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(ABSTRACT) 
 
 
 
This thesis presents the use of sliding mode control applied to a 1/10th scale robotic car to 
operate at a desired slip.  Controlling the robot car at any desired slip has a direct relation 
to the amount of force that is applied to the driving wheels based on road surface 
conditions.  For this model, the desired traction/slip is maintained for a specific surface 
which happens to be a Lego treadmill platform. How the platform evolved and the robot 
car was designed are also covered. 
 
To parameterize the system dynamics, simulated annealing is used to find the minimal 
error between mathematical simulations and physical test results.  Also discussed is how 
the robot car and microprocessor can be modeled as a hybrid system.  The results from 
testing the robot car at various desired percent slip show that it is possible to control the 
slip dynamics of a 1/10th scale automated robotic car and thus pave the way for further 
studies using scaled model cars to test an automated highway system. 
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Chapter 1 

Introduction 

Full size cars are now beginning to have traction control available on more and more 
vehicles; however, can these same concepts be applied to scaled vehicles?  To best 
answer this question, a scaled model needs to be tested. 

1.1   Motivation 

Since the advent of the Model-T by Ford, buying vehicles has become increasingly more 
accessible for the general public.  Inevitably, with an increased population of people and 
thus vehicles, the highways and roads are becoming increasingly congested with little or 
no room to expand.  There is also the danger to road crews when the infrastructure needs 
repair.  One possible solution to improve safety and limits on the ability to  expand roads 
would be to have an automated system of robotic cars on the roads [1].   Such a system 
could potentially allow for an improved flow of vehicles, improved fuel efficiency, 
improved safety, and the list goes on [2].   An autonomous system of cars on roads may 
meet some opposition as people reluctantly give up control of their cars.  However, 
automation is already a reality as people want safety features such as power brakes, 
power steering, antilock breaking, traction control, anti-slip, cruise control, and now 
adaptive cruise control.  All these features build up to the next logical step of building an 
automated system of cars.  Before implementing full-scale automated roads, concepts and 
reliability need to be tested to ensure public safety.  To perform such tests on full-scale 
cars and roads would be too costly; therefore, scaled cars and roads need to be used.  The 
dynamics involved in a full size car are very complex and numerous.  It is therefore best 
to break the problem of testing and comparing the dynamics of a full size car to that of a 
scaled car into manageable parts.  One of the many important parts of automating a car is 
the ability to control tire slip.  To break the problem down even further, by controlling 
tire slip in just a longitudinal direction,  lateral stability will also be improved [1].  
Therefore, this thesis covers the dynamic component of controlling wheel slip 
implemented on a 1/10th scale robot car as a step towards modeling all the dynamics of 
full size vehicles.
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1.2   Previous Research 

Much research has been done to analyze the dynamics of vehicles and the components 
needed for acceleration.  To control acceleration, the dynamics involved must first be 
understood.  Looking at Figure 1.1 different surfaces have different coefficients of 
friction (µ ) verses percent slip (λ ).    The challenge becomes adjusting to the specific 
traction/slip curves (based on road and tire conditions) and controlling/maintaining a 
specific amount of traction/slip. More details of the dynamics involved are covered in 
Chapter 2. For the scaled model implemented here only one specific surface was used in 
order to reduce the initial order of complexity.  The surface used is covered in Chapter 4. 
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Figure 1.1:   Traction-Slip/ ( )λµ  curve for various road conditions, modeled from [2] 

 
Work has been done to model the controlled slip of a vehicle as a continuous system [1]; 
however, a more accurate model would include the discrete components such as the 
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processor(s).  Since the scaled implemented system will actually be a hybrid of 
continuous and discrete components/systems, the hybrid model concept will be discussed.  

1.3   Highlights and Outline of Thesis 

This thesis is organized as follows: 
 
• Chapter 2 covers the dynamics, mathematical model and control law design. 
 
• Chapter 3 will explain the vehicle and circuit constructions. 
 
• Chapter 4 shows the test platform construction used to test the robot car. 
 
• Chapter 5 explains the development of the programs and dynamic parameters. 
 
• Chapter 6 covers the final data collection and results. 
 
• Chapter 7 discusses how the system is best represented as a hybrid model. 
 
• Chapter 8 closes with conclusions and future work.
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Chapter 2 

Dynamics, Mathematical Model, and Control 

Chapter 2 first explains some of the dynamics of tire slip followed by the mathematical 
equations used and finishes with an explanation of the control law used.  These equations 
or a slight variation is what will be used later by the microprocessor on the robot car. 

2.1   Background of Dynamics 

As my grandfather used to say, “There are two things between you and the road, so don’t 
skimp on them,” those two things were shocks and tires.  For this 1/10th scale model there 
was little to no suspension so these complex dynamics were ignored.  Observations of the 
other major forces exerted on a pneumatic type tire accelerating in a linear direction are 
represented by Figure 2.1. 
 
Now as a tire begins to accelerate, it deforms [3].  It is during this time that the ( )λµ  
curve is linear as seen in Figure 2.2 region O to A.  As the tire stops deforming and 
tractive effort/engine torque increases, more of the tire tread begins to slip resulting in the 
nonlinear region from A to B.  It is to the right of region B where too much slip occurs 
and traction is lost.  For a pneumatic tire on a hard surface, the maximum acceleration is 
achieved when there is 15 to 20% slip according to [3].  To put traction another way and 
greatly simplifying the dynamics of acceleration, when a vehicle accelerates, force is 
applied from the engine to the tires which react with the road surface.  If the force 
between the engine and the tires is greater than the force of friction between the tires and 
the road surface, the tire will begin to slip excessively (skid-for breaking).  Figure 2.3 
shows the complete ( )λµ  curve for breaking and accelerating.  In reference [3], 
longitudinal slip is defined mathematically as 
 









−=

WW

V

R
V

Slip
ω

λ 1)(         (2.1) 

          
where VV  is the linear velocity of the wheel/car, Rw is the radius of the tire, and Wω  is the 
angular velocity of the driving wheels.  In [1],λ  (slip) was used as the variable to be 



Chapter 2. Continuous Simulation and Implementation 5 

 5 

controlled because it has a direct relation to tractive effort (µ ).  In other words by 
maintaining a desired slip on a specific surface, the desired torque (input) can be 
determined. 

Nv

Rear Wheel
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(mv)*(Gravity)

Te

Tb
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Ft + Fw

 
Figure 2.1:   Forces acting on a tire in a linear direction, modeled from [1, 3] 

 
 
 

 
Figure 2.2:   ( )λµ  curve, modeled from [3] 
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Figure 2.3:  ( )λµ  curve for deceleration and acceleration, modeled from [4] 

 

2.2   Mathematical Model 

Using the vehicle dynamics developed in the dissertation [1], the mathematical model 
was developed.  For definitions of variables and their units, refer to Appendix A.  The 
states of the system are as follows: 
 

W

V
v R

V
x ==ω1           (2.2) 

          
Wx ω=2           (2.3) 

         
In the equations above, 1x  represents the angular velocity of the front wheels and 2x  
represents the angular velocity of the rear wheels.  For acceleration (as opposed to 
breaking) λ (representing percent slip) is as follows: 
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Appling Newton’s Law to Figure 2.1, Ft  is determined by the equation  
 

µ×= Vt NF           (2.6) 
 
Using Newton’s Law again and accounting for wind drag, the equations for linear and 
angular velocity were developed.  The derivatives of these velocities were then used in 
Equations (2.9) and (2.10) where the dots over the variables indicate differentiation with 
respect to time.   
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In order to have the states in a form where the control variable was present, the derivative 
of x1 and x2  was taken.   
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   (Note: WF  was ignored as it has little effect on the resulting dynamics because the front 
wheel was assumed to not slip in order to determine the linear velocity of the car) 
 

W
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Again the aim was to control the amount/percent of slip on the rear wheels; therefore, the 
derivative of λ  was performed and put into the general form for a single-input dynamic 
system, ( ) ( ) ( )ubfx n xx +=  [1, 5, 6] for sliding mode control (the control algorithm used 
to control percent slip is discussed in section 2.3).  This yielded  
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Here eT , torque provided by the engine of a petrol car, is the control variable.   However 
for the 1/10th scale model car, an electric motor was used.  Therefore, the control variable 
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needs to be in terms of volts.  Using the linear model of a motor, torque was expressed in 
terms of volts (where V is in volts) by the following equation: 
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ω−
=          (2.12) 

  
Substituting Equation 2.12 for torque in λ&  gives 
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            f(λ )     b(λ )  u  
 
It is important to understand that the microprocessor on the robot car gives desired 
voltage in terms of a PWM signal or percent of maximum voltage available (this is 
explained in subsequent chapters).  Therefore, in computer simulations, the following 
equation was used to view volts in terms of actual volts applied and not a percentage. 

 







 ×= ableVoltsAvailuV
1023

        (2.14) 

  Note: ‘u’ here is between ± 1023 which represents the range for the PWM signal. 
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2.3   Control Law Design 

Since the dynamics of the ( )λµ  curve are nonlinear and the exact ( )λµ  curve for the 
road surface is not known, sliding mode control was used.  Sliding mode control is useful 
for non-linear systems where the boundaries of the system may be known, but the exact 
dynamics are not.  In this system the range of the ( )λµ  curve is known, but the exact 
curve for the road surface is not.  In this part of the discussion, the actual control variable 
V will be referred as u . 
 
In sliding mode control, the sliding surface s represents the amount of error in what is 
being controlled.  What is trying to be controlled is the amount of slip (λ ); therefore,   

dss λλ −=: . 
 
For the sliding mode control computer model, F and b were initially fixed and an actual 
value ofµ  was used in order to test and debug the simulation.  Here F represents the 

upper bounds of the absolute error between f  and f̂ .  Also, f comes from Equation 2.13 

and f̂  is a best estimate of f. 
. 
In order to control the slip at a specific value, the ( )λµ  curve must be known for the road 
surface.  Using the function created in [4] represented here as Equation 2.15 an 
approximate ( )λµ  curve can be generated, allowing λ&  to be solved for and λ  to be 
controlled. 
 

( ) 22

2

λλ

λλµ
λµ

+
=

p

pp          (2.15) 

 
The ranges of µ andλ were obtained from interpreting the plot below in Figure 2.4.  The 
ranges initially used were 5.00.0 ≤≤ λ , 92.022.0 ≤≤ Pµ  and 4.01.0 ≤≤ Pλ  where Pµ  is 
the peak value of µ  and Pλ  is the peak value of λ  on the ( )λµ  curve. 
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Figure 2.4:  ( )λµ  curve for a full size car with pneumatic tires, modeled from [4] 

 
It is important to note that Equation (2.15), used to generate approximate adhesion 
coefficient plots, loses accuracy asλ  approaches 1.0 and according to [4], is best suited 
in the range of 3.00 ≤≤ λ .  Because the area where wheel slip was to be maintained was 
approximately 5.00 ≤≤ λ , the equation should be acceptable.  The nominal curve was 
then fitted/approximated with a 6th order polynomial function.  This function was then 
shifted up slightly and used as µ̂  (see Figure 2.5).  The result from Equation (2.15) was 
assumed equal to the actualµ  value of the road surface.  These values were then used to 

determine f̂ , f , and F .  Again, f is determined from Equation (2.13).   
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Figure 2.5:  Generated from maximum and minimum ranges of Equation 2.15  

 
Thus, 
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such that µ  is determined from Equation (2.15) and VF  is equal to the wind drag 
coefficient c times the linear velocity squared.  With Equation (2.16) in the form of 

µBAf += , and f̂  in the form of µ̂ˆ BAf += , again where µ̂ was the shifted estimated 
nominal curve of Equation (2.15) shown in Figure 2.5, the bounds of F  could be 
calculated.  This gave the upper bounds of F  from the equation 
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To test the computer simulation, a mixture of approximated, assumed, and measured 
values for the car were used.  As the code was proven to work, the initially assumed and 
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fixed values of f̂ , µ̂ , b̂ , and so forth were substituted with the equations derived above.  

An example would be how f̂  was originally set equal to f  times a percent multiplier. 
 
f_hat   = 1.15*f;   
 
The same line of code finally used and based on textbook sliding mode control was 
 
f_hat   = [Fv/(mv*Rw*x(2)) - (1-Lamda)*Rw/(Jw*x(2)) - (1-Lamda)*K^2/(Ra*Jw*x(2))] 
- [nw*Nv/(mv*Rw*x(2)) + (1-Lamda)*Rw*Nv/(Jw*x(2))]*Mue_hat; 
 
Another example was where Mue had been used for Mue_hat in one stage of the 
development process.  Functions ( )minλb  and ( )maxλb  were derived as percentage values 

of ( )
WWa

e

JR
K
ω

λ−1  from Equation (2.13).  The simulation was also run with the gain 

margin
min

max

b
b

=β and withβ  equal to a constant value.  Since β  had little to no effect 

on the simulated results but added computation time to the robot car’s microprocessor, β  
was set as a constant determined by using simulations to confirm similar results.  The 
remaining equations derived for sliding mode control were fu ˆˆ −= , the gain 

( ) uFK ˆ*)1( −++= βηβ , and the control law was ( ))sgn(ˆ
ˆ
1 sKu
b

u ∗−=  [1, 5, 6]. 
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Chapter 3 

Vehicle and Circuit Construction 

This chapter covers the construction of the vehicle, robot car’s circuitry, and data 
collection circuitry.  Some of the developmental thought processes and adjustments will 
also be discussed. 

3.1 Vehicle Chip, Compiler, and Code Development 

Before construction could begin, I/O processing and available material needs had to be 
assessed.  The basic input needs were the linear velocity of the vehicle and the angular 
velocity of the driving wheels.  As a chasse with an encoder mounted on the rear wheels 
was already available, this was used.  Also encoders provide the best solution of cost, 
accuracy, and functionality for the revolutions measured.  To determine the vehicle’s 
linear velocity, the front wheel’s radius and angular velocity were used.  This calculation 
assumes the front wheel can be used to accurately measure and calculate the linear 
velocity of the vehicle.  To measure the angular velocity of the front wheel, an encoder 
was mounted on the left front wheel (same side as rear encoder).  The front left wheel had 
to be trimmed down and shifted out to accommodate the encoder, thus the right front tire 
was also shifted out for symmetry (see Figure 3.1).   
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Figure 3.1:  Picture of the left front wheel 

 
To operate the robot car, a controller was needed that could handle the inputs from the 
front and rear wheel encoders, output a pulse width modulated (PWM) signal, and be fast 
enough to do these functions as well as compile the control algorithm as fast as possible 
to minimize delays.  To control the robot car, the Microchip 16F877A was initially 
selected to develop and test a simple code referred to as the Follower code (see Appendix 
B).  This code simply used interrupts to measure the velocity of the front and rear wheels, 
then increased/decreased power to the motor one bit at a time until the values from the 
wheels were the same.  This chip operated at 20 MHz with an instruction cycle of 200ns.  
The next step was to try implementing the simplest control code simulated on the 
computer and run it on the car.  Because implementing the control code would require 
multiplication, division, addition, and subtraction, various C compilers were tried.  
Otherwise, added development time and potential for introducing error would occur.  
Initially CC5X was tried, but the compiler was found too limiting.  Also, the 16F877A 
chip was quickly running out of memory and the processing time was barely desirable 
even with using techniques to improve processing time.  Therefore, it was decided that 
the Microchip 18F452 would be used which also had the same chip set as the 16F877A.  
The new chip also had a one-step multiplier, 100ns instruction cycle, greater number of 
interrupts, greater number of clocks, and increased amount of memory.  High Tech C was 
the compiler finally used due to its capabilities.  The Follower code was then improved 
using the two independent clock inputs as counters.  The use of the counters was then 
implemented on the control algorithm.   
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3.2   H-bridge 

To power the motor an RC motor controller was contemplated; however, the maximum 
resolution and frequency would have been much less than that of an H-bridge.  The RC 
driver would have had 512 bits resolution in the forward direction verses 1023 bits for an 
H-bridge and a frequency of 1250 Hz [7].  Since the 18F452 chip has a minimum PWM 
output of 2.44 KHz and the RC battery being used had a maximum voltage of 8.52 volts 
fully charged and the motor could require an inrush current of up to 7 amps or more, off 
the shelf H-bridges were originally found unacceptable.  Later one was found that could 
operate up to 10 kHz with a 5.2A output but inevitably still didn’t perform as well as the 
“home made” h-bridge.  The design for the H-bridge made was found on the internet [8] 
(Figure 3.2).  To better accommodate the lower voltage from the battery, resisters R1 and 
R2 were replaced with 5K Ohm resisters and parts R9 and associated LED were removed 
(see Appendix C for parts list).   
 

