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(ABSTRACT)



Distributed transactional memory (DTM) is an emerging, alternative concurrency control model
that promises to alleviate the difficulties of lock-based distributed synchronization. In DTM, trans-
actional conflicts are traditionally resolved by a contention manager. A complementary approach
for handling conflicts is through a transactional scheduler, which orders transactional requests to
avoid or minimize conflicts. We present a suite of transactional schedulers: Bi-interval, Commuta-
tive Requests First (CRF), Reactive Transactional Scheduler (RTS), Dependency-Aware Transac-
tional Scheduler (DATS), Scheduling-based Parallel Nesting (SPN), Cluster-based Transactional
Scheduler (CTS), and Locality-aware Transactional Scheduler (LTS). The schedulers consider
Herlihy and Sun’s dataflow execution model, where transactions are immobile and objects are mi-
grated to invoking transactions, relying on directory-based cache-coherence protocols to locate and
move objects. Within this execution model, the proposed schedulers target different DTM models.

Bi-interval considers the single object copy DTM model, and categorizes concurrent requests into
read and write intervals to maximize the concurrency of read transactions. This allows an object to
be simultaneously sent to read transactions, improving transactional makespan. We show that Bi-
interval improves the makespan competitive ratio of DTM without such a scheduler to O(log(N))
for the worst-case and θ(log(N−k) for the average-case, forN nodes and k read transactions. Our
implementation reveals that Bi-interval enhances transactional throughput over the no-scheduler
case by as much as 1.71×, on average.

CRF considers multi-versioned DTM. Traditional multi-versioned TM models use multiple object
versions to guarantee commits of read transactions, but limit concurrency of write transactions.
CRF relies on the notion of commutative transactions, i.e., those that ensure consistency of the
shared data-set even when they are validated and committed concurrently. CRF detects conflicts
between commutative and non-commutative write transactions and then schedules them accord-
ing to the execution state, enhancing the concurrency of write transactions. Our implementation
shows that transactional throughput is improved by up to 5× over a state-of-the-art competitor
(DecentSTM).

RTS and DATS consider transactional nesting in DTM, and focus on the closed and open nesting
models, respectively. RTS determines whether a conflicting outer transaction must be aborted or
enqueued according to the level of contention. If a transaction is enqueued, its closed-nested trans-
actions do not have to retrieve objects again, resulting in reduced communication delays. DATS’s
goal is to boost the throughput of open-nested transactions by reducing the overhead of running
expensive compensating actions and acquiring/releasing abstract locks when the outer transaction
aborts. The contribution of DATS is twofold. First, it allows commutable outer transactions to be
validated concurrently and allows non-commutable outer transactions – depending on their inner
transactions – to be committed before others without dependencies. Implementations reveal effec-
tiveness: RTS and DATS improve throughput (over the no-scheduler case), by as much as 1.88×
and 2.2×, respectively.

SPN considers parallel nested transactions in DTM. The idea of parallel nesting is to execute the
inner transactions that access different objects concurrently, and execute the inner transactions that
access the same objects serially, increasing performance. However, the parallel nesting model may
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be ineffective if all inner transactions access the same object due to the additional overheads needed
to identify both types of inner transactions. SPN avoids this overhead and allows inner transactions
to request objects and to execute them in parallel. Implementations reveal that SPN outperforms
non-parallel nesting (i.e., closed nesting) by up to 3.5× and 4.5× on a micro-benchmark (bank)
and the TPC-C transactional benchmark, respectively.

CTS considers the replicated DTM model: object replicas are distributed across clusters of nodes,
where clusters are determined based on inter-node distance, to maximize locality and fault-tolerance,
and to minimize memory usage and communication overhead. CTS enqueues transactions that are
aborted due to early validation over clusters and assigns their backoff times, reducing communica-
tion overhead. Implementation reveals that CTS improves throughput over competitor replicated
DTM solutions including GenRSTM and DecentSTM by as much as 1.64×, on average.

LTS considers the genuine partial replicated DTM model. In this model, LTS exploits locality by:
1) employing a transaction scheduler, which enables/disables object ownership changes depend-
ing on workload fluctuations, and 2) splitting hot-spot objects into multiple replicas for reducing
contention. Our implementation reveals that LTS outperforms state-of-the-art competitors (Score
and CTS) by up to 2.6× on micro-benchmarks (Linked List and Skip List) and by up to 2.2× on
TPC-C.

This work is supported in part by US National Science Foundation under grants CNS 0915895,
CNS 1116190, CNS 1130180, and CNS 1217385. Any opinions, findings, and conclusions or
recommendations expressed in this site are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.
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Chapter 1

Introduction

1.1 Transactional Memory

Lock-based synchronization is inherently error-prone. For example, coarse-grained locking, in
which a large data structure is protected using a single lock is simple and easy to use, but permits
little concurrency. In contrast, with fine-grained locking, in which each component of a data struc-
ture (e.g., a hash table bucket) is protected by a lock, programmers must acquire only necessary
and sufficient locks to obtain maximum concurrency without compromising safety, and must avoid
deadlocks when acquiring multiple locks. Both these situations are highly prone to programmer
errors. The most serious problem with locks is that they are not easily composable—i.e., com-
bining existing pieces of software to produce different functionality is not easy. This is because,
lock-based concurrency control is highly dependent on the order in which locks are acquired and
released. Thus, it would be necessary to expose the internal implementation of existing methods,
while combining them, in order to prevent possible deadlocks. This breaks encapsulation, and
makes it difficult to reuse software.

Transactional memory (TM) is an alternative synchronization model for shared memory data ob-
jects that promises to alleviate the difficulties of lock-based synchronization (i.e., scalability, pro-
grammability, and composability issues). As TM code is composed of read/write operations on
shared objects, it is organized as memory transactions, which optimistically execute, while log-
ging any changes made to accessed objects. Two transactions conflict if they access the same
object and one access is a write. When that happens, a contention manager (CM) resolves the
conflict by aborting one and allowing the other to commit, yielding (the illusion of) atomicity.
Aborted transactions are re-started, often immediately, after rolling-back the changes. Sometimes,
a transactional scheduler is also used, which determines an ordering of concurrent transactions so
that conflicts are either avoided altogether or minimized.

In addition to a simple programming model, TM provides performance comparable to fine-grained
locking [1] and is composable. TM for multiprocessors has been proposed in hardware (HTM) [2,
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3, 4, 5, 6], in software (STM) [7, 8, 9, 10, 11], and in hardware/software combination [12, 13, 14,
15].

With a single copy for each object, i.e., single-version STM (SV-STM), when a read/write con-
flict occurs between two transactions, the contention manager resolves the conflict by aborting
one and allowing the other to commit, thereby maintaining the consistency of the (single) object
version. SV-STM is simple, but suffers from large number of aborts [16]. In contrast, with multi-
ple versions for each object, i.e., multi-versioning STM (MV-STM), unnecessary (or spare) aborts
of transactions that could have been committed without violating consistency are avoided [17].
Unless a conflict occurs between operations accessing a shared object, MV-STM allows the cor-
responding transactions to read the object’s old versions, enhancing concurrency. MV-STM has
been extensively studied for multiprocessors [18, 16, 19].

Many libraries or third-party software contain atomic code, and application developers often desire
to group such code, with user, other library, or third-party (atomic) code into larger atomic code
blocks. This can be accomplished by nesting all atomic code within their enclosing code, as
permitted by the inherent composability of TM. But doing so — i.e., flat nesting — results in large
monolithic transactions, which limits concurrency: when a large monolithic transaction is aborted,
all nested transactions are also aborted and rolled back, even if they don’t conflict with the outer
transaction.

Further, in many nested settings, programmers desire to respond to the failure of each nested action
with an action-specific response. This is particularly the case in distributed systems—e.g., if a
remote device is unreachable or unavailable, one would want to try an alternate remote device, all
as part of a top-level atomic action. Furthermore, inadequate performance of a nested third-party
or library code must often be circumvented (e.g., by trying another nested code block) to boost
overall application performance. In these cases, one would want to abort a nested action and try an
alternative, without aborting the work accomplished so far (i.e., aborting the top-level action).

Three types of nesting have been studied in TM: flat, closed, and open [20]. If an inner transaction
I is flat-nested inside its outer transaction A, A executes as if the code for I is inlined inside A.
Thus, if I aborts, it causes A to abort. If I is closed-nested inside A, the operations of I only
become part of A when I commits. Thus, an abort of I does not abort A, but I aborts when A
aborts. Finally, if I is open-nested inside A, then the operations of I are not considered as part of
A. Thus, an abort of I does not abort A, and vice versa.

1.2 Distributed Transactional Memory

The challenges of lock-based concurrency control are exacerbated in distributed systems, due to
the additional complexity of multicomputer concurrency. Distributed TM (or DTM) has been
similarly motivated as an alternative to distributed lock-based concurrency control. DTM can be
classified based on the system architecture: cache-coherent DTM (or cc DTM) [21, 22, 23] and
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cluster DTM [24, 25, 26]. While both use message-passing links over a communication network
for node-to-node communication, they differ in the underlying communication cost model. cc
DTM assumes a metric-space network (i.e., the communication cost between nodes form a metric),
whereas cluster DTM differentiates between local cluster memory and remote memory at other
clusters.

Most cc DTM works consider Herlihy and Sun’s dataflow execution model [21], in which trans-
actions are immobile and objects move from node to node to invoking transactions. cc DTM uses
a cache-coherence protocol, often directory-based [27, 21, 22], to locate and move objects in the
network, satisfying object consistency properties.

Similar to multiprocessor TM, DTM provides a simple distributed programming model (e.g., locks
are entirely precluded in the interface), and performance comparable or superior to distributed
lock-based concurrency control [24, 25, 26, 28, 23, 29].

1.3 Transactional Scheduling

As mentioned before, a complementary approach for dealing with transactional conflicts is transac-
tional scheduling. Broadly, a transactional scheduler determines the ordering of concurrent trans-
actions so that conflicts are either avoided altogether or minimized. Two kinds of transactional
schedulers have been studied in the past: reactive [7, 30] and proactive [31, 32]. When a conflict
occurs between two transactions, the contention manager determines which transaction wins or
loses, and then the loosing transaction aborts. Since aborted transactions might abort again in the
future, reactive schedulers enqueue aborted transactions, serializing their future execution [7, 30].
Proactive schedulers take a different strategy. Since it is desirable for aborted transactions to be
not aborted again when re-issued, proactive schedulers abort the loosing transaction with a backoff
time, which determines how long the transaction is stalled before it is re-started [31, 32]. Both re-
active and proactive transactional schedulers have been studied for multiprocessor TM. However,
they have not been studied for DTM, which is the focus of this dissertation.

We now motivate and overview the seven different transactional schedulers developed in the dis-
sertation. The schedulers target data-flow cc DTM and are called Bi-interval [28], commutative
requests first (CRF) [33], reactive transactional scheduler (RTS) [34], dependency-aware trans-
actional scheduler (DATS) [35], scheduling-based parallel nesting (SPN), cluster-based transac-
tional scheduler (CTS) [36], and locality-aware transactional scheduler (LTS) [37].

Scheduling in single-version DTM. We first consider the single object copy DTM model (i.e., SV-
STM). A distributed transaction typically has a longer execution time than a multiprocessor trans-
action, due to communication delays that are incurred in requesting and acquiring objects, which
increases the likelihood for conflicts and thus degraded performance [32]. We present a novel
transactional scheduler called Bi-interval [28] that optimizes the execution order of transactional
operations to minimize conflicts. Bi-interval focuses on read-only and read-dominated workloads
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(i.e., those with only early-write operations), which are common transactional workloads [38].
Read transactions do not modify the object; thus transactions do not need exclusive object ac-
cess. Bi-interval categorizes concurrent requests for a shared object into read and write intervals to
maximize the concurrency of read transactions. This reduces conflicts between read transactions,
reducing transactional execution times. Further, it allows an object to be simultaneously sent to
nodes of read transactions, thereby reducing the total object traveling time.

Scheduling in multi-versioned DTM. We then consider multi-versioned STM (i.e., MV-STM).
Unless a conflict occurs between operations that access a shared object, MV-STM allows the
corresponding transactions to read the object’s old versions, potentially enhancing concurrency.
MV-STM has been extensively studied for multiprocessors [16, 19] and also for distributed sys-
tems [39]. MV-STM uses snapshot isolation (SI), which is weaker than serializability [40]. A
transaction executing under SI operates on a snapshot taken at the start of the transaction. The
transaction successfully commits if the objects updated by the transaction have not been changed
externally since the snapshot was taken, guaranteeing that all read transactions will see a consistent
snapshot. Many past efforts [40, 41, 42] have used SI for improving performance in centralized and
distributed TM environments. Even though SI allows greater concurrency among transactions than
serializability, a write-write conflict under SI causes the transaction to abort. In write-intensive
workloads, this conflict cannot be avoided because the concurrency of write transactions may vio-
late SI.

To increase performance in multi-version DTM, the dissertation presents a scheduler called CRF
that allows multiple conflicting transactions to commit concurrently without violating SI, in order
to enhance the concurrency of write transactions. CRF increases the concurrency of write transac-
tions by exploiting the notion of commutative operations. Two operations are called commutative
if executing them sequentially in either order transitions the objects accessed to the same state
and returns the same values [43]. A very intuitive example is when two operations, say, call1(X)
and call2(X), access the same object X , but different fields of X . CRF checks whether write
operations are commutative and allows them to validate and commit simultaneously. Unlike past
STM works that exploit high concurrency based on the commutativity property, CRF maintains a
scheduling queue to identify commutative and non-commutative transactions, and allows all com-
mutative transactions to commit first than the others, maximizing their concurrency. To support
a broad range of applications, CRF allows programmers to explicitly specify non-commutative
operations.

Scheduling nested transactions. We now turn our attention to scheduling nested transactions. In the
flat and closed nesting models, if an outer transaction with multiple nested transactions aborts due
to a conflict, the outer and inner transactions will restart and request all objects regardless of which
object caused the conflict. Even though the aborted transactions are enqueued to avoid conflicts,
the scheduler serializes the aborted transactions to reduce the contention on only the object that
caused the conflict. With nested transactions, this may lead to heavy contention because all objects
have to be retrieved again.

We first consider scheduling closed-nested transactions, which are more efficient than flat nesting



Junwhan Kim Chapter 1. Introduction 5

and guarantees serialization [44]. RTS considers both aborting or enqueuing a parent transaction
including closed-nested transactions. RTS decides which transaction is aborted or enqueued to
protect its nested transactions according to a contention level, and assigns a backoff time to the
enqueued transaction to boost throughput.

We then consider scheduling open-nested transactions. The open-nesting model [45] ensures ab-
stract serializability for open-nested transactions (which requires abstract locking), and serializ-
ability for outer transactions (using a compensation strategy). An outer transaction commits mul-
tiple objects in a single step if there is no conflict, but its open-nested transactions do multiple
per-object commits. In DTM, abstract locking incurs communication delays to remotely acquire
and release the locks. If multiple inner transactions commit, locks must be acquired and released
for each open-nested transaction, degrading performance.

Moreover, if an outer transaction (with open-nested inner transactions) aborts, all of its (now com-
mitted) open-nested transactions must be aborted and their actions must be undone to ensure trans-
action serializability. Thus, with the open nesting model, programmers must describe a compensat-
ing action for each open-nested transaction [44]. When outer transactions increasingly encounter
conflicts after greater number of their open-nested transactions have committed, it will increase
executions of compensating actions, degrading overall performance. With closed nesting, since
closed-nested transactions are not committed until the outer transaction commits (nested transac-
tions’ changes are visible only to the outer), no undo is required. Thus, open nesting may perform
worse than closed nesting in high contention.

To boost the performance of open-nested transactions in DTM, DATS reduces conflicts of outer
transactions and the number of abstract locks of inner transactions, which in turn, minimizes com-
munication overheads and compensating actions. In order to do that, DATS relies on the notions
of commutable transactions1 and transaction dependencies. Two transactions are defined as com-
mutable if they ensure consistency of the shared data-set even if validated and committed concur-
rently upon a conflict. An outer transaction is said to be dependent on its inner transactions if (i) the
inner transactions access the outer transaction’s write-set for performing local computations or (ii)
the results of the outer transaction are used to decide whether or not to invoke an inner transaction.

DATS detects commutable transactions, and validates and commits them, avoiding useless aborts.
For non-commutable transactions, DATS determines the degree to which each outer transaction
depends on its inner transactions and schedules the outer transaction with the highest dependency
to commit before other outer transactions with lower or no dependencies. Committing this outer
transaction prevents its dependent inner transactions from aborting, and reduces the number of
compensating actions. Moreover, even though the other outer transactions abort, this abort does
not affect their independent inner transactions, which reduces the number of compensating actions
and abstract locks that must be released and re-acquired without violating the correctness of the
object.

1Note that, the definition of “commutable” is the same as that of “commutative”, but we use the phrase “com-
mutable” for a transaction to identify commutative operations and transactions.
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Scheduling parallel nested transactions. In order to enhance the throughput of nested transactions,
the parallel nesting model has been proposed [46, 47, 48]. Nested parallelism within an outer
transaction exacerbates the overhead for initializing, synchronizing, and balancing inner transac-
tions (due to the additional conflict detection and rollback needed for the inner transactions) [46].
Existing efforts have focused on this challenge and present cost-effective algorithms, but are lim-
ited to centralized systems.

We consider closed-nested transactions for exploiting nested parallelism in DTM. To initiate par-
allel nesting, extra overheads to identify transactions to be parallelized or serialized are inevitable.
Due to the nature of closed-nesting, an outer transaction has to wait until all parallel inner transac-
tions commit. If all nested inner transactions are serialized in the worst case, parallel nesting may
not be effective. Motivated by this, we consider scheduling inner transactions to enhance parallel
nesting in DTM, and develop a scheduler called SPN. SPN speculatively executes all closed-nested
transactions in parallel. When conflicts are detected, the scheduler assigns a back off time to each
nested transaction to reduce the likelihood for future conflicts.

Scheduling in replicated DTM. With a single object copy, node/link failures cannot be tolerated. If
a node fails, the objects held by the failed node will be simply lost and all following transactions
requesting such objects would never commit. Additionally, read concurrency cannot be effec-
tively exploited. Thus, an array of DTM works – all of which are cluster DTM – consider object
replication. These works provide fault-tolerance properties by inheriting fault-tolerance protocols
from database replication schemes, which rely on broadcast primitives (e.g., atomic broadcast,
uniform reliable broadcast) [49, 50, 24, 51, 52]. Broadcasting transactional read/write sets or
memory differences in metric-space networks is inherently non-scalable, as messages transmitted
grow quadratically with the number of nodes [23]. Thus, directly applying cluster DTM replication
solutions to data-flow cc DTM may not yield similar performance.

We therefore consider a cluster-based object replication model for data-flow cc DTM. In this
model, nodes are grouped into clusters based on node-to-node distances: nodes which are closer
to each other are grouped into the same cluster; nodes which are farther apart are grouped into
different clusters. Objects are replicated such that each cluster contains at least one replica of each
object, and the memory of multiple nodes is used to reduce the possibility of object loss, thereby
avoiding expensive brute-force replication of all objects on all nodes. The CTS scheduler, sched-
ules transactions in this model for high performance. Each cluster has an object owner (node)
for scheduling transactions. On each object owner, CTS enqueues live transactions and identi-
fies some of the transactions that must be aborted to avoid future conflicts, thereby increasing the
concurrency of the other transactions.

We also enhance locality for high performance in data-flow DTM. Majority of the DTM protocols
proposed in the literature use the control-flow execution model [42, 53]. This is because, the prob-
lem of locating objects in a distributed system is inherently a barrier for scalability as it involves a
distributed protocol that is typically costlier than the replication protocol itself. In fact, when each
object is bound to a specific owner, control-flow protocols can rely on a deterministic, consistent
hash function [54], which allows transactions to locally compute the node responsible for main-
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taining the object, without involving any inter-node communication. However, it is clear from the
deterministic nature of this function that it does not allow changing the object ownership or biasing
the initial object location. Without those features, the replication protocol cannot optimize the ob-
ject location for the workload at hand. This problem is inherently solved in the data-flow approach,
where objects can be moved to nodes that more frequently request and update such objects.

