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Abstract

Consumption of tobacco causes health issues, both mental and physical. Despite this

widely known fact, tobacco companies sustained their huge presence in the market over

the past century owing to a variety of successful marketing strategies. This report doc-

uments the work of the Collection Management Tobacco Settlement Documents (CMT)

team, the data ingestion team for the tobacco documents. We deal with an archive of

tobacco documents that were produced during litigation involving 39 of the states in the

USA, and seven major tobacco industry organizations. Our aim is to process these docu-

ments and assist Dr. David M. Townsend, an assistant professor at Virginia Polytechnic

Institute and State University (Virginia Tech) Pamplin College of Business, in his research

towards understanding the marketing strategies of the tobacco companies. The team is

part of a larger initiative: to build a state-of-the-art information retrieval and analysis

system.

We handle over 14 million tobacco settlement documents as part of this project. Our

tasks include extracting the data as well as metadata from these documents. We cater to

the needs of the ElasticSearch (ELS) team and the Text Analytics and Machine Learning

(TML) team. We provide tobacco settlement data in suitable formats to enable them to

process and feed the data into the information retrieval system.

We have successfully processed both the metadata and the document texts into a

usable format. For metadata, this involved collaborating with the above-mentioned teams

to come up with a suitable format. We retrieved the metadata from a MySQL database

and converted it into a JSON for ElasticSearch ingestion. For the data, this involved

lemmatization, tokenization, and text cleaning.

We have supplied the entire dataset to the ELS and TML teams. Data, as well as

metadata of these documents, were cleaned and provided. Python scripts were used to

query the database and output the results in the required format.

We also closely interacted with Dr. Townsend to understand his research needs in

order to guide the Front-end and Kibana (FEK) team in terms of insights about features

that can be used for visualizations. This way, the information retrieval system we build

would add more value to our client.
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Chapter 1

Introduction

1.1 Objective

The objective of this project is to build a state-of-the-art information retrieval system.

Our team’s role is to process tobacco settlement documents and organize them in a way

that would be suitable for ingestion into the system. Then they would feed as input to the

information retrieval system. This project aims to provide a suitable interface to query

tobacco settlement documents to aid Dr. Townsend’s research.

The source of documents is UCSF’s Industry Documents Library (IDL). The IDL hosts

documents pertaining to 5 di�erent industries, namely tobacco, drug, chemical, food, and

fossil fuel. Through the course of this project, we utilize the 14 million tobacco settlement

documents housed by IDL. These documents were created by tobacco companies and

come in varying formats like depositions, memos, company letters, etc.

The aim is to organize the documents, parse them, and provide metadata along with

the data to the ElasticSearch (ELS) and the Text Analytics and Machine Learning (TML)

teams.

We are working on the data ingestion pipeline, where we load the entire data, process

all 14 million documents, and provide relevant data that can be processed by the ELS and

front-end teams to provide the �nal product: an information retrieval system that can be

used to query the tobacco dataset.

Our aim is to ensure that relevant and correct data is being returned while querying.

We have worked closely with the above-mentioned teams to ensure that this happens.
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1.2 Client

The client of this project is Dr. David M. Townsend, an assistant professor in the Virginia

Polytechnic Institute and State University (Virginia Tech) Pamplin College of Business.

Dr. Townsend’s research focuses on entrepreneurship, strategic management, and tech-

nology management. He is working on analyzing the documents publicly released by

tobacco companies as a result of a number of lawsuits launched against them. As an

active user of the document library, Dr. Townsend is personally interested in having a

specialized information retrieval system that could assist him in his research endeavors.

1.3 Project Management

To provide e�ective communication between team members and representatives, we use

Slack, an easy-to-use chat system with a user-friendly interface, which allows for creating

and maintaining chat groups for instant sharing of updates and suggestions both within

the team and among participants from di�erent teams. This was extremely useful to

collaborate with members of the ELS and TML teams. We were able to work closely with

them to understand their requirements and deliver the requirements in a timely manner.

To e�ectively distribute tasks and track progress, we use Trello, a task management

application that gives a visual overview of the progress made.

1.4 Challenges

There were a number of challenges faced during the course of this project. One challenge

was the nature of the data. We started with 14 million documents. There was little

documentation regarding the structure of the data. We initially used MySQL queries and

a sample set of data to understand the attributes and metadata. We also reached out to

the technical support team of UCSF library and they were extremely helpful. We were

then able to fully understand the structure of data and their attributes.

Another challenge we faced was that we were unable to distribute the tasks among

team members in a timely manner, given a range of levels of technical and program-

ming expertise amongst the participants. Notwithstanding, we constantly worked on

e�ectively parallelizing work, addressing critical questions, and supporting each other

in leveraging appropriate skills.
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Chapter 2

Literature Review

The prescribed textbook "An Introduction to Information Retrieval" [4] has been im-

mensely useful during the course of this project. The book helped us understand the

basics of tokenization and lemmatization, key steps in pre-processing.

2.1 Overview and Expectations

We closely interacted with Dr. Townsend to understand his requirements. His research

focuses on understanding the organizational strategies and corporate tactics utilized by

tobacco companies during the second half of the 20
th

century to �ght through the tobacco

settlement cases. The aim of his research is to construct a timeline and uncover the most

prominent characters and analyze the roles companies have played in these cases. Dr.

Townsend was expecting an easily navigable search engine that would return noise-free

results, i.e., an interface that facilitates mass retrieval of �les based on certain criteria

as opposed to them being fetched individually. Examples include downloading all docu-

ments on a page �ltered by conditions, and seeing results that bundle documents around

a certain case. It should also be able to identify cases with a common witness. During

subsequent meetings with Dr. Townsend, he expected the teams to provide him with

some features in the user interface provided by the front-end team. This included export

functionality and visualization for the tobacco documents showing the data features and

the document clusters.

3



2.2 Tobacco Settlement Documents

UCSF’s Industry Documents Library (IDL) hosts an archive of 14 million documents cre-

ated by tobacco companies about their advertising, manufacturing, marketing, scienti�c

research, and political activities [13]. Truth Tobacco Industry Documents were created

in 2002 by the UCSF Library. The main intention was to provide access to the tobacco

industry documents produced during litigation involving 39 states and the seven major

tobacco industry organizations. These documents come in various types and could be

any of the following: company memos, letters, depositions, etc. The system we build

needs to cater to all these variants.

UCSF also provides a list of exhaustive �eld names [12] that depicts the metadata of

the documents. This is being used as a reference point, and we are using this to parse

and get relevant information out of the data since it is not well-documented.

The tobacco settlement document report [8] by the team that worked on this project

for CS 4624 (Multimedia, Hypertext, and Information Access) during the spring 2019

semester, has also been a point of reference. Previous work in this area had been done in

June 2019 and we have been studying the team reports and presentations as well, in order

to get a better understanding of the e�ort in this space. It contains information about

various methods incorporated, such as creating scripts for parsing the various documents

and coming up with the metadata and doc2vec model implementation.

We had used these resources as a starting point for analyzing the data to come up with

a proper knowledge base for the metadata and text extraction from the 14M documents.