 
Figure 3.2:  H-bridge [8] 

 
The initial motor used was a standard stock radio control (RC) car motor.  This later 
proved to have not enough low-end torque, even with a 21 to 81 gear ratio, so a rewound 
motor was used.  The new motor had been rewound to have 100 turns per phase.   

3.3   Vehicle Circuit 

To have reverse on the H-bridge, the PWM signal and ground would have to be able to 
swap and since the processor only had one PWM signal generator, a multiplexer was 
used (part U8, Figure 3.3).  With the multiplexer connected properly, only one PWM 
signal was needed and one bit/line for selecting direction.   
 
To measure angular velocity from the 512 bits per revolution quadrature encoders, a D 
flip-flop was used [9] with the A and B channel inputs from the encoders to generate a 
256 bit per revolution output per encoder.  The direction the encoder rotates determines 
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the connections of channels A and B giving an output only if the vehicle is moving in a 
positive direction.  Since the objective was to control longitudinal slip, reverse should 
never need to be measured.  On the final design, the outputs of the two channels from the 
D flip-flop went to the two independent counters on the 18F452 processor.  The reason 
for using counters was that the processor was able to continue counting pulses from the D 
flip-flops while calculating the next control output, thus greatly minimizing the time 
delay.  To aid in data analysis, the 10 bit PWM signal (otherwise known as the control 
variable u) plus the direction bit were sent to the Data Collection Circuit (DCC).  Port B 
sent the upper 8 bits of the 10 bit PWM signal (B7 the greatest bit) and the lower 2 bits 
were sent from Port D4 and D5 (D4 the lowest bit).  
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Figure 3.3:  Robot car control circuitry 

 

3.4   Data Collection Circuit and Code Development 

Just as with the code on the car, Port B was the input for the highest 8 bits of the 10 bit 
value of the PWM signal.  Ports D4 and D5 (with D4 the lowest bit) received the lowest 
two bits of the 10 bit PWM signal.  Port D2 was the input for the direction bit (0 for 
forward, 1 for reverse).  To minimize the size of the data collection file created by Matlab, 
the DCC would not begin sending data to the computer until Port D3 was high, which 
was triggered by the cars processor when the car was turned on.  This allowed a velocity 
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of ‘0’ to be captured for 1 to 3ms before the car began moving (see Figure 3.4 for a Block 
Diagram).  As with the car’s processor Port A4 (counter/timer 1) taps off the output from 
the D flip-flop output from either the rear or front encoder, usually rear.  Port C0 
(counter/timer 0) received input from the car’s opposite encoder, usually front.  The DCC 
and test platform were also equipped with an encoder and D flip-flop for future 
developments and tests.   
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Figure 3.4:  Data collection circuit diagram 
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Figure 3.5:  Block wiring diagram of robot car and data collection circuits 

 
Originally, the idea was investigated to put a 512Mbyte memory chip on the car and then 
have the results downloaded to a computer.  This idea had several disadvantages.  The 
first disadvantage was it would have taken nearly every pin on the processor and thus 
required a lot of wiring time.  This would have also meant that collecting data points 
would have only happened as often as the computation time took, which at the time was 
taking about 15ms.  A 15ms sample rate would not have been often enough to generate a 
smooth enough plot.  The biggest reason was the concern that data might need to be 
collected over time periods longer than memory would allow.  As it was possible to 
collect and send data to a computer in real time to be stored at an interval faster than 1ms, 
this was the method used.  When data is transmitted using a serial connection there is an 
overhead of 2 bits per 1 byte of information.  The counts per interval of the rear and test 
platform encoders were handled as 1 byte each.  Meaning 10 bits for each encoder per 
sampling interval was sent.  The control value from the car was 10 bits plus 1 bit for 
direction.  Since only 8 bits of data could be sent at a time, 2 bytes of data had to be sent 
from the car to the DCC.  This is because there was one byte for the upper 8 bits of the 
control value and one byte containing the lower 2 bits of the control value plus direction.  
Meaning 5 bits from one of the bytes sent from the car to the DCC was Don’t Cares.  
Summing it all up yields 
 
10 bits (test platform) + 10 bits (rear wheel) + 10 bits (upper 8 bits of U) + 10 bits (lower 
2 bits of U and 1 direction bit) = 40 bits per sampling period  
 (Note:  10 bits = 8 bits (data) + 2 bits (overhead) 
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The 9-pin communication port on the computer at the time was capable of 115200 bits 
per second (bps).  So 40 bits per sampling period divided by 115200 bps allowed for 
sampling as fast as approximately every 0.347ms.  For the velocities obtained, 1ms to 
5ms sample rates were sufficient.   
 
As the Follower Code was created only to test programming of the Robot Car’s processor, 
no data collection was initially implemented just -- visual inspection of how well the rear 
wheel followed when the front wheel was spun by hand.  The code was first developed 
using interrupts and then improved using counters.  The Follower Code was then used to 
test the DCC with the computer.  The DCC was setup to transmit collected data from the 
suspended car every 1ms (40Kbps).  Windows HyperTerm software was used first to 
examine the data from the DCC and car.  Software from [10] was then used to collect and 
store data to a file.  First, a constant ASCII value from the DCC was recorded (see 
example output below).  This was a double (16 bit) value, thus the repeating two numbers. 
 
Terminal Hex log file 
Date: 12/21/2003 - 1:34:39 PM 
----------------------------------------------- 
33 35 33 35 33 35 33 35 33 35 33 35 33 35 33 35  
33 35 33 35 33 35 33 35 33 35 33 35 33 35 33 35 
 
Then data from the front wheel, rear wheel, and test platform was collected as 8 bit 
values.  The sample data below shows the output of the front wheel being spun by hand 
while the other inputs remained at zero because they were set to send 0’s from the car.  
The numbers represent the number of encoder tics counted over a 1ms time interval. 
 
Terminal Hex log file 
Date: 1/14/2004 - 12:48:08 PM 
----------------------------------------------- 
05 00 00 06 00 00 06  
00 00 06 00 00 06 00 00 06 00 00 06 00 00 06 00  
00 06 00 00 06 00 00 06 00 00 06 00 00 06 00 00 
 
Then to get an idea of what a good sampling rate would be, the maximum velocity of the 
rear wheel was measured with the car suspended.  If sampling was too fast, only 0’s and 
1’s would be recorded, too slow and very large values (perhaps greater than 8 bits) might 
be recorded but trends could not be analyzed.   The result, with the car running on a 3000 
mAh Ni-MH battery (about 8.3 volts), was a max tic count of 17 tics per sampling rate of 
1ms.  Since an 8-bit value was capable of 255 a 5ms sampling time was not too slow and 
with a thousand data points per second a smooth curve could be obtainable.   
 
The next objective was to be able to manipulate and plot the data results.  A Matlab code 
was then written to communicate, manipulate (if necessary), and store the data from the 
DCC (Appendix D).  Using the Follower Code, data from the front wheel was collected 
and plotted (Figure 3.6).  
 



Chapter 3. Vehicle and Circuit Construction  20  

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

Time (seconds)

E
nc

od
er

 T
ic

s/
m

s

 
Figure 3.6:  Result of data collected at 1ms intervals using the Follower Code 

 
Originally the DCC was just going to be used to collect and analyze values of λ .  When 
the control code did not perform as expected, it was obvious having the actual value of 
the control value ‘u’ from the car to compare with that of the computer simulation would 
be very useful (see Appendix E for DCC code).  Therefore, the 10 bit PWM and 1 bit 
direction signal were added to the DCC.  Because the lower two bits of the PWM signal 
and direction bit were sent together, to save data bytes sent, it became necessary for the 
Matlab code to untangle and recombine the bits received.  For this, the upper 8 bits of the 
PWM signal (called UprBit in the Matlab code) were shifted to the left two bits and 
placed in a variable of size double.  The lower two bits were filtered out from a separate 8 
bit value called LwrBit and concatenated to the rest of the PWM signal.  The direction bit 
was filtered and tested to determine the sign of the 10 bit PWM signal. 
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Chapter 4 

Test Platform Development 

The next physical construction hurdle was to devise a way to monitor the vehicle’s 
performance without risk of damage. 

4.1   Initial Platform 

Before the idea of a platform to measure the car’s velocity was determined, several other 
ideas were entertained.  One idea was to have two photo gates to measure the car’s 
average acceleration and another was to have several photo gates to get a better 
interpretation of the car’s acceleration curve.  Yet another idea was to video the car.  
Having the distance marked and knowing the frames per second, the acceleration could 
be crudely calculated.  All three ideas had the risk of the car being damaged by an 
uncontrolled collision and the acceleration curve would not be measurably accurate.  The 
idea was then suggested to place the rear wheels on a drum and from that, the test 
platform idea was launched.     
 
The initial platform was merely the left side of the car’s tires (side with encoders) setting 
on two Lego rubber tires with the right side supported by Lego blocks.  The Lego tires 
were connected by two rubber bands, allowing the rear wheel to transpose its energy to 
the front wheel.  This was only an initial test platform to get an idea of how well the 
traction control algorithm was functioning.  As rubber bands stretch, later they were 
replaced by Lego chains (see Figure 4.1).  Since many of the design parameters were not 
fully represented (example: mass of car, number of driving wheels …) this did not 
present a viable solution.
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Figure 4.1:  Initial test setup using wheels on one side 

 

4.2   Different Platform Setups 

Once the code and car were ready for full testing, a proper test platform needed to be 
created.  Legos were selected because of their manufactured precision, versatility, 
availability, and cost.  The next platform (Figure 4.2) was based on a conveyer type setup 
to try and best simulate a road.  In the picture, the lower conveyer was removed to show 
the supporting structure.   
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Figure 4.2:  Updated test platform using conveyor belts 

 
Due to the weight of the car, the dynamics of the gears, and the construction of the 
conveyor Legos, there was a great deal of friction.  This coupled with the gripping ability 
of the tires caused there to be little or no difference between full speed and traction 
control.  It was then determined to go back to a wheel type design for the car to set on but 
use wheels that were not malleable, thus had a lower coefficient of friction.  Therefore, 
wheels were created from the gear and conveyor belt parts (Figure 4.3) and the Data 
Collection Circuit was added, but collection of the control variable ‘u’ between the car 
and data collection circuit had not been added at this point in time. 
   

 

 
Figure 4.3:  Reduced friction test platform design with Data Collection Circuit (DCC) added 
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4.3   Final Platform Setup 

The car still had too much grip, though friction of the test platform was greatly reduced.  
Next the conveyor belt idea was tried again but with the center of the conveyor links 
fitting between two rails and the gearing was adjusted to just two big gears (Figure 4.4); 
this greatly reduced the friction, but the tires still had too much grip.  So duct tape was 
placed around the tires.  Along with the friction of the conveyor belt reduced, the car 
finally began to slip… a lot (Communication of the car’s control value was also added).  
Eventually more weight needed to be added to the rear of the car to increase traction, 
possibly due to increased friction on the test platform from wear.  A battery was added 
because its weight had already been measured.   
 

  

 
Figure 4.4:  Final test platform setup 
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Chapter 5 

Code and Development of Parameters 

This chapter covers processes and analysis of the control value ranges and obtaining 
parameters of the system using Simulated Annealing. 

5.1   Control Code and Analysis 

Using the measured, calculated, and rough estimates for parameters, the complete control 
algorithm was implemented on the car.  The result was that the rear tires were chattering.  
To help understand the possible ranges of outputs of the control algorithm and knowing 
the full range of possible inputs from the front and rear wheels, the control code in 
Matlab was modified to give a 3-D plot of the possible outputs (Figure 5.1) (Appendix F 
for code). 
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Figure 5.1:  3-D generated output of control variable from possible range of inputs
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Obviously, the control’s possible output values far exceeded the 1023± range of the 
PWM signal.  Using the same program and manipulating the output of u and other 
variables, a plot was generated that closely resembles what might be expected (Figure 5.2 
a & b).  This plot can be used to explain the expected behavior of the system.    
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Figure 5.2:  Possible Input/Output system response 
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Figure 5.2b is the plot as seen from looking down.  The black diagonal line is the range of 
values where the velocity of the front wheel equals that of the rear.  To the left of the 
black line, the front wheels are moving faster than the rear wheels, thus more power 
should be applied to the motor and even greater still when at higher speeds.  To the right 
of the black line is when the rear wheels are moving faster than the front wheels.  As 
explained earlier, while just to the right of the black line, some slip would be desirable 
(15 to 20% on a full sized car), so power would need to be increased, not decreased as 
indicated by this illustrating plot.  This concept would form a channel along the diagonal.  
However, if there is too much slip, power to the rear wheels should be reduced.  The 
greater the difference between the rear wheel and the front wheel, the bigger the decrease 
in power to the motor.  This conceptual plot can now be added as a tool to recognizing 
when the system may or may not work, without implementing on the car and thus saving 
time.  

5.2   Leader Code and Analysis 

With the results of the control algorithm so far off the various combinations of uncertain 
and unknown variables would need to be compared with actual results from the car until 
a minimum error was found.  In other words, the system needed to be parameterized.  
Before that was done, certain aspects of the data collection system needed to be analyzed.  
Also, because the batteries drained too quickly and introduce yet another very influential 
dynamic, a 12 volt 10 amp power supply was used from this point.  However, even the 
power supply was not ideal as its output would drop after about the first 6-7 seconds.  
Fortunately this was generally enough time for the car to accelerate. 
 
To simplify the system, a program called Leader Code was written to accelerate the 
vehicle (see Appendix G).  This code simply increased the value of the PWM signal by 
one if the rear wheels’ angular velocity was less than 5 encoder counts faster than the 
front wheels’, otherwise the PWM signal would be decreased by one.  The DCC 
sampling time was also adjusted to 0.0049999 seconds, the same as the robot car.  For 
parameterizing the car with the Leader Code, three sets of data would need to be 
collected, the front encoder, rear encoder and PWM values.  As the car was only able to 
transmit one set of data, it would be necessary for the DCC to collect the front and rear 
wheel encoder values separately while receiving the actual PWM values from the car.  
For this reason an analysis was done to compare the encoder values collected from the 
car to the values collected from the DCC on the rear wheels.  This meant that the control 
value collected and sent from the car was replaced with the 8-bit value from the counter 
of the rear encoder collected by the car.  If the independent values from the car and DCC 
were not close another means of collecting data would have to be found.  The rear 
encoder data collected from the DCC and the car were then recorded and compared.  
Figure 5.3 and Figure 5.4 show the results from the car and the DCC respectively of the 
rear encoder values using the Leader Code to accelerate the car. 
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Figure 5.3:  Rear wheel encoder count data collected from car. 
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Figure 5.4:  Rear wheel encoder data collected by Data Collector before shifting data  

 
Figure 5.5 shows the difference between the two raw data values collected by the car and 
the DCC.  Since the DCC actually begins collecting data before the robot car, the data 
from the DCC was then shifted eliminating leading 0’s and then compared (see Figure 
5.6).  The maximum error after the shift was slightly less but not significantly different. 
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Figure 5.5:  Difference between Car’s rear wheel values and Data Collector’s values before shift 
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Figure 5.6:  Difference between Car’s Rear Wheel values and Data Collector’s values after shift 

 
From the original analysis, even without shifting the data, parameterizing the system 
should be possible.  However, further analysis was continued in case averaging might 
have been needed to improve results.   
 
