Information Storage and Retrieval

Collection Management of Tobacco Settlement
Documents

Authors

Alon Bendelac
Debasmita Biswas
Sushmethaa Muhundan
Andrei Svetovidov
Ashin Marin Thomas
Yan Zhao

Instructor

Dr. Edward A. Fox

7

Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
December 21, 2019

CS5604: Information Storage and Retrieval, Fall 2019

Team CMT: Alon Bendelac, Sushmethaa Muhundan, Debasmita Biswas, Andrei Svetovi-
dov, Ashin Marin Thomas, and Yan Zhao

This research was done under the supervision of Dr. Edward A. Fox as part of the course
CS5604: Information Storage and Retrieval at Virginia Tech, Fall 2019.

1st edition, September 19, 2019
2nd edition, October 11, 2019

3rd edition, November 1, 2019
4th edition, December 11, 2019

5th edition, January 8, 2020

Contents

Abstract

[List of Figures|

IList of Tablesl

1_Introduction|

(1.1 Objective|

(1.3 Project Management|.
(1.4 Challenges| L.

P B Review]

[2.1 Overview and Expectations|.

242 DPyPDF2|
[2.4.3 Abbyy Cloud OCRSDK|.

[3 Requirements|

[4.1 Approach|. oo

[> Implementation|

il

vi

vii

N DN DN =

O 00 N N W W

[5.1 Identifying Different Document Types|. 17
[5.2 Processing Metadatal 18
[5.3 Processing Document Text| 20
[5.3.1 Preparing document text for the ElasticSearch and Front-End |

[Kibana Teams| 20
[5.3.2 Pre-processing documents for text analytics and machine learn- |

| ing (TML)| 22
5.4 Deliverables and Timelinel. 25
[6User Manual 26
6.1 DataSourcel 26
6.2 MariaDBl 26
..................................... 27
6.4 Useful Linux Commands 27
6.5 Interaction with otherteams| 28
6.51 ElasticSearchteam| 28

[6.5.2 Text Analytics and Machine Learning team|. 28

[6.5.3 Front-end and Kibanateam| 28

[7 Developer’s Manual| 29
1 Metadatal 29
2 _Remote Machinel 34
(73 IDL Datasetl. 35
(74 MySQL Databasel. 36
[7.4.1 Use of the Tables idl_industry and idl_field|. 41

7.5 SCrIpES| . . .o 41
751 lestRuns| 41

752 FinalRunl. 44

[7.6 Alternative OCR Techniques| 45
[7.7 File Storage System| oL 51
(7.8 Code Repository| 52
(7.9 Ingestion of New Documents| 53
[7.10 Using MySQL Workbench|. 54
i8__Future Workl 56

iv

[8.1 Improve the Text Cleaning Process|. 56

8.2 Finalize OCR Methodl 56
[8.3 Test Coverage| 57
[8.4 Pipeline for Ingesting New Documents| 57
[9 Acknowledgements| 58
Bibliography| 59

Abstract

Consumption of tobacco causes health issues, both mental and physical. Despite this
widely known fact, tobacco companies sustained their huge presence in the market over
the past century owing to a variety of successful marketing strategies. This report doc-
uments the work of the Collection Management Tobacco Settlement Documents (CMT)
team, the data ingestion team for the tobacco documents. We deal with an archive of
tobacco documents that were produced during litigation involving 39 of the states in the
USA, and seven major tobacco industry organizations. Our aim is to process these docu-
ments and assist Dr. David M. Townsend, an assistant professor at Virginia Polytechnic
Institute and State University (Virginia Tech) Pamplin College of Business, in his research
towards understanding the marketing strategies of the tobacco companies. The team is
part of a larger initiative: to build a state-of-the-art information retrieval and analysis
system.

We handle over 14 million tobacco settlement documents as part of this project. Our
tasks include extracting the data as well as metadata from these documents. We cater to
the needs of the ElasticSearch (ELS) team and the Text Analytics and Machine Learning
(TML) team. We provide tobacco settlement data in suitable formats to enable them to
process and feed the data into the information retrieval system.

We have successfully processed both the metadata and the document texts into a
usable format. For metadata, this involved collaborating with the above-mentioned teams
to come up with a suitable format. We retrieved the metadata from a MySQL database
and converted it into a JSON for ElasticSearch ingestion. For the data, this involved
lemmatization, tokenization, and text cleaning.

We have supplied the entire dataset to the ELS and TML teams. Data, as well as
metadata of these documents, were cleaned and provided. Python scripts were used to
query the database and output the results in the required format.

We also closely interacted with Dr. Townsend to understand his research needs in
order to guide the Front-end and Kibana (FEK) team in terms of insights about features
that can be used for visualizations. This way, the information retrieval system we build
would add more value to our client.

vi

List of Figures

[2.1 Tokens of fghb0000.0cr{ oo 5
(2.2 Stemming sample(3l]|. 5
[2.3 Lemmatization sample[3lfo 6
[2.4 Sample scanned document fetched from the UCSF site: jydp0228.pdf| . . . 7
[2.5 Sample scanned document processed by PDFMiner] 8
[2.6 Sample scanned document processed by PyPDF2| 8
[2.7 Sample scanned document processed by Abbyy Cloud OCR SDK] 9
4.1 Files downloaded from the UCSF sitel 14
4.2 Process datatobe formatted 000 14
[4.3 Text preprocessing|. L L e 15
[5.1 JSON object representing metadata|] 19
[5.2 The structure of the first page of the deposition document| 21
[5.3 Cleaning page and line numbers from depositions (before vs. after) . .. 23
[5.4 The results of cleaning garbage characters, excess spaces, and service |

pagenumbers| 23
[5.5 The results of cleaning garbage characters, excess spaces| 23
.6 Line numbers within the document| 24
[5.7 Results of tokenization and lemmatization (before vs. after) 24
[7.1 Depicts the text editable version of a tobacco file saved as fift0228.ocr| . . 36
[7.2 Logging into MariaDB and viewing data and other databases underit|. . 37
[7.3 Viewing the tables idl_doc, idl_doc_field, and idl_field present in the |

database ‘data’ and the corresponding table specifications, 38
[7.4 Viewing the tables idl_data_tobacco, idl_collection, and idl_industry with |

their descriptionsunder datal 39

vii

[7.5 Section of code from metadata_to_json.py|
[7.6 Cleaned file after application of text processing methods like lemmatiza- |

[tonandtokenization] 44
[7.7 Original PDF file saved in UCSF website{. 47
48

[7.8 Text file extracted using method (2){
[7.9 Text file extracted using ABbyy Cloud OCR, method (3), with scaling] . . 49
[7.10 Comparison between different OCR techniques on a sentence of the news |

[7.11 Screenshot of the CMT team's GitLab repository| 52
[7.12 CSV files used to generate metadata,.

viil

List of Tables

[2.1 OCR methods comparison| 10
b1 Deliverablesl 25
(7.1 Document types: Frequent| o000 29
(7.2 Document types: Moderate|, . 30
(7.3 Document types: Sparse|. oL 30
(7.4 Document types: Combined, 31
(7.5 Documenttypes: Rare|. oo 31
[7.6 Metadata field descriptions| oL 31
[7.7 Values and meanings of the industry IDs (idl_doc.industry_id)] 40
[7.8 Description of the itag value 29 fetched by querying the table idl_field . . 41
[7.9 Time and cost involved in implementing the different OCR techniques|. . 50

ix

Chapter 1

Introduction

1.1 Objective

The objective of this project is to build a state-of-the-art information retrieval system.
Our team’s role is to process tobacco settlement documents and organize them in a way
that would be suitable for ingestion into the system. Then they would feed as input to the
information retrieval system. This project aims to provide a suitable interface to query
tobacco settlement documents to aid Dr. Townsend’s research.

The source of documents is UCSF’s Industry Documents Library (IDL). The IDL hosts
documents pertaining to 5 different industries, namely tobacco, drug, chemical, food, and
fossil fuel. Through the course of this project, we utilize the 14 million tobacco settlement
documents housed by IDL. These documents were created by tobacco companies and
come in varying formats like depositions, memos, company letters, etc.

The aim is to organize the documents, parse them, and provide metadata along with
the data to the ElasticSearch (ELS) and the Text Analytics and Machine Learning (TML)
teams.

We are working on the data ingestion pipeline, where we load the entire data, process
all 14 million documents, and provide relevant data that can be processed by the ELS and
front-end teams to provide the final product: an information retrieval system that can be
used to query the tobacco dataset.

Our aim is to ensure that relevant and correct data is being returned while querying.
We have worked closely with the above-mentioned teams to ensure that this happens.

1.2 Client

The client of this project is Dr. David M. Townsend, an assistant professor in the Virginia
Polytechnic Institute and State University (Virginia Tech) Pamplin College of Business.
Dr. Townsend’s research focuses on entrepreneurship, strategic management, and tech-
nology management. He is working on analyzing the documents publicly released by
tobacco companies as a result of a number of lawsuits launched against them. As an
active user of the document library, Dr. Townsend is personally interested in having a
specialized information retrieval system that could assist him in his research endeavors.

1.3 Project Management

To provide effective communication between team members and representatives, we use
Slack, an easy-to-use chat system with a user-friendly interface, which allows for creating
and maintaining chat groups for instant sharing of updates and suggestions both within
the team and among participants from different teams. This was extremely useful to
collaborate with members of the ELS and TML teams. We were able to work closely with
them to understand their requirements and deliver the requirements in a timely manner.

To effectively distribute tasks and track progress, we use Trello, a task management
application that gives a visual overview of the progress made.

1.4 Challenges

There were a number of challenges faced during the course of this project. One challenge
was the nature of the data. We started with 14 million documents. There was little
documentation regarding the structure of the data. We initially used MySQL queries and
a sample set of data to understand the attributes and metadata. We also reached out to
the technical support team of UCSF library and they were extremely helpful. We were
then able to fully understand the structure of data and their attributes.

Another challenge we faced was that we were unable to distribute the tasks among
team members in a timely manner, given a range of levels of technical and program-
ming expertise amongst the participants. Notwithstanding, we constantly worked on
effectively parallelizing work, addressing critical questions, and supporting each other
in leveraging appropriate skills.

Chapter 2

Literature Review

The prescribed textbook "An Introduction to Information Retrieval” [4] has been im-
mensely useful during the course of this project. The book helped us understand the
basics of tokenization and lemmatization, key steps in pre-processing.

2.1 Overview and Expectations

We closely interacted with Dr. Townsend to understand his requirements. His research
focuses on understanding the organizational strategies and corporate tactics utilized by
tobacco companies during the second half of the 20 century to fight through the tobacco
settlement cases. The aim of his research is to construct a timeline and uncover the most
prominent characters and analyze the roles companies have played in these cases. Dr.
Townsend was expecting an easily navigable search engine that would return noise-free
results, i.e., an interface that facilitates mass retrieval of files based on certain criteria
as opposed to them being fetched individually. Examples include downloading all docu-
ments on a page filtered by conditions, and seeing results that bundle documents around
a certain case. It should also be able to identify cases with a common witness. During
subsequent meetings with Dr. Townsend, he expected the teams to provide him with
some features in the user interface provided by the front-end team. This included export
functionality and visualization for the tobacco documents showing the data features and
the document clusters.

