depends on coding style. The
code formatter would impose a single coding standard that would allow comparisons to be
made among subprograms in a programming

system.Anotherpoint brought up by Firesmith is how to count generic units and
genericinstantiations.The alternatives presented include counting the generic unit and only one i
line for each generic instantiation, counting the generic unit and only the lines of the first
generic instantiation, and counting the generic unit and all the lines of all generic
instantiations. In this study, the length of the generic unit is used for the length of each
generic instance.

Halstead's Software Science
Some of the problems with defining a line of code is that many statements can be

placed on one line of text and a single statement can be spread across several lines of text.
Halstead's Software Science is a means to measure a program without having this variation
make a difference. Halstead defined several metrics based on token counts [HALSM77].

A token is a basic syntactic unit that is the smallest character grouping distinguishable by a
compiler. The metrics defined for Software Science are all based on the number of
operators and operands within a program. Therefore, tokens are grouped as either
operators or operands. Measuring a program based on token counts is not affected by the1

Chapter 2 Metrics for Ada12i
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placement of statements on one line or across many lines. Regardless of the number of
lines per statement or the number of statements per line, the number of tokens remains the
same (for a given statement sequence).

There are four basic measures of tokens that are the basis for all of the Software
Science metrics. These measures are:

n1 number of unique or distinct operators
nz ntunber of unique or distinct operands
N1 total occurrences of all the operators
Nz total occurrences of all the operands

_ Although counting tokens and grouping them as either operators or operands seems
straightforward, it is not. For each programming language, there are different keywords
and symbols that must be defined to be either an operator or an operand. Halstead defmed
his metrics before Ada was developed. Therefore, there is no universally accepted set of
definitions of operators and operands for Ada. Berard in [BERAE83] and [BERAE84]
offers a light discussion of Halstead's Software Science applied to Ada. Mehndiratta and
Grover [MEHNB87] also apply Software Science to Ada. Part of this research involved
defining what the operators and operands are for Ada. While mathematical expressions are
easy to divide into operators and operands, other Ada constructs are not. The approach
used for defining operators and operands for Ada was to define all the operators first and
define everything else to be an operand. Overloaded operators and how they are treated

with regards to Software Science are discussed in the next chapter.
There are a few points that need to be discussed about how these operators are

defined. The first point considers multiple tokens that are counted as a single operator.
This is because one of these tokens can not be used by itself. For example, BEGIN END _

(two tokens separated by a sequence of statements) is generally considered to be onlyoneä

Chapter 2 Metrics for Ada 13



operator. Another point that needs to be made is that a single token can be counted as one
of several operators. A "-" is the first example that comes to mind. In its unary usage it is
counted as a negation operator. In its binary usage it is counted as a subtraction operator.
Another example is the semicolon. A semicolon can be counted as one of two different
operators, depending upon its use. A semicolon is either a statement terminator operator
(i.e., when the semicolon is at the end of a statement) or a special item separator (e.g.,

appearing between parameter specifications within a subprogram declaration). A complete
list of operators defined for Ada is in Appendix A.

Of the many metrics defined by Halstead, this research concentrates on his N, V,
and E. Halstead defined the length of a program, N, as the sum of N1 and Nz. Length,

like lines of code, is also a size metric. N is the total number of tokens used in the
program. Another metric defined by Halstead is vocabulary. The vocabulary n is defined
as the sum of n1 and nz. The term vocabulary is used since the program measured can be

constructed by using only n operators and operands as a programming vocabulary
[CONTS86]. Another size metric defined by Halstead is the volume V, where

V = N logz n

The unit of measurement for V is a bit. Since n operators and operands are used in
the program, they could be encoded using logz nt bits. Each of the N tokens could then be
encoded by a bit code of length logz n. Therefore, a program could be encoded as a string
of N logz n bits. Note that this is the volume for a binary translation of the original

program, not the size of the compiled version of the original program.
Halstead's programming ejfort, E, is not a size metric but a Software Science

Composite metric, following the terrninology presented by Conte et al. [CONTS86].
Halstead proposed that the effort required to program an algorithm would increase with that

l
E

Chapter 2 Metries for Ada 14 j



program's volume and dpiiculty. He defined difficulty as the reciprocal of program level,
L.

The program level is dependant on the volume and the poremial volume of a
program. The potential volume is the volume that would be calculated for the most efficient
way to code an algorithm. Halstead states that this most efficient method would be in the
form of a procedure call to a previously defined subroutine. Therefore, the operator and
operand count would be a count of those involved in invoking that subroutine. However,
computing the potential volume in general is very hard to do, so Halstead estimated the
program level by

L x 7,:]%

As previously stated, effort depends on volume and difficulty, the reciprocal of
level. Therefore, effort is defined as

E = fl] Nälgzlogzn
and is the total number of elementary mental discriminations required to generate a given
program module.

McCabe's Cyclomatic Complexity
McCabe defines a metric that is based on the logic structure of a program and has its

basis in graph theory [MCCAT76]. McCabe's Cyclomatic Complexity metric measures the
number of basic paths through a program. When all of these basic paths are taken in
combination, every possible path through the program will be generated. McCabe believes
that the Cyclomatic Complexity is related to the testability and maintainability of a program.

The Cyclomatic Complexity is defined similarly to the cyclomatic number of a directed
graph G:

V(G) = e · rz + p
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where 6 is the number of edges, rz is the number of nodes, and p is the number of
connected components in the graph. A procedure is considered to be a connected
component. The cyclomatic complexity has a branch from the exit node to the entry node
of the graph. Therefore, the cyclomatic complexity is

V(G) = 6 — rt + 2
The Cyclomatic Complexity can be calculated by defming a node to be a block of code and
an edge to be a line connecting blocks of code (indicating control flow). According to
McCabe, 10 seems "like a reasonable, but not magical, upper limit" for V(G).

Developing a software tool to construct a flowgraph representation of a procedure
would be difficult. Fortunately, construction of such a tool is not necessary since the
cyclomatic complexity only depends on the number of edges and nodes in the graph, not
their arrangement. There is a relationship between edges and nodes. Note that a node
generally has only one edge leading out of it, unless it is the terminal node of the graph (in
which case it has no edges leading out) or a conditional node (in which case there will be
two edges leading out). Therefore, 6 = n - 1 for a graph with no conditionals. The "— 1"
accounts for the terminal node with no edge leading out. Each conditional contributes two
to the number of edges, one that is included in n and an extra one. Therefore, 6 = rz - l + 6
where 6 is the number of conditionals. By algebraic manipulation, V(G) = 6 · n + 2 = 6 +
1. Therefore, the Cyclomatic Complexity can be computed by simply counting the number
of simple conditions within each decision and adding one.

For Ada, the Cyclomatic Complexity is calculated by accumulating the number of
occurrences of IF, ELSIF, FOR and WHI LE statements and CASE labels, as well as the binary
boolean connectives. It is necessary to count boolean connectives since IF Cl AND C2
TEEN would have to be written as IF Cl TEEN IF C2 TEEN without the connective. For
loop statements, the conditionals associated with each EXIT statement are also counted.
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See Appendix B for a complete list of the conditions in Ada which contribute to the
Cyclomatic Complexity.

Structure Metrics
In this section the structure metrics implemented for this research are defined.

Structure metrics attempt to measure the logic and control flow of a program. These
metrics take into account the interconnectivity among program modules that code metrics
ignore. Interaction between modules (through subprogram and task invocations)
contributes to the overall complexity of the modules. The structure metrics that this study
incorporates are Henry and Kafura's Information Flow metric [HENRS8lb] and
McClure's Invocation Complexity [MCCLC78].
Henry and Kafura's Information Flow Metric

Henry and Kafura's Information Flow metric is based on the information flow
connections between a module and its environment. In Ada, subprogmms, packages and
tasks are considered to be modules.

There are several ways that information can flow between modules. Henry and
Kafura define and name the following flows of information [HENRS8lb]:

There is a global flow of information from module A to module B through a
global data structure D if A deposits information into D and B retrieves
information from D.
There is a local flow of information from module A to module B if one or
more of the following conditions hold:

1) ifA calls B,
2) if B calls A and A returns a value to B , which B

subsequently utilizes, or
3) if C calls both A and B passing an output value from A to B.

‘ In Ada, a global flow of information is defined as follows:
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There is a global flow of information from module A to module B through a
data structure D inside the specification of package P if A deposits
information into D and B retrieves information from D.
Henry and Kafura then define two other terms based on the previous defmitions:
The fan-in of procedure A is the number of local flows into procedure A
plus the number of data structures from which procedure A retrieves
information.
Thefan-out of procedure A is the number of local flows from procedure A
plus the number of data structures which procedure A updates.
Henry and Kafura define the complexity of a procedure P as (fan-in X fcm—0uz)2. '

The term fan-in X fan-out is the total number of combinations of an input source to an
output destination. This term is squared because Henry and Kafura believe that the
relationship between the information flows of a procedure and its environment is more than
linear.
McClure's Module Invocation Complexity

McClure wants to be able to measure and control complexity in well·structured
programs. McClure defines program complexity as follows [MCCLC78]:

Program complexity is an indicator of program readability.... Program
complexity is introduced by the difficulty of the programming problem and
the size of the solution program. It is a function of the number of possible
execution paths in the program and the difficulty of determining the path for
an arbitrary set of input data.
McClure discusses McCabe's Cyclomatic Complexity and presents a few problems.

McClure believes that predicates contribute differing amounts of complexity to a module,
while McCabe believes that all predicates contribute the same amount of complexity. As an —

example, see Figure 1. Both procedure A and B have the same Cyclomatic Complexity
(V(G) = 4), but McClure would assert that procedure B should have a greater complexity
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Procedure A (param : integer) is
Begin

IF param = l THEN
C:

ELSIF param = 2 THEN
D;

ELSIF param = 3 THEN
E:

ELSE
F;

End A:

Procedure B (paraml, param2 : integer) is
var : integer;

Begin
var := Function_X(paraml);
IF (paraml = 1) OR (var = O) THEN

C:
ELSIF (param2 = 2) THEN

D:
ELSE

E:
End B;

Figure 1. Difference Between McCabe's Complexity and McC1ure's Complexity
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than procedure A. This is because understanding procedure B requires knowledge of three
variables, while understanding procedure A only requires knowledge of one variable.