To help view and understand the average error and difference between shifting and not 
shifting of the data, a Matlab program was written that averaged the data points except at 
the ends (see Appendix H for code with averaging on ends of data).  The averaging was 
done by selecting an odd number of data points to average, in this case 51, and then 
taking one less than half that number (25) and average one less than that many data points 
before and after the selected data point with the actual data point being counted twice.  
This gives a slightly weighted value to the selected data point (Figure 5.7).  The plot in 
Figure 5.8 shows the raw un-shifted plots from the DCC and robot car respectively 
followed by the plots of their mean values.  The difference of the mean values was then 
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also determined (Figure 5.9).  The same plots were generated for the shifted data (Figure 
5.10 & Figure 5.11).  The difference of the mean shifted data and mean non-shifted data 
was done for comparison (Figure 5.12).  So how was this data interpreted?  Using this 
setup would generate some error when comparing the responses from the robot car and 
the simulation, but if necessary to improve accuracy, the data from the DCC could be 
shifted to give slight improvements, and if too much error was involved, it might be 
possible to then average the values for better results. 
 

X Z = X + 24Y = X - 24

[ ]{ }
Mean = Sum(Yrange & Zrange) / (Y + Z – 1)  

Figure 5.7:  Method for taking mean value of data points  
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Figure 5.8:  Rear Encoder plot from car, and DCC before shifting DCC data, followed by Rear 

Encoder values of Car and DCC after averaging.  
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Figure 5.9:  Difference of mean values before the rear encoder data was shifted 
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Figure 5.10:  Rear Encoder plot from car, and DCC after shifting DCC data, followed by Rear 

Encoder values of Car and DCC after averaging. 
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Figure 5.11:  Difference of mean values after the rear encoder data was shifted 
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Figure 5.12:  Error between shifted and un-shifted mean curves 

 

5.3   Simulated Annealing 

Because there were up to seven less than completely known values 
( JwJFwFNvNccPLamdaMuePdLamda WWVPeakPeakdesired :,:,:,:,_:,:,_: λµλ ) and 
it would be impossible to have an iterative search for the system parameters that yielded 
the best results, a random search method called Simulated Annealing was 
implemented[11, 12]. 
 
Simulated Annealing is a random search engine that picks a point on the function surface, 
governed by the sets of parameter unknowns, to be tested for a minimum difference (in 
this case).  Before this new point is accepted as the lowest value, one of two governing 
criteria must be met.  The first test is if the latest point has the lowest value.  The second, 
in reference to the annealing process of metals, is dependent on a formula based on the 
present energy/temperature level of the process.  If the energy level is high, it is very 
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likely the new value will be accepted even though it may not be the smallest value; 
however, as the energy level is lowered, it becomes increasingly unlikely that the newest 
point will be accepted if it is not the lowest value.  The process then repeats itself until a 
minimum criteria or some other limit such as time or maximum iterations is met.  There 
are very many variations on this concept such as what types of random search generators 
are used or methods to find local minimums after each jump (see Appendix I for 
Simulated Annealing Code). 
  
Knowing the surface was slippery, low ranges for Peakdesired µλ , , and Peakλ  were selected.  
Because the test platform had friction associated with it, the coefficient of wind drag as 
represented by the variable ‘c’, was initially given a wide range.  The value of inertia, WJ , 
was given a wide range from 8.416425e-6, a factor of 10 smaller than that calculated, to 
0.011 [13].  WF , was also given a broad but low value range initially. 
 
To determine the error between the actual system and the simulation, the recorded values 
of ‘u’ from the car over a certain time interval were input into the states along with the 
values of the front and rear wheel velocities collected by the DCC.  Using these initial 
parameters, the derived equations were used to calculate the wheel velocities for the next 
moment in time.  The following formula was then used to calculate error: 
 

( )( ) ( )( ) ( )( )222 112211 λλ −+−+−∑ xxxx       (5.1) 
 
Where x(1) and x(2) represented the car’s calculated front and rear wheel velocities, 
respectively.  While x1 and x2 were the measured front and rear wheel velocities, 
respectively.  The value of ( )1λ  came from simulation values while 1λ  came from 
measured values.  The assumption made here was that the physical system was measured 
sufficiently fast enough that errors due to delays were at a minimum.   
 
Initially the minimum total error ofλ  from this process was in the low 20’s, however the 
error from the rear and front wheels was in the millions.  To minimize the error from the 
front wheel, the small difference in radius from it and the rear wheel was then taken into 
account.  This brought the summed error of the front wheel down to less than 0.004 (Note:  
because Simulated Annealing jumps around, this is only a sample value of what was 
typical).   
 
To try and determine what was causing the error in the rear wheel values, the annealing 
program was modified to keep track of the simulated rear wheel results.  When plotting 
the data collected from the rear wheel encoder and simulated rear wheel encoder over a 
range that was generating the largest error, it was observed the plots were the same but 
the scale was different (see Figure 5.13).    
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Figure 5.13:  Measured and calculated results of rear wheel velocities 

  
The ratios from the largest and smallest values were then compared.  The ratios were 
almost the same.  Since WJ  was the only value in the denominator of the state for the rear 
wheels the upper range of WJ  was increased into the hundreds, far exceeding calculated 
values.  The annealing program was run terminating with a combined error of 0.0461.  
Considering WJ  was several magnitudes too large to generate a low error, some other 
parameter had to be out of range.   Considering the plot in Figure 2.4 was based on data 
from pneumatic tires on full sized automobiles and the tires on the robot car were stiff 
foam rubber surrounded by Duct Tape, the idea was considered that the lower range of 
the ( )λµ  curve might not be realistic for this physical system.  For this reason the ranges 
of Pµ , Pλ , andλ  desired were extended in the lower range.  This yielded total errors in 
the one thousandths!  With good results from the Simulated Annealing program several 
runs were made yielding two sets of values that were used in simulations. 
 

=dλ   0.0018 
=pµ  0.0745 
=pλ  0.1551 

c    =  0.005  
=VN 1.3009 
=WF 0.4507 
=WJ 0.1088 
=aR 1.506 
=eK 0.0159 

Table 5.1:  SA Results         Table 5.2:  SA Results 

 
Notice in Table 5.2 that the dλ (desiredλ ) was greater than the pλ  value.  As described 
in [1], this is a region where control effort becomes significantly high and is very 
unstable, therefore the result of dλ  was lowered to less than 0.0105 when Table 5.2 

=dλ   0.0814 
=pµ  0.0102 
=pλ  0.0105 

c    =  0.0019 
=VN 1.4585 
=WF 0.1951 
=WJ 0.0923 
=aR 1.2229 
=eK 0.0139 
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results were used.  Though not all results are within expected ranges, as these values 
yielded the closest match (lowest error) to collected data from the car by less than 40 
times other parameter values, these values were used on the car.
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Chapter 6 

Results 

To improve the system response, processing time, and other dynamics, some parameters 
were adjusted on the simulation plot and car’s code.  After these adjustments, the 
measured data was then collected, plotted, and compared to simulation results. 

6.1   Adjustments of Control Output 

The final step was to adjust the control gains and the ( )λµ  curve to give the best 
response.  Initially the Simulated Annealing program was modified to find the optimum 
gain values using the control value and reduced chattering as the criteria.  The 3-D plot 
previously developed was used to get an idea for reasonable value ranges for the 
annealing program.  Different ( )λµ̂  curve approximations were also tried, but useful 
results were not obtained from the program.  However, during the process of determining 
the range of gains and adjustments to the ( )λµ̂  curve from a 10th order polynomial to 6th 
order polynomial, a plot with potential (Figure 6.1 a & b) when using values from Table 
5.2 produced promising results.  With some adjustment to the gain η , the values were 
tried on the simulation.  The results were also somewhat promising (Figure 6.2).   
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Figure 6.1:  (a) 3-D plot with dλ =0.1  (b) dλ =0.1 from above (c) dλ =0.01 from above 
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Figure 6.2:  λ  and controller voltage plots from computer simulation, respectively 

 
The values were then run on the car with some success.  The problem on the car was 
going to be that it would be very susceptible to chattering/instability when reducing dλ  
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below 0.1 (Figure 6.1c).  This should not be totally unexpected.  As shown in Figure 2.3, 
the closer to the origin the closer the system is to breaking, which has a different set of 
governing dynamic equations.  Also, the response of λ  from the measured values varied 
very little if any.  As previously mentioned, a channel might be expected, but this channel 
was right on the edge of the sliding surface/diagonal.  A boundary layer was attempted 
but this made the system response worse as chattering occurred on the edge of the 
boundary layer and reduced the edge of the channel where the channel was too narrow.  
To better center the channel and increase the range of stability for dλ  a ratio was 
multiplied by the front wheel input value.  Starting with the ratio of the rear wheel 
diameter divided by the front wheel diameter and making adjustments until the channel 
was better centered, led to a more stable system.  The resulting ratio was the rear wheel 
diameter of 2.524 divided by 2.2035 (2.4035 = front wheel diameter).  With this 
adjustment and an improvement on the ( )λµ̂  curve that decreased the car’s processor’s 
calculation time and provided a much better fit than a 6th order polynomial, the car was 
tested again with improved performance (Figure 6.3).  From Equation (2.15) comes the 
new equation for ( )λµ̂ : 
 

( ) 2
22

ˆ
22

min

minmin
22

max

maxmax ÷










+
+

+
=

λλ

λλµ

λλ

λλµ
λµ

p

pp

p

pp       (6.1) 

 
where maxpµ =0.94, minpµ =0.008, maxpλ =0.3, and minpλ =0.008 was the improvement 
made to the ( )λµ̂  curve (Appendix J for robot car code). 
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Figure 6.3:  dλ =0.01 from above with adjustment to center the channel 
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6.2 Test and Measurement Results 

Using the Data Collector Circuit to record the front, rear wheel encoder values, and PWM 
output, plots were generated for analysis.  For dλ =0.1 results refer to Figure 6.4 thru 
Figure 6.7, and for dλ =0.05 plots refer to Figure 6.8 thru Figure 6.11. 
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Figure 6.4:  Front, rear mean encoder data, meanλ  results, and rawλ  results for dλ =0.1 
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Figure 6.5:  Zoomed in plot of mean λ  results for dλ =0.1 
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Figure 6.6:  Raw PWM voltage car output for dλ =0.1 
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Figure 6.7:  (a) Raw measured front & rear velocities (b) Mean measured front & rear velocities for 

dλ =0.1 
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Figure 6.8:  Front, rear mean encoder data, meanλ  results, and rawλ  results for dλ =0.05 
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Figure 6.9:  Zoomed in plot of mean λ  results for dλ =0.05 
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Figure 6.10:  Raw PWM voltage output from robot car for dλ =0.05 
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Figure 6.11:  (a) Raw measured front & rear velocities (b) Mean measured front & rear velocities for 

dλ =0.05 

 
From Figure 6.5 and Figure 6.9, dλ  compared closely to what was expected.  However, 
comparing other simulated results after the new adjustments, many values did not match 
accurately, such as control voltage values, velocities, and timing (Figure 6.12 and Figure 
6.13 for simulation results).  Considering the non-exact modeling of the car’s dynamics 
and apparent differences in the ( )λµ  curve from a full size car with pneumatic malleable 
tires compared to the foam tires wrapped in Duct Tape being used on the robot car, this 
should not be unexpected.  Other dynamics not being modeled accurately were the 
friction forces in the test platform and the linearization of other dynamics such as those 
for the motor.  With the new results, the computer simulation code was updated for 
comparison (see Appendix K for code) 
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Figure 6.12:  Results from adjusted simulation with dλ =0.05 
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Figure 6.13:  Results from adjusted simulation with dλ =0.05 

 
Even with these discrepancies, the results are close enough to encourage further study 
with improvements.   
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Chapter 7 

Hybrid Model 

Though the computer model simulates the dynamics of the car and responses of the 
control algorithm as if both happened continuously and to a high degree of precision, this 
was not the case.  In reality, the processor takes time to process the car’s situation and the 
inputs from the encoders were discrete.  This was represented by the 3-D plots created 
earlier, and the control outputs were also integer values.  The physical system (robot car) 
was continuous.  This next chapter discusses the modeling of the system as a hybrid 
model.  A hybrid model is a model that represents both the continuous and discrete 
components of a system. 
 

7.1   Hybrid Model Analysis 

Before expressing the dynamics of the robot car as a hybrid system, it is necessary to 
explain the model representation of the hybrid system.  Using the example in Figure 7.1 
[14], 
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Figure 7.1:  Hybrid model example of a Tank System [14] 

 
and references [14, 15] a simple example of a tank being maintained with water within a 
certain range will be discussed.  Just as in a State Machine each state represents an 
operation.  In this example, there are four states:  pump off, wait to off, pump on, and 
wait to on.  For this hybrid system the depth of the tank is represented by the fluctuation 
‘y’, which is continuous and therefore is represented in each state by ‘ y& ’.  For this 
system, the continuous dynamics of a timer are also represented by ‘ τ ’, where 
appropriate. When a state’s dynamics no longer support the condition of the system, or a 
“guard condition” is met, an instantaneous transition in both discrete and continuous time 
is made to another state.  If a parameter is changed as a result of the transition a “state 
reset” or “jump” is performed.   
 
Before continuing with the hybrid model, the dynamics of the discrete system should first 
be discussed to help with clarity.  Using Figure 7.2, this will be done. 
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Figure 7.2:  Timeline of discrete system on robot car’s processor 

 
Block ‘A’ in Figure 7.2 represents the variation in the processing time of the control 
algorithm which is always less than 5ms.  Block ‘B’ represents the time for the PWM 
signal to change width.  The PWM signal only changes width after a duty cycle has been 
completed ( Khz77.91 ÷ ).  Block ‘C’ indicates the time taken to update the encoder 
variables from the continually running counters.  The section before block ‘C’ is where 
the 5ms interrupt timer is reset.  Block ‘C’ is a source of error as the robot car is 
continuing to move as variables representing encoder values are updated.  Block ‘D’ 
indicates the actual cycle time of the 5ms interrupts and Block ‘E’ is the overrun time 
until the interrupt timer is reset. 
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Figure 7.3:  Hybrid representation of the robot car 

 
The function ),( 21 xxf=λ& , in the model shown in Figure 7.3 represents the continual 
dynamics of the robot car.  Just as a State Machine representation of a computer program, 
each state here would normally represent a line of code, however, to keep the system 
manageable for discussion purposes, states with a “+” have been condensed to the most 
important line(s) of code.  Another dynamic of this system not yet discussed is that states 
5 and 6 are stochastic.  This is because the compilation of the control algorithm varies in 
computation time depending on the input values.  As modeling hybrid systems is still in 
its infancy [15] strict modeling techniques have not yet been developed.  Therefore, in 
this thesis the Matlab random generator code is used to symbolize the stochastic property 
of these states. 
 
State 1 represents the initialization of the car’s code, and will be used to explain the 
parameters that all the states share.  The continuous dynamics are represented by t0, t1, t2, 
t3, and ),( 21 xxf=λ& ; where T0 thru T3 represent the microprocessor’s timers.  The three 
loops off of State 1 at about 9 to 12 o’clock represent the PWM signal dynamics internal 
to the microprocessor.  These dynamics generate the PWM duty cycle.  The other two 
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loops deal with the front and rear wheel encoder counter inputs. The loops that act like 
counters are combined on other states in order to conserve space and reduce confusion.  
State 2 represents the delay to update/reset the interrupt timer 3.  State 3+ illustrates the 
reading of the front and rear wheel encoder counter values.  Since the control algorithm 
used must have an angular velocity on the rear wheel a test was necessary to ensure the 
control algorithm was never implemented if the rear wheels were not moving.  For this 
reason, if the rear wheel’s angular velocity was below a certain point, full power would 
be applied to the motor.  Initially a scaled exponential function was used, however 
because the electrical system’s time response was significantly faster than that of the 
mechanical system the function was determined to be unnecessary.  It may also be 
noticed that State 4 is not stochastic; this is because no computation is done here.  State 
5+ represents the computation part of the control algorithm and State 6+ represents the 
time taken to update the PWM signal.  The microprocessor only updates the PWM signal 
at the end of every period (at most about 1.02e-4 seconds).  The remaining of the 5ms is 
spent in a loop (as represented by State 7) until the interrupt from timer 3 starts the 
process over again.   
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Chapter 8 

Conclusions and Future Work 

The idea of modeling with computer and physical systems has been around for decades, 
and the models presented here may also be used as valuable tools to make improvements 
on the automated highway concept. 

