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An operator theoretic approach is used to solve the linearized Viasov-Maxwell equations for transverse
plasma oscillations. In particular, the special cases of simple and second-order real zeros of the plasma
dispersion function are treated and formulae for the amplitude of the plasma waves are presented. An
existence and uniqueness theorem for the solution to the Vlasov-Maxwell transverse mode plasma
equation is proved in an appendix. In a second appendix, a general characterization for the zeros of the
plasma distribution function is presented for the case of any double humped equilibrium distribution.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as (I), the
longitudinal oscillations of a neutral plasma were
studied using a linearized Vlasov equation. In the pre-
sent paper we extend this work to the case of the trans-
verse modes.

The analysis of (I) differed from that previously pub-
lished, notably by Van Kampen® and Case, ® in that the
“resolvent integration technique” introduced by Larsen
and Habetler? for studying neutron transport problems
was utilized rather than the standard method of singu-
lar eigenfunctions. This resolvent integration technique
is more appealing to mathematicians because it does
not require some of the heuristic arguments used when
singular eigenfunction expansions are empioyed. More
importantly, the calculation of stable oscillations was
found to be given incorrectly by the singular eigenfunc-
tion method. [Since the publication of (I), Siewert® and
Case® have developed the techniques for treating stable
oscillations correctly by singular eigenfunction expan-
sions, although for reasons of both taste and rigor we
prefer the resolvent integration method.] Both in (I)
and later in Ref. 6, the amplitudes of stable oscillations
corresponding to degenerate eigenvalues were computed,
and there is very good intuitive reason to suspect' that
these can correspond to physical reality.

Many analyses of plasma stability, for example, those
found in standard texts,” involve only studies of the
zeros of the plasma dispersion function, A(z). (If A
has zeros with nonvanishing imaginary part, the plasma
is, ipso facto, unstable.) The actual magnitude of the
stable or unstable oscillations is not a factor in deter-
mining stability. This is true, of course, only for
linear stability; but the question of nonlinear stability,
specifically whether nonlinear effects can stabilize a
linearly unstable plasma or destabilize a linear stable
plasma, is of vital importance. One approach, as has
been followed by Simon and Rosenbluth, ® is to use a
perturbative expansion about the linear solution. For
this procedure, a complete solution of the linear equa-
tion seems necessary, and is a major practical motiva-
tion for our work. The mathematical motivation is, of
course, to obtain a correct solution to the initial value
problem for (linear) plasma waves.

Transverse oscillations in plasmas were first con-
sidered by Shure, ° and later studied extensively by
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Felderhof.''" In Refs. 9 and 10 the unperturbed plasma
velocity distribution function f,(v) is assumed to be
isotropic. However, it is easily shown® that for iso-
tropic equilibrium distributions, the transverse plasma
dispersion function, A(z), has no zeros for w>w,.

Thus, transverse modes for w>w, are isotropically
stable. For anisotropic equilibrium distributions, A(z)
may have real or complex zeros for w>w,, and more
interesting questions of stability arise.

We have tried to simplify the mathematical treatment
we used in (I) by utilizing a Laplace transform techni-
que, rather than the double resolvent integration techni-
que previously employed.! (This was suggested by
Case.)!? In either case one integrates about the singu-
larities of the resolvent operator, but in the present
case, only a single, rather than a double, resolvent is
needed for this procedure, which is sketched in Appen-
dix A.

In Sec. II we write the relevant coupled equations for
the transverse modes as derived by Felderhof'! and
define the quantities which appear. We then express
the equation in operator form, and compute the resol-
vent of the operator K. The resolvent involves the
transverse dispersion function, A(z), and although it
has been studied for particular cases in the litera-
ture, ™3 !% we consider it worthwhile to give a general
analysis of its zeros, i.e., the eigenvalue spectrum of
K. This analysis is presented in Appendix B.

In Sec. III we invert the Laplace transform by inte-
grating the resolvent around the spectrum of K, and
thereby obtain a solution of the initial value problem
for transverse waves. While this has the form of the
Shure, ® Felderhof, '>!'! singular eigenfunction solution
for continuum eigenvalues and simple discrete com-
plex eigenvalues, we also consider the case of simple
and second-order real eigenvalues.