2.2 Tobacco Settlement Documents

UCSF’s Industry Documents Library (IDL) hosts an archive of 14 million documents cre-
ated by tobacco companies about their advertising, manufacturing, marketing, scientific
research, and political activities [13]]. Truth Tobacco Industry Documents were created
in 2002 by the UCSF Library. The main intention was to provide access to the tobacco
industry documents produced during litigation involving 39 states and the seven major
tobacco industry organizations. These documents come in various types and could be
any of the following: company memos, letters, depositions, etc. The system we build
needs to cater to all these variants.

UCSF also provides a list of exhaustive field names [12] that depicts the metadata of
the documents. This is being used as a reference point, and we are using this to parse
and get relevant information out of the data since it is not well-documented.

The tobacco settlement document report [8] by the team that worked on this project
for CS 4624 (Multimedia, Hypertext, and Information Access) during the spring 2019
semester, has also been a point of reference. Previous work in this area had been done in
June 2019 and we have been studying the team reports and presentations as well, in order
to get a better understanding of the effort in this space. It contains information about
various methods incorporated, such as creating scripts for parsing the various documents
and coming up with the metadata and doc2vec model implementation.

We had used these resources as a starting point for analyzing the data to come up with
a proper knowledge base for the metadata and text extraction from the 14M documents.

2.3 Tokenization and Lemmatization

Tokenization refers to chopping a given sentence or document unit into pieces, called
tokens, perhaps throwing away certain characters such as punctuation. A token is an
instance of a sequence of characters in some particular document that are grouped to-
gether as a useful semantic unit for processing. Tokenization accomplishes a very crucial
task in pre-processing, to enable the handling of semantic issues in subsequent stages of
machine processing. It also contributes to a structural description of an input sentence.
The tokens become the input for other processes like parsing and text mining. Tokeniza-
tion plays a large part in the process of lexical analysis [[10]. Figure 2.1 shows the result
of the tokenization undertaken for a sample deposition file.

['THE', 'COUNCIL', 'FOR', 'TOBACCO', 'RESEARCH-TT.S.A.', ',', 'INC.', '900', 'TTiIRD', 'AVENUE', 'NEW', 'YORK', '.', 'N.', 'Y, '.", '10022', 'December’, '23', ',',

'1986', 'Dean', 'Befus', ',', 'Ph.D', '.', 'The', 'University', 'of', 'Calgary', 'Health', 'Sciences', 'Centre', '3330', 'Hospital', 'Drive', 'N.W', '.', 'Calgary',
',', 'Alberta', ',', 'Canada', 'TN', '4NI', 'Dear', 'Dr.', 'Befus', ':', 'Thank', 'you', 'for', 'your', 'expression', 'of', 'interest', 'in', 'our', 'program', 'of',
'research', 'support', '.', 'I', 'am', 'pleased', 'to', 'enclose', 'a', 'recent', 'Annual', 'Report', 'that', 'lists', 'grants', 'currently', 'supported', 'and', 'a',
'brochuze', 'describing', 'policies', 'of', 'The', 'Council', '.', 'Ouz', 'application', 'procedure', 'is', 'a', 'two-step', 'process', ',', 'comprising', 'a',
'preliminary', 'inquiry', 'and', ',', 'if', 'that', 'is', 'approved', ',', 'a', 'final', 'proposel', '.', 'To', 'accomplish', 'the', 'first', 'step', ',’,
'potential', 'applicants', 'should', 'submit', 'a', 'brief', '(', '3', 'to', '.', '4", 'rage', ')', 'preliminary', 'outline', 'of', 'the', 'study', 'for', 'which',
'support', 'is', 'sought', '.', 'It', 'should', 'contain', 'the', 'following', 'information', ':', 'l', '.', 'A", 'Synopsis"]‘

Figure 2.1: Tokens of fghb0000.ocr

For grammatical reasons, documents tend to use different forms of a word, such as
organize, organizes, and organizing. Additionally, there are families of derivationally re-
lated words with similar meanings, such as democracy, democratic, and democratization.
In many situations, it would be useful for a search for one of these words to return docu-
ments that contain another word in the set. Stemming and lemmatization refer to reduc-
ing inflectional forms and sometimes derivationally related forms of a word to a common
base form [4]. The difference between stemming and lemmatization is that a stem might
not be an actual word, whereas a lemma is an actual language word or root form. Stem-
ming follows an algorithm with steps to perform on the words, which makes it faster.
Figure [2.2| shows the result of the stemming on a sample set.

Form Suffix Stem
studies -es studi
studying -ing study
ninas -as nin
ninez -ez nin

Figure 2.2: Stemming sample[3]

In contrast, lemmatization uses a lexicon, such as in the WordNet corpus, to produce
lemma, which makes it slower than stemming. If we are building a language application
in which language is important one should use lemmatization as it uses a corpus to match
root forms [6l]. If confronted with the token saw, poor stemming might return just s,
whereas lemmatization would attempt to return either see or saw depending on whether

the use of the token was as a verb or a noun.

Lemmatization takes into consideration the morphological analysis of the words. To
do so, it is necessary to have detailed dictionaries that the algorithm can look through to
link the form back to its lemma [3]]. Lemmatization is used in text mining, which involves
analyzing the texts written in natural language, and extracting high-quality information.
Text mining includes text categorization, text clustering, sentiment analysis, document
summarization, and entity relation modeling (i.e., learning relations between named enti-
ties). For document clustering, lemmatization reduces the number of tokens that contain
the same information and hence speeds up the whole process. Figure [2.3|shows the result
of the lemmatization on a sample set.

Form Morphological information Lemma
Third person, singular number, present tense of

studies the verb study study

studying Gerund of the verb study study

nifias Feminine gender, plural number of the noun niiio nifio

ninez Singular number of the noun nifez nifez

Figure 2.3: Lemmatization sample[3]]

Examples of lemmatization include:
am, are, is => be
car, cars, car’s, cars’ => car

been had done languages cities mice => be have do language city mouse

2.4 PDF Processing Techniques

PDF is one of the most important and widely used digital formats, used to present and
exchange documents. The tobacco dataset thus is shared as 14M PDF files. The cur-
rent dataset also contains OCR files, but the existing ones have garbage characters and
line numbers included. Some .ocr files have text in the format of JSON data. Hence, we
explored many PDF processing techniques mentioned below to improve the PDF pro-
cessing step. Figure [2.4is the original PDF file: jydp0228.pdf that has been processed by
the following techniques.

Tareyton Kings (1968-1969)
List of Flavor Ingredients — Louisville Branch

Note: The following is a list based on available documentation of flavor ingredients and diluents for those ingredients
added to tobacco for Tareyton Kings filter cigarettes manufactured by The American Tobacco Co. at the Louisville
Branch from 1968 to 1969.

Year Ingredients Ingredient defined based on available documentation
1968 Chocolate

Glycerine

Glycol (Propylene)

Invert Sugar or Leaf Coat (Leaf Coat - invert syrup)

Licorice (Granules)

Natural & Artificial Flavors

149 Proof Alcohol

Regular Cocoa

Sweetose or Argose {corn syrup)
Water

1969 Chocolate
Glycerine
Glycol (Propylene)
Invert Sugar or Leaf Coat (Leaf Coat - invert syrup)
Licorice (Granules)
Natural & Artificial Flavors
149 Proof Alcohol
Regular Cocoa
Sweetose or Argose (corn syrup)
Water

Figure 2.4: Sample scanned document fetched from the UCSF site: jydp0228.pdf

2.4.1 PDFMiner

PDFMiner focuses entirely on getting and analyzing text data from PDF documents. It
allows obtaining the exact location of text on a page, as well as other information such
as fonts or lines. It includes a PDF converter that can transform PDF files into other text
formats (such as HTML) [[7]. This method tries to maintain the data format, for example,
tabular format, but data in different columns gets merged into a single column. It also
takes into consideration the structure of the data; this is shown in Figure

spm:/ funer. industspdosumente . acef eda/doce/ Jpdp0diE

Figure 2.5: Sample scanned document processed by PDFMiner

2.4.2 PyPDF2

PyPDF2 is capable of splitting, merging together, cropping, and transforming the pages
of PDF files. It can also add custom data, viewing options, and passwords to PDF files. It
can retrieve text and metadata from PDFs as well as merge entire files together [7]]. This
technique extracts just the text from the PDF but does not maintain the format of the
data, for example, tabular format. It does not take into consideration the field structure,
for example, the title is merged with the rest of the text as shown in Figure

Figure 2.6: Sample scanned document processed by PyPDF2

2.4.3 Abbyy Cloud OCR SDK

It is a web-based Al-powered cloud OCR SDK (Software Development Kit) which provides
excellent text recognition, PDF conversion, and data capture functionalities, enabling it
to convert scans into searchable PDF documents [1]]. It maintains the data format and
structure as shown in Figure

Figure 2.7: Sample scanned document processed by Abbyy Cloud OCR SDK

Table 2.1|summarizes the performance of the above mentioned OCR methods for dif-
ferent document types.

Table 2.1: OCR methods comparison

UCSF PyPDF2 PDFMiner Abby Cloud
OCR
Two Column Poor to Average Poor Average Good
PDF’s (comparable to (comparable to
pdfminer) UCSF)
Newspaper Very poor Extremely poor / Very poor Average
Articles No result
Tables Average Poor Average Excellent
(comparable to (comparable to
pdfminer) UCSF)
Plain texts, Excellent Good Excellent Excellent
letters
Handwritten Very Poor Extremely poor Very Poor Poor to Average
Texts

10

Chapter 3

Requirements

To provide the teams working on ingesting data into Elasticsearch with a certain subset
(Phase I) and a complete set (Phase II) of text data with accompanying metadata infor-
mation, the following requirements and conditions should be taken into consideration.

1. Text data from the documents should be provided in its entirety and with
completeness.

In other words, all the text information contained in processed documents is sup-
posed to be saved and transferred to the other teams without any loss, unless oth-
erwise indicated. In Phase I of the project, only documents of the "Deposition” type
were considered. Therefore, this needed to be extended to support the other doc-
ument types as well. Phase II of the project involved processing all the documents
from the database.

2. Only requested meta-information fields are to be provided for further pro-
cessing.

This means that the final metadata file should only comprise two sets of fields: the
ones which are referred to by the ELS team and necessary for the search engine,
and the fields that are not involved in the search process directly but can be used
by the FEK team for visualization and demonstration purposes.

3. The metadata files should follow the format requirements.

Depending on what restrictions the ELS team imposes on the format of the to-be-
ingested files, it was our responsibility to follow these restrictions. For example,

11

certain metadata files, describing a similar topic or several related ones (such as
articles, questionnaires, etc.), might be incorporated into a single file for potential
improvement of search engine capabilities.

. The CMT team should communicate with the ELS team and other teams
on a regular basis.

This was necessary in order to understand current updates in constraints imposed
on the file structure and size so that the CMT team is able to follow the 2nd and
3rd requirements. This was also necessary to provide other groups with updates
regarding our progress.

. The CMT team must pre-process file content for the TML team appropri-
ately

As various intelligent text analysis algorithms require data to be ingested in differ-
ent formats, we also provided the TML team with full-text data in desired formats.
The reader may find further details in Section|[5.3.2]

. Potential storage of the data on cloud.cs.vt.edu for future project organiza-
tion.