2.3 Tokenization and Lemmatization

Tokenization refers to chopping a given sentence or document unit into pieces, called

tokens, perhaps throwing away certain characters such as punctuation. A token is an

instance of a sequence of characters in some particular document that are grouped to-

gether as a useful semantic unit for processing. Tokenization accomplishes a very crucial

task in pre-processing, to enable the handling of semantic issues in subsequent stages of

machine processing. It also contributes to a structural description of an input sentence.

The tokens become the input for other processes like parsing and text mining. Tokeniza-

tion plays a large part in the process of lexical analysis [10]. Figure 2.1 shows the result

of the tokenization undertaken for a sample deposition �le.

4



Figure 2.1: Tokens of fghb0000.ocr

For grammatical reasons, documents tend to use di�erent forms of a word, such as

organize, organizes, and organizing. Additionally, there are families of derivationally re-

lated words with similar meanings, such as democracy, democratic, and democratization.

In many situations, it would be useful for a search for one of these words to return docu-

ments that contain another word in the set. Stemming and lemmatization refer to reduc-

ing in�ectional forms and sometimes derivationally related forms of a word to a common

base form [4]. The di�erence between stemming and lemmatization is that a stem might

not be an actual word, whereas a lemma is an actual language word or root form. Stem-

ming follows an algorithm with steps to perform on the words, which makes it faster.

Figure 2.2 shows the result of the stemming on a sample set.

Figure 2.2: Stemming sample[3]

In contrast, lemmatization uses a lexicon, such as in the WordNet corpus, to produce

lemma, which makes it slower than stemming. If we are building a language application

in which language is important one should use lemmatization as it uses a corpus to match

root forms [6]. If confronted with the token saw, poor stemming might return just s,
whereas lemmatization would attempt to return either see or saw depending on whether

the use of the token was as a verb or a noun.

5



Lemmatization takes into consideration the morphological analysis of the words. To

do so, it is necessary to have detailed dictionaries that the algorithm can look through to

link the form back to its lemma [3]. Lemmatization is used in text mining, which involves

analyzing the texts written in natural language, and extracting high-quality information.

Text mining includes text categorization, text clustering, sentiment analysis, document

summarization, and entity relation modeling (i.e., learning relations between named enti-

ties). For document clustering, lemmatization reduces the number of tokens that contain

the same information and hence speeds up the whole process. Figure 2.3 shows the result

of the lemmatization on a sample set.

Figure 2.3: Lemmatization sample[3]

Examples of lemmatization include:

am, are, is => be

car, cars, car’s, cars’ => car

been had done languages cities mice => be have do language city mouse

2.4 PDF Processing Techniques

PDF is one of the most important and widely used digital formats, used to present and

exchange documents. The tobacco dataset thus is shared as 14M PDF �les. The cur-

rent dataset also contains OCR �les, but the existing ones have garbage characters and

line numbers included. Some .ocr �les have text in the format of JSON data. Hence, we

explored many PDF processing techniques mentioned below to improve the PDF pro-

cessing step. Figure 2.4 is the original PDF �le: jydp0228.pdf that has been processed by

the following techniques.

6



Figure 2.4: Sample scanned document fetched from the UCSF site: jydp0228.pdf

2.4.1 PDFMiner

PDFMiner focuses entirely on getting and analyzing text data from PDF documents. It

allows obtaining the exact location of text on a page, as well as other information such

as fonts or lines. It includes a PDF converter that can transform PDF �les into other text

formats (such as HTML) [7]. This method tries to maintain the data format, for example,

tabular format, but data in di�erent columns gets merged into a single column. It also

takes into consideration the structure of the data; this is shown in Figure 2.5.

7



Figure 2.5: Sample scanned document processed by PDFMiner

2.4.2 PyPDF2

PyPDF2 is capable of splitting, merging together, cropping, and transforming the pages

of PDF �les. It can also add custom data, viewing options, and passwords to PDF �les. It

can retrieve text and metadata from PDFs as well as merge entire �les together [7]. This

technique extracts just the text from the PDF but does not maintain the format of the

data, for example, tabular format. It does not take into consideration the �eld structure,

for example, the title is merged with the rest of the text as shown in Figure 2.6.

Figure 2.6: Sample scanned document processed by PyPDF2

8



2.4.3 Abbyy Cloud OCR SDK

It is a web-based AI-powered cloud OCR SDK (Software Development Kit) which provides

excellent text recognition, PDF conversion, and data capture functionalities, enabling it

to convert scans into searchable PDF documents [1]. It maintains the data format and

structure as shown in Figure 2.7.

Figure 2.7: Sample scanned document processed by Abbyy Cloud OCR SDK

Table 2.1 summarizes the performance of the above mentioned OCR methods for dif-

ferent document types.

9



Table 2.1: OCR methods comparison

UCSF PyPDF2 PDFMiner Abby Cloud
OCR

Two Column

PDF’s

Poor to Average

(comparable to

pdfminer)

Poor Average

(comparable to

UCSF)

Good

Newspaper

Articles

Very poor Extremely poor /

No result

Very poor Average

Tables Average

(comparable to

pdfminer)

Poor Average

(comparable to

UCSF)

Excellent

Plain texts,

letters

Excellent Good Excellent Excellent

Handwritten

Texts

Very Poor Extremely poor Very Poor Poor to Average
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Chapter 3

Requirements

To provide the teams working on ingesting data into Elasticsearch with a certain subset

(Phase I) and a complete set (Phase II) of text data with accompanying metadata infor-

mation, the following requirements and conditions should be taken into consideration.

1. Text data from the documents should be provided in its entirety and with
completeness.

In other words, all the text information contained in processed documents is sup-

posed to be saved and transferred to the other teams without any loss, unless oth-

erwise indicated. In Phase I of the project, only documents of the "Deposition" type

were considered. Therefore, this needed to be extended to support the other doc-

ument types as well. Phase II of the project involved processing all the documents

from the database.

2. Only requested meta-information �elds are to be provided for further pro-
cessing.

This means that the �nal metadata �le should only comprise two sets of �elds: the

ones which are referred to by the ELS team and necessary for the search engine,

and the �elds that are not involved in the search process directly but can be used

by the FEK team for visualization and demonstration purposes.

3. The metadata �les should follow the format requirements.

Depending on what restrictions the ELS team imposes on the format of the to-be-

ingested �les, it was our responsibility to follow these restrictions. For example,

11



certain metadata �les, describing a similar topic or several related ones (such as

articles, questionnaires, etc.), might be incorporated into a single �le for potential

improvement of search engine capabilities.

4. The CMT team should communicate with the ELS team and other teams
on a regular basis.

This was necessary in order to understand current updates in constraints imposed

on the �le structure and size so that the CMT team is able to follow the 2nd and

3rd requirements. This was also necessary to provide other groups with updates

regarding our progress.

5. The CMT team must pre-process �le content for the TML team appropri-
ately

As various intelligent text analysis algorithms require data to be ingested in di�er-

ent formats, we also provided the TML team with full-text data in desired formats.

The reader may �nd further details in Section 5.3.2.

6. Potential storage of the data on cloud.cs.vt.edu for future project organiza-
tion.

Although it is not required to store all the documents and metadata tables in the

cloud storage for the purpose of pre-processing, this could be a potential direction

for the sake of persisting �les to be utilized by future project contributors.