Motivated by these observations, we propose LOCAL-FLOW, a partial replication DTM protocol
for the data-flow model that is optimized for applications with inherent time locality on their object
accesses. LOCAL-FLOW is genuine [55, 56]: only replicas involved during transactional execu-
tion participate in the commit phase. The protocol ensures 1-copy-serializability [57] by acquiring
locks on updated objects at commit time (using two-phase commit) and validating the accessed
objects after lock acquisition.

To limit the overhead of locating and moving the accessed objects through nodes, LOCAL-FLOW
defines two logical execution phases for each object: phase A, where object ownership is changed
at commit time; and phase B, where the object ownership is not modified after commit.2 During
phase A, transactions locate objects by simply querying a local structure without invoking any
distributed protocol. Phase B is needed for addressing workload fluctuations. When a non-optimal
placement for an object oi maintained by node ni is detected, the node performing the majority
of requests for oi, say nj , is determined, and oi’s ownership is transferred to nj (transitioning oi’s
phase from A to B).

The LTS scheduler, embedded in LOCAL-FLOW, is responsible for managing concurrent object
requests from processing nodes. LTS monitors the key performance parameters needed for de-
tecting the effectiveness of the current object placement and triggers the transition of misplaced
objects from phase A to phase B.

LOCAL-FLOW’s key aspect is the management of system “hot spots”. The protocol defines a
configuration parameter, called field replication degree (FRD), which is used for splitting hot spot
objects to alleviate their contention (splitting reduces the invalidation rate on them). In general,
an application defines a set of transactional classes, which represent the profiles of transactions
injected in the system. Each class is typically interested in only a subset of the fields of an object.
If two different classes access the same object but different fields, it is detected as a conflict, and is
resolved by aborting one of the two transactions. Moreover, if this object is heavily accessed, the
overall concurrency is degraded. To mitigate this, LTS detects the presence of each hot-spot object
and splits its fields, only when FRD > 1, onto a subset of the replicas that are already responsible
for storing the object (i.e., the object owners).

2Note that, the phases are only logical and are not time-dependent. LOCAL-FLOW’s underlying model is asyn-
chronous.
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1.4 Summary of Research Contributions

We now summarize our contributions.

• The Bi-interval scheduler groups concurrent requests into read and write intervals to exploit
concurrency of read transactions. Write transactions are serialized according to shortest
object moving times. Bi-interval improves the makespan competitive ratio of DTM (with-
out such a scheduler) from O(N) to O(log(N)), for N nodes. Also, Bi-interval yields an
average-case makespan competitive ratio of Θ(log(N − k)) for k read transactions. Bi-
interval improves throughput over the no-scheduler case by as much as 1.77∼ and 1.65×
speedup under low and high contention, respectively.

• The CRF scheduler minimizes the abort rate and increases the concurrency of write transac-
tions in multi-version DTM. CRF determines the commutativity of write operations, and exe-
cutes all commutative operations concurrently in a commutative epoch and non-commutative
operations in the next epoch. CRF improves throughput by up to 5× over DecentSTM [52],
a state-of-the-art multi-version DTM.

• The RTS scheduler reduces the aborts of closed-nested transactions to improve performance.
In order to do that, RTS heuristically determines transactional contention levels to decide
whether a live parent transaction aborts or enqueues, and a backoff time that determines
how long a live parent transaction waits. RTS enhances throughput (over the no-scheduler
case) at high and low contention, by as much as 1.53 (53%) ∼ 1.88 (88%) × speedup over
closed-nesting (without scheduling), respectively.

• The DATS scheduler detects commutable open-nested transactions and commits them simul-
taneously, avoiding useless aborts. Moreover, DATS identifies the degree to which an outer
transaction depends on its inner transactions and allows the outer transaction with the high-
est dependency to commit, reducing unnecessary compensating actions and abstract locks.
DATS improves throughput by up to 1.7× on micro-benchmarks and by up to 2.2× on TPC-
C over open-nested DTM without DATS.

• The SPN scheduler improves performance of nested transactions by speculative parallel nest-
ing: the scheduler identifies inner transactions that access different objects and executes them
in parallel. Even if all inner transactions access the same object and are serialized, SPN min-
imizes the initial overhead to identify them. SPN improves throughput by up to 3.5× on
micro-benchmarks and by up to 4.5× on TPC-C over closed-nested DTM without SPN.

• The CTS scheduler improves the performance of replicated DTM by avoiding brute force
replication of all objects over all nodes to minimize communication overhead. In addition,
CTS identifies the transactions that must be aborted in advance to enhance the concurrency of
other transactions, reducing significant number of potential future conflicts. CTS enhances
throughput by up to 1.73× (on average) over state-of-the-art replicated DTMs including
GenRSTM [51] and DecentSTM [52].
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• The LTS scheduler improves the performance of data flow, partial replication-based DTM
by exploiting locality: object ownership is dynamically changed depending on workload
fluctuations, and hot spot objects are split into multiple replicas to reduce contention. LTS
outperforms CTS by up to 2.6× on micro-benchmarks and by up to 2.2× on TPC-C. More-
over, LTS outperforms the Score partial replication DTM protocol [42] by up to 1.55× on
TPC-C.

1.5 Organization

The rest of the dissertation is organized as follows. We overview past and related work in Chapter 2.
We outline the basic preliminaries and system models in Chapter 3. Chapters 4, 5, 6, 7, 8, 9, and 10
describe the Bi-inteval, CRF, RTS, DATS, SPN, CTS, and LTS schedulers, respectively. Each
chapter describes the motivation, scheduler design, an illustrative example, algorithm descriptions,
scheduler properties, and experimental evaluations. We conclude and describe future work in
Chapter 11.



Chapter 2

Past and Related Work

2.1 Distributed Transactional Memory

Herlihy and Sun proposed distributed STM [21]. They present a dataflow model, where transac-
tions are immobile, and objects are dynamically migrated to invoking transactions. Object con-
flicts and object consistency are managed and ensured, respectively, by contention management
and cache coherence protocols. In [21], they present a cache-coherence protocol, called Ballistic.
Ballistic models the cache-coherence problem as a distributed queuing problem, due to the fun-
damental similarities between the two, and uses the Arrow queuing protocol [27] for managing
transactional contention. Ballistic’s hierarchical structure degrades its scalability—e.g., whenever
a node joins or departs the network, the structure has to be rebuilt. This drawback is overcome in
Zhang and Ravindran’s Relay cache-coherence protocol [22], which improves scalability by us-
ing a peer-to-peer structure. They also present a class of location-aware cache-coherence (or LAC)
protocols [58], which improve the makespan competitive ratio, with the optimal Greedy contention
manager [59].

While these efforts focused on distributed STM’s theoretical properties, other efforts developed
implementations. In [49], Bocchino et. al. decompose a set of existing cache-coherent TM designs
into a set of design choices, and select a combination of such choices to support TM for commodity
clusters. They show how remote communication can be aggregated with data communication to
obtain high scalability. In [60], Manassiev et. al. present a page-level distributed concurrency
control algorithm, which automatically detects and resolves conflicts caused by data races for
distributed transactions accessing shared data structures. Kotselidis et. al. present the DiSTM
distributed TM framework for easy prototyping of TM cache-coherence protocols.

Couceiro et. al. present the D2STM for distributed systems [24]. Here, an STM is replicated on
distributed system nodes, and strong transactional consistency is enforced at transaction commit
time by a non-blocking distributed certification scheme. Romano et. al. extend distributed TM for
Web services [25], and cloud platforms [26].

10
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In [25], they present a distributed TM architecture for Web services, where application’s state
is replicated across distributed system nodes. Distributed TM ensures atomicity and isolation of
application state updates, and consistency of the replicated state. In [26], they show how distributed
TM can increase the programming ease and scalability of large-scale parallel applications on cloud
platforms.

2.2 Multi-Version STM

MV-STM has been extensively studied for multiprocessors. MV increases concurrency by allowing
transactions to read older versions of shared data, thereby minimizing conflicts and aborts.

Ramadan et. al. present dependency-aware transactional memory (DATM) [61], where transaction
execution is interleaved, and show substantially more concurrency than two-phase locking. DATM
manages dependency of transactions between live transactions, resulting in concurrency increases
of up to 39% and reducing transaction restarts by up to 94%.

Moore et. al. present Log-based transactional memory (LogTM) that makes commits fast by
storing old versions to a log. LogTM provides fast conflict detection and commit, and is evaluated
on 32 multiprocessors, resulting in only 1-2% transaction aborts.

A single-version model supporting permissiveness was first introduced by Guerraoui et. al. [62].
An STM satisfies π-permissiveness for a correctness criterion π unless every history accepted by
that STM violates π. The notion of online-π-permissiveness, presented in [17], does not allow
transactions to abort unless live transactions violate π. In [16], Perelman et. al. propose the
concept of MV permissiveness, which ensures that read-only transactions never abort in MV-STM.
Maintaining all possible multiple versions that might be needed wastes memory. Thus, they define
a GC property called useless prefix that only keeps multiple versions that some existing read-only
transactions may need.

In [17], Keidar and Perelman identify what kinds of spare aborts can or cannot be eliminated in
MV, and present a Γ-AbortAvoider algorithm that maintains a precedence graph (PG) for avoiding
spare aborts. They show that an STM with Γ-AbortAvoider satisfies Γ-opacity and online Γ-opacity
permissiveness.

Transactional schedulers have been studied for SV-STM. Their purpose is fundamentally similar
to that of MV-STM, but the approach is functionally different. Since versions might be needed by
live transactions in the future, MV-STM keeps multiple versions of shared objects. Since aborted
transactions might be aborted again in the future, scheduling keeps aborted transactions.
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2.3 Nested Transactions

Nested transactions (using closed nesting) originated in the database community and were thor-
oughly described by Moss in [63]. This work focused on the popular two-phase locking protocol
and extended it to support nesting. Also, it proposed algorithms for distributed transaction man-
agement, object state restoration, and distributed deadlock detection.

Open nesting also originates in the database community [64], and was extensively analyzed in
the context of undo-log transactions [65]. In these works, open nesting is used to decompose
transactions into multiple levels of abstraction, and maintain serializability on a level-by-level
basis. One of the early works introducing nesting to Transactional Memory was done by Moss and
Hosking in [66]. They describe the semantics of transactional operations in terms of system states,
which are tuples that group together a transaction ID, a memory location, a read/write flag, and
the value read or written. They also provide sketches for several possible HTM implementations,
which work by extending existing cache coherence protocols. Moss further focuses on open nested
transactions in [20], explaining how using multiple levels of abstractions can help in differentiating
between fundamental and false conflicts and therefore improve concurrency.

Moravan et al. [67] implement closed and open nesting in their previously proposed LogTM HTM.
They implement the nesting models by maintaining a stack of log frames, similar to the run-time
activation stack, with one frame for each nesting level. Hardware support is limited to four nesting
levels, with any excess nested transactions flattened into the inner-most sub-transaction. In this
work, open nesting was only applicable to a few benchmarks, but it enabled speedups of up to 100

Agrawal et al. [68] combine closed and open nesting by introducing the concept of transaction
ownership. They propose the separation of TM systems into transactional modules (or Xmodules),
which own data. Thus, a sub-transaction would commit data owned by its own Xmodule directly
to memory using an open-nested model. However, for data owned by foreign Xmodules, it would
employ the closed nesting model and would not directly write to the memory.

Even though TM promises to make concurrent programming easy to a wide programmer commu-
nity, nested transactions are not allowed to run in parallel. This is an important obstacle to the
central goal of TM. Due to this issue, parallel nesting has been studied [46, 47, 48]

Agrawal et. al. [47] propose XCilk, a runtime-system design supporting transactions that them-
selves can contain nested parallelism and nested transactions. XClik shows the first theoretical
performance bound on a TM system that supports transactions with nested parallelism. Baek et.
al. [46] present NestTM supporting closed nested parallel transactions. NestTM uses eager version
management and word-granularity conflict detections targeting the state and runtime overheads of
nested parallel transactions. Its performance has been evaluated using STAMP [69].
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2.4 Replication for DTM

Zhang and Ravindran [70] propose a quorum-based replication (QR) framework for DTM to en-
hance availability of objects without incurring high communication overhead. All nodes based on
QR have to hold all objects, and one-copy serializability is ensured using a flooding algorithm.

D2STM [24] relies on a commit-time atomic broadcast-based distributed validation to ensure
global consistency. Motivated by database replication schemes, distributed certification based on
atomic broadcast [71] avoids the costs of replica coordination during the execution phase and runs
transactions locally in an optimistic fashion.

Carvalho et. al. present asynchronous lease certification (ALC) DTM replication scheme in [72],
which overcomes some drawbacks of atomic broadcast-based replication [24]. ALC reduces the
replica coordination overhead and avoids unnecessary aborts due to conflicts at remote nodes using
asynchronous leases. ALC relies on uniform reliable broadcast [71] to exclusively disseminate the
writesets, which reduces inter-replica synchronization overhead.

Manassiev et al. present a page-level distributed multiversioning algorithm for cluster DTM [60].
In this algorithm, page differences are broadcast to all other replicas, and a transaction commits
successfully upon receiving acknowledgments from all nodes. A central timestamp is employed,
which allows only a single update transaction to commit at a time.

Kotselidis et al. present the DiSTM cluster DTM framework in [50]. Under the TCC protocol [2],
DiSTM induces large traffic overhead at commit time, as a transaction broadcasts its read/write
sets to all other transactions, which compare their read/write sets with those of the committing
transaction. Using lease protocols [73], this overheard is eliminated. However, they also show that
an extra validation step is added to the master node as well as bottlenecks are created under high
contention because of acquiring and releasing the leases.

In [42], the authors present Score, a partial replication protocol based on control-flow. Score en-
sures one-copy serializability on a multi-version model, allowing read-only transactions to commit
without performing any validation. The protocol yields the best performance when objects are
manually placed in the system, and does not provide any mechanism for changing those locations
when workload changes.

Megastore [74] is a NoSQL datastore-based storage system that is locality-aware. The system
partitions data for enhancing locality: data is partitioned into a set of entity groups, and each group
is assigned to the region or continent from which it is most accessed. Objects are placed manually,
based on geographical assumptions.

P-Store [56] is a genuine partially replicated key-value store, where transactions execute on one or
more sites and are then certified to guarantee serializability. The protocol offers better scalability
than previous solutions, but does not consider locality or workload dynamics.

None of the replication models for cc and cluster DTM consider transactional scheduling. Also,
as mentioned before, broadcasting transactional read/write sets or memory differences as done for
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cluster DTM is inherently non-scalable for cc DTM, as messages transmitted grow quadratically
with the number of nodes. CTS and LTS consider a partial replicated model, increasing scalability
and performance.

2.5 Transactional Scheduling

Transactional scheduling has been explored in a number of multiprocessor STM efforts [75, 76,
77, 31, 7, 30]. However, none of transactional schedulers considers DTM.

In [76], Dragojević et. al. describe an approach that dynamically schedules transactions based on
their predicted read/write access sets. In [77], Ansari et. al. discuss the Steal-On-Abort transaction
scheduler, which queues an aborted transaction behind the non-aborted transaction, and thereby
prevents the two transactions from conflicting again.

Yoo and Lee present the adaptive transaction scheduler (ATS) [31] that adaptively controls the
number of concurrent transactions based on the contention intensity: when the intensity is below
a threshold, the transaction begins normally; otherwise, the transaction stalls and does not begin
until dispatched by the scheduler.

Dolev et. al. present the CAR-STM scheduling approach [7], which uses per-core transaction
queues and serializes conflicting transactions by aborting one and queueing it on the other’s queue,
preventing future conflicts. CAR-STM pre-assigns transactions with high collision probability
(application-described) to the same core, and thereby minimizes conflicts.

Blake, Dreslinski, and Mudge propose the proactive transactional scheduler (PTS) in [32]. PTS
detects hot spots of contention that can degrade performance, and proactively schedules affected
transactions around the hot spots. Evaluation on the STAMP benchmark suite [69] shows their
scheduler outperforming a backoff-based policy by an average of 85%.

Attiya and Milani present the BIMODAL scheduler [30], which targets read-dominated and bi-
modal (i.e., those with only early-write and read-only) workloads. BIMODAL alternates between
“writing epochs” and “reading epochs” during which writ and read transactions are given priority,
respectively, ensuring greater concurrency for read transactions.



Chapter 3

Preliminaries and System Model

We consider a distributed system which consists of a set of nodes N = {n1, n2, · · · } that commu-
nicate with each other by message-passing links over a communication network. Similar to [21],
we assume that the nodes are scattered in a metric space. The metric d(ni, nj) is the distance be-
tween nodes ni and nj , which determines the communication cost of sending a message from ni
to nj .

3.1 Distributed Transactions

A distributed transaction performs operations on a set of shared objects in a distributed system,
where nodes communicate by message-passing links. Let O = {o1, o2, . . .} denote the set of
shared objects. A transaction Ti is in one of three possible statuses: live, aborted, or committed. If
an aborted transaction retries, it preserves the original starting timestamp as its starting time.

We consider Herlihy and Sun’s dataflow distributed STM model [21], where transactions are im-
mobile, and objects move from node to node. In this model, each node has a TM proxy that
provides interfaces to its application and to proxies at other nodes. When a transaction Ti at node
ni requests object oj , the TM proxy of ni first checks whether oj is in its local cache. If the object
is not present, the proxy invokes a distributed cache coherence protocol (cc) to fetch oj in the net-
work. Node nk holding object oj checks whether the object is in use by a local transaction Tk when
it receives the request for oj from ni. If so, the proxy invokes a contention manager to mediate the
conflict between Ti and Tk for oj .

When a transaction Ti invokes an operation on object oj , the cc protocol is invoked by the local
TM proxy to locate the current cached copy of oj . We consider two properties of the DCC. First,
when the TM proxy of Ti requests oj , the cc is invoked to send Ti’s read/write request to a node
holding a valid copy of oj in a finite time period. A read (write) request indicates the request for Ti
to conduct a read (write) operation on oj . A valid object copy is defined as a valid version. Thus,

15
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a node holding versions of oj replies with the version corresponding to Ti’s request. Second, at
any given time, the cc must locate only one copy of oj in the network and only one transaction is
allowed to eventually write to oj .

3.1.1 Definitions

For the purpose of analysis, we consider a symmetric network of N nodes scattered in a met-
ric space. The metric d(ni, nj) is the distance between nodes ni and nj , which determines the
communication cost of sending a message from ni to nj . We consider three different models: no
replication (NR), partial replication (PR), and full replication (FR) in data-flow DTM to show the
effectiveness of Bi-interval, and, RTS, SPN in NR, and CTS in PR.

Definition 1. Given a scheduler A and N transactions in DTM, makespanNA (Model) is the time
that A needs to complete N transactions on Model.

Definition 2. The competitive ratio (CR) of a schedulerA forN transactions inModel is makespanN
A (Modle)

makespanN
OPT (Model)

,
where OPT is the optimal scheduler.

Definition 3. The relative competitive ratio (RCR) of schedulers A and B for N transactions on
Model in DTM is makespanN

A (Model)

makespanN
B (Model)

.

Also, the RCR of model 1 and 2 for N transactions on scheduler A in DTM is makespanN
A (Model1)

makespanN
A (Model2)

.

Given schedulers A and B for N transactions, if RCR (i.e., makespan
N
A (Model)

makespanN
B (Model)

) < 1, A outperforms
B. Thus, RCR of A and B indicates a relative improvement between schedulers A and B if
makespanNA (Model) < makespanNB (Model).