Although it is not required to store all the documents and metadata tables in the
cloud storage for the purpose of pre-processing, this could be a potential direction
for the sake of persisting files to be utilized by future project contributors.

12

Chapter 4

Design

4.1 Approach

We broke down our research objectives into the following research questions:

RQ1: How do we structure the metadata in a format that ElasticSearch can ingest?

RQ2: What text pre-processing should be done on the OCR’ed documents to make them
useful for the TML team?

RQ3: How does UCSF’s proprietary OCR tool compare with open-source OCR tools on a
subset of the tobacco documents?

We initially started by investigating these research questions on a subset of the to-
bacco documents. More specifically, we used the roughly 8,000 deposition documents in
this work. We later expanded the scope to cover all 14 million documents.

In order to be able to provide other teams with the necessary information in the
required format, the following steps were followed:

1. Download data from the UCSF database onto the tobacco.cs.vt.edu virtual machine,
including files and corresponding metadata. This is illustrated in Figure

13

OCRFILE II
[[
CsW FILE OF DATASET BY COLLECTIOMN \

METADATA

Figure 4.1: Files downloaded from the UCSF site

2. Import metadata into a database and analyze the structure of data.

3. Process a small collection of data first. Specifically, locate deposition files based on
file type, then process the deposition files.

4. Convert metadata and files into JSON format, as shown in Figure

OCRFILE |I ., | DEPOSITIONFILE ., | ISONFILE
JSONFILE
GAETADATA (> —> J

Figure 4.2: Process data to be formatted

5. Pre-process texts of deposition files, as shown in Figure This involved the
following steps:

14

+ Text cleaning: Delete the invalid characters which can not be decoded to Unicode.
Delete the blank characters, like CRLF line terminators, and so on.

« Tokenization: Split the given text into smaller pieces. Words, numbers, punctuation
marks, and others are considered as tokens.

« Lemmatization: Reduce inflectional forms to get the correct base forms of words by
using lexical knowledge. The aforementioned processes are described in Chapter

[5in detail.

« Concatenation of Q’s and A’s in one line for easy reading. This process is described
in Chapter [5|in detail.

Deposition ocr files i
=) Text Cleaning

Text Tokenization

- Lemmatization e

Figure 4.3: Text preprocessing

6. Provide the relevant JSON files to the ElasticSearch team.

7. Migrate preprocessed deposition files and JSON files to Ceph.

The next step was to apply the above-stated process to all types of documents. We
have extracted the metadata and content for all the documents and sent them to the ELS
team for processing, and to the TML team for summarization.

4.2 Tools

« MariaDB: MariaDB Server, with its continual open source innovation, is a modern
relational database. We store and view all the metadata of files in MariaDB 5.5.

15

+ Python: We used Python 3 to develop scripts to process files, including JSON pack-
ages, Codec packages, and so on.

« NLTK: Natural Language ToolKit[9] is a leading platform for building Python pro-
grams to work with human language data. We used NLTK to do text tokenization
and lemmatization, and to provide high-quality text to other teams.

16

Chapter 5

Implementation

To manage our work, we identified three major tasks:

1. Identifying different document types
2. Processing metadata

3. Processing document text

These tasks are described in detail below. In order to achieve our goals in a reason-
able amount of time, along with preparing and executing MySQL queries, we focused
on developing code in Python because of its popularity and ease-of-use. We started by
working with only the deposition documents, and then we transitioned to working with
all document types.

5.1 Identifying Different Document Types

The tobacco documents within the dataset are categorized by type, such as memo, letter,
and deposition. Some of the documents belong to several types. The information about
each document’s type is encoded in the MySQL database (further details can be found in
Section [7.1). We identified different document types and decided to process deposition
documents. The number of depositions documents is relatively small: 7995 files overall
as opposed to the entire collection size (about 14 million files). We developed a Python
script to produce a file containing the record keys (unique identifiers) of all the deposition
documents. The record keys were then used to retrieve the deposition files from the
database directly, as the record keys correspond to file names.

17

5.2 Processing Metadata

The objective of the metadata processing task is to transform the metadata from a MySQL
database to a JSON file that ElasticSearch can ingest. Because ElasticSearch could not
ingest the metadata of all 14 million documents in one file, we have transformed the
metadata into a collection of 31 files, each containing the metadata of at most half a
million documents.

As shown in Figure we encode a document’s metadata as two JSON objects: a
header and a body. The header object identifies the document with its unique ID. The
body object contains the document’s metadata as a collection of key-value pairs, where
the key identifies the metadata field, and the value specifies the corresponding value for
the given document.

18

Figure 5.1: JSON object representing metadata

{"index": {"_id": 1, "_index": "tobacco"}}

{"url": "https://s3-us-west-2.amazonaws.com/edu.ucsf.library.iddl.
artifacts/f/z/w/d/fzwd000o/fzwdoooo.pdf",
"Legacy_(LTDL2)_Tobacco_Id": "gbu00ao",

"Title": "RISING MEDICAL COSTS REQUIRE G.H.C. DUES INCREASE IN 1967

VIEW",

"Document_Date": "1967-02-28 00:00:00",

"Author": "NEWMAN HF;SIEGAL A",

"Case": "MNAG",

"Description": "DISCUSSES DUES INCREASE",

"Date_Added_UCSF": "2002-02-01 00:00:00",

—

"Document_Type": "article",
"availablility": "public",
"availablilitystatus": "no restrictions",

"Mentioned": "GROUP HEALTH COOPERATIVE OF PUGET SOUND;...
”%ttached_Artifactﬁ“:
fzwi@@@@#ocr

mediaType‘:

n
’

[{”%ame”:"

ﬁext/plain

n
’

size

".77303,

name

" "fzwd0000). pd

n
",

medi

aType‘:

bpplication/pdf",

size

":3080357%,

name

"' zwd0000). ti

n
",

medi

aType‘:

image/tiff

size

":314038},

n
’

name

":"kzwd@@@@Lthumb.png

medi

aType‘:

Page_Map

Numeric_start_bates

ﬁmage/png",
size:100478}],

" "60025743|/5745",
". "60025743",
'Numeric_end_batesk: "60025745",

Page_Count": "3[

n
’

19

The following steps were applied to transform metadata into the required JSON for-
mat. First, connect to the MySQL database in order to retrieve metadata. Next, execute a
MySQL query to retrieve all metadata entries, ordered by document ID, with document
IDs between the given minimum and maximum ID values. Then, retrieve the result of
this query. The result is a list of metadata entries, each consisting of a document ID, a
metadata field name, and a metadata value. Extract the metadata entries for each doc-
ument in an iterative fashion. Generate the header JSON object followed by the body
obejct for each document.

We later included a text field, which is provided in a page-wise fashion: an addi-
tional key "text content" consists of two key-value pairs, where the keys are "content”
and "page". This would facilitate full-text search by the search engine.

5.3 Processing Document Text

The task of processing the content of the documents can be divided into 2 parts based on
the requests from the teams:

1. Preparing documents for the ELS and FEK teams
2. Pre-processing documents for applying of intelligent algorithms for TML team

These sub-tasks are described in Sections and[5.3.2

5.3.1 Preparing document text for the ElasticSearch and Front-
End Kibana Teams

All the files stored in the virtual machine have a .ocr format. In order to make them

digestible by the ElasticSearch engine, we developed and subsequently updated a Python

script to convert each of the deposition .ocr files into a JSON file. The typical structure
of a deposition file is shown in Figure

20

1(
11
1:
13
14
l.
T
1
18
|-.

Figure 5.2: The structure of the first page of the deposition document

We structured the data to extract page contents separately as shown below:

{

"Page No." : "Page content"

}

The structure of the final file generated by the Python script is shown below:

{"index": {"_id": 0, "_index": "tobacco"}}

{"Title": "Deposition of THOMAS RICHARD ADAMS, March 15, 2000, WHITELEY
— V. RAYBESTOS-MANHATTAN INC.",

"Document_Date": '"2000-03-15",

21

"text_content":[{"page":"1","content":"IN THE SUPERIOR COURT OF THE
— STATE OF CALIFORNIA"Z,
{"page": "2","content":"DEPOSITION OF THOMAS RICHARD ADAM"}]1}

Besides the text itself, the file represents a page-wise distribution of the content, as
well as the document date, as requested by the ELS and FEK teams.

5.3.2 Pre-processing documents for text analytics and machine
learning (TML)

To ensure the correct operation of different automatic text analysis and ML approaches,
we follow the specific requirements for the document text preprocessing provided by the
TML team. The tasks include the following steps:

1. Cleaning documents

The documents stored in the virtual machine were received as a result of prelim-
inary performing of the Optical Character Recognition (OCR) procedure. A com-
mon issue about automatic extraction of characters from document scans is that
the latter may contain a lot of specialized information, such as line numbers and
handwritten inscriptions. Although some of them might be valuable for retrieval
purposes, a significant portion of these characters and strings can hinder the per-
formance of ML algorithms, so cleaning the documents is important. Moreover, the
recognizing algorithm may produce service symbols, which can become additional
noise for ML algorithms. In order to reduce the negative impact of such charac-
ters, we prepared a cleaning algorithm in Python and used it to pre-process a set of
deposition documents. The examples of the comparative file contents (before and

after the pre-processing accordingly) are demonstrated in Figures and

22

M THE S
TN AND FC

INDE
HARD

I DEPOSITION OF THOMAS RICH
4

IT

Figure 5.3: Cleaning page and line numbers from depositions (before vs. after)

Encl <
HCM/mla
pehibr=1

Figure 5.4: The results of cleaning garbage characters, excess spaces, and service

page numbers

E o ~[a
THE COUNCIL FOR TOBACCO RESEARCH-TT.S.A., INC. THE COUNCIL FOR TOBACCO RESEARCH-TT.S.A., INC.
900 TIiIRD AVENUE 900 TIiIRD AVENUE
NEW YORK. N. Y. 10022 NEW YORK. N. Y. 10022
December 23, 1986 December 23, 1986
Dean Befus, Ph.D. Dean Befus, Ph.D.

The University of Calgary The University of Calgary
Health Sciences Centre Health Sciences Centre

3330 Hospital Drive N.W. 3330 Hospital Drive N.W.
Calgary, Alberta, Canada T2N 4N1 Calgary, Alberta, Canada T2N 4N1
Dear Dr. Befus: Dear Dr. Befus:

Figure 5.5: The results of cleaning garbage characters, excess spaces

It should be mentioned that some files may contain line numbers not only in the
beginning of the line, but within the text as well. An example of such a file is given
in Figure[5.6] Also, garbage characters that cannot be identified automatically exist,
such as recognized handwritten phrases in certain documents, which might not
appear in any other file.

23

i would be what, you referring specifically to 1 problematic, and this is why it's going to be

2 Unisys or historically here? 2 difficult to deal with in that regard.

3 A. Well, ye=ah. Well, historically, but I'm 3 Q. What's the triangle?

4 thinking Unisys. 4 A. I just said that was my - for me to kind

5 The thing that triggsred my thought 5 of remember my thinking on number three there, the

6 here was I think it was the grand jury report that 6 trilogy with the kicker that I said.