McClure believes that a more complete technique for measuring complexity "must
include an examination of the number of possible execution paths and the control structures
and the variables used to direct path selection" [MCCLC78]. Therefore, in the previous
example McClure would compute a complexity greater than McCabe’s Cyclomatic
Complexity for procedure B.

As stated previously, McClure's interest is the complexity of well-structured
programs. In order to facilitate the complexity calculations, McClure detines the Program
Control Hierarchical System (PCHS) which govems module invocations [MCCLC78]. It
is a triple denoted by PCHS = (P, yg f) where

P is a finite set of well-structured modules, i.e., P = {p1, ..., pii} ,

yis the root module,
f : P —> X is the invoking function such that P :> X, and
X=f(pi), whereX={xi,...,xk} for0Sk<n,lSiSn,1SjSk.
All of this means that module pi invokes each xi 6 X, for l S j S k. Module pi is

the direct ancestor of xi, and xi is a direct descendant ofpi.
For each pi 6 P, McClure detines the following sets {MCCLC78]:
Fpi denotes the set of direct ancestors ofpi
Giii denotes the set of direct descendants ofpi
Hpi denotes the set of ancestors ofpi
Lpi denotes the set of descendants ofpi.
McClure then defines a common module. If 'Fpii > l, pi has more than one direct

ancestor and is called a common module.
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The PCHS can be represented graphically by a hierarchical structure where ancestor
modules are listed above their descendants. A PCHS sub-hierarchy S is a set of modules
that have exactly one common ancestor, si 3 si 6 S. This common ancestor, si, is the local
root of S.

With these preliminary definitions at hand, McClure postulates that the most likely
source of complexity in a well-structured program is the use of control variables, i.e.,
variables that are used to direct program path selection. All of the procedure invocations in
procedures A and B in Figure l are govemed by control variables.

With the importance of control variables in mind, McClure then defines the
complexity of a control variable. The control variable complexity is a function of the set of
modules which access the control variable and the PCHS invocation relations of these
modules. This is intuitive, as it is more difficult to understand how a control variable is
used and modified when many different modules access the control variable.

To be precise about control variable accesses, McClure states that a module
accesses a control variable if it is referenced in a conditional expression or modified within
the module. AV denotes the set of program modules which access control variable v. AV
can then be thought of as being composed of two disjoint sets, RV and MV, where RV is the
set of modules that only reference the control variable v, and MV is the set of modules
where the control variable v is modified. McClure also defines another set of modules
denoted by EV, as the set of modules whose invocation is dependent upon control variable
v.

The owner of a control variable, av, is the local root of the smallest PCHS sub-
hierarchy which contains all members of the set Av. McClure then refines the concept of an
owner into degrees ofownership for control variable vz
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Degree l The value of control variable v is modified exclusively in 06V
or never modified in the program.

Degree 2 The value of control variable v is modified in 06V and in at
least one descendant of 0cV.

Degree 3 The value of control variable v is strictly referenced in 0zV
and modified in at least one descendant of 0zV.

Degree 4 The value of control variable v is not accessed in 0zV and is
modified in at least one descendent of 0zV.

By using all of the preceding preliminary definitions and notation, the control
variable complexity function for control variable v, C(v), is defined as

D ICM = (V): (V)
where

D(v) is the degree of ownership for control variable v,

I(v) = qV + uV + wV + tV, where
qV = QM V rw EVQ, the invocation complexity,
uV = QUVQ where UV = {pi Ipi 6 RV and Elpk 6 Lpj spk 6 MV}, the

descendent complexity,
wV=QWVQ where WV= {piIpi6 AV and3pi6 MVspi6 Hpj and

pi is listed above pi in the PCHS structure}, the path
complexity,

tv = QTVQ where TV = {pi Ipi 6 AV and Elpk 6 Fpj spk 6 AV}, the
intermittent complexity, and

rz is the number of unique modules in the PCHS.
D(v) measures access and modification complexity. I(v) measures the module

_ interaction via v. Control variable complexities range from zero to eight.
McClure defines several sources that contribute to a module's complexity. Module

complexity attempts to measure the difficulty of understanding how program control is I
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passed between modules in a well-structured program. As discussed previously, control
variables contribute to the complexity. Also, the control structures (e.g., CASE, WHILE
LOOP, FOR LOOP, IE, or ELSIF) that are used in the module's invocation contribute to its
complexity. The commonality of the module contributes to its complexity as well.

One last definition needs to be presented before the module complexity function can
be explained. An invocation control variable set is the set of control variables that govems
a particular invocation of a module. Note that a module can have more than one invocation
control variable set if it is conditionally invoked in multiple places within the program.

McClure's Module Invocation Complexity function, denoted by M(p), is used to
determine the complexity of invoking module p in a well-structured program. M(p) is
defined as

M(p)·= [fp X X(p)l + [gp X Y(p)l„ whcrc
fp = |Fp|·
X(p) measures the complexity of the control structures and control

variables used to invoke module p,gp = IGp|· am
Y(p) measures the complexity of the control structures and control

variables used by module p in invoking its direct
descendants.

II
I
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Let x be the number of invocation control variable sets used in the invocation of

module p. Let 6 be the number of control variables in the jm invocation control variable set.
Let vji be the im control variable in the jm invocation control variable set. Let bj = l if the
jm invocation is within a selection structure (e.g., IF, ELS IF, or CASE). Let bj = 2 if the jm

invocation is within a repetition structure (e.g., FOR LOOP or WHILE Loop). If x = 0, X(p)

= O; otherwise

E (bjx 2 cm;)X«p2=———l——MM
x

Y(p) is defined similarly. Let y be the number of invocation control variable sets
referenced by module p to invoke its direct descendants. Let k be the number of control
variables in the jm invocation control variable set. If y = 0, Y(p) = 0; otherwiseE (b1X ä ww)

Y(p) Z 1:1 1:1
Y

The values for McClure's Module Invocation Complexity range from 0 to 16sn,
where s is the total number of control variables and n is the number of unique modules in
the program.

Obviously, it is very difficult to calculate McClure's metric. However, due to its
basis in the environment under which modules are invoked, it is quite useful and more
meaningful than code metrics. According to McClure, the number of possible execution
paths contributes to program complexity. Her module complexity reflects the differences
between different invocations of a module by not treating each invocation the same as the
next. Her idea of control variables and having their complexity contribute to a module°s
complexity is what makes her metric more accurate at determining complexity than just
simply counting the number of module invocations.
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Hybrid Metrics
As previously stated, hybrid metrics are a combination of one or more code metrics

with one or more structure metrics. The hybrid metrics that this study incorporates are the
hybrid form of Henry and Kafura's Information Flow metric [HENRS8 lb] and
Woodfield's Review Complexity metric [WOODS80].
Henry and Kafura's Information Flow Metric

Henry and Kafura's Information Flow metric can also be used as a hybrid metric.
This is the approach that Henry and Kafura used in a study of the UNIX operating system
[HENRS8lb]. The complexity of a procedure P is Cip X (fan-in X fan—0uz)2. Cip is the
internal complexity of procedure P and may be any code metric. (Henry and Kafura
usedlinesof code as the internal complexity in their study, but suggested that any code metric

Pmay be used.) The definitions for fan-in and fan-out are the same as they are in the
definition of the structure form of the Information Flow metric.
W0odfield's Review Complexity

Woodfie1d's Review Complexity metric attempts to measure effort in terms of the
time required to understand a module [WOODS80]. Recall that this is similar to Halstead's
effort metric, which meastues the number of elementary mental discriminations necessary
to program a module. In fact, Halstead's effort is the code metric used by Woodtield, but
as with Henry and Kafura's Information Flow metric (the hybrid form), any code metric
may be used. Where Halstead's effort measures the complexity involved in creating a
programming module, Woodfield’s Review Complexity measures the complexity involved
in understanding a programming module that has been previously written (presumably by
another programmer).

Woodtield believes that a module must be reviewed several times before it can
becompletelyunderstood. The number of times that a module needs to be reviewed depends 1

‘ 1
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on the number of flows into that module. Woodfield defines a far1—in as a flow into module
A when either of the following occur:

Any module invokes module A, or
A data structure D is modified by module A and referenced elsewhere.
Woodfield's Review Complexity for module A is defined as follows [WOODSSO]:

fan—in — 1
Ci X R Ck ' 1

k = 2
where Ci is the internal complexity of module A and RC is a review constant. The review
constant used by Woodfield is 2%, which was previously suggested by Halstead

[HALSM77].

Note that the time involved to review a module decreases exponentially each time it
is reviewed. Woodf1eld's model accurately reflects this. Also notice that Woodfield'sfan-
in is different from thefan-in used by Henry and Kafura in their Information Flow metric.

Proposed Ada-Specific Metrics
Gannon, Katz, and Basili [GANNJ86] propose a way of measuring the complexity

of Ada packages. They define a component access metric and a package visibility metric.
The component access metric attempts to quantify the complexity involved in referencing
entities (constants, types, objects, subprogram declarations, etc.) that are declared in
package specifications but referenced outside of that package. Referencing entities in this
way definitely contributes not only to the complexity of the package in question, but also to
the program unit that contains the reference. Both McClure's Module Invocation
Complexity and Henry and Kafura's Information Flow Metxic measure this complexity.

The package visibility metric determines if WITH clauses have been placed at the
lowest possible level within the Ada code. By using subunits, WITH clauses may be placed
such that they are only in effect when needed. Program units that do not need information

i
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contained in certain package specifrcations do not have access to that information when they
are outside the scope of the corresponding WITH clauses. This is a good design criterion
and most likely helps to make maintenance tasks easier, but it is not a measure of program
complexity and therefore not included in this study.

Shatz [SHATS88] discusses some prelirninary ideas involving the complexity of
tasks and task interaction, specitically concentrating on task communication complexity.
His complexity is based on the maximum number of concurrently active rendezvous
determined by a static analysis. This research also measures task communication
complexity statically, but by using the measures proposed by McClure and Henry and
Kafura. Each task entry is treated as a unit of analysis. The communication paths for these _
metrics are determined by the accept and entry call statements. The details of how tasks are
measured are discussed in the next chapter.