The execution time of a transaction is defined as the interval from its beginning to the commit.
In distributed systems, the execution time consists of both communication delays to request and
acquire a shared object and the time duration to conduct an operation on a processor, so the local
execution time of Ti is defined as γi,

∑N
i=1 γi = ΓN for N transactions.

If only a transaction Ti invoking in ni exists and Ti requests an object from nj on NR, it will
commit without any contention. Thus, makespan1

A(NR) is 2×d(ni, nj)+γi under any scheduler
A.

3.2 Nested Transactions

The differences between the nesting models are shown in Figure 3.1, in which there are two trans-
actions containing a nested-transaction. With flat nesting illustrated in Figure 3.1(a), transaction
T2 cannot execute until transaction T1 commits. T2 incurs full aborts, and thus has to restart from
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(a) Flat Nesting

(b) Closed Nesting

(c) Open Nesting

Figure 3.1: Two Transactions under Flat, Closed and Open Nesting

the beginning. Under closed nesting presented in Figure 3.1(b), only T2’s inner-transaction needs
to abort and be restarted while T1 is still executing. The portion of work T2 executes before the
data-structure access does not need to be retried, and T2 can thus finish earlier. Under open nest-
ing in Figure 3.1(c), T1’s inner-transaction commits independently of its outer, releasing memory
isolation over the shared data-structure. T2’s inner-transaction can therefore proceed immediately,
thus enabling T2 to commit earlier than in both closed and flat nesting.

The flat and closed nested models have a clear negative impact on large monolithic transactions in
terms of concurrency. In fact, when a large transaction is aborted all its flat/closed-nested trans-
actions are also aborted and rolled-back, even if they do not conflict with any other transaction.
Closed nesting potentially offers better performance than flat nesting because the aborts of closed-
nested inner transactions do not affect their outer transactions. However the open-nesting approach
outperforms both in terms of concurrency allowed. When an open-nested transaction commits, its
modifications on objects become immediately visible to other transactions, allowing those transac-
tions to start using those objects without a conflict, increasing concurrency [66]. In contrast, if the
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inner transactions are closed- or flat-nested, then those object changes are not made visible until
the outer transaction commits, potentially causing conflicts with other transactions that may want
to use those objects.

To achieve high concurrency in open nesting, inner transactions have to implement abstract seri-
alizability [45]. If concurrent executions of transactions result in the consistency of shared objects
at an “abstract level”, then the executions are said to be abstractly serializable. If an inner trans-
action I commits, I’s modifications are immediately committed in memory and I’s read and write
sets are discarded. At this time, I’s outer transaction A does not have any conflict with I due to
memory accessed by I . Thus, programmers consider the internal memory operations of I to be at a
“lower level” than A. A does not consider the memory accessed by I when it checks for conflicts,
but I must acquire an abstract lock and propagates this lock for A. When two operations try to
acquire the same abstract lock, the open nesting concurrency control is responsible for managing
this conflict (so this is defined “abstract level”).

Figure 3.2: Aborting a Transaction Under Open Nesting

Figure 3.2 shows that transaction T2 aborts due to a conflict and the compensation action of its
inner-transaction is executed. Let us assume that T1 and T2’s inner transactions access the dif-
ferent object and commit successfully. However, their outer-transactions access the same object
and T2 aborts. The compensating action of T2’s inner-transaction must be executed because the
inner-transaction’s modification has became visible to other transactions. Even if open-nested
transactions provide high concurrency of inner transactions, the open nested model does not al-
ways perform better than flat and closed nested models due to a large number of abstract locks and
compensation actions [78].

3.3 Atomicity, Consistency, and Isolation

We use the Transactional Forwarding Algorithm (TFA) [23] to provide early validation of remote
objects, guarantee a consistent view of shared objects between distributed transactions, and ensure
atomicity for object operations in the presence of asynchronous clocks. TFA is responsible for
caching local copies of remote objects and changing object ownership. Without loss of generality,
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objects export only read and write methods (or operations).

Figure 3.3: An Example of TFA

For completeness, we illustrate TFA with an example. In Figure 3.3, a transaction updates object
o1 at time t1 (i.e., local clock (LC) is 14) and four transactions (i.e., T1, T2, T3, and T4) request
o1 from the object holder. Assume that T2 validates o1 at time t2 and updates o1 with LC=30 at
time t3. A validation in distributed systems includes global registration of object ownership. Any
read or write transaction (e.g., T4), which has requested o1 between t2 and t3 aborts. When write
transactions T1 and T3 validate at times t1 and t2, respectively, transactions T1 and T3 that have
acquired o1 with LC=14 before t2 will abort, because LC is updated to 30.

Bi-interval is associated with TFA. RTS and SPN are associated with nested TFA (N-TFA) [79],
that is an extension of TFA to implement closed nesting in DTM. DATS is associated with TFA
with Open Nesting (TFA-ON) [78], which extends the TFA algorithm [23], to manage open-nested
transactions. N-TFA and TFA-ON change the scope of object validations.

The behavior of open-nested transactions under TFA-ON is similar to the behavior of regular trans-
actions under TFA. TFA-ON manages the abstract locks and the execution of commit and compen-
sating actions [78]. To provide conflict detection at the abstract level, an abstract locking mecha-
nism is integrated into TFA-ON. Abstract locks are acquired only at commit time, once the inner
transaction is verified to be conflict free at the low level. The commit protocol requests the abstract
lock of an object from the object owner and the lock is released when its outer transaction commits.
To abort an outer transaction properly, a programmer provides an abstract compensating action for
each of its inner transaction to revert the data-structure to its original semantic state. TFA-ON is
the first ever implementation of a DTM system with support for open-nested transactions [78].

To ensure the consistency of objects, CRF is implemented in MV-TFA, CTS is based on partially
replicated TFA, and LTS is associated with LOCAL-FLOW (i.e., a partially replicated data-flow
model). We discuss MV-TFA, replicated TFA and LOCAL-FLOW in chapters 5, 9 and 10, respec-
tively.



Chapter 4

The Bi-interval Scheduler

4.1 Motivation

Unlike multiprocessor transactions, data flow-based DTM incurs communication delays in request-
ing and acquiring objects. Figure 4.1 illustrates a scenario on data flow DTM consisting of five
nodes and an object. Figure 4.1(a) shows that nodes n2, n3, n4, and n5 invoke T2, T3, T4, T5,
respectively and request o1 from n1. In Figure 4.1(b), T5 validates o1 first and becomes the object
owner of o1. T2, T3, and T4 abort when they validate. Figure 4.1(c) indicates that T2, T3, and T4
request o1 from n5 again.

(a) Requesting o1 (b) Validating o1 (c) Re-requesting o1

Figure 4.1: A Scenario consisting Four Transactions on TFA

Contention managers deal with only conflicts, determining which transaction wins or not. Past
transactional schedulers (e.g., proactive and reactive schedulers) serialize aborted transactions but
do not consider moving objects in data flow DTM. In DTM, the aborted transactions request an
object again, increasing communication delays. Motivated by this observation, the transactions
requesting o1 are enqueued and the transactions immediately abort when one of these validate o1.

20
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As soon as o1 is updated, o1 is sent to the aborted transactions. The aborted transaction will receive
the updated o1 without any request, reducing communication delays. Meanwhile, we focus on
which order of the aborted transactions lead to improved performance. Read transaction defined
as read-dominated workloads will simultaneously receive o1 to maximize the parallelism of read
transactions. Write transactions including write operations will receive o1 according to the shortest
delay to minimize object moving time.

4.2 Scheduler Design

Bi-interval is similar to the BIMODAL scheduler [30] in that it categorizes requests into read and
write intervals. If a transaction aborts due to a conflict, it is moved to a scheduling queue and
assigned a backoff time. Bi-interval assigns two different backoff times defined as read and write
intervals to read and write transactions, respectively. Unless the aborted transaction receives the
requested object within an assigned backoff time, it will request the object again.

Bi-interval maintains a scheduling queue for read and write transactions for each object. If an
enqueued transaction is a read transaction, it is moved to the head of the scheduling queue. If it is
a write transaction, it is inserted into the scheduling queue according to the shortest path visiting
each node invoking enqueued transactions. When a write transaction commits, the new version
of an object is released. If read and write transactions have been aborted and enqueued for the
version, the version will be simultaneously sent to all the read transactions and then visit the write
transactions in the order of the scheduling queue. The basic idea of Bi-interval is to send a newly
updated object to the enqueued-aborted transactions as soon as validating the object completes.

There are two purposes for enqueuing aborted transactions. First, in order to restart an aborted
transaction, the CC protocol will be invoked to find the location of an object, incurring commu-
nication delays. An object owner holds a queue indicating the aborted transactions and sends the
object to the node invoking the aborted transactions. The aborted transactions may receive the
object without the help of the CC protocol, reducing communication delays. Second, Bi-interval
schedules the enqueued aborted transactions to minimize execution times and communication de-
lays. For reduced execution time, the object will be simultaneously sent to the enqueued read
transactions. In order to minimize communication delays, the object will be sent to each node
invoking the enqueued write transactions in order of the shortest path, so the total traveling time
for the object in the network decreases.

Bi-interval determines read and write intervals indicating when aborted read and write transactions
restart, respectively. This intends that an object will visit each node invoking aborted read and
write transactions within read and write intervals, respectively. As a backoff time, a read interval is
assigned to aborted read transactions and a write interval is assigned to aborted write transactions.
A read interval is defined as the local execution time τi of transaction Ti. All enqueued-aborted
read transactions will wait for τi and receive the object that Ti has updated. A write interval is
defined as the sum of the local execution times of enqueued write transactions and a read interval.
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The aborted write transaction may be serialized according to the order of the scheduling queue. If
any of these transactions do not receive the object, they will restart after a write interval.

4.3 Illustrative Example

(a) Requesting o1 (b) Validating o1 (c) Scheduling Transactions

Figure 4.2: A Scenario consisting of Four Transaction on Bi-interval

Figure 4.2 shows a scenario consisting of four transactions based on Bi-interval. Node n1 holds
o1 and write transactions T2, T3, T4, and T5 request object o1 from n1. n1 has a scheduling queue
holding requested transactions T2, T3, T4, and T5. If T5 validates o1 first as being illustrated by
Figure 4.2(b), T2, T3, and T4 abort. If n2 is closest to n5, o1 updated by T5 is sent to n2, and two
backoff times are sent to T3 and T4, respectively. Figure 4.2(c) shows one write interval.

While T5 validates o1, let us assume that other read transactions request o1. The read transactions
will be enqueued and simultaneously receive o1 after T5 completes its validation. Thus, once
the scheduling queue holds read and write transactions, a read interval will start first. The write
transactions will be serialized according to the shortest object traveling time.

4.4 Algorithms

The data structures depicted in Algorithm 1 are used in Algorithms 2. The data structure of
Requester consists of the address and the transaction identifier of a requester. Requester List
maintains a linked list for Requester and BackoffT ime. removeDuplicate() checks and re-
moves a duplicated transaction in Requester List. scheduling List is a hash table that holds a
Requester List including requesters for an object with Object ID.

Algorithm 2 describes Retrieve Request, which is invoked when an object owner receives a re-
quest. If the corresponding object is being used, Retrieve Request has to decide whether the
requester is aborted or enqueued on elapsed time. Unless BackoffT ime corresponding to the
object exceeds elapsed time, the requester is added to scheduling List. local exectuion time
of the the requester is an expected total running time. Thus, local exectuion time - elapsed time
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Algorithm 1: Structure of Scheduling Queue
1 Class Requester {
2 Address address;
3 Transaction ID txid;
4 }
5 Class Requester List {
6 List<Requester> Requesters = new LinkedList<Requester>();
7 Integer BackoffTime;
8 void addRequester(backoff time, Requester);
9 void removeDuplicate(Address);

10 }
11 Map<Object ID, Requester List> scheduling List = new ConcurrentHashMap<Object ID, Requester List>();

is the remained time that the requesting transaction will run in advance. As soon as validating the
object completes, it is sent to the first element of scheduling List.

Algorithm 2: Algorithm of Retrieve Request
1 Procedure Retrieve Request
2 Input: oid. txid, local exectuion time, elapsed time
3 object = get Object(oid);
4 address = get Requester Address();
5 Integer backoff = 0;
6 if object is not null and in use then
7 Requester List reqlist = scheduling List.get(oid);
8 if reqlist is null then
9 reqlist = new Requester List();

10 else
11 reqlist.removeDuplicate(address);

12 if reqlist.BackoffT ime < elapsed time then
13 backoff = reqlist.BackoffT ime;
14 reqlist.addRequest(local exectuion time-elapsed time, new Requester(address, txid));
15 scheduling List.put(oid, reqlist);

16 Send object and backoff to address;

Algorithm 3 shows the bi interval scheduler that is invoked after the object indicated by oid was
validated. The owner of oid is transferred to the node that has validated the object last. The
node has a responsibility to send the object to the first element of scheduling List after invok-
ing bi interval. The Distance function returns a communication delay between the object owner
and the requesting node indicated by Requester.Address. readRequesters as an instance of
Requester List holds all requesters for read transactions. After execution Algorithm 3, the ob-
ject is simultaneously sent to all addresses of readRequesters if readRequesters is not empty.
NextNode indicates the nearest nodes’s address.
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Algorithm 3: Algorithm of the bi interval function
1 Procedure bi interval
2 Input: scheduling List, oid
3 Output: Address
4 reqlist = scheduling List(oid);
5 NextNode = null;dist=∞
6 if reqlist is not null then
7 foreach Requester ∈ reqlist do
8 if Requester is for write transaction then
9 if dist > Distance(Requester.Address) then

10 dist = Distance(Requester.Address);
11 NextNode = Requester.Address;

12 else
13 readRequesters.addRequester(Requester);

14 return NextNode;

4.5 Analysis

The object moving cost is defined as ηA(u, VTN−1
), which is the total communication delay for

visiting each node from node u holding an object to N − 1 nodes in VTN−1
, under scheduler A.

VTN−1
represents a set of N − 1 nodes invoking transactions.

Theorem 4.5.1. Bi-interval’s execution makespan competitive ratio is 1+ Ir
N−k+1

for N transac-
tions including k read transactions, where Ir is the number of read intervals.

Proof. The optimal off-line algorithm concurrently executes all read transactions. So, Bi-interval’s
optimal execution for N transactions including k read transactions is

∑N−k+1
m=1 γm.

CRBiinterval ≤
γω · Ir +

∑N−k+1
m=1 γm∑N−k+1

m=1 γm
≈ Ir +N − k + 1

N − k + 1

, where γω is γ of a read transaction. The theorem follows.

Theorem 4.5.2. Bi-interval’s traveling makespan competitive ratio for k reads of N transactions
is log(N + Ir − k − 1).

Proof. Bi-interval follows the nearest neighbor path to visit each node in the scheduling list. We
define the stretch of a transactional scheduler as the maximum ratio of the moving time to the
communication delay—i.e., Stretchη(u, VTN−1

) = max
ηBiinterval(u,VTN−1

)

d(u,VTN−1
)

≤ 1
2

log(N − 1) + 1
2

from [80]. Hence, CRBiinterval ≤ log(N + Ir − k − 1). The theorem follows.

Theorem 4.5.3. The total worst-case competitive ratio CRWorst
Biinterval of Bi-interval for N transac-

tions is O(log(N)).
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Proof. In the worst-case, Ir = k. This means that there are no consecutive read intervals. Thus,
makespanN

OPT and makespanN
Biinterval satisfy the following, respectively:

makespanNOPT = ΓN−k+1 + min d(u, VTN−k+1
) (4.1)

makespanNBiinterval = ΓN−1 + log(N − 1) max d(u, VTN−1
) (4.2)

Hence, CRWorst
Biinterval ≤ log(N − 1). The theorem follows.

We now focus on the case Ir < k.

Theorem 4.5.4. When Ir < k, Bi-interval improves the traveling makespan (i.e.,makesp anNBiinterval(NR))
as much as O(| log(1− (k−Ir

N−1 )|) for k reads of N transactions.

Proof.

max
η(u, VTN+Ir−k−1

)

d(u, VTN−1
)

(4.3)

= max
(η(u, VTN−1

)

d(u, VTN−1
)

+
ε

d(u, VTN−1
)

)
≤ 1

2
log(N − k + Ir − 1) +

1

2

When Ir < k, a read interval has at least two read transactions. We are interested in the difference
between η(u, VTN−1

) and η(u, VTN+Ir−k−1
). Thus, we define ε as the difference between two η

values.
max

ε

d(u, VTN−1
)
≤ 1

2
log(

N − k + Ir − 1

N − 1
) (4.4)

In (4.4), due to Ir < k, N−k+Ir−1
N−1 < 1. Bi-interval is invoked after conflicts occur, so N 6= k.

Hence, ε is a negative value, improving the traveling makespan. The theorem follows.

The average-case analysis (or, probabilistic analysis) is largely a way to avoid some of the pes-
simistic predictions of complexity theory. Bi-interval improves the competitive ratio when Ir < k.
This improvement depends on the size of Ir—i.e., how many read transactions are consecutively
arranged. We are interested in the size of Ir when there are k read transactions. We analyze the
expected size of Ir using probabilistic analysis. We assume that k read transactions are not con-
secutively arranged (i.e., k ≥ 2) when N requests are arranged according to the nearest neighbor
algorithm. We define a probability of actions taken for a given distance and execution time.

Theorem 4.5.5. The expected number of read intervals E(Ir) of Bi-interval is log(k).
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Proof. The distribution used in the proof of Theorem 4.5.5 is an independent uniform distribution.
p denotes the probability for k read transactions to be consecutively arranged.

E(Ir) =

∫ 1

p=0

k∑
Ir=1

(
k

Ir

)
· pk(1− p)k−Irdp

=
k∑

Ir=1

( k!

Ir! · (k − Ir)!

∫ 1

p=0

pk(1− p)k−Irdp
)

≈
k∑

Ir=1

k!

Ir!
· k!

(2k − Ir + 1)!
≈ log(k) (4.5)

We derive Equation 4.5 using the beta integral. The theorem follows.

Theorem 4.5.6. Bi-interval’s total average-case competitive ratio (CRAverage
Biinterval) is Θ(log(N−k))

for k reads of N transactions.

Proof. We define CRm
Biinterval as the competitive ratio of node m. CRAverage

Biinterval is defined as the
sum of CRm

Biinterval of N + E(Ir)− k + 1 nodes.

CRAverage
Biinterval ≤

N+E(Ir)−k+1∑
m=1

CRm
Biinterval

≤ log(N + E(Ir)− k + 1) ≈ log(N − k)

Since E(Ir) is smaller than k, CRAverage
Biinterval = Θ(log(N − k)). The theorem follows.

4.6 Evaluation

We compared TFA with Bi-interval (referred to as TFA/Bi-interval) against competitors only TFA.
We measured the transactional throughput—i.e., the number of committed transactions per second
under increasing number of requesting nodes, for the different schemes.

We developed a set of four distributed applications as benchmarks. These include distributed
versions of the Vacation benchmark of the Stanford STAMP (multiprocessor STM) benchmark
suite [69], two monetary applications (Bank and Loan). and Red/Black Tree (RB-Tree) [38] as mi-
crobenchmarks. We created 10 objects, distributed them equally over the 48-nodes, and executed
hundred transactions at each node. We used low and high contention levels, which are defined as
90% read transactions and 10 objects, and 10% read transactions and 5 objects, respectively.

A transaction’s execution time consists of inter-node communication delay, serialization time, and
execution time. Communication delay between nodes is limited to a number between 1ms and
10ms to create a static network. Serialization delay is the elapsed time to ensure correctness
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Figure 4.3: Throughput Under Four Benchmarks in Low and High Contention

of concurrent transactions. This delay also includes waiting time in a scheduling queue and Bi-
interval’s computational time.

In low contention, Bi-interval produces high concurrency due to the large number of read-only
transactions. In high contention, Bi-interval reduces object moving time. In both cases, Bi-interval
improve throughput, but concurrency of read-only transactions improves more throughput than re-
duced object moving time. Our experimental evaluation shows that Bi-interval enhances through-
put over TFA as much as 1.77∼ 1.65× speedup under low and high contention, respectively.



