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Abstract

What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And
what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a
novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA).
Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the
‘‘go’’ signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times.
Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the
cumulative hazard function. The fMRI signal loses its dependence on waiting time in a ‘‘countdown’’ condition in which the
arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply
elapsed time. The dependence of the signal on temporal expectation is present in ‘‘no-go’’ conditions, demonstrating that
the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same
manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal
expectancy and measurable neural signals.
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Introduction

How long before the traffic light changes from red to green?

When will the person on the other end of the line pick up the

phone? Is the kettle about to whistle? To allow preparation,

planning, and efficient allocation of resources in the face of

uncertain timing, brains actively maintain expectations about the

possible timing of future events [1–4]. Specifically, they extract

temporal expectations when the arrival time of a stimulus is

distributed with a probabilistic temporal structure.

The fact that brains learn temporal structure is exemplified by

the finding that reaction time (RT) is modulated by changes in the

temporal probability distribution between a warning signal

(‘‘ready’’) and the imperative signal (‘‘go’’) [5–9]. For example,

when the go signal is equally probable to appear at any one of a

number of possible times, the RT is found to be faster for longer

waiting periods. By the 1950s, the monotonically decreasing

relationship of RT to the readiness period led to the hypothesis

that RT depended on the a posteriori probability of the go cue

[10] rather than the a priori probability; in other words, what

matters is the probability that the cue will happen now given that it

has not already occurred. The function describing this a posteriori

probability distribution is called the hazard function [11]. The

relation of RT to the hazard function has been verified by

manipulating the probability distributions of the go-cue appear-

ance times, and comparing the behavioral outcomes to the a

posteriori functions [12–15].

The learning of temporal structure is also apparent in neural

signals measured in single unit electrophysiology [14,16–19] and

EEG [20–22]. These studies have reported increasing neural signals

that build over the course of the readiness period and typically

resemble the hazard function. What remains unknown, however, is

how learned temporal expectations relate to different signals in the

brain, such as the blood oxygenation level dependent (BOLD) signal

in functional magnetic resonance imaging (fMRI). Given the

possible decoupling between action potentials and the fMRI signal

[23,24], it remains unknown whether neuroimaging would reveal a

similar climbing activity or something quite different.

A less well-studied phase of the evolution of readiness-related

movement is the transition between the readiness state and the
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baseline, post-‘‘go’’ state. Given the relatively high level of

electrical activity just before the go cue, one might expect large

chemical changes to occur for the brain to resume its baseline

state. These changes might be visible through a measurement

technique such as fMRI. Several fMRI experiments have explored

motor movements to temporally uncertain cues [7,25,26], but no

event-related experiment has directly explored, to our knowledge,

the pre- and post-go fMRI correlates of the temporal uncertainty

itself, in which the only variable is the time of the go-cue.

We report here the results of such an experiment, in which

participants in the fMRI scanner reacted as quickly as possible to a

cue following a variable readiness period. Using this ready-go task,

we looked for correlates of the readiness period in the BOLD

response. Our experiment also allowed us to monitor the less well-

studied transition between the time of the readiness period to the

time of the baseline waiting.

As will be shown below, we found that activity in the

supplementary motor area (SMA) and superior temporal gyrus

(STG) was larger after longer periods of readiness. Strikingly, and

contrary to the expectations from electrophysiology, we did not

find any evidence of climbing activity in these areas. Rather, a

large rise in the fMRI signal appeared immediately after the

appearance of the go cue. The magnitude of the post-go signal was

related to the probability of the wait time; we determined this by

modulating the probability distribution in different trial blocks.

We found the response to be well-fit by a cumulative hazard

function, suggesting that the SMA and STG compute probabi-

listic expectations about waiting time. Electrophysiological

evidence from monkey and human corroborate a role for the

SMA in computing expectations about waiting time [16,19,20,

27,28], although the form of the fMRI signal presented here

differs in that it appears at the conclusion of the trial, as opposed

to building up during the trial. Altogether, these results suggest a

network of brain areas which construct temporal expectations in

order to optimize reactions. These results further support the

recent understanding that electrophysiological measures do not

always yield a clear-cut prediction of the associated fMRI signals

[24,29].