Interface Metrics
Although McClure's Module Invocation Complexity and Henry and Kafura’s

Information Flow metric both measure a subprogram's interfaces, many details that are in
the source code do not affect their complexity calculations. Interface metrics attempt to
more fully measure the interfaces among subprograms by incorporating more details into
complexity measurement These details are that variables of different types have a different
complexity inherent in their types (e.g., an integer variable is less complex than a record
variable), operations vary in complexity (e.g., addition is less complex than division), and
conditionals vary in complexity (e.g., a FOR loop is different in complexity than an IF

statement). Also, how variables are referenced (either they are read from or written to, or
both) contributes to complexity.

E

All of these facts combine to yield a better measure of the complexity of
subprograms for several reasons. As previously mentioned, more details are incorporated
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bin the calculation of interface metrics. Also, since most errors involve interfaces, it is felt
that interface metrics may provide a more accurate complexity measure.

Interface metrics were defined with the Ada programming language in mind. With
the possibilities available through the use of packages and generic units, program
complexity needs to be viewed in a new way [GANNJ86], [SHATS88].

Part of this research effort deals with calculating some of the informationnecessaryto
derive the interface metrics. The interface metrics themselves are actually computed in

i

another phase of research, different from this one. The details of the interface metrics
thatdirectlypertain to this research are discussed in the nextchapter.The

Need for DynamicMetricsAll
of the metrics discussed so far have dealt with a program's source code in

astaticway. Without knowing the values of all input data, there is no way of knowing the i
execution path of any non—trivial programming system. Complexity analysis is done to
allprogrammodules, without regard to how many times each module is executed.

Since one of the goals of software metrics research is not only to calculate
complexity but also to use this complexity to help guide programmers in their testing efforts
to reduce errors, the dynamic behavior of a program needs to be measured. This is true of
any programming system written in any language, but with the advent of Ada and its
tasking construct, dynamic metrics now really need to be pursued. Tasking introduces
complexity of its own that cannot be measured statically. Although this research effort
does not produce any dynamic metrics, it is hoped that dynamic metrics for Ada (and other

languages) will be forthcoming. i

C0nclusi0ni
Several metrics and how they are calculated for Ada have been presented.

Themetricsmeasure different parts of the source code, some dealing with size andothers}
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dealing with interactions between program modules. The next chapter discusses the tool
that was developed to calculate these metrics.



Chapter 3 The Software Metric Analyzer

Introduction
The need for automatable metric analysis is discussed in Chapter 2. Towards that

end, the software metric research group at Virginia Tech has developed a Software Metric
Analyzer. A diagram of the Software Metric Analyzer is in Figure 2.

Phase One of the Software Metric Analyzer is the language-dependant translator. ln
addition to Ada, translators exist for Pascal, C, FORTRAN, THLL, and ADLIF. TI—lLL is
a language used by the United States Navy and ADLIF is an Ada-like Design Language

based on Information Flow [HENRS90b]. Phase Two is the Relation Manager. Phase
Three is the Metric Generator. ~

The Software Metric Analyzer has been developed over the last several years, with
the different language-dependent translators being written and additions being made in all
aspects of metric generation. All of these different language-dependent translators do the
same thing for a different source language: produce code metrics and translate their source
language into a common object language. Therefore, although several different translators
exist, only one Relation Manager and only one Metric Generator are necessary.

Phase One
The most time-consuming part of this research was in developing the Ada

Translator. The Ada Translator takes as input Ada code, as well as information on the pre-
detined language environment (e.g., the package STANDARD). There are two outputs from
the Ada Translator. They are code metrics and relation language code. Note from Figure 2

that the Ada Translator is the only part of the analyzer that has access to the Ada code.
Therefore, all the code metrics are produced by the Ada Translator. The Ada Translator is
written in Lex [LESKM75], YACC [JOHNS75], and C under the UNIX operating system.
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Both the lexical analyzer and the parser [FISHG84] are circulating in the public domain.

The entire Ada Translator is over 28,000 textual lines of code in length.
There are two major differences between the Ada Translator and an Ada compiler.

The first difference is that the Ada Translator, as part of an analysis tool, assumes all Ada
source code input is syntactically correct and that files are submitted in the correct order.
The order that is necessary is identical to the compilation order that an Ada compiler
enforces. Any references in a context clause to other compilation units must be to a
previously compiled library unit. The other difference between the Ada Translator and a
compiler is that no executable code is generated. The relation language code that is output
is necessary to compute the structure and hybrid metrics in later phases of the analyzer.Itis

not executable, nor will it be translated into an executable form in a later phase of the E
analyzer.The

Project Library l

The Ada Translator accepts and processes full Ada. With that in mind, it has many
implementation details similar to an Ada compiler. The Ada Translator accepts any number
of source code files, each with any number of compilation units within them. Therefore,
like an Ada compiler maintains a project library to keep information at hand about
previously compiled library units, the Ada Translator needs to keep similar information in
its own project library. (The project library is created and maintained by the Ada
Translator; it is not dependent on any information from an Ada compiler.) As an example,
the name of each compilation unit, its pararneters (for subprograms) and its declarations
(for packages) are contained in the project library, among other information. The project
library is maintained for use in processing other compilation units for help in name
resolution and symbol table processing. It is a very central part to the Ada Translator. In E
effect, it is another symbol table. E
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Details conceming exactly what is stored in the project library and when it is used is Z

explained below with the discussions about specific Ada constructs.
Relation Language

The reason that the Software Metric Analyzer is written in three phases is to protect

proprietary information. The relation language that is produced by the Ada Translator is ,
our own, in—house object language [HENRS88]. The Ada source code is translatedintothe

equivalent relation language. The relation language code contains all theinformationnecessary
to compute the structure metrics, although they are not calculated until the third I

phase. The relation language keeps the same structure as the original Ada code, but
doesnothave any superfluous details or syntax. For example, no type declarations are included I
in the relation language. Enough details are removed from the original source code that it is I
impossible to generate Ada code from the relation language code. Softwaredevelopersneed

not worry about losing any proprietary details from releasing any relation language
Z

code for academic research purposes.
The relation language has declaration statements which include a corresponding

type complexity for each variable declared. The executable statements consist of simple
assignment statements, procedure invocation statements, and condition statements. It is the
translation to relation language that makes the Ada Translator so difficult and complex.
Calculation of code metrics could be done with little more than just a lexical analyzer. As
stated previously, it is important to compute structure and hybrid metrics since they
measure different aspects of the source code. Therefore, it is necessary to generate relation
language in order to calculate the structure and hybrid metrics in Phase Three of the
Software Metric Analyzer.

I
1
1
I
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The different relation language constructs are discussed in detail where appropriate
I

in the next several sections. A complete description of the entire relation language is in
Appendix C.
Units of Analysis I

The relation language was designed with Pascal in mind as the language toanalyze.In
Pascal, statements are grouped into procedures and functions. For simplicity,
therelationlanguage groups statements into procedures only. That is, both procedures
andfunctionsin Pascal are translated into procedures in the relation language.

Theseproceduresbecome the units of analysis for which metrics are generated. These units of I

analysis are the same as the modules that McClure's Module Invocation Complexity, Henry I
and Kafura's Information Flow metric, and Woodfield's Review Complexity discuss. In I
Ada, units of analysis are defined to be procedures, functions, packages, exception I

handlers, and tasks. Therefore, metrics are computed for each procedure,function,package,
exception handler, and task. I

Code Metric Calculations
Code metrics are also calculated for each unit of analysis. In the sections that

follow, each type of statement in Ada is discussed and the resultant relation language code
is given. Due to their simplicity, code metrics are discussed here and not with the sections
pertaining to the translation to relation language.

The lexical analyzer computes the lines of code metric. The Ada Translator does
not use a code formatter to make the lines of code metric consistent, as was mentioned in
the previous chapter. The software engineer always has the option to use a code formatter
before running the Software Metric Analyzer. As each statement is processed, the tokens

that contribute to Halstead's Software Science and McCa_be's Cyclomatic ComplexityareI

I
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counted. The Cyclomatic Complexity for a package that has only a specification is always
l, for the path that is present for the elaboration of the specification's declarations.

After each unit of analysis is processed, the code metrics are calculated from these
token counts and output to the code metrics file. See Appendix A for the tokens that are
counted as operators in Halstead's Software Science and Appendix B for the conditions
that contribute to McCabe's Cyclomatic Complexity.
Pre-Defined Language Environment

E

The Ada Translator has all of the pre-defined language features available to it that an
Ada compiler has. The package STANDARD is available with all its type declarations,
operator declarations and exceptions, as well as the package ASCII. Also part of the pre-
defined language environment are the following library units:

the package CALENDAR
the package SYSTEM
the generic procedure UNCHECKED_DEALLoCATIoN
the generic function uNc1~1Ec1<ED_coNvERSroN
the generic package SEQUENTIAL_IO
the generic package DIRECT_Io
the package TExT__I0
the package IO_EXCEPTIONS
the package Low_LEvEL_Io
For each of these library units, entries are made in the project library to make them

available to the user's program. Relation language is generated for the subprogram
declarations in these pre-defined units. The concern with processing pre-defined
subprogram declarations is to prevent metrics from being generated for them. The relation
language that is generated for a pre-defined subprogram declaration is an inzrirzsic. This
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declaration defines the subprogram to the relation manager (which allows the subprogram
to be called by the user’s code) but will not cause any metrics to be generated for it.
Therefore, calls to pre-defined functions do not enter in to any of the complexity
calculations.

For example, some of the subprogram declarations in the package TExT_Io will
generate the following declarations in the relation language:

intrinsic text_io/create;

intrinsic text_io/open:

intrinsic t:ext;_io/close;

Type Complexities and Type Declarations
In order to compute the interface metrics in Phase Two, type complexities must be

computed by the Ada Translator and passed to the Relation Manager embedded within the
relation language. The only type information that is contained in the relation language is in
the form of type complexities associated with each variable declaration. The rules for the
calculation of type complexities are from Mayo [MAYOK89].

A complexity is assigned to each pre-defined type in Ada (i.e., those defined in the
package STANDARD). These complexities are in an extemal weight file instead of being
hard-coded within the Ada Translator. All values in this external file can be easily changed
according to the software engineer's preference. User—defined types are composed of pre-
defined types and previously defined user—defined types. Mayo defines rules for the
calculation of complexities for user-defined types [MAYOK89]. Type complexities are
computed as floating—point values for accuracy reasons.

