

Traction Control Study for
a Scaled Automated Robotic Car

By

Mark A. Morton

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University

In partial fulfillment of the requirements for the degree of

Master of Science
in

Electrical Engineering

Dr. Pushkin Kachroo, Chair
Dr. William Saunders

Dr. Daniel Stilwell

May 5, 2004
Blacksburg, Virginia

Keywords: sliding mode control, automated robotic car, simulated annealing, traction
control, nonlinear control, hybrid model

Virginia Polytechnic Institute
and State University

Traction Control Study for a Scaled Automated Robotic Car

Mark A. Morton

(ABSTRACT)

This thesis presents the use of sliding mode control applied to a 1/10th scale robotic car to
operate at a desired slip. Controlling the robot car at any desired slip has a direct relation
to the amount of force that is applied to the driving wheels based on road surface
conditions. For this model, the desired traction/slip is maintained for a specific surface
which happens to be a Lego treadmill platform. How the platform evolved and the robot
car was designed are also covered.

To parameterize the system dynamics, simulated annealing is used to find the minimal
error between mathematical simulations and physical test results. Also discussed is how
the robot car and microprocessor can be modeled as a hybrid system. The results from
testing the robot car at various desired percent slip show that it is possible to control the
slip dynamics of a 1/10th scale automated robotic car and thus pave the way for further
studies using scaled model cars to test an automated highway system.

 iii

Acknowledgments

If children had teachers like Dr. Puskin Kachroo, everyone would aspire and strive for
his/her full potential in everything they do. It has been with his great enthusiasm and
wealth of knowledge that this author has been reenergized to learn more than humanly
possible. Without Dr. Kachroo’s guidance, patients, and inspiration this thesis would not
have been possible; and this author would have missed out on much.

Other sources of great intelligence and inspiration have been Patricia Mellodge, Eric
Moret, and Charles Lepple. They have given and shared seemingly subtle but truly
important ideas and understanding, thank you.

To have even gotten to this point would not have been possible without the events God
has set in motion and for which I am eternally grateful. I am also thankful for an
incredibly supportive and loving family. Of which my wife, Siyuan Morton, has been the
most incredibly supportive person I could ever have prayed. Without her I would be lost
in a life without purpose and meaning /without life.

 iv

Contents

1 Introduction 1

1.1 MOTIVATION .. 1

1.2 PREVIOUS RESEARCH ... 2

1.3 HIGHLIGHTS AND OUTLINE OF THESIS.. 3

2 Dynamics, Mathematical Model, and Control 4

2.1 BACKGROUND OF DYNAMICS ... 4

2.2 MATHEMATICAL MODEL.. 6

2.3 CONTROL LAW DESIGN .. 9

3 Vehicle and Circuit Construction 13

3.1 VEHICLE CHIP, COMPILER, AND CODE DEVELOPMENT .. 13

3.2 H-BRIDGE ... 15

3.3 VEHICLE CIRCUIT ... 15

3.4 DATA COLLECTION CIRCUIT AND CODE DEVELOPMENT .. 16

4 Test Platform Dvelopment 21

4.1 INITIAL PLATFORM ... 21

4.2 DIFFERENT PLATFORM SETUPS... 22

4.3 FINAL PLATFORM SETUP .. 24

 v

5 Code and Development of Parameters 25

5.1 CONTROL CODE AND ANALYSIS ... 25

5.2 LEADER CODE AND ANALYSIS ... 27

5.3 SIMULATED ANNEALING .. 32

6 Results 36

6.1 ADJUSTMENTS OF CONTROL OUTPUT ... 36

6.2 TEST AND MEASUREMENT RESULTS ... 39

7 Hybrid Model 45

7.1 HYBRID MODEL ANALYSIS... 45

8 Conclusions and Future Work 50

8.1 CONCLUSIONS .. 50

8.2 FUTURE WORK ... 50

A Varibles and Units 52

B Robot Car Follower Code 53

C Parts Lists 55

D Matlab Data Collection Code 57

E Data Collection Circuit (DCC) Code 59

F Matlab Code for 3-D Plots of Control Outputs 62

G Leader Code 64

 vi

H Matlab Mean Code 67

I Matlab Simulated Annealing Code 70

I.1 Final Simulated Annealing Code 70

I.2 Earliest Simulated Annealing Code 73

I.3 Simulated Annealing Code to Find Gains 81

J Robot Car Control Code 89

K Matlab Continous Simulation Code 94

 vii

List of Figures

1.1 Traction-Slip curve for various road conditions [2] .. 2

2.1 Forces acting on a tire in a linear direction [1, 3] .. 5

2.2 ()λµ curve [3] ... 5

2.3 ()λµ curve for deceleration and acceleration [4] .. 6

2.4 ()λµ curve for a full size car with pneumatic tires [4].. 10

2.5 Generated from maximum and minimum ranges of Equation 2.15......................... 11

3.1 Picture of left front wheel .. 14

3.2 H-bridge [8] ... 15

3.3 Robot car control circuitry ... 16

3.4 Data collection circuit diagram.. 17

3.5 Block wiring diagram of robot car and data collection circuits............................... 18

3.6 Result of data collected at 1ms intervals using the Follower Code 20

4.1 Initial test setup using wheels on one side ... 22

4.2 Updated test platform using conveyor belts... 23

4.3 Reduced friction test platform design with Data Collection Circuit (DCC) added . 23

4.4 Final test platform setup... 24

5.1 3-D generated output of control variable from possible range of inputs 25

5.2 Possible Input/Output system response ... 26

 viii

5.3 Rear wheel encoder count data collected from car. ... 28

5.4 Rear wheel encoder data collected by Data Collector before shifting data 28

5.5 Difference between Car’s rear wheel values and Data Collector’s values before

shift ... 29

5.6 Difference between Car’s Rear Wheel values and Data Collector’s values after

shift .. 29

5.7 Method for taking mean value of data points .. 30

5.8 Rear Encoder plot from car, and DCC before shifting DCC data, followed by Rear

Encoder values of Car and DCC after averaging... 30

5.9 Difference of mean values before the rear encoder data was shifted 31

5.10 Rear Encoder plot from car, and DCC after shifting DCC data, followed by Rear

Encoder values of Car and DCC after averaging... 31

5.11 Difference of mean values after the rear encoder data was shifted 32

5.12 Error between shifted and un-shifted mean curves.. 32

5.13 Measured and calculated results of rear wheel velocities.. 34

6.1 (a) 3-D plot with dλ =0.1 (b) dλ =0.1 from above (c) dλ =0.01 from above 37

6.2 λ and controller voltage plots from continuous simulation.................................... 37

6.3 dλ =0.01 from above with adjustment to center the channel 38

6.4 Front, rear mean encoder data, meanλ results, and rawλ results for dλ =0.1 39

6.5 Zoomed in plot of mean λ results for dλ =0.1.. 40

6.6 Raw PWM voltage car output for dλ =0.1... 40

6.7 (a) Raw measured front & rear velocities (b) Mean measured front & rear velocities

for dλ =0.1.. 41

6.8 Front, rear mean encoder data, meanλ results, and rawλ results for dλ =0.05 41

6.9 Zoomed in plot of mean λ results for dλ =0.05.. 42

 ix

6.10 Raw PWM voltage output from robot car for dλ =0.05... 42

6.11 (a) Raw measured front & rear velocities (b) Mean measured front & rear velocities

for dλ =0.05.. 43

6.12 Results from adjusted simulation with dλ =0.05 ... 44

6.13 Results from adjusted simulation with dλ =0.05 ... 44

7.1 Hybrid model example of a Tank System [14].. 46

7.2 Timeline of discrete system on robot car’s processor.. 47

7.3 Hybrid representation of the robot car ... 48

 x

List of Tables

5.1 SA Results... 34

5.2 SA Results... 34

C.1 H-Bridge Parts List.. 55

C.2 Data Collector's Parts List ... 55

C.3 Robot Car's Control Circuit Parts List .. 56

 1

Chapter 1

Introduction

Full size cars are now beginning to have traction control available on more and more
vehicles; however, can these same concepts be applied to scaled vehicles? To best
answer this question, a scaled model needs to be tested.

1.1 Motivation

Since the advent of the Model-T by Ford, buying vehicles has become increasingly more
accessible for the general public. Inevitably, with an increased population of people and
thus vehicles, the highways and roads are becoming increasingly congested with little or
no room to expand. There is also the danger to road crews when the infrastructure needs
repair. One possible solution to improve safety and limits on the ability to expand roads
would be to have an automated system of robotic cars on the roads [1]. Such a system
could potentially allow for an improved flow of vehicles, improved fuel efficiency,
improved safety, and the list goes on [2]. An autonomous system of cars on roads may
meet some opposition as people reluctantly give up control of their cars. However,
automation is already a reality as people want safety features such as power brakes,
power steering, antilock breaking, traction control, anti-slip, cruise control, and now
adaptive cruise control. All these features build up to the next logical step of building an
automated system of cars. Before implementing full-scale automated roads, concepts and
reliability need to be tested to ensure public safety. To perform such tests on full-scale
cars and roads would be too costly; therefore, scaled cars and roads need to be used. The
dynamics involved in a full size car are very complex and numerous. It is therefore best
to break the problem of testing and comparing the dynamics of a full size car to that of a
scaled car into manageable parts. One of the many important parts of automating a car is
the ability to control tire slip. To break the problem down even further, by controlling
tire slip in just a longitudinal direction, lateral stability will also be improved [1].
Therefore, this thesis covers the dynamic component of controlling wheel slip
implemented on a 1/10th scale robot car as a step towards modeling all the dynamics of
full size vehicles.

Chapter 1. Introduction 2

1.2 Previous Research

Much research has been done to analyze the dynamics of vehicles and the components
needed for acceleration. To control acceleration, the dynamics involved must first be
understood. Looking at Figure 1.1 different surfaces have different coefficients of
friction (µ) verses percent slip (λ). The challenge becomes adjusting to the specific
traction/slip curves (based on road and tire conditions) and controlling/maintaining a
specific amount of traction/slip. More details of the dynamics involved are covered in
Chapter 2. For the scaled model implemented here only one specific surface was used in
order to reduce the initial order of complexity. The surface used is covered in Chapter 4.

Wheel Slip (λ)

Fr
ic

tio
n

C
oe

ffi
ci

en
t (

µ)

1.2

0 1.0

Asphalt

Wet Asphalt

 Snow

Ice

0.80.60.4

0.4

0.2

0.6

0.8

0.2

1.0

Figure 1.1: Traction-Slip/ ()λµ curve for various road conditions, modeled from [2]

Work has been done to model the controlled slip of a vehicle as a continuous system [1];
however, a more accurate model would include the discrete components such as the

Chapter 1. Introduction 3

processor(s). Since the scaled implemented system will actually be a hybrid of
continuous and discrete components/systems, the hybrid model concept will be discussed.

1.3 Highlights and Outline of Thesis

This thesis is organized as follows:

• Chapter 2 covers the dynamics, mathematical model and control law design.

• Chapter 3 will explain the vehicle and circuit constructions.

• Chapter 4 shows the test platform construction used to test the robot car.

• Chapter 5 explains the development of the programs and dynamic parameters.

• Chapter 6 covers the final data collection and results.

• Chapter 7 discusses how the system is best represented as a hybrid model.

• Chapter 8 closes with conclusions and future work.

 4

Chapter 2

Dynamics, Mathematical Model, and Control

Chapter 2 first explains some of the dynamics of tire slip followed by the mathematical
equations used and finishes with an explanation of the control law used. These equations
or a slight variation is what will be used later by the microprocessor on the robot car.

2.1 Background of Dynamics

As my grandfather used to say, “There are two things between you and the road, so don’t
skimp on them,” those two things were shocks and tires. For this 1/10th scale model there
was little to no suspension so these complex dynamics were ignored. Observations of the
other major forces exerted on a pneumatic type tire accelerating in a linear direction are
represented by Figure 2.1.

Now as a tire begins to accelerate, it deforms [3]. It is during this time that the ()λµ
curve is linear as seen in Figure 2.2 region O to A. As the tire stops deforming and
tractive effort/engine torque increases, more of the tire tread begins to slip resulting in the
nonlinear region from A to B. It is to the right of region B where too much slip occurs
and traction is lost. For a pneumatic tire on a hard surface, the maximum acceleration is
achieved when there is 15 to 20% slip according to [3]. To put traction another way and
greatly simplifying the dynamics of acceleration, when a vehicle accelerates, force is
applied from the engine to the tires which react with the road surface. If the force
between the engine and the tires is greater than the force of friction between the tires and
the road surface, the tire will begin to slip excessively (skid-for breaking). Figure 2.3
shows the complete ()λµ curve for breaking and accelerating. In reference [3],
longitudinal slip is defined mathematically as

−=

WW

V

R
V

Slip
ω

λ 1)((2.1)

where VV is the linear velocity of the wheel/car, Rw is the radius of the tire, and Wω is the
angular velocity of the driving wheels. In [1],λ (slip) was used as the variable to be

Chapter 2. Continuous Simulation and Implementation 5

 5

controlled because it has a direct relation to tractive effort (µ). In other words by
maintaining a desired slip on a specific surface, the desired torque (input) can be
determined.

Nv

Rear Wheel

Test Platform

(mv)*(Gravity)

Te

Tb

Rw

Ft + Fw

Figure 2.1: Forces acting on a tire in a linear direction, modeled from [1, 3]

Figure 2.2: ()λµ curve, modeled from [3]

Chapter 2. Continuous Simulation and Implementation 6

 6

Acceleration Region

Deceleration Region

Linear Portion
of Curve

Wheel Slip (?)

-1 10

0

1
Ad

he
si

on
 C

oe
ffi

ci
en

t (
µ)

Peak

Figure 2.3: ()λµ curve for deceleration and acceleration, modeled from [4]

2.2 Mathematical Model

Using the vehicle dynamics developed in the dissertation [1], the mathematical model
was developed. For definitions of variables and their units, refer to Appendix A. The
states of the system are as follows:

W

V
v R

V
x ==ω1 (2.2)

Wx ω=2 (2.3)

In the equations above, 1x represents the angular velocity of the front wheels and 2x
represents the angular velocity of the rear wheels. For acceleration (as opposed to
breaking) λ (representing percent slip) is as follows:

Chapter 2. Continuous Simulation and Implementation 7

 7

()
2

1

2

12 1
x
x

x
xx

W

VW −=
−

=
−

=
ω

ωω
λ (2.4)

2

1

2

1 11
x
x

x
x

=−⇒−= λλQ (2.5)

Appling Newton’s Law to Figure 2.1, Ft is determined by the equation

µ×= Vt NF (2.6)

Using Newton’s Law again and accounting for wind drag, the equations for linear and
angular velocity were developed. The derivatives of these velocities were then used in
Equations (2.9) and (2.10) where the dots over the variables indicate differentiation with
respect to time.

V

VtW
V m

FFn
V

−
=

•

 (2.7)

W

WWtWe
W J

FRFRT −−
=

•

ω (2.8)

In order to have the states in a form where the control variable was present, the derivative
of x1 and x2 was taken.

WV

VVW

V

VtW

W

V
V

Rm
FNn

m
FFn

R
Vx

−
=

−
===

•
•• µ
ω1 (2.9)

 (Note: WF was ignored as it has little effect on the resulting dynamics because the front
wheel was assumed to not slip in order to determine the linear velocity of the car)

W

WWVWe

W

WWtWe
W J

FRNRT
J

FRFRT
x

−−
=

−−
==

•• µ
ω2 (2.10)

Again the aim was to control the amount/percent of slip on the rear wheels; therefore, the
derivative of λ was performed and put into the general form for a single-input dynamic
system, () () ()ubfx n xx += [1, 5, 6] for sliding mode control (the control algorithm used
to control percent slip is discussed in section 2.3). This yielded

() ()
e

WWWW

VW
W

WWV

VWV T
JJ

NF
R

Rm
NnF

ω
λ

ω
µ

λ
ω

µ
λ −

+

 +
−−

−
=

• 11 (2.11)

Here eT , torque provided by the engine of a petrol car, is the control variable. However
for the 1/10th scale model car, an electric motor was used. Therefore, the control variable

Chapter 2. Continuous Simulation and Implementation 8

 8

needs to be in terms of volts. Using the linear model of a motor, torque was expressed in
terms of volts (where V is in volts) by the following equation:

)(
a

We
ee R

KV
KT

ω−
= (2.12)

Substituting Equation 2.12 for torque in λ& gives

WV

VVW

Rm
FNn

x
−

=
µ

1&

W

WWtWe

J
FRFRT

x
−−

=2& : where µVt NF = :

 −
=

a

We
ee R

KV
KT

ω
 : 2xW =ω

W

WWVW
a

We
e

J

FRNR
R
KV

K
x

−−

 −

=

µ
ω

2&

()
2

12
2
2

2112

2

1 11
x

xx
x

xxxx
x
x

dt
d &&&&& −−

=
+−

=

−=

λ
λ

() () ()
V

JR
K

JR
K

J
NF

R
Rm

NnF

WWa

e

Wa

e

WW

VW
W

WWV

VWV

ω
λλ

ω
µ

λ
ω

µ
λ

−
+

 −
−

+
−−

−
=

11
1

2
& (2.13)

 f(λ) b(λ) u

It is important to understand that the microprocessor on the robot car gives desired
voltage in terms of a PWM signal or percent of maximum voltage available (this is
explained in subsequent chapters). Therefore, in computer simulations, the following
equation was used to view volts in terms of actual volts applied and not a percentage.

 ×= ableVoltsAvailuV
1023

 (2.14)

 Note: ‘u’ here is between ± 1023 which represents the range for the PWM signal.

Chapter 2. Continuous Simulation and Implementation 9

 9

2.3 Control Law Design

Since the dynamics of the ()λµ curve are nonlinear and the exact ()λµ curve for the
road surface is not known, sliding mode control was used. Sliding mode control is useful
for non-linear systems where the boundaries of the system may be known, but the exact
dynamics are not. In this system the range of the ()λµ curve is known, but the exact
curve for the road surface is not. In this part of the discussion, the actual control variable
V will be referred as u .