Results

fMRI Signal Amplitude after the Go Cue Increases with
Wait Time

Participants engaged in a reaction time experiment (Figure 1A).

At the beginning of each trial, a gray ring (ready signal) appeared

and remained on a black screen. After a readiness period of several

seconds, the gray ring became filled with green (go signal).

Participants were asked to press a button as quickly as possible

when it became green. Readiness periods of 4, 6, 8, 10, or 12 s

were randomized from trial to trial, according to a probability

distribution (uniform, in this case), which remained constant

throughout the block. Intertrial intervals were also randomized

between 4 and 12 s.

Participants’ reaction times were found to be a function of

waiting time (Figure S1 and Text S1), a well known effect (known

as variable foreperiod effect) that demonstrates the participants

had learned the timing structure of the task [5–9].

To search for expectation-related activity in the fMRI signal, we

designed a regressor to extract signals that were larger after longer

waiting times, but was agnostic to the detailed timecourse of the

signal (see Methods). At a threshold value of p,0.01 (false

discovery rate [FDR] corrected for multiple comparisons), we

found significant activity in two brain regions (Figure 1B): the

SMA (peak at 0, 4, 52, in Montreal Neurological Institute [MNI]

space), t = 5.63, ventral and slightly rostral to the midline, locating

most voxels in the SMA but with some overlap in the preSMA

[30] and [29] and STG (peak at 60, 9, 29, MNI, t = 5.63). The

SMA has been previously implicated in time perception [21,22,28]

and the timing of intention [31–33]. The STG has also been

implicated in time and memory paradigms [28], although less

prominently in the literature.

To understand the timecourse of the fMRI signal in these two

regions, we plotted the activity in these two areas. We found that

the signals in both the SMA and STG rose suddenly just after the

appearance of the go signal (Figure 1C). (Due to hemodynamic

delay, this rise presumably results from events occurring just

around the time of the go cue.) More strikingly, the amplitude of

this rise was highly significantly correlated with the readiness

period, i.e., how long the participant had to wait (Figure 1D).

We found no evidence of expectation-related activity before the

go-cue. This result surprised us, and we designed several other

regressors that hypothesized the existence of signals that grew over

the course of the waiting period (see Methods). The only

significant climbing or sinking activity found in our task was in

the visual cortices, and can be explained exclusively by the

properties of our visual stimulus (see ‘‘No Evidence for Motor-

Related Climbing Activity,’’ below). Therefore, we conclude that

the expectation-related neural activity available to the fMRI

technique appears largely after the conclusion of the waiting

period.

The Differential Post-Go Signal Does Not Depend on
Motor Output

While the significant differences in the fMRI signal between 8–

12 s (Figure 1C and 1D) are not mirrored in the reaction time

(Figure S1 and Text S1), it could nevertheless be possible that

some aspect of the motor act played a role. To address whether the

delayed fMRI signal is a consequence of motor output, we

designed a second experiment (Figure 2A), which was almost

identical to the first one except that the gray circle turns green (go

signal) or red (no-go signal), each with probability 0.5. We found

the same pattern of readiness period-dependent amplitude in both

types of trials: a longer readiness period causes a larger post-go

Author Summary

Like the sprinter waiting for the starting pistol, all animals
develop expectations about when events will occur in
time. We explored the neural correlates of readiness and
expectation using functional magnetic resonance imaging
(fMRI), and found areas of the brain in which the fMRI
signal remains at baseline during the waiting period and
rises sharply after a cue to react (a ‘‘go’’ cue). Strikingly, the
amplitude of the rise reflects a function of the probability
of an event occurring at that time. The dependence on
probability remains even in the absence of a motor act
(that is, not pressing a button when the go cue appears).
When the arrival time of the go cue is known in advance,
the expectation-dependent signal disappears, indicating
that this brain response reflects expectation, not simply
elapsed time. These results match up with prior studies of
expectation in the brain, with one important difference:
previously, electrophysiology experiments showed that
expectation is encoded by a build-up of spiking activity as
the waiting period progresses, while our fMRI data reveal a
signature of expectation that becomes apparent after the
waiting concludes. We discuss the apparent mismatch
between these different technologies for measuring
expectation-related activity in the brain.

