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Causal Gene Network Inference from Genetical Genomics 

Experiments via Structural Equation Modeling 

Bing Liu 

(ABSTRACT) 

The goal of this research is to construct causal gene networks for genetical genomics 

experiments using expression Quantitative Trait Loci (eQTL) mapping and Structural Equation 

Modeling (SEM). Unlike Bayesian Networks, this approach is able to construct cyclic networks, 

while cyclic relationships are expected to be common in gene networks. Reconstruction of gene 

networks provides important knowledge about the molecular basis of complex human diseases 

and generally about living systems.  

 

In genetical genomics, a segregating population is expression profiled and DNA marker 

genotyped. An Encompassing Directed Network (EDN) of causal regulatory relationships among 

genes can be constructed with eQTL mapping and selection of candidate causal regulators. 

Several eQTL mapping approaches and local structural models were evaluated in their ability to 

construct an EDN. The edges in an EDN correspond to either direct or indirect causal 

relationships, and the EDN is likely to contain cycles or feedback loops. We implemented SEM 

with genetics algorithms to produce sub-models of the EDN containing fewer edges and being 

well supported by the data. The EDN construction and sparsification methods were tested on a 

yeast genetical genomics data set, as well as the simulated data. For the simulated networks, the 

SEM approach has an average detection power of around ninety percent, and an average false 

discovery rate of around ten percent. 
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Chapter 1 

Introduction 

With the advanced technologies including gene microarrays, more and more data are available 

containing a vast amount of valuable information. The exciting new technologies call for 

advanced statistical methods for exploring those data. In genetical genomics (JANSEN 2003; 

JANSEN and NAP 2001), combining gene expression data and marker genotype information 

can give us some insights into the construction of the gene network, which is a projection of 

the complex functional network of DNA, RNA, proteins and metabolites onto the gene space 

(BRAZHNIK et al. 2002). Reconstruction of gene networks provides important knowledge 

about the molecular basis of complex human diseases and generally about living systems. 

Gene networks can be described by graphical models, either undirected structures from 

observational data, or causal structures from experimental data, which is our focus.  In this 

work, various methods for the analysis of microarray data are compared, and then a method 

for the reconstruction of causal gene networks for genetical genomics experiments is 

presented.  

 

Bayesian Networks are currently a popular tool for gene network inference (e.g. FRIEDMAN et 

al. 2000; HARTEMINK et al. 2002; IMOTO et al. 2002; PE'ER et al. 2001; YOO et al. 2002). 

Bayesian networks use partially directed graphical models to represent conditional 

independence relationships among variables of interest and can describe complex stochastic 

processes. They are suitable for learning from noisy data, for example, expression data 

(FRIEDMAN et al. 2000). However, Bayesian Networks are Directed Acyclic Graphical (DAG) 
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models, which cannot represent structures with cyclic relationships. Cyclic relationships are 

expected to be common in gene networks, which are hence better modeled as Directed Cyclic 

Graphs (DCGs). Based on the assumption that a cyclic graph represents a dynamic system at 

equilibrium (FISHER 1970), this problem can be theoretically resolved by including a time 

dimension, which produces causal graphs without cycles (DAG). Then DAGs could be 

studied using Bayesian Networks. Such  approach is called Dynamic Bayesian Networks 

(HARTEMINK et al. 2002; MURPHY and MIAN 1999). However, such approach requires the 

collection of time series data, which is difficult to accomplish, as it requires synchronization 

of cells and close time intervals not allowing for feedback (SPIRTES et al. 2000). Samples at 

wider time intervals represent near steady state data and hence require cyclic network 

reconstruction.  

 

Here, we construct causal gene networks in the context of genetical genomics experiments. 

The concept of inferring gene networks from combining genomic marker information and 

gene expression data was proposed by JANSEN (2003) and JANSEN and NAP (2001). In 

genetical genomics, a segregating population of hundreds of individuals is expression profiled 

and genotyped. An Encompassing Directed Network (EDN) of causal regulatory relationships 

among genes can be constructed with expression Quantitative Trait Locus (eQTL) mapping 

and selection of regulator-target pairs. The variation in the expression levels of genes is 

determined by the variation in many polymorphisms (genotypes) across the genome. The 

genotypes can thus be regarded as natural multifactorial perturbations (JANSEN 2003; JANSEN 

and NAP 2001) resulting in different gene expression “phenotypes”, and a relationship can be 

established between the measured genotypes and the measured gene expression phenotypes. 
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In contrast to the approaches using specific experimental perturbations, in genetical genomics 

we do not know where the perturbations occur and we must identify their origin. This can be 

achieved by eQTL mapping, which treats the gene expression profiles in a segregating 

population as quantitative traits and performs Quantitative Trait Locus (QTL) mapping on 

those traits. QTL mapping identifies the polymorphic genome regions having significant 

effects on a quantitative trait. The result of eQTL analysis is the knowledge that certain 

genomic regions have causal effects on the expression levels of particular genes. Then, using 

DNA sequence information, genes located in an eQTL region can be identified as candidate 

causal regulators of the genes whose expression levels are affected by that eQTL. After the 

identification of the candidate regulatory genes in each eQTL, an EDN of causal regulatory 

relationships among genes can be constructed. The constructed EDN consists of gene nodes 

and eQTL nodes. The directed edges in the EDN correspond to causal relationships or 

regulations among pairs of genes. A set of sparser networks well supported by the data can be 

found by searching within the space defined by the EDN. 

 

Model search within the space defined by the EDN is based on likelihood estimation with 

Structural Equation Modeling (SEM). SEM is used because nonrecusive SEM can model 

cyclic relationships.  XIONG et al. (2004) were the first to apply SEM for gene network 

reconstruction using gene expression data. However, their application was limited to gene 

networks without cyclic relationships by using a recursive SEM, which has an acyclic 

structure and uncorrelated errors. These authors reconstructed only small networks with less 

than 20 genes. Based on a factorization of the likelihood and a strongly constrained network 
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topology search space, our implementation is capable of reconstructing network of several 

hundred genes. 

 

Expression data analysis is very important for gene network inference. Microarray data is 

very noisy, even with the advanced technologies. How to extract valuable information from 

the detected array signal is an important research area. In the second chapter of the 

dissertation, methods for expression data analysis on the most popular microarray platform -- 

the Affymetrix whole genome short oligonucleotide array platform are discussed. A probe 

level three-step Linear Mixed Model Analysis approach that uses probe level data directly is 

compared to other popular methods that summarize probe level data to gene level. In the third 

chapter, EDN construction using genetic and causal analyses of expression profiles in 

genetical genomics experiments is discussed, with application to a genetical genomics dataset 

from yeast (BREM and KRUGLYAK 2005). In the fourth chapter of the dissertation, an EDN 

sparsification algorithm with SEM is discussed. The implemented algorithm was tested on 

simulated data set and a sub network of the EDN obtained from chapter 3. Finally in the fifth 

chapter, future research on gene network inference to genetical genomics experiments is 

sketched. 
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ABSTRACT 

 

There is no consensus regarding the best statistical methods to use for the evaluation of 

microarray expression data. Comparing the methods with data from realistic biological 

experiments provides new insights on this issue. In this study, a probe level three-step Linear 

Mixed Model Analysis approach, which uses the probe level data directly, was compared to 

other popular methods to identify significant changes in gene expression that might be 

associated with lifespan extension in Emory mice. Comparisons of the methods were based on 

a number of criteria, e.g. the number of genes detected and the overlap between methods. All 

methods identified the genes with large expression differences between the calorie restricted 

group and the control group as significant, but the methods yielded different results when the 

expression differences were small. Out of 12,488 genes on the array, a total of 97 genes were 

detected by all methods using the Bonferroni multiple testing adjustment criteria. By using a 

less stringent multiple testing criteria which controls false discovery rate, 855 differentially 

expressed genes were detected by all methods. Highly differentially expressed genes were 

relatively robust against the statistical method used. For other genes, no method performed 

consistently well for all genes since each method rests on different assumptions and extracts 

information via different mechanisms. The Bonferroni multiple testing adjustment method is 

clearly not suitable for large scale microarray experiments, due to its lack of power. Robust 

Multichip Average with GC-content background correction (GCRMA) and Affymetrix 

MicroArray Suite 5.0 (MAS) detected a smaller number of significant genes than the others. 

The results suggested that in this dataset GCRMA sacrificed power when guarding against 

outliers by using median polish gene summary method. Mismatch subtraction used by MAS 

may add variability to the data.  
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2.1 INTRODUCTION 

 

Gene expression profiling technology has improved dramatically over the past decade. 

Various researchers have proposed many statistical methods for extracting useful knowledge 

from the dense stream of high-throughput data produced using these technologies. However, 

there is no consensus regarding the best statistical method(s) for analysis of the raw data. 

Comparing various methods with data from realistic biological experiments can provide new 

insights for this issue, and help identify the most solid results as well.  

 

Different statistical methods are needed for different microarray platforms.  Among many 

available microarray platforms, currently the most popular platform is the whole genome 

short oligonucleotide array platform from Affymetrix. The Affymetrix Genechips have 

around 10,000 to 60,000 gene specific probe sets represented on each chip. Each gene is 

represented by a probe set composed of several to about 20 pairs of 25-mer oligonucleotides. 

In this work, we compared a probe level three-step Linear Mixed Model Analysis (PLMMA) 

approach which uses probe level data directly, to four other popular methods which 

summarize probe level data to gene level: Robust Multichip Average with Guanosine (G) and 

Cytosine (C) content background correction (GCRMA) (IRIZARRY et al. 2003; WU and 

IRIZARRY 2005; WU et al. 2004), dChip (LI and WONG 2001), Affymetrix MicroArray Suite 

(MAS) 5.0 (AFFYMETRIX 2002), and MAS 5.0 with perfect match data only (MASPM). The 

data analysis was performed on microarray data obtained using livers from calorie restricted 

and control-fed Emory mice. 
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GCRMA estimates background noise based on a model using GC content (WU and IRIZARRY 

2005; WU et al. 2004). Background correction in microarray analysis corrects for background 

noise and adjusts for cross hybridization. After background subtraction, the data is normalized 

using quantile normalization (BOLSTAD et al. 2003), to adjust for effects that are due to the 

technology rather than variations in the biology of interest, so that in the analysis the arrays 

are on the same scale and directly comparable. The noise comes from many different sources 

including sample RNA preparation, hybridization, and scanning. Quantile normalization 

assumes that data from each array comes from the same intensity distribution and preserves 

the rank order of the genes within each array. After normalization, GCRMA uses a robust 

estimation procedure in a linear additive model for gene summary to protect against outlier 

probes.  

 

DChip uses a multiplicative model within a gene for probe level gene summary, and uses a 

specific outlier detection method to detect outliers. It normalizes all arrays to a common 

baseline array having a median overall brightness. The basic assumption is that a probe of a 

non-differentially expressed gene in two arrays should have similar intensity ranks. It uses an 

iterative procedure to identify a set of probes called invariant set, which consists of points 

from non-differentially expressed genes.  This procedure start with points of all PM probes.  If 

the proportion rank difference between arrays is small, then the point is kept for the new set. 

The procedure continues until the number of points in the new set does not decrease anymore. 

Then, a non-linear curve is fitted to the invariant set, and all probe pair intensities are 

transformed in a way such that the fitted curve becomes the line y=x. A baseline array without 

too many outliers should be selected (LI and WONG 2003). 
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MAS is the method used by Affymetrix. It requires very few assumptions and does not use 

combined information from multiple arrays within an experiment. It uses a robust average 

method to summarize gene expression value for each gene on each array. For normalization, it 

scales all arrays to the same level. While avoiding errors caused by violated assumptions, it 

does not utilize all information available and is not robust against noise. In addition, it 

performs mismatch subtraction, which we believe is not optimal as discussed later. For 

comparison reasons, other than the standard MAS method, we also used MAS with perfect 

match data only (MASPM). 

 

The three-step PLMMA approach involves: background subtraction, normalization, and gene-

specific LMMA using probe-level data.  The methods used for the background subtraction 

and normalization steps were the same as in GCRMA (IRIZARRY et al. 2003; WU and 

IRIZARRY 2005; WU et al. 2004). In the gene-specific LMMA step, a linear model including 

the probe by treatment interaction effect is fitted to the probe level data directly.  

 
 
2.2 DATA AND METHODS 

 

2.2.1 Data set 

The data analysis was performed on a data set from a mouse caloric restriction (CR) 

experiment performed at the Laboratory for Nutrition and Vision Research, under the 

direction of Jean Mayer USDA HNRC on Aging at Tufts University. To date, CR is the only 

well established treatment for extending the natural life span (MASORO 1988). The precise 
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biological mechanism responsible for this effect, however, remains largely unknown. There is 

keen interest in developing methods to determine the mechanism which provides this benefit.  

 

This experiment used Affymetrix Mgu74Av2 Genechips, which have 12,488 gene specific 

probe sets on each chip. Each gene is represented by 8 to 21 pairs of 25-mer oligonucleotides. 

Each probe pair has one perfect match (PM) and one mismatch (MM) oligonucleotide probe. 

PM probes are exact complements to the gene sequence. MM probes contain a point mutation 

at the center of sequence, so that they can be used to assess non-specific hybridization and 

scanner offset. The signals from the probe pairs for each gene can either be summarized to 

gene level data or be used directly to fit a model. 

 

Probe preparation and hybridization were performed at the Virginia Bioinformatics Institute-

Core Laboratory Facility. Ten chips were run each time for two microarray experiments, with 

RNA samples from five biological replicates of each treatment group (CR group and control-

fed group). The two experiments were conducted at different times, four months apart, with 

different operators and array scanners. RNA concentrations, as determined by Bioanalyzer, 

were all adjusted to 2µg/µl.  

 

To confirm differential expression, real-time PCR analysis were performed using RNA from 

five control mice and four CR mice on some genes detected as being present and differentially 

expressed with very low fold changes. In a prior PCR experiment, another four genes that 

were identified as being differentially expressed at the protein level were tested and this data 

was also included as part of the validation. 
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2.2.2 Data analysis 

2.2.2.1 PLMMA 

LMMA analyzes designed microarray experiments and can be applied to very complex 

multifactorial designs (CHU et al. 2002). The three-step PLMMA approach described here 

directly models probe level data and accommodates known sources of variability across all 

arrays via variance components.  

 

First, background correction was performed by fitting a model which utilized GC content to 

estimate the background noise (WU and IRIZARRY 2005; WU et al. 2004).  Then, quantile 

normalization (BOLSTAD et al. 2003) was performed on all arrays. In the third step, we 

analyzed the normalized probe level data using gene-specific LMMA. The treatment, probe 

and treatment by probe interaction factors were modeled as fixed, while array effects were 

random. 

 

For the combined analysis of the two separate experiments, the following gene-specific model 

was fitted to each gene: 

log2(Sijkl) = µ+ Ei + Tj +(A:T)k + Pl + Pl *Tj +  ijkl                              (2.1)           

Sijkl denotes the normalized signal of the ith experiment, jth treatment (CR vs. control), the kth 

array at the lth probe. The symbols E, T, A and P represent Experiment (referring to the two 

separate experiments), Treatment (referring to the biologic effects of calorie restriction), 

Array and Probe main effects, respectively. µ denotes the intersection and εijkl denotes random 

error. The Ak's and εijkl's were assumed to be independent and identically distributed (iid.) 

normal random effects with a mean of zero and variance σa

2and σ2, respectively. Separate 
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analyses for each experiment were also performed as a check for consistency. In the separate 

analyses, the Ei's were dropped from the model.   

 

2.2.2.2 MAS 5.0 (AFFYMETRIX 2002) 

MAS 5.0 uses background subtraction, idealized mismatch subtraction, and probe level data 

aggregation via a Tukey Biweight Algorithm to generate gene level signals (AFFYMETRIX 

2002). MAS estimates the background noise within grids using a weighted average method. It 

also performs absolute expression analysis to detect expression. That is achieved by first 

calculating a discrimination value (PM-MM)/(PM+MM) for each probe pair to determine a 

detection p-value using the one-sided Wilcoxon’s signed rank test. This test assigns each 

probe pair a rank based on how far the probe pair discrimination value is from a certain 

threshold. Then, the p-value is compared to two cutoffs and a detection call of “Present”, 

“Marginal”, or “Absent” is given for each gene.  

 

The signal for each gene on the array was calculated in the following manner: 

Sij = TukeyBiweight (log(PMijk) - log(IMijk))                         (2.2)        

IM is Idealized Mismatch, which is equal to MM if MM is less than PM. If MM is larger than 

PM, an adjusted MM value is created based on the biweight mean of the PM and MM ratio. 

IM is used to avoid the problem of negative signal values. Then, the signals were scaled so 

that all arrays had a median target signal of 500.  

 

2.2.2.3 DChip (LI and WONG 2003) 

The software package dChip (LI and WONG 2003) detects outliers by fitting a model for each 

probe set and iteratively dropping out probe and array outliers with large standard errors 
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(more than three times as large as the median standard deviation). Array outliers denote the 

arrays that have different patterns from other arrays within a gene.  Probe outliers refer to the 

probes showing different patterns from other probes within a gene (LI and WONG 2003). 

dChip does not perform background correction.  

 

The following model was fitted to the normalized data for each gene to obtain the Model-

Based Expression Indexes (MBEI): 

PMil =  θiφj + γil ,  Σφj

2 =J                    (2.3)         

Where PMil is the normalized PM signal for chip i and probe j, θi is the MBEI in chip i, φj is 

the multiplicative probe effect, and γil is the error term. A summation constraint is imposed on 

φj’s. DChip assumes a multiplicative model within a gene (LI and WONG 2003). We treated 

MBEI from array outliers as missing values. 

  

2.2.2.4 GCRMA (IRIZARRY et al. 2003; WU and IRIZARRY 2005; WU et al. 2004) 

GCRMA estimates background noise based on a model using GC content (WU and IRIZARRY 

2005; WU et al. 2004) and normalizes across all arrays using quantile normalization 

(BOLSTAD et al. 2003). Since non-specific binding tends to be related to the content and 

location of Guanosine (G) and Cytosine (C) in the probe sequences, this background 

correction method takes GC content into account and uses a stochastic model to adjust for 

cross hybridization. To summarize the probe level data to the gene level, GCRMA 

background adjusts the data and then fits a robust linear model to each gene: 

ijjiij krmay ξ++=)(log2                    (2.4)           
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Here yij is the background-adjusted signal for chip i and probe j, rmai is the summarized gene 

signal for chip i, kj is the probe effect, and ijξ  is the random error. Rmai is estimated using a 

robust estimation method called median polish. Median polish fits the model iteratively, and 

successively removes row and column medians. It accumulates the terms until the process 

converges (the rows in each dimension have median close to zero).  

 

For the three methods described above, after obtaining the gene level signals, the following 

gene specific model was fitted to the summarized gene signals to test differential expression: 

log2(Sijk) = µ+  Ei + Tj + ηijk                                      (2.5)               

Here Sijk is the summarized signal obtained using MAS, dChip or GCRMA. In the separated 

analysis for the two experiments, the Ei term was dropped from the model. After all analysis 

were performed, we filtered out the genes that were detected as absent on all arrays in either 

of the experiments. The absent calls were obtained using MAS5.0.  

 

For multiple testing adjustments, we used both the Bonferroni family-wise type I error rate 

(FWER) control method and the positive False Discovery Rate (FDR) with Q-value (STOREY 

2002). FDR controls the expected proportion of false positives among all genes detected as 

being differentially expressed (BENJAMINI and HOCHBERG 1995). The Q-value method 

provides an asymptotic form of simultaneous controlling of the FDR at all levels when the p-

values are weakly dependent (STOREY and TIBSHIRANI 2003). For gene expression 

experiments FDR control has an obvious advantage over FWER control – the detection power 

does not go down as much when the number of tests increases. For microarray experiments 

with a large number of hypotheses, the Bonferroni adjustment is too stringent and has very 

little power to detect differentially expressed genes. 
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2.3 RESULTS AND DISCUSSION 

 

The microarray data exhibited very high quality, with few outliers and high correlation 

between biological replicates. With relatively smaller technical errors, many genes were 

detected as being differentially expressed between the control and CR animals. Here, we 

reported the number of genes detected in the different statistical methods and compared the 

results based on the following criteria: number of genes detected, consistency between 

methods, effect of MM subtraction and outliers, and soundness of detection (based on 

biological knowledge and RT-PCR results). These statistical methods performed differently 

but they showed consistent results on many genes, especially those that were very 

significantly differentially expressed. We also reported the results on some of the genes that 

we found of interest. 