8.1   Conclusions 

In conclusion the results indicate a useful system; however, from the results if the same 
tire setup is to be used, further analysis must be done to better characterize the ( )λµ  
curve.  Otherwise, tires that better represent the dynamics of tires on full size vehicles 
will need to be used.  This is most likely one of the larger sources of error, which in turn 
gave rise to discrepancies in the simulated annealing process.  One significant source of 
error that was compensated for was the slight difference in front and rear tire sizes which 
could be a serious concern if this exact setup were to be implemented on full size vehicles. 

8.2   Future Work 

The numerous dynamics that even this simplified system represents provides for 
countless possibilities for future work.  Therefore, it is the intent to just highlight some of 
the more important and fascinating possibilities for future work.  To start with, modeling 
the ( )λµ  curve for tires wrapped in Duct Tape is at the top of the list, followed by 
attempting to make more exact measurements on other system parameters.  The next 
recommendation would be to add an accelerometer to eliminate the dependency on tire 
size, which would also be a viable solution on full size vehicles.  The move to an 
accelerometer would also pave the way for future work on maximum acceleration and 
maximum deceleration.  Future work on the control algorithm can also be done by 
applying a boundary layer and adding some integral control.  Other additions that may be 
made would be to add developments leading to testing outside of a fixed test platform or 
adding other dynamics such as a suspension system.  Further analysis could also be done 
on using the 3-D plot to generate a set of look-up tables to speed up processing time, or 
develop it into a generic solution for any type vehicle given certain parameters as inputs. 
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Appendix A 

Variables and Units 
 

=WR  Radius of wheel, [ m ] 

=µ  Adhesion coefficient 

=λ  Wheel slip 

=VN  Normal tire force [Newtons] 

=tF  Tractive force (Average force of driving wheels)  

=WJ Moment of inertia of wheel (MOI), [ ⋅Kg 2m ] 

=WF Wheel/Viscous friction, [
M
SN ⋅  or 

ft
lb sec− ] 

Wn  = number of driving wheels 

Vm  = Mass of vehicle, [ Kg ] 

VF  = Wind drag force [Newton] 

eT  = Torque of engine [Newton] 

bT  = Torque of brakes (not used) 

VV = Linear velocity of vehicle [meters/second] 

vω  = Angular velocity of front wheel [radians/second] 

Wω  = Angular velocity of rear wheel [radians/second] 

VN  = Normal force to ground, [ N ] 

c   =  Wind drag coefficient 

=aR Motor armature resistance  [Ohms] 

=eK Motor electrical constant [
srad

V
⋅

]
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Appendix B 

Robot Car Follower Code 
 
#include <pic18.h> 
#include <math.h> 
 
unsigned int RerEnc; 
unsigned int FrtEnc; 
 
 
void interrupt isr(void) 
{ 
    if ( T0IF)    /* TMR0 overflow interrupt */  
    { 
  
/**************************************************/ 
  if (RerEnc < FrtEnc) 
  { 
   if (CCPR2L+1 > 255) 
    CCPR2L = 0xFF; 
   else 
    CCPR2L = CCPR2L + 1;  
  } 
     
  if (RerEnc > FrtEnc) 
  { 
   if (CCPR2L-1 < 0) 
    CCPR2L = 0x00; 
   else 
    CCPR2L = CCPR2L - 1; 
  } 
  FrtEnc = 0; 
  RerEnc = 0; 
 
 
     TMR0 = 0;   // For reseting Timmer 0 value 
     T0IF = 0;  /* reset Timmer 0 flag  INTCON<2>*/ 
 } 
 if (INT2IF)  // RB0/INT ***front wheel count*** 
 { 
  FrtEnc++; 
  INT2IF = 0;  /* reset RB0/INT flag */ 
 } 
 if (INT1IF)  //if (TMR1IF)  // (TMR1) Timer1 interupt/RC2 ****rear wheel count**** 
 {
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  RerEnc++; 
  INT1IF = 0; /* reset Timmer 1 capture flag */   
 } 
} 
 
void main(void) 
{ 
 
// Direction of motor  
 TRISE = 0x00;   // put port D in standard I/O 
 PORTD = 0xFF;  // set port D as High 
 TRISD = 0x00;   // set port D as output 
 
 //  PWM for TMR2 
 PR2     = 0xFF;   // PWM period 
 CCPR2L  = 0x00;   // Upper 8 bits of 10 bit PWM duty cycle 
 
   TRISC   = 0x00;    // Make CCP2/RC1 pin an output for the PWM2 signal 
  
 T2CON   = 0x05;   // Set the TMR2 prescale value & enable Timer2 (2.44kHz) 
 CCP2CON = 0xFF; // Lower 2 bits of 10 bit PWM duty cycle & Put in PWM Mode  
 
 
// Setup RB1/Int to count "UP" pulses of REAR wheel 
// Setup RB2/Int to count "UP" pulses of FRONT wheel 
 INTCON  = 0xE0;  // Enable interupt 
 INTCON2 = 0x74;  // Set Interupts to rising edge & Priority for TMR0 High 
 INTCON3 = 0x18;  // Set RB1 & RB2 to Low 
 
// Timmer 0 Interupt 

T0CON = 0xC5; 
     TMR0 = 0;  /* 256 @ 64 = 1.64ms/2 delay */ 
 INTCON  = 0xF0;  // Enable interupt 
 
 FrtEnc = 0; 
 RerEnc = 0; 
 
 PIE1 = 0x00; 
 PIE2 = 0x00;  
 
    while (1)   
 {   
  /* infinite loop */ 
  NOP(); 
     }   
} 
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Appendix C 

Parts List 
 
Part Label Part Description Part Number MFG 
R1, R2 Resister 5K Ohm Generic part 
R3, R4, R6, R8 Resister 10K Ohm Generic part 
Q3, Q5 P Channel Mosfet IRF4905 Generic part 
Q4, Q6 N Channel Mosfet IRL3803 Generic part 
D1, D2, D3, D4 Diode 1N4001 Generic part 
Q1, Q2 NPN Transistor 2N3904 Generic part 
Z1 Zenor Diode  15V, 1W Generic part 
C1 Capacitor 0.1 Fµ  Generic part 
C2 Capacitor 470 Fµ  Generic part 
Table C.1:  H-Bridge Parts Lists 
 
 
Part Label Part Description Part Number MFG 
 RISC processor 18F452 Microchip 
 RS-232 

Driver/Receiver 
MAX232A MAXIM 

 Optical Encoder HEDS-9140-I00 Agilent 
 1” Disk 512 pulses per 

rev. 
 Agilent 

 Crystal ECS-2299A-400 ECS, Inc. 
International 

 D-Flip Flop DM74LS74N FAIRCHILD 
Table C.2:  Data Collector’s Parts Lists
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Part Label Part Description Part Number MFG 
 RISC processor 18F452 Microchip 
 Optical Encoder HEDS-9140-I00 Agilent 
 1” Disk 512 pulses 

per rev. 
 Agilent 

 Crystal ECS-2299A-400 ECS, Inc. 
International 

 D-Flip Flop DM74LS74N FAIRCHILD 
 Multiplexer 74S153 Teas Instruments 
 5 volt regulator 7805 Generic part 
   Generic part 
   Generic part 
Table C.3:  Robot Car’s Control Circuit Parts List
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Appendix D 

Matlab Data Collection Code 
 
% Test Data reader and Ploter % 
% Input = COM1 @ 115200 bps 
clear all; 
close all; 
clc; 
 
Size = 8008;  % = 10sec of data w/4 inputs at 5ms sampling 
 
s = serial('COM1', 'BaudRate', 115200, 'InputBufferSize', 1600000, 'Timeout', 25); 
s.ReadAsyncMode = 'continuous'; 
fopen(s); 
[A, count] = fread(s, Size, 'uchar'); 
 
fclose(s) 
 
cc = 1; 
for ii = 1: 4: count, 
 
    RerEnc(cc) = A(ii); 
    FrtEnc(cc) = A(ii+1); 
%%%%%%%%%% Only used when not manipulating Upr and Lwr data bits     
%     UprBit(cc) = A(ii+2); 
%     LwrBit(cc) = A(ii+3); 
%%%%%%%%%%%%     
%%  for loading U  %%%%%%%%%%%%%%%%%%%%%%%%%%%%     
    UprBit(cc) = A(ii+2); 
    U(cc) = bitshift(UprBit(cc), 2);  % Load Upper 8 bits of 10 bits plus sign(+/-) into variable U 
     
    LwrBit(cc) = A(ii+3); 
    %%%% Determine and Set/Clear Lower 2 bits of 10 bits of U 
    if (bitget(LwrBit(cc), 5) == 0) 
        U(cc) = bitset(U(cc), 1, 0); 
    else 
        U(cc) = bitset(U(cc), 1); 
    end 
     
    if (bitget(LwrBit(cc), 6) == 0) 
        U(cc) = bitset(U(cc), 2, 0); 
    else 
        U(cc) = bitset(U(cc), 2); 
    end 
   



Appendix D  58 

 

 
    % Determine if U is possitive or negative 
     
    if (bitget(LwrBit(cc),7) == 1) 
        U(cc) = -U(cc); 
    end     
%%%%%%%%%%%%%%%%%%%%%%%%%        
    cc = cc + 1; 
endt = [0:0.005:10.005];  %10s 4inputs 
figure 
plot(t,RerEnc,'.') 
figure 
plot(t,FrtEnc,'.') 
 
% save DataFile FrtEnc RerEnc TrkEnc t; 
count 
 
%%%%%%% Other way to set/clear lower 2 bits of U 
%     if (bitget(LwrBit(cc), 6)==1 && bitget(LwrBit(cc), 5)==1) 
%         U(cc) = U(cc) + 3; 
%     elseif (bitget(LwrBit(cc), 6)==1 && bitget(LwrBit(cc), 5)==0) 
%         U(cc) = U(cc) + 2; 
%     elseif (bitget(LwrBit(cc), 6)==0 && bitget(LwrBit(cc), 5)==1) 
%         U(cc) = U(cc) + 1; 
%     end 
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Appendix E 

Data Collection Circuit (DCC) Code 
 
#include <pic18.h> 
#include <stdio.h> 
 
 
#define USART_TX (RD3)  // Turns Output ON and OFF 
#define BAUD 115200          
#define FOSC 40000000L 
#define NINE_BITS 0  // 8-bit communication 
#define OUTPUT 0 
#define INPUT 1 
 
#define DIVIDER ((int)(FOSC/(16UL * BAUD) -1)) 
#define SPEED 0x4 
 
unsigned char TrkEnc; 
unsigned char FrtEnc; 
unsigned char RerEnc; 
 
unsigned int LstTrk; 
unsigned int LstRer; 
 
void main(void) 
{ 
/* Serial initialization */ 
 SPBRG = DIVIDER;       
 TXSTA = (SPEED|NINE_BITS|0x20); 
 RCSTA = (NINE_BITS|0x90); 
 TRISC6=OUTPUT; 
 TRISC7=INPUT;             /*initialize usart in serial.c*/ 
////////////////////////////                                                           
 
// Setup RB0/Int to count "UP" pulses of TestPlatform 
 T2CON   = 0x00;  // Turn OFF TMR2 
 
// Direction of motor & to turn on data collection  
 TRISE = 0x00;  // put port D in standard I/O 
 PORTD = 0x00;  //  
 TRISD = 0xFF;  // set port D as Input 
 
//  10 bit PWM value output  (8 upperbits on PORTB and lower 2 bits on PORTD<7,6> 
 PORTB = 0x00;  // set port RB as 0's 
 TRISB = 0xFF;  // set port B as Input
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//  Timmer 0 Counter  (Rear Wheel) 
 T0CON = 0xA8;  ///8= no prescaler  ;  0=*2 prescaler  ////0xAF 
 
// Timmer 1 Counter  (Front Wheel/ TestPlatform 
 T1CON = 0x87; 
 
 T3CON = 0x85; 
 
 TMR0H = 0; 
 TMR0  = 0; 
 TMR1H = 0; 
 TMR1  = 0; 
 TMR3H = 0xFB; // 15ms = B6C1; 52.4ms = 0000; 1ms = FB1D/FB27 
 TMR3  = 0x27;   // For reseting Timmer 3 value 
 
 TMR3H = 0xD9;    // 1ms = D93B w/o prescaler 
 TMR3    = 0x3B; 
// TMR3H = 0x3C;    // 5ms = 3CF3 w/o prescaler 
// TMR3    = 0xFB;    // 5ms = 3CFB w/o prescaler 
 
 TrkEnc = 0; 
     FrtEnc = 0; 
 RerEnc = 0; 
 LstTrk = 0; 
 LstRer = 0; 
 
 PIE1 = 0x00; 
 PIE2 = 0x02;  // Enables TMR3 Overflow Interrupt Enable bit 
 
 INTCON  = 0xD0;  // Enable interupt 
 
    while (1)   
 {   
  NOP(); 
 
     }   
 
} 
 
 
void interrupt isr(void) 
{ 
 
 
    if (TMR3IF)    /* TMR3 overflow interrupt */  
    { 
 TMR3H = 0xD9; // 0xD9 
 TMR3  = 0x3B;   // 0x3B  //For reseting Timmer 3 value to 1ms 
 
 if (LstRer > TMR0) 
  RerEnc = 65535-LstRer + TMR0;  //remember to start counting from '0' 
 else 
 RerEnc = TMR0 - LstRer; 
 LstRer = TMR0; 
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 if (LstTrk > TMR1) 
  TrkEnc = 65535-LstTrk + TMR1; 
 else 
 TrkEnc = TMR1 - LstTrk;  
 LstTrk = TMR1; 
   
 if (USART_TX) 
 { 
/*  printf("%c",FrtEnc);  */ 
  printf("%c",RerEnc);   
  printf("%c",TrkEnc); 
  printf("%c",PORTB);  // UprPwr 
  printf("%c",PORTD); // LwrPwr 
 }   
 TMR3IF = 0;  /* reset Timmer 3 flag  PIR2<1>*/ 
   } 
 
} 
 
void putch(unsigned char byte)  
{ 
 /* output one byte */ 
 while(!TXIF) /* set when register is empty */ // PIR1<4> 
  continue; 
 TXREG = byte; 
}
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Appendix F 

Matlab Code For 3-D Plots of Control Outputs 
 
% By:  Mark Morton 
% Sliding Mode Control 3-D Plot for Tracktion Control 
 
clc; 
clear all; 
close all; 
 
MueP    = 0.0745;   
Lamda_P = 0.1551;  
Lamda_d = 0.01;  % desired Lamda from simulated annealing      % desired path 
c       = 0.005;   % wind drag force coeficient 
mv  = 1.6516;        % mass of car (Kg) 
nw  = 2;          % number of driving wheels 
Nv  = 1.3009;  % w/o batt 0.9328;  %w/ batt= 1.3009;        % normal force to ground (N) 
Rw  = 0.0320548;  % radius of wheel (Meters) 
Fw  = 0.4507;       % wheel viscous friction (N*Sec/Meter) 
Jw  = 0.1088;      %0.5*m*Rw^2; % inertia (Kg*m^2) 
 
Ke = 0.0159;  %6.7831e-3;      % 
Ra = 1.506;  %5; %1.506;           % Armeture resistance 
Volts = 12.0;       % Maximum voltage supplied to system (aka: battery) 
 
N    = 0.2; 
minn = 0.9; 
maxx = 1.1; 
Beta = 1.4; 
 
z = 1; 
 