Section IV contains some concluding remarks.

Il. COMPUTATION OF THE RESOLVENT

As in (I), we deal with equations which are Fourier
transformed in space (with transform variable k) in
order to study wave propagation. Thus, the plasma
distribution function is decomposed as f=f,(v) +f,(v, 1),
where f, is the equilibrium distribution function and f,
is the deviation from equilibrium. f, obeys the coupled
Vliasov—Maxwell linearized equations®!!
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If the unperturbed distribution function were isotropic,
that portion of the free field B, due to f, would vanish. .
We view B, to include not only a contribution from an Gu) :uF(u)+f f l(yi.;.us)fo(v)dvx dv,, (2e)
anisotropic equilibrium distribution function but also, o 2
as usual, contributions from external currents not o
described by f,. In any ‘case, the free field E,=0 be- JANR) :f f vy [V, 1) dv, d, . (2f)
cause of charge neutrality. y o Jew Y

As in Ref. 11, one can rearrange Egs. (1) to obtain
two similar sets of these coupled equations for the
transverse plasma modes which we write as

We will henceforth drop the + subscripts of Egs. (2a),
(2b), and (2c) in the following analysis to simplify the
notation. The Laplace transform of Eq. (2a) is then

aw*a(?’t)+ikK,I,l),(u,t):0, (2a) given by
(s +ikK)Dln, $) =¥ (@, 0), (3)
where
S, t)£if,(u, t) and the initial value problem is solved by (s - —ikp)
Y lu, t)=| E(@)xiE() |, (2b)
P, t)———l exp(-ikpt)(K - p)"'¥(u, 0)dp . (4)

+(B,(t)+iB,(t))

Thus, an expression for the resolvent, (K —p)™' must be derived. Further, the contour integral is around the
spectrum of K, instead of the usual line integralfrom iy -« to ¥ +». This modification is justified in Appendix A.

The computation of the resolvent is standard. We find

f=(K-pl'g (5a)
1 w\2Gw)-pFw) 1 [~ 1 nge Glu)=pFu) 1 )
u+u, —p—<z2) u+tu,—p NMp)/. duu+uc—p zmk u+u,—-p Alp) mkcH , p)
e 41re 1 P
- A(p d u+ru,—p Al) H,(p) £, (5b)
ic 4me 1 ic
|61 . R e ol J
where
Alp)=c®-p® +< )[ G—sl—;—p-f—és—)ds (5¢)
1 [pGW)=c? Flu) (w,,) = F(s) = _Gls) )
Hl(u,p)zA(p)[ P— +u+;:“_p(G(u) _Q——s+uc_pds—F(u)[m——s+uc_pds ] (5d)
1 1 [, fw)\® o _pFls)
Hz(p)_ic+icA(p) [” +<7f) - ——smc_pds]’ (5e)
w\2 = pFls)
1= Al [ (—2> ./_w s+uc—pds]’ (5£)

and w, = (4mnye?/m)*/? is the plasma frequency.

The spectrum of K, o (K), can be obtained from the singularities of (K —p)™'. Clearly, the continuous spectrum,
Co(K), consists of R (the real line). The eigenvalues, or point spectrum Po (K) occur where Afp)=0. This portion
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of the spectrum consists of an isolated set of points, either real or appearing as complex conjugate pairs, as is
discussed in Appendix B.