In sliding mode control, the sliding surface s represents the amount of error in what is
being controlled. What is trying to be controlled is the amount of slip (λ); therefore,

dss λλ −=: .

For the sliding mode control computer model, F and b were initially fixed and an actual
value ofµ was used in order to test and debug the simulation. Here F represents the

upper bounds of the absolute error between f and f̂ . Also, f comes from Equation 2.13

and f̂ is a best estimate of f.
.
In order to control the slip at a specific value, the ()λµ curve must be known for the road
surface. Using the function created in [4] represented here as Equation 2.15 an
approximate ()λµ curve can be generated, allowing λ& to be solved for and λ to be
controlled.

() 22

2

λλ

λλµ
λµ

+
=

p

pp (2.15)

The ranges of µ andλ were obtained from interpreting the plot below in Figure 2.4. The
ranges initially used were 5.00.0 ≤≤ λ , 92.022.0 ≤≤ Pµ and 4.01.0 ≤≤ Pλ where Pµ is
the peak value of µ and Pλ is the peak value of λ on the ()λµ curve.

Chapter 2. Continuous Simulation and Implementation 10

 10

Wheel Slip (λ)

A
dh

es
io

n
C

oe
ffi

ci
en

t (
µ)

1.0

0 1.0

Dry Pavement

Wet Asphalt

Unpacked Snow

Ice

Figure 2.4: ()λµ curve for a full size car with pneumatic tires, modeled from [4]

It is important to note that Equation (2.15), used to generate approximate adhesion
coefficient plots, loses accuracy asλ approaches 1.0 and according to [4], is best suited
in the range of 3.00 ≤≤ λ . Because the area where wheel slip was to be maintained was
approximately 5.00 ≤≤ λ , the equation should be acceptable. The nominal curve was
then fitted/approximated with a 6th order polynomial function. This function was then
shifted up slightly and used as µ̂ (see Figure 2.5). The result from Equation (2.15) was
assumed equal to the actualµ value of the road surface. These values were then used to

determine f̂ , f , and F . Again, f is determined from Equation (2.13).

Chapter 2. Continuous Simulation and Implementation 11

 11

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Mue-Lamda Curve

Lamda

M
ue

MueMax
MueMin
Ave
Est. Ave
Shift Est. Ave

Figure 2.5: Generated from maximum and minimum ranges of Equation 2.15

Thus,

() () () µ
ω

λ
ω

λ
ω

λ
ω

λ

 −
+−

 −
−

−
−=

WW

VW

WWV

VW

Wa

e

WW

WW

WWV

V

J
NR

Rm
Nn

JR
K

J
FR

Rm
Ff)1(11 2

 (2.16)

such that µ is determined from Equation (2.15) and VF is equal to the wind drag
coefficient c times the linear velocity squared. With Equation (2.16) in the form of

µBAf += , and f̂ in the form of µ̂ˆ BAf += , again where µ̂ was the shifted estimated
nominal curve of Equation (2.15) shown in Figure 2.5, the bounds of F could be
calculated. This gave the upper bounds of F from the equation

()µµµµ −−=−−−⇒−≥ ˆˆˆ BBABAffF

()µµ
ω

λ

ω
−

 −
+≥ ˆ

)1(

WW

VW

WWV

VW

J

NR

Rm

Nn
F (2.17)

To test the computer simulation, a mixture of approximated, assumed, and measured
values for the car were used. As the code was proven to work, the initially assumed and

Chapter 2. Continuous Simulation and Implementation 12

 12

fixed values of f̂ , µ̂ , b̂ , and so forth were substituted with the equations derived above.

An example would be how f̂ was originally set equal to f times a percent multiplier.

f_hat = 1.15*f;

The same line of code finally used and based on textbook sliding mode control was

f_hat = [Fv/(mv*Rw*x(2)) - (1-Lamda)*Rw/(Jw*x(2)) - (1-Lamda)*K^2/(Ra*Jw*x(2))]
- [nw*Nv/(mv*Rw*x(2)) + (1-Lamda)*Rw*Nv/(Jw*x(2))]*Mue_hat;

Another example was where Mue had been used for Mue_hat in one stage of the
development process. Functions ()minλb and ()maxλb were derived as percentage values

of ()
WWa

e

JR
K
ω

λ−1 from Equation (2.13). The simulation was also run with the gain

margin
min

max

b
b

=β and withβ equal to a constant value. Since β had little to no effect

on the simulated results but added computation time to the robot car’s microprocessor, β
was set as a constant determined by using simulations to confirm similar results. The
remaining equations derived for sliding mode control were fu ˆˆ −= , the gain

() uFK ˆ*)1(−++= βηβ , and the control law was ())sgn(ˆ
ˆ
1 sKu
b

u ∗−= [1, 5, 6].

 13

Chapter 3

Vehicle and Circuit Construction

This chapter covers the construction of the vehicle, robot car’s circuitry, and data
collection circuitry. Some of the developmental thought processes and adjustments will
also be discussed.

3.1 Vehicle Chip, Compiler, and Code Development

Before construction could begin, I/O processing and available material needs had to be
assessed. The basic input needs were the linear velocity of the vehicle and the angular
velocity of the driving wheels. As a chasse with an encoder mounted on the rear wheels
was already available, this was used. Also encoders provide the best solution of cost,
accuracy, and functionality for the revolutions measured. To determine the vehicle’s
linear velocity, the front wheel’s radius and angular velocity were used. This calculation
assumes the front wheel can be used to accurately measure and calculate the linear
velocity of the vehicle. To measure the angular velocity of the front wheel, an encoder
was mounted on the left front wheel (same side as rear encoder). The front left wheel had
to be trimmed down and shifted out to accommodate the encoder, thus the right front tire
was also shifted out for symmetry (see Figure 3.1).

Chapter 3. Vehicle and Circuit Construction 14

Figure 3.1: Picture of the left front wheel

To operate the robot car, a controller was needed that could handle the inputs from the
front and rear wheel encoders, output a pulse width modulated (PWM) signal, and be fast
enough to do these functions as well as compile the control algorithm as fast as possible
to minimize delays. To control the robot car, the Microchip 16F877A was initially
selected to develop and test a simple code referred to as the Follower code (see Appendix
B). This code simply used interrupts to measure the velocity of the front and rear wheels,
then increased/decreased power to the motor one bit at a time until the values from the
wheels were the same. This chip operated at 20 MHz with an instruction cycle of 200ns.
The next step was to try implementing the simplest control code simulated on the
computer and run it on the car. Because implementing the control code would require
multiplication, division, addition, and subtraction, various C compilers were tried.
Otherwise, added development time and potential for introducing error would occur.
Initially CC5X was tried, but the compiler was found too limiting. Also, the 16F877A
chip was quickly running out of memory and the processing time was barely desirable
even with using techniques to improve processing time. Therefore, it was decided that
the Microchip 18F452 would be used which also had the same chip set as the 16F877A.
The new chip also had a one-step multiplier, 100ns instruction cycle, greater number of
interrupts, greater number of clocks, and increased amount of memory. High Tech C was
the compiler finally used due to its capabilities. The Follower code was then improved
using the two independent clock inputs as counters. The use of the counters was then
implemented on the control algorithm.

Chapter 3. Vehicle and Circuit Construction 15

3.2 H-bridge

To power the motor an RC motor controller was contemplated; however, the maximum
resolution and frequency would have been much less than that of an H-bridge. The RC
driver would have had 512 bits resolution in the forward direction verses 1023 bits for an
H-bridge and a frequency of 1250 Hz [7]. Since the 18F452 chip has a minimum PWM
output of 2.44 KHz and the RC battery being used had a maximum voltage of 8.52 volts
fully charged and the motor could require an inrush current of up to 7 amps or more, off
the shelf H-bridges were originally found unacceptable. Later one was found that could
operate up to 10 kHz with a 5.2A output but inevitably still didn’t perform as well as the
“home made” h-bridge. The design for the H-bridge made was found on the internet [8]
(Figure 3.2). To better accommodate the lower voltage from the battery, resisters R1 and
R2 were replaced with 5K Ohm resisters and parts R9 and associated LED were removed
(see Appendix C for parts list).

Figure 3.2: H-bridge [8]

The initial motor used was a standard stock radio control (RC) car motor. This later
proved to have not enough low-end torque, even with a 21 to 81 gear ratio, so a rewound
motor was used. The new motor had been rewound to have 100 turns per phase.

3.3 Vehicle Circuit

To have reverse on the H-bridge, the PWM signal and ground would have to be able to
swap and since the processor only had one PWM signal generator, a multiplexer was
used (part U8, Figure 3.3). With the multiplexer connected properly, only one PWM
signal was needed and one bit/line for selecting direction.

To measure angular velocity from the 512 bits per revolution quadrature encoders, a D
flip-flop was used [9] with the A and B channel inputs from the encoders to generate a
256 bit per revolution output per encoder. The direction the encoder rotates determines

Chapter 3. Vehicle and Circuit Construction 16

the connections of channels A and B giving an output only if the vehicle is moving in a
positive direction. Since the objective was to control longitudinal slip, reverse should
never need to be measured. On the final design, the outputs of the two channels from the
D flip-flop went to the two independent counters on the 18F452 processor. The reason
for using counters was that the processor was able to continue counting pulses from the D
flip-flops while calculating the next control output, thus greatly minimizing the time
delay. To aid in data analysis, the 10 bit PWM signal (otherwise known as the control
variable u) plus the direction bit were sent to the Data Collection Circuit (DCC). Port B
sent the upper 8 bits of the 10 bit PWM signal (B7 the greatest bit) and the lower 2 bits
were sent from Port D4 and D5 (D4 the lowest bit).

Rear Encoder

5VDC

5VDC

To optical encoder
on Front Wheel.

Y1

CRYSTAL

1

4 5

8
N/C

GND OUT

Vcc

Motor Direction Bit/Signal

5VDC

PR1
CLK1
D1
CLR1

CLK2 Q2

CLR2
D2

Q1

U2

74LS74

14
7

4
3
2
1

10
11
12
13

5
6

9
8

C6
0.01uF

5VDC

U1
LM7805

1 3

2

IN OUT

G
N

D

Lower 2 Bits of U

ChannelB

PWM Signal

U6
PIC18F452

1
2
3
4
5
6
7
8
9

10

33
34
35
36
37

40

32
31
30
29

14
13
12

15

28
27
26
2516

18
19
20

24
23
22
21

39
38

11

17

MCLR/Vpp
RA0/AN0
RA1/AN1
RA2/AN2/Vref -
RA3/AN3/Vref +
RA4/T0CKI
RA5/AN4/SS/LVDIN
RE0/RD/AN5
RE1/WR/AN6
RE2/CS/AN7

RB0/INT0
RB1/INT1
RB2/INT2

RB3/CCP2*
RB4

RB7/PGD

Vdd
Vss

RD7/PSP7
RD6/PSP6

OSC2/CLKO/RA6
OSC1/CLKI
Vss

RC0/T1OSO/T1CKI

RD5/PSP5
RD4/PSP4

RC7/RX/DT
RC6/TX/CKRC1/T1OSI/CCP2*

RC3/SCK/SCL
RD0/PSP0
RD1/PSP1

RC5/SDO
RC4/SDI/SDA

RD3/PSP3
RD2/PSP2

RB6/PGC
RB5/PGM

Vdd

RC2/CCP1

5VDC

+ C1
0.1uF

Also in H-bridge ciruit diagram

5VDC

+ C1
470uF

U8

74LS153

6
5
4
3

10
11
12
13

14
2

7
9

16

81
15

1C0
1C1
1C2
1C3

2C0
2C1
2C2
2C3

A
B

1Y
2Y

VCC

GND1G
2G

JP6

HEADER 3

1
2
3

5VDC

By Mark Morton 01

Robot Car's Pic Board Lay out

A

1 1Monday , March 08, 2004

Title

Size Document Number Rev

Date: Sheet of

Upper 8 bits of U

C8
0.01uF

7.2/12 VDC

Direction Signal

5VDC

JP3

HEADER 5

1
2
3
4
5

ChannelA

JP3

HEADER 5

1
2
3
4
5

7.2VDC

5VDC

To motor.
5VDC

ChannelA

Front Encoder

5VDC

ChannelB

JP1

HEADER 2

1
2

5VDC

To optical encoder
on Rear Wheel

Figure 3.3: Robot car control circuitry

3.4 Data Collection Circuit and Code Development

Just as with the code on the car, Port B was the input for the highest 8 bits of the 10 bit
value of the PWM signal. Ports D4 and D5 (with D4 the lowest bit) received the lowest
two bits of the 10 bit PWM signal. Port D2 was the input for the direction bit (0 for
forward, 1 for reverse). To minimize the size of the data collection file created by Matlab,
the DCC would not begin sending data to the computer until Port D3 was high, which
was triggered by the cars processor when the car was turned on. This allowed a velocity

Chapter 3. Vehicle and Circuit Construction 17

of ‘0’ to be captured for 1 to 3ms before the car began moving (see Figure 3.4 for a Block
Diagram). As with the car’s processor Port A4 (counter/timer 1) taps off the output from
the D flip-flop output from either the rear or front encoder, usually rear. Port C0
(counter/timer 0) received input from the car’s opposite encoder, usually front. The DCC
and test platform were also equipped with an encoder and D flip-flop for future
developments and tests.

Test Platf orm Encoder

Upper 8 Bits of U

Rcv d Data Comm Pin 2

Front or Rear Encoder

JP3

HEADER 5

1
2
3
4
5

U7

MAX232A

1
3
4
5

16

152
6

12
9

11
10

13
8

14
7

C1+
C1-
C2+
C2-

VCC

GNDV+
V-

R1OUT
R2OUT

T1IN
T2IN

R1IN
R2IN

T1OUT
T2OUT

5VDC

R1
6.65K

ChannelA

Motor Direction Bit/Signal

5VDC

+ C2
CAP POL

Xmtd Data Comm Pin 3

C8
0.01uF

5VDC

To optical encoder
on Test Platf orm

By Mark Morton 01

Data Collection Pic Board Lay out

A

1 1Monday , March 08, 2004

Title

Size Document Number Rev

Date: Sheet of

PR1
CLK1
D1
CLR1

CLK2 Q2

CLR2
D2

Q1

U2

74LS74

14
7

4
3
2
1

10
11
12
13

5
6

9
8

+ C3

CAP POL

Data Activ ate Signal

C6
0.01uF

+ C4
CAP POL

5VDC

5VDC

5VDC

+ C5
CAP POL

5VDC

U6
PIC18F452

1
2
3
4
5
6
7
8
9

10

33
34
35
36
37

40

32
31
30
29

14
13
12

15

28
27
26
2516

18
19
20

24
23
22
21

39
38

11

17

MCLR/Vpp
RA0/AN0
RA1/AN1
RA2/AN2/Vref -
RA3/AN3/Vref +
RA4/T0CKI
RA5/AN4/SS/LVDIN
RE0/RD/AN5
RE1/WR/AN6
RE2/CS/AN7

RB0/INT0
RB1/INT1
RB2/INT2

RB3/CCP2*
RB4

RB7/PGD

Vdd
Vss

RD7/PSP7
RD6/PSP6

OSC2/CLKO/RA6
OSC1/CLKI
Vss

RC0/T1OSO/T1CKI

RD5/PSP5
RD4/PSP4

RC7/RX/DT
RC6/TX/CKRC1/T1OSI/CCP2*

RC3/SCK/SCL
RD0/PSP0
RD1/PSP1

RC5/SDO
RC4/SDI/SDA

RD3/PSP3
RD2/PSP2

RB6/PGC
RB5/PGM

Vdd

RC2/CCP1

+ C7

CAP POL

5VDC

Y1

CRYSTAL

1

4 5

8
N/C

GND OUT

Vcc

5VDC

Lower 2 Bits of U

ChannelB

Figure 3.4: Data collection circuit diagram

Chapter 3. Vehicle and Circuit Construction 18

Figure 3.5: Block wiring diagram of robot car and data collection circuits

Originally, the idea was investigated to put a 512Mbyte memory chip on the car and then
have the results downloaded to a computer. This idea had several disadvantages. The
first disadvantage was it would have taken nearly every pin on the processor and thus
required a lot of wiring time. This would have also meant that collecting data points
would have only happened as often as the computation time took, which at the time was
taking about 15ms. A 15ms sample rate would not have been often enough to generate a
smooth enough plot. The biggest reason was the concern that data might need to be
collected over time periods longer than memory would allow. As it was possible to
collect and send data to a computer in real time to be stored at an interval faster than 1ms,
this was the method used. When data is transmitted using a serial connection there is an
overhead of 2 bits per 1 byte of information. The counts per interval of the rear and test
platform encoders were handled as 1 byte each. Meaning 10 bits for each encoder per
sampling interval was sent. The control value from the car was 10 bits plus 1 bit for
direction. Since only 8 bits of data could be sent at a time, 2 bytes of data had to be sent
from the car to the DCC. This is because there was one byte for the upper 8 bits of the
control value and one byte containing the lower 2 bits of the control value plus direction.
Meaning 5 bits from one of the bytes sent from the car to the DCC was Don’t Cares.
Summing it all up yields

10 bits (test platform) + 10 bits (rear wheel) + 10 bits (upper 8 bits of U) + 10 bits (lower
2 bits of U and 1 direction bit) = 40 bits per sampling period
 (Note: 10 bits = 8 bits (data) + 2 bits (overhead)

Chapter 3. Vehicle and Circuit Construction 19

The 9-pin communication port on the computer at the time was capable of 115200 bits
per second (bps). So 40 bits per sampling period divided by 115200 bps allowed for
sampling as fast as approximately every 0.347ms. For the velocities obtained, 1ms to
5ms sample rates were sufficient.