 

2.3.1 Data quality assessments 

With dChip’s outlier detection method, we found only around 0.1% of the total data were 

outliers. We also used some diagnostic plots such as the RNA degeneration plots and 

correlation plots to check data quality. Figure 2.1 shows some examples of the correlation 

plots obtained using data summarized by dChip (LI and WONG 2003). Biological replicates 

from the same group in the same experiment showed very good correlation (at least 97.6%). 

The correlations became less significant for arrays from different treatment groups or 

experiments (at least 93.0%), as expected. 
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2.3.2 Differentially expressed genes  

Many differentially expressed genes were detected using different statistical methods. Table 

2.1 shows the number of genes detected by each method and how many of them were detected 

simultaneously by different methods. Separate and combined analyses were performed for the 

two microarray experiments. For each method, the number of genes that were reproducible 

from both experiments was also listed.  

 

After Bonferroni adjustment, the number of genes detected as differentially expressed was 

small using any method, especially when only ten arrays were used and the degrees of 

freedoms of the tests were small. The power was very low after the Bonferroni adjustment. 

The number of genes detected after Q-value (STOREY 2002) FDR multiple testing adjustment 

was in the more reasonable range considering the fact that the mice between the control and 

CR group were very different. For microarray experiments with a large number of tests and 

many expected true alternative hypothesizes, the Bonferroni adjustment is not preferable 

because it is too stringent. In the combined analysis where the error can be estimated more 

precisely, all the methods detected many genes using the Q-value FDR control. In the 

combined analysis, GCRMA detected the smallest number of genes as significant. GCRMA 

uses median polish to summarize probe level signals, therefore is robust against outliers. 

However, in experiment 1, only 59% of the 726 genes detected by PLMMA were also 

detected by GCRMA, while 86% of them were detected as significant by GCRMA in the 

combined analysis with all 20 arrays. In experiment 2, only 48% of the 545 genes detected by 

PLMMA were also detected by GCRMA, while 90% of them were detected as significant by 

GCRMA in the combined analysis. The results suggested that GCRMA may have sacrificed 

power for robustness against outliers.  



 

  20

 

In the combined analysis of the two microarray experiments, 855 genes were detected as 

being differentially expressed by all the methods using the Q-value multiple adjusting 

method. 97 genes were detected as being significant by all statistical methods using the 

Bonferroni adjustment. Many of these genes are related to stress and metabolic abnormalities 

due to calorie restriction. For example, the immune response and electron transport genes may 

slow aging by improving antioxidant defense mechanisms (KOUBOVA and GUARENTE 2003); 

the biosynthesis, cell growth/maintenance, and protease inhibitor genes may help slow 

accumulation of abnormal proteins by speeding up protein turnover  (SOHAL and WEINDRUCH 

1996; TAYLOR et al. 1989).  Complement component 9, which is related to cell death, is very 

significantly down regulated.  

 

Among those genes detected with less stringent criteria, we identified a number of genes that 

may be related to aging, such as inflammatory response genes, cancer related genes and 

insulin like genes. Table 2.2 lists some of these genes and the statistical methods that detected 

them as significant. 

 

Sirtuin 3 was detected as being up regulated by all methods. Sirtuin 3 is a Sir2 homolog gene. 

Sir2 is known to affect aging in some organisms. Lowered glucose due to CR may impose a 

state of partial energy limitation and thus increase Sir2 expression, which in turn extend life 

span (KAEBERLEIN et al. 1999; KOUBOVA and GUARENTE 2003; LIN et al. 2000).    

 

Serum amyloid may affect aging by influencing the inflammatory response pathway. Glucose 

6 phosphatase is on the glycolytic and gluconeogenic pathways of the liver and may affect 
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aging by increasing protein turnover. Proteosome genes may also affect aging via similar 

ways. 

 

2.3.3 Comparison with protein results 

Prior proteomic analyses identified four proteins that were at significantly lower levels in CR 

vs. control mice. Results on the genes corresponding to these proteins were also conformed by 

RT-PCR. These genes are:  

• major urinary protein (alpha2u-globulin) 

• betaine homocysteine S-methyltransferase 

• glutathione S-transferase-pi (GST-pi-1) 

• carbonic anhydrase I (RT-PCR also tested Carbonic anhydrase 3) 

 

The expression levels of genes for all major urinary proteins significantly decreased in 

expression values under CR, and the results were consistent for all statistical methods. There 

are two betaine-homocysteine methyltransferase genes, which were detected as significantly 

decreased by PLMMA and MAS methods. Glutathione S-transferase, pi 1 was detected as 

being significantly decreased in expression by all methods except GCRMA. Carbonic 

anhydrase 1 was not detected as present on any array (conformed by RT-PCR). Carbonic 

anhydrase 3 was found to be decreased in expression under CR. Expression analysis results of 

these genes are shown in Table 2.3. 

 

The probe set AV279130 (betaine-homocysteine methyltransferase) was only detected as 

“present” in two arrays. As shown in Figure 2.2, most probes of AV279130 (on the left of 

Figure 2.2) had MM values that were not less than PM except for the last two probes. 
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therefore, it was probably a false positive. Those two probes were detected by dChip as 

outliers. GCRMA is robust against outliers, therefore GCRMA and dChip did not find 

AV279130 as being significantly expressed. Probe set X53451 (glutathione S-transferase, on 

the right of Figure 2.2) was detected as being differentially expressed by all methods except 

GCRMA. The expression differences between the CR and control groups were relatively 

small and the probes were variable, therefore the probe set was not detected as significant by 

GCRMA. 

 

2.3.4 Results from PCR experiment 

Aside from those genes analyzed in the protein study, real-time PCR analysis was only 

performed on genes with very low fold changes. However, due to low expression values, the 

PCR results had large standard errors. PCR on these genes were performed more than two 

years after the RNA samples were prepared, which could lead to the large standard error. For 

those genes, the microarray differential expression results did not match PCR results very 

well. It might be resulted from errors in the PCR analysis, or due to the fact that the tested 

genes had relatively low median signal, and hence might not be reliably detected by the array 

scanner. This suggests that we may filter the genes based on both the present/absent calls and 

the raw values below a certain threshold, or variances of the gene expressions. One gene 

identified in the protein study was detected as all absent by the microarray experiments. It was 

confirmed by the PCR study as absent.  

 

2.3.5 Results on a “housekeeping" gene 

Glyceraldehyde-3 phosphate dehydrogenase (GAPDH) is a housekeeping gene on the array. 

We examined the summarized expression values of the six probe sets of GAPDH on each aray 
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using different statistical methods. Since PLMMA does not summarize the probe level data to 

the gene level, the average predicted values from the gene specific model with only array, 

probe and probe*treatment effects were used. All methods stabilized variance of GAPDH, 

except MAS (Table 2.4). The result showed that MAS added additional variability to the data, 

possibly through mismatch subtraction (Figure 2.3).  

 

2.3.6 Pathway analysis 

The detected significant genes can be checked against known pathway information to identify 

possible differentially expressed gene networks. This would give us some “reference genes” 

for further gene network inference. The detected significant genes were then submitted to a 

web tool called “pathway express” (DRAGHICI 2005). Several pathways were found to be 

associated with genes that were identified by each method. Table 2.5 lists some of those 

pathways identified by the PLMMA method.  

 

 

 

2.4 CONCLUSIONS 

 

With the development of more advanced technologies to reduce technical errors and better 

statistical methods for testing, genes with relatively smaller changes in expressions can be 

detected. We found that consistent results were obtained with various methods for genes that 

were very highly differentially expressed. For example, sirtuin 3, a homolog to the well-

known aging related gene Sir2, was detected by all methods. However, different methods 

gave very different results with respect to genes with subtle changes in expression values.  
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No method performed consistently well for all the genes, since all methods tested have some 

underlying assumptions and use different mechanisms to extract valuable information from 

the data. The RT-PCR results did not give much insight on the performance of methods for 

genes with relatively subtle changes in expression. That suggests, other than filtering the 

genes using present/absent calls, we may also filter based on some threshold value of the raw 

signals, or variances of the genes. Though no method outperformed other methods in all 

cases, the importance of outlier detection and the drawback of MAS mismatch subtraction 

were shown. When probe outliers were presented in a probe set, dChip and GCRMA avoided 

possible false positives by removing outliers or using robust estimation for gene summary. 

GCRMA and MAS detected smaller numbers of significant genes than the others. Results 

suggested that in this dataset GCRMA may have sacrificed power when guarding against 

outliers by using the median polish gene summary method. MAS mismatch subtraction may 

add variability to the data, as shown in a housekeeping gene. 
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FIGURE 2.1.— Bivariate correlation plots showing correlations of summarized intensities of 

two arrays 

The two axes show summarized intensities of two of the arrays in the mouse study. A: 

correlation of two arrays from the same treatment group, same experiment. B: two arrays 

from the same treatment group, different experiments. C. Two arrays from the same 

experiment but different treatment groups. D: Two arrays from different treatment groups, 

different experiments.  
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FIGURE 2.2.— Expression profiles of two genes 

The plots were produced using dChip (LI AND WONG 2001). Left: Expression of the 20 probes 

of AV279130. The 10 grids at the top show the 10 arrays for the control mice, and the 10 

grids at the bottom are for the CR mice. Green lines are for the mismatch data; blue lines are 

for the perfect match data. Right: Expression of X53451. 
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FIGURE 2.3.— Expression profiles of GAPDH on the 20 microarrays 

Left: robust averaged raw data. Right: MAS summarized values. MAS summarized values 

added variability to the data. 



 

  31

 
TABLE 2.1 Number of differentially expressed genes detected by the different methods 
 

 

The values on the diagonal are the number of genes detected by that method. The values on 

the off diagonal are the number of genes detected simultaneously by two methods. The 

number of genes detected simultaneously by experiment 1 or 2 and the combined analysis 

divided by the number of genes detected in combined analysis give the percentages in the 

table. The last rows in the tables show the number of genes that were reproducible from both 

experiments. 

 

# of Differentially Expressed Genes Detected Using Bonferroni Adjustment 

  Experiment 1 Experiment 2 Combined analysis 

  PLMMA DChip GCRMA MASPM MAS PLMMA DChip GCRMA MASPM MAS PLMMA DChip GCRMA MASPM MAS
PLMMA 24 8 14 9 8 9 4 4 5 4 272 176 182 176 157

DChip  20 6 6 5   21 5 5 4   277 154 143 130
GCRMA   24 9 8    9 5 4    236 146 146
MASPM    15 5     11 6     256 150

MAS         12         8         216
 Percentage of genes in the combined analysis predicted:       

 3.3 6.9 8.5 5.5 5.6 7.7 6.5 3.4 3.9 3.7      
Common ones from both experiments: 1 3 1 1 0      

                
                

# of  Differentially Expressed Genes Detected Using Q-value FDR Adjustment 

  Experiment 1 Experiment 2 Combined analysis 

  PLMMA DChip GCRMA MASPM MAS PLMMA DChip GCRMA MASPM MAS PLMMA DChip GCRMA MASPM MAS
PLMMA 726 461 429 457 371 545 393 242 305 252 1,927 1,460 1,337 1,464 1,206

DChip  788 376 417 326   820 224 294 237   2,175 1,230 1,404 1,110
GCRMA   542 363 328    264 203 177    1,495 1,243 1,070
MASPM    837 420     437 234     2,081 1,328

MAS         568         341         1,510
 Percentage of genes in the combined analysis predicted:       
 36.3 14.5 33.2 39.1 34.7 27.6 33.7 12.9 20.5 21.7      

Common ones from both experiments: 319 378 217 276 186      
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TABLE 2.2 Some genes detected with the Q-value FDR control that may be related to 
aging  
 

Gene Name 
Log Fold 
change PLMMA dChip 

GC 
RMA 

MAS
PM MAS 

sirtuin 3 (silent mating type information 
regulation 2, homolog) 3 (S. cerevisiae) 0.3479 X** X** X* X** X 
ubiquitin B 0.3518 X X  X   
insulin-like growth factor 1 0.2283  X       
serum amyloid A 2 -0.3614 X** X** X* X** X** 
serum amyloid A 2 -0.9303 X** X* X** X** X** 
serum amyloid A 3 -0.7 X* X** X** X** X* 
serum amyloid A 4 -0.3856 X** X** X** X** X** 
glucose 6 phosphatase, catalytic, 3 -0.0712       X* 

proteosome (prosome, macropain) subunit, 
beta type 8 (large multifunctional protease 7) -0.1776 X* X* X* X* X 

proteosome (prosome, macropain) subunit, 
beta type 9 (large multifunctional protease 2) -0.3627 X** X** X* X** X* 

 

For each method, an "X" indicates that the gene was detected as significant by that method. 

"X*" indicates that the gene was detected as significant in two of the three analyses 

(experiment 1, experiment 2 and combined) for that method. "X**" indicates that the gene 

was detected as significant in all three analyses.  
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TABLE 2.3 Results from genes of the analyzed proteins 
 

Gene Name 
Log Fold 
change PLMMA dChip GCRMA MASPM MAS 

betaine-homocysteine 
methyltransferase -0.6066 X X  X X 

betaine-homocysteine 
methyltransferase -0.1242 X   X X 

carbonic anhydrase 3 -0.4751 X* X X X X* 
glutathione S-transferase, pi 1 -0.1832 X X  X X 

 

The first two genes are for the same protein. For each method, an "X" indicates that the gene 

was detected as significant by that method. "X*" indicates that the gene was detected as 

significant in two of the three analyses (experiment 1, experiment 2 and combined) for that 

method. 
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TABLE 2.4 Variances of summarized expression values of GAPDH from the 20 
microarrays 
 

 
Averaged 
raw data dChip GCRMA MASPM MAS PLMMA 

Variance 0.160741 0.0168 0.0259 0.041 0.199 0.041 
 

  The numbers were averaged from the six probe sets. 
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TABLE 2.5 Pathways associated with genes detected by the PLMMA method 
 
 

Pathway name  
# gene in 
pathway 

# Input 
gene in 
pathway 

# Pathway 
genes on 
chip 

% 
pathway 
genes Diff ratio 

Adherens junction 76 18 60 30.0 1.9 
Huntington's disease 27 7 22 31.8 2.1 
Tight junction 125 19 78 24.4 1.6 
Dentatorubropallidoluysian 
atrophy (DRPLA) 14 3 11 27.3 1.8 
Complement and coagulation 
cascades 70 13 59 22.0 1.4 
Notch signaling pathway 50 7 30 23.3 1.5 

 

“# gene in pathway” denote the total number of genes in the pathway. “# Input gene in 

pathway” denote the number of genes both in the pathway and among the genes detected as 

differentially expressed by PLMMA. “# Pathway genes on chip” denote the number of 

pathway genes on the microarray. “% pathway genes” denotes percentages of pathway genes 

on the chips that were significant. “Diff ratio” denotes the ratio of “# input gene in 

pathway”/total input genes divided by the ratio of pathway genes/total genes on the chips. The 

diff ratios show that the pathways in the table were over-represented in the genes that were 

detected as significant. 
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ABSTRACT 

 
In a genetical genomics experiment a segregating population of hundreds of individuals is 

expression profiled for thousands of genes and genotyped for hundreds or thousands of 

genetic markers. Expression Quantitative Trait Locus (eQTL) mapping treats gene expression 

levels as quantitative traits and has the goal of identifying genomic regions causally affecting 

gene expression levels. With the identified eQTL regions, using DNA sequence information, 

genes co-located with an eQTL on the chromosome can be identified as the candidate causal 

regulators of the gene expression levels of the affected gene. After using local structural 

models to identify such candidate regulators in each eQTL, an Encompassing Directed 

Network (EDN) of causal relationships among genes can be constructed.  

 

The objective of the present work is to evaluate several eQTL mapping approaches and local 

structural models in their ability for constructing an EDN. Several eQTL mapping approaches 

were evaluated: Single Profile Analysis (SPA), Principal Components (PC) mapping, cis-

eQTL and trans-eQTL mapping. Results on a genetical genomics dataset from yeast showed 

that the PC-mapping, cis-eQTL and trans-eQTL mapping greatly increased power for the 

eQTL detection as compared to the SPA. The combined eQTL mapping results from the PCA, 

cis and trans mapping detected most eQTLs found in SPA and much more, and therefore 

should be a good starting point for EDN construction. For regulator-target pair identification, 

our local structural models performed well on the simulated data set for identifying regulators 

within one eQTL region, except for a case where some genes have extremely high and other 

genes low heritability. For the yeast data set, an EDN constructed based on the combined 

results from SPA, cis and trans-mapping included 28,609 regulator-target pairs. It still 
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contains many direct regulations that are actually indirect, as well as multiple candidate 

regulators for some eQTLs and targets. It is therefore important to perform further 

sparsification of the network. 
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3.1 INTRODUCTION 

Gene networks can be represented as graphical models in which nodes are genes, and 

undirected and directed edges correspond to interactions and causal influences between the 

nodes, respectively. Gene networks are coarse-grained descriptions of cellular physiology in 

the sense that only relationships between gene expression levels are modeled, and many other 

components such as proteins and metabolites are not explicitly taken into account. 

Nevertheless, gene networks are system-level descriptions of cellular physiology and will 

improve our understanding of the genetic architecture of complex traits and diseases. Gene 

networks have many practical applications (BRAZHNIK et al. 2002), including the discovery of 

direct drug targets (DI BERNARDO et al. 2005; GARDNER et al. 2003). It has been shown that 

some classical concepts in genetics, such as dominance and epistasis, can be understood in 

terms of networks and their properties (KACSER and BURNS 1981; OMHOLT et al. 2000). 

Many strategies have been proposed to obtain gene networks from gene expression data, such 

as probabilistic models, (e.g., FRIEDMAN 2004; FRIEDMAN et al. 2000) , time series analysis 

using linear models, (e.g., D'HAESELEER et al. 1999; VAN SOMEREN et al. 2000), partial 

correlation analysis, (e.g., DE LA FUENTE et al. 2004) and several perturbation approaches 

(e.g., DE LA FUENTE et al. 2001; DE LA FUENTE et al. 2002; GARDNER et al. 2003; WAGNER 

2001). Different approaches to gene network inference are reviewed by BRAZHNIK et al. 

(2002), D'HAESELEER et al. (2000), DE JONG (2002), and GARDNER and FAITH (2005).   

 

Causal inference for genes can be achieved with a strategy of creating targeted perturbations 

(interventions) and measuring the responses of gene expression levels to those perturbations. 

It has been shown that such an approach can provide a reliable identification of gene networks 
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(DE LA FUENTE et al. 2001; DE LA FUENTE et al. 2002; GARDNER et al. 2003). There are two 

major types of targeted perturbation experiments: one uses one-at-a-time, specific 

perturbations (e.g., CARPENTER and SABATINI 2004; HUGHES et al. 2000; SACHS et al. 2005), 

and the other uses naturally occurring multi-factorial perturbations in segregating populations 

(genetical genomics, JANSEN 2003; JANSEN and NAP 2001; JANSEN and NAP 2004). We focus 

our network inference on genetical genomics data. In a genetical genomics experiment, a 

segregating population of hundreds of individuals is expression profiled for thousands of 

genes and genotyped for hundreds or thousands of genetic markers. The variation in the 

expression levels of genes is influenced by the variation in many polymorphisms (genotypes) 

across the genome. The genotypes can thus be regarded as natural multifactorial perturbations 

(JANSEN 2003; JANSEN and NAP 2001; JANSEN and NAP 2004) resulting in different gene 

expression “phenotypes”, and a relationship can be established between the measured 

genotypes and the measured gene expression phenotypes. In contrast to the approaches using 

specific experimental perturbations, in genetical genomics we do not know where the 

perturbations arise and we must identify their origin. This can be achieved by expression 

Quantitative Trait Locus (eQTL) mapping, which treats the gene expression profiles in a 

segregating population as quantitative traits and performs Quantitative Trait Locus (QTL) 

mapping on those traits. QTL mapping identifies the polymorphic genomic regions having 

significant effects on a quantitative trait. Compared to the traditional QTL mapping, eQTL 

mapping is performed on a much larger scale: there are thousands to ten thousands of 

correlated expression traits (etraits). The result of eQTL analysis is the knowledge that certain 

genomic regions likely have causal effects on the expression levels of particular genes. Then, 

by using DNA sequence information, genes located in an eQTL region can be identified as 
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candidate causal regulators of the genes whose expression levels are affected by that eQTL. 