1. SOLUTION OF THE INITIAL VALUE PROBLEM
We refer to Eq. (4) and write
_L ® 7 -1 -1 _i_ . —n)!
Y, 1) =5 f_” exp(—ikpt) (K = p);* = (K = p)2' ] (a, O)dp-‘!./:,zﬂi _rfexp(—zkpt)(K pY* ¥, 0)dp. (6)
5

Here, (K —p);! represent the limiting values of the resolvent as p approaches R from above and below, respective-
ly, while I'; is a contour surrounding the eigenvalue v,. This formula applies if Im(v;)# 0. It must be modified if
Im(v,) =0 (discrete eigenvalue imbedded in the continuum) to

5"0

Y, 1) = hmzlﬂ f f {exp( ikpt)[ (K = p):* (K—p):*]w<u,0)}dp—22iﬂ f exp(~ikpt)(K — p) " Y(x, 0)dp
i

v | exploitpt)(k ~ oy, 00dp— o [ explcikpnK - o4, 01, v
Ty-

T

el () Sl ) 2 C=pF M) 0L, 2 e oy 0

u+ru,—p¥ic \k /) u+u,-p¥ie ikmu+u, - pF i€ A*(p) mkc
-1 i _p 4me p _H*
K -p); w(u,o)—el‘lgl ~ N i M* (D)+A*(p)¢z(0) H3(p)y,(0) ) (8)
e A4me . ic :
i _A*(p) WM (p)+Ai(p) ¢2(0)+H3(p)¢3(0) ]
where
1 (" ,0
M(p)_A(p) -Qu+uc_pdu! (9)
so that
1 0)
M*(p):A*_(p)[P ud:_g‘ — duizmpl(p -u,, 0)] (10a)
while, from Eq. (5¢) for A(p),
G(s F (s
Ap)=c?=p +(°’P> f_°° “u—p_p()dsnn@’ﬂ) [Glo-u,) - (p-u)F(p~u,)], (10b)
Mp)=¢c? ( ) Pf Gs+u"_F(s)d . (10¢)

The contours I'y and I';, are drawn in Fig. 1. The integral over the continuum, i.e., the first term on the right
sides of Eqs. (6) and (7), are straightforward, if tedious exercises in complex variable theory. The details are
similar to the evaluations of analogous integrals in (I), and are omitted. The integrals around the discrete eigen-
values are more or less trivial exercises in residue theory; we present the results for simple eigenvalues of the
nonvanishing imaginary part, v;, and for single and two-fold degenerate real eigenvalues, v, and v,, respectively.
The detailed calculations are presented elsewhere.!®

Plu, t)= f ¢* @)A (s)exp(—ikst)ds + Z A,p u)exp(-ikv,t) + A ¢ u)exp(-ikv,t) + A, ¢, () exp(-ikv,t)

#l,m

A, Do) —iktd, W)] exp(-iky,t). (11a)

The continuum “eigenmode” and expansion coefficient are given by

(%YP%— A(s)5(s —u, —u)

¢° ()= [4me/(ik)]s , (11b)
[4me/k]c

and
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M*(s)=M(s) n,e G{s—u,)—sF(s—-u,)

Als)=- 27 * ikm A*(s)A™(s) ¥2(0)
$,(0) W\, PIG(s —u)F(p—u,) = Glp~u)F(s —u,)]
—3———, d (11c)
kmc A p~s
These are in agreement with results previously obtained in Ref. 11.
The eigenfunctions and expansion coefficients for the simple eigenvalues of nonvanishing imaginary part are
W, 2 v Fu)-Gu)
k ViU, ~U
¢, )= (4me/ik)s , (11d)
(4me/k)c
and
1 ”z,b,(s—uc,O) f F
A’_A'(Vj){ - s-v, lP (0)+4ne Zp3(0 [ ( ) 5 — Vj ] R (118)
The eigenfunction and expansion coefficient for the simple real eigenvalues are
(&)2 v, Fu)-Gu)
k Vp—Uu,~U
o, W)= (4me/ik)v, , (11f)
(4me/k)c
1 , =P, (s —u,,0) ATV =AY () ik k
_——— - __._)\ —_
P AN () W | = ds—n 377 iy =g, 0) =22 A W3 (0) +
*PF(s —u,) A () - A (vy)
x [x* _m2fp
v oy ()T S L s - () S P, 0 (11g)
Finally, the eigenfunction and expansion coefficients for the second-order real eigenvalue are
(&)ZG(u) —(+u)F ()
k (W —u,—u)
Domtt) = (4me/ik) , (11h)
0
"+ II' S U 0 IIH- S -u 0)
A, = 2ReJ3(A™ (v, 34 ————¢-—ds+z1r¢1( —u,,0))- A f ———J-S—VL—d
. ik "+ +* - k n+ - "+
AT, (V= U, 0))] }+m $,(0)2Re {5A"* (v, [ A" (v,)] 2}—-——47166 v (0)2Re({3[A"* (v, ) P H{ A" (v,,)
(w,/k 2PF(s ~u,) (W ® ()] f PF(s —u 2,
[ 5-v.) ds+z11(k) Fv, -u)lt-1A""(v,) ( ) w—-———-LS_V ds Hﬂ(k)F (Ve —u)]),
(111)
* P 0 ik
Ayp=2Re [[A”(v,.)]"( ‘P—f—v——’ds b, =t 0) | - 0, O2ReAL A7 )T
* PF{ 2
by 02Re A ) vy (2 ) [ B s vin(32) Fon -l (11j)
[
Here, IV. DISCUSSION
P, @, 0) The results, given as an eigenfunction expansion, Eq.
0)= ) (11a), of our method agree with Felderhof’s for the
Yo, 0= ¥, continuous modes, as well as for simple discrete, non-
P,(0) real eigenvalues. We do obtain additional results how-
ever, mainly the magnitude of the stable modes, i.e.,
is the initial condition. for real eigenvalues, both singly and doubly degenerate.
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FIG. 1. The contours I';, I'y, and I :.