7 I reviewed that they made a big issue about the 7 Q. Okay. To the right of the

8 hospital bids and the initiative that they 8 triangle, what are those words?

9 developed to try to go after the money in these 9 A. That was just my thinking about to some

10 areas. And what they discovered'in that process 10 extent for the trilogy that all claims require, in
11 was that a system edit that everybody thought was 11l order to deal with to some degree of health care
12 working that should have been tested in the 12 fraud and abuse, to get at it, you got to do a

13 implementation portion of the fiscal agent 13 substantive rt.wiew. To do a more intensive one,

14 contract cbviously was not working, and therefore 14 you got to do a claim-by-claim review. And then
15 payments had continued to be made on these long 15 the third part is that even though you do a

16 after the real purchasing pericd was up and 16 claim-by-claim review, you may never know even

17 resulted in significant overpayments as a result 17 then.

1 s of that. 18 And then of course I think the

Figure 5.6: Line numbers within the document

2. Tokenization and stemming

Some natural language processing approaches require the input text to be repre-
sented in the form of separate instances, i.e., tokens. For other tasks, it might be
necessary to bring the tokens into their initial form. This operation is also known as

stemming or lemmatization. This topic is discussed in detail in Section|2.3| Follow-

ing the received requests and anticipating potential needs, we prepared a Python
script that breaks down a single .ocr file into tokens and returns a file with the orig-
inal lemmas of the tokens. A screenshot with the processing outcome is shown in

Figure

Thank you for your expression of interest in our program of research support. I am pleased to < Thank you for your expression of interest in our program of research support. I be please to
enclose a recent Annual Report that lists grants currently supported and a brochure describing enclose a recent Annual Report that list grant currently support and a brochure describe
policies of The Council. Our application procedure is a two-step process, comprising a policies of The Council. Our application procedure be a two-step process, comprise a
preliminary inquiry and, if that is approved, a final proposal . To accomplish the first step, preliminary inquiry and, if that be approved, a final proposal . To accomplish the first step
potential applicants should submit a brief (3 to. 4 page) preliminary outline of the study for potential applicants should submit a brief (3 to. 4 page) preliminary outline of the study for
which support is sought. It should contain the following information: < which support be sought. It should contain the follow information

1. A synopsis of the project under investigation, its present goals and status. 1. A synopsis of the project under investigation, its present goals and status

2. A brief outline of plans and goals for the proposed research, specifying the next steps to be |< 2. A brief outline of plan and goals for the propose research, specify the next step to be
taken. taken.

3. Anticipated duration and annual direct costs of the study as proposed. Please note that The < 3. Anticipated duration and annual direct cost of the study as proposed. Please note that The
Council will only provide support for a maximum of 3 years. Although grants are made for Council will only provide support for a maximum of 3 years. Although grant be make for

one year at a time, up to two- annual renewals can be considered on the basis of progress one year at a time, up to two- annual renewals can be consider on the basis of progress
reports and materials submitted with renewal applications. report and materials submit with renewal applications

It would also be helpful to have: It would also be helpful to have

1. Brief curricula vitae and scientific bibliographies of the applicant and principal profession 1. Brief curricula vitae and scientific bibliographies of the applicant and principal profession
level collaborators. The two-page NIH format is preferred for the preliminary inquiry. < level collaborators. The two-page NIH format be prefer for the preliminary inquiry

2. One copy each of any two or three publications, abstracts or manuscripts that are closely 2. One copy each of any two or three publications, abstract or manuscripts that be closely
related to the project for which funding is being sought. relate to the project for which fund be be sought

preliminary inquires are evaluated by the Executive Committee of our Scientific Advisory Preliminary inquire be evaluate by the Executive Committee of our Scientific Advisory

Board for scientific merit and for "fit" into The Council's current multidisciplinary biomedical Board for scientific merit and for "fit" into The Council's current multidisciplinary biomedical
research program. The reviewers either encourage or discourage submission of a formal research program. The reviewers either encourage or discourage submission of a formal

detailed application for full competitive consideration. That process takes approximately two < detail application for full competitive consideration. That process take approximately two

nonths. If the vote is to encourage, then appropriate forms and instructions are provided.
Submission deadlines for full (not preliminary) applications are May 31 and November 30
activation is typically seven months later

months. If the vote be to encourage, then appropriate form and instructions be provided.
Submission deadlines for full (not preliminary) applications be May 31 and November 30
activation be typically seven months later.

Figure 5.7: Results of tokenization and lemmatization (before vs. after)

24

5.4 Deliverables and Timeline

In order to keep track of our progress, we developed a list of deliverables. The deliverables
are summarized in Table

Table 5.1: Deliverables

Task Completion date
Sample of metadata JSON files and document text JSON 09.17.19
files to be consumed by the ELS team

Complete structure of the MySQL metadata database 09.24.19
JSON text files for deposition documents (ELS) 10.02.19
JSON metadata files for deposition documents (ELS) 10.03.19
Tokenization and lemmatization done for the TML team 10.08.19
Cleaned content of deposition documents (TML) 10.24.19
Content of article documents extracted for TML team 10.24.19
Different OCR approaches tested on a single PDF 10.28.19
Extracted metadata for all the document types for the ELS 11.07.19

team

Cleaned and pre-processed article-style documents (TML) | 11.15.19

Generated JSON metadata files for 1M documents 11.18.19
Different OCR approaches tested on a sub-set of PDFs 11.20.19
Generated JSON data files for 1M documents 11.20.19
Recommendations on choosing OCR tools, including com- 12.02.19
parative table

Script for generating JSON metadata files with the field 12.03.19
containing cleaned document content

Script for UNIT testing and validating of JSON files 12.03.19
JSON metadata files for all 14M documents 12.06.19
JSON metadata+text files for 100K documents as requested 12.07.19
by the ELS team

All the scripts uploaded to the GitLab repository 12.09.19

25

Chapter 6

User Manual

6.1 Data Source

UCSF’s IDL dataset can be downloaded free of charge. The dataset contains a README
file that explains how to set up the database.
Links to official resources:

« Official IDL Website:
https://www.industrydocuments.ucsf.edu/

« Downloadable IDL dataset:
https://ucst.app.box.com/v/IDL-DataSets

6.2 MariaDB

We used a CentOS Linux 7 machine for development. To install MariaDB 5.5 on CentOS
7, follow these steps:

« Install the MariaDB package
sudo yum install mariadb-server
o Start and enable the MariaDB service

sudo systemctl start mariadb

26

https://www.industrydocuments.ucsf.edu/
https://ucsf.app.box.com/v/IDL-DataSets

sudo systemctl enable mariadb

« Verify that the installation was successful. The output should state "Active:
active (running)".

sudo systemctl status mariadb

6.3 Python
We used Python 3, which can be installed on CentOS 7 by following these steps:
« Install IUS (Inline with Upstream Stable)

sudo yum -y install
— https://centos7.iuscommunity.org/ius-release.rpm

« Install the most recent version of Python
sudo yum -y install python36u
« Verify that the installation was successful. The output should be "Python 3.6.8".

python3.6 -V

6.4 Useful Linux Commands
We have found the following Linux commands to be useful in our work.

1. ssh userl@tobacco.cs.vt.edu

This command is used to securely log into the remote machine that we used for

development.

2. mysgl -u root

This command is used to launch the MySQL shell and enter it as the root user.

27

6.5 Interaction with other teams

During the course of this project, we interacted with multiple teams in order to
understand the requirements and fulfill them in a timely manner.

6.5.1 ElasticSearch team

We worked closely with the ElasticSearch team to come up with a suitable contract
for the metadata and data fields that could be ingested into ElasticSearch. We re-
trieved the metadata and data from a MySQL database and converted it into a JSON
for ElasticSearch ingestion.

6.5.2 Text Analytics and Machine Learning team

We worked with the Text Analytics and Machine Learning team to understand
their requirements and provided them with suitable data. We pre-processed the
raw data extracted and handed it over to the TML team for further processing. The
TML team used the data provided to apply machine learning algorithms to extract
patterns, summaries, and recommendations.

6.5.3 Front-end and Kibana team

We worked closely with our client, Dr. Townsend to understand his research needs
in order to guide the Front-end and Kibana (FEK) team in terms of insights about
features that can be used for visualizations.

28

Chapter 7

Developer’s Manual

The aim of this section is to frame it in a manner such that it may be used as a manual to
redevelop the project. We also provide links to external references and points of contact.
We began by reading a tutorial drawn up by Saurabh Chakrabarty [11]], who had
undertaken parts of this project earlier. The instructions therein provided us with an
initial idea of what could be expected to be achieved over the course of this project.

The UCSEF library website hosting 14 million tobacco documents was the data source.
The site contained a list with definitions for the various topics and keywords one can
use to navigate through these documents. The definitions proved to be very helpful in
understanding the data structure.

7.1 Metadata

The IDL dataset contains 76,014 types of documents. Table [7.1]lists the top five document
types with the highest number of documents.

Table 7.1: Document types: Frequent

Document Type | Number of Documents
Letter 1954308
Report 934164
Memo 795282

Note 660035
Email 587367

29

Table lists some document types with a moderate number of documents. These
are the types of documents that occupy a chunk of the tobacco dataset but are individually
lesser in number as compared to the types of documents in Table

Table 7.2: Document types: Moderate

Document Type Number of Documents
proposal 25203
personnel information 12449
collage 7768
patent application 5988

Table lists some document types with a smaller number of documents. These
are the types of documents that appear infrequently in the tobacco dataset, so the total
number of their instances is much less when compared with the types of documents in

Table

Table 7.3: Document types: Sparse

Document Type | Number of Documents
microfilm 1146
application 774
flow chart 542
survey 310
legislation 207
telex message 17

Table lists some document types that are actually combinations of discrete doc-
ument types. By inspecting some of these documents, it was found that these generally
contain text that can be categorized as belonging to two or more document types. For ex-
ample, a single PDF of 2 pages where the first page contains a letter and the second page
contains an article, can be found to be stored under the document type ‘letter; article’
Also, these files are mostly longer, when compared to other tobacco documents which
are classified as of a certain type. The number of documents belonging to a certain com-
bination of discrete file types can vary between moderate to very low.

30

Table 7.4: Document types: Combined

Document Type Number of Documents
bibliography; chart; graph; map; report, scientific 3766
consumer response; letter; letter, consumer 2545
budget; budget review; chart; graph; map; memo; table 365
brand plan; chart; graph; map; memo; promotional material; table 323
handwritten; report; report, market research 80
email; revision; speech 77
advertisement; agenda; brand review; presentation;
promotional material; speech 2

Table lists examples of a few discrete document types which are extremely rare

in the tobacco dataset, with occurrence counts like 1 or 2.

Table 7.5: Document types: Rare

Document Type Number of Documents

study proposal

submission, industry commission inquiry

response statement

disclosure of invention

[W N G Y

19641014

Table lists the metadata fields along with their descriptions.