Chapter 5

The Commutative Requests First

5.1 Motivation

With a single copy for each object, i.e., single-version STM (SV-STM), when a read/write conflict
occurs between two transactions, the contention manager resolves the conflict by aborting one and
allowing the other to commit, thereby maintaining the consistency of the (single) object version.
SV-STM is simple, but suffers from large number of aborts [16]. In contrast, with multiple ver-
sions for each object, i.e., multi-versioning STM (MV-STM), unnecessary aborts of transactions,
that could have been committed without violating consistency, are avoided [17]. Unless a conflict
between operations to access a shared object occurs, MV-STM allows the corresponding trans-
actions to read the object’s old versions, enhancing concurrency. MV-STM has been extensively
studied for multiprocessors [16, 19] and also for distributed systems [39]. MV-STM uses snapshot
isolation (SI), which is weaker than serializability [40]. A transaction executing under SI operates
on a snapshot taken at the start of the transaction. The transaction successfully commits if the
objects updated by the transaction have not been changed externally since the snapshot was taken,
guaranteeing that all read transactions will see a consistent snapshot. Many works [40, 41, 42]
used SI for improving performance in centralized and distributed TM environments. Even though
SI allows more concurrency among transactions respect to with serializability, a write-write trans-
action’s conflict under SI causes the transaction to abort. In write-intensive workloads, this conflict
cannot be avoided because the concurrency of write transactions may violate SI.

In this dissertation, we address the problem of permitting multiple conflicting transactions to com-
mit concurrently, in order to enhance concurrency of write transactions without violating SI in
multi-version cc DTM for high performance. We propose a transactional scheduler that enables
concurrency of write transactions, called Commutative Requests First (CRF). In order to do that,
CRF exploits the notion of commutative operations. Two operations are named commutative if

28
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applying them sequentially in either order, they leave the objects accessed in the same state and
both return the same values.

A very intuitive example of commutativity is when two operations, call1(X) and call2(X), access-
ing both to the same objectX but different fields ofX . Thus, CRF checks whether write operations
are commutative and lets them to validate and commit simultaneously. Unlike past STM works,
that exploit high concurrency based on the commutativity property [43], CRF maintains a schedul-
ing queue to identify commutative and non-commutative transactions, and could decide to allow all
commutative transactions to commit first than the others, maximizing their concurrency. However,
despite the significant performance obtained by adopting the idea of commutativity transactions of
CRF, there could be applications that do not admit such kind of commutativity. CRF addresses this
issue by permitting the developer to explicitly specify non-commutative operations.

5.2 Commutative Requests First in MV-TFA

5.2.1 Multi-Version TFA

In this section we present multi-version MV-TFA, our extension of TFA supporting SI. The basic
idea is to record an event whenever requesting and acquiring an object. Let ni denote a node
invoking a transaction Ti. We define two types of events: (1) Request(Req(ni, oj)) representing the
request of object oj from node ni; (2) Acquisition(Acq(ni, oj)) indicating when node ni acquires
object oj . Figure 5.1 shows an example execution scenario of MV-TFA. We use the same style in
the figure as that of [81]. The solid circles indicate write operations and the empty circles represent
read operations. Transactions’ evolution is represented on horizontal lines with the circles. The
horizontal line corresponding to the status of each object describes the time domain. The dotted
line indicates which node requests an object from where.

Figure 5.1: Example of MV-TFA

Assume that transactions T0 and T1 invoked on nodes n0 and n1 commit after writing o01 and o02,
respectively. Let transactions T2, on node n2, and T3, on node n3, request objects o1 and o2 from
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nodes n0 and n1, respectively. Node n1 holds the list of versions of o2. After that, T3 requests
o1 from n0 and subsequently T4 requests o2 from n1. Thus, n1 records the events Acq(n3, o

0
2)

and Acq(n4, o
0
2). Then T4 updates o2 creating a new version o12. When T4 validates o12 to commit,

Acq(n4, o
0
2) is removed from the events log of n3, and T3 has forced to abort because in the n3’s

log there is another request (Acq(n3, o
0
2)) on the same object o2. The presence of this entry in the

log means that T3 has not yet completed, so T4 definitively commits before that T3 validates o2,
invalidating the object o02 accessed by T3. As a consequence of T4 commitment, node n4, which
invokes T4, receives the versions o02 and o12 of object o2. Now, after the commit of T4, T2 requests
o2 with the value | t4 - t2 | from n4. It replies with the version o02 instead of the newly o12 because
o02 has been updated at time t1 to T2, because | t4 − t3 | < | t4 - t2 | < | t4 − t1 |. Using this
mechanism, T2 can access to a consistent snapshot that is not affected by a write operation by T4,
instead of being aborted due to T4 ’s write. This is how MV-TFA ensures SI.

5.2.2 CRF Scheduler Design

MV-TFA shows how to enhance performance in case of workload characterized by mostly read
transactions, exploiting multi-versions. In this subsection we focus on how to schedule write
transactions concurrently minimizing the abort rate and increasing the parallelism.

Figure 5.2: Specification of a Set

When a transaction T1 at node n1 needs object o1 for an operation, it sends a request to the o1’s
object owner. If the operation is read, a version of o1 is sent to n1. If the operation is write, we
consider two possible cases in terms of o1. (A) The first case happens when other transactions
may have requested o1 but no transaction has validated o1. In this case, a version of o1 is sent
to n1 and T1’s request moves into the scheduling queue of the o1’s owner. (B) The second case
is when another transaction T2 is validating o1. In this case, unless T2 and T1 commute, T1 will
abort and T1’s request also moves to the scheduling queue. If T2 and T1 commutes, o1 is sent to n1

and T1’s request moves to the scheduling queue. The o1’s owner maintains the scheduling queue
to execute commutative transactions concurrently. Accordingly, the non-commutative transactions
will be executed serially. To better assess CRF, we use it to implement the specification of a Set
provided by [43]. We recall that a Set is a collection of items without duplications in which the
following operations are provided: add(x), remove(x) and contains(x) where x is the item of the
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Set accessed. Figure 5.2 summarizes Set operations’ commutativity according to [43]’s definition.

In the specification illustrated in Figure 5.2, operations insert(x), insert(y), and insert(z) com-
mutes if x 6= y 6= z. Multiple write transactions may be invoked concurrently on the Set. CRF
identifies commutative and non-commutative transactions and gives to the commutative transac-
tions a chance to validate concurrently an object first. However, if we consider the specification
of the Set, in which the are no commutative operations declared, and we encapsulate the Set into
an object (o1) and we consider the above operations as transactions, then typical concurrency con-
trol does not permit to validate and commit concurrently more than one transaction performing
an update on the object (namely updating the Set). Conversely, Figure 5.2 shows that multiple
update transactions can be validated concurrently whether they access to different items in the set.
The scheduling queue holds requests for those operations. If multiple transactions have requested
the same version of o1, CRF allows the commutative transactions to concurrently validate o1.
Meanwhile, many commutative transactions may validate o1. This could bring non-commutative
transactions to “starve” on o1. Thus, CRF alternates between periods (called epochs), in which it
privileges the validation of a group of commutative transactions, with others in which it prefer to
validate the non-commutative ones. In this way, CRF handles conflicts between commutative and
non-commutative transactions. Although epochs contain commutative transactions, these trans-
actions do not commute with the transactions of the next epoch in the chronological sequence.
The terminology “commutative” and “non-commutative” epoch distinguishes between these two
epochs. Thus, in commutative epoch, commutative transactions validate o1 and then in the next
(i.e., non-commutative) epoch, non-commutative transactions, excluded in the previous commu-
tative epoch, can validate o1. If a transaction starts validating o1, its commutative transactions
are also allowed to validate o1 but its non-commutative transactions abort. The non-commutative
transactions will resume after the commutative transactions commit.
CRF checks for whether different operations commute at the level of semantics. Even when com-
mutative operations concurrently update the object, the object preserves a consistent state, ensuring
SI. There are two purposes for processing commutative requests first. First, MV-TFA ensures con-
currency of read transactions, and CRF is responsible to detect conflicts among commutative and
non-commutative write transactions, reducing the number of conflicts. This leads to higher con-
currency. Second, CRF alleviates contention when many write transactions are invoked. Even
though a conflict between two write transactions occurs, all subsequent commutative transactions
are scheduled first. Non-commutative transactions restart simultaneously after the commutative
transactions complete, so CRF avoids further conflicts, decreasing contention.

5.3 Illustrative Example

Figure 5.3 shows a scenario of CRF. The write transactions T1=insert(x), T2=remove(x), T3=insert(y)
and T4=remove(y) request concurrently o1 from its owner. The transactions obtain the version of
o1. The state of the scheduling queue at t1, illustrated in Figure 5.3(b), shows that the transac-
tions are all executing. At t2, T2 starts validating o1. Consequently, T1 aborts because T1 and T2
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(a) Requests of Five Transactions and Validation of Two Transactions for Object o1.

(b) Scheduling Queue Located in o1 Object Owner. The scheduling queue consists of two rows: Enqueued Transactions and State of the Transac-
tions. V (Validation), A (Abort), and E (Execution)

Figure 5.3: A Scenario of CRF

do not commute. Conversely, T3 and T4 can still execute because they are commutative with T2.
Then T5=remove(x) requests o1 during the validation of T2 and immediately aborts because T5
and T2 do not commute. At t3, T4 starts validating o1 and T3 aborts because T3 and T4 do not
commute. Thus, T2 and T4 concurrently validate o1. When T2 ends validation (i.e., commits) at t4,
the version updated by T2 is sent to the non-commutative transaction T1, and T1 starts executing.
Even though T5 is a non-commutative transaction of T2, only T1 starts to avoid a conflict between
non-commutative transactions. Finally, the version updated by T4 at t5 is sent to T3. T1 and T3 may
validate o1 concurrently because they commute.

(a) Epoch and Depth of Validation. (b) Epochs of Validation

Figure 5.4: Epoch-based CRF

Figure 5.4(a) shows that the validation of commutative transactions may not be completely over-
lapping, so the period of validation may be stretched. This may lead to the deferred execution of
non-commutative transactions. To prevent this, we define a new parameter, called depth of val-
idation, namely the number of transactions involved in the validation. Figure 5.4(a) indicates 3
for that depth, meaning that the commits of three transactions mark the end of the epoch. Non-
commutative transactions will start after the epoch. Figure 5.4(b) illustrates the relationship of
epochs. In each epoch, commutative transactions concurrently participate in validation. At the
end of the epoch, their non-commutative transactions held in a scheduling queue, restart. Non-
commutative transactions will validate in the next epoch.
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5.4 Implementation and Experimental Evaluation

5.4.1 Implementation

We implemented CRF on MV-TFA using Scala’s actor model for Java Virtual Machine. The actor
model prohibits sharing memory by encapsulating mutable state inside light-weight sequential con-
structs called actors and it become popular with the advent of the Erlang programming language.
Since then, many languages (e.g., Google Go) have embraced this model.

Actors communicate through message passing and their operations always execute sequentially,
avoiding concurrency problems (e.g., data contention). The actor model is based on communicat-
ing sequential processes introduced by Hoare in [82], and become popular with the advent of the
Erlang programming language. Since then, many languages (e.g., Google Go) have embraced this
model. The Scala API is based on the excellent ScalaSTM API, which is due to be included in
Scala’s standard library.

5.4.2 Commutativity of Benchmarks

We assess the performance of CRF using LinkedList and SkipList as micro-benchmarks and a
TPC-C [83] as real-application benchmark. Regarding the commutativity in micro-benchmarks,
the Set (as introduced in Section 5.2) can be implemented with LinkedList and SkipList [43], so
we rely on the definition of commutativity in Figure 5.2. Regarding TPC-C, the write transactions
consist of update, insert, and/or delete operations accessing a database of nine tables maintained
in memory. Each row in the tables has a unique key. It is composed by five different transac-
tions: New-order, Payment and Delivery for write transactions and Order-status and
Stock-level for read transactions.

Multiple operations commute if they access to a row (or object) with the same key and modify
different columns. We rely on explicit annotations provided by the programmer, indicating the
fields accessed by each transaction profile. We configured the benchmark with a limited number
of warehouses (#4) in order to generate high conflicts. We recall that, in data flow model, objects
are not bound on fixed nodes but move, increasing likelihood of conflicts.

5.4.3 Experimental Setup

Our test-bed consists of 10 nodes connected via a switched 1 Gigabit network connection. Each
node is comprised of 12 Intel Xeon 1.9GHz processor cores. We use the Ubuntu Linux 10.04 server
OS. We measured the transactional throughput (number of committed transactions per second).
To manage garbage collection, versions that are no longer accessible, need to be marked. Unlike
multiprocessors, determining old versions for live transactions in distributed systems incurs com-
munication overheads. Thus, we consider a threshold-based garbage collector [84], which checks
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the number of versions and disposes the oldest if the number of versions exceeds a pre-defined
threshold. We consider threshold 4 for measuring the basic event model’s throughput, because the
observed that the speed-up is relatively less increased after threshold.

5.4.4 Finding a Depth

The large number of concurrent validations may lead to a significant scheduling overhead due to
delayed non-commutative transactions. For the balance of commutative and non- requesting trans-
actions, we consider a threshold-based control, switching the next epoch when either a depth or a
number of non-commutative transactions enqueued meets a predefined threshold, called MaxD.
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Figure 5.5: Throughput Varying Thresholds

Figure 5.5 shows throughput moving the MaxD from 1 to 50. By the plot is clear that CRF’s
throughput is not improved after MaxD=10 for LinkedList and MaxD=5 for TPC-C due to the
increasing number of non-commutative transactions aborted. With the previous values of MaxD,
CRF reaches its maximum throughput, so we used those for the experiments.

5.4.5 Evaluation

We are interested in the execution time for each transaction. The concurrency of transactions leads
to reduced execution times, so we measure commit times for each transaction, and compute the
cumulative commit time indicating how fast transactions commit. Figure 5.6 shows cumulative
commit times of Linkedlist over CRF and MV-TFA. This indicates how many transactions have
committed during 90 seconds with a log scale. In Figure 5.6, we focus on the effectiveness of
CRF. As long as read-only ratio (r) increases, the probability to schedule commutative and non-
commutative transactions increases. Also, lower o values lead to the chance of enhancing concur-
rency with CRF. As illustrated in Figure 5.6, the gap between the curves of CRF and MV-TFA with
r=10 and o=5 is maximized, implying the effectiveness of the CRF scheduler. Meanwhile, commit
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Figure 5.6: Cumulative Commit Times with r ∈ {10, 90}, o ∈ {5, 10, 50}, and 8 nodes

times on CRF with r=90 and o=50 are not reduced much due to the small number of commutative
write transactions.

Figures 5.7,5.9 show the throughput of CRF, MV-TFA and DecentSTM using LinkedList(Figure 5.7)
and SkipList(Figure 5.9) benchmarks. The legend has to be considered for all the plots and shows
the colors differentiate for number of running threads. Each micro-benchmark has been evaluated
using two workloads representative of read intensive (10% writes and 90% reads) and write inten-
sive (90% writes and 10% reads) scenarios. The tests have been performed varying the number of
nodes and the number of threads per node. Each thread submits requests to the distributed system.
Summarizing, we span scenarios from 2 up to 120 concurrent threads in the system. This allows
us to exhaustively assess the behavior of CRF. The comparison between CRF and MV-TFA shows
how much CRF enhances the concurrency of write transactions. For the LinkedList and SkipList,
the new value to add or delete is randomly selected using a uniform distribution. According to
the increasing number of threads and nodes, CRF performs better due to the detection of a large
number of commutative operations. Even though the throughput of CRF is slightly better than
MV-TFA in the scenario characterized by mostly read-only transactions (due to the limited num-
ber of commutative write operations), the maximum gain of CRF against competitors is reached in
write-intensive workload where CRF exploits the ability to validate and commit concurrently con-
flicting transactions. In addition, the plot reveals that, in write dominated workload, CRF scales
better than MV-TFA and DecentSTM. In fact, in contrast with CRF, their performance stall when
increasing the number of concurrent threads in the system. This is also confirmed by the plots in
Figure 5.9(a) and 5.9(b) where CRF outperforms MV-TFA by as much as 2×. As a competitor,
DecentSTM [52] is based on a snapshot isolation algorithm, which requires searching the history
of objects to find a valid snapshot. This algorithm incurs a significant overhead. Thus, we observe
that the transactional throughput of DecentSTM is not improved as long as requesting nodes in-
crease. Our evaluations reveal that CRF improves throughput over MV-TFA and DecentSTM by as
much as (average) 2× and 3× under 10% read transactions, respectively. Further, our evaluations



Junwhan Kim Chapter 5. Commutative Requests First 36

2 3 4 5 6 7 8 9 10
Number of Nodes

500

1000

1500

2000

2500

3000

3500

T
ra

n
sa

ct
io

n
al

T
h

ro
u

gh
p

u
t

Linkedlist(CRF-MV-TFA), 10% Read

(a) CRF-MV-TFA, 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

500

1000

1500

2000

2500

3000

3500

T
ra

n
sa

ct
io

n
al

T
h

ro
u

gh
p

u
t

Linkedlist(MV-TFA), 10% Read

(b) MV-TFA, 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

500

1000

1500

2000

2500

3000

3500

T
ra

n
sa

ct
io

n
al

T
h

ro
u

gh
p

u
t

Linkedlist(DcentSTM), 10% Read

1 thread

2 threads

4 threads

6 threads

8 threads

12 threads

(c) DecentSTM, 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

500

1000

1500

2000

2500

3000

3500

4000

4500

T
ra

n
sa

ct
io

n
al

T
h

ro
u

gh
p

u
t

Linkedlist(CRF-MV-TFA), 90% Read

(d) CRF-MV-TFA, 90% Read
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Figure 5.7: Throughput of CRF, MV-TFA, and DecentSTM Using LinkedList.

show that MV-TFA outperforms DecentSTM in throughput as much as 2×. Figure 5.8 shows the
throughput of CRF, MV-TFA, and DecentSTM using TPC-C benchmark. We used the amount of
read and write transactions that the specification of TPC-C recommends. TPC-C benchmark ac-
cesses large tables to read and write values. Due to the non-negligible transaction execution time,
scheduling commutative operations highly impacts the overall performance. In fact, the conflicting
transactions generated by the benchmark are well managed by CRF and this results observing that
CRF performs better than DecentSTM as much as 5× over 10 nodes.
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Figure 5.8: Throughput of CRF, MV-TFA, and DecentSTM Using TPC-C
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Figure 5.9: Throughput of CRF, MV-TFA, and DecentSTM Using SkipList.



Chapter 6

The Reactive Transactional Scheduler

6.1 Motivation

Past transactional scheduler often causes only small number of aborts and reduces the total commu-
nication delay in DTM [28]. However, aborts may increase when scheduling nested transactions.
In the flat and closed nesting models, if an outer transaction, which has multiple nested transac-
tions, aborts due to a conflict, the outer and inner transactions will restart and request all objects
regardless of which object caused the conflict. Even though the aborted transactions are enqueued
to avoid conflicts, the scheduler serializes the aborted transactions to reduce the contention on only
the object that caused the conflict. With nested transactions, this may lead to heavy contention
because all objects have to be retrieved again.

Proactive schedulers abort the losing transaction with a backoff time, which determines how long
the transaction is stalled before it is re-started [31, 32]. Determining backoff times for aborted
transactions is generally difficult in DTM. For example, the winning transaction may commit be-
fore the aborted transaction is restarted due to communication delays. This can cause the aborted
transaction to conflict with another transaction. If the aborted transaction is a nested transaction,
this will increase the total execution time of its parent transaction. Thus, the backoff strategy may
not avoid or reduce aborts in DTM.