fMRI Signal Encodes Time Expectations
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Figure 1. A longer readiness period correlates with a larger fMRI signal in SMA and STG. (A) In each trial, a gray ring (ready cue) appeared
and remained on the screen. After several seconds (readiness period, 4–12 s, randomly interleaved), the ring became filled with green (go cue).
Participants pressed a button as quickly as possible when they saw the green. (B) General linear model analysis (see Methods) identified the SMA
(peak voxel coordinates in MNI space: 24, 0, 52) and STG (peak at 60, 9, 29) as regions whose activity was greater with increasing readiness periods
(p,0.01, FDR corrected, cluster size .15). (C) Time series of the raw fMRI signal in the SMA and STG, averaged within different readiness periods. The
vertical gray bar marks the arrival of the go cue. Each horizontal bar indicates a different readiness period; the left end of each bar represents the
onset of the ready signal. The fMRI signal remained near baseline during the readiness period and rose sharply at the onset of the go signal. Longer
readiness period caused higher blood flow after the appearance of the go cue. Asterisks represent the time points at which the fMRI signal amplitude
correlates significantly with the time between the ready and go cue (p,0.001). Note that there is no significant correlation at the time points before
the arrival of the go cue, only after. (D) The amplitude of the fMRI signal after the go cue correlates with the readiness period (p-values of the
correlation, inset). Each point represents the average between measurements taken at 4 and 8 s post-go-cue (see inset). Error bars SEM.
doi:10.1371/journal.pbio.1000167.g001

fMRI Signal Encodes Time Expectations
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fMRI response (Figure 2B). Incorrect trials (trials in which

participants pressed the button after a no-go signal, or in which

they failed to press the button after a go signal) are only ,3% of

the total number of trials and they are not included in the analysis.

Response inhibition is known to activate the SMA, which may

contribute to the SMA activation in the no-go trials. However,

there is no reason to expect response inhibition to show differential

activity for the readiness period, which is the novel result in this

case. The go/no-go results demonstrate that the differential fMRI

amplitude is not simply a consequence of motor output.

The Differential Post-Go Signal Disappears in the
Absence of Uncertainty

The post-go signal is modulated by the duration of the waiting

period, and persists in the absence of a motor act. This suggests that

it is a function of either expectancy or the duration of the waiting

period itself. If the signal depends on expectancy, then it should lose

its dependence on the duration of the readiness period in the

absence of uncertainty. To test this prediction, we conducted an

experiment in which a numeric display counted down the

remaining seconds of the readiness period; the go signal occurred

when the countdown reached zero (Figure 3A). As in the previous

experiments, five possible readiness periods were randomly

interleaved. In the absence of uncertainty about the arrival time

of the go signal, the amplitude of the fMRI signal no longer

correlated with the readiness period (Figure 3B). This is consistent

with previous observations that heart rate increasingly slows during

a waiting paradigm, but does not slow if the readiness period is

counted down, i.e., there is no uncertainty about arrival time [34].

Expectancy Modulates the Amplitude of the Post-Go
Signal

We have shown that the signal appearing after the go cue is

modulated by the expectancy of an uncertain cue, since it

disappears in the absence of uncertainty. This predicts that the

probability distribution of the timing of the go cue will have an

effect on the post-go signal. To determine whether the temporal

probability distribution influences the fMRI amplitude, or whether

it is instead based solely on the total time waited, we conducted

another experiment in which we manipulated the probability

distribution of the readiness period (Figure 4). Three different

distributions gave rise to different patterns of fMRI amplitudes

(Figure 4A), suggesting a relationship between expectancy and the

blood flow response. To elucidate this relationship, we proposed

Figure 2. Longer readiness period causes higher fMRI signal in the absence of motor output. (A) The gray circle may be filled with red or
green with equal probability. Participants are instructed not to press the button when they see red. (B) The post-trial fMRI signal amplitude is
correlated with the readiness period in both the go (green) and no-go (red) trials (p-values of the correlation, inset). Note that baseline activity is
slightly lower in the no-go condition, suggesting that motor output provides a constant signal offset that is independent of the waiting-time-
dependent encoding described in this paper. For comparison, the dashed line shows the signal from the original experiment (Figure 1D). Error bars
SEM.
doi:10.1371/journal.pbio.1000167.g002

fMRI Signal Encodes Time Expectations
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and tested four models (Figure 4B): (1) The fMRI amplitude

depends only on the length of the readiness period, not on the

probability distribution; (2) The amplitude depends on a linear

combination of readiness period and probability; (3) The

amplitude depends on the conditional probability (or hazard

function), i.e., the probability that the go signal occurs at time t

given it has not yet happened by t; (4) The activity depends on the

cumulative conditional probability, i.e., the integral of the hazard

function from time 0 to t.