As the Follower Code was created only to test programming of the Robot Car’s processor,
no data collection was initially implemented just -- visual inspection of how well the rear
wheel followed when the front wheel was spun by hand. The code was first developed
using interrupts and then improved using counters. The Follower Code was then used to
test the DCC with the computer. The DCC was setup to transmit collected data from the
suspended car every 1ms (40Kbps). Windows HyperTerm software was used first to
examine the data from the DCC and car. Software from [10] was then used to collect and
store data to a file. First, a constant ASCII value from the DCC was recorded (see
example output below). This was a double (16 bit) value, thus the repeating two numbers.

Terminal Hex log file
Date: 12/21/2003 - 1:34:39 PM

33 35 33 35 33 35 33 35 33 35 33 35 33 35 33 35
33 35 33 35 33 35 33 35 33 35 33 35 33 35 33 35

Then data from the front wheel, rear wheel, and test platform was collected as 8 bit
values. The sample data below shows the output of the front wheel being spun by hand
while the other inputs remained at zero because they were set to send 0’s from the car.
The numbers represent the number of encoder tics counted over a 1ms time interval.

Terminal Hex log file
Date: 1/14/2004 - 12:48:08 PM

05 00 00 06 00 00 06
00 00 06 00 00 06 00 00 06 00 00 06 00 00 06 00
00 06 00 00 06 00 00 06 00 00 06 00 00 06 00 00

Then to get an idea of what a good sampling rate would be, the maximum velocity of the
rear wheel was measured with the car suspended. If sampling was too fast, only 0’s and
1’s would be recorded, too slow and very large values (perhaps greater than 8 bits) might
be recorded but trends could not be analyzed. The result, with the car running on a 3000
mAh Ni-MH battery (about 8.3 volts), was a max tic count of 17 tics per sampling rate of
1ms. Since an 8-bit value was capable of 255 a 5ms sampling time was not too slow and
with a thousand data points per second a smooth curve could be obtainable.

The next objective was to be able to manipulate and plot the data results. A Matlab code
was then written to communicate, manipulate (if necessary), and store the data from the
DCC (Appendix D). Using the Follower Code, data from the front wheel was collected
and plotted (Figure 3.6).

Chapter 3. Vehicle and Circuit Construction 20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

Time (seconds)

E
nc

od
er

 T
ic

s/
m

s

Figure 3.6: Result of data collected at 1ms intervals using the Follower Code

Originally the DCC was just going to be used to collect and analyze values of λ . When
the control code did not perform as expected, it was obvious having the actual value of
the control value ‘u’ from the car to compare with that of the computer simulation would
be very useful (see Appendix E for DCC code). Therefore, the 10 bit PWM and 1 bit
direction signal were added to the DCC. Because the lower two bits of the PWM signal
and direction bit were sent together, to save data bytes sent, it became necessary for the
Matlab code to untangle and recombine the bits received. For this, the upper 8 bits of the
PWM signal (called UprBit in the Matlab code) were shifted to the left two bits and
placed in a variable of size double. The lower two bits were filtered out from a separate 8
bit value called LwrBit and concatenated to the rest of the PWM signal. The direction bit
was filtered and tested to determine the sign of the 10 bit PWM signal.

 21

Chapter 4

Test Platform Development

The next physical construction hurdle was to devise a way to monitor the vehicle’s
performance without risk of damage.

4.1 Initial Platform

Before the idea of a platform to measure the car’s velocity was determined, several other
ideas were entertained. One idea was to have two photo gates to measure the car’s
average acceleration and another was to have several photo gates to get a better
interpretation of the car’s acceleration curve. Yet another idea was to video the car.
Having the distance marked and knowing the frames per second, the acceleration could
be crudely calculated. All three ideas had the risk of the car being damaged by an
uncontrolled collision and the acceleration curve would not be measurably accurate. The
idea was then suggested to place the rear wheels on a drum and from that, the test
platform idea was launched.

The initial platform was merely the left side of the car’s tires (side with encoders) setting
on two Lego rubber tires with the right side supported by Lego blocks. The Lego tires
were connected by two rubber bands, allowing the rear wheel to transpose its energy to
the front wheel. This was only an initial test platform to get an idea of how well the
traction control algorithm was functioning. As rubber bands stretch, later they were
replaced by Lego chains (see Figure 4.1). Since many of the design parameters were not
fully represented (example: mass of car, number of driving wheels …) this did not
present a viable solution.

Chapter 4. Test Platform Development 22

Figure 4.1: Initial test setup using wheels on one side

4.2 Different Platform Setups

Once the code and car were ready for full testing, a proper test platform needed to be
created. Legos were selected because of their manufactured precision, versatility,
availability, and cost. The next platform (Figure 4.2) was based on a conveyer type setup
to try and best simulate a road. In the picture, the lower conveyer was removed to show
the supporting structure.

Chapter 4. Test Platform Development 23

Figure 4.2: Updated test platform using conveyor belts

Due to the weight of the car, the dynamics of the gears, and the construction of the
conveyor Legos, there was a great deal of friction. This coupled with the gripping ability
of the tires caused there to be little or no difference between full speed and traction
control. It was then determined to go back to a wheel type design for the car to set on but
use wheels that were not malleable, thus had a lower coefficient of friction. Therefore,
wheels were created from the gear and conveyor belt parts (Figure 4.3) and the Data
Collection Circuit was added, but collection of the control variable ‘u’ between the car
and data collection circuit had not been added at this point in time.

Figure 4.3: Reduced friction test platform design with Data Collection Circuit (DCC) added

Chapter 4. Test Platform Development 24

4.3 Final Platform Setup

The car still had too much grip, though friction of the test platform was greatly reduced.
Next the conveyor belt idea was tried again but with the center of the conveyor links
fitting between two rails and the gearing was adjusted to just two big gears (Figure 4.4);
this greatly reduced the friction, but the tires still had too much grip. So duct tape was
placed around the tires. Along with the friction of the conveyor belt reduced, the car
finally began to slip… a lot (Communication of the car’s control value was also added).
Eventually more weight needed to be added to the rear of the car to increase traction,
possibly due to increased friction on the test platform from wear. A battery was added
because its weight had already been measured.

Figure 4.4: Final test platform setup

 25

Chapter 5

Code and Development of Parameters

This chapter covers processes and analysis of the control value ranges and obtaining
parameters of the system using Simulated Annealing.

5.1 Control Code and Analysis

Using the measured, calculated, and rough estimates for parameters, the complete control
algorithm was implemented on the car. The result was that the rear tires were chattering.
To help understand the possible ranges of outputs of the control algorithm and knowing
the full range of possible inputs from the front and rear wheels, the control code in
Matlab was modified to give a 3-D plot of the possible outputs (Figure 5.1) (Appendix F
for code).

0
20

40
60

80
100

0

50

100
-1

0

1

2

3

4

x 1013

Rear Encoder

Front Encoder

C
on

tro
l V

al
ue

Figure 5.1: 3-D generated output of control variable from possible range of inputs

Chapter 5. Code and Development of Parameters 26

Obviously, the control’s possible output values far exceeded the 1023± range of the
PWM signal. Using the same program and manipulating the output of u and other
variables, a plot was generated that closely resembles what might be expected (Figure 5.2
a & b). This plot can be used to explain the expected behavior of the system.

0
10

20
30

40
50

0

10

20

30

40

50
-20

-10

0

10

20

Rear Encoder Count

PWM Signal Output for Input Ranges

Front Encoder Count

C
on

tro
l V

al
ue

(a)

(b)

-10

-5

0

5

10

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

Rear Encoder

Fr
on

t E
nc

od
er

PWM Signal Output for Input Ranges Control Value

Figure 5.2: Possible Input/Output system response

Chapter 5. Code and Development of Parameters 27

Figure 5.2b is the plot as seen from looking down. The black diagonal line is the range of
values where the velocity of the front wheel equals that of the rear. To the left of the
black line, the front wheels are moving faster than the rear wheels, thus more power
should be applied to the motor and even greater still when at higher speeds. To the right
of the black line is when the rear wheels are moving faster than the front wheels. As
explained earlier, while just to the right of the black line, some slip would be desirable
(15 to 20% on a full sized car), so power would need to be increased, not decreased as
indicated by this illustrating plot. This concept would form a channel along the diagonal.
However, if there is too much slip, power to the rear wheels should be reduced. The
greater the difference between the rear wheel and the front wheel, the bigger the decrease
in power to the motor. This conceptual plot can now be added as a tool to recognizing
when the system may or may not work, without implementing on the car and thus saving
time.

5.2 Leader Code and Analysis

With the results of the control algorithm so far off the various combinations of uncertain
and unknown variables would need to be compared with actual results from the car until
a minimum error was found. In other words, the system needed to be parameterized.
Before that was done, certain aspects of the data collection system needed to be analyzed.
Also, because the batteries drained too quickly and introduce yet another very influential
dynamic, a 12 volt 10 amp power supply was used from this point. However, even the
power supply was not ideal as its output would drop after about the first 6-7 seconds.
Fortunately this was generally enough time for the car to accelerate.

To simplify the system, a program called Leader Code was written to accelerate the
vehicle (see Appendix G). This code simply increased the value of the PWM signal by
one if the rear wheels’ angular velocity was less than 5 encoder counts faster than the
front wheels’, otherwise the PWM signal would be decreased by one. The DCC
sampling time was also adjusted to 0.0049999 seconds, the same as the robot car. For
parameterizing the car with the Leader Code, three sets of data would need to be
collected, the front encoder, rear encoder and PWM values. As the car was only able to
transmit one set of data, it would be necessary for the DCC to collect the front and rear
wheel encoder values separately while receiving the actual PWM values from the car.
For this reason an analysis was done to compare the encoder values collected from the
car to the values collected from the DCC on the rear wheels. This meant that the control
value collected and sent from the car was replaced with the 8-bit value from the counter
of the rear encoder collected by the car. If the independent values from the car and DCC
were not close another means of collecting data would have to be found. The rear
encoder data collected from the DCC and the car were then recorded and compared.
Figure 5.3 and Figure 5.4 show the results from the car and the DCC respectively of the
rear encoder values using the Leader Code to accelerate the car.

Chapter 5. Code and Development of Parameters 28

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

15

20

25

30

35

Time (Seconds)

E
nc

od
er

 C
ou

nt

Figure 5.3: Rear wheel encoder count data collected from car.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

Time (Seconds)

E
nc

od
er

 C
ou

nt

Figure 5.4: Rear wheel encoder data collected by Data Collector before shifting data

Figure 5.5 shows the difference between the two raw data values collected by the car and
the DCC. Since the DCC actually begins collecting data before the robot car, the data
from the DCC was then shifted eliminating leading 0’s and then compared (see Figure
5.6). The maximum error after the shift was slightly less but not significantly different.

Chapter 5. Code and Development of Parameters 29

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-8

-6

-4

-2

0

2

4

6

Time (Seconds)

E
nc

od
er

 C
ou

nt

Figure 5.5: Difference between Car’s rear wheel values and Data Collector’s values before shift

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-5

-4

-3

-2

-1

0

1

2

3

4

Time (Seconds)

E
nc

od
er

 C
ou

nt

Figure 5.6: Difference between Car’s Rear Wheel values and Data Collector’s values after shift

From the original analysis, even without shifting the data, parameterizing the system
should be possible. However, further analysis was continued in case averaging might
have been needed to improve results.

To help view and understand the average error and difference between shifting and not
shifting of the data, a Matlab program was written that averaged the data points except at
the ends (see Appendix H for code with averaging on ends of data). The averaging was
done by selecting an odd number of data points to average, in this case 51, and then
taking one less than half that number (25) and average one less than that many data points
before and after the selected data point with the actual data point being counted twice.
This gives a slightly weighted value to the selected data point (Figure 5.7). The plot in
Figure 5.8 shows the raw un-shifted plots from the DCC and robot car respectively
followed by the plots of their mean values. The difference of the mean values was then

Chapter 5. Code and Development of Parameters 30

also determined (Figure 5.9). The same plots were generated for the shifted data (Figure
5.10 & Figure 5.11). The difference of the mean shifted data and mean non-shifted data
was done for comparison (Figure 5.12). So how was this data interpreted? Using this
setup would generate some error when comparing the responses from the robot car and
the simulation, but if necessary to improve accuracy, the data from the DCC could be
shifted to give slight improvements, and if too much error was involved, it might be
possible to then average the values for better results.

X Z = X + 24Y = X - 24

[]{ }
Mean = Sum(Yrange & Zrange) / (Y + Z – 1)

Figure 5.7: Method for taking mean value of data points

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

Time (Seconds)

E
nc

od
er

 C
ou

nt

C
ar

D

C
C

D

C
C

C

ar

Figure 5.8: Rear Encoder plot from car, and DCC before shifting DCC data, followed by Rear

Encoder values of Car and DCC after averaging.

Chapter 5. Code and Development of Parameters 31

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-3

-2

-1

0

1

2

3

4

5

Time (Seconds)

E
nc

od
er

 C
ou

nt

Figure 5.9: Difference of mean values before the rear encoder data was shifted

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

Time (Seconds)

E
nc

od
er

 C
ou

nt

C
ar

C

ar

D
C

C

D
C

C

Figure 5.10: Rear Encoder plot from car, and DCC after shifting DCC data, followed by Rear

Encoder values of Car and DCC after averaging.

Chapter 5. Code and Development of Parameters 32

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3

-2

-1

0

1

2

3

Time (Seconds)

E
nc

od
er

 C
ou

nt

Figure 5.11: Difference of mean values after the rear encoder data was shifted

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-4

-3

-2

-1

0

1

2

3

4

Time (Seconds)

E
nc

od
er

 C
ou

nt

Figure 5.12: Error between shifted and un-shifted mean curves

5.3 Simulated Annealing

Because there were up to seven less than completely known values
(JwJFwFNvNccPLamdaMuePdLamda WWVPeakPeakdesired :,:,:,:,_:,:,_: λµλ) and
it would be impossible to have an iterative search for the system parameters that yielded
the best results, a random search method called Simulated Annealing was
implemented[11, 12].

Simulated Annealing is a random search engine that picks a point on the function surface,
governed by the sets of parameter unknowns, to be tested for a minimum difference (in
this case). Before this new point is accepted as the lowest value, one of two governing
criteria must be met. The first test is if the latest point has the lowest value. The second,
in reference to the annealing process of metals, is dependent on a formula based on the
present energy/temperature level of the process. If the energy level is high, it is very

Chapter 5. Code and Development of Parameters 33

likely the new value will be accepted even though it may not be the smallest value;
however, as the energy level is lowered, it becomes increasingly unlikely that the newest
point will be accepted if it is not the lowest value. The process then repeats itself until a
minimum criteria or some other limit such as time or maximum iterations is met. There
are very many variations on this concept such as what types of random search generators
are used or methods to find local minimums after each jump (see Appendix I for
Simulated Annealing Code).

Knowing the surface was slippery, low ranges for Peakdesired µλ , , and Peakλ were selected.
Because the test platform had friction associated with it, the coefficient of wind drag as
represented by the variable ‘c’, was initially given a wide range. The value of inertia, WJ ,
was given a wide range from 8.416425e-6, a factor of 10 smaller than that calculated, to
0.011 [13]. WF , was also given a broad but low value range initially.

To determine the error between the actual system and the simulation, the recorded values
of ‘u’ from the car over a certain time interval were input into the states along with the
values of the front and rear wheel velocities collected by the DCC. Using these initial
parameters, the derived equations were used to calculate the wheel velocities for the next
moment in time. The following formula was then used to calculate error:

()() ()() ()()222 112211 λλ −+−+−∑ xxxx (5.1)

Where x(1) and x(2) represented the car’s calculated front and rear wheel velocities,
respectively. While x1 and x2 were the measured front and rear wheel velocities,
respectively. The value of ()1λ came from simulation values while 1λ came from
measured values. The assumption made here was that the physical system was measured
sufficiently fast enough that errors due to delays were at a minimum.

Initially the minimum total error ofλ from this process was in the low 20’s, however the
error from the rear and front wheels was in the millions. To minimize the error from the
front wheel, the small difference in radius from it and the rear wheel was then taken into
account. This brought the summed error of the front wheel down to less than 0.004 (Note:
because Simulated Annealing jumps around, this is only a sample value of what was
typical).

To try and determine what was causing the error in the rear wheel values, the annealing
program was modified to keep track of the simulated rear wheel results. When plotting
the data collected from the rear wheel encoder and simulated rear wheel encoder over a
range that was generating the largest error, it was observed the plots were the same but
the scale was different (see Figure 5.13).

Chapter 5. Code and Development of Parameters 34

Figure 5.13: Measured and calculated results of rear wheel velocities

The ratios from the largest and smallest values were then compared. The ratios were
almost the same. Since WJ was the only value in the denominator of the state for the rear
wheels the upper range of WJ was increased into the hundreds, far exceeding calculated
values. The annealing program was run terminating with a combined error of 0.0461.
Considering WJ was several magnitudes too large to generate a low error, some other
parameter had to be out of range. Considering the plot in Figure 2.4 was based on data
from pneumatic tires on full sized automobiles and the tires on the robot car were stiff
foam rubber surrounded by Duct Tape, the idea was considered that the lower range of
the ()λµ curve might not be realistic for this physical system. For this reason the ranges
of Pµ , Pλ , andλ desired were extended in the lower range. This yielded total errors in
the one thousandths! With good results from the Simulated Annealing program several
runs were made yielding two sets of values that were used in simulations.

=dλ 0.0018
=pµ 0.0745
=pλ 0.1551

c = 0.005
=VN 1.3009
=WF 0.4507
=WJ 0.1088
=aR 1.506
=eK 0.0159

Table 5.1: SA Results Table 5.2: SA Results

Notice in Table 5.2 that the dλ (desiredλ) was greater than the pλ value. As described
in [1], this is a region where control effort becomes significantly high and is very
unstable, therefore the result of dλ was lowered to less than 0.0105 when Table 5.2

=dλ 0.0814
=pµ 0.0102
=pλ 0.0105

c = 0.0019
=VN 1.4585
=WF 0.1951
=WJ 0.0923
=aR 1.2229
=eK 0.0139

Chapter 5. Code and Development of Parameters 35

results were used. Though not all results are within expected ranges, as these values
yielded the closest match (lowest error) to collected data from the car by less than 40
times other parameter values, these values were used on the car.