Motivated by this, we propose the RTS scheduler for closed-nested DTM. RTS reduces the num-
ber of parent transactions’ aborts to prevent their committed nested transactions from the aborts.
RTS checks the length of the parent transaction’s execution time and determines whether losing
transaction is aborted or enqueued. If the parent transaction has a short execution time, it aborts.
Otherwise, it is enqueued to preserve its nested transactions. A backoff time used for the enqueued
parent transaction indicate when the transaction is likely to receive an object.

38



Junwhan Kim Chapter 6. The Reactive Transactional Scheduler 39

6.2 Scheduler Design

We consider two kinds of aborts that can occur in closed-nested transactions when a conflict occurs:
aborts of nested transactions and aborts of parent transactions. Closed nesting allows a nested
transaction to abort without aborting its parent transaction. If a parent transaction aborts however,
all of its closed-nested transactions are aborted. Thus, RTS performs two actions for a losing parent
transaction. First, determining whether losing transaction is aborted or enqueued by the length of
its execution time. Second, the losing transaction is aborted if it is a parent transaction with a
“high” contention level. A parent transaction with a “low” contention level is enqueued with a
backoff time.

The contention level (CL) of an object oj can be determined in either a local or distributed manner.
A simple local detection scheme determines the local CL of oj by how many transactions have
requested oj during a given time period. A distributed detection scheme determines the remote CL
of oj by how many transactions have requested other objects before oj is requested. For example,
assume that a transaction Ti is validating oj , and Tk requests oj from the object owner of oj . The
local CL of oj is 1 because only Tk has requested oj . The remote CL of oj is the local CL of
objects that Tk have requested if any. Ti’s commit influences the remote CL because those other
transactions will wait until Tk completes validation of oj . If Tk aborts, the objects that Tk is using
will be released, and the other transactions will obtain the objects. We define the CL of an object
as the sum of its local and remote CLs. Thus, the CL indicates how many transactions want the
objects that a transaction is using.

If a parent transaction with a short execution time is enqueued instead of aborted, the queuing delay
may exceed its execution time. Thus, RTS aborts a parent transaction with a short execution time.
If a parent transaction with a high CL aborts, all closed-nested transactions will abort even if they
have committed with their parent and will have to request the objects again. This may waste more
time than a queuing delay. As long as their waiting time elapses, their CL may increase. Thus,
RTS enqueues a parent transaction with a low CL. We discuss how to determine backoff times and
CLs in Section 6.3.

6.3 Illustrative Example

RTS assigns different backoff times for each enqueued transaction. A backoff time is computed
as a percentage of estimated execution time. Figure 6.1 shows a example of RTS. Three write
transactions T1, T2, and T3 request o1 from the owner of o1, and T2 validates o1 first at t3. T1 and
T3 abort due to the early validation of T2. We consider two types of conflicts in RTS while T2
validates o1. First, a conflict between two write transactions can occur. Let us assume that write
transactions T4, T5, and T6 request o1 at t4, t5, and t6, respectively. T4 is enqueued because the
execution time | t4 − t1 | of T4 exceeds | t7 − t4 | of T2 — the expected commit time t7 of T2. At
this time, the local CL of o1 is 1 and the CL will be 2 (i.e., the CLs of o3 + o2 + o1), which is a low
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(a) Object-based Scenario (b) Transaction-based Scenario

Figure 6.1: A Reactive Transactional Scheduling Scenario

CL. Thus, | t7− t4 | is assigned to T4 as a backoff time. When T5 requests o1 at t5, even if | t5− t2 |
exceeds | t5 - expected commit time of T4 |, T5 is not enqueued because the CL is 4 (i.e., the local
CL of o1 is 2 and the CL of o4 is 2), which is a high CL. Due to the short execution time of T6, T6
aborts. Second, a conflict between read and write transactions can occur. Let us assume that read
transactions T4, T5, and T6 request o1. As backoff times, | t7 − t4 |, | t7 − t5 |, and | t7 − t6 | will
be assigned to T4, T5 and T6, respectively. o1 updated by T2 will simultaneously be sent to T4, T5
and T6, increasing the concurrency of the read transactions.

Given a fixed number of transactions and nodes, object contention will increase if these transactions
simultaneously try to access a small number of objects. The threshold of a low or high CL relies
on the number of nodes, transactions, and shared objects. Thus, the CL’s threshold is adaptively
determined. Assume that the CL’s threshold in Figure 6.1 is decided as 3. When T4 requests o1,
the CL for objects o1, o2, and o3 is 2, meaning that two transactions want the objects that T4 has
requested, so T4 is enqueued. On the other hand, when T5 requests o1, the CL of objects o1 and
o4 is 4, representing that four transactions (i.e., more than the CL’s threshold) want o1 or o4 that
T5 has requested, so T5 aborts. As long as the waiting time elapses, their CL may increase. Thus,
RTS enqueues a parent transaction with a low CL, which is defined as less than the CL’s threshold.

To compute a backoff time, we use a transaction stats table that stores the average historical vali-
dation time of a transaction. Each table entry holds a bloom filter [85] representation of the most
current successful commit times of write transactions. Whenever a transaction starts, an expected
commit time is picked up from the table. The requesting message for each transaction includes
three timestamps: the starting, requesting, and expected commit time of a transaction. In Fig-
ure 6.1, if T5 is enqueued, its backoff time will be | t7 − t5 | + the expected execution time (i.e.,
the expected commit - requesting time) of T4.

If the backoff time expires before an object is received, the corresponding transaction will abort.
Two possible cases exist in this situation. First, the transaction requests the object and is enqueued
again as a new transaction. The duplicated transaction (i.e., the previously enqueued transaction)
will be removed from a queue. Second, the object may be received before the transaction restarts.
In this case, the object will be sent to the next enqueued transaction.
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6.4 Algorithms

We now present the algorithms for RTS. There are three algorithms: Algorithm 4 forOpen Object,
Algorithm 5 for Retrieve Request, and Algorithm 6 for Retrieve Response. The procedure
Open Object is invoked whenever a new object needs to be requested. Open Object returns the
requested object if the object is received. The second procedure, Retrieve Request, is invoked
whenever an object holder receives a new request fromOpen Object. Finally,Retrieve Response
is invoked whenever the requester receives a response from Retrieve Request. Open Object has
to wait for a response and Retrieve Request notifies Open Object of the response.

Algorithm 4 describes the procedure of Open Object. After finding the owner of the object, a
requester sends oid, txid, myCL, and ETS to the owner. myCL is set when an object is received.
myCL indicates the number of transactions needing the objects that the requester is using. The
structure of an execution time (ETS) consists of the start time s, the requesting time r, and the
expected commit time c of the requester. If the received object is null and the assigned backoff
time is not 0, the requester waits for the backoff time. If it expires, Open Object returns null and
corresponding transaction retries. Otherwise, the requester wakes up and receives the object. The
TransactionQueue holding live transactions is used to check the status of the transactions. If
a transaction aborts, it is removed from the TransactionQueue. In this case, even if an object
is received, there is no transaction that needs the object, and therefore it is forwarded to the next
transaction.

Algorithm 4: Algorithm of Open Object
1 Procedure Open Object
2 Input: Transaction ID txid, Object ID oid
3 Output: null, object
4 owner = Find owner(oid);
5 Send oid, txid, myCL, and ETS to owner;
6 Wait until that Retrieve Response is invoked;
7 Read object, backoff , and remoteCL from Retrieve Response;
8 if object is null then
9 if backoff is not 0 then

10 TransactionQueue.put(txid);
11 Wait for backoff ;
12 Read object and backoff from Retrieve Response;
13 if object is not null then
14 return object;

15 else
16 TransactionQueue.remove(txid);

17 return null;

18 else
19 return object;

The data structures depicted in Algorithm 1 is also used in Algorithms 5 and 6. Algorithm 5
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describes Retrieve Request, which is invoked when an object owner receives a request. If
get Object gives null, it is not the owner of oid. Thus, 0 is assigned as the backoff and the
requester must retry to find a new owner. If the corresponding object is locked, the object is being
validated, so Retrieve Request has to decide whether the requester is aborted or enqueued on
ETS and Contention Threshold. Static variables bks represent backoff times for each object.
An object owner holds as many bks as holding objects and updates corresponding bks whenever
a transaction is enqueued. Unless the contention level of the requester and the object owner ex-
ceeds Contention Threshold, the requester is added to scheduling List. As soon as the object
is unlocked, it is sent to the first element of scheduling List.

Algorithm 5: Algorithm of Retrieve Request
1 Procedure Retrieve Request
2 Input: oid. txid, Contention Level, ETS
3 object = get Object(oid);
4 address = get Requester Address();
5 Integer backoff = 0;
6 if object is not null and in use then
7 Requester List reqlist = scheduling List.get(oid);
8 if reqlist is null then
9 reqlist = new Requester List();

10 else
11 reqlist.removeDuplicate(address);

12 if bk < | ETS.r - ETS.s | then
13 Integer contention = reqlist.getContention()+Contention Level;
14 if contention < CL Threshold then
15 bk += | ETS.c - ETS.r |; backoff = bk;
16 reqlist.addReqeuster(contention, new Requester(address, txid));
17 scheduling List.put(oid, reqlist);

18 Send object and backoff to address;

In Algorithm 6, Retrieve Response sends Object Open a signal to wake up if a transaction
waits for an object. If any transaction needing the object is not located in TransactionQueue,
let the object’s owner send the object to the next element of scheduling List. If a transaction
completes the validation of objects (i.e., commit), the node invoking the transaction receives
Requster Lists of each committed object. The newly updated object will be sent to the first
element of scheduling List.

Whenever an object is requested, RTS performs Algorithms 4, 5, and 6. We use a hash table for
objects and a linked list for transactions. The transactions will be enqueued as many as CL thresh-
old. The time complexity is O(1) to enqueue a transaction. To check duplicated transactions in all
enqueued transactions, the time complexity is O(CL threshold). Thus, the total time complexity
of RTS is O(CL threshold).
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Algorithm 6: Algorithm of Retrieve Response
1 Procedure Retreive Response
2 Input: object, txid, and backoff
3 if txid is found in TransactionQueue then
4 TransactionQueue.remove(txid);
5 Send a signal to wake up and give object and backoff ;

6 else
7 Send a message to the object owner;

6.5 Analysis

We now show that RTS outperforms another scheduler in speed. Recall that RTS uses TFA to guar-
antee a consistent view of shared objects between distributed transactions, and ensure atomicity for
object operations. In [23], TFA is shown to exhibit opacity (i.e., its correctness property) [86] and
strong progressiveness (i.e., its progress property [87]). In the worst case, N transactions are si-
multaneously invoked to update an object. Whenever a conflict occurs between two transactions,
let scheduler B abort one of these and enqueue the aborted transaction (to avoid repeated aborts)
in a distributed queue. The aborted transaction is dequeued and restarts after a backoff time. Let
the number of aborts of Ti be denoted as λi. We have the following lemma.

Lemma 6.5.1. Given scheduler B and N transactions,
∑N

i=1 λi ≤ N − 1.

Proof. Given a set of transactions T = {T1, T2, · · ·TN}, let Ti abort. When Ti is enqueued, there
are δi transactions in the queue. Ti can only commit after δi transactions commit if δi transactions
have been scheduled. Hence, if a transaction is enqueued, it does not abort. Thus, one of N
transactions does not abort. The lemma follows.

Let node n0 hold an object. We have the following two lemmas.

Lemma 6.5.2. Given schedulerB andN transactions,makespanNB (NR) ≤ 2(N−1)
∑N

i=1 d(n0, ni)+∑N
i=1 γi.

Proof. Lemma 6.5.1 gives the total number of aborts on N transactions under scheduler B. If a
transaction Ti requests an object, the communication delay will be 2×d(n0, ni). Once Ti aborts,
this delay is incurred again. To complete N transactions using scheduler B, the total communica-
tion delay will be 2(N − 1)

∑N
i=1 d(n0, ni) and the total local execution time will be

∑N
i=1 γi.

Lemma 6.5.3. Given scheduler RTS andN transactions,makespanNRTS(NR) ≤
∑N

i=1 d(n0, ni)+∑N
i=1 d(ni−1, ni) +

∑N
i=1 γi.

Proof. Given a set of transactions T = {T1, T2, · · ·TN}, which is ordered in the queue of node
n0, if ∀Ti ∈ T requests an object, the communication delay of requesting an object will be
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∑N
i=1 d(n0, ni). The total communication delay to completeN transactions will be

∑N
i=1 d(n0, ni)+∑N

i=1 d(ni−1, ni) and the total local execution time will be
∑N

i=1 γi.

We have so far assumed that all N transactions share an object to study the worst-case contention.
We now consider contention of N transactions with M objects. We have the following theorem.

Theorem 6.5.4. Given N transactions and M objects, the RCR of schedulers RTS and B is less
than 1, where N ≥ 2.

Proof. Consider a transaction that includes multiple nested-transactions and accesses multiple
shared objects. In the worst case, the transaction has to update all shared objects. makespanNRTS(NR) <

makespanNB (NR) because
∑N

i=1 d(ni−1,ni)∑N
i=1 d(n0,ni)

< 2N − 3. The best case of scheduler B for aborted
transactions is that its communication delays for M objects to visit all nodes invoking N trans-
actions is incurred on shortest paths. Thus,

∑N
i=1 d(ni−1,ni)∑N
i=1 d(n0,ni)

< logN [80]. Hence, M × logN <

M × (2N − 3), when N ≥ 2. The theorem follows.

6.6 Evaluation

We implemented RTS in the HyFlow DTM framework [23] for experimental studies. We devel-
oped a set of six distributed applications as benchmarks. These include distributed versions of the
Vacation benchmark of the STAMP benchmark suite [69], Bank as a monetary application [23], and
four distributed data structures including Linked-List (LL), Binary-Search Tree (BST), Red/Black
Tree (RB-Tree), and Distributed Hash Table (DHT) [38] as microbenchmarks. We used low and
high contention, which are defined as 90% and 10% read transactions of one thousand active con-
current transactions per node, respectively [7]. A read transaction includes only read operations,
and a write transaction consists of both read and write operations. Five to ten shared objects are
used at each node. Communication delay between nodes is limited to a number between 1 and
50msec to create a static network.

Under long execution time and large CL’s threshold, Vacation and Bank benchmarks suffer from
high contention because their queueing delay is longer than that of the other benchmarks. In the
mean time, under long execution time and short CL’s threshold, the aborts of parent transactions
increase. At a certain point of the CL’s threshold, we observe a peak point of throughput. Thus, in
this experiment, the CL’s threshold corresponding to the peak point is determined.

We measured the throughput (i.e., the number of committed transactions per second) of RTS, TFA,
and TFA+Backoff. TFA means TFA without any transactional scheduler supporting closed-nested
transactions [79]. The purpose of measuring the throughput of TFA is to understand the overall
performance improvement of RTS. TFA+Backoff means TFA utilizing a transactional scheduler.
With the scheduler, a transaction aborts with a backoff time if a conflict occurs. The purpose of
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measuring TFA+Backoff’s throughput is to understand the effectiveness of enqueuing live trans-
actions to prevent the abort of nested transactions.
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Figure 6.2: Transactional Throughput on Low Contention

Figure 6.2 shows the throughput at low contention (i.e., 90% read transactions) for each of the
six benchmarks, running on 10 to 80 nodes. From Figure 6.2, we observe that RTS outperforms
TFA and TFA+Backoff. Generally, TFA’s throughput is better than TFA+Backoff’s. If a parent
transaction including multiple nested transactions aborts, it requests all the objects again under
TFA+Backoff. Even if the parent transaction waits for a backoff time, the additional requests incur
more contention, so the backoff time is not effective for nested transactions. Under TFA, an aborted
transaction also requests all objects without any backoff, also incurring more contention. From
Figures 6.2(a) and 6.2(b), we observe that Vacation and Bank benchmarks take longer execution
time than others. The improvement of their throughput is less pronounced.

Figure 6.3 shows the throughput at high contention (i.e., 10% read transactions) for each of the six
benchmarks. We observe that the throughput is less than that at low contention, but RTS’s speedup
over others increases. High contention leads to many conflicts, causing nested transactions to
abort. Also, we observe that a long execution time caused by queuing live transactions incurs a
high probability of conflicts. In Figures 6.3(c), 6.3(d), 6.3(e), and 6.3(f), the throughput is better
than that of Bank and Vacation, because LL, RB Tree, BST, and DHT have relatively short local
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Figure 6.3: Transactional Throughput on High Contention

execution times.

We computed the throughput speedup of RTS over TFA and TFA+Backoff – i.e., the ratio of
RTS’s throughput to that of the respective competitors. Figure 6.4 summarizes the speedup. Our
experimental evaluations reveal that RTS improves throughput over DTM without RTS by as much
as 1.53 (53%) ∼ 1.88 (88%) × speedup in low and high contention, respectively.
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Chapter 7

The Dependency-Aware Transactional
Scheduler

7.1 Motivation

Figure 7.1 shows an example of open-nested transactions with compensating actions and abstract
locks. Listings 7.1 and 7.2 in Figure 7.1 illustrate two outer transactions, T1 and T2, and an inner
transaction in Listing 7.3. The inner transaction INSERT includes an insert operation in a Linked
List. T1 has a delete operation with a value. If the operation of T1 executes successfully, its inner
transaction INSERT executes. Conversely, regardless of the success of T2’s delete operation, its
inner transaction INSERT will execute. OnCommit and OnAbort, which include a compensating
action, are registered when the inner transaction commits. If the outer transaction (i.e., T1 or T2)
commits, OnCommit executes. When the inner transaction commits, its modification becomes
immediately visible for other transactions. Thus, if the inner transaction commits, and its outer
transaction T1 or T2 aborts, a delete operation as a compensating action (described in OnAbort)
executes. Let us assume that T2 aborts, and OnAbort executes. Even though T2’s inner transaction
(INSERT) does not depend on its delete operation, unlike T1, OnAbort will execute. Thus, the
conflict of object “tree-2” in T2 causes the execution of compensating action on object “tree-1”
in INSERT. The INSERT operation acquires the abstract lock again when it restarts. Finally,
whenever an outer transaction aborts, its inner transaction must execute a compensating action,
regardless of the operation’s dependencies.

This drawback is particularly evident in distributed settings. In fact, distributed transactions typ-
ically have an execution time several orders of magnitude bigger than in a centralized STM, due
to communication delays that are incurred in requesting and acquiring objects [34]. If an outer
transaction aborts, clearly the impact of the time needed for running compensating actions and for

48



Junwhan Kim Chapter 7. The Dependency-Aware Transactional Scheduler 49

Listing 7.1: Transaction T1
new Atomic<Boolean >(){

@Override boolean a t o m i c a l l y ( Txn t ){
L i s t l l = ( L i s t ) t . open ( t r e e −2);
d e l e t e d = l l . d e l e t e ( 7 , t ) ;
i f ( d e l e t e d ) INSERT ( t , 1 0 ) ; / / i n n e r t r a n s a c t i o n

re turn d e l e t e d ;
}

}

Listing 7.2: Transaction T2
new Atomic<Boolean >(){

@Override boolean a t o m i c a l l y ( Txn t ){
L i s t l l = ( L i s t ) t . open ( t r e e −2);
d e l e t e d = l l . d e l e t e ( 9 , t ) ;
INSERT ( t , 1 0 ) ; / / i n n e r t r a n s a c t i o n
re turn d e l e t e d ;

}
}

Listing 7.3: Inner Transaction INSERT
p u b l i c boolean INSERT ( Txn t , i n t v a l u e ){

p r i v a t e boolean i n s e r t e d = f a l s e ;
@Override boolean a t o m i c a l l y ( t ){

L i s t l l = ( L i s t ) t . open ( t r e e −1);
i n s e r t e d = l l . i n s e r t ( va lue , t ) ;
t . a c q u i r e A b s t r a c t L o c k ( l l , v a l u e ) ;
re turn i n s e r t e d ;

}
@Override onAbor t ( t ){

L i s t l l = ( L i s t ) t . open ( t r e e −1); / / c o m p e n s a t i o n a c t i o n
i f ( i n s e r t e d ) l l . d e l e t e ( va lue , t ) ;
t . r e l e a s e A b s t r a c t L o c k ( l l , 7 ) ;

}
@Override onCommit ( t ){

L i s t l l = ( L i s t ) t . open ( t r e e −1);
t . r e l e a s e A b s r a c t L o c k ( l l , v a l u e ) ;

}
}

Figure 7.1: Two open-nested transactions with abstract locks and compensating actions
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acquiring abstract locks for distributed open-nested transactions is exacerbated due to the commu-
nication overhead. Moreover it increases the likelihood of conflicts, drastically reducing concur-
rency and degrading performance.