12



Chapter 4

Design

4.1 Approach

We broke down our research objectives into the following research questions:

RQ1: How do we structure the metadata in a format that ElasticSearch can ingest?
RQ2: What text pre-processing should be done on the OCR’ed documents to make them

useful for the TML team?
RQ3: How does UCSF’s proprietary OCR tool compare with open-source OCR tools on a

subset of the tobacco documents?

We initially started by investigating these research questions on a subset of the to-

bacco documents. More speci�cally, we used the roughly 8,000 deposition documents in

this work. We later expanded the scope to cover all 14 million documents.

In order to be able to provide other teams with the necessary information in the

required format, the following steps were followed:

1. Download data from the UCSF database onto the tobacco.cs.vt.edu virtual machine,

including �les and corresponding metadata. This is illustrated in Figure 4.1.
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Figure 4.1: Files downloaded from the UCSF site

2. Import metadata into a database and analyze the structure of data.

3. Process a small collection of data �rst. Speci�cally, locate deposition �les based on

�le type, then process the deposition �les.

4. Convert metadata and �les into JSON format, as shown in Figure 4.2.

Figure 4.2: Process data to be formatted

5. Pre-process texts of deposition �les, as shown in Figure 4.3. This involved the

following steps:
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• Text cleaning: Delete the invalid characters which can not be decoded to Unicode.

Delete the blank characters, like CRLF line terminators, and so on.

• Tokenization: Split the given text into smaller pieces. Words, numbers, punctuation

marks, and others are considered as tokens.

• Lemmatization: Reduce in�ectional forms to get the correct base forms of words by

using lexical knowledge. The aforementioned processes are described in Chapter

5 in detail.

• Concatenation of Q’s and A’s in one line for easy reading. This process is described

in Chapter 5 in detail.

Figure 4.3: Text preprocessing

6. Provide the relevant JSON �les to the ElasticSearch team.

7. Migrate preprocessed deposition �les and JSON �les to Ceph.

The next step was to apply the above-stated process to all types of documents. We

have extracted the metadata and content for all the documents and sent them to the ELS

team for processing, and to the TML team for summarization.

4.2 Tools

• MariaDB: MariaDB Server, with its continual open source innovation, is a modern

relational database. We store and view all the metadata of �les in MariaDB 5.5.
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• Python: We used Python 3 to develop scripts to process �les, including JSON pack-

ages, Codec packages, and so on.

• NLTK: Natural Language ToolKit[9] is a leading platform for building Python pro-

grams to work with human language data. We used NLTK to do text tokenization

and lemmatization, and to provide high-quality text to other teams.
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Chapter 5

Implementation

To manage our work, we identi�ed three major tasks:

1. Identifying di�erent document types

2. Processing metadata

3. Processing document text

These tasks are described in detail below. In order to achieve our goals in a reason-

able amount of time, along with preparing and executing MySQL queries, we focused

on developing code in Python because of its popularity and ease-of-use. We started by

working with only the deposition documents, and then we transitioned to working with

all document types.

5.1 Identifying Di�erent Document Types

The tobacco documents within the dataset are categorized by type, such as memo, letter,

and deposition. Some of the documents belong to several types. The information about

each document’s type is encoded in the MySQL database (further details can be found in

Section 7.1). We identi�ed di�erent document types and decided to process deposition

documents. The number of depositions documents is relatively small: 7995 �les overall

as opposed to the entire collection size (about 14 million �les). We developed a Python

script to produce a �le containing the record keys (unique identi�ers) of all the deposition

documents. The record keys were then used to retrieve the deposition �les from the

database directly, as the record keys correspond to �le names.
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5.2 Processing Metadata

The objective of the metadata processing task is to transform the metadata from a MySQL

database to a JSON �le that ElasticSearch can ingest. Because ElasticSearch could not

ingest the metadata of all 14 million documents in one �le, we have transformed the

metadata into a collection of 31 �les, each containing the metadata of at most half a

million documents.

As shown in Figure 5.1, we encode a document’s metadata as two JSON objects: a

header and a body. The header object identi�es the document with its unique ID. The

body object contains the document’s metadata as a collection of key-value pairs, where

the key identi�es the metadata �eld, and the value speci�es the corresponding value for

the given document.
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Figure 5.1: JSON object representing metadata

{"index": {"_id": 1, "_index": "tobacco"}}

{"url": "https://s3-us-west-2.amazonaws.com/edu.ucsf.library.iddl.

artifacts/f/z/w/d/fzwd0000/fzwd0000.pdf",

"Legacy_(LTDL2)_Tobacco_Id": "gbu00a00",

"Title": "RISING MEDICAL COSTS REQUIRE G.H.C. DUES INCREASE IN 1967

VIEW",↪→

"Document_Date": "1967-02-28 00:00:00",

"Author": "NEWMAN HF;SIEGAL A",

"Case": "MNAG",

"Description": "DISCUSSES DUES INCREASE",

"Date_Added_UCSF": "2002-02-01 00:00:00",

"Document_Type": "article",

"availablility": "public",

"availablilitystatus": "no restrictions",

"Mentioned": "GROUP HEALTH COOPERATIVE OF PUGET SOUND;...

"Attached_Artifacts":

[{"name":"fzwd0000.ocr",

"mediaType":"text/plain",

"size":7730},

{"name":"fzwd0000.pdf",

"mediaType":"application/pdf",

"size":308035},

{"name":"fzwd0000.tif",

"mediaType":"image/tiff",

"size":314038},

{"name":"fzwd0000_thumb.png",

"mediaType":"image/png",

"size":100478}],

"Page_Map": "60025743/5745",

"Numeric_start_bates": "60025743",

"Numeric_end_bates": "60025745",

"Page_Count": "3"

}
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The following steps were applied to transform metadata into the required JSON for-

mat. First, connect to the MySQL database in order to retrieve metadata. Next, execute a

MySQL query to retrieve all metadata entries, ordered by document ID, with document

IDs between the given minimum and maximum ID values. Then, retrieve the result of

this query. The result is a list of metadata entries, each consisting of a document ID, a

metadata �eld name, and a metadata value. Extract the metadata entries for each doc-

ument in an iterative fashion. Generate the header JSON object followed by the body

obejct for each document.

We later included a text �eld, which is provided in a page-wise fashion: an addi-

tional key "text content" consists of two key-value pairs, where the keys are "content"

and "page". This would facilitate full-text search by the search engine.

5.3 Processing Document Text

The task of processing the content of the documents can be divided into 2 parts based on

the requests from the teams:

1. Preparing documents for the ELS and FEK teams

2. Pre-processing documents for applying of intelligent algorithms for TML team

These sub-tasks are described in Sections 5.3.1 and 5.3.2.

5.3.1 Preparing document text for the ElasticSearch and Front-
End Kibana Teams

All the �les stored in the virtual machine have a .ocr format. In order to make them

digestible by the ElasticSearch engine, we developed and subsequently updated a Python

script to convert each of the deposition .ocr �les into a JSON �le. The typical structure

of a deposition �le is shown in Figure 5.2.
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Figure 5.2: The structure of the �rst page of the deposition document

We structured the data to extract page contents separately as shown below:

{

"Page No." : "Page content"

}

The structure of the �nal �le generated by the Python script is shown below:

{"index": {"_id": 0, "_index": "tobacco"}}

{"Title": "Deposition of THOMAS RICHARD ADAMS, March 15, 2000, WHITELEY

v. RAYBESTOS-MANHATTAN INC.",↪→

"Document_Date": "2000-03-15",
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"text_content":[{"page":"1","content":"IN THE SUPERIOR COURT OF THE

STATE OF CALIFORNIA"},↪→

{"page": "2","content":"DEPOSITION OF THOMAS RICHARD ADAM"}]}

Besides the text itself, the �le represents a page-wise distribution of the content, as

well as the document date, as requested by the ELS and FEK teams.