After the identification of the candidate regulatory genes in each eQTL, an Encompassing 

Directed Network (EDN) of causal regulatory relationships among genes can be constructed. 

The constructed EDN can be represented as a graph consisting of gene nodes and eQTL 

nodes. The directed edges in the EDN correspond to causal relationships or regulations among 

pairs of genes. A set of sparser networks well supported by the data can be found by searching 

within the space defined by the EDN. The main purpose of the present work is to evaluate 

several eQTL mapping approaches and local structural models for the selection of regulator-

target pairs in their ability to construct an EDN from the eQTL results. Sparsification of the 

EDN using a global structural modeling approach will be addressed in another contribution. 

 

In a “traditional” eQTL mapping approach, eQTL analysis is performed on each etrait 

separately and adjusted for multiple testing using the false discovery rate (FDR) (BENJAMINI 

and HOCHBERG 1995) control, after retaining only one eQTL per etrait or per etrait and 

chromosome (BING and HOESCHELE 2005; BREM and KRUGLYAK 2005; BREM et al. 2002). 

This approach will be referred to as Single Profile Analysis (SPA). In this contribution, we 

repeat the SPA, but retain multiple separated, significant test statistics peaks on each 

chromosome. 

 

SPA overlooks the fact that etraits are correlated and therefore does not have optimal power 

for the detection of pleiotropic eQTLs (i.e., eQTLs affecting multiple etraits). It has been 

shown that multi-trait mapping is more powerful than single trait mapping for detecting 

pleiotropic QTLs (JIANG and ZENG 1995). However, it is not computationally feasible to 
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perform multi-trait mapping on thousands of etraits. For small sets of correlated traits, QTL 

mapping of Principal Components (PC) has been shown to be equivalent to multi-trait 

mapping, without the drawback of increased computational complexity (MANGIN et al. 1998). 

Several groups have used PCs for QTL or eQTL mapping in different experimental settings 

(BOOMSMA 1996; CHASE et al. 2002; COMUZZIE et al. 1997; LAN et al. 2003; LIU et al. 1996; 

WELLER et al. 1996; ZENG et al. 2000). However, only a small number of traits were analyzed 

in those studies. Here, we perform the Principal Component Analysis (PCA) on the entire set 

of 4,589 filtered yeast genes (BREM and KRUGLYAK 2005), as well as on subsets of genes 

obtained by gene clustering. 

 

Expression QTL mapping and regulator gene identification can be performed much more 

effectively by taking into account two distinct types of genetic regulation: cis-regulation and 

trans-regulation. In the case of cis-regulation, the cis-eQTL affects a particular etrait X 

(expression level of gene X) and is located at the physical location of gene X on the 

chromosome. The polymorphism of a cis-eQTL likely corresponds to a promoter region 

polymorphism of the gene (e.g. DOSS et al. 2005; RONALD et al. 2005; JANSEN and NAP 

2001). If gene X regulates the expression of some other genes, the eQTL that cis-affected 

gene X will have an indirect effect on the expression of those genes through gene X (KULP 

and JAGALUR 2006; DOSS et al. 2005). Such indirect effects have been referred to as cistrans 

effects (KULP and JAGALUR 2006). Trans-eQTLs influence the expression levels of genes, but 

do not need to be co-located with any of these genes. The polymorphism of a trans-eQTL 

likely comes from a coding region polymorphism in a regulator gene located at the eQTL (e.g. 

YVERT et al. 2003, JANSEN and NAP 2001). While a trans-eQTL does not affect the expression 
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level of the regulatory gene, the coding region polymorphism affects the kinetic properties of 

the regulatory protein encoded by that gene, which in turn affects the expression levels of the 

targets.  

 

Since by definition the location of a cis-eQTL must physically coincide with the location of 

the gene whose etrait is affected, only the marker(s) closest to the location of an etrait’s gene 

is tested to detect cis-eQTLs (e.g. DOSS et al. 2005; RONALD et al. 2005). For network 

inference, such cis-linked etraits are not very informative. As shown on mouse data (DOSS et 

al. 2005), the secondary targets of the cis-eQTLs, the so-called cistrans regulated etraits, can 

be obtained by testing the effects of the identified cis-eQTL regions on other etraits.  

 

Trans-affected etraits are affected by the eQTL genotype and the etrait of the candidate 

regulator gene simultaneously. Therefore, it was proposed (KULP and JAGALUR 2006) that in 

order to specifically detect trans-eQTLs, mapping is best performed by including candidate 

“regulatory” etraits in the QTL model. KULP and JAGALUR (2006) performed interval 

mapping on any etrait i with a model including the effects on etrait i of another etrait j, the 

genotype at the physical location of gene j, and the etrait-by-genotype interaction. We 

performed mapping of trans-eQTLs also by including the candidate etrait in the model, but 

with a regression model and the intersection-union-test (IUT) (CASELLA and BERGER 1990; 

ROY 1957) to test whether the eQTL genotype and the etrait of the candidate regulator gene 

both significantly affected the target etrait. 
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The problem of identifying candidate regulatory genes from eQTL confidence regions has 

been approached by using partial correlation tests (BING and HOESCHELE 2005), analysis of 

the between-strain Single Nucleotide Polymorphisms (SNPs) (LI et al. 2005), assessing the 

extent of eQTL overlap between any two etraits (ZHU et al. 2004), and more recently using a 

stochastic model incorporating protein-protein interaction data (TU et al. 2006). We used local 

structural models separately for each eQTL to identify the regulator-target pairs, taking into 

account that an eQTL may affect a target through cis, trans or cistrans regulation.  

 

In contrast with previous work (e.g. KULP and JAGALUR 2006, DOSS et al. 2005), in this 

contribution we consider cis, cistrans and trans regulations jointly with the goal of 

reconstructing an EDN that defines the network search space for a network reconstruction 

method which we report on in a separate contribution. This method is capable of 

reconstructing networks with cycles or feedback loops, an advantage over Bayesian networks 

that are currently used (LIU et al. 2006). 

 

3.2 METHODS 

The methodology we discuss here can be applied to any organism where a segregating 

population is extensively marker genotyped and expression profiled, and where DNA 

sequence information is available. Currently several such datasets have been produced, most 

noteworthy for yeast (BREM and KRUGLYAK 2005) and mouse (SCHADT et al. 2003). For 

evaluation purposes we analyzed the yeast genetical genomics dataset (BREM and KRUGLYAK 

2005). After removing the 20% of genes with the lowest etrait variability from the original 

data, our dataset contained etraits for 4,589 genes and genotypes for 2,956 genetic markers on 
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112 haploid offspring from a cross between a laboratory and a wild strain. Observations with 

missing marker genotypes were excluded.  

 

3.2.1 Single Profile Analysis 

Marker linkages were tested using the Kruskal-Wallis test (LEHMANN 1975). QTL confidence 

intervals (CIs) were obtained by searching for markers at either side of the significant QTL 

marker that corresponds to a decrease in the logarithm-of-odds (LOD) score of at least 1 

(LANDER and BOTSTEIN 1989). LOD 1 intervals are approximately equivalent to a 96.8% CI 

(MANGIN et al. 1994 ). The Kruskal-Wallis test statistic follows an approximate chi-square 

distribution under the null hypothesis, and approximate LOD scores were computed by 

dividing the Kruskal-Wallis test statistic by 2*ln(10). If multiple eQTLs on the same 

chromosome have significant effects on the same etrait, they have to be separated by at least 

two consecutive, insignificant markers to be regarded as different eQTLs. Any two eQTL 

regions with less than 50% overlap were treated as separated eQTL for any particular etrait. 

To identify chromosomal regions affecting multiple etraits, the eQTL regions of two different 

etraits were combined into a single region if the two eQTLs were located at the same marker 

or their CIs overlapped by over 80%. 

 

The nominal p-values were calculated based on normality assumptions. Rebaï (REBAÏ 1997) 

showed that even if the data are not normally distributed, a normal approximation will not 

give misleading results if the distribution is not too extreme. We verified this assumption 

using permutation tests and observed that the nominal p-values were very close to the 

permutation-based p-values and were slightly more conservative. Therefore, nominal p-values 
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were used in this study. The p-values were adjusted for multiple testing by controlling the 

FDR using the BH-procedure (BENJAMINI and HOCHBERG 1995). 

 

Sliding three marker regression (BING and HOESCHELE 2005; THALLER and HOESCHELE 2000) 

was performed to fine map the LOD CIs. A marker to be tested was fitted together with its 

flanking markers in a regression model. The marker of interest has an expected nonzero 

partial regression coefficient if and only if at least one QTL is located between the flanking 

markers (ZENG 1993). To select the appropriate flanking markers, we chose the closest 

markers having at least 20 recombinants with the tested marker. The number of recombinants 

required was determined based on two criteria: sufficient power for the regression models to 

distinguish between the tested marker and the flanking markers, and sufficient proximity of 

the flanking markers to block the effects of the linked eQTL. A test statistic profile was 

obtained for all the markers in a LOD CI. New confidence regions were identified by looking 

for significant regions separated by at least two non-significant markers inside the LOD CI. 

Since the eQTL regions were already detected as significant, a p-value cutoff of 0.05 was 

used. 

 

3.2.2 Principal Components Mapping 

PCs were first computed on the total set of 4,589 etraits. Subsequently, to detect eQTLs 

affecting smaller subsets of genes, we clustered genes and applied PCA separately to the 

clusters. We used k-means with absolute correlation as the distance measure to cluster genes 

into 100 subsets with the software Cluster 3.0 (downloaded from http://bonsai.ims.u-

tokyo.ac.jp/ ~mdehoon/software/cluster/software.htm). The number of genes in each cluster 
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varied from 3 to 232, with an average of 46 genes per cluster.  An eigen value cutoff of 1.5 

was used to determine how many PCs to retain for each cluster, so that the PCs from different 

clusters contained a similar amount of information. Then, eQTL mapping was performed on 

these “composite etraits” (PCs) rather than the individual etrait in the same way as in the SPA. 

An eQTL affecting a PC is assumed to be a common regulator of all the etraits with high 

loadings on the affected PC. However, there was no clear cutoff for “high” loadings (Figure 

3.1). Therefore, instead of choosing an arbitrary cutoff, all etraits were individually tested as 

in the SPA for the identified PC-eQTL regions to establish the influence of PC-eQTLs on 

individual etrait. As in the SPA, the tested PC-eQTLs on the same chromosome were required 

to be local maxima separated by at least two consecutive, insignificant markers. 

 

3.2.3 Cis-eQTL Mapping 

Cis-acting QTL effects were tested using the same non-parametric test as in the SPA. For 

those etraits with a significantly linked cis-marker, LOD confidence intervals were obtained 

using the LOD results from the SPA.  We searched both sides of the tested marker for a LOD 

1 drop and recorded the maximum LOD marker. If the gene of the tested etrait fell outside the 

CI and was more than 10 kb away from the maximum, we discarded the eQTL. The cis-

eQTLs were combined in the same way as in the SPA. In the cistrans analysis, we tested all 

etraits for the effects of the identified cis-eQTL. As in the SPA, the tested cis-eQTLs were 

required to be local maxima separated by at least two consecutive, insignificant markers to be 

regarded as different eQTLs affecting that etrait. 
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3.2.4 Trans-eQTL Mapping 

For the trans-eQTL mapping, we used a regression approach, as the Kruskal-Wallis test 

(LEHMANN 1975) cannot incorporate the etrait of a candidate regulator gene. Our regression 

model for the etrait of any gene i includes the effects on etrait i of a candidate regulator ij ≠ , 

the genotype of the marker closest to the physical location of gene j and the etrait by genotype 

interaction term: 

injnjnjnjnin xybxbyby ε+++= 321                     (3.1) 

where iny  is the deviation of etrait value i in observation n from its mean; jny  is the deviation 

of the potential regulator etrait  j in observation n from its mean; jnx  is the deviation of the 

genotype value (0 or 1) of the marker closest to candidate regulator gene j from its mean, and 

inε  represents the residual. Regression coefficients 1b and 2b  must both be significantly 

different from zero for gene j to be declared as a trans-regulator of gene i, as determined by 

the IUT. The null hypothesis of the IUT is that either 1b or 2b  is zero, or both are zero, and the 

IUT rejects the null hypothesis if and only if all H0k (H01: 1b =0; H02: 2b  =0) have been 

rejected. We did not consider a candidate regulator if its closest marker had a recombination 

rate of less than 0.25 with the marker closest to the target etrait, to prevent false discoveries 

due to strong cis-eQTLs, while KULP and JAGALUR (2006) excluded all candidate 

regulators on the same chromosome as the target. 

 

We tested all candidate regulators on all etraits, retained the maximum p-value, corresponding 

to either 1b  or 2b as the IUT procedure prescribes, and used the BH procedure for multiple 

testing adjustment.  
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3.2.5 Identification of regulator-target pairs for SPA, PCA and cis-mapping  

We used local structural models to select regulator genes in each of the identified QTL CIs. 

The candidate regulator selection was performed in three steps: 1) Identification of the 

detected cis-linked etraits that were most likely cis-linked and those that were probably 

secondary (cistrans) effects, 2) Identification of the detected trans-affected etraits that were 

probably cistrans-affected and those that were more likely trans-affected, and 3) Search for 

the candidate regulator among the genes physically located in the eQTL confidence interval 

for each of the likely trans-affected etraits.  

 

3.2.5.1 Distinguishing cis from cistrans 

Some of the etraits that were found to be cis, based on the fact that they were affected by an 

eQTL whose CI overlapped with the physical location of the gene on the chromosome, may 

not be truly cis-affected. Such gene may be cistrans regulated through a cis-affected gene, or 

trans regulated by some coding region polymorphism in a gene located near the target gene. 

We tested whether a potentially cis-affected gene was likely cis-affected using model (3.1) 

but omitting the interaction term, letting iny  be the value of the potential cis-affected target 

etrait i, jny  the value of another potential cis-affected regulator j of i, and jnx  the genotype 

of the marker at which the peak test statistic of the eQTL CI occurs. If iy  is actually cistrans- 

affected through jy , then 2b should not be significantly different from zero when jy  is 

included in the regression equation. These tests were carried out for all identified cis-affected 

etraits in an eQTL CI. If for an etrait i, 2b  remained significant for all etraits j, then it was 
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identified as a “true” cis-affected etrait. Since the effects were already identified as significant 

in the eQTL analysis, no multiple testing adjustment was applied and a p-value cutoff of 0.05 

was used. 

 

3.2.5.2 Distinguishing trans from cistrans 

After having identified the likely cis-affected etraits, we focused on the etraits detected as 

trans-affected by the eQTL CI. The trans-affected etraits can be either truly trans-affected or 

cistrans- affected through a cis-affected regulator. Using model (3.1) again, iny  is now a 

trans-affected etrait and jny  is a cis-affected etrait identified in step 1. Cistrans regulation is 

indicated by 2b not being significantly different from zero. If 2b remains significant for all cis-

affected etraits j, then the gene i is identified as a likely trans-affected etrait. 

 

3.2.5.3 Selecting candidate trans-regulators in the same eQTL region 

To find the candidate regulators for a likely trans-affected etrait  i among all the genes 

physically located in the eQTL region, for the target etrait i we fitted model (3.1) with any 

candidate regulator etrait j located in the eQTL region and the eQTL marker (without the 

interaction term), and any additional candidate etrait p. The additional candidate etrait was 

included to examine whether the regulator-target correlation was due to some indirect 

mechanism. For each candidate-target pair i & j, the null hypothesis is that at least one of the 

b coefficients of j is not significantly different from zero after having a different candidate 

etrait p in the model. Therefore, we retained the maximum p value of all the b coefficients of 

each candidate regulator of each target as in WILLE and BUHLMANN (2006) and WILLE et al. 

(2004). We used a p-value cutoff of 0.05/number of candidate regulators to control the 
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family-wise error rate at 0.05 for all tests performed for each eQTL-target pair. A candidate 

regulator etrait with all of its b coefficients significantly different from zero was retained as a 

regulator of its target.  

 

3.2.6 Identification of regulator-target pairs for trans-mapping  

In the trans-eQTL mapping analysis based on model (3.1), some of the identified regulator 

genes may be false positives, because the regulator etrait might be significant due to some 

correlating mechanisms other than the hypothesized direct causal relationship between the 

regulator and the target, and/or the marker might be significant due to the linkage with 

another polymorphism. For example, regulator j might directly affect another regulator k, 

which in turn affects target i, without direct causal relationship between j and i. To eliminate 

such cases, we performed some “local sparsification” for each target etrait. For each target 

etrait i with at least two identified regulators, for each identified regulator j of etrait i, we 

included another regulator etrait and its nearest marker (gene k) in the regression model: 

( )
( ) inknknkknkknk

jnjnjjnjjnjin

xybxbyb
xybxbyby

ε+++

+++=

321

321

                
                                        (3.2) 

Gene k is another regulator of etrait i identified as significant in the trans-mapping step, and 

the marker closest to it was required to have a recombination rate of at least 0.25 with the 

marker closest to gene j. If the recombination rate was less than 0.25 between the two 

markers, only one marker ( jnx ) was kept in the model. The interaction terms were included 

only if they were significant in the analysis based on model (3.1). The terms for i and j are the 

same as in model (3.1), with additional etrait, marker and interaction terms for gene k. Since 

the candidate regulators included in the model were already identified as significant in the 
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trans-mapping, no multiple testing adjustment was performed and the IUT was applied at a p-

value cutoff of 0.05. If the IUT for regulator j was not significant, we discarded gene j as a 

regulator. 

 

3.2.7 EDN construction 

The EDN consists of two types of nodes: continuous nodes for the genes, and discrete nodes 

for the eQTLs. Edges in the EDN correspond to causal influences between these nodes. To 

construct an encompassing network, we simply assembled all the identified and retained 

regulator-target relationships, which consist of directed edges from eQTLs to cis-regulated 

target genes, from cis-regulated genes to cistrans regulated target genes, from trans-regulator 

genes to target genes and from trans-eQTLs to target genes. 

 

3.3 RESULTS 

 

3.3.1 Single Profile Analysis  

With a 5% FDR p-value threshold of 0.000264, a total of 666 significant combined eQTL 

regions and 6,264 individual eQTL-target pairs were detected. The sizes of the eQTL CI 

regions were relatively wide (median 84 kb), which in some cases can be due to multiple 

linked QTL. The median size of the eQTL CI regions from three-marker regression decreased 

to 43 kb, the number of eQTL regions increased to 797, and the number of significant eQTL-

target pairs increased to 6,729.  
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3.3.2 Principal Components Mapping 

First, PCA was performed on all 4,589 etraits.  Based on the scree plot which shows the 

fraction of total variance in the data as explained by each PC, 20 PCs were selected for eQTL 

mapping. The plot of the sorted gene loadings of the first 10 PCs (Figure 3.1) shows that 

many genes contribute to each PC. Therefore, PC mapping based on PCA of all genes was 

only able to detect major eQTL affecting a relatively large number of genes. With PCA on all 

4,589 filtered genes, 38 combined eQTL regions were detected (median CI 84 kb), including 

all major eQTL regions affecting relatively large number of genes identified earlier with 

analyses on single profiles or clustered profiles (YVERT et al. 2003). 

 

When analyzing PCs computed from separate PCA of the gene subsets corresponding to the 

100 clusters, after three-marker regression, a total of 250 combined eQTL regions (median CI 

37 kb) were detected. The eQTL regions detected with PCA on all etraits were also detected 

here. Next, SPA was performed on these 250 eQTLs, with a FDR adjusted p-value cutoff of 

0.00012. A total of 10,316 eQTL-target pairs were detected. 

 

3.3.3 Cis-eQTL Mapping 

For cis-mapping, as expected, controlling FDR at the 5% level resulted in a considerably less 

stringent p-value threshold (0.0139), compared with the SPA threshold. After three-marker 

regression, a total of 578 combined cis-eQTL regions (median CI 36 kb) were detected. We 

then searched for cistrans-affected etraits of these eQTLs. The FDR-adjusted p-value cutoff at 

this stage was 0.000412. A total of 7,481 eQTL-target pairs were found.  
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3.3.4 Trans-eQTL Mapping 

Trans-mapping appeared to greatly increase the power to detect eQTL. Using the IUT with 

the 5% level FDR control, 41,309 significant candidate regulator-target pairs were identified. 