The major problem in computing type complexities deals with incomplete type
declarations. An incomplete type declaration is of the form

TYPE identifierz
§
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and is necessary to construct any recursive data structure. As an example, see Figure 3.
Note that a full type declaration must eventually follow an incomplete type declaration.
With a recursive structure, two problems occur. The first problem is that type complexities
cannot always be calculated as soon as the type definitions are encountered. This is
obvious because an incomplete type declaration has absolutely no information to use to
compute a complexity (e.g., the type node in Figure 3). Also, the type complexities for
type declarations that depend on other types whose complexities are not known cannot be
computed (e.g., the type pointer in Figure 3). Only when the Ada Translator has processed
an entire set of declarations can all the type complexities be computed, since the full type
declarations for all incomplete type declarations have been processed by this time.

When calculating the type complexities that could not be computed as the types
were being processed, the other problem becomes apparent. lncomplete type declarations
are only necessary in recursive data structures. Calculation of the type complexity of
recursive data structures becomes an unending cycle. In the example, the type complexity
of node depends on the complexity of integer (which is known) and the complexity of
pointer (which is not known). The complexity of pointer depends on node. This is a
recursive loop and is quite a problem. The solution is to use a Self Reference value that is
in the external weight file. When a loop such as this is encountered, the Ada Translator
uses the Self Reference value and backs out of the loop.

The Ada Translator makes a symbol table entry for each type declaration. It also
assigns a unique number to each type that is declared. This helps in evaluating the type of
expressions, but is also necessary to process enumeration type declarations.

The only relation language that is generated from a type declaration is for the
enumeration literals of an enumeration type declaration. Recall that the relation language
was defined with Pascal in mind as the language of analysis. All identifiers within the
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TYPE node:
TYPE pointer is ACCESS node:
TYPE ncde is

RECORD
value : integer:
next : peinter;

END RECORD:
list : node;

Figure 3. Incomplete Type Declaration Example
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same declarative part must be unique in Pascal, and therefore in the relation language too.
Since enumeration literals may be overloaded in Ada, the Ada Translator must make them
unique. The Ada Translator appends the enumeration type number to each enumeration
literal whenever it is used (i.e., in its declaration and when it is referenced). See Figure 4
for an example of how enumeration type declarations are translated into relation language.
The complexity of each enumeration literal is taken from the extemal weight file.
Object Declarations

All object declarations are translated into relation language code with one of the
following formats:

h

local (rz) va1:iable_name; _or I
const: (ri) constant:_name; I

where rz is the type complexity of variable_rzame and constcmtjzame. No distinction is
made between declarations of variables of different types, with the exception that their type
complexities vary. The following object declaration would be generated for the variable list
from Figure 3:

local (2) list.;

Note that although type complexities are computed as floating-point values, they always
appear as integer values in the relation language. These type complexities are used in the
computation of the interface metrics. lf the user feels that type complexities contain too
much proprietary information, the Ada Translator has an option that will turn off the type
complexity output. The interface complexities will not be as accurate when the type
complexities are turned off. The Ada Translator makes a symbol table entry for each object
declaration.

1
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TYPE flag is (red, white, blue); const (2) red__l; ITYPE primary is (red, green, blue); const (2) white_l; I
const (2) blue_l:
const (2) red__2;
const (2) green_2:
const (2) blue_2:

(a) Ada Code (b) Relation Lan uae Code

Figure 4. Enumeration Type Declaration Translation

I

I
I
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Statements

The Ada Translator translates statements from Ada into relation language. The
translation is straightforward and the details are presented in the next few sections. Very
few problems occurred in this part of the development of the Ada Translator.
Assignment Statements

Assignment statements in Ada are translated into the relation language with the
following format:

variable_name = expression;

Procedure Call Statements
Procedure call statements are translated into the relation language in the following

format:

procedure__name (parameter, . . . , parameter) ;

One difference between an Ada procedure call and a procedure call in the relation language
is that the parentheses are required in the relation language, even if there are no parameters.
This is a restriction imposed by the Relation Manager.
IF Statements

All conditional statements in Ada are translated into COND statements in the relation
language. The COND statement consists of the keyword COND followed by a condition,
followed by a block of statements that depend on that condition. A single digit can be

appended to the keyword COND to facilitate calculation of interface metrics. When
computing interface metrics, the Relation Manager makes a distinction between different
conditionals based on this digit.

Since appending this digit uniquely identities the Ada statement that corresponds to

the coND statement, the relation language that is generated does not hide as much

proprietary information as it could if a COND without the digit were generated instead. Any
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COND with the appended digit can be traced back to an IF, CASE, or LOOP statement. lf the
user believes that this is releasing too much proprietary information, the option of
appending this digit may be turned off. However, the interface metiics that are generated
will be weaker since turning this option off reduces the amount of information that is
available to use in their calculation.

As an example, see Figure 5 for the translation of an IF statement from Ada to
relation language. Note that no distinction is made between the if-part and the else-part of
an IF statement since both pa1’tS depend on the same condition. Statements szmtl, c0nd5
and stmt3 all depend on var] and var2. Statement stmr2 depends on var] , var2, var]
(again) and a literal constant (all literal constants are translated to 100).

CASE Statements

CASE statements are translated into relation language similar to the way IF
statements are translated. The major difference is that the condition that guards the COND
statement consists of the CASE expression and all the choice lists. See Figure 5 for the
translation of a CASE statement from Ada to relation language. As mentioned in the IF
statement discussion, the digit following the COND may be removed if necessary.
Null Statements

Null statements appear in the relation language exactly as they do in Ada.
LOOP Statements

LOOP statements are utanslated into COND statements in a direct manner. A WHILE
LOOP becomes a condl, a FOR LOOP becomes a cond2 and a basic LOOP becomes a 60:1613 .
As mentioned in the IF statement discussion, the digit following the COND may be removed
if necessary. Since the FOR LOOP parameter is declared implicitly, the Ada Translator
explicitly generates a declaration for it. This is necessary because the Relation Manager p
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IF varl = vax2 THEN cond4 (varl & var2)
stmtl; begin

ELSIF varl = 0 THEN Stmtl;
Stmt2; cond5 (varl & 100)

ELSE begin
Stmt3; Stmt2;

END IF; end;
Stmt3:

end:

CASE State IS cond6 (State & va & md & 100)
WHEN VA => begin

Stmtl; stmtl:
WHEN MD => Stmt2;

stmt2; stmt3:
WHEN OTHERS => end;

stmt3;
END CASE:

FOR i in 1..3 LOOP local (1) i;
process_number(i); cond2 (i & 100 & 100)

END LOOP; begin
proceSS_number(i);

end;

(a) Ada Code (b) Relation Lan ua e Code

Figure 5. IF, CASE and FOR Statement Translation
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expects all variables to have been explicitly declared. See Figure 5 for the translation of a
FOR LOOP from Ada to relation language.
ExI'I‘ Statements

If there is a condition associated with an EXIT statement, then that condition is
translated and added to the condition of the COND statement that corresponds to the LOOP
statement that encloses the EXII statement. If there is no condition with the EXII
statement, nothing is added to the CoND statement's condition. The EXIT statement itself is
translated into a null statement in the relation language. See Figure 6 for an example of the
translation of an EXIT statement from Ada to relation language.
GOTO Statements

GOTO statements are not translated into a control structure in the relation language.
They are translated into NULL statements (as a place holder). This is because Ada provides
many constructs that make GoTo statements unnecessary in most cases. Also, GoTo

statements are not used too often by software developers that are concerned enough about
producing quality code that they are using the Software Metric Analyzer.
DELAY Statements

DELAY statements are also translated into NULL statements. This is because they do
not contribute to the complexity of a program.

Block Statements

Block statements are translated directly into the relation language, except the BEGIN
END keywords are not necessary. The declarations in the declarative part are processed just
like other declarations. The sequence of statements are processed normally as well.
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count := 0; count = 100;
LOOP cond3 (count & 100)

count := count + 1; begin
EXIT WHEN count > 10; count = count & 100;

END LOOP; null;
end;

(a) Ada Code (b) Relation Lan uae Code

Figure 6. Exifr Statement Translation
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Expressions
In some of the previous examples, expressions in Ada, as part of a statement, were

translated into relation language code without any explanation. This section explains how
Ada expressions are translated into relation language.
Literals

All numeric literals, string literals and character literals are translated into a 100 in
the relation language. Enumeration literals are translated as if they were declared as
constants. (See the next section on names for an example.)

NamesI

Name resolution is a large and complex part of the Ada Translator. Asmentionedpreviously,
the relation language does not allow overloading of enumeration literals.Themethod

used to make all enumeration literals unique was discussed previously in the Type :
Complexities and Type Declarations section. The Ada Translator removes any ambiguities
that may exist for a name reference by fully qualifying the name when necessary. That is,

the full path name of a variable is used instead of the simple variable name. The path name

is composed of the names of the units of analysis that reflect the lexical scoping of the
variable's declaration. This is always done when referencing any entity that was declared
within a package. If an ambiguity exists in a reference, the full path name is also used.
See Figure 7 for an example of the Ada Translator's name resolution. Procedure inner

references procedure 0uter’s local variable var. Procedure demonstrate references package
example's variable var.

Recall that the relation language makes no distinction between variables that were
declared in Ada with different types. As a result, variables that are records are treated asifthey

were simple variables. Therefore, a reference to a record component is translated into l

I
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Procedure outer is procedure outer ()
var : integer; begin
Procedure inner is local (1) var;

var : integer; procedure inner ()
Begin begin

var := 1; local (1) var;
outer.var := 1; var = 100;

End inner; outer/var = 100;
Begin end;

null; null:
End outer; end;

Package example is procedure example ()
var : integer; begin

end example; local (1) var;
null;

end;
WITH example;
USE example:
Procedure demonstrate is procedure demonstrate ()

TYPE rec is begin
RECORD local (1) the_rec;
vall, example/var = 100;
val2 : integer; the_rec = 100;
END RECORD; end;

the rec : rec;
Begin

_

var := l;
the_rec.val1 := 1;

End demonstrate;

(a) Ada Code (b) Relation Lan ua e Code

Figure 7. Name Resolution Example

l
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just a reference to a simple variable. See procedure demonstrate in Figure 7 for the
translation of a record component reference.