Motivated by these observations, we propose the DATS scheduler for open-nested DTM. DATS,
for each outer transaction Ta, identifies the number of inner transactions depending from Ta and
schedules the outer transactions with the greatest number of dependencies to validate first and
(hopefully) commit. This behavior permits the transactions with high compensation overhead to
commit; the remaining few outer transactions that are invalidated will be restarted excluding their
independent inner transactions to avoid useless compensating actions and acquisition of abstract
locks. In the next subsection the meaning of dependent transactions for DATS will be described.

7.2 Abstract and Object Level Dependencies

7.2.1 Abstract Level Dependency

Abstract level dependency (ALD) indicates the dependency between an outer transaction and its
inner transactions at an abstract level. We define the dependency level (DL) as the number of
inner transactions that will execute OnAbort when the outer transactions abort. For example, T1
illustrated in Figure 7.1 depends on its INSERT due to the deleted variable. Thus, DATS detects a
dependency between T1 and its INSERT (its inner transaction) because the delete operations in T1
shares the variable deleted with the conditional if statement declared for executing INSERT. In
this case, the DL=1 for T1. Conversely, T2 executes INSERT without checking any pre-condition
so its DL=0 because T2 does not have dependencies with its inner transactions. The purpose of the
abstract level dependency is to avoid unnecessary compensating actions and abstract locks. Even
though T2 aborts, OnAbort in INSERT will not be executed because its DL=0, and the compen-
sating action will not be processed. Meanwhile, executing OnAbort implies running INSERT and
acquiring the abstract lock again when T2 restarts.

Summarizing, aborting outer transactions with smaller DLs leads to a reduced number of com-
pensating actions and abstract lock acquisitions. Such identification can be done automatically at
run-time by DATS using byte-code analysis or relying on explicit indication by the programmer.
The first scenario is completely transparent from the application point of view but in some cases
could add additional overhead. The second approach, although it requires the collaboration of the
developer, is more flexible because it allows the programmer to bias the behavior of the scheduler.
In fact, even though the logic of an outer transaction reveals a certain number of dependencies, the
programmer may want to force running compensations in case of an abort. This can be done by
simply changing the value of DL associated to the outer transaction.
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7.2.2 Object Level Dependency

Object level dependency (OLD) indicates the dependency among two or more concurrent transac-
tions accessing the same shared object. For example, in Figure 7.1, T1 depends on T2 because they
share the same object “tree-2”. If T1 and T2 work concurrently, a conflict between them occurs.
However, delete(7) of T1 and delete(9) of T2 commute because they are two operations executing
on the same object (“tree-2”) but accessing different items (or fields when applicable) of the object
(item “7” and item “9”). We recall that, two operations commute if applying them in either order
they leave the object in the same state and return the same responses [43]. DATS detects object
level dependency at transaction commit phase, splitting the validation phase into two. Say Ta is the
transaction that is validating. In the first phase, Ta checks the consistency of the objects requested
during the execution. If a concurrent transaction Tb has requested and already committed a new
version of some object requested by Ta, then Ta aborts in order to avoid isolation corruption. After
the successful completion of the first phase of Ta’s validation, DATS detects the object level depen-
dencies among concurrent transactions that are validating with Ta in the second phase. To do that,
DATS relies on the notion of commutativity: Two transactions are defined as commutable if they
conflict and they leave the state of the shared data-set consistent even if validated and committed
concurrently.

A very intuitive example of commutativity is when two operations, call1(X) and call2(X), both
access the same object X but different fields of X . Suppose Ta and Tb are conflicting transactions
but simultaneously validating. If all of Ta’s operations commute with all of Tb’s operations, they
can proceed to commit together avoiding a useless abort. Otherwise one of Ta or Tb must be
aborted. This scheduler is in charge of the decision (see next sub-section).

In order to compute commutativity, DATS joins two supports. In the first, the programmer an-
notates each transaction class with the fields accessed. The second is a field-based timestamping
mechanism, used for checking the field-level invalidation. The goal is to reduce the granularity
of the timestamp from object to field. With a single object timestamp, it is impossible to detect
commutativity because of fields modifications. In fact, writes to different fields of the same object
are all reflected with the increment of the same object timestamp. In order to do that efficiently,
DATS exploits the annotations provided by the developer on the fields accessed by the transaction
to directly point only to the interested fields (instead of iterating on all the object fields, looking for
the ones modified). On such fields, it uses field-based timestamping to detect object invalidation.

The purpose of the object level dependency is to enhance concurrency of outer transactions. Even
though inner transactions terminate successfully, aborting their outer transactions affects these
inner transactions (due to compensation). Thus, DATS checks for the commutativity of conflicting
transactions and permits them to be validated, reducing the aborts.
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Algorithm 7: Algorithms for checking AOL and OLD
1 Procedure Commit
2 Input: txid, objects
3 Output: commit, abort
4 foreach objects do
5 if txid is open nesting then
6 . Extract <operations,values,DL>
7 Send <operations,values,DL,object.id>
8 o object.owner
9 Wait until receive status from object.owner

10 if status=noncommute then
11 noncommutativity.put(object);

12 if noncommutativity=∅ then
13 . All objects commute or no conflicts detected
14 Retrieve the dependency queue from object.owner;
15 Validate objects; . Change the object ownership
16 find highest DL from dependency.get(object.id);
17 Send object to the node with the highest DL;
18 return commit;

19 foreach object ∈ noncommutativity do
20 . Checking abstract level dependency (ADL)
21 nestedTxId = CheckALD(object);
22 . Enqueue dependent nested transactions
23 NestedTxs.put(object.id,nestedTxId);

24 Abort(txid, DependentObjects);
25 return abort;
26 Procedure Retrieve Object
27 Input: operation, value, DL, oid
28 object = findObject(oid);
29 if object=null then
30 . Object just validated, checking object level dependency (OLD)
31 if CheckOLD(operation, value) then
32 commutativity.put(object.id, new request(operation, values));
33 return commute;

34 . Dependency queue to track updates.
35 dependency.put(oid, DL);
36 return non− commiute;

37 return no− conflict;
38 Procedure Abort
39 Input: txid, objects
40 if txid is outer-transaction then
41 foreach objects do
42 nestedIds = NestedTxs.get(object.id);
43 if nestedIds 6= null then
44 foreach nestedIds do
45 . Execute onAbort() for nestedId
46 AbortNestedTx(nestedId);

47 AbortOuterTx(txid);
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7.3 Scheduler Design

We designed DATS using abstract level dependencies and object level dependencies. Algorithm 7
shows the pseudo-code with the procedures used by DATS for detecting ALD and OLD at vali-
dation/commit time. When outer transactions are invoked, the DL with their inner transactions
is checked. When the outer transactions request an object from its owner, the requests with their
DLs will be sent to the owner and moved into its scheduling queue. The object owner maintains
the scheduling queue holding all the ongoing transactions that have requested the object with their
DLs. When T1 (one of the outer transactions) validates an object, we consider two possible sce-
narios. First, if another transaction T2 tries to validate the same object, a conflict between T1 and
T2 is detected on the object. Thus, DATS checks for the object level dependency. If T1 and T2
are independent (according to the object level dependency rules), DATS allows T1 and T2 to pro-
ceed with the validation. Otherwise, the transaction with lower DL will be aborted. In this way,
dependent transactions with the minimal cost of abort and compensating actions are aborted and
restarted, permitting transactions with a costly abort operation to commit.

Figure 7.2: Four Different Cases for Two Transactions T1 and T2 in DATS

Figure 7.2 illustrates an example of DATS with two transactions T1 and T2 invoked on nodes n1

and n2, respectively. The transaction T1 has a single inner-transaction and T2 has two nested trans-
actions. Let us assume that T1’s DL=1 and T2’s DL=2. The circles indicate written objects. The
horizontal line corresponds to the status of each transaction described in the time domain. Fig-
ure 7.2 shows four different cases when T1 and T2 terminate. When T1 and T2 are invoked, DATS
analyzes their DLs, operations, and values. When T1 requests o1 from n0, the meta-data for DLs,
operations and values of o1 will be sent to n0. These are moved to the scheduling queue of n0. We
consider four different cases regarding the termination of T1 and T2.
Case 1. T1 and T2 validate concurrently o1. DATS checks for the object level dependency. If T1
and T2 are not dependent at the object level (i.e., the operations of T1 and T2 over o1 commute), T1
and T2 commit concurrently.
Case 2. T1 starts to validate and detects it is dependent with T2 (that is still executing) at the object
level on the object o1. In this case T2 will abort due to early validation. When T1 commits, the
updated o1 is sent to n2.
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Case 3. Another transaction committed o1 before T1 and T2 validate. If T1 and T2 are not depen-
dent at the object level, o1 is sent to n1 and n2 simultaneously as soon as the transaction commits.
Case 4. Another transaction committed o1 before T1 and T2 validate. If T1 and T2 are dependent at
the object level, DATS checks for the abstract level dependency, and o1 is sent to n2 because T2’s
DL is larger than that of T1. Aborting T1, the scheduler is forced to run a single compensation (for
T1−1) instead of two compensations (T2−1 and T2−2) in case of T2’s abort. Further, considering the
case in which the DL of T1 is 0, the abort of T1 does not affect T1−1. In fact, its execution will be
preserved and only the operations of T1 will be re-executed.

7.4 Evaluation

7.4.1 Experimental Setup

We implemented DATS in the HyFlow DTM framework [79]. We cannot compare our results with
any competitor, as none of the DTMs that we are aware of support open nesting and scheduling.
Thus, we compared DATS under TFA-ON (DATS) with only TFA-ON (OPEN) [78], closed nested
transaction (CLOSED) [79], and flat nested transaction (FLAT). We contrast with CLOSED and
FLAT to show that OPEN does not always perform better than them, while DATS consistently
outperforms OPEN.

We assess the performance of DATS using Hash Table, Skip List and Linked List as micro-
benchmarks, TPC-C [83] as a real-application benchmark. Our test-bed is comprised of 10 nodes,
each one is an Intel Xeon 1.9GHz processor with 8 CPU cores. We varied the number of appli-
cation threads performing operations for each node from 1 to 8, considering a spectrum between
2 and 80 concurrent threads in the system. We measured the throughput (number of committed
transactions per second). All data-points reported are the result of multiple executions, so plots
present for each data-point the mean value and the error-bar. In order to assess the goodness of
DATS we also present the percentage of aborted transactions and the scheduler overhead.

7.4.2 Benchmarks

The Skip List and Linked List benchmarks are data structures maintaining sorted and unsorted,
lists of items, respectively, whereas Hash Table is an associative array mapping keys to values.
We configured the benchmarks with the small number of objects and a large number of inner
transactions – eight inner transactions per transaction and ten objects, incurring high contention.

Regarding TPC-C, the write transactions consist of update, insert, and/or delete operations access-
ing a database of nine tables maintained in memory, where each row has a unique key. Multiple op-
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Figure 7.3: Performance of DATS Using Hash Table (HT).

erations commute if they access a row (or object) with the same key and modify different columns.
We configured the benchmark with a limited number of warehouses (#3) in order to generate high
conflicts. We recall that, in the data flow model, objects are not bound on fixed nodes but move,
increasing likelihood of conflicts.

7.4.3 Evaluation

Figures 7.3, 7.4 and 7.5(a-f ) show the throughput of micro-benchmarks under 10% and 90% of
read transactions. The purpose of DATS is to reduce the overheads of compensating actions and
abstract locks. In 10% read transactions, the number of aborts increases due to high contention.
Outer transactions frequently abort, and corresponding compensating actions are executed; so
DATS outperforms OPEN in throughput because it mitigates the abort of outer transactions and
the corresponding compensating actions.

For the experiments with TPC-C in Figure 7.5(g),7.5(h),7.5(i), we used the amount of read and
write transactions that its specification recommends. TPC-C benchmark accesses large tables to
read and write values. Due to the non-negligible transaction execution time, the number of compen-
sating actions and abstract locks in TPC-C significantly degrades the overall performance. Thus,
DATS increases the performance in high contention (a large number of threads and nodes). By
these results, it is evident how much unnecessary aborts of inner transactions affects performance
and how much performance is improved through minimizing aborts. Even if DATS reduces the
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Figure 7.4: Performance of DATS Using Skip List (SL).

number of compensating actions and acquisition of abstract locks, the performance of OPEN is
degraded because of the commit overheads of inner transactions [78]; so the throughput of DATS
is slightly better than CLOSED and FLAT, but significantly better than OPEN.

Figure 7.7 shows throughput speed-up relative to OPEN using Hash Table, Skip List, Linked List
and TPC-C. Our results show that DATS performs up to 1.7× and 2.2× better than OPEN in
micro-benchmarks and TPC-C, respectively.

Figure 7.6 shows the analysis of scheduling overhead and abort reduction. Checking dependencies
occurs when a transaction validates, so we measure the average execution time and the average
validation time of committed transactions as illustrated in Figure 7.6(b). The gap between the two
validation times of DATS and OPEN proves the scheduling overhead. Even though the validation
time of DATS is up to two times more than OPEN’s, a large number of transactions validated si-
multaneously according to the increment of nodes, results in a shorten transaction response time,
reducing the average validation time and aborts. Figure 7.6(a) the comparison between the per-
centage of aborted transactions of OPEN and DATS. As long as the number of threads increases,
the number of aborts in DATS and OPEN increases too. However, the increasing abort ratio in
DATS is less than in OPEN, proving how much DATS reduces the abort rate.
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Figure 7.5: Performance of DATS Using Linked List (LL) and TPC-C.
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Chapter 8

Scheduling-based Parallel Nesting

8.1 Motivation

The execution of nested inner transactions in the context of a parent transaction can be conceptually
represented by a dynamic tree, called transaction tree, in which transactions represent the vertex
of the tree and edges are used for defining the conflict relation between transactions. The topology
of the tree is not defined a-priori. Originally, all the inner transactions belong to the same level
of the tree and their parent represent the parent transaction. Sibling transactions (belonging to the
same level of the transaction tree) are executed in parallel, assuming their conflict independence.
The approach does not assume previous knowledge on transaction conflicts, therefore some (or
all) of the sibling transactions cannot execute in parallel due to transaction dependencies. When a
conflict happens, the aborted transactions is moved on a lower level with an edge representing the
just detected dependency. In case all the inner transactions are not conflicting with the others, the
parallel process allows to execute only the inner conflicting transaction on the critical path and the
others in parallel.

In closed nesting, all the inner transactions must commit successfully for triggering the parent’s
commit. In case they are independent, they can be executed and committed in parallel allowing
the parent transaction to commit just after the longest inner transaction completes its execution.
However, if there is dependency among them, conflicts occur, so their parallel activation may not be
effective. Figure 8.1 shows new order transaction T1 [83] including multiple inner transactions. T1
opens warehouse and district to extract a tax and stock to get a price, the first two inner transactions,
respectively. These two inner transactions do not have dependency. Executing two transactions in
parallel may lead to high performance.

Closed-nesting performs better than flat-nesting and the program model of closed-nesting differs

59
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Listing 8.1: Transaction T1

Atomic{
/ / i n n e r T x s : a number o f i n n e r t r a n s a c t i o n s
S t r i n g w id = rand (WAREHOUSES) + 1 ;
S t r i n g d i d = rand ( DISTRICT ) + 1 ;
S t r i n g c i d = rand (CUSTOMER) + 1 ;
Atomic{

/ / I n t h e warehouse t a b l e : r e t r i e v e an o b j e c t
O b j e c t warehouse = ( warehouse ) open ( w id ) ;
W TAX = warehouse .W TAX
/ / I n t h e d i s t r i c t t a b l e : r e t r i e v e D TAX , g e t and i n c D NEXT O ID
O b j e c t d i s t r i c t = ( d i s t r i c t ) open ( w id , d i d ) ;
D TAX = d i s t r i c t . D TAX ;
/ / I n t h e c u s t o m e r t a b l e : r e t r i e v e an o b j e c t

}
f o r ( i =0 ; i< G e t I t e m L i s t ( ) ; i ++){

Atomic{
O b j e c t s t o c k = ( S tock ) open ( w id , d i d , c i d , i ) ;
s t o c k . q u a n t i t y = g e t Q u a n t i t y ( ) ;
s t o c k . o r d e r c n t ++;
P r i c e = s t o c k . p r i c e ;

}
Atomic{

O b j e c t c u s t o m e r = ( c u s t o m e r ) open ( w id , d i d , c i d ) ;
D i s c o u n t = c u s t o m e r . D i s c o u n t ;
/ / Cr ea t e e n t r i e s i n ORDER
O b j e c t o r d e r = new TpccOrder ( w id , d i d , o i d , i )
o r d e r . Supply W ID = w id ;
o r d e r . d e l i v e r y = n u l l ;
o r d e r . t o t a l A m o u n t = P r i c e ∗(1−D i s c o u n t )∗ ( 1 +W TAX+D TAX ) ;

}
}

}
}

Figure 8.1: New Order Transaction with multiple Inner Transactions in TPC-C
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from open-nesting’s. Even though open nesting yields high concurrency, it has inherent overheads
such as commit overheads or abstract locking overheads [78]. Thus, open-nesting does not always
perform better than closed-nesting.

Motivated by this, we propose a scheduling-based parallel nested (SPN) transactional memory
model focusing on how to identify whether or not inner transactions should be executed in parallel
and how to enhance the performance of parallel inner transactions in DTM.

8.2 Scheduler Design

SPN consists of two steps: 1) converting the sequence of inner transactions to parallel inner trans-
actions and running them simultaneously, 2) maintaining a “transaction table” of on-going parallel
inner transactions. In the first step, nodes invoking transactions execute all inner transactions si-
multaneously and request their objects from object owners simultaneously. Each object request is
composed by four elements – the order number of the inner transaction (NiTx), object id (oID),
type of the transaction (Type), and outer transaction id (TxID). An order number is assigned
from 1 to the total number of parallel inner transactions of the same parent transaction. Different
inner transactions may request the same object. Thus, in the second step, the owners moves these
elements (i.e., NiTx, oID, Type) to the transaction table and identifies which inner transactions
can be executed in parallel.

The transaction table is updated when requesting and validating objects. At both times, object
owners maintain the transaction table after storing the elements as follows.

object owners maintains

• Requesting: If NiTx is 1, sends an object corresponding to oID to the requester according
to TFA rules and update its status as Responded. If NiTx is not 1, the object owner checks
whether the prior NiTxs of current requesters have requested the same oID. The prior
NiTxs indicates lower numbers than NiTx with the same TxID. If NiTx is not 1 and
no prior NiTxs have requested the same oID, the owner sends the object to the requester
because of no conflict. If any prior NiTxs have requested the same oID, update its status as
Wait and send a backoff time to the requester.

• Validating: When one requesting transaction validates before others, allow the requested
validation and remove corresponding TxIDs from the transactional table. Other transactions
that requested the same objects are aborted. Without requesting the object again, the aborted
transactions will receive the updated objects.

A requester may receive multiple backoff times from an owner. Receiving a backoff time means
that an inner transaction is using the same object. Different backoff times are assigned to different
inner transactions accessing the same object. Thus, we represent how the owner decides a backoff
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time and the requester maintains the backoff time. When parallel inner transactions with different
NiTxs request objects, backoff times are calculated using a number of Wait statuses. Even if
a prior status is not updated (or is delayed) for some reason, an owner checks whether to reply
with an object or a backoff time using existing statuses. If a conflict is detected after updating
prior statuses, conflicting on-going inner transactions receive backoff times and abort. In order
to compute a backoff time, we use the number of Wait statuses in the transaction table. If the
NiTx’s status is Wait, its backoff time will be the execution time× the number of Wait statuses.
When the inner transaction commit internally, another inner transaction with the smallest backoff
time is woken up and starts using the updated object.