Figure 3.2 presents representative profiles of an etrait on two chromosomes. Red lines 

represent the SPA profile and its threshold, and blue lines represent the trans-mapping profile 

and its threshold. The trans-mapping profile is raised considerably above the SPA profile and 

this increase more than compensates for an increase in the threshold value. 

 

The interactions between eQTLs and candidate regulator genes did not appear to be 

important. Out of all tests performed, only 0.08% tests had significant eQTL by regulator 

gene interactions with FDR control at the 5% level for this term. Out of the tests with 

significant IUT, 4.94% had p-values smaller than 0.01, and 0.43% had p-values smaller than 

the FDR cutoff from all tests.  

 

3.3.5 Comparing the eQTL detection power 

A wide eQTL region detected by one mapping method may correspond to two eQTL regions 

detected by another method. Therefore, we compared the eQTL mapping methods by 

counting the number of overlapping eQTLs. More precisely, we counted the overlap of any 

two eQTLs detected with two different methods as affecting the same etrait. We considered 

any overlap, 50% overlap, and 99% overlap of the eQTL regions. For comparing trans-

mapping results with other methods, an overlap or agreement was counted when the trans-
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eQTL marker was inside of an eQTL region detected by the other methods, or located 

immediately next to it with no other marker in between.  

 

The percentages of eQTLs that had any overlap between different methods are shown in 

Figure 3.3. The percentages were not very different when a 50% or 99% overlap between 

eQTL regions was required (results not shown).  

 

Most eQTL-target pairs detected in SPA (83%) overlapped with eQTLs identified in cis-

mapping. These effects were likely either cis or cistrans. Another 13% were found in PC-

mapping, and these eQTLs probably were pleiotropic eQTLs. Only 31% of the SPA eQTL 

regions contained or were next to markers identified by trans-mapping, an expected finding 

given that the SPA results included many cis- and cistrans linkages. Only 3% of the SPA 

eQTL-target pairs were not detected by the other methods.  

 

For cis-mapping, 9% of the eQTL-target pairs were not found in SPA. These probably were 

the less significant cis-eQTLs, which have relatively fewer cistrans-affected etraits. For PC-

mapping, 24% of its eQTLs did not overlap with eQTLs from the other methods, indicating 

the strength of this pleiotropic approach. 

 

Only 10% of the eQTLs from trans-mapping overlapped with the eQTLs from SPA. Of all 

trans-eQTLs, 87% did not overlap with the eQTLs from the other methods, which indicated 

the high power of trans-eQTL mapping, and supported the fact that the other methods mostly 

find cis and cistrans effects. 



 

  56

 

3.3.6 Regulator-target pair identification  

A total of 6,723 eQTL-target pairs were detected using SPA. After searching for regulators of 

those eQTLs, 6,276 regulator-target pairs involving 3,050 genes were found, including 1,192 

regulators and 2,544 targets. From PC-mapping, for the 10,316 eQTL-target pairs, 9,843 

regulator-target pairs were retained, involving 3,581 genes, with 1,143 regulators and 3, 262 

targets. A total of 7,481 eQTL-target pairs were found by cis-mapping, and after search for 

regulators, 6,090 regulator-target pairs involving 3,034 genes were found, including 1,099 

regulators and 2,562 targets. After “local sparsification” of the trans-mapping results, the 

41,309 candidate regulator-target pairs reduced to 15,835 pairs involving 3,858 genes, 

including 1,433 regulators and 3,682 targets.  

 

The percentages of common regulator-target pairs between different methods are shown in 

Figure 3.4. The combined results from the SPA and cis-mapping included 57% of the SPA 

results. Most (95%) regulator-target pairs detected by the trans-mapping method is not 

detected by any other methods. That is because for the detection of trans regulations, the 

methods that did not include the regulator etraits in the model had limited power. The 

comparison based on the eQTL regions (Figure 3.3) showed that 87% of the eQTLs detected 

in the trans-mapping method did not fall within the eQTL regions detected by the other 

methods. 

 

3.3.7 EDN construction 

Since the combined eQTL mapping results from the PCA, cis and trans mapping detected 

most eQTLs found in SPA and much more, we constructed an EDN based on the combined 
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results from PCA, cis and trans-mapping, which included 28,609 regulator-target pairs. The 

network consisted of 4,274 genes nodes. The remaining 315 genes did not receive any inputs 

nor were they affecting any other genes. A total of 2,118 genes were regulators of at least one 

target, among which 158 did not receive any inputs. A total of 4,116 genes were targets 

having at least one regulator, among which 2,156 did not affect any other genes in the 

network. A total of 1,960 genes occurred both as regulators and targets. There were 135 

instances of reciprocal regulation present (i.e. gene A affects gene B and gene B affects gene 

A). Gene PHM7 had the most targets: 468, while gene YLR152C had the most regulators: 32.  

 

The confirmed regulators or strong candidate regulator genes for the 13 eQTLs with 

widespread transcriptional effects identified in YVERT et al. (2003) were investigated in this 

EDN. Amn1, a confirmed regulator gene with widespread influence (YVERT et al. 2003), was 

found to be a top cistrans regulator with 408 cistrans targets. The strong candidate regulator 

MAK5 with five coding region polymorphisms between the two parental strains (YVERT et al. 

2003) had 110 trans targets. Another confirmed regulator gene GPA1 (YVERT et al. 2003) had 

60 targets, about half of them are trans-targets. The genes LEU2 and URA3 (auxotrophic 

markers deleted in one of the parental strains) (YVERT et al. 2003) had 98 (most were 

cistrans) and 32 (most were cistrans) targets in the cis-trans network, respectively. The heme-

dependent transcription factor HAP1, which has a Ty insertion in one of the parental strains 

(BREM et al. 2002; YVERT et al. 2003), had 141 (100 cistrans, others were trans) targets. 

 
 
The in- and out-degree distributions of the EDN are plotted in Figure 3.5. The out-degree 

distribution was approximately linear in the log scale, similar to scale free networks. The in-
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degree and overall degree distributions did not follow a power law as in scale free networks 

(BARABASI and ALBERT 1999). 

 

3.3.8 Simulation results on regulator-target pair identification 

We evaluated the ability of our local structural modeling approach to retain the correct 

regulator-target pairs within one eQTL region with the simulated data. For a population of 

112 individuals (as in the yeast data), we simulated an eQTL region containing three eQTL 

causal polymorphisms and several candidates and targets. This local network is depicted in 

Figure 3.6. The target list for the eQTL region is T = [G2, G3, G4, G5, G6, G7, G8]. Gene G1 

is the only trans-candidate regulator, while genes G3, G4, G6 and G7 are cis-candidate 

regulators. There are four types of regulations: one true trans-regulation (from G1 and Q1 to 

G2); two true cis-linkages (Q2 to G3 and Q3 to G6); two true cis-regulations of genes located 

in the eQTL region (Q2 to G3 to G4 and Q3 to G6 to G7); and two true cis-regulations of 

targets not located in the eQTL region (Q2 to G3 to G5 and Q3 to G6 to G8).  Data were 

simulated with linear regression models with regression coefficients fixed at the value of 1 

and residual standard deviations (SD) set to 0.125, 0.25 or 0.5 (one value for all genes, or for 

genes with odd numbers SD = 0.5 or 0.25, and for genes with even numbers SD = 0.125 or 

0.25). For a gene directly regulated by an eQTL, the model is y = bx + e = x + e, where x is 

QTL genotype (0/1), variance due to the eQTL is equal to 0.25, and heritability = 

0.25/(0.25+SD2) = 0.941, 0.80 or 0.50 for the three SD values, respectively. For a gene 

indirectly regulated by an eQTL, the model is y = b(bx + e1) + e2 = x + e1 + e2, and heritability 

= 0.25 / (0.25 + 2SD2) = 0.889, 0.667, and 0.333. Several scenarios were considered with 

different values for the recombination rate and SD. A total of 1000 data replicates were 
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simulated and analyzed for each scenario. The results are summarized in Table 3.1 in terms of 

power and false positive rate for the four types of regulations described above, which 

demonstrate that the procedure works well, with the exception of a case where some genes 

have extremely high and other genes low heritability (column 5 in Table 3.1). This problem 

was actually due to one of the cis-linked genes (G3) having very small residual variance and 

being assigned as a regulator for other genes incorrectly. 

 

3.4 DISCUSSION 

Several different methods for eQTL mapping and regulator gene selection were evaluated in 

terms of their ability to construct an EDN for gene network inference. The combined eQTL 

mapping results from the PCA, cis and trans mapping detected most eQTLs found in SPA and 

much more, and therefore should be a good starting point for EDN construction. The PC-

mapping based on PCA of all genes identified only major eQTLs with widespread effects, 

while the PC-mapping based on the separate PCA of gene clusters detected many eQTL-target 

pairs that were not detected by the other methods. Cis and trans-mapping greatly increased 

power for eQTL detection as compared to SPA. Cis-mapping detected much more cis 

regulations due to a much less stringent p-value cutoff after the FDR control. The power for 

detecting cistrans effects was also somewhat increased. By including the candidate regulator 

genes in the model, the trans-mapping method detected many eQTL-target pairs, more than 

six times the number found with SPA, and more than four times the number found with PC-

mapping. Of the eQTLs detected by trans-mapping, 87% were not detected by the other 

methods. However, the number of regulator-target pairs was only increased by a factor of less 

than four over SPA and two over PC-mapping. For trans-mapping, the number of regulator-
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target pairs was less than half the number of identified eQTL-target pairs, indicating that 

many of these effects were indirect or more distant and were identified due to the greater 

sensitivity of this method.  

 

Since PC-mapping exhibited very high power, combining PC-mapping with cis-mapping and 

trans-mapping to detect pleiotropic eQTLs should be explored.  Combining cis-mapping and 

trans-mapping of individual etraits and PCs may be a better approach for EDN construction, 

which can be further improved by the incorporation of “external” biological information such 

as SNP presence in candidate regulators (LI et al. 2005) or information on protein-protein 

interactions as recently proposed (TU et al. 2006).  

 

We do not think that our use of the BH procedure for multiple testing control had a major 

impact on our results, but further research on efficient and effective multiple testing control 

for eQTL mapping is still desirable. While various authors have used the FDR criterion for 

multiple testing control in genome-wide QTL mapping, there are convincing arguments that 

FDR is not the best criterion to use in this context. It should be valid to use FDR control for 

the p-values of the peak statistics on all chromosomes over all etraits, however this approach 

misses multiple eQTLs on the same chromosome. One possibility is to extend this approach 

to retaining the peak statistics in each of several (equal) chromosome partitions. STOREY et al. 

(2005) presented a sequential method retaining two most important eQTLs for each etrait. 

However, identifying only one or two eQTLs per etrait may miss information important to 

gene network reconstruction. Chen and Storey (2006) proposed a different criterion for 

multiple testing but relied on data permutation for its implementation, which is 
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computationally very demanding when based on common quantile (as recommended, e.g. 

(CARLBORG et al. 2005)) rather than common cut-off.  

 

Sample size calculations (via simulation) should be performed for genetical genomics 

experiments with the most efficient methods for eQTL mapping and regulator-target pair 

identification, as in KIM et al. (2005), to ensure sufficient power while containing the large 

expense of these experiments.  

 

An EDN constructed as described in this study still contains many direct regulations that are 

actually indirect, as well as multiple candidate regulators for some eQTLs and targets. It is 

therefore important to perform further sparsification of the network by a search within the 

(constrained) network space defined by the EDN. Bayesian network analysis has been used 

for this purpose (LI et al. 2005; ZHU et al. 2004), although it does not permit the 

reconstruction of networks with cycles. In another contribution, we therefore report on the use 

of Structural Equation Modeling (SEM) to reconstruct cyclic networks based on a genetical 

genomics experiment (LIU et al. 2006). 
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3.5 APPENDIX: DATA PREPROCESSING 

The data set used in this study is from a yeast segregating population of 112 segregants 

(BREM and KRUGLYAK 2005). This yeast experiment creates natural, multi-factorial 

perturbation in a segregating population by crossing two strains of yeast – haploid derivatives 

of a standard laboratory strain (BY) and a wild isolate (RM).  The population is genotyped at 

2,956 genetic markers and genome wide expression profiled.  

 

From the raw data downloaded from the Gene Expression Omnibus database, we performed 

background subtraction (foreground – background), calculated the mean of each array and 

dye, and used the mean to replace the null data. The resulting data were then lowess 

transformed using the MAANOVA package  

(http://www.jax.org/staff/churchill/labsite/software/anova/index.html). 

 

The average sample/reference log ratios of the technical replicates were used as data for the 

analysis. The data were then normalized by subtracting the mean of each sample. From the 

normalized data, we removed the 496 ORFs rejected by Kellis et al. (2003) and another 4 

ORFs marked as “deleted” in the GEO database. Finally, we filtered 20% genes with low 

variance from the data. The resulted data set has expression profiles (etraits) for 4,589 genes 

and 2,956 genetic marker genotypes for 112 samples. 
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FIGURE 3.1.— Sorted gene loadings of the first 10 PCs of the filtered genes 

For each of the first ten PCs of the filtered genes, the genes were sorted based on their loading 

on the PC. The loadings were scaled by been divided by the maximum loading for that PC. 
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FIGURE 3.2.— Test statistics profiles of an etrait on two chromosomes 

Red lines: SPA profile and its threshold. Blue lines: Trans-mapping profile and its threshold. 

Approximate LOD test statistics were computed by dividing the test statistics by 2*ln(10). 
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FIGURE 3.3.— Comparison of detected eQTLs of SPA, PC-mapping, cis-mapping and trans-

mapping 

The percentages of the overlapping eQTLs detected with different methods as affecting the 

same etrait. Two eQTL regions are regarded overlapping if their regions have any overlap on 

the chromosome. For comparing trans-mapping results with the other methods, an overlap 

was counted when the trans-eQTL marker was inside of an eQTL region detected by the other 

methods, or located immediately next to it with no other marker in between.   
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FIGURE 3.4.— Comparison of regulator-target pairs of SPA, PC-mapping, cis-mapping and 

trans-mapping 

The percentages of common regulator-target pairs detected with different methods. 
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FIGURE 3.5.— Degree distributions of the EDN plotted in the log scale 

Connections: the number of in (out/total) edges; Frequency: the number of genes having the 

corresponding number of in (out/total) connections divided by the number of genes having at 

least one in (out/total) connections. In-degree: the number of incoming edges; out-degree: the 

number of outgoing edges; degree: the total number of connections. 
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FIGURE 3.6.— The network model used in the simulation study 

Black squares with starting letter Q: eQTLs.  eQTL squares connected by lines: tightly linked 

eQTLs. Squares with starting letter G: genes. Black squares with starting letter G: genes 

located in the eQTL region. White squares with starting letter G: genes not located in the 

region but are affected by the eQTL. Solid arrows: true trans-regulation; dashed arrows: true 

cis-linkages; dotted arrows:  true cistrans regulations on genes located in the eQTL region; 

dashed-dotted arrows: true cistrans regulations on targets not located in the eQTL region.  
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 TABLE 3.1 Results from a simulation study on regulator-target pair identification 

 

 SD=0.5  SD=0.25 SD=0.125  SD=0.5/0.125 SD=0.5/0.25 SD=0.25/0.125 
Cis-link 
Power 

100, 100 100, 100 100, 100 55.3, 59.85 89.4, 98.65 97.8, 98.5 

Cis-link 
FDR 

0.6, 0.9 0.7, 0.67 0.67, 0.57 0.48, 0.53 0.6, 0.72 0.62, 0.57 

Cis-reg 
cis Power 

99, 99 99, 99 99, 99 54.8, 59.4 88.6, 97.8 97.2, 97.8 

Cis-reg 
cis FDR 

0.35,0.13 0 , 0 0, 0 38.6, 0.25 3.27, 0.15 1.8, 0.1 

Cis-reg 
Power 

99, 98.8 99, 98.9 98, 98.5 54.9, 59.2 88.2, 97.4 96.9, 97.5 

Cis-reg    
FDR 

0.93, 0.4  0, 0 0, 0 45, 25.82 4.82, 1.33 2.85, 1.3 

Trans-reg 
Power 

99, 99.2 100, 100 100, 100 41.8, 45.1 92.9, 96.1 96.3, 96.5 

Trans-reg 
FDR 

0.85, 1.1 1.1, 1.15 1.57, 1.52 26.95,62.52 10.92, 2.52 2.3, 2.77 

 

Power: percentage of simulations in which the regulation type was found; FDR: percentage of 

simulations in which a regulation of a certain type was found that did not exist in the 

underlying network; Cis-link: regulation of target in eQTL region; Cis-reg: cis-regulation of 

target not in eQTL region; Trans-reg: trans-regulation. For the last three columns, even 

numbered gene nodes (Figure 3.6) receive the left amount of error variance and odd number 

nodes the right amount. The two numbers in each cell correspond to 0% recombination and 

9% recombination (10 recombinants) among eQTLs, respectively. A p value cutoff of 0.01 

was used. 
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ABSTRACT 
 

In genetical genomics, a segregating population is expression profiled and DNA marker 

genotyped. An Encompassing Directed Network (EDN) of causal regulatory relationships 

among genes can be constructed with expression Quantitative Trait Locus (eQTL) mapping 

and selection of candidate causal regulators. An EDN is likely to contain cycles or feedback 

loops. In this work, we implement Structural Equation Modeling (SEM) to sparsify the EDN 

by producing a set of sub-models containing fewer edges and being well supported by the 

data. Typically, SEM has been implemented for only tens of variables. Based on a 

factorization of the likelihood and a strongly constrained search space, our algorithm can 

construct networks involving several hundred genes. Parameters are estimated based on the 

method of maximum likelihood, and structure inference is based on a penalized likelihood 

ratio and an adaptation of the Occam’s Window model selection. The likelihood function is 

factorized into a product of conditional likelihoods of individual genes (not contained in a 

cycle) as in acyclic Bayesian Networks, and conditional likelihoods of subsets of genes that 

compose cyclic components. The likelihood of a cyclic component is maximized using 

genetic algorithms. The SEM algorithm was evaluated using simulated data having known 

underlying network topologies. For the simulated networks, the SEM approach had an 

average detection power of around ninety percent, and an average false discovery rate of ten 

percent. The algorithm was also applied to a sub-network of an EDN obtained from a yeast 

data set.  Our implementation of SEM permits the reconstruction of networks of several 

hundred genes, and future research will likely improve upon the efficiency of the current 

implementation. 
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4.1 INTRODUCTION 

 

System biologists are interested in understanding how DNA, RNA, proteins and metabolites 

work together as a complex functional network. The gene network is a projection of such 

network on the gene space (BRAZHNIK et al. 2002), in the sense that only relationships 

between genes are modeled, while the physical interactions between them may be acted 

through other components. While networks including genes, RNA, proteins and metabolites 

would be more informative, gene networks are system level descriptions of cellular 

physiology and provide an understanding of the genetic architecture of complex traits (e.g. 

complex diseases). 

 

Bayesian Networks are currently a popular tool for gene network inference (FRIEDMAN et al. 

2000; HARTEMINK et al. 2002; IMOTO et al. 2002; PE'ER et al. 2001; YOO et al. 2002). 

Bayesian networks use partially directed graphical models to represent conditional 

independence relationships among variables of interest and can describe complex stochastic 

processes. They are suitable for learning from noisy data (e.g. microarray data) (FRIEDMAN et 

al. 2000). Bayesian Networks are Directed Acyclic Graphical (DAG) models, which cannot 

represent structures with cyclic relationships. However, cyclic dependencies are ubiquitous in 

biology and are associated with many specific properties of living systems. Therefore, cyclic 

relationships are expected to be common in gene networks, which are hence better modeled as 

Directed Cyclic Graphs (DCGs). Based on the assumption that a cyclic graph represents a 

dynamic system at equilibrium (FISHER 1970), this problem can be theoretically resolved by 

including a time dimension, which produces causal graphs without cycles (DAG), which then 
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could be studied using Bayesian Networks, an approach called Dynamic Bayesian Networks 

(HARTEMINK et al. 2002; MURPHY and MIAN 1999). However, such an approach requires the 

collection of time series data, which is difficult to accomplish, as it requires synchronization 

of cells and close time intervals not allowing for feedback (SPIRTES et al. 2000). Samples at 

wider time intervals represent near steady state data and hence require cyclic network 

reconstruction.  