Array references are translated into relation language just like the array reference in
Ada, except that square brackets are used instead of parentheses. Attributes are translated
into a 100 since they are really a special form of a function call to a pre—defined function.
Calls to pre-defined functions do not enter in to any of the complexity calculations. They
could also have been translated to a call to an intrinsic function, which also would not
contribute to the complexity computations.
Aggregates

Aggregates allow several components of records and arrays to be referenced in a
very concise manner. Since the relation language makes no distinction between the
components of a record or an array, only the simple variable name of the record or array
and the values of the aggregate appear in the relation language. The relation language only
needs to convey what variables get updated by what values. The translation of aggregates
produces exactly this information. See Figure 8 for the translation of a record aggregate.
Qualified Expressins and Type Conversions

Qualified expressions and type conversions are expressions with an associated
type. Since the relation language has no types, the expressions associated with these
constructs are simply translated as usual.

Allocators

Allocators are used to dynamically allocate a variable and optionally, to assign an
initial value to this variable. A call to the intrinsic function NEW is generated and if there is
an initial value for this variable, that expression is translated as well.

I
I
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TYPE person_record is local (2) matthew;
RECORD .

name : st1:ing(1..2O); .
age : positive; .
status : boolean; matthew = 100 & 100 & true;

END RECORD:
matthew : pe1:son_reco1:d;

rnatthew :=
(name => “Matthew",
age => 3,
status => TRUE);

(a) Ada Code (b) Relation Lanuae Code

Figure 8. Record Aggregate Translation
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Function Calls

A function call is generated exactly like a procedure call is generated, except that a
function call is an expression (i.e., part of a statement) and not a complete statement.
Operators

Operators in Ada (when they refer to the built-in functions defined in the package
STANDARD) are translated to ampersands in the relation language. A number may be
appended to the ampersand to uniquely identify which operator was used in the Ada code.
This information is used by the relation manager in the interface metric calculations to be
able to assign different complexities to different operators. Just like the digit following a

J

COND for conditional statements is optional and may be turned off by the user, this operator _

number may also be turned off if the user desires. Tuming off this option will affect the
interface metric calculations as it will for the conditional statements.
Subprograms

Subprogram bodies are translated into the relation language with a procedure
header and become a unit of analysis. An entry is made in the symbol table for each

subprogram declaration and subprogram body. If the subprogram declaration or
subprogram body is a compilation unit, then the following information is stored in the

project library:
• a procedure/function flag,
• subprogram name,
• number of parameters,
• for each parameter:

• parameter name,
• typc number, and

• type of the return value if the subprogram is afunctionL
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RETURN statements with expressions in Ada are translated directly to the relation
language using a RETURN statement. RETURN statements without expressions (such as
those allowed in procedures) are translated into a NULL statement in the relation language to
act as a place holder.

See Figure 9 for an example of a subprogram in Ada and Figure 10 for the resultant
relation language code. Note that subprogram parameters have a type complexity
associated with them, just like object declarations. Procedure
subprogram_0verl0ading_example will have an entry in the project library. Notice that the
relation language requires a parameter list for each procedure declaration, even if it is
empty.

Overloading Subprograms

Subprograms can be overloaded in Ada. That is, as long as the number and type of
parameters (and the type of the result for functions) of each subprogram are different,
subprograms may have the same name. This presents a problem for the translation to
relation language, since overloading is not allowed. The solution to this problem is to
assign a unique number to each subprogram and append it to the subprogram declaration
and all subprogram invocations. This removes the overloading from the relation language.

Translating subprogram invocations are more difficult when overloading is
considered. If procedure X is overloaded, a call to procedure X needs to be translated
using the correct unique number that applies to the appropriate version of procedure X.
The only way to determine which procedure corresponds to the call is to evaluate the type
of the parameters. The rules of Ada require that no ambiguities exist, so once one
procedure declaration is found that matches the invocation, the Ada Translator can stop
searching and generate the call. See Figure 9 for an example of subprogram overloading in

Ada and Figure 10 for the resultant relation language code.
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Procedure subprogram_overloading_example is
intl, int2, int result : integer;
reall, real2, real_result : float;

Function max (a, b : integer) return integer is‘ Begin
IF a < b THENreturn b;ELSE

return a;
END IF;

End max:
Function max (a, b : float) return float is
Begin

IF a < b THEN
return b:ELSE
return a;

END IF; I
End max; „

Begin ——subprogram_overloading_example lintl ;= 0; Iint2 := 1; Iint_result := max(intl, int2);reall := 0.0:real2 := 1.0:real_result := max(reall, real2);
End subprogram_overloading;example:

Figure 9. Subprogram Overloading in Ada

I

· I
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procedure subprogram overloading;example_1 ()
begin

_

local (1) intl;
local (1) int2;
local (1) int_result:
local (3) reall;
local (3) real2;
local (3) real_result;

procedure max_2 ((1) a, (1) b)
begin

cond4 (a &ll b)
begin ·
return b:
return a;
end;

end {max_2};

procedure max_3 ((3) a, (3) b)
begin

cond4 (a &11 b)
begin
return b:
return a;
end:

end {max_3};
intl = 100:
int2 = 100:
int_result = max_2(intl, int2);
reall = 100;
real2 = 100;
real_result = max_3(real1, real2);

end {subprogram_overloading_example_l};

Figure 10. Translation of Subprogram Overloading
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Operators can also be overloaded in Ada. Again, the relation language does not
allow this. It also does not allow procedure designators to be anything but a normal
identifrer. To solve these problems, the Ada Translator names each overloaded operator as
an "op" and appends the unique number to this as usual.

Operator translation is more difficult when overloading is considered. If an
operator is overloaded and its use is really a call to a user-defined function, a function call
is generated. If the operator is a call to one of the pre—defined functions in package
STANDARD (e. g., "+" for two integer arguments), the normal ampersand notation
previously discussed is used. The types of the arguments are used to determine which

_ operator is being invoked. See Figure ll for an example of operator overloading.
Packages

Packages are translated into the relation language with a procedure header and
become a unit of analysis. An entry is made in the symbol table for each package
specification. If the package specitication is a compilation unit, then the package name is
stored in the project library along with all its declarations. Packages contribute more
information to the project library than any other compilation unit because of the declarations
that must be stored.

The name, unique number and complexity is stored for each type declaration. The

name and type number is stored for each object declaration. The same information is stored

for subprogram declarations in this case as is stored when a subprogram is a compilation

unit (i.e., procedure/function flag, name, number of parameters, name and type number of
each parameter, and result type if the subprogram is a function).

1 Subunüs
Subunits cause more information to be stored in the project library than usual. For .

example, if a subprogram has a body stub as part of its declarations, all of the
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-—Ada Code:
Procedure operator_overloading_example is

TYPE array_type is ARRAY (1..10) of integer;
arrayl, array2, result_array : array_type;

Function "+"(left, right : array_type) return array_type is
result : array_type:

Begin
FOR i in 1..10 LOOP

result(i) := left(i) + right(i):
END LOOP;
return result:

II+II;

Begin -—operator_overloading;example
result_array := arrayl + array2;

End operator_overloading;example;

{relation language code:}
procedure operator_overloading_example_1 ()
begin

local (3) arrayl;
local (3) array2;
local (3) result_array;

procedure op_2 ((3) left, (3) right)
begin

local (3) result:
local (1) i;
cond2 (i &27 100 &26 100)

begin
result[i] = left[i] &15 right[i];
end:

return result:
end {op_2};
result_array = op_2(array1, array2);

end {operator_overloading_example_1};

Figure 11. Operator Overloading
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subprogram's declarations are stored in the project library, just as if this subprogram were
a package. The body stub is stored in the project library too, as well as in the current
symbol table. It is necessary to store the subprogram's declarations because they need to
be visible to the subunit when it is processed later.

When the subunit is processed, the information stored in the project library on all 1
the declarations is used to manipulate the current symbol table to act as if the subunit
werelexicallynested where the body stubappeared.Relation

language is generated for a subunit in the usual way, except that the name r
in the procedure header reflects the nesting level. See Figure 12 for an example of the 1
translation of a compilation unit with
subunits.Exceptions1

Exceptions provide a way to handle unexpected situations at run time. When
anexceptionis raised (either automatically by the run-time system or when explicitly raisedbythe

program), control is passed to the appropriate exception handler. The dynamic
execution path of the program determines which exception handler is executed. Therefore,
it is impossible to always know which exception handler gets executed in a static analysis.
Since the Software Metric Analyzer examines the programming system statically,
exceptions are processed only when they occur in one type of situation. This situation is
when the exception is raised explicitly within a frame and a matching exception handler is
defined within this frame. Aframe is a sequence of statements and the associated list of
exception handlers. For example, a subprogram body with statements and exception
handlers is considered a frame.

The exception handler is translated into a procedure and becomes a unit of analysis.
See Figure 13 for an example of exceptions and exception handlers in Ada and Figure 14

for the translation of exceptions and exception handlers. Notice that procedure common S

1
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Procedure outer is procedure outer_l ()
outer_var : integer; begin
procedure inner is separate; local (l) outer_yar:

Begin outer_l/inner_2();
inner; end {outer_l};

End outer;

separate (outer)
procedure inner is procedure outer_l/inner_2 ()
inner_var : integer; begin

Begin local (l) inner_yar;
outer_yar := l; outer_l/outer_yar = 100;
inner_var := l; inner_var = lOO;

End inner; end {outer_l/inner_2};

(a) Ada Code (b) Relation Lanuae Code

Figure 12. Subunit Translation

1
1
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Package define_exceptions is
exceptl : exception;
except2 : exception;

End define_exceptions;

With define_exceptions;
Use define_exceptions;
with Text_10:
Procedure exception_example is

Procedure common (param : integer) is
Begin

IF param = 0 THEN
RAISE exceptl;
RAISE except2;

END IF:
Exception

WHEN exceptl => text_io.put_1ine("error 1 occurred");
End common;

Procedure one (param : integer) is
Begin

common(param);
Exception

WHEN except2 => text_io.put_1ine(“error 2 occurred");
End one;

Procedure two (param : integer) is
Begin

common(param);
Exception

WHEN except2 => text_io.put_1ine("error 2 occurred");
End two;

Begin
one (1);
two (2);

End exception_examp1e;

Figure 13. Exceptions and Exception Handlers in Ada
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procedure define_exceptions_1 ()
begin

null;
end {define_exceptions_1};

procedure exception_example_2 ()
begin

procedure common_3 ((1) param)
begin

cond4 (param &9 100)
begin
except1_4:
null:
end;

procedure except1_4 () .
begin

text_io_100/put_1ine_101(100);
end {except1_4}:

end {common_3}; ‘

procedure one_5 ((1) param)
begin

common_3(param);
end {one_5};

procedure two_6 ((1) param)
begin

common_3(param);
end {two_6}:

one_5 (100);
two_6 (100);

end {exception_example_2};

Figure 14. Translation of Exceptions and Exception Handlers
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raises except] and except2, but only has an exception handler for except]. If this segment
of Ada code were to be executed, the exception handler for except] in procedure common
would be executed when except] is raised. Therefore, the Ada Translator generates a
procedure call for the raise of except] and generates a procedure body for the exception
handler of except].