Table 7.6: Metadata field descriptions

Begin of Table
ID Code Description
0 IGNORE IGNORE

1 tid Legacy (LTDL2) Tobacco Id

2 cn Collection
3 ti Title
4 dd Document Date
5 au Author

31

Continuation of Table|7.6

ID Code Description
6 recommend Recommend
7 auo Organization Author
8 aup Person Author
10 refdoc Referenced Document
11 at Attending
12 ato Organization Attending
13 atp Person Attending
14 brd Brands
15 bnalias Alternate Bates Range
16 mbn Bates Mater
17 othernum Other Bates Range
18 bn Bates Number
19 cc Copied
20 cco Organization Copied
21 ddi Date Added Industry Site
24 case Case
25 desc Description
27 ddu Date Added UCSF
28 ddprod Date Produced
29 dt Document Type
32 availability availablility
33 | availabilitystatus | availablilitystatus
35 fn File Number
36 grantnum Grant Number
38 men Mentioned
39 meno Organization Mentioned
40 menp Person Mentioned
45 pgdisp Page Count Display
46 attach Attached Artifacts
48 box Box Number
49 rc Recipient

32

Continuation of Table|7.6

ID Code Description

51 rco Organization Recipient
52 rcp Person Recipient

53 redact Redacted

54 rnm Minnesota Request Number
55 rno Other Request Number
56 reqno Primary Request Number
57 area Area

58 speccoll Special Collection

59 ddship Ship Date

60 mm Multimedia

61 st Status

63 topic Topic

64 food Food

65 pgmap Page Map

66 ccp Person Copied

67 kw Keyword

68 access Availability

69 rt Run Time

70 genre Genre

76 per comp:persons

78 org comp:org

83 mbn_begin Master Bates begin

85 mbn_end Master Bates End

87 w Witness Name

89 journal Journal Citation

90 folder Folder

91 series Series

92 rights Rights

93 alias_begin Alias Begin

94 alias_end Alias End

95 bns Numeric start Bates

33

Continuation of Table|7.6
ID Code Description
96 bne Numeric end Bates
97 bnp Bates Number prefix
100 pPg Page Count
101 | privilegecode | Privilege Code
103 ct Country
104 lg Language
105 dupes Duplicates
106 chemical chemical
107 ddm Date Modified
108 exw Express Waiver
109 adr Adverse Ruling
110 dpl Privilege Log Date
111 source Source
112 crt Court
113 df Document Format
114 ddmu Date Modified UCSF
115 dpdt Deposition Date
116 co Company
117 dg Drug
118 en Exhibit Number
119 id IDDL ID
121 ot ocr text
122 md metadata

End of Table

7.2 Remote Machine

For development purposes, we have used a Virtual Machine (tobacco.cs.vt.edu) hosted by
the Department of Computer Science at Virginia Tech, with storage capacity of 2000 GB.

34

It came from others, pre-installed with MySQL and Python libraries. To connect to the
VM, ssh into tobacco.cs.vt.edu as userl.

Run the following command in a terminal:

ssh -1 user1 tobacco.cs.vt.edu

When prompted for a password, type that, and press enter to login. You may contact
Saurabh Chakrabarty or one of the authors of this report for the password.

We created a directory ‘fall2019’ to store this group’s files.

7.3 IDL Dataset

UCSF hosts another site which stores all the metadata and OCR-ed versions of the dif-
ferent files related to the tobacco settlement cases. We downloaded the metadata and
created the database ‘data’ in our VM.

Next, we created a directory named ‘data’. We downloaded all the above mentioned
OCR-ed files under this directory. We created the script ‘download.sh’ to download the
zip files to the VM (./data/rawdata) directly from the UCSF site using the wget command.

These files were then unzipped at ./fall2019/data using the script saved as ‘untar.sh’.

Code used: tar -xzvf f-j.tar.gz

These files are stored in a tree like structure with 16 base directories, with 4 levels
under each. At each level, there are 16 more directories which are subdivided into 16
further directories. The process is repeated until the last level is reached, where the
final folders containing the .ocr files are stored. When we want to access an OCR-ed
file with record key fftvv0000, we can find it listed as ffvv0000.ocr under the file path
/fall2019/data/t/t/v/v/{tvv0000/

As an example, to view fIff0228.ocr, run the following command in terminal:

vim ./fall2019/data/f/{f/£/£/£ff0228/{fff0228.0cr

Figure [7.1]shows the output file.

35

November 28, 1972

r. Dee

i I am advi
t he is one of a very few among approximately 6, 5808 applicants who ha
invited to final formal application. This means that he is among some 368
who are in final competition for the 83 entering places.

Although the outcome is unp ictable at this s and the admission's de

eration undoubtedly will g for some months, he very definitely is bei
iven serious consideration. If I should hear anything further, I shall adv

Se you.

r rds.
Sincerely,
William J. Darby

WIDirfgs
S/ TB228/FFFFB228. 0cr (END

Figure 7.1: Depicts the text editable version of a tobacco file saved as ffff0228.ocr

7.4 MySQL Database

The UCSF website also contains an instruction manual and README.txt, which helped
us recreate the database on our Virtual Machine. We used the database server MariaDB,
which is an open source fork of MySQL, for data manipulation.

First of all, a new database was created under the user ‘root’ and name ‘data’.

Login as root user and no password by running the following command:

mysql -u root -p

Create the database ‘data’:

[mysql] CREATE DATABASE data CHARACTER SET utf8mb4 COLLATE
utf8mb4 unicode_ci;

Also, notice that we have set the character set to utf8mb4 while creating the database.
This is because the default utf8 encoding allows a maximum of 3 bytes per characters
which may not support some special characters or alphabets which would require 4 bytes.

36

Using utf8mb4, which allows up to 4 bytes per character, would work in case there were
any special characters in the metadata. Again, collation is a set of rules for compar-
ing and sorting data in a character set. To maintain uniformity, we set the collation to
utf8mb4_unicode_ci (‘ci’ designates case insensitive comparisons).

Next, we populated new_data with the metadata from the database dump file. The
command used to extract the database dump file is:

tar xzf idl-database-dump.tar.gz

The command used to populate the metadata tables is:

mysql -u root -p data < idl-database-dump.sql

Figure [7.2|shows how one can log into MariaDB as user ‘root’ and view the databases
under it.

[userl@tobacco ~]% mysgql -u root -p

Enter password:

elcome to the MariaDB monitor. Commands end with ; or \g.
our MariaDB connection id is 22

Server version: 5.5.64-MariaDB MariaDB Server

opyright (c) 2088, 2818, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or "\h' for help. Type '\c' to clear the current input statement.

ariaDB [(none)]> show databases;

information_schema |
data |
mysqgl

performance schema |

5 rows in set (.88 sec)

ariaDB [(none)]> use data;
Reading table information for completion of table and column names
ou can turn off this feature to get a quicker startup with -A

Figure 7.2: Logging into MariaDB and viewing data and other databases under it.

37

MariaDB [data]>» show tables;

idl_collection
idl doc

idl _doc_field
idl doc_tobacco
idl_field

idl industry

record_key varchar(8)
bates varchar(255)
collection id bigint{2&)
dm int(11)
document_category varchar({255)
pages int(11)
industry id bigint{28)

8 rows in set (8.886 sec)

MariaDBE [data]» desc idl doc_ field;

MNULL

varchar(191)
varchar(255)

Figure 7.3: Viewing the tables idl_doc, idl_doc_field, and idl_field present in the

database ‘data’ and the corresponding table specifications.

Mull = Default

. MULL
record_key var MO MULL
bates) YE: NULL
collection id 3 MULL
dm int(1: MULL
document category var 255) MULL

i NULL
MULL

code

name

rows

MariaDB [d;

Mull

MO

&) NO
datetime MO MULL
datetime MO MULL
varchar() MO MULL

5 rows in set (8.86 sec)

Figure 7.4: Viewing the tables idl_data_tobacco, idl_collection, and idl_industry
with their descriptions under data

39

Figures|7.3[and [7.4] show how one can view the various tables in the database ‘data’
and view the corresponding table descriptions.

To join idl_doc and idl_doc_field, use:

SELECT * FROM idl_doc id, idl_doc_field idf WHERE id.id=idf.id;

To retrieve record keys, use:

SELECT record_key FROM idl_doc WHERE id="‘id_value’;

To view descriptions of different numerical codes under the column idl_doc_field.itag,
use:

Select * from idl_field; The database has metadata for documents pertaining to four
industry types referenced by distinct ID, as shown in Table[7.7} To view the different types
of industries whose files are in the database data, use:

Select * from idl_industry;

Refer to Table|7.7|to view the output of the above query.

ID Name

1 Drug

2 Tobacco
3 Food

4 Chemical

Table 7.7: Values and meanings of the industry IDs (idl_doc.industry_id)

To view records of files belonging to the tobacco industry only, use:

Select * from idl_doc where industry_id=2;

OR,

Select * from idl_doc_tobacco;

Table idl_doc_tobacco has been created by extracting data from idl_doc where the
value of industry_id is ‘2’, i.e., fetching rows from the table pertaining to the tobacco
industry. This was done to facilitate faster traversal of the rows related to tobacco case
files while executing SQL queries.

To view record_keys of document type deposition, use:

SELECT distinct record_key FROM idl_doc_tobacco id, idl_doc_field idf
WHERE id.id=idf.id AND idf.itag="29’ AND idf.value=‘deposition’;

40

7.4.1 Use of the Tables idl_industry and idl_field

In case we want to know which kind of industry a document with
idl_doc.record_key="ffvv0000° and idl_doc.industry_id="2" belongs to, we would
be able to query the table idl_industry with the industry_id which would return us a
row with the meaning of ‘2. See Table|7.7|for an example.

The table idl_field contains the significance of all the ‘itag’ attributes attached to any
document we encounter in the table idl_doc_field. For example: A document has itag
attribute = ‘29°. We may query the table idl_field with idl_field.id=idl_doc_field.itag to
view its meaning. Refer to Table|7.8|to view the output of the above query.

ID Code Short_Description
29 dt Document Type
Table 7.8: Description of the itag value 29 fetched by querying the table idl_field

Here ‘ID’= value of itag and ‘Short_Description’ is the meaning of the itag.

7.5 Scripts

7.5.1 Test Runs

Having completed the setup, our next job was to start identifying the scope of our
work and create short term goals. We decided upon creating a smaller prototype with
only the metadata of documents of the type ‘deposition’ (select distinct record_key
from idl_doc_tobacco id, idl_doc_field idf where id.id=idf.id and idf.itag=29 and
idf.value=‘deposition’;). Typically, we would test out our code on a couple of instances
before running it on the full set of deposition related data.

We ended up creating Python scripts with functionalities as follows:

1. utils.py: This script stores values of several constants with multiple instances of
use throughout our scripts. It stores the constants username, password, hostname,
and database name required to connect to the database ‘new_data’. Additionally,
the function connect_db() defined here can be called from other programs to con-
nect to ‘new_data’ readily without going through the trouble of writing the code
and setting up a connection every time.

41

2. determine_depositions.py: This script was initially used to fetch the record ID
(idl_doc_tobacco.id) of all the tobacco files which are of the type ‘deposition’. The
output was stored in the text file deposition_ids_full.txt. However, in the next it-
eration, we upgraded the code to create script (3).

3. determine_ids_by_type.py: This script is an upgraded version of script (2) and
can be used to fetch the record ID (idl_doc_tobacco.id) of all the tobacco files by
the document type. Currently, we ran this to fetch the IDs of the document types
‘deposition’ and ‘article’ and their corresponding outputs are stored in the text files
deposition_ids_full.txt and article_ids_full, respectively. A subset of the deposition
IDs are stored in another text file, deposition_ids_100.txt, which was initially used
as an input in script (4). After successful execution with the small subset, we moved
on to process all the depositions by using deposition_ids_full.txt as input in script
(4). The same process was repeated for the articles.