 36

Chapter 6

Results

To improve the system response, processing time, and other dynamics, some parameters
were adjusted on the simulation plot and car’s code. After these adjustments, the
measured data was then collected, plotted, and compared to simulation results.

6.1 Adjustments of Control Output

The final step was to adjust the control gains and the ()λµ curve to give the best
response. Initially the Simulated Annealing program was modified to find the optimum
gain values using the control value and reduced chattering as the criteria. The 3-D plot
previously developed was used to get an idea for reasonable value ranges for the
annealing program. Different ()λµ̂ curve approximations were also tried, but useful
results were not obtained from the program. However, during the process of determining
the range of gains and adjustments to the ()λµ̂ curve from a 10th order polynomial to 6th
order polynomial, a plot with potential (Figure 6.1 a & b) when using values from Table
5.2 produced promising results. With some adjustment to the gain η , the values were
tried on the simulation. The results were also somewhat promising (Figure 6.2).

Chapter 6. Results 37

0
20

40
60

80

0
20

40

60
80

-15

-10

-5

0

5

10

15

Rear Encoder Count

Front Encoder Count

C
on

tro
l V

ol
ta

ge

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Rear Encoder Count

Fr
on

t E
nc

od
er

 C
ou

nt

(a) (b)

(c)
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

Rear Encoder Count

Fr
on

t E
nc

od
er

 C
ou

nt

Figure 6.1: (a) 3-D plot with dλ =0.1 (b) dλ =0.1 from above (c) dλ =0.01 from above

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Lamda

Time (Seconds)

La
m

da

0 100 200 300 400 500 600 700 800 900 1000
-6

-4

-2

0

2

4

6
Volts

Time (Seconds)

V

Figure 6.2: λ and controller voltage plots from computer simulation, respectively

The values were then run on the car with some success. The problem on the car was
going to be that it would be very susceptible to chattering/instability when reducing dλ

Chapter 6. Results 38

below 0.1 (Figure 6.1c). This should not be totally unexpected. As shown in Figure 2.3,
the closer to the origin the closer the system is to breaking, which has a different set of
governing dynamic equations. Also, the response of λ from the measured values varied
very little if any. As previously mentioned, a channel might be expected, but this channel
was right on the edge of the sliding surface/diagonal. A boundary layer was attempted
but this made the system response worse as chattering occurred on the edge of the
boundary layer and reduced the edge of the channel where the channel was too narrow.
To better center the channel and increase the range of stability for dλ a ratio was
multiplied by the front wheel input value. Starting with the ratio of the rear wheel
diameter divided by the front wheel diameter and making adjustments until the channel
was better centered, led to a more stable system. The resulting ratio was the rear wheel
diameter of 2.524 divided by 2.2035 (2.4035 = front wheel diameter). With this
adjustment and an improvement on the ()λµ̂ curve that decreased the car’s processor’s
calculation time and provided a much better fit than a 6th order polynomial, the car was
tested again with improved performance (Figure 6.3). From Equation (2.15) comes the
new equation for ()λµ̂ :

() 2
22

ˆ
22

min

minmin
22

max

maxmax ÷

+
+

+
=

λλ

λλµ

λλ

λλµ
λµ

p

pp

p

pp (6.1)

where maxpµ =0.94, minpµ =0.008, maxpλ =0.3, and minpλ =0.008 was the improvement
made to the ()λµ̂ curve (Appendix J for robot car code).

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Rear Encoder Count

Fr
on

t E
nc

od
er

 C
ou

nt

Figure 6.3: dλ =0.01 from above with adjustment to center the channel

Chapter 6. Results 39

6.2 Test and Measurement Results

Using the Data Collector Circuit to record the front, rear wheel encoder values, and PWM
output, plots were generated for analysis. For dλ =0.1 results refer to Figure 6.4 thru
Figure 6.7, and for dλ =0.05 plots refer to Figure 6.8 thru Figure 6.11.

0 2 4 6 8 10 12
0

10

20

30

40

50

0 2 4 6 8 10 12
0

10

20

30

40

50

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time (Seconds)

E
nc

od
er

 C
ou

nt
s

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Car Results

M
ea

n
of

 F
ro

nt
 W

he
el

M

ea
n

of
 R

ea
r W

he
el

M

ea
n

of
 L

am
da

R

aw
 L

am
da

Figure 6.4: Front, rear mean encoder data, meanλ results, and rawλ results for dλ =0.1

Chapter 6. Results 40

2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

Time (Seconds)

La
m

da

Car Result of Lamda

Figure 6.5: Zoomed in plot of mean λ results for dλ =0.1

0 2 4 6 8 10 12
-15

-10

-5

0

5

10

15

Time (Seconds)

V
ol

ts

Car's Control Output

Figure 6.6: Raw PWM voltage car output for dλ =0.1

Chapter 6. Results 41

(a)
0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

40

45

50

Fr
on

t W
he

el
 E

nc
od

er
 C

ou
nt

Rear Wheel Encoder Count

Raw Measured Rear Verses Front Wheel Angular Velocity for Lamda = 0.1

(b)
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45
Mean Measured Rear Verses Front Wheel Angular Velocity for Lamda = 0.1

Fr
on

t W
he

el
 E

nc
od

er
 C

ou
nt

Rear Wheel Encoder Count
Figure 6.7: (a) Raw measured front & rear velocities (b) Mean measured front & rear velocities for

dλ =0.1

0 2 4 6 8 10 12
0

10

20

30

40

50

0 2 4 6 8 10 12
0

10

20

30

40

50

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

Time (Seconds)

E
nc

od
er

 C
ou

nt
s

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

Car Data

M
ea

n
of

 F
ro

nt
 W

he
el

M

ea
n

of
 R

ea
r W

he
el

M

ea
n

of
 L

am
da

R

aw
 L

am
da

Figure 6.8: Front, rear mean encoder data, meanλ results, and rawλ results for dλ =0.05

Chapter 6. Results 42

4 4.5 5 5.5 6 6.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time (Seconds)

La
m

da

Lamda

Figure 6.9: Zoomed in plot of mean λ results for dλ =0.05

0 2 4 6 8 10 12
-8

-6

-4

-2

0

2

4

6

8

10

12

Time (Seconds)

V
ol

ts

Car's Control Output

Figure 6.10: Raw PWM voltage output from robot car for dλ =0.05

Chapter 6. Results 43

(a)
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

Rear Wheel Encoder Count

Fr
on

t W
he

el
 E

nc
od

er
 C

ou
nt

Raw Measured Rear Verses Front Wheel Angular Velocity for Lamda = 0.05

 (b)
0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45
Mean Measured Rear Verses Front Wheel Angular Velocity for Lamda = 0.05

Rear Wheel Encoder Count

Fr
on

t W
he

el
 E

nc
od

er
 C

ou
nt

Figure 6.11: (a) Raw measured front & rear velocities (b) Mean measured front & rear velocities for

dλ =0.05

From Figure 6.5 and Figure 6.9, dλ compared closely to what was expected. However,
comparing other simulated results after the new adjustments, many values did not match
accurately, such as control voltage values, velocities, and timing (Figure 6.12 and Figure
6.13 for simulation results). Considering the non-exact modeling of the car’s dynamics
and apparent differences in the ()λµ curve from a full size car with pneumatic malleable
tires compared to the foam tires wrapped in Duct Tape being used on the robot car, this
should not be unexpected. Other dynamics not being modeled accurately were the
friction forces in the test platform and the linearization of other dynamics such as those
for the motor. With the new results, the computer simulation code was updated for
comparison (see Appendix K for code)

(a)
0 50 100 150 200 250 300 350 400 450 500

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
S

Time (Seconds)

s

(b)
0 50 100 150 200 250 300 350 400 450 500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Lamda

Time (Seconds)

La
m

da

Chapter 6. Results 44

(c)
0 50 100 150 200 250 300 350 400 450 500

-8

-6

-4

-2

0

2

4

6

8
Volts

Time (Seconds)

V

(d)
0 50 100 150 200 250 300 350 400 450 500

-1.5

-1

-0.5

0

0.5

1
Difference betweeen Mue & Mue__hat

Time (Seconds)

M
ue

di
f

Figure 6.12: Results from adjusted simulation with dλ =0.05

(a)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
Sliding Surf

Lamda

La
m

da
^

(b)
70 80 90 100 110 120 130 140 150 160

50

60

70

80

90

100

110

120

130

140

150
X2 vs X1

X2

X 1

(c)
0 50 100 150 200 250 300 350 400 450 500

50

60

70

80

90

100

110

120

130

140

150
Front Wheel Angular Velocity

Time (Seconds)

X 1

(d)
0 50 100 150 200 250 300 350 400 450 500

70

80

90

100

110

120

130

140

150

160
Rear Wheel Angular Velocity

Time (Seconds)

X
__

2

Figure 6.13: Results from adjusted simulation with dλ =0.05

Even with these discrepancies, the results are close enough to encourage further study
with improvements.

 45

Chapter 7

Hybrid Model

Though the computer model simulates the dynamics of the car and responses of the
control algorithm as if both happened continuously and to a high degree of precision, this
was not the case. In reality, the processor takes time to process the car’s situation and the
inputs from the encoders were discrete. This was represented by the 3-D plots created
earlier, and the control outputs were also integer values. The physical system (robot car)
was continuous. This next chapter discusses the modeling of the system as a hybrid
model. A hybrid model is a model that represents both the continuous and discrete
components of a system.

7.1 Hybrid Model Analysis

Before expressing the dynamics of the robot car as a hybrid system, it is necessary to
explain the model representation of the hybrid system. Using the example in Figure 7.1
[14],

Chapter 7. Hybrid Model 46

Figure 7.1: Hybrid model example of a Tank System [14]

and references [14, 15] a simple example of a tank being maintained with water within a
certain range will be discussed. Just as in a State Machine each state represents an
operation. In this example, there are four states: pump off, wait to off, pump on, and
wait to on. For this hybrid system the depth of the tank is represented by the fluctuation
‘y’, which is continuous and therefore is represented in each state by ‘ y& ’. For this
system, the continuous dynamics of a timer are also represented by ‘ τ ’, where
appropriate. When a state’s dynamics no longer support the condition of the system, or a
“guard condition” is met, an instantaneous transition in both discrete and continuous time
is made to another state. If a parameter is changed as a result of the transition a “state
reset” or “jump” is performed.

Before continuing with the hybrid model, the dynamics of the discrete system should first
be discussed to help with clarity. Using Figure 7.2, this will be done.

Chapter 7. Hybrid Model 47

5ms

Processing Control Algorithm

A
B

C

D

Processing Control Algorithm

E

Figure 7.2: Timeline of discrete system on robot car’s processor

Block ‘A’ in Figure 7.2 represents the variation in the processing time of the control
algorithm which is always less than 5ms. Block ‘B’ represents the time for the PWM
signal to change width. The PWM signal only changes width after a duty cycle has been
completed (Khz77.91 ÷). Block ‘C’ indicates the time taken to update the encoder
variables from the continually running counters. The section before block ‘C’ is where
the 5ms interrupt timer is reset. Block ‘C’ is a source of error as the robot car is
continuing to move as variables representing encoder values are updated. Block ‘D’
indicates the actual cycle time of the 5ms interrupts and Block ‘E’ is the overrun time
until the interrupt timer is reset.

Chapter 7. Hybrid Model 48

State 1
State 2

RerEnc > 15

RerEnc < 16

T3 ≥5ms

),(21 xxf=λ&

13 =t&

t1=1

11 =t&
12 =t&

10 =t&

C=1

T2 ≥PR2
C=0 T2 ≥PWM

T1++

t0=1

T0++
),(21 xxf=λ&

13 =t&

11 =t&
12 =t&

10 =t&

T2 ≥PR2

T2 ≥PWM

State 3 +

),(21 xxf=λ&

13 =t&

11 =t&
12 =t&

10 =t&

T2 ≥PR2

T2 ≥PWM

t3 ≥200ns

T3=0

T3 ≥200ns

FrtEnc = T1

RerEnc = T0
State 4

),(21 xxf=λ&

13 =t&

t0,1=1

11 =t&
12 =t&

10 =t&

T2 ≥PR2

T2 ≥PWM

T0,1++

State 5 +

),(21 xxf=λ&

13 =t&

t0,1=1

11 =t&
12 =t&

10 =t&

T2 ≥PR2

T2 ≥PWM

T0,1++Comp =Rand[0.0, 1.0]

State 6 +

),(21 xxf=λ&

13 =t&

11 =t&
12 =t&

10 =t&

T2 ≥PR2

T2 ≥PWM

PWM = U

T3 ≥5ms

State 7

),(21 xxf=λ&

13 =t&

11 =t&
12 =t&

10 =t&

T2 ≥PR2

T2 ≥PWM

U = 1023

C=1

C=1

C=1

C=1

C=1

C=1

C=0

C=0
C=0

C=0

C=0

t2,3=1

t2,3=1

t2=1

T2,3++

T2,3++

T2++

T3 ≥1ms

C=0

Comp = 1

Comp = 1

Comp =Rand[0.0, 1.0]
())sgn(ˆˆ

1 sKu
b

u ∗−=

Wait

PWM = 1023

T0=T1=T3=0

t1=1
T1++

t2=1

T2++

T2=0

t0=1

T0++

t3=1

T3++

t0,1=1

t0,1=1

t0,1=1

T0,1++

T0,1++

T0,1++

t2,3=1

t2,3=1

t2,3=1
T2,3++

T2,3++

T2,3++

Figure 7.3: Hybrid representation of the robot car

The function),(21 xxf=λ& , in the model shown in Figure 7.3 represents the continual
dynamics of the robot car. Just as a State Machine representation of a computer program,
each state here would normally represent a line of code, however, to keep the system
manageable for discussion purposes, states with a “+” have been condensed to the most
important line(s) of code. Another dynamic of this system not yet discussed is that states
5 and 6 are stochastic. This is because the compilation of the control algorithm varies in
computation time depending on the input values. As modeling hybrid systems is still in
its infancy [15] strict modeling techniques have not yet been developed. Therefore, in
this thesis the Matlab random generator code is used to symbolize the stochastic property
of these states.

State 1 represents the initialization of the car’s code, and will be used to explain the
parameters that all the states share. The continuous dynamics are represented by t0, t1, t2,
t3, and),(21 xxf=λ& ; where T0 thru T3 represent the microprocessor’s timers. The three
loops off of State 1 at about 9 to 12 o’clock represent the PWM signal dynamics internal
to the microprocessor. These dynamics generate the PWM duty cycle. The other two

Chapter 7. Hybrid Model 49

loops deal with the front and rear wheel encoder counter inputs. The loops that act like
counters are combined on other states in order to conserve space and reduce confusion.
State 2 represents the delay to update/reset the interrupt timer 3. State 3+ illustrates the
reading of the front and rear wheel encoder counter values. Since the control algorithm
used must have an angular velocity on the rear wheel a test was necessary to ensure the
control algorithm was never implemented if the rear wheels were not moving. For this
reason, if the rear wheel’s angular velocity was below a certain point, full power would
be applied to the motor. Initially a scaled exponential function was used, however
because the electrical system’s time response was significantly faster than that of the
mechanical system the function was determined to be unnecessary. It may also be
noticed that State 4 is not stochastic; this is because no computation is done here. State
5+ represents the computation part of the control algorithm and State 6+ represents the
time taken to update the PWM signal. The microprocessor only updates the PWM signal
at the end of every period (at most about 1.02e-4 seconds). The remaining of the 5ms is
spent in a loop (as represented by State 7) until the interrupt from timer 3 starts the
process over again.

 50

Chapter 8

Conclusions and Future Work

The idea of modeling with computer and physical systems has been around for decades,
and the models presented here may also be used as valuable tools to make improvements
on the automated highway concept.

8.1 Conclusions

In conclusion the results indicate a useful system; however, from the results if the same
tire setup is to be used, further analysis must be done to better characterize the ()λµ
curve. Otherwise, tires that better represent the dynamics of tires on full size vehicles
will need to be used. This is most likely one of the larger sources of error, which in turn
gave rise to discrepancies in the simulated annealing process. One significant source of
error that was compensated for was the slight difference in front and rear tire sizes which
could be a serious concern if this exact setup were to be implemented on full size vehicles.

8.2 Future Work

The numerous dynamics that even this simplified system represents provides for
countless possibilities for future work. Therefore, it is the intent to just highlight some of
the more important and fascinating possibilities for future work. To start with, modeling
the ()λµ curve for tires wrapped in Duct Tape is at the top of the list, followed by
attempting to make more exact measurements on other system parameters. The next
recommendation would be to add an accelerometer to eliminate the dependency on tire
size, which would also be a viable solution on full size vehicles. The move to an
accelerometer would also pave the way for future work on maximum acceleration and
maximum deceleration. Future work on the control algorithm can also be done by
applying a boundary layer and adding some integral control. Other additions that may be
made would be to add developments leading to testing outside of a fixed test platform or
adding other dynamics such as a suspension system. Further analysis could also be done
on using the 3-D plot to generate a set of look-up tables to speed up processing time, or
develop it into a generic solution for any type vehicle given certain parameters as inputs.

 51

Bibliography

[1] P. Kachroo, "Nonlinear Control Strategy and Vehicle Traction Control." Berkeley,
CA: UC at Berkeley, 1990.

[2] V. N. Müller, "Development of a robust driver model with parameter adaptation,"

in Institut für Industrielle Informationstechnik (IIIT). Karlsruhe, Germany:
Universität Karlsruhe (TH), 1996.

[3] J. Y. Wong, Theory of Ground Vehicles, Third ed. New York: John Wiley & Sons,

Inc., 2001.

[4] C. Ünsal and P. Kachroo, "Sliding mode measurement feedback control for

antilock breaking system," IEEE, vol. 7, pp. 271-281, 1999.

[5] J.-J. Slotine and W. Li, Applied Nonlinear Control. NJ: Prentice Hall, 1991.

[6] H. K. Khalil, Nonlinear Systems, 3rd ed. NJ: Prentice Hall, 2002.