The results of the modeling are shown in Figure 4B. As seen by

the r2 values, the cumulative hazard model appears to best explain

the data. We note, however, that the hazard function by itself

provides a qualitatively good fit as well, capturing some features of

the data better than the cumulative hazard. It may be that the true

signal is some combination of the two, representing a kind of leaky

or forgetful accumulation. Further experiments will be required to

address this possibility.

Expectation Dependent Activity Generalizes to Auditory
Cues

To determine if the effect we have described depends on the

sensory modality, we repeated our original experiment with

auditory cues. Here, a brief double beep was the ready signal, and

a brief single beep was the go signal. The fMRI signal in both

regions was almost identical in the auditory and visual conditions

(Figure 5). This indicates that the readiness-period-dependent

activity is not reliant on visual cues, but is a function of expectation

more generally.

No Evidence for Motor-Related Climbing Activity in the
fMRI Signal

The pattern of activation we have reported was unexpected, given

that previous electrophysiological [35–39] and fMRI studies [25]

have reported climbing activity during the readiness period. We thus

set out to understand where climbing activity could be found in our

task. In a brain-wide search for climbing activity (see Methods), only

bilateral Brodmann Area 18 (BA18, Figure 6) revealed a climbing

fMRI signal during the readiness period (Figure 6A).

To determine whether the climbing activity in BA18 (Figure 6A)

relates to motor preparation, we conducted a passive control

experiment, identical to the first experiment except that participants

did not press a button at the go signal. We found the same pattern of

climbing activity in these regions in the passive control condition

(Figure 6C), indicating that the climbing activity BA18 is not due to

motor preparation. This conclusion is further supported by the lack

of climbing activity in BA18 in the auditory condition (unpublished

data). Similarly, we found a broadly distributed ‘‘sinking’’ fMRI

signal, which was especially significant in the cuneus (Figure 6B); its

presence in the passive control condition revealed that it did not

depend on the motor preparation (Figure 6D). In summary, we did

Figure 3. The post-go fMRI signal no longer correlates with the waiting period when there is certainty about the arrival time of the
go cue. (A) In the countdown condition, a number in the middle of the gray ring counted down the seconds until the appearance of the go signal.
(B) When there is no uncertainty about the arrival time of the go signal, the fMRI signal is independent of the readiness period (solid line, p-values of
the correlation, inset). For comparison, the dashed line represents the fMRI signal in the original experiment (Figure 1), in which there is no
countdown. Error bars SEM.
doi:10.1371/journal.pbio.1000167.g003

fMRI Signal Encodes Time Expectations
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not find evidence for climbing or sinking activity associated with

motor preparation in our experiment.