Rfw = 2.4035; 
Rrw = 2.524;  %2.54;  %2.524; 
Rtw = 1.8085; 
Ratio = 2/3; % for Track/Rw 
Time        = 0.005*z;   
% Time        = 0.00656; 
% Time        = 0.015; 
 
for FrtEnc = 1:1:64*z, %1:64, %1:96*z, %90, %270,  %900 
    for RerEnc = 1:64*z, %90, %270,   %900 
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         x(1) = FrtEnc*6.283185/256.0/Time;  %*2.524/2.2035;   Compensation ratio 
         x(2) = RerEnc*6.283185/256.0/Time;         Lamda   = 1-x(1)/x(2); 
 
        Vv  = x(1)*Rw;     %initial velocity 
        Fv  = c*Vv^2;       % wind drag force 
 
       bmin    = minn*(1-Lamda)*Ke/(Ra*Jw*x(2));   
       bmax    = maxx*(1-Lamda)*Ke/(Ra*Jw*x(2));   
       b_hat   = sqrt(bmin*bmax); 
     
      Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2);  % adhesion/friction coef.   
      Mue_hat = ((2*0.94*0.3*Lamda)/(0.3^2+Lamda^2) + (2*0.008*0.008*Lamda)/(0.008^2+ … 

Lamda^2))/2 + 0.001; 
 
      Muedif = Mue-Mue_hat; 
 
% F   = abs(f_hat - f); 
       F   = abs([(Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))] * (Mue-Mue_hat)); 
 
       s=Lamda-Lamda_d; 
        
       Lamda)*Rw*Nv*Mue)/(Jw*x(2))] + ((1-Lamda)*u)/(Jw*x(2)); 
       u_hat = (-f_hat+0); %Lamda_d_dot);  %  /b_hat is taken care of in 'u=' 
        
%K   = F + N;             % Gain 
      K  =  Beta*(F+N) + (Beta-1)*abs(u_hat);    
%  
      u = 1/b_hat*(u_hat - K*sign(s)) 
 
    PerVolt = u/1023;                   % Percent Voltage to motor 
    V = PerVolt * Volts;                % actual voltage supplied to motor 
 
    if (V > 12) 
        V = 12; 
    end 
    if (V < -12) 
        V = -12; 
    end 
     
    if (u > 1023) 
        u = 1023; 
    end 
    if (u < -1023) 
        u = -1023; 
    end     
         
    U_out(FrtEnc, RerEnc) = u; 
        
    V_out(FrtEnc, RerEnc) = V; 
        
%          if (mod(RerEnc,100) == 1) 
%             u 
%          end 
    end 
end 
figure 
mesh(V_out)
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Appendix G 

Leader Code 
 
#include <pic18.h> 
#include <stdlib.h> 
#include <math.h> 
 
unsigned int RerEnc; 
unsigned int FrtEnc; 
unsigned int LstFrt; 
unsigned int LstRer; 
int Pwr; 
 
/* service routine for timer 3 interrupt */ 
 
void interrupt isr(void) 
{ 
// unsigned int tics = TMR0; 
 
 TMR3H = 0x3C; // 0xFB   ~1ms = FB1D w/prescaler 
 TMR3  = 0xC2;   // 0x1D  //For reseting Timmer 3 value 
  if (LstRer > TMR0) 
   RerEnc = 65535-LstRer + TMR0;  //remember to start counting from '0' 
  else 
   RerEnc = TMR0 - LstRer; 
  LstRer = TMR0; 
 
  if (LstFrt > TMR1) 
   FrtEnc = 65535-LstFrt + TMR1; 
  else 
   FrtEnc = TMR1 - LstFrt;  
  LstFrt = TMR1; 
/**********************************************/ 
 
 if (RerEnc > FrtEnc+5)  //1.0501352197*FrtEnc+5) 
 {  
  Pwr = Pwr - 1; 
 } 
 else 
  Pwr = Pwr + 1; 
 
 if (Pwr>=0) 
 { //**********check value of u ?????*************// 
  PORTD = 0x08;    // Bit RD2 = 0 for forward direction when Y1 on  

//MUXconnected to IN1 on H-bridge
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  if (Pwr > 1023) 
   Pwr = 1023; 
  CCPR2L  = Pwr>>2; // & 1020; 
  CCP2CON = 0xf ^ (Pwr<<4); 
  PORTB   = CCPR2L; 
  PORTD   = PORTD + (Pwr<<4); 
 } 
 else 
 { //**********check value of u ?????************// 
  PORTD = 0x0C;  // Bit RD2 = 1 for reverse direction 
  if (Pwr < -1023) 
   Pwr = 1023; 
  else 
   Pwr = -Pwr; 
  CCPR2L  = Pwr>>2; // & 1020; 
  CCP2CON = 0xf ^ (Pwr<<4);   
  PORTB   = CCPR2L; 
  PORTD   = PORTD + (Pwr<<4);  
  Pwr = -Pwr; 
 } 

TMR3IF = 0;  /* reset Timmer 3 flag  PIR2<1>*/ 
} 
 
void main(void) 
{ 
 
// Direction of motor  
 TRISE = 0x00;  // put port D in standard I/O 
 PORTD = 0x08;  // set port RD2 as LOW for forward direction 
       // and port RD3 HIGH to turn test platform output ON 
 TRISD = 0x00;  // set port D as output 
 
//  10 bit PWM value output  (8 upperbits on PORTB and lower 2 bits on PORTD<7,6> 
 PORTB = 0x00;  // set port RB as 0's 
 TRISB = 0x00;  // set port B as output 
 
 //  PWM for TMR2 
 PR2     = 0xFF;  // PWM period 
 CCPR2L  = 0x55;  // Upper 8 bits of 10 bit PWM duty cycle 
 
 
  
 T2CON   = 0x05;  // Set the TMR2 prescale value & enable Timer2 0x05 = (9.77kHz) 
 CCP2CON = 0xFF;  // Lower 2 bits of 10 bit PWM duty cycle & Put in PWM Mode  
   TRISC   = 0x01;  // Make CCP2/RC1 pin an output for the PWM2 signal 
 
//  Timmer 0 Counter 
 T0CON = 0xA8;  ///8= no prescaler  ;  0=*2 prescaler 
 
// Timmer 1 Counter 
 T1CON = 0x87; 
 
// Timmer 3 Interupt on Over Flow 
// T3CON = 0b10110101 
 T3CON = 0x85;   // B5=8*prescaler 
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 TMR0H = 0; 
 TMR0  = 0; 
 
 TMR1H = 0; 
 TMR1  = 0; 
  

TMR3H = 0x3C; // 15ms = B6C1; 52.4ms = 0000; 5ms = E795; 1ms = FB1D; 
 TMR3  = 0xC2;   // For reseting Timmer 3 value 
 
 INTCON  = 0xC0;  // Enable interupt 
 
     FrtEnc = 0; 
 RerEnc = 0; 
 LstFrt = 0; 
 LstRer = 0; 
 Pwr    = 0; 
 
 PIE1 = 0x00; 
 PIE2 = 0x02;  // Enables TMR3 Overflow Interrupt Enable bit 
 
 CCPR2L  = 0xFF;  // Upper 8 bits of 10 bit PWM duty cycle 
 
    while (1)   
 {   
  /* infinite loop */ 
  NOP(); 
     }   
} 
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Appendix H 

Matlab Mean Code 
 
clear all; 
clc; 
  
% load F:\'serial test data'\'Annealing Prog'\Data7aB10s 
 
Dfw = 2.4035; 
Drw = 2.524; 
Dtw = 1.8085; 
 
x = FrtEnc*Dfw/Drw; %UprBit;  %FrtEnc;\ 
y = RerEnc;  %TrkEnc*Dtw/Drw;  %RerEnc; 
x2 = x; 
y2 = y; 
 
count = length(t); 
cc = 0; 
 
 
neg = 0; 
pos = 0; 
 
% First and Last Data Points are NOT Averaged 
 
m = 51  % must be an ODD number 
             
for ii = 2: 1: (m-1)/2, 
    for jj = ii-1: -1: 0, 
        neg = neg + x(ii - jj); 
        pos = pos + x(ii + jj); 
    end 
    x(ii) = (neg + pos)/(ii * 2); 
    neg = 0; 
    pos = 0; 
end 
     
for ii = ((m+1)/2): 1: length(t)-(m+1)/2, 
    for jj = m: -2: 1, 
        neg = neg + x(ii - (jj-1)/2); 
        pos = pos + x(ii + (jj-1)/2); 
    end 
    x(ii) = (neg + pos)/(m + 1); 
    neg = 0;
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    pos = 0; 
end   
     
for ii = length(t)-(m-1)/2: 1: length(t)-1, 
    for jj = length(t)-ii: -1: 0, 
        neg = neg + x(ii - jj); 
        pos = pos + x(ii + jj); 
    end 
    x(ii) = (neg + pos)/((length(t)-ii+1) * 2); 
    neg = 0; 
    pos = 0; 
end        
     
for ii = 2: 1: (m-1)/2, 
    for jj = ii-1: -1: 0, 
        neg = neg + y(ii - jj); 
        pos = pos + y(ii + jj); 
    end 
    y(ii) = (neg + pos)/(ii * 2); 
    neg = 0; 
    pos = 0; 
end    
     
for ii = ((m+1)/2): 1: length(t)-(m+1)/2, 
    for jj = m: -2: 1, 
        neg = neg + y(ii - (jj-1)/2); 
        pos = pos + y(ii + (jj-1)/2); 
    end 
    y(ii) = (neg + pos)/(m + 1); 
    neg = 0; 
    pos = 0; 
end 
 
for ii = length(t)-(m-1)/2: 1: length(t)-1, 
    for jj = length(t)-ii: -1: 0, 
        neg = neg + y(ii - jj); 
        pos = pos + y(ii + jj); 
    end 
    y(ii) = (neg + pos)/((length(t)-ii+1) * 2); 
    neg = 0; 
    pos = 0; 
end     
 
FrtEnc = x; 
RerEnc = y; 
Diff = x-y; 
clear x y cc ii jj neg pos; 
 
 
figure 
subplot(4,1,1) 
plot(t, FrtEnc) 
subplot(4,1,2) 
plot(t,RerEnc) 
subplot(4,1,3) 
plot(t,1-FrtEnc./RerEnc) 
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subplot(4,1,4) 
plot(t,1-x2./y2) 
 
 
% save F:\'serial test data'\'Annealing Prog'\Data7bB10s



 

 70 

Appendix I 

Matlab Simulated Annealing Code 

I.1  Final Simulated Annealing Code 

clear all; 
close all; 
clc; 
 
tic; 
%%%%%%%%%%%%  Sliding Mode Setup  %%%%%%%%%%%%%%%% 
global Mue Fv mv nw Nv Rw Fw Jw Ke V Ra x2 
load Data7aB10s 
 
figure 
subplot(3,1,1), plot(t, RerEnc) 
subplot(3,1,2), plot(t, FrtEnc) 
subplot(3,1,3), plot(t, U) 
 
 
Ke_Range = [2.7e-3: 1.0e-4: 24.74e-3];      %16.74e-3;  %6.7831e-3;      % 
Ra_Range = [1.2: 0.1: 1.9];      %1.2;           % Armeture resistance 
Lamda_d_Range = [0.001: 0.001: 0.3];      % desired path 
MueP_Range = [0.01: 0.01: 0.3]; 
Lamda_P_Range = [0.01: 0.01: 0.3]; 
c_Range = [0.001: 0.001: 1.0];          % wind drag force coeficient 
Nv_Range = [1.2: 0.01: 1.6516];             % normal force to ground (N) 
Fw_Range = [0.01: 0.1: 7];           % wheel viscous friction (N*Sec/Meter) 
Jw_Range = [1.116425e-6: 1.0e-4: 0.022]; %0.5*m*Rw^2; % inertia (Kg*m^2) 
 
mv  = 1.6516;        % mass of car (Kg) 
nw  = 2;          % number of driving wheels 
Rw  = 0.0320548;    % radius of wheel (Meters) 
Volts = 12.0;       % Maximum voltage supplied to system (aka: battery) 
 
Error_Over = 0; 
tspan = 0.0049999; 
Time        = 0.0049999;     
            Rfw = 1.20175; 
                Rrw = 1.262;   
% digits(7); 
tic; 
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%%%%%%%%%%%%%%  Setup for Annealing  %%%%%%%%%%%%%%%%%% 
Lowest_Error = 100000; 
Highest_Error = 0.5; 
Curr_Error = inf; 
temp = 10e8; % Choose the temperature to be large enough 
fprintf('Initial Curr_Error = %f\n\n',Curr_Error); 
  
NumCombo = 100; 
rand('state',sum(100*clock))  % Resets it to a different state each time. 
 
MaxTempItr = NumCombo*10;  % Max. # of trials at a temperature 
MaxLcaLitr = NumCombo*1;  % Max. # of acceptances at a temperature 
StopTolerance = 0.0001;  % Stopping tolerance 
TempRatio = 0.98;  % Temperature decrease ratio 
TempItr = 0;  % Number of trial moves 
 
minE = inf;   % Initial value for min. Curr_Error 
maxE = -1;   % Initial value for max. Curr_Error 
 
%%%%%%%%%%%%%%%%%%  Annealing loop  %%%%%%%%%%%%%%%%%%%%% 
while (TempItr < MaxTempItr),  %(((maxE-minE)/maxE > StopTolerance) & (TempItr < MaxTempItr)), 
 
    minE = inf;   % Initial value for min. Curr_Error 
    maxE = -1;   % Initial value for max. Curr_Error 
 LcaLitr = 0;  % Number of local iterations at a certain temp. 
     
 while ((Curr_Error > 0.005) & (LcaLitr < MaxLcaLitr)), 
          
        Ke      = rand * (max(Ke_Range)-min(Ke_Range)) + min(Ke_Range); 
        Ra      = rand * (max(Ra_Range)-min(Ra_Range)) + min(Ra_Range);       
        Lamda_d = rand * (max(Lamda_d_Range)-min(Lamda_d_Range)) + min(Lamda_d_Range); 
        MueP    = rand * (max(MueP_Range)-min(MueP_Range)) + min(MueP_Range); 
        Lamda_P = rand * (max(Lamda_P_Range)-min(Lamda_P_Range)) + min(Lamda_P_Range); 
        c       = rand * (max(c_Range)-min(c_Range)) + min(c_Range); 
        Nv      = rand * (max(Nv_Range)-min(Nv_Range)) + min(Nv_Range); 
        Fw      = rand * (max(Fw_Range)-min(Fw_Range)) + min(Fw_Range); 
        Jw      = rand * (max(Jw_Range)-min(Jw_Range)) + min(Jw_Range); 
         
        Error_Sum = 0; 
        rand('seed', 31415927) 
         
%         for ii = 750:1200,  
%         for ii = 2:length(t), 
          for ii = 2:1200, 
    
            x(1) = FrtEnc(ii)*6.283185/256.0/Time*Rfw/Rrw;    
            x(2) = RerEnc(ii)*6.283185/256.0/Time;  
            x2 = x(2); 
            x1 = x(1); 
            if (x(2) ~= 0), 
                LamdaC   = 1-x(1)/x(2); 
                             
                Vv  = x(1)*Rw;     %initial velocity 
                Fv  = c*Vv^2;       % wind drag force 
                            
                Mue = (2*MueP*Lamda_P*LamdaC) / (Lamda_P^2+LamdaC^2);  % adhesion/friction coef.   

%(THE INPUT for the smallest curve)                             
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            %%%%%%%%%%%%%%%%% ODE Solver %%%%%%%%%%%%%%%%%%%% 
                u = U(ii); 
                PerVolt = u/1023;                   % Percent Voltage to motor 
                V = PerVolt * Volts;                % actual voltage supplied to motor 
 
                [T, X] = ode45('states2',[0,tspan],x); 
                x = X(length(X), [1,2]); 
 
                LamdaM   = 1-x(1)/x(2);  
 

LC(ii) = LamdaC;                 
LM(ii) = LamdaM;                
FW(ii) = x(1);                 
RW(ii) = x(2); 
v(ii)  = V; 
 

                Error1 = (x(2)-x2)^2; 
                Error2 = (x(1)-x1)^2; 
                Error3 = (LamdaM - LamdaC)^2; 
                Error = Error1 + Error2 + Error3; 
                Error_Sum = Error_Sum + Error; 
                New_Error = Error_Sum; 
            else 
                Error_Sum = Error_Sum + 0; 
            end 
             
            %%%%%  If erro already over 3 no need to continue calculating error %%%% 
            if (New_Error > Lowest_Error)   
                Error_Over = 1 
                break; 
            end 
             
          end 
                           
                       
if (((rand < exp((Curr_Error-New_Error)/temp)) | ((New_Error-Curr_Error) < 0)) & Error_Over == 0),
 % accept it! 
 