 
XIONG et al. (2004) were the first to apply Structural Equation Modeling (SEM) for gene 

network reconstruction using gene expression data. However, their application was limited to 

gene networks without cyclic relationships by using a recursive SEM, which has an acyclic 

structure and uncorrelated errors. These authors reconstructed only small networks with less 

than 20 genes. Here, we apply SEM in the context of genetical genomics experiments. In 

genetical genomics, a segregating population of hundreds of individuals is expression profiled 

and genotyped. An Encompassing Directed Network (EDN) of causal regulatory relationships 

among genes can be constructed with expression Quantitative Trait Locus (eQTL) mapping 

and selection of regulator-target pairs (LIU et al. 2006). In this study, we present an SEM 

implementation to search for a set of sparser structures within the EDN that are well 

supported by the data. The method is evaluated on the simulated data with known underlying 

network structure and on a real yeast data set. Typically, SEM analyses have included only 

tens of variables, but our implementation is capable of reconstructing networks of several 

hundred genes based on a factorization of the likelihood and a strongly constrained network 

topology search space. 
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4.2 METHODS 
 

4.2.1 Encompassing Directed Network 

Expression QTL mapping treats gene expression levels as quantitative traits, and identifies 

genomic regions causally affecting gene expression levels. It identifies a set of eQTL regions 

and for each eQTL a list of target genes whose expression profiles are affected. Furthermore, 

using DNA sequence information, genes located in an eQTL region can be identified as 

candidate regulators of the targets of that eQTL. Using local structural models, regulator-

target pairs are identified for all eQTLs, taking into account that an eQTL may affect a target 

through cis, cistans or trans regulation. Then, an EDN is constructed by drawing directed 

edges from the regulator genes and eQTLs to the target genes. We have constructed an EDN 

using a genetical genomics dataset from yeast (LIU et al. 2006). Here, we implement the 

Structural Equation Modeling (SEM) to search within the EDN for a subset of sparser 

structures that are best supported by the data. 

 

4.2.2 Structural Equation Modeling 

4.2.2.1 A Structural Equation Model  

SEM is widely used in econometrics, sociology and psychology, usually as a confirmatory 

procedure instead of an exploratory analysis for causal inference (e.g. BOLLEN 1989; 

JOHNSTON 1972; JUDGE et al. 1985). Shipley (2002) discussed the use of SEM in biology with 

an emphasis on causal inference. In general, an SEM consists of a structural model describing 

(causal) relationships among latent variables and a measurement model describing the 

relationships between the observed measurements and the underlying latent variables. A 

special case is the SEM with observed variables, where the variables in the structural model 
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are directly observed, therefore there is no measurement model. Our model is a SEM with 

observed variables, which can be represented as 

N1,...,           )(~ =++= iE0,e   ;eFxByy iiiii        (4.1) 

In this model, for sample i (i = 1, . . . , N), yi = (yi1,...,yip)` is the vector of expression values of 

all (p) genes in the network, and xi = (xi1,...,xiq)` denotes the vector of marker or QTL genotype 

codes. The yi and xi are deviations from means, ei is a vector of error terms, and E is its 

covariance matrix.  

 

Matrix B contains coefficients for the direct causal effects of the genes on each other. Matrix 

F contains coefficients for the direct causal effects of the eQTLs on the genes. The structure 

of matrices B and F corresponds to the path diagram or directed graph (in general a DCG) 

representing the structural model, in which vertices or nodes represent genes and eQTLs, and 

edges correspond to the non-zero elements of B and F. Matrices B and F are sparse when the 

model represents a sparse network. When the elements in e are uncorrelated and matrix B can 

be rearranged as a lower triangular matrix, the model is recursive, there are no cyclic 

relationships, and the graph is a DAG. If the error terms are correlated (E is non-diagonal), or 

matrix B cannot be rearranged into a triangular matrix (indicating the presence of cycles or a 

DCG), the model is non-recursive.  

 

The xi may be fixed or random. In genetical genomics experiments, the xi are random because 

individuals are sampled from a segregating population. However, the joint likelihood of the yi 

and xi can be factored into the conditional likelihood of the yi given the xi times the likelihood 

of the xi, and the latter does not depend on any of the network parameters in B, F and E, and 
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therefore can be ignored. Thus, we only need to assume multivariate normality for the 

residual vectors. 

An important issue in non-recursive SEM or DCG is equivalence. Models are equivalent 

when they cannot be distinguished in terms of overall fit. For DAGs, algorithms for checking 

the equivalence of two models or for finding the equivalence class of a given model in 

polynomial time are available (ANDERSSON et al. 1997; VERMA and PEARL 1991).  Therefore, 

model search can be performed as a search among equivalence classes rather than among 

individual DAGs (CHICKERING 2002a). An equivalence class discovery algorithm for DCGs, 

which is polynomial time on sparse graphs (RICHARDSON 1996; RICHARDSON and SPIRTES 

1999) is available, but there is no algorithm available for model search among equivalence 

classes as for DAGs. Two DAG models are equivalent if they have the same undirected edges 

but differ in the direction of some edges (edge reversal) (PEARL 2000). Two DCG model can 

be equivalent even if the differ in terms of undirected edges (RICHARDSON 1996; 

RICHARDSON and SPIRTES 1999). In our case, two models cannot be equivalent under edge 

reversal, because the directions of the edges are determined by the eQTLs. By using an 

information criterion for model selection (discussed below), if two equivalent models differ in 

the number of edges, we prefer the sparser model. Therefore, equivalence is of less concern in 

our case. Instead of selection among equivalence classes, we use a model search approach that 

identifies multiple models (discussed below). 
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4.2.2.2 Algorithms for likelihood maximization  

A main concern about using SEM for gene network inference was about the limitations on the 

network size when using the existing SEM software (e.g. LISREL (JÖRESKOG and SÖRBOM 

1989); Mx (NEALE et al. 2003)) to perform SEM analysis. Typical applications of SEM 

models include only tens of variables. No existing software program can analyze models with 

a size relevant to genomics (hundreds or even thousands of variables). Even the SEM 

implementation of XIONG et al.(2004) which employed a genetic algorithm, was only applied 

to small networks of under 20 genes. Here, we implement SEM analysis in the context of 

genetical genomics, where the EDN provides a strongly constrained structure search space, 

allowing us to reconstruct networks of up to several hundred genes.  

 

The most commonly used estimation method for SEM is the Maximum Likelihood (ML) 

method. Assuming a multivariate normal distribution of the residual vectors, or ei ~ N (0, E), 

the logarithm of the conditional likelihood of the yi’s given xi’s and given a particular 

structure is: 
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This log likelihood is maximized with respect to the parameters in B, F and E.  

 

Alternative models or structures were compared using information criteria. Information 

criteria combine the maximized likelihood with a penalty term to adjust for the number of free 

parameters, and some also adjust for sample size. The information criteria we investigated 
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include the Bayesian Information Criterion (BIC) (Schwartz 1978) and  a modification BIC(δ) 

(Broman and Speed 2002).  

 

A non-recursive SEM model can be under-identified, while a recursive SEM is always 

identified. A model is "identified" if all parameters are independent functions of the data 

covariance matrix. Under regularity assumptions, an unidentified model can be equivalent to 

an identified model nested within it (BEKKER et al. 1994). Since we prefer the sparser model, 

our model selection based on an information criterion should arrive at identified models.  

 

The likelihood function is non-linear in the parameters, and therefore an iterative optimization 

procedure is required for its maximization. With respect to the large number of parameters in 

an SEM for hundreds of genes, likelihood maximization is computationally very expensive or 

even infeasible. Fortunately, the likelihood can be factored into a product of local likelihoods 

which all depend on different sets of parameters, and which are maximized individually in 

analogy with Bayesian Network analysis. For directed acyclic graphs, the global directed 

Markov property permits the joint probability distribution of the variables to be factored 

according to the DAG (PEARL 2000). The factorization can be represented as p(V1, V 2, … V n) 

= ∏
=

n

j 1

p(V j | V (parents of j), θj), where V (parents of j) is a vector of V’s of the parent vertices 

of vertex j, and θj  is the parameter vector of the local likelihood f(Vj |.). A network with cyclic 

components (connected cycles, in which any gene can find a path back to itself through any 

other gene) becomes acyclic when a set of genes pertaining to the same cyclic component is 

collapsed into a single node, i.e. Vj  represents either an individual gene or the set of genes 

involved in the same cyclic component. Then p(V1, V 2, … V n) can be factored as above, 
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thereby turning the optimization problem from one of thousands of dimensions into many of 

much smaller dimensions. For genes that are not involved in a cyclic component, the 

univariate conditional likelihood of a gene is maximized efficiently using linear regression. 

For the genes involved in a cyclic component, their joint multivariate conditional likelihood is 

maximized.  

 

For a cyclic component, p(V j | V (parents of j), θj) involves all equations having a gene in 

cyclic component j on the left hand side of Equation (4.1): 

Nicic ,...,1),(~ =++=            Ee   ;exFyBy icippicpcpic 0              (4.3) 

where icy  is a vector with all genes in cyclic component j, icpy  is a vector with all genes in 

cyclic component j and all parents of genes in cyclic component j that are themselves not in 

cyclic component j; cpB ( pF ) is obtained from the original B and F matrix by extracting all 

rows corresponding to the genes in j and all columns pertaining to parent effects of these 

genes,   xic is all the QTL parents of j, and ice is the residual vector for all genes in j. The cpB  

can be further partitioned into cB  and pB , corresponding to columns pertaining to genes in j 

and genes not in j, respectively, and ipy  includes the gene parents of j. Move the cB matrix to 

the left,  

Nic ,...,1) =++=−            E0,e   ;exFyB)yBI( icicippippicc (~              (4.4) 

In Equation (4.4), ipy  is a vector of exogenous variables (variables do not receive any inputs) 

just like x. The likelihood function for this model is then 
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The likelihood function of the genes in a cyclic component is maximized using a Genetic 

Algorithm (GA) based global optimization procedure. During the model search, local-

likelihood j needs to be re-maximized with respect to j only if the set of parents of genes 

involved in the cyclic component has changed. 

 

GA is a stochastic iterative optimization tool. It utilizes search and update techniques based 

upon principles of genetics, e.g. by means of selection, crossover and mutation (GOLDBERG 

1989; HOLLAND 1975; HOLLAND 1992). We use GA with real number genome, and each 

parameter is coded as a real number “gene” located on a “chromosome” (a possible solution). 

GA creates many possible solutions in each population. New solutions (offspring) are 

generated by selection, crossover and mutation. The crossover-operator combines two 

chromosomes to produce an offspring. Mutation alters one or more genes in a chromosome. A 

scoring function is evaluated for each chromosome and used as a selection criterion for 

inclusion of that chromosome in the next generation’s population. For the termination 

criterion, we require both a minimum number of generations to be reached, and the fitness 

score to converge.  

 

GA finds a global or near-global optimum for high-dimensional problems. GA can search a 

very complex parameter space, and jump out of local optima. Though GA is computationally 

more expensive than the gradient based methods, it has been shown that GA is more 
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successful for problems with very complex parameter spaces (MENDES 2001; MOLES et al. 

2003).   

 

In our model search algorithm, for re-maximization of the local likelihood of a cyclic 

component, we use four types of starting values simultaneously in the initial GA population: 

Random starting points; starting values obtained from Two Stage Least Squares (2SLS) (to be 

discussed below); starting values equal to the current parameter estimates; and starting values 

from the current parameter values for all genes except 2SLS estimates for the genes directly 

affected by the deletion or addition of an edge. We use current parameter values as starting 

values because we search the model space by removing and adding single or few edges at a 

time, and therefore most parameter estimates do not change or do not change much. However, 

the parameter values associated with the gene directly affected by the deletion or addition of 

an edge can change considerably and we hence initiated them by 2SLS. Using these starting 

values greatly increased the efficiency of the GA optimization. A GA C++ library GAlib 

(http://lancet.mit.edu/ga/ ) was used in our implementation. 

 

GA evaluates the fit of a chromosome using the objective function, which in our case is the 

log likelihood function for genes in a cyclic component. With diagonal E matrix, the most 

computationally demanding part for evaluating the objective functions is the computation of 

the determinant of (I-B)c. (I-B)c is a sparse matrix, and determinants are calculated using 

sparse LU decomposition as implemented in the C library UMFPACK, which applies the 

Unsymmetric MultiFrontal method for sparse LU factorization (DAVIS 2004a; DAVIS 2004b; 

DAVIS and DUFF 1997; DAVIS and DUFF 1999). Since the patterns of the matrices remain the 
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same for a given structure, symbolic factorization is preformed only once and the result is 

used by all numerical factorizations for objective functions of that structure.  

 

4.2.2.3 Starting values from two-stage Least-Squares 

Two Stage Least Squares (2SLS; e.g, (GOLDBERGER 1991; JUDGE et al. 1985)) is a 

computationally efficient parameter estimation method for the SEM models. The 2SLS 

estimates are computed based on one portion of the model at a time, whereas the ML 

estimation takes the entire model into account. Therefore, ML is called a "full information" 

method, while 2SLS is a "partial information" method, and the ML estimates are generally 

better than the 2SLS estimates. However, since 2SLS is a non-iterative approach and 

computationally very efficient, we used it to generate starting values for the GA optimization 

of the cyclic components.  

 

In 2SLS, the first step is to create predicted values of y using all of the exogenous variables in 

the system, i.e. solving the reduced form equations:  

ivΠxeFxBIy iii
1

i +=+−= − )()(                                     (4.6) 

Estimates of Π are obtained from this model by Ordinary Least Squares (OLS) and used to 

obtain predictions of yi ( iŷ ), which are then used in the original model, or  

Nii ,...,1;ˆ =++=          eFxyBy iii                             (4.7) 

Estimates of B and F are then obtained by OLS. 2SLS may not work well for some genes 

with no suitable instrumental variables. An instrumental variable for prediction of an 

endogenous variable exists only under certain conditions in cyclic networks (e.g. HEISE 
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1975). These conditions are likely not met for all genes in a network. Only if each gene had a 

cis-linked QTL the conditions would always be met. 

 

4.2.3 Network topology search 

The EDN contains 2d sub-models, where d is the number of edges. It is impossible to 

exhaustively search this space even for EDNs of moderate sizes. Therefore, we adapt a 

heuristic search strategy based on the principle of Occam’s Window model selection 

(MADIGAN and RAFTERY 1994) which potentially selects multiple acceptable models. The 

search algorithm involves a down step and an up step. The down algorithm consists of the 

following steps:  

0) Initialize set A = set of acceptable models as empty, set C = set of starting candidate 

models, and set K = set of models with minimum IC (the model selection criterion) as 

empty. 

1) Select a model M from set C, remove it from set C and add it to set A. Let minIC=0. 

2) Select a submodel M0 of M by removing an edge from M. 

3) Compute IC01. 

4) If IC01 < Ot (some negative constant), remove M from set A and add M0 to set C if M0 

∉C. Remove any model in set K and set minIC = -• (do not check for models with 

minimum IC anymore for this model). 

5) If Ot < IC01 < minIC, replace the model in set K with M0, and remove M from set A. 

6) If minIC < IC01 < 0 and this model is chosen as a random start, remove M from set A 

and add M0 to set C if M0 ∉C. 
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7) If there are more sub models of M, go to 2. Otherwise, remove the model in set K and 

put it in set C if it is not already in set C. 

8) If C is not empty, go to 1. 

 

Starting from all models accepted in the Down algorithm, the Up algorithm follows the same 

steps as in the Down algorithm, except every time an edge that was removed from the EDN is 

added back into the model. Once the Up algorithm is completed, the set A contains the set of 

potentially acceptable models. 

 

For large networks with many removable edges, the original Occam’s Window model 

selection (MADIGAN and RAFTERY 1994) approach may search a very large model space. In 

the worst case, it is equivalent to an exhaustive search. Therefore, we imposed a threshold Ot 

on the IC. Only if the IC of the sub-model strongly improved over the model it is nested in 

(IC smaller than the Ot), we kept the sub-model as a candidate. Otherwise, if no sub-model 

passed the threshold and the minimum IC was smaller than zero, we kept the model with 

minimum IC as a candidate model. The size of the search space depends on the value of Ot.  If 

Ot = -•, the algorithm is similar to the Greedy Hill search. If -• <Ot < 0, then the algorithm 

searches a larger network space and possibly accepts multiple models. Because Ot requires 

that the sub-model strongly improves over the model it is nested in, it is likely that the search 

will accept only one final model. Therefore, we added some random start models in step 6 so 

that there may exist multiple search paths.  

 

The model or structure search space is constrained to nested models within the EDN, and 

additionally, certain edges cannot be removed from the EDN, because their removal would 
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contradict the results from the eQTL analysis. If a gene’s expression profile is found to be 

influenced by an eQTL, then there must remain a direct or indirect path from the eQTL to that 

target gene in the network. For example, an edge for cis-regulation of a gene by an eQTL 

cannot be removed unless the eQTL has multiple cis-candidates, in which case one of the cis-

edges needs to remain. Therefore, we identified those edges that cannot be removed without 

violating these path relations and fixed them in the model; they would not be removed during 

the model search. In our current implementation, we first sparsified the F matrix (eQTL → 

gene), and then the B matrix (gene → gene relations).  Different approaches can be used for 

the structure update during the search. For example, multiple candidate regulators of the same 

eQTL may be tested first. Then, an eQTL and its candidate regulator(s) may be updated 

jointly. In addition, the eQTL analysis can suggest the sequence of edge deletion. For 

example, possible indirect effects may be tested first. 

 

4.2.4 Data simulation  

To evaluate the performance of linear SEM analysis on gene network inference, we simulated 

data with non-linear kinetic functions and cyclic topology in the context of genetical 

genomics experiments. We simulated QTL genotypes using the QTLcartographer software 

(BASTEN et al. 1996) and steady-state (equal synthesis and degradation rates and constant 

gene expression levels in time) gene expression profiles according to the simulated genotypes 

with the Gepasi software (MENDES 1993; MENDES 1997; MENDES et al. 2003) using a non-

linear ordinary differential equation given by Equation (4.8): 
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where Gi is mRNA concentration of gene i, Vi is its basal transcription rate, KIj and KAk are 

inhibition and activation rate constant, respectively. Ij and Ak are inhibitor and activator 

concentrations, respectively (the expression levels of genes in the network affecting the 

expression of gene i), and ki is a degradation rate constant. Each gene has two genotypes, and 

the polymorphism is either located in its promoter region affecting its transcription rate (cis-

linkage with V=1 for one genotype and V=0.75 for the other), or in the coding region of a 

regulatory gene changing the basal transcription rates of the target genes by multiplying V by 

a factor Z (Z=1 for one genotype and Z=0.75 for the other). Each gene has a 50% probability 

of having a promoter (cis) or coding region (trans) polymorphism. The error parameter iθ  

represents the “biological” variance and was sampled from a normal distribution with a mean 

0 and a standard deviation of 0.1 each time before the calculation of a steady state. All other 

parameters were set to 1. Lastly, we also added “experimental noise” to the generated data at 

10% proportional to the variance of each gene’s expression values. The parameters were 

chosen so that the estimated heritabilities were close to the real data. For a simulated data set, 

we calculated the heritabilities of the etraits by dividing the etrait variances from the data 

simulated without added biological and technical noise (i.e. variances came from genetical 

variance only) by the total variances of the etraits. The simulated etraits had an average 

heritability of 56%, and 60% of the etraits had heritabilities over 57%. The simulated etraits 

had somewhat lower heritabilities than the actual etraits in the yeast data set where 60% of the 

genes had estimated heritabilities > 69% (BREM and KRUGLYAK 2005). BREM and KRUGLYAK 

(2005) calculated heritabilities as (etrait variance in the segregants –pooled etrait variance 

among parental measurements)/ etrait variance in the segregants. The network topologies 

were generated as described by MENDES et al. (2003). For each generated network we created 
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an EDN by adding links from each node i to node j, if node j was no more than two edges 

separated from node i in the true network. The results are reported as FDR and power using 

BIC (SCHWARTZ 1978) and BIC(δ) (Broman and Speed 2002) criteria. 