[7] NE, "Novak Electronic Inc., Rooster/Super Rooster," www.teamnovak.com, 2003.

[8] E. Blanchard, "H-bridge using P and N channel FETs,"

http://www.geocities.com/fet_h_bridge/intro.html, 2001.

[9] P. Mellodge, "Control for a Path Following Robotic Car." Blacksburg: Virginia

Tech, 2002.

[10] "Interface Security," www.workingtex.com, 2002.

[11] J. C. Spall, Introduction to Stochastic Optimization: Estimation, Simulation and

Control. NY: John Wiley and Sons, 2003.

[12] R. Jang, "Software Computing Toolbox for Neuro-Fuzzy and Soft Computing,"

http://neural.cs.nthu.edu.tw/jang/book/soft/, 2004.

[13] S. A. Luis, "Mechanical Engineering Department, Texas A&M University

(TAMU), MEEN 617 Notes: Handout 1, Modeling of Mechanical (Lumped
Parameter) Elements," 2000.

[14] J. P. Hespanha, "Hybrid Control and Switched Systems." Santa Barbara, 2002, pp.

Lecture Notes.

[15] A. v. d. Schaft, An Introduction to Hybrid Dynamical Systems. London: Springer,

2000.

 52

Appendix A

Variables and Units

=WR Radius of wheel, [m]

=µ Adhesion coefficient

=λ Wheel slip

=VN Normal tire force [Newtons]

=tF Tractive force (Average force of driving wheels)

=WJ Moment of inertia of wheel (MOI), [⋅Kg 2m]

=WF Wheel/Viscous friction, [
M
SN ⋅ or

ft
lb sec−]

Wn = number of driving wheels

Vm = Mass of vehicle, [Kg]

VF = Wind drag force [Newton]

eT = Torque of engine [Newton]

bT = Torque of brakes (not used)

VV = Linear velocity of vehicle [meters/second]

vω = Angular velocity of front wheel [radians/second]

Wω = Angular velocity of rear wheel [radians/second]

VN = Normal force to ground, [N]

c = Wind drag coefficient

=aR Motor armature resistance [Ohms]

=eK Motor electrical constant [
srad

V
⋅

]

 53

Appendix B

Robot Car Follower Code

#include <pic18.h>
#include <math.h>

unsigned int RerEnc;
unsigned int FrtEnc;

void interrupt isr(void)
{
 if (T0IF) /* TMR0 overflow interrupt */
 {

/**/
 if (RerEnc < FrtEnc)
 {
 if (CCPR2L+1 > 255)
 CCPR2L = 0xFF;
 else
 CCPR2L = CCPR2L + 1;
 }

 if (RerEnc > FrtEnc)
 {
 if (CCPR2L-1 < 0)
 CCPR2L = 0x00;
 else
 CCPR2L = CCPR2L - 1;
 }
 FrtEnc = 0;
 RerEnc = 0;

 TMR0 = 0; // For reseting Timmer 0 value
 T0IF = 0; /* reset Timmer 0 flag INTCON<2>*/
 }
 if (INT2IF) // RB0/INT ***front wheel count***
 {
 FrtEnc++;
 INT2IF = 0; /* reset RB0/INT flag */
 }
 if (INT1IF) //if (TMR1IF) // (TMR1) Timer1 interupt/RC2 ****rear wheel count****
 {

Appendix B 54

 RerEnc++;
 INT1IF = 0; /* reset Timmer 1 capture flag */
 }
}

void main(void)
{

// Direction of motor
 TRISE = 0x00; // put port D in standard I/O
 PORTD = 0xFF; // set port D as High
 TRISD = 0x00; // set port D as output

 // PWM for TMR2
 PR2 = 0xFF; // PWM period
 CCPR2L = 0x00; // Upper 8 bits of 10 bit PWM duty cycle

 TRISC = 0x00; // Make CCP2/RC1 pin an output for the PWM2 signal

 T2CON = 0x05; // Set the TMR2 prescale value & enable Timer2 (2.44kHz)
 CCP2CON = 0xFF; // Lower 2 bits of 10 bit PWM duty cycle & Put in PWM Mode

// Setup RB1/Int to count "UP" pulses of REAR wheel
// Setup RB2/Int to count "UP" pulses of FRONT wheel
 INTCON = 0xE0; // Enable interupt
 INTCON2 = 0x74; // Set Interupts to rising edge & Priority for TMR0 High
 INTCON3 = 0x18; // Set RB1 & RB2 to Low

// Timmer 0 Interupt

T0CON = 0xC5;
 TMR0 = 0; /* 256 @ 64 = 1.64ms/2 delay */
 INTCON = 0xF0; // Enable interupt

 FrtEnc = 0;
 RerEnc = 0;

 PIE1 = 0x00;
 PIE2 = 0x00;

 while (1)
 {
 /* infinite loop */
 NOP();
 }
}

 55

Appendix C

Parts List

Part Label Part Description Part Number MFG
R1, R2 Resister 5K Ohm Generic part
R3, R4, R6, R8 Resister 10K Ohm Generic part
Q3, Q5 P Channel Mosfet IRF4905 Generic part
Q4, Q6 N Channel Mosfet IRL3803 Generic part
D1, D2, D3, D4 Diode 1N4001 Generic part
Q1, Q2 NPN Transistor 2N3904 Generic part
Z1 Zenor Diode 15V, 1W Generic part
C1 Capacitor 0.1 Fµ Generic part
C2 Capacitor 470 Fµ Generic part
Table C.1: H-Bridge Parts Lists

Part Label Part Description Part Number MFG
 RISC processor 18F452 Microchip
 RS-232

Driver/Receiver
MAX232A MAXIM

 Optical Encoder HEDS-9140-I00 Agilent
 1” Disk 512 pulses per

rev.
 Agilent

 Crystal ECS-2299A-400 ECS, Inc.
International

 D-Flip Flop DM74LS74N FAIRCHILD
Table C.2: Data Collector’s Parts Lists

Appendix C 56

Part Label Part Description Part Number MFG
 RISC processor 18F452 Microchip
 Optical Encoder HEDS-9140-I00 Agilent
 1” Disk 512 pulses

per rev.
 Agilent

 Crystal ECS-2299A-400 ECS, Inc.
International

 D-Flip Flop DM74LS74N FAIRCHILD
 Multiplexer 74S153 Teas Instruments
 5 volt regulator 7805 Generic part
 Generic part
 Generic part
Table C.3: Robot Car’s Control Circuit Parts List

 57

Appendix D

Matlab Data Collection Code

% Test Data reader and Ploter %
% Input = COM1 @ 115200 bps
clear all;
close all;
clc;

Size = 8008; % = 10sec of data w/4 inputs at 5ms sampling

s = serial('COM1', 'BaudRate', 115200, 'InputBufferSize', 1600000, 'Timeout', 25);
s.ReadAsyncMode = 'continuous';
fopen(s);
[A, count] = fread(s, Size, 'uchar');

fclose(s)

cc = 1;
for ii = 1: 4: count,

 RerEnc(cc) = A(ii);
 FrtEnc(cc) = A(ii+1);
%%%%%%%%%% Only used when not manipulating Upr and Lwr data bits
% UprBit(cc) = A(ii+2);
% LwrBit(cc) = A(ii+3);
%%%%%%%%%%%%
%% for loading U %%%%%%%%%%%%%%%%%%%%%%%%%%%%
 UprBit(cc) = A(ii+2);
 U(cc) = bitshift(UprBit(cc), 2); % Load Upper 8 bits of 10 bits plus sign(+/-) into variable U

 LwrBit(cc) = A(ii+3);
 %%%% Determine and Set/Clear Lower 2 bits of 10 bits of U
 if (bitget(LwrBit(cc), 5) == 0)
 U(cc) = bitset(U(cc), 1, 0);
 else
 U(cc) = bitset(U(cc), 1);
 end

 if (bitget(LwrBit(cc), 6) == 0)
 U(cc) = bitset(U(cc), 2, 0);
 else
 U(cc) = bitset(U(cc), 2);
 end

Appendix D 58

 % Determine if U is possitive or negative

 if (bitget(LwrBit(cc),7) == 1)
 U(cc) = -U(cc);
 end
%%%%%%%%%%%%%%%%%%%%%%%%%
 cc = cc + 1;
endt = [0:0.005:10.005]; %10s 4inputs
figure
plot(t,RerEnc,'.')
figure
plot(t,FrtEnc,'.')

% save DataFile FrtEnc RerEnc TrkEnc t;
count

%%%%%%% Other way to set/clear lower 2 bits of U
% if (bitget(LwrBit(cc), 6)==1 && bitget(LwrBit(cc), 5)==1)
% U(cc) = U(cc) + 3;
% elseif (bitget(LwrBit(cc), 6)==1 && bitget(LwrBit(cc), 5)==0)
% U(cc) = U(cc) + 2;
% elseif (bitget(LwrBit(cc), 6)==0 && bitget(LwrBit(cc), 5)==1)
% U(cc) = U(cc) + 1;
% end

 59

Appendix E

Data Collection Circuit (DCC) Code

#include <pic18.h>
#include <stdio.h>

#define USART_TX (RD3) // Turns Output ON and OFF
#define BAUD 115200
#define FOSC 40000000L
#define NINE_BITS 0 // 8-bit communication
#define OUTPUT 0
#define INPUT 1

#define DIVIDER ((int)(FOSC/(16UL * BAUD) -1))
#define SPEED 0x4

unsigned char TrkEnc;
unsigned char FrtEnc;
unsigned char RerEnc;

unsigned int LstTrk;
unsigned int LstRer;

void main(void)
{
/* Serial initialization */
 SPBRG = DIVIDER;
 TXSTA = (SPEED|NINE_BITS|0x20);
 RCSTA = (NINE_BITS|0x90);
 TRISC6=OUTPUT;
 TRISC7=INPUT; /*initialize usart in serial.c*/
////////////////////////////

// Setup RB0/Int to count "UP" pulses of TestPlatform
 T2CON = 0x00; // Turn OFF TMR2

// Direction of motor & to turn on data collection
 TRISE = 0x00; // put port D in standard I/O
 PORTD = 0x00; //
 TRISD = 0xFF; // set port D as Input

// 10 bit PWM value output (8 upperbits on PORTB and lower 2 bits on PORTD<7,6>
 PORTB = 0x00; // set port RB as 0's
 TRISB = 0xFF; // set port B as Input

Appendix E 60

// Timmer 0 Counter (Rear Wheel)
 T0CON = 0xA8; ///8= no prescaler ; 0=*2 prescaler ////0xAF

// Timmer 1 Counter (Front Wheel/ TestPlatform
 T1CON = 0x87;

 T3CON = 0x85;

 TMR0H = 0;
 TMR0 = 0;
 TMR1H = 0;
 TMR1 = 0;
 TMR3H = 0xFB; // 15ms = B6C1; 52.4ms = 0000; 1ms = FB1D/FB27
 TMR3 = 0x27; // For reseting Timmer 3 value

 TMR3H = 0xD9; // 1ms = D93B w/o prescaler
 TMR3 = 0x3B;
// TMR3H = 0x3C; // 5ms = 3CF3 w/o prescaler
// TMR3 = 0xFB; // 5ms = 3CFB w/o prescaler

 TrkEnc = 0;
 FrtEnc = 0;
 RerEnc = 0;
 LstTrk = 0;
 LstRer = 0;

 PIE1 = 0x00;
 PIE2 = 0x02; // Enables TMR3 Overflow Interrupt Enable bit

 INTCON = 0xD0; // Enable interupt

 while (1)
 {
 NOP();

 }

}

void interrupt isr(void)
{

 if (TMR3IF) /* TMR3 overflow interrupt */
 {
 TMR3H = 0xD9; // 0xD9
 TMR3 = 0x3B; // 0x3B //For reseting Timmer 3 value to 1ms

 if (LstRer > TMR0)
 RerEnc = 65535-LstRer + TMR0; //remember to start counting from '0'
 else
 RerEnc = TMR0 - LstRer;
 LstRer = TMR0;

Appendix E 61

 if (LstTrk > TMR1)
 TrkEnc = 65535-LstTrk + TMR1;
 else
 TrkEnc = TMR1 - LstTrk;
 LstTrk = TMR1;

 if (USART_TX)
 {
/* printf("%c",FrtEnc); */
 printf("%c",RerEnc);
 printf("%c",TrkEnc);
 printf("%c",PORTB); // UprPwr
 printf("%c",PORTD); // LwrPwr
 }
 TMR3IF = 0; /* reset Timmer 3 flag PIR2<1>*/
 }

}

void putch(unsigned char byte)
{
 /* output one byte */
 while(!TXIF) /* set when register is empty */ // PIR1<4>
 continue;
 TXREG = byte;
}

 62

Appendix F

Matlab Code For 3-D Plots of Control Outputs

% By: Mark Morton
% Sliding Mode Control 3-D Plot for Tracktion Control

clc;
clear all;
close all;

MueP = 0.0745;
Lamda_P = 0.1551;
Lamda_d = 0.01; % desired Lamda from simulated annealing % desired path
c = 0.005; % wind drag force coeficient
mv = 1.6516; % mass of car (Kg)
nw = 2; % number of driving wheels
Nv = 1.3009; % w/o batt 0.9328; %w/ batt= 1.3009; % normal force to ground (N)
Rw = 0.0320548; % radius of wheel (Meters)
Fw = 0.4507; % wheel viscous friction (N*Sec/Meter)
Jw = 0.1088; %0.5*m*Rw^2; % inertia (Kg*m^2)

Ke = 0.0159; %6.7831e-3; %
Ra = 1.506; %5; %1.506; % Armeture resistance
Volts = 12.0; % Maximum voltage supplied to system (aka: battery)

N = 0.2;
minn = 0.9;
maxx = 1.1;
Beta = 1.4;

z = 1;

Rfw = 2.4035;
Rrw = 2.524; %2.54; %2.524;
Rtw = 1.8085;
Ratio = 2/3; % for Track/Rw
Time = 0.005*z;
% Time = 0.00656;
% Time = 0.015;

for FrtEnc = 1:1:64*z, %1:64, %1:96*z, %90, %270, %900
 for RerEnc = 1:64*z, %90, %270, %900

Appendix F 63

 x(1) = FrtEnc*6.283185/256.0/Time; %*2.524/2.2035; Compensation ratio
 x(2) = RerEnc*6.283185/256.0/Time; Lamda = 1-x(1)/x(2);

 Vv = x(1)*Rw; %initial velocity
 Fv = c*Vv^2; % wind drag force

 bmin = minn*(1-Lamda)*Ke/(Ra*Jw*x(2));
 bmax = maxx*(1-Lamda)*Ke/(Ra*Jw*x(2));
 b_hat = sqrt(bmin*bmax);

 Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2); % adhesion/friction coef.
 Mue_hat = ((2*0.94*0.3*Lamda)/(0.3^2+Lamda^2) + (2*0.008*0.008*Lamda)/(0.008^2+ …

Lamda^2))/2 + 0.001;

 Muedif = Mue-Mue_hat;

% F = abs(f_hat - f);
 F = abs([(Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))] * (Mue-Mue_hat));

 s=Lamda-Lamda_d;

 Lamda)*Rw*Nv*Mue)/(Jw*x(2))] + ((1-Lamda)*u)/(Jw*x(2));
 u_hat = (-f_hat+0); %Lamda_d_dot); % /b_hat is taken care of in 'u='

%K = F + N; % Gain
 K = Beta*(F+N) + (Beta-1)*abs(u_hat);
%
 u = 1/b_hat*(u_hat - K*sign(s))

 PerVolt = u/1023; % Percent Voltage to motor
 V = PerVolt * Volts; % actual voltage supplied to motor

 if (V > 12)
 V = 12;
 end
 if (V < -12)
 V = -12;
 end

 if (u > 1023)
 u = 1023;
 end
 if (u < -1023)
 u = -1023;
 end

 U_out(FrtEnc, RerEnc) = u;

 V_out(FrtEnc, RerEnc) = V;

% if (mod(RerEnc,100) == 1)
% u
% end
 end
end
figure
mesh(V_out)

 64

Appendix G

Leader Code

#include <pic18.h>
#include <stdlib.h>
#include <math.h>

unsigned int RerEnc;
unsigned int FrtEnc;
unsigned int LstFrt;
unsigned int LstRer;
int Pwr;

/* service routine for timer 3 interrupt */

void interrupt isr(void)
{
// unsigned int tics = TMR0;

 TMR3H = 0x3C; // 0xFB ~1ms = FB1D w/prescaler
 TMR3 = 0xC2; // 0x1D //For reseting Timmer 3 value
 if (LstRer > TMR0)
 RerEnc = 65535-LstRer + TMR0; //remember to start counting from '0'
 else
 RerEnc = TMR0 - LstRer;
 LstRer = TMR0;

 if (LstFrt > TMR1)
 FrtEnc = 65535-LstFrt + TMR1;
 else
 FrtEnc = TMR1 - LstFrt;
 LstFrt = TMR1;
/**/

 if (RerEnc > FrtEnc+5) //1.0501352197*FrtEnc+5)
 {
 Pwr = Pwr - 1;
 }
 else
 Pwr = Pwr + 1;

 if (Pwr>=0)
 { //**********check value of u ?????*************//
 PORTD = 0x08; // Bit RD2 = 0 for forward direction when Y1 on

//MUXconnected to IN1 on H-bridge

Appendix G 65

 if (Pwr > 1023)
 Pwr = 1023;
 CCPR2L = Pwr>>2; // & 1020;
 CCP2CON = 0xf ^ (Pwr<<4);
 PORTB = CCPR2L;
 PORTD = PORTD + (Pwr<<4);
 }
 else
 { //**********check value of u ?????************//
 PORTD = 0x0C; // Bit RD2 = 1 for reverse direction
 if (Pwr < -1023)
 Pwr = 1023;
 else
 Pwr = -Pwr;
 CCPR2L = Pwr>>2; // & 1020;
 CCP2CON = 0xf ^ (Pwr<<4);
 PORTB = CCPR2L;
 PORTD = PORTD + (Pwr<<4);
 Pwr = -Pwr;
 }