Discussion

We have reported a BOLD signature of the readiness period

(Figure 1). As measured by fMRI, activity in SMA and STG rises

to a level that reflects the timing expectations from the previous

waiting period. Our results are consistent with electrophysiological

findings in monkey [14,17–19], and human [21,22], which show

expectancy of the cue reflected in the brain activity. However, they

differ in one important respect: the electrophysiology finds

expectancy-related activity building during the readiness period

[16,20,40–42], whereas our data reflect a delayed and accumu-

Figure 4. The fMRI signal is modulated by the probability distribution of the timing of go signal. (A) Inset shows three readiness period
probability distributions for the SMA, as presented in different trial blocks. Black, orange, and blue lines represent flat, U-shaped, and skewed
distributions of readiness period, respectively. In the flat distribution, the probability of each readiness period is 0.2. For the U-shaped block the
probabilities are: 4 s, 0.28; 6 s, 0.16; 8 s, 0.12; 10 s, 0.16; 12 s, 0.28. For the skewed block: 4 s, 0.36; 6 s, 0.28; 8 s, 0.2; 10 s, 0.12; 12 s, 0.04. (B) Best fits
for the four models described in the text. The cumulative hazard function provides the most accurate fit of the data. Specifically, by taking the
residual differences between data and fit, and calculating a t-test between the cumulative hazard model and each of the others, we found in the SMA
that the cumulative hazard fits significantly better than the other three (p,0.01, 0.01, 0.02, respectively). Another method, which directly tests the
null hypothesis that the observed r2 = 0.96 in our sample for the cumulative hazard model is from a population correlation r2 = 0.85 (see Methods for
full details), yields p,0.01, which is comparable to the previous method. In the STG, we find p,0.11 (t-test on residual) and p,0.15 (correlation
coefficient distribution) between the cumulative hazard model and hazard model, indicating a trend favoring the cumulative hazard model.
doi:10.1371/journal.pbio.1000167.g004

fMRI Signal Encodes Time Expectations
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lated signature of the expectancy. While other fMRI studies have

shown uncertainty-related signals in motor areas (e.g. temporal

and spatial uncertainty-related activity in premotor cortex and

pre-SMA using a block design [26] and forebrain areas such as the

middle frontal gyrus and cingulate [7]), the results shown here are

the first, to our knowledge, from a simple reaction-time task to a

single target, using an event-related design, which can reveal the

exact temporal profile of the expectancy signal. Because the fMRI

signal reported here appears at the end of the readiness period, our

data support the possibility that it represents a final integration of

the hazard-like signals that have been measured electrophysiolog-

ically in early visual areas [17], lateral intraparietal cortex [14,18],

or the SMA itself [19].

It is particularly telling that our results are found in the SMA

and STG. The SMA is known to be involved in time estimation, as

are nearby parts of the anterior cingulate cortex [2]. The STG has

also been implicated in time and memory paradigms [28].

However, in previous studies the dorsolateral prefrontal cortex

(DLPFC) has been implicated in foreperiod time estimation, as

evidenced by the reduction of foreperiod-related reaction time

increase in patients with lesions present in that location [8]. In one

recent study by Coull et al. [28], the STG, SMA, and DLPFC

were coactivated during a time estimation task, but only SMA and

STG were significantly activated during the retrieval process. It is

possible that the lack of DLPFC activation in our study means that

SMA and STG are activated after the conclusion of an event

requiring temporal estimation, while the DLPFC is only activated

during the estimation process.

Of what potential use is such a delayed reflection of expectancy

to the brain? It has been suggested to us that it may act as a

prediction error signal, adjusting temporal expectations each time

the brain experiences a new temporal event—and adjusting even

more when the event is extremely improbable. This theory is

appealing on the surface, particularly if you look at the response to

the skew distribution (Figure 4), which is highest when the

probability is low. This hypothesis awaits further theory and

experiment. In the meantime, we more cautiously propose only

that the activation represents a metabolic product, or by-product,

of accumulated expectation-related activity.

Why have these effects only become apparent with the fMRI

technique? Electrophysiology is highly biased toward recording

from large excitatory pyramidal cells, and it may be that while

these cells’ activity climbs throughout the readiness period,

inhibitory interneuronal activity concomitantly drops. Note that

attentional modulation in V4 is found in two types of neurons:

‘‘out’’ cells, whose firing rate decreases during expectancy, and

‘‘in’’ cells, whose firing rates increase [17]. Assuming that the

fMRI signal correlates with firing rate, declining and increasing

firing rates in neighboring cells could theoretically counterbalance

each other, resulting in a flattened fMRI response.

Another possible source of the difference between our findings

and previous reports lies in the details of the tasks. Experiments

that have explored the readiness period with electrophysiology

[14,19] and fMRI [25,26] have used tasks involving movements to

or attention toward multiple locations in visual space. In contrast,

the task we describe here is simpler, involving only a fingerpress to

a nonvisible button. It could be that attending to or planning more

complicated movements toward multiple targets in visual space

recruits circuitry that exhibits climbing activity, but which is not

needed for a simple fast-reaction.