 

4.3 RESULTS 
 

The algorithm was tested on the simulated data and on a sub-network obtained from an EDN 

generated in LIU et al. (2006), using a real data set from a yeast segregating population (BREM 

and KRUGLYAK 2005).  

 

4.3.1 Simulated data  
 
Ten data sets with different random network topologies were analyzed. These networks had 

100 genes, 100 eQTLs, and on average 148 gene → gene and 123 QTL → gene edges. Their 

EDN contained on average 360 gene → gene and 301 QTL → gene edges. On average 42 

genes were involved in one to three cyclic components in each data set, with the biggest 

cyclic component involve on average 37 genes.  The algorithm took around 24 hours for one 

data set. For these networks we used a very small Ot in the search, therefore only one final 

model was obtained. We report the results in terms of FDR and detection power. The FDR is 

expressed as the number of wrongly identified edges divided by the total number of identified 

edges. The power is defined as the number of edges correctly inferred as a fraction of the total 

number of edges in the true network. In Table 4.1, we compared results obtained using BIC 

with penalty term ln(N)*df, and BIC(δ) with penalty term d*ln(N)*df. We used the 

recommended d=2*LOD threshold / log10(N) (BROMAN and SPEED 2002), and an LOD cutoff 

of 3. The results showed that for the simulated data sets, BIC was not stringent enough for the 
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QTL edges, with an average power of 99% and an average FDR of 22%. For the gene edges, 

the average FDR was 8%, with some loss of power (average 88%). For the QTL edges, the 

average FDR with BIC(δ) was  9% while the average power was 99%.  For the gene edges, 

with BIC(δ) the average FDR was only 1%, while the power was reduced to on average 78%. 

Overall, the algorithm had good performance and showed that the linear SEM approach seems 

to be robust under violation of the linearity assumptions.  

 
We also tested one data set with 20 random start points, and sixteen very similar final models 

were obtained. Out of an average of 134 detected QTL → gene edges, average number of 

edges different from the best model was 4.4. Out of an average of 153 detected gene → gene 

edges, the average number of edges different from the best model was 7.9. The average BIC 

different from the best model was 26. The average absolute likelihood difference was 12, 

while the mean likelihood was 26,969. Two models had the same likelihood, while having six 

different eQTL → gene edges and seven different gene → gene edges. Another four sets of 

two models had likelihood difference smaller than one. They have on average four different 

eQTL → gene edges and on average 7.3 different gene → gene edges. 

 

4.3.2 Yeast data analysis 

We performed SEM analysis on a sub-network of an EDN obtained from the yeast dataset 

(LIU et al. 2006). To obtain this sub-network, we started out with 168 genes involved in a 

cycle component and included the genes connected to these genes by up to three edges, and 

all the eQTLs parents of these genes. The sub- network obtained had 265 genes, 241 QTLs, 

832 gene → gene edges, and 640 QTL → gene edges. After sparsification using our SEM 

implementation, the resulted network contained 475 gene → gene edges and 468 QTL → 
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gene edges. Figure 4.1 shows the network topology of the network, with the dotted edges 

denoting the removed edges. 

 

Table 4.2 shows the significant biological function groups of the genes in this network. About 

41.6% of these genes are involved in catalytic activity, and another 18% are involved in 

hydrolase activity. All biological functions in Table 4.2 are significantly enriched in this 

network.  

 
 
4.4 DISCUSSION 
 

In this contribution, we present an initial evaluation of structural equation modeling for gene 

network reconstruction in the context of genetical genomics experiments. Previous 

investigations have used Bayesian networks (FRIEDMAN et al. 2000; HARTEMINK et al. 2002; 

IMOTO et al. 2002; PE'ER et al. 2001; YOO et al. 2002), but this methodology cannot 

reconstruct cyclic networks. Because cycles or feedback loops are expected to be common in 

genetic networks, it is imperative to investigate alternative methods such as the one we have 

presented here. Our implementation of SEM permits the reconstruction of networks of several 

hundred genes, and future research will likely improve upon the efficiency of the current 

implementation. 

 

Maximum Likelihood is the predominant full-information method for parameter inference in 

structural equation models. It is therefore natural to perform a model (structure) search based 

on an information criterion that is a function of the maximized likelihoods of two competing 

models. While BIC and BIC(δ) performed satisfactorily in this study, further research into 
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appropriate model selection criteria for large, very sparse networks is required. There is an 

interesting connection between classical model selection based on information criteria and 

bayesian model selection in the context of linear regression (CHIPMAN et al. 2001). Let γ  be a 

vector of zero/one indicator variables (which defines a particular model), one for each 

regressor in a maximal model. Assume an independence prior on each γi, or  
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The difference in {.} in the exponent in Equation (4.11) equals the BIC criterion, where 

F(c,w) is the penalty for BIC with c = N and w = 0.5. Using w = 0.5 implies that most of the 

prior probability is assigned to a model with p/2 parameters, and therefore for sparse models 

this value should not be a good choice. 

 

We are currently implementing a full Bayesian analysis of the SEM for gene network 

reconstruction. Due to the presence of cycles in gene networks, an efficient empirical Bayes 

analysis does not seem to be available, requiring us to implement a full Bayesian approach via 
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a Markov chain Monte Carlo (MCMC) algorithm. Our prior for the parameters in B (F) 

depends on hyper-parameters cb and wb (cf and wf), which are given non-informative priors 

and are included in the MCMC sampling to evaluate whether these parameters can be 

simultaneously inferred from the data. Although theoretically very appealing, this approach 

may have practical problems resulting from poor convergence of the sampler. It is possible 

that the ML method presented in this contribution may provide excellent starting values that 

facilitate convergence of the Bayesian analysis.  

 

Our SEM model can be generalized to include certain types of interactions: those between an 

eQTL and a regulator gene jointly trans-regulating a target gene and epistatic interactions 

between eQTL found in the eQTL analysis and hence included in the EDN. This extended 

model can be represented as 
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where: 

xio yi is the Hadamard or element-wise product of xi and yi; here we assume that there is a 

QTL for each gene (real or fictitious, so xi and yi have the same dimension) but we allow for 

interactions only between a regulator gene and its corresponding QTL in a trans-regulation; H 

is a matrix of etrait-by-QTL interaction effects; row g in H contains nonzero elements only in 

those columns which correspond to trans-regulations of gene g, where there is an interaction 

between the gene regulator and its trans-linked eQTL; wn is a vector of products of the codes 

of two eQTL genotypes; Ψ is a matrix of effects of pairwise epistatic interactions among 
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eQTL; Dxi is a diagonal matrix with vector xi on the diagonal. With this model, we can again 

solve for yi and assume a normal distribution for the residuals.  

 

Lastly, in this study here we have considered a network with only causal, directed interactions 

or regulations. However, two genes may be correlated, but there may be no eQTL information 

available to determine causation. At least in theory such associations or undirected edges can 

be incorporated via correlations in the residual covariance matrix E. One can then include 

these off-diagonal elements in E in the EDN and consider them as potentially present in the 

model search. However, this would pose a computational problem, as the presence of off-

diagonal elements in E would hinder the factorization of the likelihood. 

 

Our network inference algorithm was implemented in C++, and the essential programs are 

shown in the Appendix.  

 

4.5 APPENDIX: THE C++ PROGRAM 
 

This program sparsfies a given Encompassing Directed Network (EDN) based on estimated 

IC from Structural Equation Modeling (SEM). For likelihood maximization, the program 

proceeds as follows: 

1. Determine the cycle components of the genes using the B matrix. 

2. For all genes that are not part of a cycle, their maximum likelihoods are estimated 

separately using linear regression. 

3. For each cycle components, new B, F, X, Y matrices was formed and their maximum 

likelihoods are estimated using Genetic Algorithms (GA). First, initial estimates are 

obtained using Two-stage Least-Squares (2SLS). GA uses four kinds of starting 

values: random starting points; starting values obtained from 2SLS; starting values 
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equal to the current parameter estimates; and starting values from the current 

parameter values for all genes except 2SLS estimates for the genes directly affected by 

the deletion or addition of an edge. 

4.  Triplet form (I-B) matrices (for the cycle components) are formed to calculate the 

determinant using sparse LU decomposition. 

 

For the model search, only the gene or cycle affected by the deletion/addition of edges is re-

estimated. QTL edges are removed first, then the gene edges. Path constraints are checked at 

the beginning of QTL/gene edge deletion. Using the estimates from SEM, the search 

algorithm proceeds as follows: 

0) Initialize set A = set of acceptable models as empty, set C = set of candidate models, 

and set K = set of models with minimum IC (the model selection criterion) as empty. 

1) Select a model M from set C, remove it from set C and add it to set A. Let minIC=0. 

2) Select a submodel M0 of M by removing an edge from M. 

3) Compute IC01 

4) If IC01 < Ot (some negative constant), remove M from set A and add M0 to set C if M0 

∉C. Remove any model in set K and set minIC = -• (do not check for models with 

minimum IC anymore for this model). 

5) If Ot < IC01 < minIC, replace the model in set K with M0, and remove M from set A. 

6) If minIC < IC01 < 0 and this model is chosen as a random start, remove M from set A 

and add M0 to set C if M0 ∉C. 

7) If there are more sub models of M, go to 2. Otherwise, remove the model in set K and 

put it in set C if it is not already in set C. 

8) If C is not empty, go to 1. 

 



 

  100

Starting from all models accepted in the Down algorithm, the Up algorithm follows the same 

steps as in the Down algorithm, except every time an edge that was removed from the EDN is 

added back into the model. Once the Up algorithm is completed, the set A contains the set of 

potentially acceptable models. 

 

The following are the essential parts of the search program.  
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/* ----------------------------------------------------------------------------------------------------------------------------- 
 
   DESCRIPTION: This program performs gene network model selections with SEM. 
   -------------------------------------------------------------------------------------------------------------------------- */ 
 
#include <scsl_blas.h> 
#include <ga/ga.h> 
#include <ga/std_stream.h> 
#include <ga/GARealGenome.h> 
 
// C and fortran linear algebra liberaries  
extern "C" { 
#include "umfpack.h"  
  void dgetri_(int *N, double *A, int *LDA, int *IPIV, double *WORK, int *LWORK, int *INFO); 
  void dgetrf_ (int *M, int *N, double *A, int *LDA, int *IPIV, int *INFO); 
  void dpotrf_(char *, int *, double *, int *, int *); 
} 
 
#define INSTANTIATE_REAL_GENOME 
 
 
void myInitializer(GAGenome &); 
 
 
int main(int argc, char** argv) 
{ 
 
  for (int simudataid=0; simudataid<9; simudataid++) {  
 
    double * xdata; 
    double * ydata; 
 
    int npar=0; 
    int themodel=0; 
    int nb=0, nf=0,ne=0; 
 
    // This block create the y and x matrixs; 
    int sizey=geneNum *samplesize; 
    xdata =new (nothrow)  double [samplesize*numQTL] ; 
    if (xdata  == 0) { 
      cout << "Error: memory could not be allocated for xdata"; 
    } 
    ydata =new (nothrow)  double [sizey] ; 
    if (ydata  == 0) { 
      cout << "Error: memory could not be allocated for ydata"; 
    } 
 
 
    // this block read the number of non-zeros in B and F; 
    ne=geneNum; 
    double tempRead=0.; 
    ifstream InFile1 (bfileName.c_str());   
    nb=0; 
    while(InFile1) 
      { 
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 if(InFile1>>tempRead>>tempRead) 
   nb++; 
      } 
    InFile1.close(); 
 
    ifstream InFile2 (ffileName.c_str());   
    nf=0; 
 
    while(InFile2) 
      { 
 if(InFile_1>>tempRead>>tempRead) 
   nf++; 
      } 
    InFile2.close(); 
 
 
    npar=nb+nf+ne; 
    int maxedge=0; 
 
    if (nb>nf){ 
      maxedge=max(ne,nb); 
    }else{ 
      maxedge=max(ne,nf); 
    } 
 
    if (nf==0) { 
      numQTL=0; 
    } 
 
/* This matrix store the model space M. The first row: accepted(1), under consideration (0) or rejected (-1); number gene 
edges;  number qtl edges; the level, it's topmodel. The rest: 1/0 show absense/presence of B edges in the EDN; constraint to 
not removable (1) or 0;  same 2 col for F; Number gene edges; number qtl edges */ 
 
    int modelspace[maxmodelnumber][maxedge+1][6]; // model 0 is the EDN   
  
    int  *** modelspace = new int ** [maxmodelnumber ]; 
    int  *** modelspacenew1 = new int ** [maxmodelnumber ]; 
    int  *** modelspacenew2 = new int ** [maxmodelnumber ]; 
    int  *** modelspacenew3 = new int ** [maxmodelnumber ]; 
 
    for(int i=0; i<maxmodelnumber ; i++){ 
      modelspace[i] = new  int * [maxedge+1 ]; 
      modelspacenew1[i] = new  int * [maxedge+1 ]; 
      modelspacenew2[i] = new  int * [maxedge+1 ]; 
      modelspacenew3[i] = new  int * [maxedge+1 ]; 
    } 
 
    for(int i=0; i<maxmodelnumber ; i++){ 
      for(int j=0; j< (maxedge+1); j++){ 
 modelspace[i][j] = new  int[6]; 
 modelspacenew1[i][j] = new  int[6]; 
 modelspacenew2[i][j] = new  int[6]; 
 modelspacenew3[i][j] = new  int[6]; 
      } 
    } 



 

  103

 
    for(int i=0; i<maxmodelnumber; i++) { 
      for(int j=0; j<(maxedge+1); j++){ 
 for(int k=0; k<6; k++) { 
   modelspace[i][j][k] = 0; 
   modelspacenew1[i][j][k] = 0; 
   modelspacenew2[i][j][k] = 0; 
   modelspacenew3[i][j][k] = 0; 
 } 
      } 
    } 
 
 
    // The first row: accepted(1) or under consideration (0);number gene edge in EDN; number qtl edge in EDN 
    // The rest: nonzero B row index;nonzero B col index ;  gene affected by QTL; affecting QTL; nonzero E row index; 
    //  nonzero E col index.  
    int edn[maxedge+1][6]; 
 
    // The first row: model BIC compare to it's parent model; model likelihood;  
    // Columns: B estimates; F; E; likelihood for genes; likelihood for cycles; sigma2hat estimated from OLS 
    // BFE estimates are only for cycle components; likelihood for genes and sigma2hat are for all genes  
    double  *** modelspacepar = new double ** [maxmodelnumber ]; 
    double  *** modelspaceparnew1 = new double ** [maxmodelnumber ]; 
    double  *** modelspaceparnew2 = new double ** [maxmodelnumber ]; 
    double  *** modelspaceparnew3 = new double ** [maxmodelnumber ]; 
 
    for(int i=0; i<maxmodelnumber ; i++){ 
      modelspacepar[i] = new  double * [maxedge+1 ]; 
      modelspaceparnew1[i] = new  double * [maxedge+1 ]; 
      modelspaceparnew2[i] = new  double * [maxedge+1 ]; 
      modelspaceparnew3[i] = new  double * [maxedge+1 ]; 
    } 
 
    for(int i=0; i<maxmodelnumber ; i++){ 
      for(int j=0; j< maxedge+1; j++){ 
 modelspacepar[i][j] = new  double[6]; 
 modelspaceparnew1[i][j] = new  double[6]; 
 modelspaceparnew2[i][j] = new  double[6]; 
 modelspaceparnew3[i][j] = new  double[6]; 
      } 
    } 
 
    for(int i=0; i<maxmodelnumber; i++) { 
      for(int j=0; j<(maxedge+1); j++){ 
 for(int k=0; k<6; k++) { 
   modelspacepar[i][j][k] = 0; 
   modelspaceparnew1[i][j][k] = 0; 
   modelspaceparnew2[i][j][k] = 0; 
   modelspaceparnew3[i][j][k] = 0; 
 } 
      } 
    } 
 
  
    modelspace[0][0][1] =nb ; 
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    modelspace[0][0][2] =nf ; 
 
    edn[0][0] =0 ; edn[0][1] =nb ; edn[0][2] =nf ;  edn[0][3] =ne ; 
 
    // This block store the encompassing network; 
    // B and F are sorted by the first column (targets); 
    int tempi=0; int lasttempi=0; 
    int tempindex=0; 
    int tempj;  int tempcount=0; 
    ifstream InFile4; 
    InFile4.open(bfileName.c_str()); 
    InFile4>>lasttempi; 
    InFile4.close(); 
 
    ifstream InFile3; 
    InFile3.open(bfileName.c_str()); 
 
    while(InFile3) { 
      if(InFile3>>tempi>>tempj){ 
 edn[tempindex+1][0] =tempi-1 ;   
 edn[tempindex+1][1] =tempj-1; 
 modelspacepar[themodel][tempindex+1][0] =changestartingvalue ; 
 tempindex++; 
   
 if (lasttempi!=tempi){ 
   modelspace[0][lasttempi][4] =tempcount ; 
   tempcount=0; 
 } 
 lasttempi=tempi; 
 tempcount++; 
      } 
    } 
    modelspace[0][lasttempi][4] = tempcount; 
    InFile3.close(); 
 
    tempindex=0;      tempcount=0; 
    ifstream InFile5; 
    InFile5.open(ffileName.c_str()); 
    InFile5>>lasttempi; 
    InFile5.close(); 
 
    ifstream InFile6; 
    InFile6.open(ffileName.c_str()); 
 
    while(InFile6) { 
 if (InFile6>>tempi>>tempj){ 
   edn[tempindex+1][2] =tempi-1 ; 
   edn[tempindex+1][3] =tempj-1; 
   modelspacepar[themodel][tempindex+1][1] =changestartingvalue ; 
   tempindex++; 
 
   if (lasttempi!=tempi){ 
     modelspace[0][lasttempi][5] = tempcount; 
     tempcount=0; 
   } 
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   lasttempi=tempi; 
   tempcount++; 
 } 
      } 
    modelspace[0][lasttempi][5] = tempcount; 
    InFile6.close(); 
 
    for (int j=0; j<geneNum ; j++){ 
      edn[j+1][4] =j; 
      edn[j+1][5] =j; 
      modelspacepar[themodel][j+1][2] =changestartingvalue ; 
    } 
 
    ifstream InFile7 (yfileName.c_str());   
 
    readDoubleM(samplesize, geneNum , InFile7, ydata); 
    InFile7.close(); 
 
    ifstream InFile8 (xfileName.c_str());   // col: qtl; rows: samples 
    readDoubleM(samplesize, numQTL, InFile8, xdata); 
    InFile8.close(); 
 
    int * cycIndex = new int[geneNum ];   
 
    for(int i=0; i<geneNum ; i++){ 
 cycIndex[i] = 0; 
      } 
 
     findcyclecomponents (cycIndex); 
 
     // Create path matrix if needed  
 
      int totalvariables=geneNum+numQTL; 
      int ** PathPresMatBF = new int * [totalvariables]; 
      int ** tempPathPresMat = new int * [totalvariables]; 
 
      for(int i=0; i<totalvariables ; i++){ 
 PathPresMatBF[i] = new int [totalvariables]; 
 tempPathPresMat[i] = new int [totalvariables]; 
      } 
      int * tempPathMat = new int [totalvariables*totalvariables ];  
      int * tempAdjMat = new int [totalvariables*totalvariables ]; 
 
      for(int j=0; j<totalvariables*totalvariables ; j++){ 
 tempAdjMat[j] = 0; 
 tempPathMat[j]=0; 
      } 
 
      for(int i=0;i<totalvariables ;i++){ 
 for(int j=0;j<totalvariables ;j++){ 
   PathPresMatBF[j][j]=0; 
   tempPathPresMat[j][j]=0; 
 } 
      } 



 

  106

 
      reconstructPath ( constraintonQTLorGene, tempAdjMat,  PathPresMatBF,  tempPathMat,   
    modelspace , edn, 0,  totalvariables,  geneNum, maxdistforpath ) ; 
 
      /////////////////////////////////// ORDINARY LEAST SQUARES 
 
      // This block create the matrices needed for the OLS; 
 
      double * yi;  yi =new (nothrow)  double [samplesize] ; 
      double * ui;  ui =new (nothrow)  double [samplesize] ; 
 
      for(int i = 0;i<geneNum ;i++){ 
 double olssigma; 
 int isqtl=0; int regulator=-1; 
 double olsoutput=olsforonegene(olssigma, isqtl, regulator, geneNum, i, numQTL, samplesize, ydata, 
           modelspace, 0,xdata,edn, yi, ui); 
  
   modelspacepar[themodel][i+1][3]=olsoutput; 
    modelspacepar[themodel][i+1][5]=olssigma; 
      } 
 
      double modellikelihood=0; 
 
      for (int k=0;k<geneNum ;k++){ 
 if (cycIndex[k]==0){ 
   modellikelihood=modelspacepar[themodel][k+1][3]+modellikelihood; 
 } 
      } 
 