5.3.2 Pre-processing documents for text analytics and machine
learning (TML)

To ensure the correct operation of di�erent automatic text analysis and ML approaches,

we follow the speci�c requirements for the document text preprocessing provided by the

TML team. The tasks include the following steps:

1. Cleaning documents

The documents stored in the virtual machine were received as a result of prelim-

inary performing of the Optical Character Recognition (OCR) procedure. A com-

mon issue about automatic extraction of characters from document scans is that

the latter may contain a lot of specialized information, such as line numbers and

handwritten inscriptions. Although some of them might be valuable for retrieval

purposes, a signi�cant portion of these characters and strings can hinder the per-

formance of ML algorithms, so cleaning the documents is important. Moreover, the

recognizing algorithm may produce service symbols, which can become additional

noise for ML algorithms. In order to reduce the negative impact of such charac-

ters, we prepared a cleaning algorithm in Python and used it to pre-process a set of

deposition documents. The examples of the comparative �le contents (before and

after the pre-processing accordingly) are demonstrated in Figures 5.3, 5.4, and 5.5.
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Figure 5.3: Cleaning page and line numbers from depositions (before vs. after)

Figure 5.4: The results of cleaning garbage characters, excess spaces, and service
page numbers

Figure 5.5: The results of cleaning garbage characters, excess spaces

It should be mentioned that some �les may contain line numbers not only in the

beginning of the line, but within the text as well. An example of such a �le is given

in Figure 5.6. Also, garbage characters that cannot be identi�ed automatically exist,

such as recognized handwritten phrases in certain documents, which might not

appear in any other �le.
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Figure 5.6: Line numbers within the document

2. Tokenization and stemming

Some natural language processing approaches require the input text to be repre-

sented in the form of separate instances, i.e., tokens. For other tasks, it might be

necessary to bring the tokens into their initial form. This operation is also known as

stemming or lemmatization. This topic is discussed in detail in Section 2.3. Follow-

ing the received requests and anticipating potential needs, we prepared a Python

script that breaks down a single .ocr �le into tokens and returns a �le with the orig-

inal lemmas of the tokens. A screenshot with the processing outcome is shown in

Figure 5.7.

Figure 5.7: Results of tokenization and lemmatization (before vs. after)
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5.4 Deliverables and Timeline

In order to keep track of our progress, we developed a list of deliverables. The deliverables

are summarized in Table 5.1.

Table 5.1: Deliverables

Task Completion date

Sample of metadata JSON �les and document text JSON

�les to be consumed by the ELS team

09.17.19

Complete structure of the MySQL metadata database 09.24.19

JSON text �les for deposition documents (ELS) 10.02.19

JSON metadata �les for deposition documents (ELS) 10.03.19

Tokenization and lemmatization done for the TML team 10.08.19

Cleaned content of deposition documents (TML) 10.24.19

Content of article documents extracted for TML team 10.24.19

Di�erent OCR approaches tested on a single PDF 10.28.19

Extracted metadata for all the document types for the ELS

team

11.07.19

Cleaned and pre-processed article-style documents (TML) 11.15.19

Generated JSON metadata �les for 1M documents 11.18.19

Di�erent OCR approaches tested on a sub-set of PDFs 11.20.19

Generated JSON data �les for 1M documents 11.20.19

Recommendations on choosing OCR tools, including com-

parative table

12.02.19

Script for generating JSON metadata �les with the �eld

containing cleaned document content

12.03.19

Script for UNIT testing and validating of JSON �les 12.03.19

JSON metadata �les for all 14M documents 12.06.19

JSON metadata+text �les for 100K documents as requested

by the ELS team

12.07.19

All the scripts uploaded to the GitLab repository 12.09.19
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Chapter 6

User Manual

6.1 Data Source

UCSF’s IDL dataset can be downloaded free of charge. The dataset contains a README

�le that explains how to set up the database.

Links to o�cial resources:

• O�cial IDL Website:

https://www.industrydocuments.ucsf.edu/

• Downloadable IDL dataset:

https://ucsf.app.box.com/v/IDL-DataSets

6.2 MariaDB

We used a CentOS Linux 7 machine for development. To install MariaDB 5.5 on CentOS

7, follow these steps:

• Install the MariaDB package

sudo yum install mariadb-server

• Start and enable the MariaDB service

sudo systemctl start mariadb

26

https://www.industrydocuments.ucsf.edu/
https://ucsf.app.box.com/v/IDL-DataSets


sudo systemctl enable mariadb

• Verify that the installation was successful. The output should state "Active:

active (running)".

sudo systemctl status mariadb

6.3 Python

We used Python 3, which can be installed on CentOS 7 by following these steps:

• Install IUS (Inline with Upstream Stable)

sudo yum -y install

https://centos7.iuscommunity.org/ius-release.rpm↪→

• Install the most recent version of Python

sudo yum -y install python36u

• Verify that the installation was successful. The output should be "Python 3.6.8".

python3.6 -V

6.4 Useful Linux Commands

We have found the following Linux commands to be useful in our work.

1. ssh user1@tobacco.cs.vt.edu

This command is used to securely log into the remote machine that we used for

development.

2. mysql -u root

This command is used to launch the MySQL shell and enter it as the root user.
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6.5 Interaction with other teams

During the course of this project, we interacted with multiple teams in order to

understand the requirements and ful�ll them in a timely manner.

6.5.1 ElasticSearch team

We worked closely with the ElasticSearch team to come up with a suitable contract

for the metadata and data �elds that could be ingested into ElasticSearch. We re-

trieved the metadata and data from a MySQL database and converted it into a JSON

for ElasticSearch ingestion.

6.5.2 Text Analytics and Machine Learning team

We worked with the Text Analytics and Machine Learning team to understand

their requirements and provided them with suitable data. We pre-processed the

raw data extracted and handed it over to the TML team for further processing. The

TML team used the data provided to apply machine learning algorithms to extract

patterns, summaries, and recommendations.

6.5.3 Front-end and Kibana team

We worked closely with our client, Dr. Townsend to understand his research needs

in order to guide the Front-end and Kibana (FEK) team in terms of insights about

features that can be used for visualizations.
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Chapter 7

Developer’s Manual

The aim of this section is to frame it in a manner such that it may be used as a manual to

redevelop the project. We also provide links to external references and points of contact.

We began by reading a tutorial drawn up by Saurabh Chakrabarty [11], who had

undertaken parts of this project earlier. The instructions therein provided us with an

initial idea of what could be expected to be achieved over the course of this project.

The UCSF library website hosting 14 million tobacco documents was the data source.

The site contained a list with de�nitions for the various topics and keywords one can

use to navigate through these documents. The de�nitions proved to be very helpful in

understanding the data structure.