Since procedure common does not have an exception handler for except2, it is
unknown during a static analysis which exception handler is executed when common raises
except2. This is only known at run time. (The run time system could determine which of
procedures one or two called procedure common by the execution path and execute the
appropriate exception handler.) Therefore, the raise statement for except2 is translated into
a null statement to serve as a place holder. Note that the exception handlers in procedures
one and two are not translated into the relation language at all, since it cannot be statically
determined that they are ever called. Exceptions are a part of Ada that would benefit greatly
from dynamic metric analysis.
Generic Units

The processing of generic units is the most complex and involved part of the Ada
Translator. Both subprograms and packages can be defined as a generic unit. When a
generic declaration is processed, an entry is made in the symbol table and, if the generic
declaration is also a compilation unit, information is stored in the project library. The
information that is stored is the name of the generic declaration and a flag indicating
whether the generic declaration is for a procedure, function, or a package. lf the
declaration is for a package, the declarations within the package are stored as well. The
generic formal parameters are also stored. Generic formal parameters may be objects,
types, or subprograms.
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When a generic body is processed, its source code is saved by the Ada Translator to
use when processing its generic instantiations. Since generic units are simply templates,
neither code metrics nor relation language is generated for them. The metrics and relation
language translation is performed for all of the generic instantiations, based on the generic
body.

Once a generic declaration has been processed, instances of the generic unit may be
declared, assigning actual parameters to the generic formal parameters. The body of the
generic unit may be processed either before or after any instances of it. The only
requirement is that a generic unit be declared before any of its instantiations. Therefore,
instances may be fully processed at the time they are presented to the Ada Translator (if the
body of the generic unit has already been processed), or saved until the very end of the Ada
Translator's execution. At this time, the generic body is guaranteed to have been
processed.

The Ada Translator processes generics just as one might think. The actual
parameters are matched to the generic formal parameters. The values of these actual
parameters are used whenever the formal parameters are referenced within the generic
body. This is easy to explain, but much harder to implement. See Figure 15 for an
example of generic units and Figure 16 for their translation. Procedures gen_inst1 and
gen_inst2 cannot be fully processed when their instantiations are encountered because the
body of procedure template has not yet been submitted to the Ada Translator. They are
processed at the end of the Ada Translator's execution. Procedure gen_inst3 is processed
fully when its instantiation is encountered because procedure template's body has been
processed. Note that the formal parameters have been replaced by the actual parameters
when the body of template is translated into gen_inst3, gen_inst1 and gert_inst2.
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package container is
type enuml is (a); 1
type enum2 is (a, b); 1
type enum3 is (a, b, c);
type array_type is array (1..100) of integer;
procedure bubble_sort(array_to_sort : IN OUT array_type);
procedure merge_sort (array_to_sort : IN OUT array_type);
procedure quick_sort (array_to_sort : IN OUT array_type);

end container;
Iwith container; 1

use container; 1generic 1
type enum_type is (<>); 1
with procedure sort(array_to_sort : IN OUT array_type); 1

procedure template;
1

with container; 1
use container; 1
with template; Iprocedure gen_instl is new template(enum_type => enuml, 1sort => bubble_sort);

1
with container;
use container; 1
with template; 1procedure gen_inst2 is new template

(enum_type => enum2, 1sort => merge_sort); 1
with container;
use container;
procedure template is

, the_array : array_type;
enum;yar : enum_type;

begin
sort (the_array);

end template:

with container;
use container;
with template; Iprocedure gen_inst3 is new template 1(enum_type => enum3, 1sort => guick_sort);

Figure 15. Generic Units inAda1

1

1

1
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procedure container_165 ()
begin

procedure bubble_sort_166((3) array_to_sort)
begin

éäa {bubble_sort_166};

procedure merge_sort_l67((3) array_Lo_sort)
begin

éaa {merge_sort_167};

procedure quick_sort_168((3) array_to_sort)
begin

éha {quick_sort_168};

end {container_165};

procedure gen_inst3_173 ()
. begin

local (3) enum_yar:
local (3) the_array:
container_165/quick_sort_168(the_array);

end {gen_inst3_173}:

procedure gen_inst1_171 ()
begin

local (1) enum;yar;
local (3) the_array;
container_165/bubb1e_sort_166(the_array):

, end {gen_inst1_171);

procedure gen_inst2_172 ()
begin

local (2) enum_yar;
local (3) the_array;
container_165/merge_sort_167(the_array);

end {gen_inst2_172};

Figure 16. Translation of Generic Units
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Tasks

Tasks are translated into the relation language with the emphasis on having them
contribute to the complexity of programming systems due to the flow of information.
Therefore, task bodies and entries are translated into procedures in the relation language
and entry call statements are generated just like procedure call statements. See Figure 17
for an example of tasks in Ada and Figure 18 for the translation of tasks.
Ada Features That Are Ignored A

The Ada Translator accepts full Ada. Some constructs in Ada, however, are
ignored and not processed by the Ada Translator. The situations where some exceptions
and exception handlers are not processed were mentioned previously. The Ada Translator
ignores parts of Ada for one of several reasons: either the item in question does not
contribute to a·program's complexity, the construct is machine dependent, or (as is the case
with exceptions) the correct translation cannot be detemiined statically.

Pragmas, which are basically compiler directives, do not contribute to a program's
complexity and are ignored by the Ada Translator. The pre—defined library package
MAcHINE_coDE is not used by the Ada Translator since Ada compilers are not required to
provide it [ADARM83]. Also, the Ada constructs dealing with low—leve1 programming are
ignored since they are machine dependent. .

Phase Two
The Relation Manager reads the relation language code output from the Ada

Translator and computes the interface metrics. Also, the Relation Manager creates
relations. Both the interface metrics and the relations are then passed to the Metric
Generator for final processing.

The interface metrics are computed based on all of the relation language code, but a 1
few parts of the code need to be emphasized to show that they contribute directly to the

1
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——Ada Code:
Task Type Change Variable is

Entry Incr€ment(value : IN OUT integer; amount : IN integer):
Entry Decrement(value : IN OUT integer; amount : IN integer);

End Change_Variable;

Task Body Change Variable is
Begin

_

LOOP
SELECT

Accept Increment( value : IN OUT integer;
amount : IN integer) do

value := value + amount:
End Increment;

OR
Accept Decrement( value : IN OUT integer;

amount : IN integer) do
value := value — amount:

End Decrement;
OR

Terminate:
End SELECT:

End LOOP;
End Change_Variable:

Change_It : Change_Variable;
val : integer:

Change_It.Increment(val, 3);

Figure 17. Tasks in Ada
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{relation language code:}
procedure change_variable ()
begin

procedure increment( (1) value, amount)
begin

value = value &15 amount;
end {increment};

procedure decrement( (1) value, amount)
begin

value = value &16 amount;
end {decrement};

null;
end {change_variable};

local (3) change_it;
local (1) val;

· change_variable/increment(val, 100);

Figure 18. Translation of Tasks
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interface metric calculations. The type complexities associated with each variable
declaration are only used in the calculation of interface metrics. Also, the unique numbers
appended to the end of conditional statements (coNDn) and to the end of ampersands
(denoting a particular operator) are only used in the interface metric calculations. These
unique numbers are used to determine which conditional or which operator was used in
Ada, so that different complexity weights can be applied. For instance, this is how
multiplication is given a higher complexity than addition.

As mentioned previously, the interface metric calculations themselves are not a part
of this research. The role that this research played in regards to interface metrics was
simply to gather the necessary information and pass it on to the Relation Manager.

Relations are grouped by units of analysis. A set of relations is computed for each
variable within a unit. Relations are simply a list of where each variable gets its I

information. Examples would be from a literal constant, another variable, the result of a
function invocation, or an output parameter from a procedure invocation, For a complete
explanation of relations, see [KAFUD82].

Phase Three
The third phase of the Software Metric Analyzer is where all the information _

produced thus far is accumulated and assembled into a format accessible to the user. The
code metrics from the Ada Translator and the interface metrics and relations from the
Relation Manager are included in this final phase. From the relations generated in Phase
Two, the Metric Generator calculates structure metrics. The code metrics, together with
these newly calculated structure metrics, allow the hybrid metrics to be calculated.
Therefore, all metric values are available to the user from this third and final phase of the

_ Software Metric Analyzer. .

I
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Conclusion
The Software Metric Analyzer has now been presented. Much emphasis has been

placed on the details of the Ada Translator. The next chapter discusses the analysis and
veriiication of the Software Metric Analyzer.
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Chapter 4 The Analysis

Introduction
The Software Metric Analyzer was used to analyze a commercial Ada product. The

metric analysis was able to determine those units of analysis with the greatest complexity.
After outlier data was removed, intermetric correlations produced similar results to other
metric studies. The method of analysis and the detailed results are discussed below.

Data Description
Software Productivity Solutions (SPS) is a small company (less than 40

employees) interested in producing quality software products. Located in Melbourne,
Florida, most of their contracts are from the Department of Defense. The data used in the
analysis of the Software Metric Generator is an Ada—based Design Language (ADL)
Processor produced by SPS. The system was donated to the Virginia Tech Metrics
Research Group for use in the validation of the Software Metric Analyzer. The ADL
programming system provides for syntax checking and limited semantic checking of ADL
source files. Also, it generates a variety of data dictionary and cross reference reports and
has an on-line help facility. The system consists of four subsystems: support, database,
report, and analyzer. In total, this system has 83,799 textual lines of code and 5,355 units
of analysis. (A unit of analysis was defined in detail in chapter 3.) The support section
contains 6,702 lines of code. The database section contains 43,019 lines of code. The
report section contains 3,874 lines of code. The analyzer section contains 30,204 lines of
code.