Transactions’ backoff time are stored in an hash table. The backoff time of a transaction corre-
sponds to the average execution time of that transaction. The key of the table is the name of the
transaction. If a new order transaction in TPC-C requests an object for example, its owner creates a
bucket with key “new order”. When the transaction commits, the execution time is computed as its
commit time - its staring time. Later, if SPN detects a conflict with another new order transaction,
the execution time is assigned to the new order as a backoff time. As soon as an object is updated,
a transaction receiving a backoff time is woken up to access the object. Thus, SPN does not need
an exact backoff time, so SPN uses an approximated execution time.

SPN also identifies conflicts between write and read transactions. If write and write or write and
read transactions access an object, the first write transactions’ status will be Responded and the
second write or read transactions’ status will beWait. Read and write or read and read transactions
accessing an object simultaneously receive the object.

Figure 8.2: An example for maintaining a transactional table

Figure 8.2 illustrates an example for a transaction table containing three outer transactions. T1
contains three write inner transactions. T2’s inner transactions access object o1, and T3’s inner
transactions access object o2. If the owner receives the requests from the node invoking T1−1,
T1−2, and T1−3, o1, a backoff time, and o2 are sent to T1−1, T1−2, and T1−3, respectively. T1−2
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waits for the backoff time. As soon as T1−1 commits, T1−2 that waits for o1 is woken up and use o1
updated by T1−1. T2−1 and T2−2 receive o2 because of no conflict. If T1 commits first, T2 and T3
will be aborted. If T2 commits first, T1 will be aborted.

The purpose of SPN is to maximize the parallelism inner transactions in DTM, executing them
in parallel. SPN keeps track of inner transactions’ access pattern and use it for resolving con-
flicts. Non conflicting inner transactions are executed in parallel. Conversely, conflicting inner
transactions accessing the same objects are serialized.

Evidently, parallel nesting outperforms non-parallel nesting in throughput. We are interested in
how much SPN outperforms CLOSED (non-parallel nesting). In order to analyze this, let the
number of aborts of Ti be denoted as λi, and the local execution time of Ti containing N inner
transactions be denoted as γN . According to Lemma 6.5.1, the total number of aborts on N trans-
actions is

∑N
i=1 λi ≤ N − 1. We have the following theorem.

Theorem 8.2.1. Given N inner transactions and M objects, the RCR of SPN and CLOSED
(i.e., non-parallel closed nesting) on NR is less than 1, where N ≥ 2 and M ≥ 2.

Proof. makespanNCLOSED(NR) = (N−1)(2
∑M

i=1 d(ni, nj)+γN), because each request ofM ob-
jects from object owners is serialized. makespanNSPN(NR) = (N−1)(2 max(∀Mi=1d(ni, nj))+γN),
becauseN inner transactions requestM objects from object owners simultaneously. max(∀Mi=1d(ni,
nj)) <

∑M
i=1 d(ni, nj), so the RCR of SPN and CLOSED < 1. The theorem follows.

Theorem 8.2.1 shows that SPN always outperforms CLOSED when M ≥ 2. When M = 1, they
produce the same performance.

8.3 Algorithm

Algorithm 8 consists two procedures, Retrieve Request and V alidating procedures. whenever
the owner receives a request, theRetrieve Request procedure, that is invoked in an owner, returns
one of object, backoff , and abort to requester.

If a requesting object is locked due to validating, the procedure returns abort. Otherwise, the
procedure checks conflicts among inner transactions using the transaction table. If all previous
inner transactions accessing the object are read, the object is returned due to no conflict. If at least
previous inner transaction is write, a backoff time is returned due to a conflict. The backoff time
is computed using exT ime and a number of wait statuses. exT ime represents the execution time
of an inner transaction. Whenever a transaction completes, we compute an average execution time
and store it to exT ime. If Retrieve Request returns a backoff time to an inner transaction, it
selects the corresponding exT ime of the inner transaction.

When an inner transaction tries to validate, the V alidating procedure is invoked. Even if the
inner transaction commits, its modification does not affect other transactions, so object owners do
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Algorithm 8: Algorithms for SPN
1 Procedure Retrieve Request
2 Input: TxID, NiTx, oID, type
3 Output: object, backoff , abort
4 object = find object(oID);
5 if checkLock(object) then
6 . If a requesting object is locked due to validating
7 return abort;

8 if NiTx == 1 then
9 transactionalTable.put(TxID, NiTx, type, oID, “responded”);

10 . transactionalTable is a hash table with key TxID
11 return object;

12 else
13 (TypeList, StatusList) = transactionalTable.getSameObj(TxID, oID);
14 . The getSameObj procedure returns two lists of type and status of the inner transactions requesting oID with

TxID, respectively.
15 . Nstatus indicates a number of “wait” statuses.
16 if TypeList is all reads then
17 transactionalTable.put(TxID, NiTx, type, oID, “responded”); return object;

18 else
19 transactionalTable.put(TxID, NiTx, type, oID, “wait”);
20 Nstatus = StatusList.getPrior(Wait);
21 . Nstatus indicates a number of “Wait” statuses.
22 backoff = exTime × (Nstatus + 1); return backoff;

23 Procedure validation
24 Input: oID
25 Output: commit, abort
26 if validate(oID) then
27 . validate checks whether the object of oID is updated intermally.
28 return abort;

29 List Txs = get transactions(oID);
30 . get transactions returns a list of transactions waiting for oID
31 if Txs == null then
32 return commit;

33 String aTx = get minBackoff(Txs);
34 . get minBackoff returns a transaction’s id with the smallest backoff time
35 wakeup(aTx);
36 return commit;
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not know its modification due to the nature of closed nesting. If any objects to be validated are
not modified, the procedure checks for which transactions are waiting for the objects and select a
transaction with the shortest bakcoff time. If existing, the transaction is woken up and fetches an
object from its local cache.

8.4 Evaluation

We implemented SPN in the HyFlow DTM framework [79]. We cannot compare our results with
any competitor, as none of the DTMs that we are aware of support closed nesting and scheduling.
Thus, we compared SPN under nested TFA (N-TFA) with only N-TFA [78].
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Figures 8.3 8.4 show the transactional throughput of bank and TPC-C benchmarks, respectively.
In Figures 8.3(a) 8.4(a), all inner transactions access different objects, so all inner transactions
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are executed in parallel. In Figures 8.3(b) 8.4(b), the objects that inner transactions will access
are randomly selected using a normal distribution. Its intent is to show the effectiveness of SPN
under general workloads. SPN outperforms non-parallel closed nesting by up to 3.5 and 4.5× on
micro-benchmark and TPC-C in general workloads, respectively.
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Chapter 9

The Cluster-based Transactional Scheduler

9.1 Motivation

Directory-based CC protocols (e.g., Arrow and Ballistic) [27, 21] in the single-copy model of-
ten keep track of the single writable copy. In practice, not all transactional requests are routed
efficiently; possible locality is often overlooked, resulting in high communication delays. A dis-
tributed transaction consumes more execution time, which include the communication delays that
are incurred in requesting and retrieving objects than a transaction on multiprocessors [34]. Thus,
the probability for conflicts and aborts is higher. Even though a transaction in a full replication
model does not request and retrieve objects, maintaining replicas of all objects at each node is
costly. Increasing locality (and availability) by brute-force replication while ensuring one-copy se-
rializability can lead to communication overhead. Motivated by this, we consider a k-cluster-based
replication model for cc DTM. In this model, multiple copies of each object are distributed to k
selected nodes to maximize locality and availability and to minimize communication overhead.

Moreover, a transaction may execute multiple operations with multiple objects, increasing the
possibility of conflicts. Figure 9.1 shows a scenario two conflicts occurring with three concurrent
transactions, T1, T2, and T3 using two objects. Under TFA, a conflict over o2 between T1 and
T2 occurs and another conflict over o3 between T2 and T3 occurs. If T2 commits first, T1 and
T3 will abort because T2 will update o3 and o2 even though T1 and T3 do not contend. If T2
aborts as shown in Figure 9.1(b), T1 and T3 will commit. Motivated by this, CTS aborts T2 in
advance and allows T1 and T2 to commit concurrently. A contention manager resolves a conflict
between two transactions, but CTS avoids two conflicts among three transactions and guarantees
the concurrency of two transactions of them.

67
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(a) TFA (b) CTS with TFA

Figure 9.1: Executing T1, T2, and T3 Concurrently

9.2 Scheduler Design

In the case of an off-line scheduling algorithm (all concurrent transactions are known), a simple
approach to minimize conflicts is to check the conflict graph of transactions and determine a max-
imum independent set of the graph, which is NP-complete. However, as an on-line scheduling
algorithm, CTS checks for conflicts between a transaction and other ongoing transactions access-
ing an object whenever the transaction requests the object.

Let node nx belong to cluster z. When transaction Tx at node nx needs object oy for an operation,
it sends a request to the object owner of cluster z. When another transaction may have requested
oy but no transaction has validated oy, there are two possible cases. The first case is when the
operation is read. In this case, oy is sent to nx without enqueuing, because the read transaction
does not modify oy. In the second case, when the operation is write, CTS determines whether oy is
sent to the requester (i.e., nx) or not by considering previously enqueued transactions and objects.
Once CTS allows Tx to access oy, CTS moves x and y representing Tx and oy respectively to two
scheduling queues. The object owners for each cluster maintain the following two queues, O and
T. Let O denote the set of enqueued objects and T denote the set of transactions enqueued by the
object owners. If the object owner of cluster z enqueues x and y, it updates its scheduling queues
to the other object owners’.

If x ∈ T and y /∈ O, x and y are enqueued and oy is sent to nx. This case indicates that Tx has
requested another object from the object owner and oy has not been requested yet. However, if
x /∈ T and y ∈ O, CTS has to check for whether T | β includes more than two transactions or not,
where β = O | α and α = T | y. O | α indicates objects requested by Tα and T | y represents
transactions requesting oy. This case shows when oy is being used by other transactions and the
transactions share an object with another transaction. CTS does not consider a conflict between
two transactions because a contention manager aborts one of them when they validate. Thus, the
transactions involved in T | y∩T | β abort, x and y are enqueued, and oy is sent to nx. The aborted
transactions are dequeued.
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If x ∈ T and y ∈ O, CTS has to check for whether T | γ is distinct from T | y or not, where
γ = O | x. This case means that Tx has requested an object requested by another transaction
and also oy has been requested by another transaction. If two different transactions are using
different objects that Tx has requested and is requesting, respectively, CTS aborts Tx to protect two
transactions from aborting. Thus, if T | γ is distinct from T | y, x and y also are enqueued and
oy is sent to nx. Otherwise, oy will not be sent to nx, aborting Tx. In this case, the object owner
knows that Tx aborts. Thus, the objects that Tx has requested will be sent to nx after the objects
are updated.

Figure 9.2: An Example of CTS

Figure 9.2 illustrates an example of CTS after applying the 3-clustering algorithm on a six-node
network. The black circles represent object owners. The scheduling queue includes live transac-
tions T1 and T2, and each transaction indicates its objects in use. If T3 requests o3, CTS checks for
conflicts between T3 and the enqueued transactions (i.e., T1 and T2). CTS aborts T2 because of two
conflicts among T1, T2 and T3. T2 restarts after T1 and T3 commit. The committed transactions are
dequeued, and T2 is enqueued.

We consider two effects of CTS on clusters. First, when a transaction requests an object, CTS
checks for conflicts between the transaction and the previous requesting transactions and aborts
some transactions in advance to prevent other transactions from aborting. This results in a reduced
number of aborts. Second, in TFA, if a transaction aborts, the transaction will restart and request
an object again, incurring communication delays. However, in CTS, object owners hold aborted
transactions. When validation of an object completes, the object is sent to the nodes invoking the
aborted transactions. Thus, CTS lets the aborted transactions use newly updated objects without
requesting the object again, reducing communication delays.

9.3 Algorithms

We now present the algorithms for CTS. There are four algorithms: Algorithm 9 forOpen Object,
Algorithm 10 for Retrieve Request, CTS and Retrieve Response.

Open Object described in Algorithm 9 is invoked when a transaction needs an object. After find-
ing the owner of oid in a requester’s cluster, the requester sends type, oid, and txid to the owner.
type represents a read or write transaction. If the received object is null and the backoff time as-
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signed by the owner is not 0, the requester saves the backoff time, so the transaction corresponding
to txid aborts and waits for the backoff time. If it expires, Open Object is invoked again. Other-
wise, the requester wakes up and receives the object. Even if Open Object successfully receives
an object, another transaction requesting oid may validate the object first. Thus, the status of txid
is checked before returning the object. If the status is abort, Open Object returns null.

Algorithm 9: Algorithm of Open Object
1 Procedure Open Object
2 Input: Transaction Type type, Transaction id txid, Object id oid
3 Output: null, object
4 if there is object corresponding to oid in the local cache then
5 return object;

6 owner = find Owner(oid); . owner is an address of oid’s owner
7 Send type, oid, and txid to owner;
8 Wait until that Retrieve Response is invoked;
9 Read object and backoff from Retrieve Response;

10 if object is null and backoff is not 0 then
11 Set backoff ; return null;

12 else
13 if txid is already aborted then
14 return null;

15 else
16 return object;

Algorithm 10 describes Retrieve Request, which is invoked when an object owner receives a re-
quest and Retrieve Response, which is invoked when the object that Object Open has requested
is received. If the requested object is being validated or the CTS procedure returns Abort, a back-
off time is assigned. To compute a backoff time, we use a transaction stats table that stores the
average historical commit time of a transaction. Each table entry holds the most current successful
commit times of write transactions. Unless CTS returns Abort, Retrieve Request enqueues txid
and oid to requestTable and objectTable, and sends the object to the requester. As soon as the
object is updated, it is sent to a transaction dequeued from abortTable.

The CTS procedure determines whether a transactions aborts or not by using two hash tables:
requestTable and objectTable accessed with the keys of txid and oid, respectively. If CTS re-
turns Abort, txid and oid will be moved to abortTable in order to maintain aborted transactions.
Otherwise, these are moved to requestTable and objectTable.

Retrieve Response is invoked if another transaction starts or ends the validation of object. When
the transaction starts validation, its txid is dequeued from requestTable and objectTable, and
an abort message with a backoff time is sent to Retrieve Response. When the transaction ends
validation, Retrieve Response receives only object. If the transaction restarts due to expired
backoff timer, Open Object finds the object owner of oid again.
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Algorithm 10: Algorithms of Retrieve Request, CTS, and Retrieve Response
1 Procedure Retrieve Request
2 Input: type, oid, and txid
3 object = get Object(oid); address = get Requester Address();
4 Integer backoff = 0;
5 if object is not null then
6 if object is being validated or CTS(txid, oid) == Abort then
7 backoff = computeBackoff(); object=null;
8 abortTable.put(txid, oid);

9 else
10 objectTable.put(oid, txid); requestTable.put(txid, oid);

11 Send object and backoff to address;
12 Procedure CTS
13 Input: txid and oid
14 Output: Abort or notAbort
15 object = requestTable.get(txid);
16 . object holds objects that txid has requested
17 txn = objectTable.get(oid);
18 . txn holds transactions that have been requested oid
19 if object == null or txn == null then
20 if object 6= null then
21 tx = objectTable.get(object);
22 if objectTable.get(requestTable.get(tx)).length ≥ 2 then
23 object = object + requestTable.get(tx);
24 requestTable.remove(tx); abortTable.put(tx,object);

25 return notAbort; . txid or oid has not been enqueued.

26 else if txn == objectTable.get(object) then
27 return Abort;

28 return notAbort;
29 Procedure Retreive Response
30 Input: object, txid, backoff
31 if txid is waiting in Object Open then
32 Send a signal to wake up and give object and backoff ;

33 else if txid is ready to restart then
34 Send a signal to restart and give object;

35 else if txid is working then
36 Set backoff and abort txid;
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Whenever an object is requested, CTS is invoked. The time complexity is O(1) to lookup a trans-
action and an object. However, objectTable may return multiple transactions. To check all en-
queued transactions, the time complexity for an object isO(the number of enqueued transactions).

9.4 Analysis

For the analysis of CTS, we use the method of the analysis described in Chapter 6.

Lemma 9.4.1. Given scheduler B and N transactions, makespanNB (NR) ≤ 2(N − 1)
∑N−1

i=1

d(ni, nj) + ΓN .

Proof. Lemma 6.5.1 gives the total number of aborts on N transactions under scheduler B. If a
transaction Ti requests an object, the communication delay will be 2×d(ni, nj) for both requesting
and object retrieving times. Once Ti aborts, this delay is incurred again. To complete N trans-
actions using scheduler B, the total communication delay will be 2(N − 1)

∑N−1
i=1 d(ni, nj). The

theorem follows.

Lemma 9.4.2. Given scheduler B, N transactions, k replications, makespanNB (PR) ≤ (N −
k)
∑N−k

i=1 d(ni, nj) + (N − k + 1)
∑N−1

i=1

∑k−1
j=1 d(ni, nj) + ΓN .

Proof. In PR, k transactions do not need to remotely request an object, because k nodes hold repli-
cated objects. Thus,

∑N−k
i=1 d(ni, nj) is the requesting time ofN transactions and

∑N−1
i=1

∑k−1
j=1 d(ni,

nj) is the validation time based on atomic multicasting for only k nodes of each cluster. The theo-
rem follows.

Lemma 9.4.3. Given schedulerB andN transactions,makespanNB (FR) ≤
∑N−1

i=1

∑N−1
j=1 d(ni, nj)+

ΓN .

Proof. Transactions request objects from their own nodes, so their requesting times do not occur
in FR, even when the transactions abort. The basic idea of transactional schedulers is to mini-
mize conflicts through enqueueing transactions when the transactions request objects. Thus, the
transactional schedulers (i.e, B and CTS) do not affect makespanNx∈{B,CTS}(FR). Thus, when
a transaction commits, FR takes

∑N−1
i=1

∑N−1
j=1 d(ni, nj) for only atomic broadcasting to support

one-copy serializability.

Theorem 9.4.4. Given schedulerB andN transactions,makespanNB (FR) ≤ makespanNB (PR) ≤
makespanNB (NR).

Proof. Given k PR, limk→1makespan
N
B (PR) ≤ 2(N−1)

∑N−1
i=1 d(ni, nj)+ΓN , and limk→N make

spanNB (PR) ≤
∑N−1

i=1

∑N−1
j=1 d(ni, nj) + ΓN . The theorem follows.
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Theorem 9.4.5. Given N transactions and M objects, the RCR of schedulers CTS on PR and
scheduler B on FR is less than 1, where N > 3.

Proof. Let
∑N−1

i=1 d(ni, nj) denote δN−1. To show that the RCR of CTS on PR and B on FR is
less than 1, makespanNCTS(PR) < makespanNB (FR). CTS detects potential conflicts and aborts
a transaction incurring the conflicts. The aborted transaction does not request objects again. Thus
we derive makespanNCTS(PR) ≤ 2MδN−k + M

∑N−1
i=1 δk−1 + MΓN . 2δN−k + (N − 1)δk−1 ≤

(N − 1)δN−1, so that 2δN−k ≤ (N − 1)δN−k. Only when N ≥3, PR is feasible. Hence,
makespanNCTS(PR) < makespanNB (FR), where N > 3. The theorem follows.

Theorem 9.4.5 shows that CTS in PR performs better than FR. Even though PR incurs requesting
and object retrieving times for transactions, CTS minimizes these times, resulting in less overall
time than the broadcasting time of FR.