4. metadata_to_json.py: The next part was to convert the metadata of the files that
we will be using into JSON format. Since we were just dealing with depositions
initially, we converted the metadata for only that document type. In the next it-
eration we also included metadata for document type ‘article’. This script helped
in achieving that, by using ID (idl_doc_tobacco.ID) of deposition documents and
articles as input. We had used the static file deposition_ids_full.txt as the input for
depositions, and article_ids_full.txt for articles. One should note that, based on the
requirements from the ELS Team, we have included the URL of the source of each
file as part of the JSON file containing the metadata. Also, we have altered the date
format to match mm/dd/yyyy based on their requirements, in the current code.

Figure shows a code snippet used to read the ID from
deposition_ids_100. txt and fetch idl_doc_tobacco.id from the database.

idl_doc_field WHERE id I . format_strings, tuple(

Figure 7.5: Section of code from metadata_to_json.py

42

The output of this script is the generation of the file deposition_metadata.json
and article_metadata.json which are stored in Ceph with file path:
/mnt/ceph/shared/tobacco/metadata

. file2json.py: This script was initially generated to convert the text content of the
OCR-ed tobacco documents into JSON. We were able to find 8136 deposition docu-
ments, out of which four thousand were successfully parsed initially. The OCR-ed
documents which were generated based on scanned documents contained many
anomalous characters. These were due to the presence of handwritten texts, com-
pany logos, signatures and other less machine recognizable fonts in these scanned
documents. The OCR techniques would fail to recognize these as valid English
characters and pass garbage characters like ** °. We found that the presence of
these anomalous characters in the OCR-ed documents were causing the misses.
We were able to work around the problem by encoding each word in the text and
leaving out the ones that could not be encoded from the file to overcome this imped-
iment. Later we were able to parse all of those 8136 ‘deposition’ documents. These
JSON files can be found under the folder /fall2019/deposition_json. The record_key
of the files serve as their name under this directory.

. Preprocess_sample.py: This script performs the following text processing tasks
on the tobacco file texts: tokenization, lemmatization, and removal of unnecessary
white spaces, numbers, and garbage characters. To view the processed version of
the file fghb0000.ocr, run the following command: less cleaned_file.txt. Figure[7.6]
shows an example of a processed file. However, in the final run, we ended up not
requiring to implement lemmatization and tokenization on our documents; these
tasks were designated to be taken care of by the TML team.

43

t 11:
policy a+ The € il. ap tion
preliminary i i and, 5 e appro inal propo«al .
potential appl uld submit a bri=+ . prelimin
I the follow information

ion and an
(provide sup
one year at a ti up to two- an
report dﬂd mater submit with r
helpful tCl
EntiFi. biblic
lldLICIr‘dtCIT 3
ny each CI+

Preliminary inquire b 5)
Board for scientific meri for "fit
research program. The r N
tion for +ull c i n~1d=rdt1
= FGpF

cleaned file.txt

Figure 7.6: Cleaned file after application of text processing methods like lemma-
tization and tokenization.

7.5.2 Final Run

1. metadata_to_json_fast.py: This script did two tasks for us in the final run of the
project:

(a) Generate the metadata only: The metadata of all the tobacco documents were
generated ordered by the range of ‘ID’ values fed as user input. Typically,
we generated the metadata for 1 million documents at a time. Code used to

44

generate metadata for the first million of these documents is: python meta-
data_to_json_fast.py 0 1000000

(b) In the next step, we modified this script to generate the metadata along with
an additional field ‘text’ that contained text or data within the tobacco docu-
ments. The same method as above could be followed to run this script. Also,
based upon the ELS team’s requirements that were due to constraints with re-
gards to memory allocation, we generated metadata with data for 100k doc-
uments and stored them at Ceph. The location in the ceph directory is: cd
/mnt/ceph/shared/tobacco/

2. file2json.py: Unlike in the test runs, we were no longer required to send the
JSON files containing the data within the tobacco documents separately to the
ELS team. Instead the file generated using the second version of the script meta-
data_to_json_fast.py would suffice. However, the script file2json.py is imported
by metadata_to_json_fast.py, so that it can use the functions to access the OCR-ed
files and extract their cleaned versions as value of the metadata key field ‘text’.

3. file2json2.py: This script was written to access the OCR-ed files and clean their
contents. Then, it would generate files containing cleaned versions of data within
those documents and save them by their record key.

4. utils.py: This remains unchanged and has the same usage as in Test Run defined

in Section [Z.5.11

7.6 Alternative OCR Techniques

The presence of garbage characters and the poor quality of some OCR-ed files have lead
us to look for alternative approaches to implement OCR on the tobacco documents. This
was mainly to improve the quality of text files which were extracted from scanned images
of newspaper articles, blurry texts, and handwritten texts. The methods implemented
gave us results with a varying degree of success except for recognizing handwritten texts.

The Python scripts and output text files are saved in the folder ocr at the filepath:
/fall2019/ocr/

We can do a comparative study based on the file jydp0228. The URL of the original
PDF is https://www.industrydocuments.ucsf.edu/tobacco/docs/#id=jydp0228.

45

https://www.industrydocuments.ucsf.edu/tobacco/docs/#id=jydp0228

1. PyPDF2: This approach failed to identify paragraphs and columns within the text.
The output had a single paragraph with all of the columns merged together. Figure
2.5 shows the screenshot of the text file extracted by this process. The Python script
used can be found with the name test2.py.

2. PDFMiner: This package gave us much better results with respect to approach (1).
It could identify paragraphs and columns. This would be a fairly efficient approach
when we are dealing with PDF files with column texts as it can append the text
from the second column on a page below the text from the first column on that
page. However, it failed to identify the tabular structure of data in our test file. The
columns were simply appended one after the other which resulted in the loss of in-
formation to be retrieved from the rows of the table. Figure 2.6 shows a screenshot
of the text file retrieved by this process. The Python script used can be found with
the name test2.py.

3. Abbyy Cloud OCR: This tool was used on the UiPath platform to test the file.
We used a trial version which developers can sign up for from Abbyy’s official
website. This method could extract text with relatively good accuracy. In addition
to identifying the columns, it could also recognize the tabular structure of the text.
Figure 2.7 shows a screenshot of the text file extracted by this process. We will
implement this method by using a Python script next.

We also tested these methods on the scanned version of an old newspaper article be-
longing to the tobacco dataset, whose OCR-ed file is saved as ffbb0020.ocr in the database.
The PDF of the scanned copy can be found at the UCSF website. Figure|7.7|shows a snap-
shot of the raw document from September 14, 1975.

46

®
Mar

@

/éﬂ'e,if; 2/“” &(ﬂ,&wﬂtr” Dlestfas” o

boro J ockeys

For First Place

LM A e Timn

The elgirests pushers are
pew Irtn what IM idwnrmmg
{rdusiry ealls “positioning.”
which means bhal a predoct
tries bo staes out &0 area for
Itself in the gmioke s Rilnd,
~ You ¢an see thy position 2
Brand {5 trying bo occupy by
reading Lhe popy and kcking 4l
the Bllustratians im the ads A
brand on the upswing slays
with e "mood” message. A
Brand that's slipping keaps
changing the message,

The Jongast-rurding -cam-

i i Lhe elganiite bysimess
¢ Marlboro's weslern matil,
and it will continue 8% Inng 8%
the bramd continues 1o move ug
on ihe gales ehart, Maribore is
on Ihe verge of overtaking Win-
shom as {he fopesell g br and in
fhecountry

m hlselhorn message is

ar. "Come twhere the Ma-

'm' 15 * What 1t's really s aying,
beyand that, k= "This is md
ofie of those glay ok-iar and
|aw-pleatire brands This rope
Yo cAR sty

Winston kg also in phie Tl
Favor” ealigoy. !t ko a
beyvy shep of tar sod plcaline,
eon mare than Marlors
Bince it has begon 1o Jome
iground 1o Marlbare, Winston
bs3 ehanged the medals who
appear dn ls ads. They me
tend {a be young poople drecsed
Inblue jeans, and they're say-
Ing 1hngs e

By Miltea Moskowil

Yicerdy. for examfle, s now
coming 81 smokers wlth the
tine: “Why Viceroy? Because
14 nover smoie 2 boring
cln.rltlg.“ Boring masl meaa
Iose cigaretie bragds which
are gn]a¥ing good sales.

S we have 8ds for True
shawing a smoket wha Ras:
“Why all the tald oy | smok-
ing 1 decided I'd elther quit or
gemckeTroe JemokeTrue " Or

~the ads for Vanlage, which

promise ihe Havor of & fall-
{laver cigarette *witho any-
where near the tar and

nicatine ™

Diora). where smakers related *

Or Uhe ones fof }

JR—

7
]

how mach tar and Micotine bhey

Teet onthe “Doaral il

Foor Liggetlde Myere, whiss -
brands gre all in & etale of
relreat, i really despesate, -
It's now brying to posilion Leek

g1 “the third eiggreie” for
smohits whoig Lhreats gel

rasay aftes emoking those full- -
Plavared ejpateties all day ard ©

who don'} Lke the high-fuora-

fion brandy becduse dhey .

“hardly 1aste ke anything

01 16 two etherheands, L&
and Onecterfield, Liggett &

B prers 32 en0a Lo have just abeut

at

theown Ly the lowel LEM, a |

brard o0 the dechine for many
years, [pow being positioned

as"he proud smdke " whatew-

#r that means. And Chesler-
firld, whode maled wfe in danger
ol diszppearing. is uslng the
slogan that w as o winmer fo: It
4§02 years ggo, “Theysalisly.™ It

may be thal the poopie who
remenbet thal Siogan ate the
enly ones stili dmoking the,

brand.

win 1113 =
-

Figure 7.7: Original PDF file saved in UCSF website

It can be seen that the quality of scanned text cannot be regarded too highly in terms
of readability; it is unlikely that the font would be easily recognized by machines. The
quality of the print in the document is not consistent either. Some of the alphabetics are
darker than the others throughout the article, which is probably due to the kind of ink
used for printing in those days. In the current OCR-ed version, the body of the document
is composed of words which are not necessarily part of the English dictionary and are
generated based on the wrong interpretations of words present on the scanned document.

47

Applying method (1) with PyPDF2 yielded no result as the code failed to parse the text.
Method (2) using PDFMiner successfully extracted a text editable file, but the content

does not make much sense; it is similar to what is the case with the current version.
Figure [7.8| shows the text file obtained.

L fC9% e woyv(re,y deersn’ an Gellf g’

~lar~boro Jockeys .
For First Place

- TAe elgarelle pusAers ar
paw Intu wbal Pe advtttising
mdnary eall["po :uimmiL"™
wMeh means Ual a proN[t

tries lo sta¥Ye eut an ara Ior
LuelnnNeamnlerlmind .

Jou tan ue Me posllice a
brand is tpmg lo a'apy by
readinBD"ecopy

IMle Illustr

Mand on Ne vlsswP

wilA Its "mad’ m

brand Wh slipFng kreps
aiangin8lnemneage.