Analysis of the Data
The Software Metric Analyzer processed the ADL Processor’s source code and the

resultant code, structure, and hybrid metrics were analyzed. See Table 1 for a list of
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Table 1. List of Abbreviations
l

Abbreviation Meanin
LOC Lines of Code
N Halstead's Length
V Halstead's Volume
E Halstead's Effort
CC McCabe's Cyclomatic Complexity
RC Woodtield's Review Complexity
INFO He and Kafura's Information Flow

1
1

i1
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I
abbreviations used in the following tables and figures. See Figures 19 through 25 for the
histograms of the individual complexity metrics. In each histogram, the last column of data
represents all of the procedures with complexity values greater than or equal to the indicated
value. For example, in Figure 19, there are approximately 100 procedures with at least 120
lines of code. See Table 2 for some summary statistics of the raw data and Table 3 for the
intermetric correlations of the raw data. All correlations in this thesis are Pearson
correlations. —

After the data was gathered, the metrics had to be validated. Usually this is done by
using error history analysis or development time information but none of this was
available. Therefore, the validation was performed by a subjective hand inspection of some
of the units of analysis that were flagged as potential problem areas.

In Figure 19, the distribution of the lines of code metric values are shown. The unit
of analysis that has the largest lines of code value is a package that has only a package
specitication. It is a part of the analyzer subsystem of the ADL Processor system. The
reason for its length is that it contains table initializations in constant declarations.

The distribution of Halstead's Software Science measures N, V, and E are
presented in Figures 20, 21 and 22. The same unit of analysis is responsible for all three
maximum values of Halstead's Software Science measures. It is a procedure also in the
analyzer subsystem. The reason for its large Software Science metric values is that it
contains a lot of initialization statements (using a lot of operators and operands). It is
interesting to note that the same unit of analysis also accounts for the smallest values
calculated for all of Halstead's Software Science measures. This unit of analysis is an
exception that only propagates the exception to the unit that called the sturounding frame.
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Table 2. Summary Statistics of Raw Data

Metric Mean Standard Deviation Minimum Maximum
LOC 20.0 52 1 2391N 99.6 247 4 10892V 553.4 2030 8 93218
E 21370.1 201593 12 9961191CC 3.0 9 1 354RC 21260.0 197702 12 9961191INFO 16959213555.0 831363564057 1 55959169202181I

I

I

I

I

I
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Table 3. Intermetric Correlations of Raw Data

Metric IDC N V E CC RC INFO
LOC
N 0.644
V 0.616 0.991
E 0.571 0.927 0.952
CC 0.525 0.571 0.543 0.600
RC 0.559 0.930 0.960 0.991 0.534
INFO 0.029 0.066 0.060 0.029 0.001 0.058

11
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Figure 23 shows the distribution of McCabe's Cyclomatic Complexity values. The
unit of analysis that has the largest Cyclomatic Complexity value is a procedure in the
analyzer subsystem that contains a (very large) CASE statement.

In Figure 24, the distribution of Henry and Kafura's Information Flow metric
values are presented. Note that this distribution is on a log—sca1e. It is necessary to use a
log—scale for the Information Flow metric due to the great difference in magnitude among
the metric values [HENRS8lb], [KAFUD85]. The unit of analysis that has the largest
Information Flow value is a procedure in the database subsystem. It only has two
parameters, but its fan-in is 917 and its fan-out is 687. This indicates a high level of
coupling with its environment. Most of its subprogram invocations are to a user-defined
input procedure. There are also a lot of assignment statements. Most of the fan-ins and
fan—outs are not from subprogram invocations but are from data structures declared in
external packages being referenced within this procedure. This procedure is also
considered to be an outlier for all of Halstead's Software Science measures and
Woodfield's Review Complexity. This is not surprising since this is a rather large
procedure.

Finally, Figure 25 shows the distribution of Woodfield's Review Complexity
metric. The unit of analysis with the largest Review Complexity value is the same unit that
has the largest Halstead's E value (a procedure with a lot of initialization statements). This
procedure must have a Woodtield fan-in that does not exceed 3, since the Review
Complexity value and Halstead's E would differ otherwise. This is expected since an
initializaüon procedure should not, in general, be called more than once.

From the histograms in Figures 19 through 25 and Table 2, it is clear that most of
the units of analysis in this system are of a reasonable size and complexity. This may be
because the developers of this Ada system at Software Productivity Solutions have short,

Chapter 4 The Analysis 81



open lines of communication (due to being a small company) and that they strive to produce
quality software. Using Ada to write this system might also be a factor influencing this
product's reasonable complexity measures.

As can be seen in Table 2, the maximum metric values are 40-70 standard
deviations away from the mean. There are some units of analysis in the system that
produce exceptionally large complexity values and therefore are adversely affecting the
analysis of the system as a whole. Also, the intermetric correlations in Table 3 are not
extremely definitive. Previous studies show that code metrics highly correlate for
languages other than Ada [HENRS8la], [LEWU89], [HENRS90b]. The code metrics in
the analysis of the raw data do not correlate as high as expected. The Information Flow
metric does not correlate at all to any of the other metrics. This is an expected result, as it
conforms to previous studies for other languages [HENRS81a], [l—IENRS90b]. Since the
Information Flow metric does not correlate to the other metrics, it must be measuring some
different aspect of complexity.

With the observation that the code metrics do not correlate as high as expected,
outlier data was removed and the system was again analyzed. A unit of analysis is
considered to be an outlier if any one of its metric values falls in the top 1% of that metric's
values. Since the data is clustered towards small complexity values, only the largest 1% of
the data was removed. (This is true for all the metric values except Henry and Kafura's
Information Flow metric, for which the largest 4% of the data was removed.) Outliers
were defined this way because the distribution is very sparse for very large values for each
of the metrics. The range of metric values would definitely vary from system to system, so
the definition of an outlier would need to vary as well. Different companies would most

likely define outliers in different ways as a method of tuning the metrics for their specificenvironment.Chapter
4 The Analysis 821
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Outlier removal resulted in removing the data for 5% of the units of analysis. See
Table 4 for some summary statistics of the data and Table 5 for the intermetric correlations
of the data with the outliers removed. Table 6 contains information conceming the overlap
of the outlier data among the metrics.

With the outlier data removed, the maximum metric values are only 7-13 standard
deviations from the mean. The mean did decrease some (as expected), but for most of the

metrics it did not decrease that much. Therefore, removing 5% of the data is not
detrimental in this case. The main point to be said about the summary statistics with the
outlier data removed in Table 4 is that the maximum values and standard deviations are
more in-line with the mean value of each metric.

The intermetric correlations of the data with the outliers removed in Table 5 are
more consistent with previous results than the correlations using the raw data. The code
metrics correlate highly, which seems to validate the code metric definitions for Ada that
this research defined. McCabe's Cyclomatic Complexity metric does not correlate to the
other code metrics as well as all of the other code metrics correlate to one another. Part of
the reason for this could be the fact that package definitions are not required to have a body
of code with them. A package that only has a specification will always have a Cyclomatic
Complexity value of 1; all the other code metric values can vary greatly.

This should not be a concern to anyone using the Software Metric Analyzer. The
analyzer has two different methods of grouping units of analysis. Modules can be defined
in order to group a package together with all of its nested subprograms and packages. In
this way, complexity analysis can be performed on larger sections of code. The other
grouping mechanism of the analyzer is more flexible and allows any combination of units
of analysis to be grouped together, regardless of their lexical nesting level.
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Table 4. Summary Statistics of Data with Outliers Remcved

Metric Mean Standard Deviation Minimum Maximum
LOC 16.3 15 1 150N 83.0 83 4 645
V 429.2 518 8 4055
E 11152.5 19049 12 184177CC 2.4 2 1 18RC 11506.6 19568 12 182989INFO 12510577.0 67495181 1 900486748
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Table 5. Intermetric Correlations of Data with Outliers Removed

Meuic LOC N V E CC RC INFOLOC
N 0.947
V 0.942 0.997
E 0.916 0.957 0.965
CC 0.668 0.726 0.717 0.727
RC 0.904 0.940 0.946 0.968 0.700
INFO 0.065 0.090 0.098 0.072 -0.007 0.106
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Table 6. Overlap of Outliers

Number of Metrics in Overla • Percema e of the Gutlier Data
1 76.0
2 5.5
3 2.5
4 2.9
5 5.6
6 5.8
7 1.7
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It was previously mentioned that Henry and Kafura's Information Flow metric does

not correlate at all to the other metrics. This is because the Information Flow metric
measures the flow of information between units of analysis and does not measure size.
The Information Flow metric is probably a better indicator of complexity than the size
metrics, because although size contributes to complexity, module interactions make
programs difficult to write, test and understand. These interactions are also the source of
many errors [HENRS81a].

lt should also be noted that since the Information Flow metric does not depend on
size but rather on the flow of information, it can produce meaningful results from analyzing
a design written in Ada or an Ada-like PDL. This is because designs written in a PDL are
broken down by procedures and contain calls to other procedures. With just this calling
structure, the Information Flow metric can compute a meaningful complexity measure
[HENRS90b].

Woodfield's Review Complexity correlates very high (0.968) to the code metric
used (Halstead's E). This is because most of the units of analysis have a Woodfieldfan—in
value that is less than or equal to 3. This yields a Review Complexity value equal to
Halstead's E. Packages could be part of the reason for Woodfie1d'sfan·in not exceeding 3
that often. A package with only a package specification will never have a Woodfieldfan-in
that exceeds 3 because packages can not be called, nor can they modify a data structure that
is declared external to them.

It can be seen from the information in Table 6 that 76% of the outliers are in the top
1% of only one metric's value range. Most of these units of analysis probably should not
be considered problem areas since only one metric considers them to have a high
complexity. This is a good example of not wanting to use only one metric in analyzing a
programming system.
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On the other end of the spectrum, 1.7% of the outliers are considered to be an

outlier based on all of their metric values. Surely these units of analysis are the ones that
should be examined carefully, tested rigorously or perhaps be redesigned. One of these
units of analysis is the procedure that has the maximum Cyclomatic Complexity value
discussed previously. In addition to the large CASE statement, there are numerous
subprogram invocations and references to data structures defined in external packages.
Both of these points contribute equally to its large Information Flow complexity. The size
metrics are large due primarily to the CASE statement and its contents.