7.1 Metadata

The IDL dataset contains 76,014 types of documents. Table 7.1 lists the top �ve document

types with the highest number of documents.

Table 7.1: Document types: Frequent

Document Type Number of Documents

Letter 1954308

Report 934164

Memo 795282

Note 660035

Email 587367
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Table 7.2 lists some document types with a moderate number of documents. These

are the types of documents that occupy a chunk of the tobacco dataset but are individually

lesser in number as compared to the types of documents in Table 7.1.

Table 7.2: Document types: Moderate

Document Type Number of Documents

proposal 25203

personnel information 12449

collage 7768

patent application 5988

Table 7.3 lists some document types with a smaller number of documents. These

are the types of documents that appear infrequently in the tobacco dataset, so the total

number of their instances is much less when compared with the types of documents in

Table 7.1.

Table 7.3: Document types: Sparse

Document Type Number of Documents

micro�lm 1146

application 774

�ow chart 542

survey 310

legislation 207

telex message 17

Table 7.4 lists some document types that are actually combinations of discrete doc-

ument types. By inspecting some of these documents, it was found that these generally

contain text that can be categorized as belonging to two or more document types. For ex-

ample, a single PDF of 2 pages where the �rst page contains a letter and the second page

contains an article, can be found to be stored under the document type ‘letter; article.’

Also, these �les are mostly longer, when compared to other tobacco documents which

are classi�ed as of a certain type. The number of documents belonging to a certain com-

bination of discrete �le types can vary between moderate to very low.
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Table 7.4: Document types: Combined

Document Type Number of Documents

bibliography; chart; graph; map; report, scienti�c 3766

consumer response; letter; letter, consumer 2545

budget; budget review; chart; graph; map; memo; table 365

brand plan; chart; graph; map; memo; promotional material; table 323

handwritten; report; report, market research 80

email; revision; speech 77

advertisement; agenda; brand review; presentation;

promotional material; speech 2

Table 7.5 lists examples of a few discrete document types which are extremely rare

in the tobacco dataset, with occurrence counts like 1 or 2.

Table 7.5: Document types: Rare

Document Type Number of Documents

study proposal 1

submission, industry commission inquiry 1

response statement 1

disclosure of invention 1

19641014 1

Table 7.6 lists the metadata �elds along with their descriptions.

Table 7.6: Metadata �eld descriptions

Begin of Table

ID Code Description

0 IGNORE IGNORE

1 tid Legacy (LTDL2) Tobacco Id

2 cn Collection

3 ti Title

4 dd Document Date

5 au Author
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Continuation of Table 7.6

ID Code Description

6 recommend Recommend

7 auo Organization Author

8 aup Person Author

10 refdoc Referenced Document

11 at Attending

12 ato Organization Attending

13 atp Person Attending

14 brd Brands

15 bnalias Alternate Bates Range

16 mbn Bates Mater

17 othernum Other Bates Range

18 bn Bates Number

19 cc Copied

20 cco Organization Copied

21 ddi Date Added Industry Site

24 case Case

25 desc Description

27 ddu Date Added UCSF

28 ddprod Date Produced

29 dt Document Type

32 availability availablility

33 availabilitystatus availablilitystatus

35 fn File Number

36 grantnum Grant Number

38 men Mentioned

39 meno Organization Mentioned

40 menp Person Mentioned

45 pgdisp Page Count Display

46 attach Attached Artifacts

48 box Box Number

49 rc Recipient
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Continuation of Table 7.6

ID Code Description

51 rco Organization Recipient

52 rcp Person Recipient

53 redact Redacted

54 rnm Minnesota Request Number

55 rno Other Request Number

56 reqno Primary Request Number

57 area Area

58 speccoll Special Collection

59 ddship Ship Date

60 mm Multimedia

61 st Status

63 topic Topic

64 food Food

65 pgmap Page Map

66 ccp Person Copied

67 kw Keyword

68 access Availability

69 rt Run Time

70 genre Genre

76 per comp:persons

78 org comp:org

83 mbn_begin Master Bates begin

85 mbn_end Master Bates End

87 w Witness Name

89 journal Journal Citation

90 folder Folder

91 series Series

92 rights Rights

93 alias_begin Alias Begin

94 alias_end Alias End

95 bns Numeric start Bates
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Continuation of Table 7.6

ID Code Description

96 bne Numeric end Bates

97 bnp Bates Number pre�x

100 pg Page Count

101 privilegecode Privilege Code

103 ct Country

104 lg Language

105 dupes Duplicates

106 chemical chemical

107 ddm Date Modi�ed

108 exw Express Waiver

109 adr Adverse Ruling

110 dpl Privilege Log Date

111 source Source

112 crt Court

113 df Document Format

114 ddmu Date Modi�ed UCSF

115 dpdt Deposition Date

116 co Company

117 dg Drug

118 en Exhibit Number

119 id IDDL ID

121 ot ocr text

122 md metadata

End of Table

7.2 Remote Machine

For development purposes, we have used a Virtual Machine (tobacco.cs.vt.edu) hosted by

the Department of Computer Science at Virginia Tech, with storage capacity of 2000 GB.
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It came from others, pre-installed with MySQL and Python libraries. To connect to the

VM, ssh into tobacco.cs.vt.edu as user1.

Run the following command in a terminal:

ssh -l user1 tobacco.cs.vt.edu
When prompted for a password, type that, and press enter to login. You may contact

Saurabh Chakrabarty or one of the authors of this report for the password.

We created a directory ‘fall2019’ to store this group’s �les.

7.3 IDL Dataset

UCSF hosts another site which stores all the metadata and OCR-ed versions of the dif-

ferent �les related to the tobacco settlement cases. We downloaded the metadata and

created the database ‘data’ in our VM.

Next, we created a directory named ‘data’. We downloaded all the above mentioned

OCR-ed �les under this directory. We created the script ‘download.sh’ to download the

zip �les to the VM (./data/rawdata) directly from the UCSF site using the wget command.

These �les were then unzipped at ./fall2019/data using the script saved as ‘untar.sh’.

Code used: tar -xzvf f-j.tar.gz
These �les are stored in a tree like structure with 16 base directories, with 4 levels

under each. At each level, there are 16 more directories which are subdivided into 16

further directories. The process is repeated until the last level is reached, where the

�nal folders containing the .ocr �les are stored. When we want to access an OCR-ed

�le with record key �vv0000, we can �nd it listed as �vv0000.ocr under the �le path

/fall2019/data/f/f/v/v/�vv0000/

As an example, to view ��0228.ocr, run the following command in terminal:

vim ./fall2019/data/f/f/f/f/��0228/��0228.ocr
Figure 7.1 shows the output �le.
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Figure 7.1: Depicts the text editable version of a tobacco �le saved as ��0228.ocr

7.4 MySQL Database

The UCSF website also contains an instruction manual and README.txt, which helped

us recreate the database on our Virtual Machine. We used the database server MariaDB,

which is an open source fork of MySQL, for data manipulation.

First of all, a new database was created under the user ‘root’ and name ‘data’.

Login as root user and no password by running the following command:

mysql -u root -p
Create the database ‘data’:

[mysql] CREATE DATABASE data CHARACTER SET utf8mb4 COLLATE
utf8mb4_unicode_ci;

Also, notice that we have set the character set to utf8mb4 while creating the database.