In addition, our method can easily be used to compute
the magnitude for real or complex eigenvalues of
higher degeneracy. It merely requires the use of the
appropriate residue formula corresponding to the de-
gree of the degeneracy. (There is also the slight
additional complication of obtaining the correct power
of {. The procedure used for the neutron transport
equation'® must be followed.) The general case is con-
sidered in Ref, 15.

We further note that when making relativistic con-
siderations using cutoff equilibrium distributions which
are identically zero for velocities larger than ¢ —u, and
requiring the initial value of the perturbed distribution
function to vanish for |u+u,|>c (as in Ref. 11), the
continuous spectrum of K becomes the finite interval
(=c,c). Any real zeros of A lying in this interval will
need to be treated as we have previously treated real
zeros; for real zeros of A lying outside this interval,
the resolvent integral about such a zero will be identical
in nature to the resolvent integral for isolated zeros of
A with nonvanishing imaginary part.
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APPENDIX A

A rigorous derivation of the solution of Eq. (2a) pre-
sents certain technical problems for unbounded opera-
tors such as K. In this particular case the spectrum,
o(K), contains the real axis, and one would like to
surround that part of the spectrum by the parallel lines
(y+ic:yeR} and take the limit € - 0 in computing the con-
tour integrals in Eq. (4). Indeed, in this case such an
approach does lead to precisely the correct expressions,
as will be indicated. However, to be certain in any
given problem that an unbounded portion of the spectrum
can be so treated requires a careful analysis of the un-
bounded operator.

A solution of the differential Eq. (2a) is understood to
be a differentiable function ¥(u, * ):R -~ X, with values in

1469 Phys. Fluids, Vol. 22, No. 8, August 1979

the Banach space X =£'(—w, ©) X C X C with norm

o1 Lol dus [o,]+ [0,

Using a semigroup approach, a necessary and sufficient
condition for Eq. (2a) to have a unique solution is that
the operator —-ikK be the generator of a strongly con-
tinuous semigroup.’” Let

—ikK = = (ikK | + 1kK,),

where
ik +u,) 0 0
K,=| 0 00}
0 00
and
0 (=nge/m)F ) [n.e/m(ic)lG @)
kK, = 41re/du 0 kc
0 -kc 0

Since ¢kK, is bounded in X, it is sufficient to show that
—ikK, is the generator of a strongly continuous semi-
group.'® By virtue of the Hille—Yosida- Phillips theo-
rem, '° kK, will be such a generator if, and only if,

i) (r,w) £ olikK,)
and
(i) [(E+ikK )| S M@E—y)"VE>Y,

where M and y are positive constants. In fact, o(ikK,)
={R, so condition (i) is satisfied. Further, the esti-
mate (ii) can be verified immediately. We conclude
that kK is indeed the generator of a strongly con-
tinuous semigroup.