      ///////////////////////////////////////////////////////////////////////////////////////////////////// 
      // The following block estimates likelihood for genes in the cycles ///// 
      ////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
      int * yinputforyi = new int [geneNum ]; 
      int * xinputforyi = new int [numQTL]; 
      int * ycnewidx = new int [geneNum ];   
      int * ypnewidx = new int [geneNum ];   
      int * xnewidx = new int [numQTL];      
      int isedn=1; 
 
      int *  bmodelidx; 
      int *  fmodelidx; 
      int *  emodelidx; 
 
      bmodelidx = new (nothrow) int [nb] ;  
      fmodelidx = new (nothrow) int [nf] ; 
      emodelidx = new (nothrow) int [ne] ; 
 
      for (int k=0; k<numcycles; k++){ 
 thecyclenumber=k+1; 
 int isqtl=0;  
 int regulator=-1; 
 modelspacepar[themodel][k+1][4]=likelihoodforonecycle(isedn, 0, 0, k,yinputforyi, xinputforyi, ycnewidx,  
             ypnewidx, xnewidx, modelspace, modelspacepar,  
             geneNum, samplesize, numQTL,  
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             ydata, xdata, edn,cycIndex, isqtl, regulator, 
             -1, bmodelidx, fmodelidx, emodelidx, isup); 
 
 modellikelihood=modellikelihood+ modelspacepar[themodel][k+1][4]; // likelihoodforcycles[k]; 
 
      } 
 
      cout<<"modellikelihood:     "<<modellikelihood<<endl; 
 
      modelspacepar[themodel][0][0]=0; 
      modelspacepar[themodel][0][1]=modellikelihood ; 
 
      OutFile << "Finished with EDN!  \n"; 
 
      ////////////////////////////////////////////////////////////////////// 
      // The following block search the model space within the edn ///////// 
      ////////////////////////////////////////////////////////////////////// 
 
      // Before the search, copy model spec of the EDN to the temp model spaces 
      for(int j=0; j<(maxedge+1); j++){ 
 for(int k=0; k<6; k++) { 
   modelspaceparnew1[0][j][k] = modelspacepar[0][j][k] ; 
   modelspaceparnew2[0][j][k] = modelspacepar[0][j][k] ; 
   modelspaceparnew3[0][j][k] = modelspacepar[0][j][k] ; 
   modelspacenew1[0][j][k] = modelspace[0][j][k] ; 
   modelspacenew2[0][j][k] = modelspace[0][j][k] ; 
   modelspacenew3[0][j][k] = modelspace[0][j][k] ; 
 } 
      } 
 
      int totalnummodelaccepteddown=0; 
      int totalnummodelafterqtldown=0; 
       int totalrandomstart=0; 
   int minmodelidx=0; 
       int searchlevel =0;  
      double minbic=9e+99; 
      int numberedgeremoved=1; 
      isup=0; 
      int donedownsearch=0; 
      int firstmodel=themodel;  
      int lastmodel=themodel;  
      int newfirstmodel=0;  
      int newlastmodel=0; 
      for (int e=1; e<=edn[0][1]+edn[0][2];e++){ 
 int isqtl=0; 
 int targetgene=0; 
 int regulator=0; 
 int removedcheck=0; 
 int topmodel=0; 
 if (e<=edn[0][1]){  
   targetgene=edn[e][0]; 
   regulator=edn[e][1]; 
   removedcheck= modelspace[topmodel][e][0]; 
 }else{       
   targetgene=edn[e-edn[0][1]][2]; 
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   regulator=edn[e-edn[0][1]][3]; 
   isqtl=1; 
   removedcheck= modelspace[topmodel][e-edn[0][1]][2]; 
 } 
      } 
  
      int startingedge=edn[0][1]+edn[0][2]; 
      int endingedge = edn[0][1]+1;  
      int donewithQTLsearch=0; 
 
      while (donedownsearch ==0){ 
 int isedn=0; 
 newfirstmodel=lastmodel+1;  
 newlastmodel=lastmodel; 
 
 if (donewithQTLsearch==1){ 
   startingedge=edn[0][1]; 
   endingedge = 1; 
 } 
 
 for (int topmodel=firstmodel; topmodel<(lastmodel+1); topmodel++){ //for each starting model in the level 

 if (modelspace[topmodel][0][0]!=-1){ 
   int storingmin =0;  
   minbic=0;  
 
   if (donewithQTLsearch==1 & searchlevel==0){ 
     reconstructPath  (constraintonQTLorGene,   tempAdjMat,  PathPresMatBF, tempPathMat ,   
          modelspace , edn, topmodel,  totalvariables,  geneNum, maxdistforpath ) ; 
   } 
 
   for (int theedge= startingedge; theedge>=endingedge ; theedge--)  {  
     int isqtl=0; 
     int targetgene=0; 
     int regulator=0; 
     int removedcheck=0; 
 
     if (theedge<=edn[0][1]){ // If it is a gene edge; 
       targetgene=edn[theedge][0]; 
       regulator=edn[theedge][1]; 
       removedcheck= modelspace[topmodel][theedge][0]; 
     }else{      // For the QTL links 
       targetgene=edn[theedge-edn[0][1]][2]; 
       regulator=edn[theedge-edn[0][1]][3]; 
       isqtl=1; 
       removedcheck= modelspace[topmodel][theedge-edn[0][1]][2]; 
     } 
 
     int constraintnoremove=0; 
 
     if ( constraintonQTLorGene!=0){  
       constraintnoremove=checkpathforconstriant( constraintonQTLorGene,  theedge, regulator,  targetgene, 
        isqtl, tempAdjMat, PathPresMatBF,tempPathMat, 
        tempPathPresMat, modelspace, edn,topmodel, 
        totalvariables, geneNum, maxdistforpath,searchlevel); 
     } 
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     if ( removedcheck==0 && constraintnoremove==0) { // if the edge is not removed already, and is removable 
 
       if (cycIndex[targetgene]==0){ // If the edge going into a gene that is not part of a cycle 
 
  double targetlikelihood=modelspacepar[topmodel][targetgene+1][3];  
  double olssigma=0; 
 
  double newtargetlikelihood =olsforonegene(olssigma, isqtl, regulator,geneNum,targetgene, numQTL, 
         samplesize, ydata,modelspace, topmodel,xdata,edn, yi, ui); 
 
  double bic=getIC(ICtouse,newtargetlikelihood, targetlikelihood, numberedgeremoved,samplesize, 
     geneNum,numQTL,lodthresholdforbicdelta); 
 
  if (bic<biccutoff){  
 

int isdupmodel= checkduplicatemodel(modelspace,edn, newfirstmodel, newlastmodel+1,topmodel, 
targetgene, isqtl, theedge, maxedge ); 

 
      if (isdupmodel==1){ 
        cout<<"duplicate model, no need to save"<<endl<<endl; 
        if ( storingmin==1 ){ // If this is the one replacing the min model 
   storingmin =0; 
   modelspace[minmodelidx][0][0]=-1; 
        } 
      }else{ 
        if ( storingmin==1 ){ // If this is the one replacing the min model 
   storingmin =0; 
        }else{ 
   newlastmodel++; // one model into the space 
   minmodelidx=newlastmodel; 
        } 
        cout<<"another model in space:    "<<minmodelidx <<endl; 
        storenestedmodel(modelspacepar, modelspace,edn,minmodelidx,topmodel,bic,newtargetlikelihood,  
           targetlikelihood , targetgene, isqtl,olssigma, searchlevel,theedge,maxedge, isup); 
      } 
 
    minbic=-9e+99; // no more check for min 
 
  }else if (bic<minbic  ){  
      minbic =bic; 
      int isdupmodel= checkduplicatemodel(modelspace, edn, newfirstmodel,newlastmodel+1, topmodel, 
       targetgene, isqtl, theedge, maxedge ); 
 
      if (isdupmodel==1){ 
        cout<<"duplicate model, no need to save"<<endl<<endl; 
        if (storingmin==1){ //since this min is already in space, leave out the space  
   storingmin =0; 
   modelspace[minmodelidx][0][0]=-1; 
        } 
      }else{ 
        if (storingmin==0){ //if no min of this model has been stored 
   storingmin =1; 
   newlastmodel++; 
   minmodelidx=newlastmodel; 
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        } 
        cout<<"Store the min model in space:    "<<minmodelidx <<endl; 
        storenestedmodel(modelspacepar, modelspace,edn,minmodelidx,topmodel,bic,newtargetlikelihood, 
           targetlikelihood , targetgene, isqtl,olssigma, searchlevel,  theedge,maxedge, isup); 
 
      } 
 
  } else if (bic<0){ 
    int arandomnumber= GARandomInt(1,  100); 
    if ( arandomnumber<=( 100*randomperc ) && totalrandomstart<=maxrandomstart){ 
      int isdupmodel= checkduplicatemodel(modelspace, edn, newfirstmodel, newlastmodel+1,topmodel, 
       targetgene, isqtl, theedge, maxedge ); 
      if (isdupmodel!=1){ 
        newlastmodel++; // one model into the space 
        storenestedmodel(modelspacepar, modelspace,edn,  newlastmodel,topmodel,bic,newtargetlikelihood,  
           targetlikelihood , targetgene, isqtl,olssigma, searchlevel,theedge,maxedge, isup); 
        totalrandomstart++; 
      } 
    } 
  }  
       } 
       else{ // If going to a gene that is part of a cycle 
  int thecycle =cycIndex[targetgene];   
  int tempmodel=maxmodelnumber-1;  
  double targetlikelihood=modelspacepar[topmodel][thecycle][4];  
  
  double newtargetlikelihood =likelihoodforonecycle(isedn,topmodel, tempmodel,(thecycle-1), 
       yinputforyi,  xinputforyi,ycnewidx,  ypnewidx, xnewidx,  
       modelspace, modelspacepar, geneNum, samplesize, numQTL,  
       ydata, xdata, edn, cycIndex, isqtl, regulator,  
       targetgene, bmodelidx, fmodelidx, emodelidx, isup); 
 
  double bic=getIC(ICtouse,newtargetlikelihood, targetlikelihood, numberedgeremoved,samplesize, 
     geneNum,numQTL, lodthresholdforbicdelta); 
 
  if (bic<biccutoff){  
 

int isdupmodel= checkduplicatemodel(modelspace,edn, newfirstmodel, newlastmodel+1,topmodel, 
targetgene, isqtl, theedge, maxedge ); 

 
      if (isdupmodel==1){ 
        cout<<"duplicate model, no need to save" <<endl; 
 
        if ( storingmin==1 ){ // If this is the one replacing the min model 
   storingmin =0; 
   modelspace[minmodelidx][0][0]=-1; 
        } 
      }else{ 
        if ( storingmin==1 ){ // If this is the one replacing the min model 
   storingmin =0; 
        }else{ 
   newlastmodel++; // one model into the space 
   minmodelidx=newlastmodel; 
        } 
        cout<<"another model in space:    "<<minmodelidx <<endl; 
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        storenestedmodel(modelspacepar, modelspace,edn,minmodelidx,topmodel,bic,newtargetlikelihood,  
           targetlikelihood , targetgene, isqtl,olssigma, searchlevel,theedge,maxedge, isup); 
 
      } 
    minbic=-9e+99; // no more check for min 
 
  }else if (bic<minbic){  
    minbic =bic; 
      int isdupmodel= checkduplicatemodel(modelspace, edn, newfirstmodel,newlastmodel+1, topmodel, 
       targetgene, isqtl, theedge, maxedge ); 
 
      if (isdupmodel==1){ 
        cout<<"duplicate model, no need to save"<<endl<<endl; 
        if (storingmin==1){ //since this min is already in space, leave out the space  
   storingmin =0; 
   modelspace[minmodelidx][0][0]=-1; 
        } 
      }else{ 
        if (storingmin==0){ //if no min of this model has been stored 
   storingmin =1; 
   newlastmodel++; 
   minmodelidx=newlastmodel; 
        } 
        cout<<"Store the min model in space:    "<<minmodelidx <<endl; 

storenestedmodelcycle(modelspacepar, modelspace, edn, minmodelidx,topmodel, bic, 
newtargetlikelihood, targetlikelihood , targetgene, isqtl, searchlevel, theedge, maxedge, thecycle,  

         tempmodel,bmodelidx, fmodelidx, emodelidx, isup); 
      
      } 
  } 
       } // end of if (cycIndex[targetgene]==0) 
     } //end of if the edge is not removed  
   } // End of going through all QTL or gene linkes 
 
     // If the min bic of the current model is larger than 0, the top model cannot be improved and therefore 
     // change the status to accepted for the topmodel 
   if (minbic>=0){ 
     if (donewithQTLsearch==0){ // If searching through the QTL links 
       totalnummodelafterqtldown++; 
 
       // Results from the QTL search are starting point for the gene link search 
       for(int j=0; j<(maxedge+1); j++){ 
  for(int k=0; k<6; k++) { 
    modelspaceparnew1[totalnummodelafterqtldown][j][k] = modelspacepar[topmodel][j][k] ; 
    modelspacenew1[totalnummodelafterqtldown][j][k] = modelspace[topmodel][j][k] ; 
  } 
       } 
 
       int isdupmodel= checkduplicatemodel( modelspacenew1, edn, 1,  totalnummodelafterqtldown,   
         totalnummodelafterqtldown,  1, -10,1,  maxedge ); 
       if (isdupmodel==1){ 
  cout<<"duplicate model, no need to save"<<endl<<endl; 
  totalnummodelafterqtldown--; // Leave out the space 
       }else{ 
  string outputfileName = getFileName(simudataid, "data_"); 
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  outputfileName += "_model_"; 
  outputfileName = getFileName(topmodel-1, outputfileName); 
  outputfileName+= "_downQTLsearch.txt"; 
  ofstream OutFile4(outputfileName.c_str());  
  for(int j=0; j<(maxedge+1); j++){// Note: the top row is not for parameters 
    for(int k=0; k<6; k++) { 
     OutFile4<< modelspace[topmodel][j][k] <<'\t' ; 
    } 
    OutFile4 <<endl; 
  } 
  OutFile4.close(); 
     }else{  
       cout <<"accepted one model for the down search:  "<<topmodel<<endl; 
       totalnummodelaccepteddown++; 
       cout << "the edges removed are:   "<<endl; 
 
       // Results from the down search are starting point for up search 
       for(int j=0; j<(maxedge+1); j++){ 
  for(int k=0; k<6; k++) { 
    modelspaceparnew2[totalnummodelaccepteddown][j][k] = modelspacepar[topmodel][j][k] ; 
    modelspacenew2[totalnummodelaccepteddown][j][k] = modelspace[topmodel][j][k] ; 
  } 
       } 
 
       int isdupmodel= checkduplicatemodel( modelspacenew2, edn, 1, totalnummodelaccepteddown ,   
         totalnummodelaccepteddown,  1, -10,1,  maxedge ); 
       if (isdupmodel==1){ 
  cout<<"duplicate model, no need to save"<<endl<<endl; 
  totalnummodelaccepteddown--; // Leave out the space 
       }else{ 
  cout <<"accepted one model for the down search:  "<<topmodel<<endl; 
  modelspace[topmodel][0][0] =1;  
  string outputfileName = getFileName(simudataid, "data_"); 
  outputfileName += "_model_"; 
  outputfileName = getFileName(topmodel-1, outputfileName); 
  outputfileName+= "_downsearch.txt";  
               ofstream OutFile5 (outputfileName.c_str());  
                for(int j=0; j<(maxedge+1); j++){// Note: the top row is not for parameters 
           for(int k=0; k<6; k++) { 
             OutFile5 << modelspace[topmodel][j][k] <<'\t' ; 
           } 
           OutFile5 <<endl; 
                } 
                OutFile5.close(); 
                } 
     }   
   }   
 } 
 }  
 
 if (newlastmodel>lastmodel){ // if there're more models in the next level 
   searchlevel++; 
   addconstraintfromtopmodel (newfirstmodel, newlastmodel, modelspace, maxedge); 
 
   firstmodel=newfirstmodel; 
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   lastmodel=newlastmodel; 
   cout<< "new first model is " <<firstmodel << " and the new lastmodel: " <<lastmodel<<endl; 
 
 }else if ( donewithQTLsearch==0) {// If working on the QTL search 
   searchlevel=0; // Fist step in the gene search 
   donewithQTLsearch=1;  
   ICtouse=ICforgene; // If IC for qtl and gene are diff, switch here 
 
   firstmodel=1; 
   lastmodel=totalnummodelafterqtldown ; 
   cout << "Finished with QTL links in the down search."<<endl<<endl; 
   cout<< "new first model is " <<firstmodel << " and the new lastmodel: " <<lastmodel<<endl; 
 
   for(int i=0; i<maxmodelnumber; i++){ 
     for(int j=0; j<(maxedge+1); j++){ 
       if( modelspace[i][j]) 
  delete[] modelspace[i][j]; 
       if (modelspacepar[i][j]) 
  delete[] modelspacepar[i][j]; 
     } 
   } 
   for(int i=0; i<6; i++){ 
     if( modelspace[i]) 
       delete[] modelspace[i]; 
     if (modelspacepar[i]) 
       delete[] modelspacepar[i]; 
   } 
   if (modelspace) 
     delete[] modelspace; 
   if (modelspacepar) 
     delete[] modelspacepar; 
   modelspace=modelspacenew1; // now use the first newspace as the starting point. 
   modelspacepar=modelspaceparnew1; 
 
 }else{ // if nothing in the next level, done!! 
   searchlevel=0; 
 
   cout << "Finished with the down search."<<endl<<endl; 
   modelspace=modelspacenew2; // now use the second temp newspace as the starting point for the up search 
   modelspacepar=modelspaceparnew2; 
   donedownsearch=1; 
 } // End of if : there is more model in the next level 
 
      }  // End of the down search 
 
      cout<<"total number of model accepted in the down search:   "<< totalnummodelaccepteddown<<endl<<endl; 
 
      //////// End of down search, start up search     ////////////////////// 
 
      cout<<"Start upward search..................................................   "<<endl; 
 
      int totalnummodelaftergeneup=0; 
      int totalnummodelacceptedup=0; 
      firstmodel=1; 
      lastmodel=totalnummodelaccepteddown ; 
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      double maxbic=0; 
      int numberedgeadd=1; 
      int donesearch=0; 
      newfirstmodel=0;  
      newlastmodel=0; 
      isup =1; 
     startingedge=edn[0][1]; 
      endingedge = 1;  
      int donewithGenesearch=0; 
 
      while (donesearch ==0){ 
 int isedn=0; 
 newfirstmodel=lastmodel+1;  
 newlastmodel=lastmodel; 
 
 if (donewithGenesearch==1){ 
   startingedge=edn[0][1]+edn[0][2]; 
   endingedge = edn[0][1]+1; 
 } 
 
 for (int topmodel=firstmodel; topmodel<=lastmodel; topmodel++){ //for each starting model in the level 
   int storingmax =0;  
   maxbic=0;   
 
   for (int theedge= startingedge; theedge>=endingedge ; theedge--)  {  
     int isqtl=0; 
     int targetgene=0; 
     int regulator=0; 
     int removedcheck=0; 
 
     if (theedge<=edn[0][1]){  
       targetgene=edn[theedge][0]; 
       regulator=edn[theedge][1]; 
       removedcheck= modelspace[topmodel][theedge][0]; 
     }else{       
       targetgene=edn[theedge-edn[0][1]][2]; 
       regulator=edn[theedge-edn[0][1]][3]; 
       isqtl=1; 
       removedcheck= modelspace[topmodel][theedge-edn[0][1]][2]; 
     } 
 
     if ( removedcheck==1) { // if the edge is  removed  
 
       if (cycIndex[targetgene]==0){ // If the edge going into a gene that is not part of a cycle 
  double targetlikelihood=modelspacepar[topmodel][targetgene+1][3];  
  double olssigma=0; 
  double newtargetlikelihood =olsforonegeneup(olssigma, isqtl, regulator,geneNum,targetgene, numQTL, 
           samplesize, ydata,modelspace, topmodel,xdata,edn, yi, ui); 
 
  double bic=getIC(ICtouse,targetlikelihood, newtargetlikelihood, numberedgeadd,samplesize, 
     geneNum,numQTL, lodthresholdforbicdelta); 
 
  if (bic>biccutoffup){  
    if ( storingmax==1 ){  
      storingmax =0; 
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    }else{ 
      newlastmodel++;  
    } 
 
    int isdupmodel= checkduplicatemodelup(modelspace, edn, newfirstmodel, newlastmodel, topmodel, 
       targetgene, isqtl, theedge, maxedge ); 
 
    if (isdupmodel==1){ 
      newlastmodel--;  
    }else{ 
      storenestedmodel(modelspacepar, modelspace,edn,  newlastmodel,topmodel,bic,newtargetlikelihood,  
         targetlikelihood, targetgene,isqtl,olssigma, searchlevel, theedge,maxedge,isup); 
    } 
 
    maxbic=9e+99; // no more check for max 
 
  }else if (bic>maxbic  ){  
    maxbic =bic; 
 
    if (storingmax==0){ //if no max of this model has been stored 
      storingmax =1; 
      newlastmodel++; 
    } 
 
    int isdupmodel= checkduplicatemodelup(modelspace,edn,newfirstmodel,newlastmodel, topmodel, 
       targetgene, isqtl, theedge, maxedge ); 
 
    if (isdupmodel==1){ 
      cout<<"duplicate model, no need to save"<<endl<<endl; 
 
      if (storingmax==1){ //since this max is already in space, leave out the space  
        storingmax =0; 
        newlastmodel--; 
      } 
    }else{ 
      cout<<"Store the max model in space:    "<<newlastmodel<<endl; 
      storenestedmodel(modelspacepar, modelspace,edn,newlastmodel,topmodel,bic,newtargetlikelihood, 
         targetlikelihood, targetgene,isqtl,olssigma, searchlevel,theedge,maxedge,isup); 
    } 
  }  
  