This is because the default utf8 encoding allows a maximum of 3 bytes per characters

which may not support some special characters or alphabets which would require 4 bytes.
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Using utf8mb4, which allows up to 4 bytes per character, would work in case there were

any special characters in the metadata. Again, collation is a set of rules for compar-

ing and sorting data in a character set. To maintain uniformity, we set the collation to

utf8mb4_unicode_ci (‘ci’ designates case insensitive comparisons).

Next, we populated new_data with the metadata from the database dump �le. The

command used to extract the database dump �le is:

tar xzf idl-database-dump.tar.gz
The command used to populate the metadata tables is:

mysql -u root -p data < idl-database-dump.sql
Figure 7.2 shows how one can log into MariaDB as user ‘root’ and view the databases

under it.

Figure 7.2: Logging into MariaDB and viewing data and other databases under it.
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Figure 7.3: Viewing the tables idl_doc, idl_doc_�eld, and idl_�eld present in the
database ‘data’ and the corresponding table speci�cations.
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Figure 7.4: Viewing the tables idl_data_tobacco, idl_collection, and idl_industry
with their descriptions under data
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Figures 7.3 and 7.4 show how one can view the various tables in the database ‘data’

and view the corresponding table descriptions.

To join idl_doc and idl_doc_�eld, use:

SELECT * FROM idl_doc id, idl_doc_�eld idf WHERE id.id=idf.id;
To retrieve record keys, use:

SELECT record_key FROM idl_doc WHERE id=‘id_value’;
To view descriptions of di�erent numerical codes under the column idl_doc_�eld.itag,

use:

Select * from idl_�eld; The database has metadata for documents pertaining to four

industry types referenced by distinct ID, as shown in Table 7.7. To view the di�erent types

of industries whose �les are in the database data, use:

Select * from idl_industry;
Refer to Table 7.7 to view the output of the above query.

ID Name

1 Drug

2 Tobacco

3 Food

4 Chemical

Table 7.7: Values and meanings of the industry IDs (idl_doc.industry_id)

To view records of �les belonging to the tobacco industry only, use:

Select * from idl_doc where industry_id=2;
OR,

Select * from idl_doc_tobacco;
Table idl_doc_tobacco has been created by extracting data from idl_doc where the

value of industry_id is ‘2’, i.e., fetching rows from the table pertaining to the tobacco

industry. This was done to facilitate faster traversal of the rows related to tobacco case

�les while executing SQL queries.

To view record_keys of document type deposition, use:

SELECT distinct record_key FROM idl_doc_tobacco id, idl_doc_�eld idf
WHERE id.id=idf.id AND idf.itag=‘29’ AND idf.value=‘deposition’;
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7.4.1 Use of the Tables idl_industry and idl_�eld

In case we want to know which kind of industry a document with

idl_doc.record_key=‘�vv0000’ and idl_doc.industry_id=‘2’ belongs to, we would

be able to query the table idl_industry with the industry_id which would return us a

row with the meaning of ‘2.’ See Table 7.7 for an example.

The table idl_�eld contains the signi�cance of all the ‘itag’ attributes attached to any

document we encounter in the table idl_doc_�eld. For example: A document has itag

attribute = ‘29’. We may query the table idl_�eld with idl_�eld.id=idl_doc_�eld.itag to

view its meaning. Refer to Table 7.8 to view the output of the above query.

ID Code Short_Description

29 dt Document Type

Table 7.8: Description of the itag value 29 fetched by querying the table idl_�eld

Here ‘ID’= value of itag and ‘Short_Description’ is the meaning of the itag.

7.5 Scripts

7.5.1 Test Runs

Having completed the setup, our next job was to start identifying the scope of our

work and create short term goals. We decided upon creating a smaller prototype with

only the metadata of documents of the type ‘deposition’ (select distinct record_key
from idl_doc_tobacco id, idl_doc_�eld idf where id.id=idf.id and idf.itag=29 and
idf.value=‘deposition’;). Typically, we would test out our code on a couple of instances

before running it on the full set of deposition related data.

We ended up creating Python scripts with functionalities as follows:

1. utils.py: This script stores values of several constants with multiple instances of

use throughout our scripts. It stores the constants username, password, hostname,

and database name required to connect to the database ‘new_data’. Additionally,

the function connect_db() de�ned here can be called from other programs to con-

nect to ‘new_data’ readily without going through the trouble of writing the code

and setting up a connection every time.
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2. determine_depositions.py: This script was initially used to fetch the record ID

(idl_doc_tobacco.id) of all the tobacco �les which are of the type ‘deposition’. The

output was stored in the text �le deposition_ids_full.txt. However, in the next it-

eration, we upgraded the code to create script (3).

3. determine_ids_by_type.py: This script is an upgraded version of script (2) and

can be used to fetch the record ID (idl_doc_tobacco.id) of all the tobacco �les by

the document type. Currently, we ran this to fetch the IDs of the document types

‘deposition’ and ‘article’ and their corresponding outputs are stored in the text �les

deposition_ids_full.txt and article_ids_full, respectively. A subset of the deposition

IDs are stored in another text �le, deposition_ids_100.txt, which was initially used

as an input in script (4). After successful execution with the small subset, we moved

on to process all the depositions by using deposition_ids_full.txt as input in script

(4). The same process was repeated for the articles.

4. metadata_to_json.py: The next part was to convert the metadata of the �les that

we will be using into JSON format. Since we were just dealing with depositions

initially, we converted the metadata for only that document type. In the next it-

eration we also included metadata for document type ‘article’. This script helped

in achieving that, by using ID (idl_doc_tobacco.ID) of deposition documents and

articles as input. We had used the static �le deposition_ids_full.txt as the input for

depositions, and article_ids_full.txt for articles. One should note that, based on the

requirements from the ELS Team, we have included the URL of the source of each

�le as part of the JSON �le containing the metadata. Also, we have altered the date

format to match mm/dd/yyyy based on their requirements, in the current code.

Figure 7.5 shows a code snippet used to read the ID from

deposition_ids_100.txt and fetch idl_doc_tobacco.id from the database.

Figure 7.5: Section of code from metadata_to_json.py
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The output of this script is the generation of the �le deposition_metadata.json

and article_metadata.json which are stored in Ceph with �le path:

/mnt/ceph/shared/tobacco/metadata

5. �le2json.py: This script was initially generated to convert the text content of the

OCR-ed tobacco documents into JSON. We were able to �nd 8136 deposition docu-

ments, out of which four thousand were successfully parsed initially. The OCR-ed

documents which were generated based on scanned documents contained many

anomalous characters. These were due to the presence of handwritten texts, com-

pany logos, signatures and other less machine recognizable fonts in these scanned

documents. The OCR techniques would fail to recognize these as valid English

characters and pass garbage characters like ‘* ’. We found that the presence of

these anomalous characters in the OCR-ed documents were causing the misses.

We were able to work around the problem by encoding each word in the text and

leaving out the ones that could not be encoded from the �le to overcome this imped-

iment. Later we were able to parse all of those 8136 ‘deposition’ documents. These

JSON �les can be found under the folder /fall2019/deposition_json. The record_key

of the �les serve as their name under this directory.