Two of the units of analysis that are considered outliers based on all of their metric
values are procedures in the database subsystem. Both contain about 30 IF statements and
approximately 75 subprogram invocations. Another unit of analysis considered anoutlierby

all metric values is also a procedure in the database subsystem. It contains about 25
WETLE Loops and IF statements as well as many subprogram invocations. It also contains
about 700 lines of code and a lot of subprogram invocations. These units of analysis are
considered to be complex and in need of stringent testing because the connectivity of a
subprogram to its environment is one of the main sources of errors and program
complexity.

The last unit of analysis that is considered to be an outlier based on all the metric
values is a procedure in the analyzer subsystem. Although it is just barely an outlier based
on its lines of code value, it contains a large nested IF TEEN ELS IF ELSE statement
referencing a lot of data structures from external packages. It also has eight formal
parameters and many subprogram invocations that contribute to its Information Flow
complexity.

Chapter 4 The Analysis 88



I
Conclusion
ITheanalysis of a commercial Ada product using the Software Metric Analyzer

hasbeenpresented The results from the analysis can be summed asfollows:•
the intermetric correlations agree with other studies using

otherlanguages•

the metrics were able to identify the units of analysis having high I
complexity . I

• the Software Metric Analyzer can be used on software with anylevelof
refinement and produce meaningful results I

There is no single metric that can be used to measure source code complexity.
Thispointwas made in the discussion of the overlap of the outlier data. This research uses I
several metrics and they all perform differently. Since the code metrics are easy to compute I

and are the most familiar to the software engineering community, it is tempting to
justcalculatethem instead of any others. For better coverage of complexity analysis, it isbestto

use many different types of metrics as done in this research effort. Henry and Kafura's
Information Flow metric is used in addition to the code metrics (as is Woodfield's Review I

Complexity). The reason for using the Information Flow metric is that it is measuring a
different (and perhaps more important) aspect of complexity. Also, since the Information
Flow metric measures the structure and connectivity of the code (which is present at the
beginning stages of software development), the Software Metric Analyzer supports the use

I
of Ada as a PDL. The complexity of designs can be measured and meaningful resultscanI
be produced using the Information Flowmetric.I

I

I
I
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Chapter S Couclusions

Research Conclusions
This research attempts to define and validate complexity metrics for Ada. The

conclusions from the research can be summarized as follows:
• code metrics for Ada were defined
• it was determined how to apply Henry and Kafura's Information

Flow, Woodfield's Review Complexity, and McClure's Module
Invocation Complexity metrics to Ada• the code metric detinitions were validated since the intermetric 1correlations agree with other studies using other languages 1

• the metrics were able to identify the units of analysis having
highcomplexity,verified by hand inspection 1

• the Software Metric Analyzer can be used on software with any level 1
of refinement and produce meaningful results 11Future Work

There is defmitely a need for more validation of these complexity metrics for Ada.
A thorough validation would include using commercial Ada systems with their error
histories. This would show how accurate the metrics are at computing the complexity of
different parts of a programming system. (The more complex parts should be the ones
with the most errors.) The validation should also include a varied mixture of programming
systems, e.g., real-time applications, batch applications, etc. Analyzing an Ada system
written by a larger company and developed under different conditions would probably yield

different results.
The results attained by this research from analyzing a programming system

developed by SPS are probably typical of Ada systems written by small groups oftalentedpeople.
Metric measurement is not only dependent on the programming language and the1
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type of programming system being analyzed, but also on the development process. This is
why analyzing a system produced by a larger company under a different development
environment will probably show different results.

As mentioned in Chapter 2, there is a need for dynamic metrics. Programs need to
be measured during execution to be able to give more meaningful results. Thecomplexitythat

concturency introduces via the task construct in Ada is important only if it ismeasuredduring
program execution. Also, since Ada is very communication oriented, a

complexitymeasurethat focuses directly on the interfaces is needed. (The Ada Translator portion of
i

the Software Metric Analyzer generates some information that is useful forproducinginterface
complexities, but none of these complexities are produced
yet.)Finally,the third phase of the Software Metric Analyzer, the Generator, can

beimprovedto make it easier to use. Heuristics and tolerances can be added to helpinterpretthe
metrics, as well as incorporating a graphical interface to provide menus andmultipledisplays.

Options to link to a statistics package and to generate graphs and charts would l
deünitely improve the Software MetricAnalyzer.1
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Appendix A Halstead's Software Science Operator Definitions ~
in h r

Miscellaneous Operators
statement terminator :
list delimiters ( )
general item separator ,
special item separator :
assignment :=

Operators Associated with Declarations
declaration operator :
constant declaration CONSTANT
type declaration TYPE IS or

TYPE
discrete range RANGE low..high or

low..high (low and high are operands)
floating-point accuracy constraint DIGITS
fixed-point accuracy constraint DELTA
array deiinition ARRAY ( ) OF
unconstrained range RANGE <>
record declaration RECORD END RECORD
renaming declaration RENAMES

Operators Associated with Access Types
access declaration ACCESS
dynamic allocation NEW
dynamic allocation initialization '
Operators Associated with Subtypes and Type Equivalence
subtype declaration SUBTYPE IS
derived type declaration NEW
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in h r r
Operators Associated with Statements
subprogram calls name of procedure or function invoked
if—then IF THEN END IF
elsif ELSIF THEN
else ELSE
case CASE IS END CASE
case selection statement WHEN =>
choice separator |
others option OTHERS _
null statement NULL
loop and block statement identiiier :
loop statement LOOP END LOOP E
while loop WHILE
for loop FOR
for direction ascending IN
for direction descending IN REVERSE
exit statement EXIT or

ExIT WEEN
statement identiüer delimiters << >>
goto statement GOTO
delay statement DELAY
sequence of statements delimiters BEGIN END
block statement DECLARE

Operators Found in Expressions
string delimiters " "
character delimiters ' '
component selector .
select all ALL
attribute designation '
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Qperateg; Degeriptieg flfekent 5) Speeifying the Qperatgrassociation =>
qualified expression 'based literal delimiters # #exponentiation **absolute value ABSmultiplication*division/ I
remainder REM
REMremainderMOD MOD iunary positivity + l
unarynegationbinary

addition
+binarysubtraction - [
concatenationequal

=notequal
/=lessthan < I
less than or equal <=
greater than >
greater than or equal >=
membership IN
logical negation NOT
logical and AND
logical or OR
logical exclusive or XOR
logical short-circuit and AND THEN
logical short—circuit or OR ELSE

Operators Associated with Subprograms
ßprocedure declaration PROCEDURE IS or ,BROCEDURE
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if in h r r [
modein nothing or [

IN
mode outOUTmode

in out IN
OUTfunctiondeclamtion PUNcTIoN RETURN IS

orPUNcTIoNRETURN or [FUNCTION [
return statement RETURN
overloaded operatordelimitersPragma

DeclarationOperatorpragma
declaration PRAGMA[

Operators Associated withPackagespackage
specitication PACKAGE IS END

orPAci<AcEIS or I
PACKAGEpackage

body specitication PACKAGE BODY IS END or
PAc1<Ac;E Poor IS

context clause WITH
use clause UsE
Operators Associated with Private Types
private type declaration PRIVATE
limited type declaration LIMITED

Operators Associated with SeparateCompilationbody
stub indication SEPARATE [

subunit indication SEPARATE () [
[
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Qpetater Deseriptien flfekent si Speeifying the Qperater

Operators Associated with Exceptions
exception definition/declaration EXCEPTION
exception selection statement WHEN =>
others option OTHERS
raise statement RAISE

Operators Associated with Generic Units
generic declaration GENERIC
generic instantiation of a package PACKAGE IS NEW
generic instantiation of a procedure PRDCEDURE IS NEW
generic instantiation of a function FUNCTION IS NEW
generic formal constant declaration nothing or

IN
generic formal variable declaration IN OUT
generic type declaration TYPE IS
generic formal integer declaration RANGE <>
generic formal f1oating—point declaration DIGITS <>
generic formal f1xed—point declaration DELTA <>
generic formal discrete declaration ( <> )
generic formal subprograrn speciücation WITH or

WITH IS or
WITH IS <>

Operators Associated with Tasks
task declaration TAsr< TYPE IS END or

TASK TYPE or
TASK IS END or
TASK

entry declaration ENTRY
task body declaration TAsr< BODY IS
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in h r r

accept statement ACCERT DO END or
ACCEET

Operators Associated with Task Interaction
selective wait SELECT END SELECT
select choice separator OR
select guard WHEN =>
terminate alternative TERMTNATE
else alternative ELSE
abort statement ABURT

Operators Associated with Low-Level Programming
. length clause FOR USE

enumeration clause FOR USE
record clause instantiation FOR USE
record clause record RECORD END RECORD
record aligmnent clause AT MOD
record storage unit AT RANGE
address clause FOR USE AT
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Appendix B McCabe's Cyclomatic Complexity Conditions

Each of the following counts as a condition when calculating the Cyclomatic
Complexity:

IF

ELSIF

WHILE

FOR

EXIT (only when there is a condition associated with the exit statement)
each CASE statement label
AND

OR

XOR ·

AND THEN

OR ELSE
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Appendix C Relation Language Constructs

The following is a brief description of each of the relation language constructs:
local (n) variable_name; —- local variable declaration

const (n) constant_name; -- constant declaration

struct (n) variable_name; —— variable declaration for
-— variables within a package
—— specification
—— (n is the type complexity)

intrinsic procedure_name; —— declaration for pre—defined
—— subprograms

E
extern procedure_name; -— subprogram declaration for

E
-— subprograms within a package
—- specification

procedure procedure_name (parameter, ..., parameter)
—— subprogram declaration

procedure_name (parameter, ..., parameter);

—— procedure call statement

condn expression statement_list
—— conditional statement
—— (n is a unique condition number)

variable_name = expression; —- assignment statement

begin sequence_of;statements end:

—— block statement

null; —— null statement

return expression; —— return statementI
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l0O —— all literal constants

&n —— all operators

-- (n is a unique operator number)
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