       } 
       else{  
  int thecycle =cycIndex[targetgene];   
  int tempmodel=maxmodelnumber-1;  
  double targetlikelihood=modelspacepar[topmodel][thecycle][4];  
 
  double newtargetlikelihood=likelihoodforonecycle(isedn,topmodel, tempmodel,(thecycle-1), 
       yinputforyi,  xinputforyi,ycnewidx,  ypnewidx, xnewidx,  
       modelspace, modelspacepar, geneNum, samplesize, numQTL,  
       ydata, xdata, edn, cycIndex, isqtl, regulator,  
       targetgene, bmodelidx, fmodelidx, emodelidx, isup); 
 

double bic=getIC(ICtouse,targetlikelihood, newtargetlikelihood, 
numberedgeadd,samplesize,geneNum,numQTL, lodthresholdforbicdelta); 
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  if (bic>biccutoffup){  
    if (  storingmax==1 ){  
      storingmax =0; 
    }else{ 
      newlastmodel++; // one model into the space 
    } 
 

int isdupmodel=checkduplicatemodelup(modelspace, edn, newfirstmodel, newlastmodel, topmodel, 
targetgene, isqtl,theedge,  maxedge ); 

 
    if (isdupmodel==1){ 
      newlastmodel--;  
    } 
 

storenestedmodelcycle(modelspacepar, modelspace,edn, newlastmodel,topmodel, 
bic,newtargetlikelihood, targetlikelihood , targetgene, isqtl, searchlevel,  theedge,maxedge, 

       thecycle, tempmodel,bmodelidx, fmodelidx, emodelidx, isup ); 
    } 
 
    maxbic=9e+99; // no more check for max 
 
  }else if (bic>maxbic){ 
    maxbic =bic; 
    if (storingmax==0){ //if no max of this model has been stored 
      storingmax =1; 
      newlastmodel++; 
    } 
 
    int isdupmodel= checkduplicatemodelup( modelspace,edn, newfirstmodel, newlastmodel, topmodel,  
        targetgene, isqtl, theedge, maxedge ); 
    if (isdupmodel==1){ 
      if (storingmax==1){ //since this max is already in space, leave out the space  
        storingmax =0; 
        newlastmodel--; 
      } 
    }else{ 
      cout<<"Store the max model in space:    "<<newlastmodel<<endl; 
      storenestedmodelcycle(modelspacepar, modelspace, edn, newlastmodel,topmodel, bic, newtargetlikelihood, 
       targetlikelihood, targetgene, isqtl, searchlevel, theedge, maxedge, thecycle,  
       tempmodel,bmodelidx, fmodelidx, emodelidx, isup); 
    } 
  } 
       }  
     }  
   }  
 
   if (maxbic<=0){ 
     if (donewithGenesearch==0){ // If searching through the gene links 
       totalnummodelaftergeneup++; 
 
       // Results from the gene search are starting point for the QTL search 
       for(int j=0; j<(maxedge+1); j++){ 
  for(int k=0; k<6; k++) { 
    modelspaceparnew3[totalnummodelaftergeneup][j][k] = modelspacepar[topmodel][j][k] ; 
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    modelspacenew3[totalnummodelaftergeneup][j][k] = modelspace[topmodel][j][k] ; 
  } 
       } 
       if (isdupmodel==1){ 
  cout<<"duplicate model, no need to save"<<endl<<endl; 
  totalnummodelaftergeneup --; // Leave out the space 
       } 
     }else{  
       cout <<"accepted one model for the up search:  "<<topmodel<<endl; 
       totalnummodelacceptedup++; 
       modelspace[topmodel][0][0] =1; // Accepted the top model  
       string outputfileName = getFileName(simudataid, "data_"); 
       outputfileName += "_model_"; 
       outputfileName = getFileName(topmodel-1, outputfileName); 
       outputfileName+= "_Upsearch.txt"; 
       ofstream OutFileUp (outputfileName.c_str());  
       for(int j=0; j<(maxedge+1); j++){// Note: the top row is not for parameters 
  for(int k=0; k<6; k++) { 
    OutFileUp<< modelspace[topmodel][j][k] <<'\t' ; 
  } 
  OutFileUp<<endl; 
       } 
       OutFileUp.close(); 
     }   
   }   
 }  
 if (newlastmodel>lastmodel){ // if there're more models in the next level 
   searchlevel++; 
   firstmodel=newfirstmodel; 
   lastmodel=newlastmodel; 
   cout<< "new first model is " <<firstmodel << " and the new lastmodel: " <<lastmodel<<endl; 
 
 }else if ( donewithGenesearch==0) {// If working on the gene search 
   searchlevel=0; 
   donewithGenesearch=1;  
   ICtouse=ICforQTL; // Switch back to the IC for QTL 
   firstmodel=1; 
   lastmodel=totalnummodelaftergeneup ; 
   cout << "Finished with gene links in the up search."<<endl<<endl; 
   cout<< "new first model is " <<firstmodel << " and the new lastmodel: " <<lastmodel<<endl; 
 
   for(int i=0; i<maxmodelnumber; i++){ 
     for(int j=0; j<(maxedge+1); j++){ 
       if( modelspace[i][j]) 
  delete[] modelspace[i][j]; 
       if (modelspacepar[i][j]) 
  delete[] modelspacepar[i][j]; 
     } 
   } 
   for(int i=0; i<6; i++){ 
     if( modelspace[i]) 
       delete[] modelspace[i]; 
     if (modelspacepar[i]) 
       delete[] modelspacepar[i]; 
   } 
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   if (modelspace) 
     delete[] modelspace; 
   if (modelspacepar) 
     delete[] modelspacepar; 
 
   modelspace=modelspacenew3; // now use the third temp newspace as the starting point. 
   modelspacepar=modelspaceparnew3; 
 
 }else{ // if nothing in the next level, done!! 
   searchlevel++; 
 
   cout << "Finished with the search!!!"<<endl<<endl; 
 
   for(int i=0; i<maxmodelnumber; i++){ 
     for(int j=0; j<(maxedge+1); j++){ 
       if( modelspace[i][j]) 
  delete[] modelspace[i][j]; 
       if (modelspacepar[i][j]) 
  delete[] modelspacepar[i][j]; 
     } 
   } 
   for(int i=0; i<6; i++){ 
     if( modelspace[i]) 
       delete[] modelspace[i]; 
     if (modelspacepar[i]) 
       delete[] modelspacepar[i]; 
   } 
   if (modelspace) 
     delete[] modelspace; 
   if (modelspacepar) 
     delete[] modelspacepar; 
 
   donesearch=1; 
 } // End of if: there is more model in the next level 
 
      }  // End of the search 
 
      cout<<"total numember of model accepted   "<< totalnummodelacceptedup<<endl<<endl; 
    //// End of search the model space within the edn //// 
  } // End of the multiple data set loop 
 
  return 0; 
} 
 
 
/* ----------------------------------------------------------------------------------- 
This initializer uses four kinds of starting values for the individuals in a population: 

1. Some percentage of the population have the 2sls starting values 
2. Some percentage use the estimated values from the top model 
3. Some percentage use estimates from the top model, except using 2sls results for all edges into the target gene  
4. The other individual use randomized starting values 

Note that a random number generator is used to assign the individuals to the four groups. 
 ----------------------------------------------------------------------------------- */ 
 
void  myInitializer(GAGenome & c) 
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{ 
  double changestartingvalue=1; // can be used to change the starting values. Use 1 by default. 
  int anumber= GARandomInt(1,  popsize); 
 
  int bidx=cyclenb+cyclep-1; 
  GARealGenome &genome= (GARealGenome &)c; 
 
  if (anumber<=( popsize*perc )){// Some percentage use 2sls starting values 
    for(int i=genome.length()-1; i>=0; i--){ 
      if (i>=(cyclenb+cyclenf)){ 
 genome.gene(i,  ( emodelxforstartingvalues[i-(cyclenb+cyclenf)]*changestartingvalue)); 
      } 
      else { 
 if (i>=cyclenb){ 
   genome.gene(i,  (fmodelxforstartingvalues[i-cyclenb]*changestartingvalue)); 
 } 
 else{ 
 
   while ( bmodeli[bidx]== bmodelj[bidx]){ 
     bidx--; 
   } 
   genome.gene(i,(-bmodelxforstartingvalues[bidx]*changestartingvalue)); 
   bidx--; 
 } 
      } 
    } 
 
  } else if (anumber<( 2*popsize*perc )){    
                                                  
    for(int i=genome.length()-1; i>=0; i--){ 
      if (i>=(cyclenb+cyclenf)){ 
 if ( anumber<( 0.5*popsize*perc)&& (targetforstartingvalues== emodeli[i-(cyclenb+cyclenf)])  ){ 
   genome.gene(i,  ( emodelxforstartingvalues[i-(cyclenb+cyclenf)] *changestartingvalue)); 
 }else{ 
   genome.gene(i,  ( emodelx[i-(cyclenb+cyclenf)]*changestartingvalue)); 
 } 
      } 
      else { 
 if (i>=cyclenb){ 
   if ( anumber<( 1.5*popsize*perc)&& (targetforstartingvalues== fmodeli[i-cyclenb])  ){ 
     genome.gene(i,  ( fmodelxforstartingvalues[i-cyclenb]*changestartingvalue)); 
   }else{ 
     genome.gene(i,  ( fmodelx[i-cyclenb]*changestartingvalue)); 
   } 
 } 
 else{ 
   while ( bmodeli[bidx]== bmodelj[bidx]){ 
     bidx--; 
   } 
 
   if ( anumber<( 1.5*popsize*perc)&& (targetforstartingvalues== bmodeli[bidx])  ){ 
     genome.gene(i,(-bmodelxforstartingvalues[bidx]*changestartingvalue)); 
   }else{ 
     genome.gene(i,(-bmodelx[bidx]*changestartingvalue)); 
   } 
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   bidx--; 
 } 
      } 
    } 
 
  }  else{ 
    for(int i=genome.length()-1; i>=0; i--){ 
      genome.gene(i,genome.alleleset(i).allele()); 
    } 
  } 
} 
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FIGURE 4.1.— Network topology of the yeast sub network 

Produced with Cytoscape (SHANNON et al. 2003). Black edges are gene → gene edges in the 

sparsified network, and the blue edges are QTL → gene edges in the sparsified network. Red 

dotted edges are removed gene → gene edges, and the green doted edges are removed QTL 

→ gene edges. 
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TABLE 4.1 Results of the SEM analysis on the simulated data 

 
 

IC Edge 
type 

Model 
 
 
Measure  

1  2 3 4 5  6 7 8 9 10 

FDR 18.4 24.3 27.4 17.9 19.5 21.6 20.7 19.0 23.9 22.2F Power 100.0 100.0 100.0 100.0 100.0 99.2 99.2 100.0 97.5 100.0
FDR 6.6 7.1 7.6 7.6 5.7 8.5 3.8 15.3 9.5 11.0BIC 

B Power 87.6 89.7 89.9 89.3 89.3 88.4 85.9 85.8 88.7 87.2
FDR 7.5 7.9 7.7 5.1 8.1 7.1 6.3 14.8 11.9 14.5F Power 100.0 100.0 99.2 99.2 100.0 96.7 100.0 98.4 100.0 100.0
FDR 0.8 0.0 1.7 0.0 1.6 3.4 0.0 3.4 1.8 0.9BIC(δ) 

B Power 80.7 82.2 79.9 78.5 81.2 76.2 77.9 77.7 72.7 71.8
 

Percentages of FDR and Power are given for the ten models using BIC and BIC(δ) criteria, 

and for the QTL and gene edges. 
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TABLE 4.2 Significant biological function groups of genes in the yeast sub network  

 

GO_term Frequency 
Genome 

Frequency Probability Genes 

catalytic activity 41.6% 26.8% 1.50E-07 

AAD14 AAD6 ACO1 AKL1 ALD6 AMD2 APN2 
ARA1 ARD1 ARP5 AYR1 BDS1 CIT2 COQ5 COX5B 
DCP2 DIA4 DLD3 DUS3 ECM40 ERF2 EXG1 FET3 
FET5 FRE2 GAB1 GCV3 GPA1 GRX5 HIS4 HIS5 
HMG1 HMG2 HO HOS4 ICL2 ILV6 KCC4 KTR1 
KTR6 LAT1 LEU2 LSC1 LYS2 LYS4 MAP1 MCM6 
MET22 MKT1 MSH2 MSK1 MTQ2 MTR3 NFS1 
NOP2 NUC1 NUG1 OST2 OST6 PDE1 PDR12 PHO8 
PHO85 PLB2 PMA2 POL1 PPZ1 RAD16 RAD52 
RAS1 RCK2 RFC4 RFC5 RHO2 RIB3 RPE1 RPM2 
RPO41 SAP4 SCO1 SEN1 SHR5 SKM1 PAH1/SMP2 
SPO11 SSA4 SUR1 THR4 TIP1 TOP2 TPS1 TRM7 
TRP3 TYR1 TYS1 UBP14 UBP16 UGA2 URA3 
WRS1 YAL061W RXT2 YEL077C YER138C 
YER160C YNL045W NMA111 YOL155C YPT53 
YPT6 

hydrolase activity 17.8% 10.5% 0.00026 

AMD2 APN2 ARP5 BDS1 DCP2 EXG1 GAB1 GPA1 
HIS4 HO HOS4 MAP1 MCM6 MET22 MKT1 MSH2 
MTR3 NUC1 NUG1 PDE1 PDR12 PHO8 PLB2 PMA2 
PPZ1 RAD16 RAS1 RFC4 RFC5 RHO2 RPM2 SAP4 
SEN1 PAH1/SMP2 SPO11 SSA4 TIP1 UBP14 UBP16 
RXT2 YER138C YER160C YNL045W NMA111 
YOL155C YPT53 YPT6 

transporter activity 9.0% 5.6% 0.01485 

AAC1 AGP2 ALR1 AQR1 ATO2 ATR1 COX5B 
CRC1 DIC1 HXT2 ITR1 KAP114 LPE10 MCH4 
MRS11 PDR12 PHO91 PMA2 POR1 SAL1 TAT1 
UGA4 YFL054C YMC2 

oxidoreductase 
activity 7.9% 3.5% 0.00066 

AAD14 AAD6 ALD6 ARA1 AYR1 COX5B DLD3 
FET3 FET5 FRE2 GCV3 GRX5 HIS4 HMG1 HMG2 
LEU2 LYS2 SCO1 TYR1 UGA2 YAL061W 

pyrophosphatase 
activity 6.8% 3.5% 0.00615 

ARP5 DCP2 GPA1 HIS4 MCM6 MSH2 NUG1 PDR12 
PMA2 RAD16 RAS1 RFC4 RFC5 RHO2 SEN1 SSA4 
YPT53 YPT6 

nucleoside-
triphosphatase 
activity 6.0% 3.2% 0.01405 

ARP5 GPA1 MCM6 MSH2 NUG1 PDR12 PMA2 
RAD16 RAS1 RFC4 RFC5 RHO2 SEN1 SSA4 YPT53 
YPT6 

 

Obtained from the Saccharomyces genome database http://www.yeastgenome.org/.  The 

columns are: significant GO terms; frequency of the terms in genes submitted; frequency of 

the terms in the whole genome; a score of significance of the terms in the genes submitted; 

genes involved in the biological process. 
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Chapter 5 

Summary and future research 

 

Gene network construction is an extremely complex task and probably never-ending research 

area. To be able to construct causal cyclic networks, we apply expression Quantitative Trait 

Locus (eQTL) analysis and Structural Equation Modeling (SEM) for the reconstruction of 

causal gene networks for genetical genomics experiments. Our network construction method 

exhibited very promising results, and should be further improved in terms of performance and 

scalability. 

 

For large genetical genomics experiments, computation cost is a critical issue. Linear Mixed 

Model Analysis (LMMA) of large multifactorial experiments can be computationally very 

intensive. Efficient algorithm for LMMA would be necessary for such large genetical 

genomics experiments. Sample size calculations with the eQTL mapping methods should be 

performed as in Kim et al. (2005) to ensure sufficient power while containing the large 

expense of these experiments.  

 

Since the PC-mapping exhibited very high power, combining PC-mapping with cis and trans-

mapping to detect pleiotropic eQTLs should be explored.  Combining cis-mapping and trans-

mapping of individual etraits and PCs may be the best approach to EDN construction. 
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The regulator-target pair identification for EDN construction can be further improved. 

Without taking the whole network into account, there is only limited information available for 

this purpose. However, some methods that utilize information from neighboring genes or 

from another eQTL mapping method would benefit the regulator-target pair identification. 

Between-strain SNP information, or information on protein-protein interactions, will be 

helpful in identifying the regulators if available. 

 

Maximum Likelihood is the predominant full-information method for parameter inference in 

structural equation models. It is therefore natural to perform a model search based on an 

information criterion that is a function of the maximized likelihoods of two competing 

models. While BIC and BIC(δ) performed satisfactorily in this study, further research on 

developing  appropriate model selection criteria for large, very sparse networks is required. 

 

How to efficiently update the network topologies during SEM model search needs more 

attention. The constructed EDN may include several candidate regulators for one eQTL, and 

they may or may not all be real regulators. Before a global search, searching among multiple 

candidate regulators for one eQTL can be an option. Then, an eQTL and its candidate 

regulator(s) can be updated jointly. Or, a local sparsification for each target may be performed 

before the global search. A model similar to the one used in the regulator-target pair 

identification for the trans-mapping, while including all regulators and eQTLs (not tightly 

linked) may be used. In addition, the eQTL analysis can suggest the sequence of edge 

deletion. For example, possible indirect effects may be tested first. 
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Our SEM model can be generalized to include certain types of interactions: those between an 

eQTL and a regulator gene jointly trans-regulating a target gene, and epistatic interactions 

between eQTL found in the eQTL analysis and hence included in the EDN. Furthermore, in 

this study we have considered a network with only causal, directed interactions or regulations. 

However, two genes may be correlated, but there may be no eQTL information available to 

determine causation. Such associations or undirected edges may be incorporated via 

correlations in the residual covariance matrix E. One can then include these off-diagonal 

elements in E in the EDN and consider them as potentially present in the model search.  

 

Lastly, besides the maximum likelihood implementation of SEM, a Markov chain Monte 

Carlo method for Bayesian SEM with prior information can be developed. The Bayesian 

approach can incorporate prior information about the network, and can account for the 

uncertainties in a complex problem.  
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