6. Preprocess_sample.py: This script performs the following text processing tasks

on the tobacco �le texts: tokenization, lemmatization, and removal of unnecessary

white spaces, numbers, and garbage characters. To view the processed version of

the �le fghb0000.ocr, run the following command: less cleaned_�le.txt. Figure 7.6

shows an example of a processed �le. However, in the �nal run, we ended up not

requiring to implement lemmatization and tokenization on our documents; these

tasks were designated to be taken care of by the TML team.
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Figure 7.6: Cleaned �le after application of text processingmethods like lemma-
tization and tokenization.

7.5.2 Final Run

1. metadata_to_json_fast.py: This script did two tasks for us in the �nal run of the

project:

(a) Generate the metadata only: The metadata of all the tobacco documents were

generated ordered by the range of ‘ID’ values fed as user input. Typically,

we generated the metadata for 1 million documents at a time. Code used to
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generate metadata for the �rst million of these documents is: python meta-
data_to_json_fast.py 0 1000000

(b) In the next step, we modi�ed this script to generate the metadata along with

an additional �eld ‘text’ that contained text or data within the tobacco docu-

ments. The same method as above could be followed to run this script. Also,

based upon the ELS team’s requirements that were due to constraints with re-

gards to memory allocation, we generated metadata with data for 100k doc-

uments and stored them at Ceph. The location in the ceph directory is: cd
/mnt/ceph/shared/tobacco/

2. �le2json.py: Unlike in the test runs, we were no longer required to send the

JSON �les containing the data within the tobacco documents separately to the

ELS team. Instead the �le generated using the second version of the script meta-

data_to_json_fast.py would su�ce. However, the script �le2json.py is imported

by metadata_to_json_fast.py, so that it can use the functions to access the OCR-ed

�les and extract their cleaned versions as value of the metadata key �eld ‘text’.

3. �le2json2.py: This script was written to access the OCR-ed �les and clean their

contents. Then, it would generate �les containing cleaned versions of data within

those documents and save them by their record key.

4. utils.py: This remains unchanged and has the same usage as in Test Run de�ned

in Section 7.5.1.

7.6 Alternative OCR Techniques

The presence of garbage characters and the poor quality of some OCR-ed �les have lead

us to look for alternative approaches to implement OCR on the tobacco documents. This

was mainly to improve the quality of text �les which were extracted from scanned images

of newspaper articles, blurry texts, and handwritten texts. The methods implemented

gave us results with a varying degree of success except for recognizing handwritten texts.

The Python scripts and output text �les are saved in the folder ocr at the �lepath:

/fall2019/ocr/

We can do a comparative study based on the �le jydp0228. The URL of the original

PDF is https://www.industrydocuments.ucsf.edu/tobacco/docs/#id=jydp0228.
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1. PyPDF2: This approach failed to identify paragraphs and columns within the text.

The output had a single paragraph with all of the columns merged together. Figure

2.5 shows the screenshot of the text �le extracted by this process. The Python script

used can be found with the name test2.py.

2. PDFMiner: This package gave us much better results with respect to approach (1).

It could identify paragraphs and columns. This would be a fairly e�cient approach

when we are dealing with PDF �les with column texts as it can append the text

from the second column on a page below the text from the �rst column on that

page. However, it failed to identify the tabular structure of data in our test �le. The

columns were simply appended one after the other which resulted in the loss of in-

formation to be retrieved from the rows of the table. Figure 2.6 shows a screenshot

of the text �le retrieved by this process. The Python script used can be found with

the name test2.py.

3. Abbyy Cloud OCR: This tool was used on the UiPath platform to test the �le.

We used a trial version which developers can sign up for from Abbyy’s o�cial

website. This method could extract text with relatively good accuracy. In addition

to identifying the columns, it could also recognize the tabular structure of the text.

Figure 2.7 shows a screenshot of the text �le extracted by this process. We will

implement this method by using a Python script next.

We also tested these methods on the scanned version of an old newspaper article be-

longing to the tobacco dataset, whose OCR-ed �le is saved as �bb0020.ocr in the database.

The PDF of the scanned copy can be found at the UCSF website. Figure 7.7 shows a snap-

shot of the raw document from September 14, 1975.
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Figure 7.7: Original PDF �le saved in UCSF website

It can be seen that the quality of scanned text cannot be regarded too highly in terms

of readability; it is unlikely that the font would be easily recognized by machines. The

quality of the print in the document is not consistent either. Some of the alphabetics are

darker than the others throughout the article, which is probably due to the kind of ink

used for printing in those days. In the current OCR-ed version, the body of the document

is composed of words which are not necessarily part of the English dictionary and are

generated based on the wrong interpretations of words present on the scanned document.
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Applying method (1) with PyPDF2 yielded no result as the code failed to parse the text.

Method (2) using PDFMiner successfully extracted a text editable �le, but the content

does not make much sense; it is similar to what is the case with the current version.

Figure 7.8 shows the text �le obtained.

Figure 7.8: Text �le extracted using method (2)

The process failed to recognize the English words and distinguish between sentences

in a paragraph. The accuracy of identifying meaningful text was below average. For

example, the �rst sentence in the article which says "The cigarette pushers are now
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into what the advertising industry calls "positioning". which means that a prod-
uct tries to stake out an area for itself tn the smoker’s mind." has been interpreted

as "TAe elgarelle pusAers ar paw Intu wbal Pe advtttising mdnary eall[ "po :uim-
miL"wMehmeansUal a proN[t tries lo staYe eut an ara Ior IuelnnNeamnlerlminJ
." As is evident, the resulting text does not pass for a meaningful sentence.

Finally, the method (3) using Abbyy Cloud OCR did manage to extract the text with

much better accuracy in this test case. Even though we cannot vouch for the degree

of success this method achieves with every other newspaper article, it is not a bleak

situation that we look forward to. The English words were mostly well recognized as

were the columns in the report. Having said that, due to limited spacing between the

second and third column in the scanned document, the spacing between the last two

columns is not very wide in the generated text document either. If one refers to Figure

7.9, one may notice that the two columns are pretty close to each other.

Figure 7.9: Text �le extracted using ABbyy Cloud OCR, method (3), with scaling

This may require the reader of the text �le to be slightly more attentive to be able to

separate them. This problem could, however, be overcome to some extent by increasing

the scaling factor – a feature of Abbyy that magni�es the incoming PDF document by a

multiple of the scaling factor – and reading the PDF.
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Figure 7.10 show how each OCR technique performs on a sentence extracted from

the newspaper article.

Figure 7.10: Comparison between di�erent OCR techniques on a sentence of the
news article shown

Table 2.1 illustrates a comparative study among all the above discussed OCR tech-

niques over a varied set of types of documents.

Table 7.9: Time and cost involved in implementing the di�erent OCR techniques

UCSF PyPDF2 PDFMiner Abbyy Cloud OCR
Time Unknown Good Good Average (depending upon server speed)

Cost Unknown None None Paid

Table 7.9 shows how time and cost may impact our choice of tool.