A recent fMRI study by Curtis and Connolly (2008) shows

evidence of climbing activity in saccade-related areas [25]. While it is

Figure 5. Evidence for an expectation-dependent fMRI signal generalizes to an auditory ready-go experiment. (A) Participants viewed
a blank screen. A brief double beep served as the ready signal, and a brief single beep served as the go signal. (B) As in the visual condition (Figure 1),
longer readiness periods correlate with higher post-go fMRI signal (p-values of the correlation inset). Solid line, data from the auditory experiment.
For comparison, the dashed line shows the fMRI results from the visual experiment (Figure 1). Error bars SEM.
doi:10.1371/journal.pbio.1000167.g005

fMRI Signal Encodes Time Expectations
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hard to reconcile the differences between our two reports, they may

relate to the fact that we used keypresses instead of saccades, that our

task structure was simpler (target location never varied), and that our

delay range was twice the size of theirs. Interestingly, when we

examine their data carefully, it appears that their plots from the

transverse parietal sulcus show evidence of a post-go, duration-

dependent amplitude similar to ours (Figure S2 and Text S1).

A final possible source of the difference between our post-cue

fMRI signal and the building signals from the electrophysiology

literature is the difference in measurement modalities. As yet, there

is no consensus on the relationship of the fMRI signal to electrical

activity in the brain [23]. We could entertain the speculative

possibility that the metabolic signal measured by fMRI may not

always be directly coupled to the information-carrying signal

measured electrically. As the brain maintains a state of readiness,

electrical activity uses resources. So as not to disrupt the delicate

balance in activity required to maintain vigilance, the brain may

‘‘pay back’’ the energy debt with oxygenated blood flow only after

the readiness period has ended. Further experiments will be

required to determine whether it is possible to disconnect the

signaling cascade between energy consumption and increased

blood oxygenation. Like other recent demonstrations [24,43,44],

our data may show that fMRI signal and single unit spiking can be

decoupled. If the hypothesis that fMRI-measured metabolic

activity could be decoupled from electrically measured spiking

activity proved true, it would have far-reaching implications. By

comparing spiking data to fMRI results on the same tasks, we

could begin to get an idea of how the brain balances metabolic and

computational needs on an energy budget. Given the numerous

factors that comprise the fMRI signal [45,46], future experiments

with diverse technologies will be necessary to determine the

physiological basis of the effect we report here.

Methods

Participants and Task Description
20 participants (11 male, average age 27.7 y) participated in the

main experiment, the go/no-go experiment, and the U-distribu-

tion experiment; 21 participants (ten male, average age 27.5 y)

participated in the skewed-distribution experiment, the countdown

experiment, and the auditory experiment. 15 participants (seven

male, average age 28.3 y) participated in the passive control

experiment.

Each experiment consisted of 50 trials. For experiments other

than the passive control, if participants pressed the button too

slowly (reaction time longer than 600 ms), or if they pressed the

button before the color changed to green, or if they pressed a

button when the color turned red, they would see an error

message. Participants were told they would be paid as a function of

the number of errors they made. Erroneous trials were removed

Figure 6. Climbing and sinking fMRI signals during the readiness period. Center inset: BA18 (peak coordinates: 28 292 28) are the only
regions that show a climbing signal during the readiness period at p,0.001. More broadly distributed areas, most significantly in cuneus (peak
coordinates: 28 292 0) show a sinking signal at p,0.001. Color bar indicates t-value with degree of freedom 19. (A) Time series of the fMRI signal in
BA18 around the go signal. (B) fMRI signal in cuneus (inset) showing sinking activity. This region is a subset of the regions shown in the center inset
with a more stringent threshold of p,1028. The dynamics of the sinking signal appear to mirror the climbing signal, suggesting the possibility that
the sinking signal results from resource sharing (draining) with nearby climbing areas; however, the differential sizes of these regions (center inset)
calls such a hypothesis into question. (C) fMRI signal in BA18 in the passive control experiment in which the visual stimuli are identical to the first
experiment (Figure 1A) but no button press is required. Here a similar climbing signal is evident, indicating that the climbing activity in BA18 is not
due to motor preparation. (D) fMRI signal in the cuneus in the passive control condition, showing that the sinking signal, like the climbing signal, is
independent of motor preparation. Error bars SEM.
doi:10.1371/journal.pbio.1000167.g006

fMRI Signal Encodes Time Expectations

PLoS Biology | www.plosbiology.org 8 August 2009 | Volume 7 | Issue 8 | e1000167



prior to further analysis. To balance hand usage, half of the

participants used their right thumbs to press the button and the

other half used their left thumbs in each experiment except the

passive control.