TMR3IF = 0; /* reset Timmer 3 flag PIR2<1>*/
}

void main(void)
{

// Direction of motor
 TRISE = 0x00; // put port D in standard I/O
 PORTD = 0x08; // set port RD2 as LOW for forward direction
 // and port RD3 HIGH to turn test platform output ON
 TRISD = 0x00; // set port D as output

// 10 bit PWM value output (8 upperbits on PORTB and lower 2 bits on PORTD<7,6>
 PORTB = 0x00; // set port RB as 0's
 TRISB = 0x00; // set port B as output

 // PWM for TMR2
 PR2 = 0xFF; // PWM period
 CCPR2L = 0x55; // Upper 8 bits of 10 bit PWM duty cycle

 T2CON = 0x05; // Set the TMR2 prescale value & enable Timer2 0x05 = (9.77kHz)
 CCP2CON = 0xFF; // Lower 2 bits of 10 bit PWM duty cycle & Put in PWM Mode
 TRISC = 0x01; // Make CCP2/RC1 pin an output for the PWM2 signal

// Timmer 0 Counter
 T0CON = 0xA8; ///8= no prescaler ; 0=*2 prescaler

// Timmer 1 Counter
 T1CON = 0x87;

// Timmer 3 Interupt on Over Flow
// T3CON = 0b10110101
 T3CON = 0x85; // B5=8*prescaler

Appendix G 66

 TMR0H = 0;
 TMR0 = 0;

 TMR1H = 0;
 TMR1 = 0;

TMR3H = 0x3C; // 15ms = B6C1; 52.4ms = 0000; 5ms = E795; 1ms = FB1D;
 TMR3 = 0xC2; // For reseting Timmer 3 value

 INTCON = 0xC0; // Enable interupt

 FrtEnc = 0;
 RerEnc = 0;
 LstFrt = 0;
 LstRer = 0;
 Pwr = 0;

 PIE1 = 0x00;
 PIE2 = 0x02; // Enables TMR3 Overflow Interrupt Enable bit

 CCPR2L = 0xFF; // Upper 8 bits of 10 bit PWM duty cycle

 while (1)
 {
 /* infinite loop */
 NOP();
 }
}

 67

Appendix H

Matlab Mean Code

clear all;
clc;

% load F:\'serial test data'\'Annealing Prog'\Data7aB10s

Dfw = 2.4035;
Drw = 2.524;
Dtw = 1.8085;

x = FrtEnc*Dfw/Drw; %UprBit; %FrtEnc;\
y = RerEnc; %TrkEnc*Dtw/Drw; %RerEnc;
x2 = x;
y2 = y;

count = length(t);
cc = 0;

neg = 0;
pos = 0;

% First and Last Data Points are NOT Averaged

m = 51 % must be an ODD number

for ii = 2: 1: (m-1)/2,
 for jj = ii-1: -1: 0,
 neg = neg + x(ii - jj);
 pos = pos + x(ii + jj);
 end
 x(ii) = (neg + pos)/(ii * 2);
 neg = 0;
 pos = 0;
end

for ii = ((m+1)/2): 1: length(t)-(m+1)/2,
 for jj = m: -2: 1,
 neg = neg + x(ii - (jj-1)/2);
 pos = pos + x(ii + (jj-1)/2);
 end
 x(ii) = (neg + pos)/(m + 1);
 neg = 0;

Appendix H 68

 pos = 0;
end

for ii = length(t)-(m-1)/2: 1: length(t)-1,
 for jj = length(t)-ii: -1: 0,
 neg = neg + x(ii - jj);
 pos = pos + x(ii + jj);
 end
 x(ii) = (neg + pos)/((length(t)-ii+1) * 2);
 neg = 0;
 pos = 0;
end

for ii = 2: 1: (m-1)/2,
 for jj = ii-1: -1: 0,
 neg = neg + y(ii - jj);
 pos = pos + y(ii + jj);
 end
 y(ii) = (neg + pos)/(ii * 2);
 neg = 0;
 pos = 0;
end

for ii = ((m+1)/2): 1: length(t)-(m+1)/2,
 for jj = m: -2: 1,
 neg = neg + y(ii - (jj-1)/2);
 pos = pos + y(ii + (jj-1)/2);
 end
 y(ii) = (neg + pos)/(m + 1);
 neg = 0;
 pos = 0;
end

for ii = length(t)-(m-1)/2: 1: length(t)-1,
 for jj = length(t)-ii: -1: 0,
 neg = neg + y(ii - jj);
 pos = pos + y(ii + jj);
 end
 y(ii) = (neg + pos)/((length(t)-ii+1) * 2);
 neg = 0;
 pos = 0;
end

FrtEnc = x;
RerEnc = y;
Diff = x-y;
clear x y cc ii jj neg pos;

figure
subplot(4,1,1)
plot(t, FrtEnc)
subplot(4,1,2)
plot(t,RerEnc)
subplot(4,1,3)
plot(t,1-FrtEnc./RerEnc)

Appendix H 69

subplot(4,1,4)
plot(t,1-x2./y2)

% save F:\'serial test data'\'Annealing Prog'\Data7bB10s

 70

Appendix I

Matlab Simulated Annealing Code

I.1 Final Simulated Annealing Code

clear all;
close all;
clc;

tic;
%%%%%%%%%%%% Sliding Mode Setup %%%%%%%%%%%%%%%%
global Mue Fv mv nw Nv Rw Fw Jw Ke V Ra x2
load Data7aB10s

figure
subplot(3,1,1), plot(t, RerEnc)
subplot(3,1,2), plot(t, FrtEnc)
subplot(3,1,3), plot(t, U)

Ke_Range = [2.7e-3: 1.0e-4: 24.74e-3]; %16.74e-3; %6.7831e-3; %
Ra_Range = [1.2: 0.1: 1.9]; %1.2; % Armeture resistance
Lamda_d_Range = [0.001: 0.001: 0.3]; % desired path
MueP_Range = [0.01: 0.01: 0.3];
Lamda_P_Range = [0.01: 0.01: 0.3];
c_Range = [0.001: 0.001: 1.0]; % wind drag force coeficient
Nv_Range = [1.2: 0.01: 1.6516]; % normal force to ground (N)
Fw_Range = [0.01: 0.1: 7]; % wheel viscous friction (N*Sec/Meter)
Jw_Range = [1.116425e-6: 1.0e-4: 0.022]; %0.5*m*Rw^2; % inertia (Kg*m^2)

mv = 1.6516; % mass of car (Kg)
nw = 2; % number of driving wheels
Rw = 0.0320548; % radius of wheel (Meters)
Volts = 12.0; % Maximum voltage supplied to system (aka: battery)

Error_Over = 0;
tspan = 0.0049999;
Time = 0.0049999;
 Rfw = 1.20175;
 Rrw = 1.262;
% digits(7);
tic;

Appendix I 71

%%%%%%%%%%%%%% Setup for Annealing %%%%%%%%%%%%%%%%%%
Lowest_Error = 100000;
Highest_Error = 0.5;
Curr_Error = inf;
temp = 10e8; % Choose the temperature to be large enough
fprintf('Initial Curr_Error = %f\n\n',Curr_Error);

NumCombo = 100;
rand('state',sum(100*clock)) % Resets it to a different state each time.

MaxTempItr = NumCombo*10; % Max. # of trials at a temperature
MaxLcaLitr = NumCombo*1; % Max. # of acceptances at a temperature
StopTolerance = 0.0001; % Stopping tolerance
TempRatio = 0.98; % Temperature decrease ratio
TempItr = 0; % Number of trial moves

minE = inf; % Initial value for min. Curr_Error
maxE = -1; % Initial value for max. Curr_Error

%%%%%%%%%%%%%%%%%% Annealing loop %%%%%%%%%%%%%%%%%%%%%
while (TempItr < MaxTempItr), %(((maxE-minE)/maxE > StopTolerance) & (TempItr < MaxTempItr)),

 minE = inf; % Initial value for min. Curr_Error
 maxE = -1; % Initial value for max. Curr_Error
 LcaLitr = 0; % Number of local iterations at a certain temp.

 while ((Curr_Error > 0.005) & (LcaLitr < MaxLcaLitr)),

 Ke = rand * (max(Ke_Range)-min(Ke_Range)) + min(Ke_Range);
 Ra = rand * (max(Ra_Range)-min(Ra_Range)) + min(Ra_Range);
 Lamda_d = rand * (max(Lamda_d_Range)-min(Lamda_d_Range)) + min(Lamda_d_Range);
 MueP = rand * (max(MueP_Range)-min(MueP_Range)) + min(MueP_Range);
 Lamda_P = rand * (max(Lamda_P_Range)-min(Lamda_P_Range)) + min(Lamda_P_Range);
 c = rand * (max(c_Range)-min(c_Range)) + min(c_Range);
 Nv = rand * (max(Nv_Range)-min(Nv_Range)) + min(Nv_Range);
 Fw = rand * (max(Fw_Range)-min(Fw_Range)) + min(Fw_Range);
 Jw = rand * (max(Jw_Range)-min(Jw_Range)) + min(Jw_Range);

 Error_Sum = 0;
 rand('seed', 31415927)

% for ii = 750:1200,
% for ii = 2:length(t),
 for ii = 2:1200,

 x(1) = FrtEnc(ii)*6.283185/256.0/Time*Rfw/Rrw;
 x(2) = RerEnc(ii)*6.283185/256.0/Time;
 x2 = x(2);
 x1 = x(1);
 if (x(2) ~= 0),
 LamdaC = 1-x(1)/x(2);

 Vv = x(1)*Rw; %initial velocity
 Fv = c*Vv^2; % wind drag force

 Mue = (2*MueP*Lamda_P*LamdaC) / (Lamda_P^2+LamdaC^2); % adhesion/friction coef.

%(THE INPUT for the smallest curve)

Appendix I 72

 %%%%%%%%%%%%%%%%% ODE Solver %%%%%%%%%%%%%%%%%%%%
 u = U(ii);
 PerVolt = u/1023; % Percent Voltage to motor
 V = PerVolt * Volts; % actual voltage supplied to motor

 [T, X] = ode45('states2',[0,tspan],x);
 x = X(length(X), [1,2]);

 LamdaM = 1-x(1)/x(2);

LC(ii) = LamdaC;
LM(ii) = LamdaM;
FW(ii) = x(1);
RW(ii) = x(2);
v(ii) = V;

 Error1 = (x(2)-x2)^2;
 Error2 = (x(1)-x1)^2;
 Error3 = (LamdaM - LamdaC)^2;
 Error = Error1 + Error2 + Error3;
 Error_Sum = Error_Sum + Error;
 New_Error = Error_Sum;
 else
 Error_Sum = Error_Sum + 0;
 end

 %%%%% If erro already over 3 no need to continue calculating error %%%%
 if (New_Error > Lowest_Error)
 Error_Over = 1
 break;
 end

 end

if (((rand < exp((Curr_Error-New_Error)/temp)) | ((New_Error-Curr_Error) < 0)) & Error_Over == 0),
 % accept it!

 Curr_Error = New_Error
 minE = min(minE, Curr_Error);
 maxE = max(maxE, Curr_Error);
 RWC = RW;
 if Curr_Error < Lowest_Error,
 Lowest_Error = Curr_Error
 LCL = LC;
 LML = LM;
 FWL = FW;
 RWL = RW;
 save LowError16
 end
 if Curr_Error > Highest_Error,
 Highest_Error = Curr_Error
 LCH = LC;
 LMH = LM;
 FWH = FW;
 RWH = RW;
 save HighError16

Appendix I 73

 end
 end
 rand('state',sum(100*clock)) % Resets it to a different state each time.
 Error_Over = 0; % resets too high error value indicator

 LcaLitr = LcaLitr + 1;
end

 % Print information in command window
 fprintf('temp. = %f\n', temp);
 fprintf('Curr_Error = %f\n', Curr_Error);
 fprintf('[minE maxE] = [%f %f]\n', minE, maxE);
 fprintf('[LcaLitr TempItr] = [%d %d]\n\n', LcaLitr, TempItr);
 % Lower the temperature
 temp = temp*TempRatio;
 % Increment trial count
 TempItr = TempItr + 1;
end

fprintf('Compute Time = %f\n', toc);

 Ra
 Ke
 Lamda_d
 MueP
 Lamda_P
 c
 Nv
 Fw
 Jw

save AnnealResult16

toc;

I.2 Earliest Simulated Annealing Code

clear all;
close all;
clc;

tic;
%%%%%%%%%%%% Sliding Mode Setup %%%%%%%%%%%%%%%%
global Mue Fv mv nw Nv Rw Fw Jw u
load data1aB5s
% load Data7aB10s
% load Data7bB10s
% load Data5aB10s

figure

Appendix I 74

subplot(3,1,1), plot(t, RerEnc)
subplot(3,1,2), plot(t,FrtEnc)
subplot(3,1,3), plot(t,U)

MueP_Range = [0.11: 0.01: 0.2];
Lamda_P_Range = [0.11: 0.01: 0.3];
c_Range = [0.01: 0.001: 0.05]; % wind drag force coeficient
Nv_Range = [1.0: 0.01: 1.6516]; % normal force to ground (Kg)
Fw_Range = [0.01: 0.001: 0.3]; % wheel viscous friction (N*Sec/Meter)
Jw_Range = [8.416425e-5: 1.0e-6: 0.011]; %0.5*m*Rw^2; % inertia (Kg*m^2)

Lamda_d = 0.25; % desired path
% c = [0.001:0.001:0.05]; %%0.25; % wind drag force coeficient
% % m = 0.016; % mass of wheel (Kg)
mv = 1.6516; % mass of car (Kg)
nw = 2; % number of driving wheels
Rw = 0.0320548; % radius of wheel (Meters)
tspan = 0.0049999;
Time = 0.0049999;

digits(7);
tic;

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Setup for Annealing
%%%%%%%%%%%%%%%%%%
Lowest_Error = 1000;
Highest_Error = 10;
Curr_Error = inf;
temp = 10e6; % Choose the temperature to be large enough
fprintf('Initial Curr_Error = %f\n\n',Curr_Error);

NumCombo = 1;
rand('seed', 31415927)
% rand('state',sum(100*clock)) % Resets it to a different state each time.

MaxTempItr = NumCombo*10; % Max. # of trials at a temperature
MaxLcaLitr = NumCombo*5; % Max. # of acceptances at a temperature
StopTolerance = 0.005; % Stopping tolerance
TempRatio = 0.25; % Temperature decrease ratio
TempItr = 0; % Number of trial moves

minE = inf; % Initial value for min. Curr_Error
maxE = -1; % Initial value for max. Curr_Error

%%%%%%%%%%%%%%%%%% Annealing loop
%%%%%%%%%%%%%%%%%%%%%

Appendix I 75

while (((maxE-minE)/maxE > StopTolerance) & (TempItr < MaxTempItr)),
% while (TempItr < MaxTempItr),
 minE = inf; % Initial value for min. Curr_Error
 maxE = -1; % Initial value for max. Curr_Error
 LcaLitr = 0; % Number of local iterations at a certain temp.

 while ((Curr_Error > 0.5) & (LcaLitr < MaxLcaLitr)),

 MueP = rand * (max(MueP_Range)-min(MueP_Range)) + min(MueP_Range);
 Lamda_P = rand * (max(Lamda_P_Range)-min(Lamda_P_Range)) +…
min(Lamda_P_Range);
 c = rand * (max(c_Range)-min(c_Range)) + min(c_Range);
 Nv = rand * (max(Nv_Range)-min(Nv_Range)) + min(Nv_Range);
 Fw = rand * (max(Fw_Range)-min(Fw_Range)) + min(Fw_Range);
 Jw = rand * (max(Jw_Range)-min(Jw_Range)) + min(Jw_Range);
 Error_Sum = 0;

 for ii = 2:length(t),

 x(1) = FrtEnc(ii)*6.283185/256.0/Time;
 x(2) = RerEnc(ii)*6.283185/256.0/Time;
 if (x(2) ~= 0),
 LamdaC = 1-x(1)/x(2);
% if (LamdaC > 0.5)
% LamdaC = 0.5;
% end

 Vv = x(1)*Rw; %initial velocity
 Fv = c*Vv^2; % wind drag force

 Mue = (2*MueP*Lamda_P*LamdaC) / (Lamda_P^2+LamdaC^2);
 % adhesion/friction coef. (THE INPUT for the smallest curve)

 %%%%%%%%%%%%%%%%% ODE Solver
%%%%%%%%%%%%%%%%%%%%
 u = U(ii);
 u = (u-6.7831e-3 * x(2))/1.2;
 [T, X] = ode45('states',[0,tspan],x);
 x = X(length(X), [1,2]);

 LamdaM = 1-x(1)/x(2);
% if (LamdaM > 0.5)
% LamdaM = 0.5;
% end

% x(1) = FrtEnc(ii+1)*6.283185/256.0/Time;
% x(2) = RerEnc(ii+1)*6.283185/256.0/Time;

Appendix I 76

% LamdaC = 1-x(1)/x(2);
 Error = (LamdaM - LamdaC)^2;
 Error_Sum = Error_Sum + Error;
 New_Error = Error_Sum;
 else
 Error_Sum = Error_Sum + 0;
 end
 end

 if ((rand < exp((Curr_Error-New_Error)/temp)) | ((New_Error-Curr_Error)
< 0)), % accept it!