Hence, we may conclude that Abbyy Cloud OCR is an ideal choice if we have the

resources. Otherwise, PDFMiner may be the optimal choice, given that it outperforms the

UCSF’s proprietary tool in scenarios involving two column PDFs. However, it should be

noted, there are no other signi�cant di�erences between the merits of those two methods.
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7.7 File Storage System

We are using Ceph to store our JSON �les, which is an open-source storage platform

based on a single distributed computer cluster. All the recent data derived during the

project are uploaded and stored there.

To access Ceph, ssh into tobacco.cs.vt.edu as user1 and run the following command

in the terminal:

cd /mnt/ceph
You will �nd several folders under this directory. We, the CMT team, have used the

folder ‘shared’ to store our JSON �les and tobacco documents, under which there is a

‘tobacco’ folder. To view, use:

cd /mnt/ceph/shared/tobacco
Generally, to access a JSON or text �le in the storage, make sure that an appropriate

folder is opened. After that, run one of the following commands in order to open the �le.

• vim �lename (for OCR �les without a �le extension)

• vim �lename.json (for JSON �les)

To obtain a list of the current path’s objects, run dir. The storage is organized in the

following hierarchy. There are 3 main directories:

1. data

2. metadata_�nal

3. metadata_with_data_�nal

Details are as follows.

1. data: This folder includes groups of OCR �les used and/or produced during the

project.

• 1million_raw: First 1 million OCR �les obtained via sorting the whole set of

documents by their IDs in database. Used for intermediate data preparation

and testing of some of the algorithms.

• article_data: All the OCR �les of ’article’ type. Served as one of subsets of

documents for cleaning
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• article_data_content: Output of the cleaning algorithm derived after using a

set of ’article’ documents as an input

• deposition_data: An unprocessed set of all ’deposition’ type documents. Used

for intermediate �le processing and examining their contents.

2. metadata_�nal: This directory comprises metadata JSON �les for 10M documents

of the tobacco dataset. There are 31 �les overall; each �le stores metadata for 500K

documents sorted by corresponding document IDs in the database. See Section 5.2

for details.

3. metadata_with_data_�nal: Here, 3 JSON �les embracing both metadata and text

content of 100K documents are stored, each for 33K �les (see Section 5.2 for details)

7.8 Code Repository

The �nal code used for generating the metadata and data has been put in a GitLab repos-

itory [5], under the project name ‘CMT’ [2]. The code is arranged in folders and should

be easily navigable. Figure 7.11 shows a screenshot of the repository.

Figure 7.11: Screenshot of the CMT team’s GitLab repository
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7.9 Ingestion of New Documents

In addition to the current dataset, it is anticipated that we may have to deal with a small

number of �les being added from time to time. It would have been fairly easy to write a

script that would extract the new data from the database and parse it into JSON format.

Finally, it could append the newly generated JSON �le to our older version present in

Ceph, which could in turn be accessed by the other teams on the project. However,

the INT team would not have access to our Virtual Machine (tobacco.cs.vt.edu) and the

database ‘data’. The INT team also tried to set up Kafka, but could not do so within

the available time. After weighing alternate options, it was proposed that, as a proof of

concept, we create a solution to show that it is possible to create the JSON �les even

without a database.

1. Creation of a demo folder outside the VM containing instances of metadata �les,

PDFs, and text editable content of tobacco documents.

2. Write a Python script to pick metadata and data from these �les and parse them

into JSON format matching the one for tobacco �les currently present on the VM.

We employed the following steps to achieve a solution.

1. To handle incoming PDFs of tobacco documents, we created a script that can down-

load the PDF directly from the UCSF website and implement the OCR technique to

generate a text editable �le. We chose PDFMiner for this operation since it is free.

2. To generate the JSON of the metadata, we prepared a modi�ed version of our

Python scripts to:

(a) Merge the CSV �les of the tables idl_doc_tobacco and idl_doc_�eld based on

common ID values; and export results into new CSV �le ‘output.csv’. Figure

7.12 shows a high level view.

(b) Store itag descriptions in an array ‘itag_array’

(c) Pick data from the columns of ‘output.csv’ that contain the Itag and Value

associated with a document ID; retrieve corresponding itag description based

on itag_array.

(d) Parse the data into desired JSON format and store into a new �le ‘output.json’.
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Figure 7.12: CSV �les used to generate metadata.

The above solution has its own set of limitations viz. scalability issues, not imple-

mented end-to-end since the Kafka integration by the INT team is incomplete and cannot

be termed practical.

7.10 Using MySQL Workbench

Note: One may also use an interface to manipulate the MySQL database. Section 7.6

provides the instructions to connect to the MySQL Workbench.

The following instructions provide step-by-step guidance on how to connect the

MySQL Workbench to the database containing all of the metadata stored at to-

bacco.cs.vt.edu. We suggest using the MySQL Workbench as one of the most convenient

up-to-date MySQL database management tools.

1. Download MySQL Workbench installer by downloading the installation package

from the following website. https://dev.mysql.com/downloads/workbench/ (make

sure to choose an appropriate OS version)

2. Install MySQL Workbench and run the program.
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3. Click on the “+” button right next to the "MySQL Connections".

4. You will see a new window with the "Setup New Connection" header. Input the

following parameters.

• Connection name: whatever name you want for the connection (e.g., tobacco).

• Connection method: choose the "Standard TCP/IP over SSH" from the drop

down menu.

• Make sure that the "Parameters" tab is chosen.

• SSH Hostname: tobacco.cs.vt.edu.

• SSH Username: user1

• SSH Password: click on "Store inVault", then input the password in an open

window (contact Dr. Fox/Saurabh Chakrabarty for the password).

• SSH Key File: leave blank

• MySQL Hostname: leave the default value (127.0.0.1)

• MySQL Server Port: leave the default value (3306)

• Username: root

• Password: leave unchanged

• Default Schema: leave blank

After all the parameters are set up, click on "Test connection". You will see a con-

nection warning – just ignore it and click "OK". If the connection is set successfully,

click "OK" in the previous window. After this step, the connection should be estab-

lished.
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Chapter 8

Future Work

This section discusses the future tasks with respect to processing the tobacco dataset.

8.1 Improve the Text Cleaning Process

We intend to improve the exisitng text cleaning process. The current process is good at

identifying line numbers that are at the beginning of the line but fails to detect line num-

bers occurring in between sentences. We would like to improve this process to account

for line numbers within the text as well as increase the precision of identifying garbage

characters.

8.2 Finalize OCR Method

We have explored alternate OCR implementation techniques and have received prelim-

inary results. The current OCR’ed documents have multiple non-decodable characters

that require removal. We are removing such characters using a Python script in the pre-

processing stage in order for data to be used for processing. Hence, we revisited the OCR

process for alternative approaches that would result in better quality documents. A de-

cision needs to be taken with respect to moving forward with an alternate OCR method,

and this needs to be �nalized and applied to documents.

56



8.3 Test Coverage

We intent to add more unit tests for the scripts written. This would help ensure that

updates to the scripts do not break the existing functionality. This would also aid the

initiative of building a CI/CD pipeline for the project.

8.4 Pipeline for Ingesting New Documents

We need to focus on automating the ingestion of new tobacco documents as and when

they become available. This would involve coordinating with the INT team to set up a

Kafka pipeline and prepare automation scripts to trigger the ingestion of new documents.

We presently have a proof of concept that needs to be extended to build a full-�edged

solution.
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