fMRI Methods
High-resolution T1-weighted scans were acquired using an

MPRage sequence in a 3-Tesla scanner (Siemens). Functional run

details: echo-planar imaging, gradient recalled echo; repetition

time (TR) = 2,000 ms; echo time (TE) = 40 ms; flip angle = 90u;
64664 matrix, 29 4-mm axial slices, yielding functional

3.4 mm63.4 mm64.0 mm voxels. Data analysis was performed

using software package SPM2 (http://www.fil.ion.ucl.ac.uk/spm/

software/spm2) and visualized using xjView (http://www.alivelearn.

net/xjview/). Motion correction to the first functional scan was

performed using a six-parameter rigid-body transformation [47]. The

average of the motion-corrected images was coregistered to each

individual’s structural MRI using a 12-parameter affine transforma-

tion. The images were spatially normalized to the MNI template by

applying a 12-parameter affine transformation, followed by a

nonlinear warping using basis functions [47]. Images were then

smoothed with an 8-mm isotropic Gaussian kernel and highpass

filtered in the temporal domain (filter width of 128 s [48]).

We performed a general linear model regression on the data.

Two regressors were delta functions occurring at the time of the go

cue. One of these regressors corresponded to short wait periods

(hrfs convolved with delta functions timed on go cues following

readiness periods of ,8 s), and the other corresponded to long

wait periods (.8 s). A third regressor was added—an hrf

convolved with delta functions timed on the ready cue—to

account for the variance in the data created by that stimulus. A

paired t-test was performed between beta values from the long and

short readiness period regressors. Regions that survived the

threshold (p,0.01, FDR corrected for multiple comparisons

[49], cluster size .15 voxels) were subjected to further region of

interest (ROI) analysis.

To search for climbing activity (Figure 6), we used several

methods. (1) First, note that our original two regressors (described

above) were designed to pull out climbing activity. Indeed, this

method did pull out some of the activations shown on Figure 6, but

in the opposite direction from Figure 1, and at much lower

significance values. (2) Consistent with the reasoning from our

original regressor, if a voxel displayed climbing activity during the

readiness period, then the fMRI signal at the end of the readiness

period (i.e., at the go cue) will be larger after longer readiness

periods. However, unlike our original analysis, a more intuitive

notion of climbing activity in the fMRI is that it should peak at the

time of the go cue, not afterward. To search for voxels that

satisfied this condition, we compared the amplitude exactly at the

time of the go cue, without convolving with the hrf. This timing

ensured that we were analyzing the result of activity during the

delay period, rather than afterward. For each voxel, we chose the

fMRI signals at the timing of go cue and performed a linear

regression on the previous readiness period. We then performed a

t-test on the beta values across participants. This analysis remains

agnostic to the temporal pattern of the climbing activity, and only

concentrates on where the activity ends up, just before the go cue

appears. The result of this analysis is shown in Figure 5. The time

series indicate that this method successfully pulls out activity that is

greater for longer waiting periods. (3) Similar to Method 1, except

that we performed a contrast between the BOLD amplitudes at

the time of go for long waiting (10 and 12 s) and for short waiting

(4 and 6 s). Whereas Method 1 hypothesizes a linear relationship

between wait time and the height to which the activity might

climb, this analysis remains agnostic to the exact functional form.

Method 2 is the same as our main regressor, but without

convolving with the hrf. The voxels produced by this latter analysis

were qualitatively similar to those shown in Figure 6: BA18 and

cuneus, but no significant activity (p,.001) anywhere else,

including in the lateral intraparietal sulcus. (4) We also performed

GLM analyses using either box-car or triangle regressors

subtending the width of the readiness period. These methods

successfully pulled out the areas that showed climbing activity as in

Figure 6. These methods also revealed some other areas, such as

several nuclei in the thalamus and basal ganglia, and the SMA and

STG. Subsequent ROI analysis on these other areas showed that

there was no climbing activity, although there was significant

readiness-related activity appearing after the go-cue. Box-car or

triangle approaches are not efficient at selectively revealing

climbing activity because they will identify any regions whose

activity is higher during the readiness period than during the

intertrial interval. Time course analysis of the identified areas

showed only transient visual responses to the ready cue, rather

than climbing activity.