            Curr_Error = New_Error 
   minE = min(minE, Curr_Error); 
   maxE = max(maxE, Curr_Error); 
            RWC = RW; 
            if Curr_Error < Lowest_Error, 
                Lowest_Error = Curr_Error    
                LCL = LC; 
                LML = LM; 
                FWL = FW; 
                RWL = RW;                 
                save LowError16 
            end 
            if Curr_Error > Highest_Error, 
                Highest_Error = Curr_Error 
                LCH = LC; 
                LMH = LM; 
                FWH = FW; 
                RWH = RW; 
                save HighError16 
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            end 
    end 
        rand('state',sum(100*clock))  % Resets it to a different state each time. 
        Error_Over = 0;     % resets too high error value indicator 
 
        LcaLitr = LcaLitr + 1; 
end 
 
 % Print information in command window  
 fprintf('temp. = %f\n', temp); 
 fprintf('Curr_Error = %f\n', Curr_Error); 
 fprintf('[minE maxE] = [%f %f]\n', minE, maxE); 
 fprintf('[LcaLitr TempItr] = [%d %d]\n\n', LcaLitr, TempItr); 
 % Lower the temperature 
 temp = temp*TempRatio; 
    % Increment trial count 
    TempItr = TempItr + 1; 
end 
 
fprintf('Compute Time = %f\n', toc); 
 
        Ra 
        Ke 
        Lamda_d 
        MueP    
        Lamda_P 
        c       
        Nv      
        Fw    
        Jw    
 
save AnnealResult16 
 
toc; 
 

I.2  Earliest Simulated Annealing Code 

clear all; 
close all; 
clc; 
 
tic; 
%%%%%%%%%%%%  Sliding Mode Setup  %%%%%%%%%%%%%%%% 
global Mue Fv mv nw Nv Rw Fw Jw u 
load data1aB5s 
% load Data7aB10s 
% load Data7bB10s 
% load Data5aB10s 
 
figure 
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subplot(3,1,1), plot(t, RerEnc) 
subplot(3,1,2), plot(t,FrtEnc) 
subplot(3,1,3), plot(t,U) 
 
MueP_Range = [0.11: 0.01: 0.2]; 
Lamda_P_Range = [0.11: 0.01: 0.3]; 
c_Range = [0.01: 0.001: 0.05];          % wind drag force coeficient 
Nv_Range = [1.0: 0.01: 1.6516];             % normal force to ground (Kg) 
Fw_Range = [0.01: 0.001: 0.3];           % wheel viscous friction (N*Sec/Meter) 
Jw_Range = [8.416425e-5: 1.0e-6: 0.011]; %0.5*m*Rw^2; % inertia (Kg*m^2) 
 
Lamda_d = 0.25;      % desired path 
%     c       = [0.001:0.001:0.05]; %%0.25;  % wind drag force coeficient 
% %     m       = 0.016; % mass of wheel (Kg) 
mv  = 1.6516;        % mass of car (Kg) 
nw  = 2;          % number of driving wheels 
Rw  = 0.0320548;    % radius of wheel (Meters) 
tspan = 0.0049999; 
Time        = 0.0049999;     
 
digits(7); 
tic; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Setup for Annealing  
%%%%%%%%%%%%%%%%%% 
Lowest_Error = 1000; 
Highest_Error = 10; 
Curr_Error = inf; 
temp = 10e6; % Choose the temperature to be large enough 
fprintf('Initial Curr_Error = %f\n\n',Curr_Error); 
  
NumCombo = 1; 
rand('seed', 31415927) 
% rand('state',sum(100*clock))  % Resets it to a different state each time. 
 
MaxTempItr = NumCombo*10;  % Max. # of trials at a temperature 
MaxLcaLitr = NumCombo*5;  % Max. # of acceptances at a temperature 
StopTolerance = 0.005;  % Stopping tolerance 
TempRatio = 0.25;  % Temperature decrease ratio 
TempItr = 0;  % Number of trial moves 
 
minE = inf;   % Initial value for min. Curr_Error 
maxE = -1;   % Initial value for max. Curr_Error 
 
%%%%%%%%%%%%%%%%%%  Annealing loop  
%%%%%%%%%%%%%%%%%%%%% 
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while (((maxE-minE)/maxE > StopTolerance) & (TempItr < MaxTempItr)), 
% while (TempItr < MaxTempItr),  
    minE = inf;   % Initial value for min. Curr_Error 
    maxE = -1;   % Initial value for max. Curr_Error 
 LcaLitr = 0;  % Number of local iterations at a certain temp. 
     
 while ((Curr_Error > 0.5) & (LcaLitr < MaxLcaLitr)), 
   
        MueP    = rand * (max(MueP_Range)-min(MueP_Range)) + min(MueP_Range); 
        Lamda_P = rand * (max(Lamda_P_Range)-min(Lamda_P_Range)) +… 
min(Lamda_P_Range); 
        c       = rand * (max(c_Range)-min(c_Range)) + min(c_Range); 
        Nv      = rand * (max(Nv_Range)-min(Nv_Range)) + min(Nv_Range); 
        Fw      = rand * (max(Fw_Range)-min(Fw_Range)) + min(Fw_Range); 
        Jw      = rand * (max(Jw_Range)-min(Jw_Range)) + min(Jw_Range); 
        Error_Sum = 0; 
         
        for ii = 2:length(t), 
             
            x(1) = FrtEnc(ii)*6.283185/256.0/Time;    
            x(2) = RerEnc(ii)*6.283185/256.0/Time;  
            if (x(2) ~= 0), 
                LamdaC   = 1-x(1)/x(2); 
%                 if (LamdaC > 0.5) 
%                     LamdaC = 0.5; 
%                 end 
                             
                Vv  = x(1)*Rw;     %initial velocity 
                Fv  = c*Vv^2;       % wind drag force 
                            
                Mue = (2*MueP*Lamda_P*LamdaC) / (Lamda_P^2+LamdaC^2);  
 % adhesion/friction coef.  (THE INPUT for the smallest curve)                             
      
            %%%%%%%%%%%%%%%%% ODE Solver 
%%%%%%%%%%%%%%%%%%%% 
                u = U(ii); 
                u = (u-6.7831e-3 * x(2))/1.2; 
                [T, X] = ode45('states',[0,tspan],x); 
                x = X(length(X), [1,2]); 
             
                LamdaM   = 1-x(1)/x(2); 
%                 if (LamdaM > 0.5) 
%                     LamdaM = 0.5; 
%                 end   
             
%             x(1) = FrtEnc(ii+1)*6.283185/256.0/Time;    
%             x(2) = RerEnc(ii+1)*6.283185/256.0/Time;  
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%             LamdaC   = 1-x(1)/x(2); 
                Error = (LamdaM - LamdaC)^2; 
                Error_Sum = Error_Sum + Error; 
                New_Error = Error_Sum; 
            else 
                Error_Sum = Error_Sum + 0; 
            end 
        end 
                           
                       
  if ((rand < exp((Curr_Error-New_Error)/temp)) | ((New_Error-Curr_Error) 
< 0)), % accept it! 
    
            Curr_Error = New_Error 
   minE = min(minE, Curr_Error); 
   maxE = max(maxE, Curr_Error); 
            if Curr_Error < Lowest_Error, 
                Lowest_Error = Curr_Error    
                save LowError3  
            end 
            if Curr_Error > Highest_Error, 
                Highest_Error = Curr_Error 
                save HighError3 
            end 
  end 
         
        LcaLitr = LcaLitr + 1; 
 end 
 
 % Update plot 
 % Print information in command window  
 fprintf('temp. = %f\n', temp); 
 fprintf('Curr_Error = %f\n', Curr_Error); 
 fprintf('[minE maxE] = [%f %f]\n', minE, maxE); 
 fprintf('[LcaLitr TempItr] = [%d %d]\n\n', LcaLitr, TempItr); 
 % Lower the temperature 
 temp = temp*TempRatio; 
    % Increment trial count 
    TempItr = TempItr + 1; 
end 
 
fprintf('Compute Time = %f\n', toc); 
 
save AnnealResult3  
 
%%%%    control output plot   %%%%%%%%%%%5 
for FrtEnc = 1:41, %90, %270,  %900 
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    for RerEnc = 1:41, %90, %270,   %900 
         
 
         x(1) = FrtEnc*6.283185/256.0/Time;    
         x(2) = RerEnc*6.283185/256.0/Time;  
 
        Lamda   = 1-x(1)/x(2); 
        if (Lamda > 0.5) 
            Lamda = 0.5; 
        end 
         
 
        Vv      = x(1)*Rw;     %initial velocity 
        Fv  = c*Vv^2;       % wind drag force 
 
       bmin    = 0.999*(1-Lamda)/(Jw*x(2)); 
       bmax    = 1.001*(1-Lamda)/(Jw*x(2)); 
       b_hat   = sqrt(bmin*bmax); 
%        Beta    = sqrt(bmax/bmin); 
Beta = 1; 
N   = 0.05;  % eta 
 
 
       Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2);  % adhesion/friction 
%coef.  (THE INPUT for the smallest curve) 
       Mue_hat = -1239.8*Lamda.^6 + 2213.2*Lamda.^5 - 1590.6*Lamda.^4 + … 
589.97*Lamda.^3 - 119.97*Lamda.^2 + 12.727*Lamda + 0.0;  % Nominal curve shifted 
%up just a little 
 
       Muedif = Mue-Mue_hat; 
 
% Mue_hat = Mue; 
    f_hat   = -((1-Lamda)*Fw*Rw)/(Jw*x(2)) + Mue_hat*[(Fv-Nv*nw)/(mv*Rw*x(2)) +.. 
((1-Lamda)*Rw*Nv)/(Jw*x(2))]; 
 
% F   = abs(f_hat - f); 
       F   = abs([(Fv-Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))]*abs(Mue-
Mue_hat)); 
 
 
       s=Lamda-Lamda_d; 
    
% Lam_dot =  [(Fv-Nv*nw*Mue)/(mv*Rw*x(2)) - ((1-Lamda)*Fw*Rw)/(Jw*x(2)) - ((1-
Lamda)*Rw*Nv*Mue)/(Jw*x(2))] + ((1-Lamda)*u)/(Jw*x(2)); 
 
       u_hat = (-f_hat+0); %Lamda_d_dot);  %  /b_hat is taken care of in 'u=' 
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%K   = F + N;             % Gain 
 
       K  =  Beta*(F+N) + (Beta-1)*abs(u_hat);    
    
       u = 1/b_hat*(u_hat - K*sign(s)); 
 
    
      if (u > 1023) 
          u = 1023; 
      end 
      if (u < -1023) 
          u = -1023; 
      end 
         
       U_out(FrtEnc, RerEnc) = u; 
        
    end 
end 
figure 
mesh(U_out) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
%%%%    minumum control output plot   %%%%%%%%%%% 
 
load LowError 
for FrtEnc = 1:41, %90, %270,  %900 
    for RerEnc = 1:41, %90, %270,   %900 
         
 
         x(1) = FrtEnc*6.283185/256.0/Time;    
         x(2) = RerEnc*6.283185/256.0/Time;  
 
        Lamda   = 1-x(1)/x(2); 
        if (Lamda > 0.5) 
            Lamda = 0.5; 
        end 
         
 
        Vv      = x(1)*Rw;     %initial velocity 
        Fv  = c*Vv^2;       % wind drag force 
 
       bmin    = 0.999*(1-Lamda)/(Jw*x(2)); 
       bmax    = 1.001*(1-Lamda)/(Jw*x(2)); 
       b_hat   = sqrt(bmin*bmax); 
%        Beta    = sqrt(bmax/bmin); 
Beta = 1; 
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N   = 0.05;  % eta 
 
 
       Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2);  % adhesion/friction 
%coef.  (THE INPUT for the smallest curve) 
 
       Mue_hat = -1239.8*Lamda.^6 + 2213.2*Lamda.^5 - 1590.6*Lamda.^4 + … 
589.97*Lamda.^3 - 119.97*Lamda.^2 + 12.727*Lamda + 0.0;  % Nominal curve shifted 
%up just a little 
 
       Muedif = Mue-Mue_hat; 
 
 
 
% Mue_hat = Mue; 
 
       f_hat   = -((1-Lamda)*Fw*Rw)/(Jw*x(2)) + Mue_hat*[(Fv-Nv*nw)/(mv*Rw*x(2)) 
+ ((1-Lamda)*Rw*Nv)/(Jw*x(2))]; 
 
% F   = abs(f_hat - f); 
       F   = abs([(Fv-Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))]*abs(Mue-
Mue_hat)); 
 
 
       s=Lamda-Lamda_d; 
    
% Lam_dot =  [(Fv-Nv*nw*Mue)/(mv*Rw*x(2)) - ((1-Lamda)*Fw*Rw)/(Jw*x(2)) - ((1-
Lamda)*Rw*Nv*Mue)/(Jw*x(2))] + ((1-Lamda)*u)/(Jw*x(2)); 
 
       u_hat = (-f_hat+0); %Lamda_d_dot);  %  /b_hat is taken care of in 'u=' 
    
%K   = F + N;             % Gain 
 
       K  =  Beta*(F+N) + (Beta-1)*abs(u_hat);    
    
       u = 1/b_hat*(u_hat - K*sign(s)); 
 
    
      if (u > 1023) 
          u = 1023; 
      end 
      if (u < -1023) 
          u = -1023; 
      end 
         
       U_out(FrtEnc, RerEnc) = u; 
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    end 
end 
figure 
mesh(U_out) 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
%%%%    maximumum control output plot   %%%%%%%%%%% 
 
load HighError 
for FrtEnc = 1:41, %90, %270,  %900 
    for RerEnc = 1:41, %90, %270,   %900 
         
 
         x(1) = FrtEnc*6.283185/256.0/Time;    
         x(2) = RerEnc*6.283185/256.0/Time;  
 
        Lamda   = 1-x(1)/x(2); 
        if (Lamda > 0.5) 
            Lamda = 0.5; 
        end 
         
 
        Vv      = x(1)*Rw;     %initial velocity 
        Fv  = c*Vv^2;       % wind drag force 
 
       bmin    = 0.999*(1-Lamda)/(Jw*x(2)); 
       bmax    = 1.001*(1-Lamda)/(Jw*x(2)); 
       b_hat   = sqrt(bmin*bmax); 
%        Beta    = sqrt(bmax/bmin); 
Beta = 1; 
N   = 0.05;  % eta 
 
 
       Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2);  % adhesion/friction 
coef.  (THE INPUT for the smallest curve) 
       Mue_hat = -1239.8*Lamda.^6 + 2213.2*Lamda.^5 - 1590.6*Lamda.^4 + 
589.97*Lamda.^3 - 119.97*Lamda.^2 + 12.727*Lamda + 0.0;  % Nominal curve shifted 
up just a little 
 
       Muedif = Mue-Mue_hat; 
 
 
 
% Mue_hat = Mue; 
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       f_hat   = -((1-Lamda)*Fw*Rw)/(Jw*x(2)) + Mue_hat*[(Fv-Nv*nw)/(mv*Rw*x(2)) 
+ ((1-Lamda)*Rw*Nv)/(Jw*x(2))]; 
 
% F   = abs(f_hat - f); 
       F   = abs([(Fv-Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))]*abs(Mue-
Mue_hat)); 
 
 
       s=Lamda-Lamda_d; 
    