 Curr_Error = New_Error
 minE = min(minE, Curr_Error);
 maxE = max(maxE, Curr_Error);
 if Curr_Error < Lowest_Error,
 Lowest_Error = Curr_Error
 save LowError3
 end
 if Curr_Error > Highest_Error,
 Highest_Error = Curr_Error
 save HighError3
 end
 end

 LcaLitr = LcaLitr + 1;
 end

 % Update plot
 % Print information in command window
 fprintf('temp. = %f\n', temp);
 fprintf('Curr_Error = %f\n', Curr_Error);
 fprintf('[minE maxE] = [%f %f]\n', minE, maxE);
 fprintf('[LcaLitr TempItr] = [%d %d]\n\n', LcaLitr, TempItr);
 % Lower the temperature
 temp = temp*TempRatio;
 % Increment trial count
 TempItr = TempItr + 1;
end

fprintf('Compute Time = %f\n', toc);

save AnnealResult3

%%%% control output plot %%%%%%%%%%%5
for FrtEnc = 1:41, %90, %270, %900

Appendix I 77

 for RerEnc = 1:41, %90, %270, %900

 x(1) = FrtEnc*6.283185/256.0/Time;
 x(2) = RerEnc*6.283185/256.0/Time;

 Lamda = 1-x(1)/x(2);
 if (Lamda > 0.5)
 Lamda = 0.5;
 end

 Vv = x(1)*Rw; %initial velocity
 Fv = c*Vv^2; % wind drag force

 bmin = 0.999*(1-Lamda)/(Jw*x(2));
 bmax = 1.001*(1-Lamda)/(Jw*x(2));
 b_hat = sqrt(bmin*bmax);
% Beta = sqrt(bmax/bmin);
Beta = 1;
N = 0.05; % eta

 Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2); % adhesion/friction
%coef. (THE INPUT for the smallest curve)
 Mue_hat = -1239.8*Lamda.^6 + 2213.2*Lamda.^5 - 1590.6*Lamda.^4 + …
589.97*Lamda.^3 - 119.97*Lamda.^2 + 12.727*Lamda + 0.0; % Nominal curve shifted
%up just a little

 Muedif = Mue-Mue_hat;

% Mue_hat = Mue;
 f_hat = -((1-Lamda)*Fw*Rw)/(Jw*x(2)) + Mue_hat*[(Fv-Nv*nw)/(mv*Rw*x(2)) +..
((1-Lamda)*Rw*Nv)/(Jw*x(2))];

% F = abs(f_hat - f);
 F = abs([(Fv-Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))]*abs(Mue-
Mue_hat));

 s=Lamda-Lamda_d;

% Lam_dot = [(Fv-Nv*nw*Mue)/(mv*Rw*x(2)) - ((1-Lamda)*Fw*Rw)/(Jw*x(2)) - ((1-
Lamda)*Rw*Nv*Mue)/(Jw*x(2))] + ((1-Lamda)*u)/(Jw*x(2));

 u_hat = (-f_hat+0); %Lamda_d_dot); % /b_hat is taken care of in 'u='

Appendix I 78

%K = F + N; % Gain

 K = Beta*(F+N) + (Beta-1)*abs(u_hat);

 u = 1/b_hat*(u_hat - K*sign(s));

 if (u > 1023)
 u = 1023;
 end
 if (u < -1023)
 u = -1023;
 end

 U_out(FrtEnc, RerEnc) = u;

 end
end
figure
mesh(U_out)

%%%
%%%%%%%%
%%%% minumum control output plot %%%%%%%%%%%

load LowError
for FrtEnc = 1:41, %90, %270, %900
 for RerEnc = 1:41, %90, %270, %900

 x(1) = FrtEnc*6.283185/256.0/Time;
 x(2) = RerEnc*6.283185/256.0/Time;

 Lamda = 1-x(1)/x(2);
 if (Lamda > 0.5)
 Lamda = 0.5;
 end

 Vv = x(1)*Rw; %initial velocity
 Fv = c*Vv^2; % wind drag force

 bmin = 0.999*(1-Lamda)/(Jw*x(2));
 bmax = 1.001*(1-Lamda)/(Jw*x(2));
 b_hat = sqrt(bmin*bmax);
% Beta = sqrt(bmax/bmin);
Beta = 1;

Appendix I 79

N = 0.05; % eta

 Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2); % adhesion/friction
%coef. (THE INPUT for the smallest curve)

 Mue_hat = -1239.8*Lamda.^6 + 2213.2*Lamda.^5 - 1590.6*Lamda.^4 + …
589.97*Lamda.^3 - 119.97*Lamda.^2 + 12.727*Lamda + 0.0; % Nominal curve shifted
%up just a little

 Muedif = Mue-Mue_hat;

% Mue_hat = Mue;

 f_hat = -((1-Lamda)*Fw*Rw)/(Jw*x(2)) + Mue_hat*[(Fv-Nv*nw)/(mv*Rw*x(2))
+ ((1-Lamda)*Rw*Nv)/(Jw*x(2))];

% F = abs(f_hat - f);
 F = abs([(Fv-Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))]*abs(Mue-
Mue_hat));

 s=Lamda-Lamda_d;

% Lam_dot = [(Fv-Nv*nw*Mue)/(mv*Rw*x(2)) - ((1-Lamda)*Fw*Rw)/(Jw*x(2)) - ((1-
Lamda)*Rw*Nv*Mue)/(Jw*x(2))] + ((1-Lamda)*u)/(Jw*x(2));

 u_hat = (-f_hat+0); %Lamda_d_dot); % /b_hat is taken care of in 'u='

%K = F + N; % Gain

 K = Beta*(F+N) + (Beta-1)*abs(u_hat);

 u = 1/b_hat*(u_hat - K*sign(s));

 if (u > 1023)
 u = 1023;
 end
 if (u < -1023)
 u = -1023;
 end

 U_out(FrtEnc, RerEnc) = u;

Appendix I 80

 end
end
figure
mesh(U_out)

%%%
%%%%%%%%
%%%% maximumum control output plot %%%%%%%%%%%

load HighError
for FrtEnc = 1:41, %90, %270, %900
 for RerEnc = 1:41, %90, %270, %900

 x(1) = FrtEnc*6.283185/256.0/Time;
 x(2) = RerEnc*6.283185/256.0/Time;

 Lamda = 1-x(1)/x(2);
 if (Lamda > 0.5)
 Lamda = 0.5;
 end

 Vv = x(1)*Rw; %initial velocity
 Fv = c*Vv^2; % wind drag force

 bmin = 0.999*(1-Lamda)/(Jw*x(2));
 bmax = 1.001*(1-Lamda)/(Jw*x(2));
 b_hat = sqrt(bmin*bmax);
% Beta = sqrt(bmax/bmin);
Beta = 1;
N = 0.05; % eta

 Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2); % adhesion/friction
coef. (THE INPUT for the smallest curve)
 Mue_hat = -1239.8*Lamda.^6 + 2213.2*Lamda.^5 - 1590.6*Lamda.^4 +
589.97*Lamda.^3 - 119.97*Lamda.^2 + 12.727*Lamda + 0.0; % Nominal curve shifted
up just a little

 Muedif = Mue-Mue_hat;

% Mue_hat = Mue;

Appendix I 81

 f_hat = -((1-Lamda)*Fw*Rw)/(Jw*x(2)) + Mue_hat*[(Fv-Nv*nw)/(mv*Rw*x(2))
+ ((1-Lamda)*Rw*Nv)/(Jw*x(2))];

% F = abs(f_hat - f);
 F = abs([(Fv-Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))]*abs(Mue-
Mue_hat));

 s=Lamda-Lamda_d;

% Lam_dot = [(Fv-Nv*nw*Mue)/(mv*Rw*x(2)) - ((1-Lamda)*Fw*Rw)/(Jw*x(2)) - ((1-
Lamda)*Rw*Nv*Mue)/(Jw*x(2))] + ((1-Lamda)*u)/(Jw*x(2));

 u_hat = (-f_hat+0); %Lamda_d_dot); % /b_hat is taken care of in 'u='

%K = F + N; % Gain

 K = Beta*(F+N) + (Beta-1)*abs(u_hat);

 u = 1/b_hat*(u_hat - K*sign(s));

 if (u > 1023)
 u = 1023;
 end
 if (u < -1023)
 u = -1023;
 end

 U_out(FrtEnc, RerEnc) = u;

 end
end
figure
mesh(U_out)

tic;

I.3 Simulated Annealing Code to Find Gains

clear all;
close all;
clc;

tic;

Appendix I 82

%%%%%%%%%%%% Sliding Mode Setup %%%%%%%%%%%%%%%%
global Mue Fv mv nw Nv Rw Fw Jw Ke V Ra x2

%%%%%%%% Perameters from Simulated Annealing with Lamda, Mue, and Lamda_d
%at very low ranges
%%%%%%%%%%%%%% of values
MueP = 0.0102;
Lamda_P = 0.0105;
Lamda_d = 0.008; % desired Lamda from simulated annealing % desired path
c = 0.0019; %0.022; % wind drag force coeficient

mv = 1.6516; % mass of car (Kg)
nw = 2; % number of driving wheels
Nv = 1.4585 % normal force to ground (Kg)
Rw = 0.032055; % radius of wheel (Meters)
Fw = 0.1951; % wheel viscous friction (N*Sec/Meter)
Jw = 0.0923; %0.5*32.0*0.02659^2 %0.5*m*Rw^2; % inertia (Kg*m^2)

Ke = 0.0139; %6.7831e-3; %
Ra = 1.2229; % Armeture resistance
Volts = 12.0; % Maximum voltage supplied to system (aka: battery)

N_Range = [0.0001: 0.00001: 9.0];
Phi_Range = [0.01: 0.01: 5.0];
min_Range = [0.01: 0.01: 9.0];
max_Range = [0.01: 0.01: 9.0];
Beta_Range = [0.01: 0.01: 12.0];

Error_Over = 0;

tspan = 0.5;
Time = tspan;
Rfw = 1.20175;
Rrw = 1.262;

tic;

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Setup for Annealing
%%%%%%%%%%%%%%%%%%
Lowest_Error = 100000;
Highest_Error = 2;
Curr_Error = inf;
temp = 10000; % Choose the temperature to be large enough
fprintf('Initial Curr_Error = %f\n\n',Curr_Error);

NumCombo = 1;

Appendix I 83

% rand('seed', 31415927)
rand('state',sum(100*clock)) % Resets it to a different state each time.

MaxTempItr = NumCombo*100; % Max. # of trials at a temperature
MaxLcaLitr = NumCombo*10; % Max. # of acceptances at a temperature
StopTolerance = 0.0001; % Stopping tolerance
TempRatio = 0.90; % Temperature decrease ratio
TempItr = 0; % Number of trial moves

minE = inf; % Initial value for min. Curr_Error
maxE = -1; % Initial value for max. Curr_Error

%%%%%%%%%%%%%%%%%% Annealing loop
%%%%%%%%%%%%%%%%%%%%%
while (TempItr < MaxTempItr), %(((maxE-minE)/maxE > StopTolerance) & (TempItr <
MaxTempItr)),

 minE = inf; % Initial value for min. Curr_Error
 maxE = -1; % Initial value for max. Curr_Error
 LcaLitr = 0; % Number of local iterations at a certain temp.

 while ((Curr_Error > 0.005) & (LcaLitr < MaxLcaLitr)),

 N = rand * (max(N_Range)-min(N_Range)) + min(N_Range);
 Phi = rand * (max(Phi_Range)-min(Phi_Range)) + min(Phi_Range);
 minn = rand * (max(min_Range)-min(min_Range)) + min(min_Range);
 maxx = rand * (max(max_Range)-min(max_Range)) + min(max_Range);
 Beta = rand * (max(Beta_Range)-min(Beta_Range)) + min(Beta_Range);

 Error_Sum = 0;
 rand('seed', 31415927)

%%%
%%
 FrtEnc = 1;
 RerEnc = 1;
 x(1) = FrtEnc*6.283185/256.0/Time;
 x(2) = RerEnc*6.283185/256.0/Time;
%%%
%%%%%%%%%
 x2 = x(2); % value sent to ODE45 Function (rear wheel value)

 Lamda = 1-x(1)/x(2);
 if (Lamda > 0.5)
 Lamda = 0.5;
 end

Appendix I 84

 Vv = x(1)*Rw; %initial velocity
 Fv = c*Vv^2; % wind drag force

 bmin = minn*(1-Lamda)*Ke/(Ra*Jw*x(2));
 bmax = maxx*(1-Lamda)*Ke/(Ra*Jw*x(2));
 b_hat = sqrt(bmin*bmax);

 Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2); % adhesion/friction
%coef.

Mue_hat = -9546.3*Lamda.^10 + 50170*Lamda.^9 - 1.1328e+005*Lamda.^8 +
1.4366e+005*Lamda.^7 - 1.1227e+005*Lamda.^6 + 55813*Lamda.^5 -
17584*Lamda.^4 + 3385.6*Lamda.^3 - 367.85*Lamda.^2 + 19.217*Lamda.^1 +
0.14133;

 Muedif = Mue-Mue_hat;

 f_hat = [Fv/(mv*Rw*x(2)) - (1-Lamda)*Rw/(Jw*x(2)) - (1-
Lamda)*Ke^2/(Ra*Jw*x(2))] - [nw*Nv/(mv*Rw*x(2)) + (1-
Lamda)*Rw*Nv/(Jw*x(2))]*Mue_hat;

% F = abs(f_hat - f);
 F = abs([(Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))] * (Mue-…
Mue_hat));
% F = 0; % for debuging

 s=Lamda-Lamda_d;

 u_hat = (-f_hat+0); %Lamda_d_dot); % /b_hat is taken care of in 'u='

 K = Beta*(F+N) + (Beta-1)*abs(u_hat);

% u = 1/b_hat*(u_hat - K*sign(s));

 if (abs(s) < Phi)
 sat = s/Phi;
 else
 sat = sign(s);
 end
 u = 1/b_hat*(u_hat - K*sat);

 PerVolt = u/1023; % Percent Voltage to motor
 V = PerVolt * Volts; % actual voltage supplied to motor

Appendix I 85

 if (V > 12)
 V = 12;
 end
 if (V < -12)
 V = -12;
 end

 for ii = 1:500,

 t(ii) = ii*tspan;

 % PLOT VAR
 S_out(ii) = s;
 Lam_out(ii) = Lamda;
 U_out(ii) = u;
 x_out(ii,:) = x;
 Vv_out(ii) = Vv;
 Mue_out(ii) = Mue;
 Fv_out(ii) = Fv;
 Mue_hat_out(ii) = Mue_hat;
 f_hat_out(ii) = f_hat;
 F_out(ii) = F;
 K_out(ii) = K;
 Muedif_out(ii) = Muedif;
 bmin_out(ii) = bmin;
 bmax_out(ii) = bmax;
 b_hat_out(ii) = b_hat;
 V_out(ii) = V;

 %%%%%%%%%%%%%%%%% ODE Solver
%%%%%%%%%%%%%%%%%%%%
 [T, X] = ode45('states2',[0,tspan],x);
 x = X(length(X), [1,2]);

 x2 = x(2);
 Lamda = 1-x(1)/x(2);

 Lamda = 1-x(1)/x(2);
 if (Lamda > 0.5)
 Lamda = 0.5;
 end

 Vv = x(1)*Rw;
 Fv = c*Vv^2; % wind drag force

 bmin = minn*(1-Lamda)*Ke/(Ra*Jw*x(2));

Appendix I 86

 bmax = maxx*(1-Lamda)*Ke/(Ra*Jw*x(2));
 b_hat = sqrt(bmin*bmax);
% b_hat = 1; % for debuging
% Beta = sqrt(bmax/bmin);

 Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2); %
adhesion/friction coef.
% Mue_hat = 0.052;
% Mue_hat = Mue; % for debuging
Mue_hat = -9546.3*Lamda.^10 + 50170*Lamda.^9 - 1.1328e+005*Lamda.^8 + …
1.4366e+005*Lamda.^7 - 1.1227e+005*Lamda.^6 + 55813*Lamda.^5 - …
17584*Lamda.^4 + 3385.6*Lamda.^3 - 367.85*Lamda.^2 + 19.217*Lamda.^1 + …
0.14133;

 Muedif = Mue-Mue_hat;

 f_hat = [Fv/(mv*Rw*x(2)) - (1-Lamda)*Rw/(Jw*x(2)) - (1-
Lamda)*K^2/(Ra*Jw*x(2))] - [nw*Nv/(mv*Rw*x(2)) + (1-
Lamda)*Rw*Nv/(Jw*x(2))]*Mue_hat;

% F = abs(f_hat - f);
 F = abs([(Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))] * (Mue-…
Mue_hat));
% F = 0; % for debuging
 s=Lamda-Lamda_d;

 u_hat = (-f_hat+0); %Lamda_d_dot); % /b_hat is taken care of in 'u='

 K = Beta*(F+N) + (Beta-1)*abs(u_hat);

 if (abs(s) < Phi)
 sat = s/Phi;
 else
 sat = sign(s);
 end
 u = 1/b_hat*(u_hat - K*sat);

% u = 1/b_hat*(u_hat - K*sign(s));

 PerVolt = u/1023; % Percent Voltage to motor
 V = PerVolt * Volts; % actual voltage supplied to motor
 if (V > 12)
 V = 12;
 end
 if (V < -12)
 V = -12;

Appendix I 87

 end

 Error1 = (s)^2;
 if (ii > 1)
 Error2 = ((V_out(ii) - V_out(ii-1)) / Time)^2;
 else
 Error2 = ((V_out(ii) - 0) / Time)^2;
 end
 Error = 0.3*Error1 + 0.7*Error2;
 Error_Sum = Error_Sum + Error;

 %%%%% If erro already over 3 no need to continue calculating error %%%%
 if (isnan(Error_Sum) == 1)
 Error_Over = 1
 break;
 end

 end
 New_Error = Error_Sum/ii;

 if (((rand < exp((Curr_Error-New_Error)/temp)) | ((New_Error-Curr_Error) < …
0)) & Error_Over == 0), % accept it!