Thus, the solution of Eq. (2a) may be represented by
the Laplace transform
L
2Ty e

v+ jo
¥(t) (kK + 8)"'9(0) exp(st)ds , (A1)
and will be strongly continuously differentiable on (0, «)
(Ref. 15, p. 31). (In order to obtain strong differentia-
bility at £=0, more delicate estimates would be neces-

sary, e.g., absolute continuity of the semigroup.)

Since the spectrum of i&K consists (except for isolat-
ed poles) of the imaginary axis, the identity

1 =Y = feo

- (ikK +s)"'9(0) exp(st) ds
27 Yy o

:;"Zf (kK +s)'Y(0) exp(st)ds, (A2)
i 7 l"!

where I'; are contours about isolated poles in the left
half-plane, follows immediately from the vanishing of
the exponential at infinity. Combining Eqs. (A1) and (A2)
gives Eq. (6).

An alternate approach, as developed in (I) is to deal
not with the unbounded operator K, but with some bound-
ed function of it, say $=(K = £)"! for ££ p(K). Then, a
partition of the identity [E(s):se o(S)] may be obtained
for the bounded operator $ by conventional resolvent
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FIG. 2. The contour C.

integration techniques, and the behavior of K at in-
finity reduces to the study of the contour integrals in a
neighborhood of the origin. Once the spectral pro-
jections E(s) of $ are constructed, it follows that K also
is “spectral,” and that

K=f (5—%)dE(s).

g(s?)
Finally, with an appropriate change of variable s -2
=t -1/s, the results may be put in conventional eigen-
mode expansion form. However, we consider the La-
place transform a simpler approach.

(A3)

APPENDIX B

For the analysis of the zeros of A(z) we will consider
the contour C in the upper half of the z plane drawn in
Fig. 2. Since the zeros of A occur in complex-conjugate
pairs, we will draw the Nyquist diagram for the con-
tour of Fig. 2 to determine half the number of zeros of
A. For the curved portion of the contour, 1 -2 -3, we
need the asyptotic value of A for large z. This is read-
ily given by Eq. (5¢)

Az)m -2z2, |z| large. (B1)

For the portion of the contour near the real axis, 3 ~1,
we need the limiting value of A, A*, given by Egs. (10b)
and (10c¢)

A (x) = A (x) + in(w,/R)g (%) , (B2)

where

q(x):%ffé(1)§+v§)f0(v§+v3, x=-u;)dv.dv,. (B3)

If we regard the equilibrium distribution function as
having two humps, then g(x) will have three zeros, in
increasing order: x,, x,, x,. (This analysis is then
applicable for two stream instability as well as bump
on tail instability.)

We may now consider the Nyquist diagram for A,

i.e., the image in the A plane of the contour drawn in
Fig. 2. Since g(x) has three zeros, the image contour
must cross the real axis three times, and we have along
the portion of the contour 3 -1,

qx)>0 x<x, orx, <x<x,
and

q{x)<0 x,<x<x;, orx,<x,

1470 Phys. Fluids, Vol. 22, No. 8, August 1979
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FIG. 3. The Nyquist diagram for case 2a.

so that if
(1) A(x,)<0, then A has one conjugate pair of zeros;

(2) A(xy)>0 and (a) Alx,)A(x,) <0, then A has one con-
jugate pair of zeros; (b} A(x,)A{x,)>0, then A has no
Z€eros.

As an example of these conclusions we show the Ny-
quist diagram for case 2(a) in Fig. 3. The other cases
are fairly simple modifications of this diagram.

Real zeros occur if A*{x)=0. Clearly, these can only
occur at x,, x,, and x, where the imaginary part of A
vanishes. Thus the condition for A'(x,) to vanish is that
Ax,)=0, j=0, 1, 2, and thus we see that there may
exist one or two real roots. (A similar analysis for the
case of the isotropic distribution shows that A has no
Zeros.)
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