Irotine .” Or Ihe ones Irc ;

Dwal, mMre smokers related E

how'm, dsurandm[«Nelhey *
lalenthes"DOralDiel™ PvorLlggell&Myer®

.whese *
luands are all m a mu ot .
reVea'. b really Ilesperate :
.nowltyin posillonlark .
ftle” for .

bj NiIMe Yoskowitg

raspyab<nmoLlnBNaelulb wAc don't like the AIgR(yil a~ tion brande becavse Ney

ffbbeB2e t2.txt

Figure 7.8: Text file extracted using method (2)

The process failed to recognize the English words and distinguish between sentences
in a paragraph. The accuracy of identifying meaningful text was below average. For
example, the first sentence in the article which says "The cigarette pushers are now

48

into what the advertising industry calls "positioning". which means that a prod-
uct tries to stake out an area for itself tn the smoker’s mind." has been interpreted
as "TAe elgarelle pusAers ar paw Intu wbal Pe advtttising mdnary eall["po :uim-
miL" wMeh means Ual a proN[t tries lo staYe eut an ara Ior [uelnnNeamnlerlmin]
! As is evident, the resulting text does not pass for a meaningful sentence.

Finally, the method (3) using Abbyy Cloud OCR did manage to extract the text with
much better accuracy in this test case. Even though we cannot vouch for the degree
of success this method achieves with every other newspaper article, it is not a bleak
situation that we look forward to. The English words were mostly well recognized as
were the columns in the report. Having said that, due to limited spacing between the
second and third column in the scanned document, the spacing between the last two
columns is not very wide in the generated text document either. If one refers to Figure
one may notice that the two columns are pretty close to each other.

| I

-
Marlboro Jockeys
. 1

a 1
For First Place I
The cigarette pushers are nicotine. 47 oOr (he ones foe J

The Doral, where smokers related '

how much tar a nd nicotine they :

lost on the'Doral Diet.”” =

Poor Ligge 11 It Mye rs. whose ;

brands are ail in a state of .

retreat, is really desperate. ; 1
3 t’s now trying to posit ion Lark :

‘tow into what the advertising
industry calls "positioning,”

which means that a product Honey
tries to stake out an area for

itself in the smoker's mind.

You can see the position a Tree

brand is trying to occupy by
reading the copy and looking al
» the illustrations in the ads A
brand on the upswing stays

with its "mood” message. A
brand that’s slipping keeps
changing the message.

The longest-running cam-
paign in the cigarette business
is Marlboro’s western motif,

and it will continue as long as
the br and Cant tn ue s to move up
on the sales chart. Marlboro is
on the verge of overtaking Win-
Wton as the top-selling brand in
the country

, The Marlboro message is

clear; "Come to where the fla-
vor Is.” What it’s really saying,
Jjeyond that, is: "This is not
one of those sissy tow-tar and
‘tow-olcotine brands This Is one
you can taste.”

. winston is also in this “full-
flivor category. !t has 2

heavy slug of tar and nicotine,
even more than Marlboro

Since it has begun to lose
(ground to Marlboro, Winston

has changed the models who

appear In Its ads. They now

tend to be young people dressed

h Milton W ostomU

Viceroy, for example, is now
coming at smokers with the . and Chesterfield, Liggett it .
line: “Why Viceroy? Because Myers seems to have just about .

I'd never smoke a boring

cigarette.’? Boring must mean

those cigarette brands which years, is now being positioned

are enjoying good sales.

So we have ads for True

stewing a smoker who says:

+"why all the talk about smok-

ing 3 dec ided Fd either quit or slogan that was a winner for it
smokeTrue. 1 smoke True ” Or to years ago, “They satisfy.” It

+ the ads for Vantage, which may be th=t the people who

promise the flavor d a full-
flavor cigarette “without any-
where near the tat and brand. -

as “the third ciagrelte” (or .
smokers whose throats get
raspy after smoking those full- =
flavored cigarettes all day and
who don’t like the hlgh-filtra-
tion brands because they .
“hi-dly taste like anything

On its two other brands, L&M :

thrown In the towel L84, a m
brand on the decline for many ,

as “Che proud smote/1 whatev- =
er that means. And Qiesler-

fietd, whose sates are In danger
of disappearing, is using the .

10 years ago. "Theysatisfy/' H

remember that slogan are the
only ones still imoting the.

Figure 7.9: Text file extracted using ABbyy Cloud OCR, method (3), with scaling

This may require the reader of the text file to be slightly more attentive to be able to
separate them. This problem could, however, be overcome to some extent by increasing
the scaling factor — a feature of Abbyy that magnifies the incoming PDF document by a
multiple of the scaling factor — and reading the PDF.

49

Figure show how each OCR technique performs on a sentence extracted from

the newspaper article.

UCSF

TAe elgarelle pusAers ar
paw Intu wbal Pe advtttising
dnary eall["po:uimmilL"

Meh means Ual a proN[t
ries lo staYe eut an ara Ior

“The cigarette pushers are
pow into what the advertising
industry calls *‘positioning,”
which means thal a product
tries to stake out an arca for
Rself in the smoker’s mind,

PDFMiner

~ TAe elgarelle pusAe

paw Intu wbal

mdnary eall["po :u

wMeh means Ual a pr

tries lo staYe eut an ara Ior
IuelnnNeamnlerlmind .

Abbyy Cloud OCR

e clgarette pushers are

»w Into what the advertising
findustry calls "positioning."”
pwhich means that a product
ries to state out an area for

fuelnnNeamnlerlmin].

[tself tn the smoker’s mind.

Figure 7.10: Comparison between different OCR techniques on a sentence of the

news article shown

Table illustrates a comparative study among all the above discussed OCR tech-
niques over a varied set of types of documents.

Table 7.9: Time and cost involved in implementing the different OCR techniques

UCSF | PyPDF2 | PDFMiner Abbyy Cloud OCR
Time | Unknown | Good Good Average (depending upon server speed)
Cost | Unknown | None None Paid

Table[7.9| shows how time and cost may impact our choice of tool.

Hence, we may conclude that Abbyy Cloud OCR is an ideal choice if we have the

resources. Otherwise, PDFMiner may be the optimal choice, given that it outperforms the

UCSF’s proprietary tool in scenarios involving two column PDFs. However, it should be

noted, there are no other significant differences between the merits of those two methods.

50

7.7 File Storage System

We are using Ceph to store our JSON files, which is an open-source storage platform
based on a single distributed computer cluster. All the recent data derived during the
project are uploaded and stored there.

To access Ceph, ssh into tobacco.cs.vt.edu as userl and run the following command
in the terminal:

cd /mnt/ceph

You will find several folders under this directory. We, the CMT team, have used the
folder ‘shared’ to store our JSON files and tobacco documents, under which there is a
‘tobacco’ folder. To view, use:

cd /mnt/ceph/shared/tobacco

Generally, to access a JSON or text file in the storage, make sure that an appropriate
folder is opened. After that, run one of the following commands in order to open the file.

« vim filename (for OCR files without a file extension)
« vim filename.json (for JSON files)

To obtain a list of the current path’s objects, run dir. The storage is organized in the
following hierarchy. There are 3 main directories:

1. data

2. metadata final

3. metadata_with_data_final
Details are as follows.

1. data: This folder includes groups of OCR files used and/or produced during the
project.

« Imillion_raw: First 1 million OCR files obtained via sorting the whole set of
documents by their IDs in database. Used for intermediate data preparation
and testing of some of the algorithms.

o article_data: All the OCR files of ’article’ type. Served as one of subsets of
documents for cleaning

51

« article_data_content: Output of the cleaning algorithm derived after using a
set of “article’ documents as an input

« deposition_data: An unprocessed set of all 'deposition’ type documents. Used
for intermediate file processing and examining their contents.

2. metadata_final: This directory comprises metadata JSON files for 10M documents
of the tobacco dataset. There are 31 files overall; each file stores metadata for 500K
documents sorted by corresponding document IDs in the database. See Section[5.2]
for details.

3. metadata_with_data_final: Here, 3 JSON files embracing both metadata and text
content of 100K documents are stored, each for 33K files (see Section[5.2|for details)

7.8 Code Repository

The final code used for generating the metadata and data has been put in a GitLab repos-
itory [5], under the project name ‘CMT’ [2]. The code is arranged in folders and should
be easily navigable. Figure shows a screenshot of the repository.

master cmt + v History =~ Q Findfile =~ WebIDE &

;A.":"E':,\' Merge branch ‘master’ of code.vt.edu:cs5604/cmt seddfeae I
M4 Debasmita Biswas

£ Auto DevOps enabled Add README Add CHANGELOG Add CONTRIBUTING

Name Last commit Last update
B8 To_Generate_JSON adding record key content text file 1 day ago
B data pushing all services 3 weeks ago
B misc_files Add new directory 1 day ago
B service2 modified call function 3 weeks ago

Figure 7.11: Screenshot of the CMT team’s GitLab repository

52

7.9 Ingestion of New Documents

In addition to the current dataset, it is anticipated that we may have to deal with a small
number of files being added from time to time. It would have been fairly easy to write a
script that would extract the new data from the database and parse it into JSON format.
Finally, it could append the newly generated JSON file to our older version present in
Ceph, which could in turn be accessed by the other teams on the project. However,
the INT team would not have access to our Virtual Machine (tobacco.cs.vt.edu) and the
database ‘data’. The INT team also tried to set up Kafka, but could not do so within
the available time. After weighing alternate options, it was proposed that, as a proof of
concept, we create a solution to show that it is possible to create the JSON files even
without a database.

1. Creation of a demo folder outside the VM containing instances of metadata files,
PDFs, and text editable content of tobacco documents.

2. Write a Python script to pick metadata and data from these files and parse them
into JSON format matching the one for tobacco files currently present on the VM.

We employed the following steps to achieve a solution.

1. To handle incoming PDFs of tobacco documents, we created a script that can down-
load the PDF directly from the UCSF website and implement the OCR technique to
generate a text editable file. We chose PDFMiner for this operation since it is free.

2. To generate the JSON of the metadata, we prepared a modified version of our
Python scripts to:

(a) Merge the CSV files of the tables idl_doc_tobacco and idl_doc_field based on
common ID values; and export results into new CSV file ‘output.csv’. Figure
shows a high level view.

(b) Store itag descriptions in an array ‘itag_array’

(c) Pick data from the columns of ‘output.csv’ that contain the Itag and Value
associated with a document ID; retrieve corresponding itag description based
on itag_array.

(d) Parse the data into desired JSON format and store into a new file ‘output.json’.