 Curr_Error = New_Error
 minE = min(minE, Curr_Error);
 maxE = max(maxE, Curr_Error);

 if Curr_Error < Lowest_Error,
 Lowest_Error = Curr_Error
 save LowError1
 end
 if Curr_Error > Highest_Error,
 Highest_Error = Curr_Error
 save HighError1
 end
 end
 Error_Over = 0; % resets too high error value indicator

 LcaLitr = LcaLitr + 1;
 end

 % Update plot

 % Print information in command window
 fprintf('temp. = %f\n', temp);
 fprintf('Curr_Error = %f\n', Curr_Error);

Appendix I 88

 fprintf('[minE maxE] = [%f %f]\n', minE, maxE);
 fprintf('[LcaLitr TempItr] = [%d %d]\n\n', LcaLitr, TempItr);
 % Lower the temperature
 temp = temp*TempRatio;
 % Increment trial count
 TempItr = TempItr + 1;

 rand('state',sum(100*clock)) % Resets it to a different state each time.

end

fprintf('Compute Time = %f\n', toc);

save AnnealResult1

 N
 Phi
 minn
 maxx
 Beta

 89

Appendix J

Robot Car Control Code

#include <pic18.h>
#include <stdlib.h>

#include <math.h>

unsigned char RerEnc;
unsigned char FrtEnc;
unsigned int Pwr;
unsigned int LstFrt;
unsigned int LstRer;
float x1, x2, Vv, K, Mue, Lamda, Fv, u_hat, s, bmin, bmax, b_hat, Mue_hat, f_hat, F; signed int sgnS;

float u = 1023.0;
float Temp1 = 0.0;
float Temp2 = 0.0;
float Temp3 = 0.0;
float Temp4 = 0.0;
float Temp5 = 0.0;
float Temp6 = 0.0;
float Temp7 = 0.0;
float Muedif = 0.0;
float Ke = 0.0159;
float Ra = 1.506;
float MuePmax = 0.94;
float MuePmin = 0.008;
float Lamda_Pmax = 0.3;
float Lamda_Pmin = 0.008;
float MLmax = 0.0;
float MLmin = 0.0;
float LPmax = 0.0;
float LPmin = 0.0;
float MLP = 0.0;
float LmP = 0.0;
float N = 0.2; // Etta
float minn = 0.9;
float maxx = 1.1; // 7.3130; 1.1;
float Beta = 1.4;
float MueP = 0.0745; //peek adhesion/friction coef.
float Lamda_P = 0.1551; //peek Lamda on curve
float Jw = 0.1088; //0.5*m*Rw^2; inertia (Kg*m^2)
float Fw = 0.4507; //wheel viscous friction (N*Sec/Meter) ?0.51
float Nv = 1.3009; //(N) normal force of vehicle

Appendix J 90

float Lamda_d = 0.05; //desired path
float c = 0.005; //wind drag force coeficient
float Rw = 0.0320548; //radius of rear wheel
unsigned int nw = 2; //number of driving wheels
float mv = 1.6516; //mass of vehicle (Kelo-grams)
float Time = 0.005; // (256-TMR0[value])*Prescale[value-Option Reg]*200nSec = approx

//timer3 for interrupt time
/* service routine for timer 0 interrupt */

void interrupt isr(void)
{
// unsigned int tics = TMR0;

 TMR3H = 0x3C; //

TMR3 = 0xF3; //For reseting Timmer 3 value

 if (LstRer > TMR0)
 RerEnc = 65535-LstRer + TMR0; //remember to start counting from '0'
 else
 RerEnc = TMR0 - LstRer;
 LstRer = TMR0;

 if (LstFrt > TMR1)
 FrtEnc = 65535-LstFrt + TMR1;
 else
 FrtEnc = TMR1 - LstFrt;
 LstFrt = TMR1;
/**/
// x1 = vehicle's angular velocity
// x2 = driving wheel's angular velocity

x1 = FrtEnc*6.283185/256.0/Time*1.09076469253; //=Vv/Rw = Wv = #tics*
//(6.28[rad/rev] / 256[tics/rev]) / elapsed time [second]

 x2 = RerEnc*6.283185/256.0/Time; // =Ww

 if (RerEnc>15) // on 12 volts after Robot car has started moving
 {
 Lamda = 1-x1/x2;

 Temp1 = 1-Lamda;
 Temp2 = Jw*x2;
 Temp7 = Temp2*Ra;
 Temp3 = Temp1*Ke/Temp7;

 Vv = x1*Rw; // radius of wheel (Rw): Vv = x1(Wv)*Rw
 Fv = c * Vv*Vv; //% wind drag force

 // b = (1-Lamda)/(Jw*x(2));
 bmin = minn*Temp3;
 bmax = maxx*Temp3;
 b_hat= sqrt(bmax*bmin);

/**/
 Temp7 = Lamda*Lamda;
 Temp3 = MLmax*Lamda;
 Temp4 = MLmin*Lamda;
 Temp5 = LPmax+Temp7;

Appendix J 91

 Temp6 = LPmin+Temp7;

 //Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2); % adhesion/friction coef.
 Mue = (MLP*Lamda)/(LmP+Temp7);

Mue_hat = (Temp3/Temp5 + Temp4/Temp6)/2 + 0.001;
/***/

 Temp4 = mv*Rw*x2;
 Temp5 = (nw*Nv)/Temp4;
 Temp3 = Temp5 + Temp1*Rw*Nv/Temp2;

 f_hat = (Fv/Temp4 - Temp1*Rw*Fw/Temp2 - Temp1*Ke*Ke/(Ra*Jw)) - Temp3 * Mue_hat;
 Muedif = (Mue-Mue_hat); // reuse bmin to save memory space

 F = fabs(Temp3 * Muedif);

 s = Lamda - Lamda_d; //s=Lamda-Lamda_d;

//u_hat = -f_hat*[(Fv-Nv*nw*Mue)/(mv*Rw*x(2)) - ((1-Lamda)*Fw*Rw)/(Jw*x(2)) –
//((1-Lamda)*Rw*Nv*Mue)/(Jw*x(2))];

 u_hat = -f_hat;

// K = F + N;

 K = Beta*(F+N) + (Beta-1)*fabs(u_hat);
 if (s>0)
 sgnS = 1;
 if (s<0)
 sgnS = -1;

 u = 1/b_hat*(u_hat - K*sgnS); // on 12 volts
 }
 if (RerEnc < 16)
 u = 1023;

 if (u>=0)
 {

PORTD = 0x08; // Bit RD2 = 0 for forward direction when Y1 on
// MUXconnected to IN1 on H-bridge

 if (u > 1023)
 u = 1023;
 }
 else
 {
 PORTD = 0x0C; // Bit RD2 = 1 for reverse direction
 if (u < -1023)
 u = 1023;
 else
 u = -u;
 }
 Pwr = u; //re-use "FrtEnc" to convert "u" to an integer
 CCPR2L = Pwr>>2; // & 1020;
 CCP2CON = 0xf ^ (Pwr<<4);

// PORTB = RerEnc; // Eight bit value when Xmittng to DCC
 // OR //

Appendix J 92

 PORTB = CCPR2L; // Control value u = 10 bit value
 PORTD = PORTD + (Pwr<<4);

 TMR3IF = 0; /* reset Timmer 3 flag PIR2<1>*/
 }
void main(void)
{
// Direction of motor & to turn on data collection
 TRISE = 0x00; // put port D in standard I/O
 PORTD = 0x08; // set port RD2 as LOW for forward direction
 // and port RD3 HIGH to turn test platform output ON
 TRISD = 0x00; // set port D as output
// 10 bit PWM value output (8 upperbits on PORTB and lower 2 bits on PORTD<7,6>
 PORTB = 0x00; // set port RB as 0's
 TRISB = 0x00; // set port B as output
// PWM for TMR2
 PR2 = 0xFF; // PWM period
 CCPR2L = 0x55; // Upper 8 bits of 10 bit PWM duty cycle

 T2CON = 0x05; // Set the TMR2 prescale value & enable Timer2 0x05 = (9.77kHz)
 CCP2CON = 0xFF; // Lower 2 bits of 10 bit PWM duty cycle & Put in PWM Mode
 TRISC = 0x01; // Make CCP2/RC1 pin an output for the PWM2 signal
// Timmer 0 Counter
 T0CON = 0xA8; ///8= no prescaler
// Timmer 1 Counter
 T1CON = 0x87;
// Timmer 3 Interupt on Over Flow
 T3CON = 0x85; // B5? 85 = no prescaler

 TMR0H = 0;
 TMR0 = 0;

 TMR1H = 0;
 TMR1 = 0;

 TMR3H = 0x3C; // 5ms = 3CF3;
 TMR3 = 0xF3;

 INTCON = 0xC0; // Enable interupt

 MLP = 2*MueP*Lamda_P;
 LmP = Lamda_P*Lamda_P;
 MLmax = 2*MuePmax*Lamda_Pmax;
 MLmin = 2*MuePmin*Lamda_Pmin;
 LPmax = Lamda_Pmax*Lamda_Pmax;
 LPmin = Lamda_Pmin*Lamda_Pmin;

 FrtEnc = 0;
 RerEnc = 0;

 PIE1 = 0x00;
 PIE2 = 0x02; // Enables TMR3 Overflow Interrupt Enable bit

 CCPR2L = 0xFF; // Upper 8 bits of 10 bit PWM duty cycle

 while (1)
 { /* infinite loop */

Appendix J 93

 NOP();
 }
}

 94

Appendix K

Matlab Continous Simulation Code

% By: Mark Morton
% Sliding Mode Control Simulation for Tracktion Control

clc;
clear all;
close all;

% digits(7);

global Mue Fv mv nw Nv Rw Fw Jw Ke V Ra x2

Rfw = 1.20175;
Rrw = 2.524;
Ratio = Rrw/2.2035;

MueP = 0.0745;
Lamda_P = 0.1551;
Lamda_d = 0.05; %0.0018; % desired Lamda from simulated annealing % desired path
c = 0.005; %0.022; % wind drag force coeficient

mv = 1.6516; % mass of car (Kg)
nw = 2; % number of driving wheels
Nv = 1.3009 % normal force to ground (N)
Rw = 0.0320548; % radius of wheel (Meters)
Fw = 0.4507; % wheel viscous friction (N*Sec/Meter)
Jw = 0.1088; %0.5*32.0*0.02659^2 %0.5*m*Rw^2; % inertia (Kg*m^2)

Ke = 0.0159; %6.7831e-3; %
Ra = 1.506; %5; %1.506; % Armeture resistance
Volts = 12.0; % Maximum voltage supplied to system (aka: battery)

N = 0.2;
minn = 0.9;
maxx = 1.1;
Beta = 1.4;

tspan = 0.005; % initialize step size
Time = tspan;

x(1) = 56.24; %10
x(2) = 83.45; %17

Appendix K 95

x2 = x(2); % value sent to ODE45 Function (rear wheel value)

Lamda = 1-x(1)/x(2);

Vv = x(1)*Rw; %initial velocity
Fv = c*Vv^2; % wind drag force

 bmin = minn*(1-Lamda)*Ke/(Ra*Jw*x(2));
 bmax = maxx*(1-Lamda)*Ke/(Ra*Jw*x(2));
 b_hat = sqrt(bmin*bmax);

Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2); % adhesion/friction coef. (THE

 %INPUT for the smallest curve)
%%%% 6th degree polynomial
Mue_hat = -3.554*Lamda.^6 + 11.65*Lamda.^5 +...
 -14.974*Lamda.^4 + 9.5802*Lamda.^3 +...
 -3.1673*Lamda.^2 + 0.45142*Lamda.^1 +...
 0.031374;

Muedif = Mue-Mue_hat;

f_hat = [Fv/(mv*Rw*x(2)) - (1-Lamda)*Rw*Fw/(Jw*x(2)) - (1-Lamda)*Ke^2/(Ra*Jw)] -
[nw*Nv/(mv*Rw*x(2)) + (1-Lamda)*Rw*Nv/(Jw*x(2))]*Mue_hat;

% F = abs(f_hat - f);
F = abs([(Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))] * (Mue-Mue_hat));
% F = 0; % for debuging

s=Lamda-Lamda_d;

u_hat = (-f_hat+0); %Lamda_d_dot); % /b_hat is taken care of in 'u='

K = Beta*(F+N) + (Beta-1)*abs(u_hat);

 u = 1/b_hat*(u_hat - K*sign(s));

PerVolt = u/1023; % Percent Voltage to motor
V = PerVolt * Volts; % actual voltage supplied to motor

if (V > 12)
 V = 12;
end
if (V < -12)
 V = -12;
end

Lam_dot = [(Fv-nw*Nv*Mue)/(mv*Rw*x(2)) - (1-Lamda)*Rw*((Fw+Nv*Mue)/(Jw*x(2))) - (1- …

Lamda)*Ke^2/(Ra*Jw)] + (1-Lamda)*Ke/(Ra*Jw*x(2)) * V;

tic;

for ii = 1:200000,
 t(ii) = ii*tspan;

Appendix K 96

 % PLOT VAR
 S_out(ii) = s;
 Lam_out(ii) = Lamda;
 Lam_dot_out(ii) = Lam_dot;
 U_out(ii) = u;
 x_out(ii,:) = x;
 Vv_out(ii) = Vv;
 Mue_out(ii) = Mue;
 Fv_out(ii) = Fv;
 Mue_hat_out(ii) = Mue_hat;
 f_hat_out(ii) = f_hat;
 F_out(ii) = F;
 K_out(ii) = K;
 Muedif_out(ii) = Muedif;
 bmin_out(ii) = bmin;
 bmax_out(ii) = bmax;
 b_hat_out(ii) = b_hat;
 V_out(ii) = V;

%%%%%%%%%% ODE Solver %%%%%%%%%%%%%%%%%%%%
 [T, X] = ode45('states2',[0,tspan],x);
 x = X(length(X), [1,2]);

 x2 = x(2);
 Lamda = 1-x(1)/x(2);

 Vv = x(1)*Rw;
 Fv = c*Vv^2; % wind drag force

 bmin = minn*(1-Lamda)*Ke/(Ra*Jw*x(2));
 bmax = maxx*(1-Lamda)*Ke/(Ra*Jw*x(2));
 b_hat = sqrt(bmin*bmax);

 Mue = (2*MueP*Lamda_P*Lamda) / (Lamda_P^2+Lamda^2); % adhesion/friction coef.

%%% 6th degree polynomial
Mue_hat = -3.554*Lamda.^6 + 11.65*Lamda.^5 +...
 -14.974*Lamda.^4 + 9.5802*Lamda.^3 +...
 -3.1673*Lamda.^2 + 0.45142*Lamda.^1 +...
 0.031374;

 f_hat = [Fv/(mv*Rw*x(2)) - (1-Lamda)*Rw*Fw/(Jw*x(2)) - (1-Lamda)*Ke^2/(Ra*Jw)] - …
 [nw*Nv/(mv*Rw*x(2)) + (1-Lamda)*Rw*Nv/(Jw*x(2))]*Mue_hat;

% F = abs(f_hat - f);
 F = abs([(Nv*nw)/(mv*Rw*x(2)) + ((1-Lamda)*Nv*Rw)/(Jw*x(2))] * (Mue-Mue_hat));

 s=Lamda-Lamda_d;

 u_hat = (-f_hat+0); %Lamda_d_dot); % /b_hat is taken care of in 'u='

 K = Beta*(F+N) + (Beta-1)*abs(u_hat);

 u = 1/b_hat*(u_hat - K*sign(s));

 PerVolt = u/1023; % Percent Voltage to motor
 V = PerVolt * Volts; % actual voltage supplied to motor

Appendix K 97

 if (V > 12)
 V = 12;
 end
 if (V < -12)
 V = -12;
 end

 Lam_dot = [(Fv-nw*Nv*Mue)/(mv*Rw*x(2)) - (1-Lamda)*Rw*((Fw+Nv*Mue)/(Jw*x(2))) - (1- …

Lamda)*Ke^2/(Ra*Jw)] + (1-Lamda)*Ke/(Ra*Jw*x(2)) * V;

 if (mod(ii,1000) == 1)
 Lamda-Lamda_d
 end

end

 save Simulation1
toc

figure;
plot(t,S_out);
title('S');
xlabel('Time (Seconds)');
ylabel('s');

figure;
plot(t,Lam_out);
title('Lamda');
xlabel('Time (Seconds)');
ylabel('Lamda');

figure;
plot(t,V_out);
title('Volts');
xlabel('Time (Seconds)');
ylabel('V');

figure;
plot(t,bmin_out)
title('bmin')
xlabel('Time (Seconds)');
ylabel('bmin');

figure;
plot(t,bmax_out)
title('bmax')
xlabel('Time (Seconds)');
ylabel('bmax');

figure;
plot(t,b_hat_out)
title('b_Hat')
xlabel('Time (Seconds)');
ylabel('b_Hat');

figure;
plot(t,U_out);

Appendix K 98

title('Percent Control Value U');
xlabel('Time (Seconds)');
ylabel('u');

figure;
plot(t,x_out(:,1));
title('Front Wheel Angular Velocity');
xlabel('Time (Seconds)');
ylabel('X_1');

figure;
plot(t,x_out(:,2));
title('Rear Wheel Angular Velocity');
xlabel('Time (Seconds)');
ylabel('X__2');

figure;
plot(x_out(:,2),x_out(:,1));
title('X_2 vs X_1');
xlabel('X_2');
ylabel('X_1');

figure;
plot(t,Vv_out);
title('Linear Velocity');
xlabel('Time (Seconds)');
ylabel('Vv (Meters/second)');

figure;
plot(t,Mue_out);
title('Mue');
xlabel('Time (Seconds)');
ylabel('Mue');

figure;
plot(t,Fv_out);
title('Fv');
xlabel('Time (Seconds)');
ylabel('Fv');

figure;
plot(t,Mue_hat_out);
title('Mue_Hat');
xlabel('Time (Seconds)');
ylabel('Mue_Hat');

figure;
plot(t,f_hat_out);
title('f__hat');
xlabel('Time (Seconds)');
ylabel('f__hat');

figure;
plot(t,F_out);
title('Maximum boundary F');
xlabel('Time (Seconds)');
ylabel('F');

Appendix K 99

figure;
plot(t,K_out);
title('Gain K');
xlabel('Time (Seconds)');
ylabel('K');

figure;
plot(t,Muedif_out);
title('Difference betweeen Mue & Mue__hat');
xlabel('Time (Seconds)');
ylabel('Muedif');

figure;
plot(Lam_out, Lam_dot_out);
title('Sliding Surf');
xlabel('Lamda');
ylabel('Lamda^')