% Lam_dot =  [(Fv-Nv*nw*Mue)/(mv*Rw*x(2)) - ((1-Lamda)*Fw*Rw)/(Jw*x(2)) - ((1-
Lamda)*Rw*Nv*Mue)/(Jw*x(2))] + ((1-Lamda)*u)/(Jw*x(2)); 
 
       u_hat = (-f_hat+0); %Lamda_d_dot);  %  /b_hat is taken care of in 'u=' 
    
%K   = F + N;             % Gain 
 
       K  =  Beta*(F+N) + (Beta-1)*abs(u_hat);    
    
       u = 1/b_hat*(u_hat - K*sign(s)); 
 
    
      if (u > 1023) 
          u = 1023; 
      end 
      if (u < -1023) 
          u = -1023; 
      end 
         
       U_out(FrtEnc, RerEnc) = u; 
        
    end 
end 
figure 
mesh(U_out) 
 
tic; 
 

I.3  Simulated Annealing Code to Find Gains 

clear all; 
close all; 
clc; 
 
tic; 
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%%%%%%%%%%%%  Sliding Mode Setup  %%%%%%%%%%%%%%%% 
global Mue Fv mv nw Nv Rw Fw Jw Ke V Ra x2 
 
%%%%%%%% Perameters from Simulated Annealing with Lamda, Mue, and Lamda_d 
%at very low ranges 
%%%%%%%%%%%%%% of values 
MueP    = 0.0102;   
Lamda_P = 0.0105;  
Lamda_d = 0.008;  % desired Lamda from simulated annealing      % desired path 
c       = 0.0019; %0.022;   % wind drag force coeficient 
 
mv      = 1.6516;        % mass of car (Kg) 
nw  = 2;          % number of driving wheels 
Nv  = 1.4585        % normal force to ground (Kg) 
Rw  = 0.032055;         % radius of wheel (Meters) 
Fw  = 0.1951;       % wheel viscous friction (N*Sec/Meter) 
Jw  = 0.0923;      %0.5*32.0*0.02659^2              %0.5*m*Rw^2; % inertia (Kg*m^2) 
 
Ke = 0.0139;  %6.7831e-3;      % 
Ra = 1.2229;           % Armeture resistance 
Volts = 12.0;       % Maximum voltage supplied to system (aka: battery) 
 
N_Range     = [0.0001: 0.00001: 9.0]; 
Phi_Range   = [0.01: 0.01: 5.0]; 
min_Range   = [0.01: 0.01: 9.0]; 
max_Range   = [0.01: 0.01: 9.0]; 
Beta_Range  = [0.01: 0.01: 12.0]; 
 
Error_Over = 0; 
 
tspan = 0.5; 
Time = tspan; 
Rfw = 1.20175; 
Rrw = 1.262;   
 
tic; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%  Setup for Annealing  
%%%%%%%%%%%%%%%%%% 
Lowest_Error = 100000; 
Highest_Error = 2; 
Curr_Error = inf; 
temp = 10000; % Choose the temperature to be large enough 
fprintf('Initial Curr_Error = %f\n\n',Curr_Error); 
  
NumCombo = 1; 
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% rand('seed', 31415927) 
rand('state',sum(100*clock))  % Resets it to a different state each time. 
 
MaxTempItr = NumCombo*100;  % Max. # of trials at a temperature 
MaxLcaLitr = NumCombo*10;  % Max. # of acceptances at a temperature 
StopTolerance = 0.0001;  % Stopping tolerance 
TempRatio = 0.90;  % Temperature decrease ratio 
TempItr = 0;  % Number of trial moves 
 
minE = inf;   % Initial value for min. Curr_Error 
maxE = -1;   % Initial value for max. Curr_Error 
 
%%%%%%%%%%%%%%%%%%  Annealing loop  
%%%%%%%%%%%%%%%%%%%%% 
while (TempItr < MaxTempItr),  %(((maxE-minE)/maxE > StopTolerance) & (TempItr < 
MaxTempItr)), 
 
    minE = inf;   % Initial value for min. Curr_Error 
    maxE = -1;   % Initial value for max. Curr_Error 
 LcaLitr = 0;  % Number of local iterations at a certain temp. 
     
 while ((Curr_Error > 0.005) & (LcaLitr < MaxLcaLitr)), 
          
        N       = rand * (max(N_Range)-min(N_Range)) + min(N_Range); 
        Phi     = rand * (max(Phi_Range)-min(Phi_Range)) + min(Phi_Range); 
        minn    = rand * (max(min_Range)-min(min_Range)) + min(min_Range); 
        maxx    = rand * (max(max_Range)-min(max_Range)) + min(max_Range); 
        Beta    = rand * (max(Beta_Range)-min(Beta_Range)) + min(Beta_Range); 
 
        Error_Sum = 0; 
        rand('seed', 31415927) 
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
        FrtEnc = 1; 
        RerEnc = 1; 
         x(1) = FrtEnc*6.283185/256.0/Time;   
         x(2) = RerEnc*6.283185/256.0/Time; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
        x2 = x(2);  % value sent to ODE45 Function (rear wheel value) 
 
        Lamda   = 1-x(1)/x(2); 
        if (Lamda > 0.5) 
            Lamda = 0.5; 
        end 
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        Vv      = x(1)*Rw;     %initial velocity 
        Fv      = c*Vv^2;       % wind drag force 
 
        bmin    = minn*(1-Lamda)*Ke/(Ra*Jw*x(2)); 
        bmax    = maxx*(1-Lamda)*Ke/(Ra*Jw*x(2)); 
        b_hat   = sqrt(bmin*bmax); 
         
        Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2);  % adhesion/friction 
%coef. 
 
Mue_hat = -9546.3*Lamda.^10 + 50170*Lamda.^9 - 1.1328e+005*Lamda.^8 + 
1.4366e+005*Lamda.^7 - 1.1227e+005*Lamda.^6 + 55813*Lamda.^5 - 
17584*Lamda.^4 + 3385.6*Lamda.^3 - 367.85*Lamda.^2 + 19.217*Lamda.^1 + 
0.14133; 
 
        Muedif = Mue-Mue_hat; 
 
        f_hat   = [Fv/(mv*Rw*x(2)) - (1-Lamda)*Rw/(Jw*x(2)) - (1-
Lamda)*Ke^2/(Ra*Jw*x(2))] - [nw*Nv/(mv*Rw*x(2)) + (1-
Lamda)*Rw*Nv/(Jw*x(2))]*Mue_hat; 
 
% F   = abs(f_hat - f); 
      F   = abs([(Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))] * (Mue-… 
Mue_hat)); 
% F = 0;  % for debuging 
 
        s=Lamda-Lamda_d; 
    
        u_hat = (-f_hat+0); %Lamda_d_dot);  %  /b_hat is taken care of in 'u=' 
 
 
        K  =  Beta*(F+N) + (Beta-1)*abs(u_hat);    
    
% u = 1/b_hat*(u_hat - K*sign(s)); 
 
        if (abs(s) < Phi) 
            sat = s/Phi; 
        else 
            sat = sign(s); 
        end 
        u = 1/b_hat*(u_hat - K*sat); 
 
        PerVolt = u/1023;                   % Percent Voltage to motor 
        V = PerVolt * Volts;                % actual voltage supplied to motor 
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        if (V > 12) 
            V = 12; 
        end 
        if (V < -12) 
            V = -12; 
        end 
 
        for ii = 1:500, 
 
            t(ii) = ii*tspan; 
    
        %  PLOT VAR 
            S_out(ii)       = s; 
            Lam_out(ii)     = Lamda; 
            U_out(ii)       = u; 
            x_out(ii,:)     = x;  
            Vv_out(ii)      = Vv; 
            Mue_out(ii)     = Mue; 
            Fv_out(ii)      = Fv; 
            Mue_hat_out(ii) = Mue_hat; 
            f_hat_out(ii)   = f_hat; 
            F_out(ii)       = F; 
            K_out(ii)       = K; 
            Muedif_out(ii)  = Muedif; 
            bmin_out(ii)    = bmin; 
            bmax_out(ii)    = bmax; 
            b_hat_out(ii)   = b_hat; 
            V_out(ii)       = V; 
 
    
   %%%%%%%%%%%%%%%%% ODE Solver 
%%%%%%%%%%%%%%%%%%%% 
            [T, X] = ode45('states2',[0,tspan],x); 
            x = X(length(X), [1,2]); 
    
            x2 = x(2); 
            Lamda = 1-x(1)/x(2);   
 
            Lamda   = 1-x(1)/x(2); 
            if (Lamda > 0.5) 
                Lamda = 0.5; 
            end 
     
            Vv = x(1)*Rw; 
            Fv  = c*Vv^2;       % wind drag force   
 
            bmin    = minn*(1-Lamda)*Ke/(Ra*Jw*x(2)); 
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            bmax    = maxx*(1-Lamda)*Ke/(Ra*Jw*x(2)); 
            b_hat   = sqrt(bmin*bmax); 
%    b_hat = 1; % for debuging    
%    Beta    = sqrt(bmax/bmin); 
 
            Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2);  % 
adhesion/friction coef. 
%             Mue_hat = 0.052; 
%   Mue_hat = Mue;   %  for debuging  
Mue_hat = -9546.3*Lamda.^10 + 50170*Lamda.^9 - 1.1328e+005*Lamda.^8 + … 
1.4366e+005*Lamda.^7 - 1.1227e+005*Lamda.^6 + 55813*Lamda.^5 - … 
17584*Lamda.^4 + 3385.6*Lamda.^3 - 367.85*Lamda.^2 + 19.217*Lamda.^1 + … 
0.14133; 
 
            Muedif = Mue-Mue_hat; 
 
 
            f_hat   = [Fv/(mv*Rw*x(2)) - (1-Lamda)*Rw/(Jw*x(2)) - (1-
Lamda)*K^2/(Ra*Jw*x(2))] - [nw*Nv/(mv*Rw*x(2)) + (1-
Lamda)*Rw*Nv/(Jw*x(2))]*Mue_hat; 
 
% F   = abs(f_hat - f); 
          F   = abs([(Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))] * (Mue-… 
Mue_hat)); 
% F = 0;  % for debuging 
            s=Lamda-Lamda_d; 
    
            u_hat = (-f_hat+0); %Lamda_d_dot);  %  /b_hat is taken care of in 'u=' 
 
            K  =  Beta*(F+N) + (Beta-1)*abs(u_hat);  
     
            if (abs(s) < Phi) 
                sat = s/Phi; 
            else 
                sat = sign(s); 
            end 
            u = 1/b_hat*(u_hat - K*sat); 
    
%     u = 1/b_hat*(u_hat - K*sign(s));   
 
            PerVolt = u/1023;                   % Percent Voltage to motor 
            V = PerVolt * Volts;                % actual voltage supplied to motor 
            if (V > 12) 
                V = 12; 
            end 
            if (V < -12) 
                V = -12; 
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            end 
 
                Error1 = (s)^2; 
                if (ii > 1) 
                    Error2 = ((V_out(ii) - V_out(ii-1)) / Time)^2; 
                else 
                    Error2 = ((V_out(ii) - 0) / Time)^2; 
                end 
                Error = 0.3*Error1 + 0.7*Error2; 
                Error_Sum = Error_Sum + Error; 
 
            %%%%%  If erro already over 3 no need to continue calculating error %%%% 
            if (isnan(Error_Sum) == 1)   
                Error_Over = 1 
                break; 
            end 
             
        end 
        New_Error = Error_Sum/ii;                   
                       
   if (((rand < exp((Curr_Error-New_Error)/temp)) | ((New_Error-Curr_Error) < … 
0)) & Error_Over == 0), % accept it! 
 
            Curr_Error = New_Error 
   minE = min(minE, Curr_Error); 
   maxE = max(maxE, Curr_Error); 
          
            if Curr_Error < Lowest_Error, 
                Lowest_Error = Curr_Error    
                save LowError1 
            end 
            if Curr_Error > Highest_Error, 
                Highest_Error = Curr_Error 
                save HighError1 
            end 
  end 
        Error_Over = 0;     % resets too high error value indicator 
 
        LcaLitr = LcaLitr + 1; 
 end 
 
 % Update plot 
 
     
 % Print information in command window  
 fprintf('temp. = %f\n', temp); 
 fprintf('Curr_Error = %f\n', Curr_Error); 
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 fprintf('[minE maxE] = [%f %f]\n', minE, maxE); 
 fprintf('[LcaLitr TempItr] = [%d %d]\n\n', LcaLitr, TempItr); 
 % Lower the temperature 
 temp = temp*TempRatio; 
    % Increment trial count 
    TempItr = TempItr + 1; 
     
    rand('state',sum(100*clock))  % Resets it to a different state each time. 
 
end 
 
fprintf('Compute Time = %f\n', toc); 
   
 
save AnnealResult1 
 
        N        
        Phi     
        minn    
        maxx   
        Beta
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Appendix J 

Robot Car Control Code 
 
#include <pic18.h> 
#include <stdlib.h> 
 
#include <math.h> 
 
unsigned char RerEnc; 
unsigned char FrtEnc; 
unsigned int Pwr; 
unsigned int LstFrt; 
unsigned int LstRer; 
float x1, x2, Vv, K, Mue, Lamda, Fv, u_hat, s, bmin, bmax, b_hat, Mue_hat, f_hat, F;  signed int sgnS; 
 
float u = 1023.0; 
float Temp1 = 0.0; 
float Temp2 = 0.0; 
float Temp3 = 0.0; 
float Temp4 = 0.0; 
float Temp5 = 0.0; 
float Temp6 = 0.0; 
float Temp7 = 0.0; 
float Muedif = 0.0; 
float Ke        = 0.0159;  
float Ra        = 1.506;    
float MuePmax = 0.94; 
float MuePmin = 0.008; 
float Lamda_Pmax = 0.3; 
float Lamda_Pmin = 0.008; 
float MLmax  = 0.0; 
float MLmin  = 0.0; 
float LPmax  = 0.0; 
float LPmin  = 0.0; 
float MLP = 0.0; 
float LmP    = 0.0; 
float N  = 0.2; // Etta 
float minn   = 0.9;   
float maxx = 1.1;  //  7.3130;  1.1; 
float Beta   = 1.4;   
float MueP  = 0.0745; //peek adhesion/friction coef. 
float Lamda_P  = 0.1551;   //peek Lamda on curve 
float Jw   = 0.1088; //0.5*m*Rw^2; inertia (Kg*m^2) 
float Fw  = 0.4507; //wheel viscous friction (N*Sec/Meter) ?0.51 
float Nv   = 1.3009; //(N)  normal force of vehicle
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float Lamda_d = 0.05;  //desired path 
float c  = 0.005;  //wind drag force coeficient 
float Rw  = 0.0320548;  //radius of rear wheel 
unsigned int nw = 2;  //number of driving wheels 
float mv  = 1.6516; //mass of vehicle (Kelo-grams)   
float Time = 0.005;   // (256-TMR0[value])*Prescale[value-Option Reg]*200nSec = approx  

//timer3 for interrupt time 
/* service routine for timer 0 interrupt */ 
 
void interrupt isr(void) 
{ 
// unsigned int tics = TMR0; 
 
 TMR3H = 0x3C; //  

TMR3  = 0xF3;   //For reseting Timmer 3 value 
 
  if (LstRer > TMR0) 
   RerEnc = 65535-LstRer + TMR0;  //remember to start counting from '0' 
  else 
   RerEnc = TMR0 - LstRer; 
  LstRer = TMR0; 
 
  if (LstFrt > TMR1) 
   FrtEnc = 65535-LstFrt + TMR1; 
  else 
   FrtEnc = TMR1 - LstFrt;  
  LstFrt = TMR1; 
/**********************************************/ 
// x1 = vehicle's angular velocity 
// x2 = driving wheel's angular velocity 
 

x1 = FrtEnc*6.283185/256.0/Time*1.09076469253;  //=Vv/Rw = Wv = #tics*  
//(6.28[rad/rev] / 256[tics/rev]) / elapsed time [second] 

  x2 = RerEnc*6.283185/256.0/Time; //  =Ww 
 
 if  (RerEnc>15)  // on 12 volts after Robot car has started moving 
 {  
  Lamda = 1-x1/x2; 
 