In the ROI analysis, the raw fMRI signal was extracted from

each voxel in the region. Then the signal was averaged across

voxels. The baseline was determined by a moving average with a

window of +/250 data points (i.e., +/2100 s). The baseline-

subtracted signal was used for all region-of-interest time-course

plots, and labeled according to percent change from the moving

baseline. The signal amplitude was defined as the average of the

signal at 4 s and 6 s data point after the go (or no-go) signal.

Fitting Models to the fMRI Data
To determine the relationship between the temporal probability

distribution of the go signal and the fMRI amplitude, we used

linear regression to fit four models to the fMRI data (Figure 4B). In

the equations below, y = the mean BOLD signal amplitude;

t = time between ready and go signals (readiness period);

P(t) = probability of go signal arriving at time t; and b is a fitting

coefficient. Model 1: The fMRI amplitude depends only on the

length of the readiness period, not on the probability distribution:

y = b1t + b0. Model 2: The amplitude depends on a linear

combination of readiness period and probability:

y = b1t + b2P(t) + b0. Weights were determined by fitting. Model

3: The amplitude depends on the conditional probability (or

hazard function), i.e., the probability that the go signal occurs at

time t given it has not yet happened by t: y~b
P(t)

1{
Pt{1

t~0

P(t)

zb0.

Model 4: The activity depends on the cumulative conditional

probability, i.e., the sum of the hazard function from time 0

(beginning of each trial) to t (the time ‘‘right now’’):

y~b1

Pt

T~0

P(t)

1{
Pt{1

t~0

P(t)

zb0

Testing Significance between the Fitting of Hazard Model
and Cumulative Hazard Model

We used two methods to investigate whether the cumulative

hazard model fits the data significantly better than the hazard

model: (1) t-test on residuals. After fitting the models, we calculated

the residual for each model on each data point. Then for each data

point, we calculated the difference of the absolute values of the

fMRI Signal Encodes Time Expectations
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residuals from the hazard model and the cumulative hazard

model. We then performed a one sample t-test on these residual

differences. (2) Distribution of correlation coefficient. We calcu-

lated the probability (p-value) that the observed sample correlation

coefficient (r2 = 0.96 from cumulative hazard model) is from a

population correlation coefficient (r2 = 0.85, the value we found for

hazard model). The distribution of sample correlation coefficient r,

given population correlation coefficient r and sample size N, is

formulated as follows [50]:

P(r)~
(N{2)C(N{1)(1{r2)(N{1)=2(1{r2)(N{4)=2

ffiffiffiffiffiffi
2p
p

C(N{
1

2
)(1{rr)N{3=2

|½1z
1

4

rrz1

2N{1
z

9

16

(rrz1)2

(2N{1)(2Nz1)
z . . .�

where G is gamma function. We then calculated the area under

this distribution curve where r2.0.96, which is the p-value. Similar

results were found with both methods; please see Figure 4B.

Supporting Information

Figure S1 Reaction times correlate with readiness
periods on the basis of the underlying probability

distributions (insets). Circle area is proportional to the sample

size within block. These data match the previously documented

relationship between readiness period and reaction time (the

variable foreperiod effect1–3), verifying that our participants

learned the structure of the temporal probability distributions.

Symbol diameter is proportional to the number of samples within

each experiment. Error bars are standard error of the mean

(SEM).

Found at: doi:10.1371/journal.pbio.1000167.s001 (0.17 MB TIF)

Figure S2 A revision of the plot from Curtis and
Connolly [24] that aligns the onset time of the go-cue
reveals a result like that seen in our Figure 1.

Found at: doi:10.1371/journal.pbio.1000167.s002 (0.91 MB TIF)

Text S1 Supplementary material.

Found at: doi:10.1371/journal.pbio.1000167.s003 (0.06 MB

DOC)
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