53

id |itag value
10 1 kaa00a00
10 3 DEPOSIT TICKET
10 4 8-Dec-88
10 5 CTR
10 2 MNAG
10 25 RECORDS TRANSACTION; MAR
10 27 1-Feb-02
10 28 31-0ct-96
10 29 other
10 32 public
10 13 no restrictions
10 38 LOR
“text/plain’, “size"530) {'name""p E Google Chrome
10 46 e 0000.pdf","mediaType":"applicati L] bates |collection_id |dm _documer i |industry_id itag_|value
m 100 1 10_|piviODI0__|G00DB376-60008376(0UPY][11 20020201 _|PUBIIC 12 1 [kaaa00
10_|pfwoo00 : 20020201 _|puBic 12 3 [oeposiTTiCKET
n 1 laa00a00 10 60008376-60008376(DUP1 | [11 20020201 _|[PUBLIC 12 4 [30485
G00CR376 G0DIB3TE{DUP | 20020201 _|[PUBLIC 12 5 _|om
1 10_[pfw0000 20020201 _|FUBLIC T2 20
Idi_doc_field.csv 60008 376 60008576(DUP1 | [11 20020201 _|PuBiIC 12 25| RECORDS TRANSACTION; MAR
10_|pfvOD00__[6000B376 60008376{0UP1 11 20020201 _|PuBLIC 1|2 27_[37288
10_|phD00__|G00DB376-60008376(DUP1 | [11 20020201 _|[PUBLIC 1 2 28_[35369
6000376 60008376{DUP1 | [11 20020201 _|PUBLIC 1P 29 |other
6000B376-60008376(DUP1J[11 [20020201 |PUBLIC 12 32_|public
0008 376 60008376(DUP1 [11 20020201 _|PUBLIC 12 33| restrictions
60008376 60008376{DUP1 11 20020201 _|PUBLIC 1P 95 [60008376
000376 G0DIB3TE{DUP | [11 20020201 _[PUBLIC [100 [1
id_lrecord key |bates collection_id |dm document _categary industry_id 11 [gf0000 [6000B377-60008377[DUP1)[11 20020201 _[PUBLIC | T) 11 [1as00s00
00000 |60008366-60008366[DUP1] |11 20020201 _|PUBLIC 11_|qfwiD00__|G000377-60008377(DUP|[11 20020201 _|PuBiIC 1Pk 4 [32268

gfw 0000 60008367-60008367[DUP1] |11 20020201 |PUBLIC

;

1 2
1 2

hhw000 60008368-60008368[DUP1] |11 20020201 |PUBLIC 1 2 Output.csv
xfw0000 60008369-60008369[DUP1) |11 20020201 |PUBLIC 1 2
4 |ifwoooo 60008370-60008370[DUP1) |11 20020201 |PUBLIC 1 2
5 |kfw0000 60008371-60008371[DUP1) |11 20020201 _|PUBLIC 1 2
6 |ifwoooo 60008372-60008372(DUP1) |11 20020201 |PUBLIC 1 2
7__|mfw0000 60008373-60008373[DUP1] |11 20020201 |PUBLIC 1 2
R InhefO0D |RODNRIZAADOARITAINIBN (11 20000901 PRI ERE]

1dl_doc_tobacco.csv

Figure 7.12: CSV files used to generate metadata.

The above solution has its own set of limitations viz. scalability issues, not imple-
mented end-to-end since the Kafka integration by the INT team is incomplete and cannot
be termed practical.

7.10 Using MySQL Workbench

Note: One may also use an interface to manipulate the MySQL database. Section 7.6
provides the instructions to connect to the MySQL Workbench.

The following instructions provide step-by-step guidance on how to connect the
MySQL Workbench to the database containing all of the metadata stored at to-
bacco.cs.vt.edu. We suggest using the MySQL Workbench as one of the most convenient
up-to-date MySQL database management tools.

1. Download MySQL Workbench installer by downloading the installation package
from the following website. https://dev.mysql.com/downloads/workbench/ (make
sure to choose an appropriate OS version)

2. Install MySQL Workbench and run the program.

54

3. Click on the “+” button right next to the "MySQL Connections".

4. You will see a new window with the "Setup New Connection" header. Input the

following parameters.

Connection name: whatever name you want for the connection (e.g., tobacco).

Connection method: choose the "Standard TCP/IP over SSH" from the drop
down menu.

Make sure that the "Parameters" tab is chosen.
SSH Hostname: tobacco.cs.vt.edu.
SSH Username: userl

SSH Password: click on "Store inVault", then input the password in an open
window (contact Dr. Fox/Saurabh Chakrabarty for the password).

SSH Key File: leave blank

MySQL Hostname: leave the default value (127.0.0.1)
MySQL Server Port: leave the default value (3306)
Username: root

Password: leave unchanged

Default Schema: leave blank

After all the parameters are set up, click on "Test connection". You will see a con-

nection warning — just ignore it and click "OK". If the connection is set successfully,

click "OK" in the previous window. After this step, the connection should be estab-

lished.

55

Chapter 8

Future Work

This section discusses the future tasks with respect to processing the tobacco dataset.

8.1 Improve the Text Cleaning Process

We intend to improve the exisitng text cleaning process. The current process is good at
identifying line numbers that are at the beginning of the line but fails to detect line num-
bers occurring in between sentences. We would like to improve this process to account
for line numbers within the text as well as increase the precision of identifying garbage
characters.

8.2 Finalize OCR Method

We have explored alternate OCR implementation techniques and have received prelim-
inary results. The current OCR’ed documents have multiple non-decodable characters
that require removal. We are removing such characters using a Python script in the pre-
processing stage in order for data to be used for processing. Hence, we revisited the OCR
process for alternative approaches that would result in better quality documents. A de-
cision needs to be taken with respect to moving forward with an alternate OCR method,
and this needs to be finalized and applied to documents.

56

8.3 Test Coverage

We intent to add more unit tests for the scripts written. This would help ensure that
updates to the scripts do not break the existing functionality. This would also aid the
initiative of building a CI/CD pipeline for the project.

8.4 Pipeline for Ingesting New Documents

We need to focus on automating the ingestion of new tobacco documents as and when
they become available. This would involve coordinating with the INT team to set up a
Kafka pipeline and prepare automation scripts to trigger the ingestion of new documents.
We presently have a proof of concept that needs to be extended to build a full-fledged
solution.

57

Chapter 9

Acknowledgements

This project has been completed during the course of CS 5604: Information Storage and
Retrieval at Virginia Tech.

We would like to thank Dr. Edward A. Fox for his support and professional insights.
He has been immensely helpful throughout the course of the project and has always
helped unblock us whenever needed. We would also like to thank our Teaching Assis-
tant, Zigian Song, and our classmates for all the helpful suggestions we received. We
appreciate the help received from Saurabh Chakravarty to get started on this project.
We are grateful to Dr. Townsend for sharing his knowledge, thoughts, and experiences.
We would also like to thank Chris Arnold and the Department of Computer Science for
supporting the container cluster development environment. We further extend our ap-
preciation to the technical support team at the UCSF Library for their assistance.

58

Bibliography

[1]

2]

3]

[4]

[5]

ABBYY. Cloud OCR SDK, accessed on Nov. 18, 2019. https://www.ocrsdk.com/
features/.

ALON BENDELAC, DEBASMITA Biswas, S. M. A. S. A. M. T. Y. Z. GitLab repository of
CMT team, accessed on Dec. 20, 2019. https://code.vt.edu/cs5604/cmt.

Britext. Difference between stemming and lemmatization, accessed on Sept.
07, 2019. https://blog.bitext.com/what-is-the-difference-between-stemming-and-
lemmatization/.

CHRISTOPHER D. MANNING, P. R., AND ScHUTZE, H. An Introduction to Information
Retrieval. Cambridge University Press, 2009.

GrTLAB. Setting up GitLab, accessed on Dec. 05, 2019. https://docs.gitlab.com/ee/
gitlab-basics/start-using-git.html.

[6] JaBEEN, H. Stemming and lemmatization in Python, accessed on Sept. 19,

[7]

[9]

2019. https://www.datacamp.com/community/tutorials/stemming-lemmatization-
python.

KuHEMIRI, A. Pdf processing with Python, accessed on Oct. 22, 2019. https:
//towardsdatascience.com/pdf-preprocessing-with-python-19829752af9f.

Nick ONorRIO, Nick SorxkIN, D. V. M. D. C. J., AND Fox, E. A. Tobacco Settlement
Documents Report: Virginia Tech, accessed on Sept. 15, 2019. https://vtechworks.
lib.vt.edu/handle/10919/91193.

STEVEN BIRD, E. L. Natural Language Toolkit, accessed on Oct. 02, 2019. https:
/[www.nltk.org/.

59

https://www.ocrsdk.com/features/
https://www.ocrsdk.com/features/
https://code.vt.edu/cs5604/cmt
https://blog.bitext.com/what-is-the-difference-between-stemming-and-lemmatization/
https://blog.bitext.com/what-is-the-difference-between-stemming-and-lemmatization/
https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html
https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html
https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
https://towardsdatascience.com/pdf-preprocessing-with-python-19829752af9f
https://towardsdatascience.com/pdf-preprocessing-with-python-19829752af9f
https://vtechworks.lib.vt.edu/handle/10919/91193
https://vtechworks.lib.vt.edu/handle/10919/91193
https://www.nltk.org/
https://www.nltk.org/

[10] TecHoPEDIA. Tokenization, accessed on Sept. 09, 2019, Oct. 2019. https://www.
techopedia.com/definition/13698/tokenization.

[11] UNIversIiTY OF CALIFORNIA, S. F. Tobacco Dataset and Tutorial, accessed on Oct.
10, 2019. https://ucsf.app.box.com/v/IDL-DataSets.

[12] UNIversIiTY OF CALIFORNIA, S. F. Tobacco settlement dataset information: UCSF,
accessed on Nov. 11, 2019. https://www.industrydocuments.ucsf.edu/tobacco/
research-tools/field-names/.

[13] UNIVERSITY OF CALIFORNIA, S. F. Truth Tobacco Industry Documents: UCSF, ac-
cessed on Oct. 17, 2019. https://www.industrydocuments.ucsf.edu/tobacco/.

60

https://www.techopedia.com/definition/13698/tokenization
https://www.techopedia.com/definition/13698/tokenization
https://ucsf.app.box.com/v/IDL-DataSets
https://www.industrydocuments.ucsf.edu/tobacco/research-tools/field-names/
https://www.industrydocuments.ucsf.edu/tobacco/research-tools/field-names/
https://www.industrydocuments.ucsf.edu/tobacco/

	Abstract
	List of Figures
	List of Tables
	Introduction
	Objective
	Client
	Project Management
	Challenges

	Literature Review
	Overview and Expectations
	Tobacco Settlement Documents
	Tokenization and Lemmatization
	PDF Processing Techniques
	PDFMiner
	PyPDF2
	Abbyy Cloud OCR SDK

	Requirements
	Design
	Approach
	Tools

	Implementation
	Identifying Different Document Types
	Processing Metadata
	Processing Document Text
	Preparing document text for the ElasticSearch and Front-End Kibana Teams
	Pre-processing documents for text analytics and machine learning (TML)

	Deliverables and Timeline

	User Manual
	Data Source
	MariaDB
	Python
	Useful Linux Commands
	Interaction with other teams
	ElasticSearch team
	Text Analytics and Machine Learning team
	Front-end and Kibana team

	Developer's Manual
	Metadata
	Remote Machine
	IDL Dataset
	MySQL Database
	Use of the Tables idl_industry and idl_field

	Scripts
	Test Runs
	Final Run

	Alternative OCR Techniques
	File Storage System
	Code Repository
	Ingestion of New Documents
	Using MySQL Workbench

	Future Work
	Improve the Text Cleaning Process
	Finalize OCR Method
	Test Coverage
	Pipeline for Ingesting New Documents

	Acknowledgements
	Bibliography