  Temp1 = 1-Lamda; 
  Temp2 = Jw*x2; 
  Temp7 = Temp2*Ra; 
  Temp3 = Temp1*Ke/Temp7;   
 
  Vv = x1*Rw;    // radius of wheel (Rw): Vv = x1(Wv)*Rw 
  Fv = c * Vv*Vv;    //% wind drag force   
   
 // b = (1-Lamda)/(Jw*x(2)); 
  bmin = minn*Temp3; 
  bmax = maxx*Temp3; 
  b_hat= sqrt(bmax*bmin); 
  
/**************************************************/ 
  Temp7 = Lamda*Lamda; 
  Temp3 = MLmax*Lamda; 
  Temp4 = MLmin*Lamda; 
  Temp5 = LPmax+Temp7; 
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  Temp6 = LPmin+Temp7;   
 
 //Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2);  % adhesion/friction coef. 
  Mue = (MLP*Lamda)/(LmP+Temp7); 
 

Mue_hat = (Temp3/Temp5 + Temp4/Temp6)/2 + 0.001; 
/***************************************************/ 
  
  Temp4 = mv*Rw*x2; 
  Temp5 = (nw*Nv)/Temp4; 
  Temp3 = Temp5 + Temp1*Rw*Nv/Temp2; 
 
 f_hat = (Fv/Temp4 - Temp1*Rw*Fw/Temp2 - Temp1*Ke*Ke/(Ra*Jw)) - Temp3 * Mue_hat;  
  Muedif    = (Mue-Mue_hat);  // reuse bmin to save memory space 
 
  F   = fabs(Temp3 * Muedif); 
 
     s = Lamda - Lamda_d; //s=Lamda-Lamda_d; 
  

//u_hat   = -f_hat*[(Fv-Nv*nw*Mue)/(mv*Rw*x(2)) - ((1-Lamda)*Fw*Rw)/(Jw*x(2)) –  
//((1-Lamda)*Rw*Nv*Mue)/(Jw*x(2))]; 

  u_hat = -f_hat; 
 
//  K = F + N; 
 
  K  =  Beta*(F+N) + (Beta-1)*fabs(u_hat);  
  if (s>0) 
   sgnS = 1; 
  if (s<0) 
   sgnS = -1; 
 
  u = 1/b_hat*(u_hat - K*sgnS);  // on 12 volts 
 } 
 if (RerEnc < 16) 
  u = 1023; 
 
  if (u>=0) 
  {  

PORTD = 0x08;  // Bit RD2 = 0 for forward direction when Y1 on  
// MUXconnected to IN1 on H-bridge 

   if (u > 1023) 
    u = 1023; 
  } 
  else 
  {  
   PORTD = 0x0C;  // Bit RD2 = 1 for reverse direction 
   if (u < -1023) 
    u = 1023; 
   else 
    u = -u; 
  } 
  Pwr = u;  //re-use "FrtEnc" to convert "u" to an integer 
  CCPR2L  = Pwr>>2; // & 1020; 
  CCP2CON = 0xf ^ (Pwr<<4); 
 
//  PORTB   = RerEnc;  // Eight bit value when Xmittng to DCC 
     // OR // 
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  PORTB   = CCPR2L;  // Control value u = 10 bit value 
  PORTD   = PORTD + (Pwr<<4); 
 
     TMR3IF = 0;   /* reset Timmer 3 flag  PIR2<1>*/ 
 } 
void main(void) 
{ 
// Direction of motor & to turn on data collection  
 TRISE = 0x00;  // put port D in standard I/O 
 PORTD = 0x08;  // set port RD2 as LOW for forward direction 
       // and port RD3 HIGH to turn test platform output ON 
 TRISD = 0x00;  // set port D as output 
//  10 bit PWM value output  (8 upperbits on PORTB and lower 2 bits on PORTD<7,6> 
 PORTB = 0x00;  // set port RB as 0's 
 TRISB = 0x00;  // set port B as output 
//  PWM for TMR2 
 PR2     = 0xFF;  // PWM period 
 CCPR2L  = 0x55;  // Upper 8 bits of 10 bit PWM duty cycle 
 
 T2CON   = 0x05;  // Set the TMR2 prescale value & enable Timer2 0x05 = (9.77kHz) 
 CCP2CON = 0xFF;  // Lower 2 bits of 10 bit PWM duty cycle & Put in PWM Mode  
   TRISC   = 0x01;  // Make CCP2/RC1 pin an output for the PWM2 signal 
//  Timmer 0 Counter 
 T0CON = 0xA8;  ///8= no prescaler   
// Timmer 1 Counter 
 T1CON = 0x87; 
// Timmer 3 Interupt on Over Flow 
 T3CON = 0x85;  // B5?  85 = no prescaler 
 
 TMR0H = 0; 
 TMR0  = 0; 
 
 TMR1H = 0; 
 TMR1  = 0; 
 
 TMR3H = 0x3C;   // 5ms = 3CF3;  
 TMR3  = 0xF3; 
 
 INTCON  = 0xC0;  // Enable interupt 
  
 MLP    = 2*MueP*Lamda_P; 
     LmP     = Lamda_P*Lamda_P; 
 MLmax  = 2*MuePmax*Lamda_Pmax; 
 MLmin  = 2*MuePmin*Lamda_Pmin; 
 LPmax  = Lamda_Pmax*Lamda_Pmax; 
 LPmin  = Lamda_Pmin*Lamda_Pmin; 
 
     FrtEnc = 0; 
 RerEnc = 0; 
 
 PIE1 = 0x00; 
 PIE2 = 0x02;  // Enables TMR3 Overflow Interrupt Enable bit 
 
 CCPR2L  = 0xFF;  // Upper 8 bits of 10 bit PWM duty cycle 
 
   while (1)   
   {  /* infinite loop */ 
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 NOP(); 
   }  
} 
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Appendix K 

Matlab Continous Simulation Code  
 
% By:  Mark Morton 
% Sliding Mode Control Simulation for Tracktion Control  
 
clc; 
clear all; 
close all; 
 
% digits(7); 
 
global Mue Fv mv nw Nv Rw Fw Jw Ke V Ra x2 
 
Rfw = 1.20175; 
Rrw = 2.524; 
Ratio = Rrw/2.2035; 
 
MueP    = 0.0745;   
Lamda_P = 0.1551;  
Lamda_d = 0.05;  %0.0018;  % desired Lamda from simulated annealing      % desired path 
c       = 0.005; %0.022;   % wind drag force coeficient 
 
mv      = 1.6516;        % mass of car (Kg) 
nw  = 2;          % number of driving wheels 
Nv  = 1.3009        % normal force to ground (N) 
Rw  = 0.0320548;         % radius of wheel (Meters) 
Fw  = 0.4507;       % wheel viscous friction (N*Sec/Meter) 
Jw  = 0.1088;      %0.5*32.0*0.02659^2              %0.5*m*Rw^2; % inertia (Kg*m^2) 
 
Ke = 0.0159;  %6.7831e-3;      % 
Ra = 1.506;   %5;  %1.506;           % Armeture resistance 
Volts = 12.0;       % Maximum voltage supplied to system (aka: battery) 
 
N    = 0.2; 
minn = 0.9; 
maxx = 1.1; 
Beta = 1.4; 
 
tspan = 0.005;       % initialize step size 
Time = tspan; 
 
x(1) = 56.24; %10 
x(2) = 83.45; %17 
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x2 = x(2);  % value sent to ODE45 Function (rear wheel value) 
 
Lamda   = 1-x(1)/x(2); 
 
Vv      = x(1)*Rw;     %initial velocity 
Fv  = c*Vv^2;       % wind drag force 
 
   bmin    = minn*(1-Lamda)*Ke/(Ra*Jw*x(2)); 
   bmax    = maxx*(1-Lamda)*Ke/(Ra*Jw*x(2)); 
   b_hat   = sqrt(bmin*bmax); 
 
Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2);  % adhesion/friction coef.  (THE  

          %INPUT for the smallest curve) 
%%%% 6th degree polynomial 
Mue_hat = -3.554*Lamda.^6 + 11.65*Lamda.^5 +... 
      -14.974*Lamda.^4 + 9.5802*Lamda.^3 +... 
      -3.1673*Lamda.^2 + 0.45142*Lamda.^1 +... 
      0.031374;  
 
Muedif = Mue-Mue_hat; 
 
 
f_hat   = [Fv/(mv*Rw*x(2)) - (1-Lamda)*Rw*Fw/(Jw*x(2)) - (1-Lamda)*Ke^2/(Ra*Jw)] - 
[nw*Nv/(mv*Rw*x(2)) + (1-Lamda)*Rw*Nv/(Jw*x(2))]*Mue_hat; 
 
% F   = abs(f_hat - f); 
F   = abs([(Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))] * (Mue-Mue_hat)); 
% F = 0;  % for debuging 
 
s=Lamda-Lamda_d; 
    
u_hat = (-f_hat+0); %Lamda_d_dot);  %  /b_hat is taken care of in 'u=' 
 
K  =  Beta*(F+N) + (Beta-1)*abs(u_hat);    
    
       u = 1/b_hat*(u_hat - K*sign(s)); 
 
PerVolt = u/1023;                   % Percent Voltage to motor 
V = PerVolt * Volts;                % actual voltage supplied to motor 
  
if (V > 12) 
    V = 12; 
end 
if (V < -12) 
    V = -12; 
end 
 
Lam_dot = [(Fv-nw*Nv*Mue)/(mv*Rw*x(2)) - (1-Lamda)*Rw*((Fw+Nv*Mue)/(Jw*x(2))) - (1- …  

Lamda)*Ke^2/(Ra*Jw)] + (1-Lamda)*Ke/(Ra*Jw*x(2)) * V; 
 
 
tic;  
 
for ii = 1:200000, 
   t(ii) = ii*tspan; 
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   %  PLOT VAR 
   S_out(ii)       = s; 
   Lam_out(ii)     = Lamda; 
   Lam_dot_out(ii) = Lam_dot; 
   U_out(ii)       = u; 
   x_out(ii,:)     = x;  
   Vv_out(ii)      = Vv; 
   Mue_out(ii)     = Mue; 
   Fv_out(ii)      = Fv; 
   Mue_hat_out(ii) = Mue_hat; 
   f_hat_out(ii)   = f_hat; 
   F_out(ii)       = F; 
   K_out(ii)       = K; 
   Muedif_out(ii)  = Muedif; 
   bmin_out(ii)    = bmin; 
   bmax_out(ii)    = bmax; 
   b_hat_out(ii)   = b_hat; 
   V_out(ii)       = V; 
 
%%%%%%%%%% ODE Solver %%%%%%%%%%%%%%%%%%%% 
   [T, X] = ode45('states2',[0,tspan],x); 
   x = X(length(X), [1,2]); 
    
   x2 = x(2); 
   Lamda   = 1-x(1)/x(2); 
     
   Vv = x(1)*Rw; 
   Fv  = c*Vv^2;       % wind drag force   
 
   bmin    = minn*(1-Lamda)*Ke/(Ra*Jw*x(2)); 
   bmax    = maxx*(1-Lamda)*Ke/(Ra*Jw*x(2)); 
   b_hat   = sqrt(bmin*bmax); 
 
    Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2);  % adhesion/friction coef. 
 
%%% 6th degree polynomial 
Mue_hat = -3.554*Lamda.^6 + 11.65*Lamda.^5 +... 
      -14.974*Lamda.^4 + 9.5802*Lamda.^3 +... 
      -3.1673*Lamda.^2 + 0.45142*Lamda.^1 +... 
      0.031374;  
 
   f_hat   = [Fv/(mv*Rw*x(2)) - (1-Lamda)*Rw*Fw/(Jw*x(2)) - (1-Lamda)*Ke^2/(Ra*Jw)] -  …  
 [nw*Nv/(mv*Rw*x(2)) + (1-Lamda)*Rw*Nv/(Jw*x(2))]*Mue_hat; 
 
% F   = abs(f_hat - f); 
   F   = abs([(Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))] * (Mue-Mue_hat)); 
 
    s=Lamda-Lamda_d; 
    
    u_hat = (-f_hat+0); %Lamda_d_dot);  %  /b_hat is taken care of in 'u=' 
 
    K  =  Beta*(F+N) + (Beta-1)*abs(u_hat);  
     
          u = 1/b_hat*(u_hat - K*sign(s)); 
 
    PerVolt = u/1023;                   % Percent Voltage to motor 
    V = PerVolt * Volts;                % actual voltage supplied to motor 
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    if (V > 12) 
        V = 12; 
    end 
    if (V < -12) 
        V = -12; 
    end 
    
    Lam_dot = [(Fv-nw*Nv*Mue)/(mv*Rw*x(2)) - (1-Lamda)*Rw*((Fw+Nv*Mue)/(Jw*x(2))) - (1- …  

Lamda)*Ke^2/(Ra*Jw)] + (1-Lamda)*Ke/(Ra*Jw*x(2)) * V; 
    
    if (mod(ii,1000) == 1) 
         Lamda-Lamda_d 
    end 
 
end 
 
    save Simulation1 
toc 
 
figure; 
plot(t,S_out); 
title('S'); 
xlabel('Time (Seconds)'); 
ylabel('s'); 
 
figure; 
plot(t,Lam_out); 
title('Lamda'); 
xlabel('Time (Seconds)'); 
ylabel('Lamda'); 
 
figure; 
plot(t,V_out); 
title('Volts'); 
xlabel('Time (Seconds)'); 
ylabel('V'); 
 
figure; 
plot(t,bmin_out) 
title('bmin') 
xlabel('Time (Seconds)'); 
ylabel('bmin'); 
 
figure; 
plot(t,bmax_out) 
title('bmax') 
xlabel('Time (Seconds)'); 
ylabel('bmax'); 
 
figure; 
plot(t,b_hat_out) 
title('b_Hat') 
xlabel('Time (Seconds)'); 
ylabel('b_Hat'); 
  
figure; 
plot(t,U_out); 
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title('Percent Control Value U'); 
xlabel('Time (Seconds)'); 
ylabel('u'); 
 
figure; 
plot(t,x_out(:,1)); 
title('Front Wheel Angular Velocity'); 
xlabel('Time (Seconds)'); 
ylabel('X_1'); 
 
figure; 
plot(t,x_out(:,2)); 
title('Rear Wheel Angular Velocity'); 
xlabel('Time (Seconds)'); 
ylabel('X__2'); 
 
figure; 
plot(x_out(:,2),x_out(:,1)); 
title('X_2 vs X_1'); 
xlabel('X_2'); 
ylabel('X_1'); 
 
figure; 
plot(t,Vv_out); 
title('Linear Velocity'); 
xlabel('Time (Seconds)'); 
ylabel('Vv (Meters/second)'); 
 
figure; 
plot(t,Mue_out); 
title('Mue'); 
xlabel('Time (Seconds)'); 
ylabel('Mue'); 
 
figure; 
plot(t,Fv_out); 
title('Fv'); 
xlabel('Time (Seconds)'); 
ylabel('Fv'); 
 
figure; 
plot(t,Mue_hat_out); 
title('Mue_Hat'); 
xlabel('Time (Seconds)'); 
ylabel('Mue_Hat'); 
 
figure; 
plot(t,f_hat_out); 
title('f__hat'); 
xlabel('Time (Seconds)'); 
ylabel('f__hat'); 
 
figure; 
plot(t,F_out); 
title('Maximum boundary F'); 
xlabel('Time (Seconds)'); 
ylabel('F'); 
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figure; 
plot(t,K_out); 
title('Gain K'); 
xlabel('Time (Seconds)'); 
ylabel('K'); 
 
figure; 
plot(t,Muedif_out); 
title('Difference betweeen Mue & Mue__hat'); 
xlabel('Time (Seconds)'); 
ylabel('Muedif'); 
 
figure; 
plot(Lam_out, Lam_dot_out); 
title('Sliding Surf'); 
xlabel('Lamda'); 
ylabel('Lamda^') 