9.5 Evaluation

9.5.1 Experimental Setup

We implemented CTS in the HyFlow DTM framework [23], and developed six benchmarks for
experimental studies. The benchmarks include two monetary applications (Bank and Loan) [23],
distributed versions of the Vacation of the STAMP benchmark suite [69], and three distributed data
structures including Counter, Red/Black Tree (RB-Tree) [38], and Distributed Hash Table (DHT).

To select k nodes for distributing replicas of each object, we group nodes into clusters, such that
nodes in a cluster are closer to each other, while those between clusters are far apart. Recall that
the distance between a pair of nodes in a metric-space network determines the communication
cost of sending a message between them. We use a k clustering algorithm based on METIS [88],
to generate k clusters with small intra-cluster distances i.e., k nodes may hold the same objects.
Our partial replication relies on the usage of a total order multicast (TOM) primitive to ensure
agreement on correctness in a genuine multicast protocol [56]. The object owners for each cluster
update objects through a TOM-based protocol.

We use low and high contention, which are defined as 90% and 10% read transactions of one mil-
lion active concurrent transactions per node, respectively [38]. A read transaction includes only
read operations, and a write transaction consists of only write operations [38]. Our experiments
were conducted on 24-node testbed. Each node is an AMD Opteron processor clocked at 1.9GHz.
We use Ubuntu Linux 10.04 server OS and a network with a private gigabit ethernet. Each ex-
periment is the average of ten repetitions. The number of objects for a transaction is selected
randomly from 2 to 20. We considered CTS(30) and CTS(60), meaning CTS over 30% and 60%
object owners of the total nodes, respectively. For instance, CTS(30) under 10 nodes means CTS
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over 3-clustering algorithm. We measured the transactional throughput (number of committed
transactions per second) under increasing number of requesting nodes and failed nodes.

9.5.2 Evaluation
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Figure 9.3: Throughput of Bank Benchmark with No Node Failures.

Figure 9.3 intends to show two effects of scheduling by CTS and the improvement of object avail-
ability by increasing object locality. To show the effectiveness of CTS, TFA is compared with
CTS(0) – the combination of CTS and TFA with no replication. CTS(0) improves throughput
over TFA as much as 1.5× under high contention because the number of conflicts decreases.
CTS(0) outperforms CTS(90) in throughput, but it is non-fault-tolerant. The throughput produced
by CTS(90) is degraded due to the large number of broadcasting messages needed to update all
replicas. Due to high object availability on CTS(90), the requesting times of aborted transactions
are less reduced. Meanwhile, due to low object availability on CTS(0), the requesting times are
more reduced but object retrieving times increase. Thus, CTS(30) and CTS(60) achieve decreased
object requesting and retrieving times, resulting in a better throughput than CTS(0) and CTS(90).

We considered two competitor DTM implementations: GenRSTM [51] and DecentSTM [52].
GenRSTM is a generic framework for replicated STMs and uses broadcasting to achieve trans-
actional properties. DecentSTM implements a fully decentralized snapshot algorithm, minimizing
aborts. We compared CTS with GenRSTM and DecentSTM.

Figure 9.4 shows the throughput of three benchmarks for CTS(30), CTS(60), GenRSTM, and De-
centSTM with 20% node failure under low and high contention, respectively. In these experiments,
20% of nodes randomly fail. GenRSTM broadcasts updates to all other replicas, which incurs a
overhead. DecentSTM is based on a snapshot isolation algorithm, which requires searching the his-
tory of objects to find a valid snapshot. This algorithm also incurs a significant overhead. Due to
those overheads, their performance degrades for more than 24 requesting nodes. Thus we observe
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Figure 9.4: Throughput of 3 Benchmarks with 20% Node Failure under Low and High Contention
(5 to 24 nodes).
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that CTS yields higher throughput than GenRSTM and DecentSTM. In particular, 60% of nodes
are entitled to the ownership of an object based on CTS(60). CTS(60) maintains smaller clusters
than CTS(30), so the communication delays to request and retrieve objects decrease, but the num-
ber of messages increases. Under high contention, CTS avoids the large number of conflicts, so
CTS yields much higher throughput than GenRSTM and DecentSTM.
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Figure 9.5: Throughput of 3 Benchmarks with 50% Node Failure under Low and High Contention
(5 to 24 nodes).

Figure 9.5 shows the throughput of three benchmarks for CTS(60), GenRSTM, and DecentSTM
with 50% node failure under low and high contention, respectively. GenRSTM’s and DecentSTM’s
throughput do not degrade as the number of failed nodes increases, because every node holds repli-
cated objects. However, in CTS, this causes communication delays to increase, degrading through-
put, because object owners may fail or scheduling lists may be lost. Over less than ten nodes with
50% failed nodes, GenRSTM yields higher throughput than CTS, because the number of messages
decreases. As the number of nodes increases, CTS outperforms GenRSTM and DecentSTM in
throughput.

We computed the throughput speedup of CTS(60) over GenR STM and DecentSTM i.e., the ratio
of CTS’s throughput to the throughput of the respective competitor.

Figure 9.6 summarizes the throughput speedup under 20% and 50% node failure. Our evaluations
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Figure 9.6: Summary of Throughput Speedup

reveal that CTS(60) improves throughput over GenRSTM by as much as 1.9533 (95%) ∼ 2.0968
(109%) × speedup in low and high contention, respectively, and over DecentSTM by as much
as 1.9622 (96%) ∼ 2.1683 (116%) × speedup in low and high contention, respectively. In other
words, CTS improves throughput over two existing replicated DTM solutions (GenRSTM and De-
centSTM) by as much as (average) 1.55× and 1.73× under low and high contention, respectively.



Chapter 10

The Locality-aware Transactional
Scheduler

10.1 Motivation

The business logic of a transactional application determines whether its object accesses exhibit
locality or not. In this dissertation, we focus on time locality, in which the probability that a
transaction accesses an object increases when that object has been previously accessed. Any opti-
mization for increasing the degree of locality can cause intrusive coupling between the application
and the distributed concurrency control mechanism. A promising solution is therefore to design
protocols with the capability for exploiting locality on application data accesses – e.g., moving
objects closer to the node where transactional requests originate.

Figure 10.1 compares the performance of two versions of the TPC-C [83] benchmark. One is a
local version (called LOCAL TPC-C), in which data access patterns are very skewed: each node
selects the object to access from among a restricted subset of objects. Another is a non-local
version (called NO-LOCAL TPC-C), in which each object accessed is randomly selected. Here,
we use TFA [89] as the underlying DTM protocol, which is based on the data-flow model. TFA
is purely distributed (i.e., not replicated), and object ownership is always changed in favor of the
committing transaction.

The experiment is conducted on a system with up to 8 nodes, each of which has 8 application
threads running TPC-C. The plot clearly reveals the speed-up under locality settings. After an
initial phase in which the locality is not defined, the data-flow approach (i.e., LOCAL TPC-C)
migrates the objects accessed to the requesting nodes, minimizing network interactions for the
subsequent transactions. The scalability of NO-LOCAL TPC-C is limited by the expensive com-
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Figure 10.1: TPC-C and LOCAL TPC-C using TFA

munication costs due to the continuous moving of objects from node to node.

It is important to note that in any control-flow approach, similar performance can be achieved
by only manually deploying objects using a-priori knowledge of application data access patterns.
However, this knowledge becomes meaningless when application threads create new objects in
the system. LOCAL-FLOW does not assume knowledge on application accesses and it does not
need additional intrusive layers for managing objects placement. Our approach improves the basic
data-flow model, making it appropriate for exploiting application locality.

10.2 Scheduler Design

In order to ensure the consistency of objects, we propose LOCAL-FLOW, genuine [55, 56] partial
replication: only replicas involved during transactional execution participate in the commit phase.
The protocol ensures 1-copy-serializability [57] by acquiring locks on updated objects at commit
time (using two-phase commit) and validating the accessed objects after lock acquisition.

LOCAL-FLOW uses a locality-aware transactional scheduler, called LTS, which is responsible for
managing concurrent object requests from processing nodes. LTS monitors the key performance
parameters needed for detecting the effectiveness of the current object placement and triggers the
transition of ownership to exploit locality. In this section, we describe how LOCAL-FLOW and
LTS work.
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10.2.1 LOCAL-FLOW

LOCAL-FLOW is a partial replication protocol that ensures high locality and concurrency on dis-
tributed transactional processing. The protocol is suited for locality-aware applications deployed
in scenarios with dynamic workloads (the initialization of a distributed system can be considered
“dynamic” because there is no a-priori knowledge of transactional behavior).

When transactions mostly access remote objects instead of local objects, the impact of commu-
nication costs on total transaction execution time can be significantly high, resulting in poor per-
formance. LOCAL-FLOW addresses this problem of detecting the best location for misplaced
objects and moving them closer to their current requesting nodes. The requesting node nr for an
object oi is a node that, according to the current transactions’ data access pattern, is mostly per-
forming operations on oi. Transferring oi to nr means avoiding remote communications for those
transactions executing on nr that need oi. In case oi is needed by multiple requesting nodes, oi is
replicated and each requesting node is sent a replica (the object replication degree can be tuned
based on the average number of requesting nodes per object). A local view of current object lo-
cations, called CurrMap, is stored at each node. Whenever an object transfer happens updates on
CurrMap are propagated to all nodes. Conversely, when the workload is stable (i.e., most requests
are local), CurrMap is occasionally updated and is locally queried for locating objects, minimizing
the distributed interactions.

Transactions record their read/write accesses in private, transaction-local data structures (imple-
mented as hash-maps), called read-set and write-set, respectively. Each object is marked with an
integer value tracking its version, called timestamp. Different replicas of the same object have the
same timestamp. The timestamp of an object is incremented whenever a transaction commits a
modification on the object. The timestamp is used in the validation phase of a committing transac-
tion: the timestamp of the committed version of the object is compared with the timestamp of the
version stored in the transaction’s read-set. This comparison reveals possible concurrent commits
during the transaction’s execution, which invalidate the object.

Consider a fully executed transaction Tx that enters its commit phase. Before proceeding further,
it must ensure that all the objects in its read-set are still consistent and no other transactions are
currently committing objects in its write-set. This is done in the following four steps:

(1) For each object otx in Tx’s write-set, Tx contacts all of otx’s owners in order to acquire the
locks corresponding to otx. When the request is received by otx’s owner it will try to acquire
the lock. If the lock cannot be acquired then Tx’s request is responded to with a negative
acknowledge (NACK). Tx needs to collect all the replies from otx’s owners. If Tx receives
all NACKs for otx then Tx is aborted and restarted (the case when Tx receives one positive
acknowledgement (ACK) and other NACKs is described later in this subsection).

(2) After all object locks have been acquired, Tx validates the read-set using the object times-
tamps. This ensures that a transaction sees a consistent view of the accessed objects. Upon
successful completion of this step, Tx can proceed to commit safely, otherwise an abort is
issued.
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(3) The timestamp of each written object is incremented. Subsequently, for local objects Tx’s
changes can be safely committed to shared memory, while for remote objects, the updated
version is sent using a commit message.

(4) Local locks are instantly released and the remote objects are unlocked after receiving the com-
mit message. This message, received by object owners, triggers the operation of LTS (see
Sections 10.2.2 and 10.2.3).

Clearly, the first step can become a bottleneck in the presence of repeated adverse schedules, e.g.
each transaction acquires a lock on a replica and finds the same object already locked on other
replicas.

Figure 10.2: Example of commit phase

Figure 10.2 illustrates this situation. Three transactions T1, T2, and T3 write a new version of
an object oA. oA has three replicas o1A, o2A, and o3A, which are stored at nodes N1, N2, and N3,
respectively. Each transaction contactsN1,N2, andN3 in order to acquire the lock. T1 successfully
locks o1A, T2 locks o2A, and T3 locks o3A. Each transaction considers oA locked (or not) only after
receiving all the replies (ACK or NACK) for its request. Clearly, in the described schedule, T1,
T2, and T3 receive one ACK from N1, N2, and N3, respectively, and two NACKs each from the
others. Here, in order to ensure correctness, T1, T2, and T3 must be aborted and restarted. To
overcome this, a deterministic rule is needed for the object owners to create a total order among
the incoming requests, in order to deterministically select the transaction that can proceed with the
locking process and abort the others. However, ensuring a total order among the requests implies
paying the high cost of the atomic broadcast/multicast protocol.

LOCAL-FLOW minimizes situations in which all the concurrent transactions shown in the sce-
nario in Figure 10.2 must be aborted. Each transaction embeds two pieces of information in its
lock request messages: the number of retries done since its start (#retry) and the total number of
locks needed in order to commit (#locks). Each object owner collects the pair <#retry,#locks>
associated with the transaction receiving the ACK. This pair is then piggybacked to subsequent
NACK messages that are issued to other transactions trying to acquire the same lock. A com-
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mitting transaction needs to wait until replies from all object owners (storing object replicas) are
received. In case it receives at least one ACK and other NACKs, the transaction compares its
<#retry,#locks> pair with the other pairs extracted from the NACK messages (and associated with
the transaction that successfully locked the object). The transaction with the maximum #retry is
granted the lock. Ties on #retry are broken in favor of the transaction with the maximum #lock.
Accordingly, other transactions are aborted and restarted, increasing their #retry. Thus, if a trans-
action receives a NACK, it is not doomed; only after the reception of all NACKs, the transaction
aborts.

The rule just described is not deterministic. In adverse scenarios, all concurrent, validating transac-
tions can have the same pairs<#retry,#locks>. In this case, each transaction independently aborts,
because, by comparison, there is not only one transaction with the maximum #retry and #locks.
The purpose of our approach is to prioritize concurrent committing transactions so as to reduce the
probability for failure in case an abort to all transactions is triggered.

The current implementation batches the lock request messages per node. This minimizes the num-
ber of messages sent by the committing transaction to object owners.

10.2.2 Exploiting Locality

In order to exploit locality, we design LTS, a locality-aware transactional scheduler. The key goal
of LTS is to help determine when objects are not correctly located in the system. LTS establishes
a connection between objects and aborts caused by nodes that are running transactions accessing
those objects.

We define a fixed time window, called time-frame, during which each node collects information
on aborted transactions observed. Time-frame represents a local time interval. Specifically, each
object owner (say own) records, for each object (say obj), two lists of pairs < node,abort rate >,
where each pair represents the number of aborted transactions (abort rate) in the last time-frame
generated by the node accessing obj. The first list, called M , tracks the abort rate of obj’s owners
(including own). The second list, N , contains the abort rate of all the other nodes (non-owners).
Accordingly, N ∩M = ∅.

Whenever a transaction commits a new version of an object oA, its replicas are updated (see Sec-
tion 10.2.1) and all transactions that concurrently requested oA are aborted. Each object owner
knows the transactions that are aborted due to contention on oA. Therefore, when the commit
message is received, the abort rate of nodes running those aborted transactions are updated. If the
time of receiving the commit message is within the current time-frame for updating the abort rate,
its value is simply incremented, otherwise it is overwritten.

The list M is maintained in the ascending order of abort rate, whereas the list N is maintained
in the descending order. When a new object version is committed and the lists are updated, LTS
compares the abort rate of M and N , node-by-node, starting from the first location of M , and
generates the subset (Ń ) of nodes that have higher abort rate than those in the same positions of
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M (the size of Ń is less than the object replication degree). Ń represents candidate nodes for
becoming new object owners. For each node Now ∈ Ń , let ix represent its index in N . If the
difference between Now’s abort rate and the abort rate of the node stored at position ix of M
(named NM(ix)) is higher than a threshold, then the ownership is changed from NM(ix) to Now.
When the ownership is moved the object’s value is transferred along with its lists N and M . The
threshold represents the maximum number of aborted transactions that are allowed per time-frame
without changing the ownership.

This mechanism captures workload changes. When the workload is stable, the number of aborted
transactions started on non-object-owner nodes is negligible. Thus, there is no need to change
ownership. The protocol manages this scenario using the aforementioned threshold. When the
workload changes, a non-trivial number of transactions may request remote objects, resulting in
several aborts. If the workload fluctuation is not temporary, this number will eventually exceed the
threshold, triggering a change of ownership.

Figure 10.3: Example of LTS

Figure 10.3 illustrates an example of how LTS works with four nodes. The M list includes nodes
N1 and N2 and the N list includes nodes N3 and N4. Let us assume that transactions T1 and
T2, invoked at nodes N3 and N4, respectively, access an object o. If T1 commits first, T2 will be
aborted. o’s owners (i.e., N1 and N2) will increase N4’s abort ratio from 1 to 2 (i.e., N4 → 2)).
When the owners receive the new version of o from T1, they will build Ń , which will include N4

because the abort rate of N1 is less than that of N4, which is larger than a threshold. Node N1 will
now send the new M and N lists to N2 and N4. Object o updated by T1 is sent to only N4, because
N2 was a previous owner.
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10.2.3 Increasing Concurrency

When shared objects are composed of multiple fields, the access probability for the fields can
sometimes be skewed. Moreover, the data access pattern of different transactional profiles can
logically group object fields into subsets that are concurrently accessed by different transactions.
As a result, updating two fields of the same object from different transactions causes an abort due
to object invalidation. However, such an abort does not compromise correctness, because the actual
data accessed and modified are different.

An illustrative example of this scenario can be found in the TPC-C benchmark [83]. TPC-C pro-
vides each object with an unique key, which is needed by transactions to retrieve and manipulate
the object [90]. If multiple transactions concurrently access different fields of the same object, a
conflict occurs. In this case, only one transaction is allowed to commit, aborting the others. In the
TPC-C specification, the transaction profiles New Order and Payment access an object called Dis-
trict. When both request the same District, a write-write conflict happens. However, New Order
updates the field D NEXT O ID, while Payment updates the field D YTD. Hence, this is not a real
conflict.

The contention probability can be alleviated by splitting heavily contended, “hot spot” objects,
like the District object in the previous example, onto multiple nodes, minimizing the conflicts
and thereby increasing concurrency. In order to do that, we define two parameters for managing
the replication of shared objects. The first is the traditional object replication degree (ORD),
which defines the number of owners for each object. The second is called the field replication
degree (FRD), which defines the maximum number of replicas for each object field. For example,
when ORD=3, each shared object is maintained by three different nodes in the system. When
FRD=2, the object can be split, storing fields in different replicas. With three nodes available for
maintaining each object (i.e., the object replicas), the fields can be stored in two of the three nodes,
ensuring fault-tolerance (i.e., more than one copy is available).

Formally, in order to preserve object integrity in case of faults, FRD must be higher than one and
lower than or equal to ORD (i.e., 1< FRD < ORD).

LTS determines whether to split one object into multiple objects, each of which has a subset of the
original object fields. Toward that, LTS exploits the replicas already assigned for that object. If
there are more than two replicas per object, LTS “guesses” the object contention probability and
moves the most requested fields out from the original object container.

The object owners hold information regarding the aborted transactions, which is used for exploiting
locality (see Subsection 10.2.2), and the fields that the aborted transactions attempted to update.
The latter information is considered for moving fields. LTS determines whether object ownership
needs to be changed and the best fields to move accordingly. If the access pattern exhibited by
aborted transactions allows the identification of most requested fields, then LTS splits the object
into multiple pieces, minimizing the contention.

LTS continuously monitors the state of current and new “hot spots” in the system, separating (or
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aggregating) fields according to the actual workload.
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Figure 10.4: T1 and T2 access object ID 1.

Figure 10.4 shows how two aborted transactions T1 and T2 take advantage of object separation. For
simplicity, we consider ORD = 1 and FRD = 2. The object oid = 1 is composed of three fields
(o1, o2, o3) and it is stored in two nodes N1 and N2. We assume that T1 executes on N1 and T2
executes on N2. T1 is interested in updating the fields o1 and o2, while T2 is interested in updating
the field o3. When T1 and T2 concurrently access and update oid = 1, they access the local copy,
and will be aborted at commit time due to object invalidation (Figure 10.4(a)). However, no real
invalidation occurs here. LTS detects this and splits oid = 1, pushing o1 and o2 to N1, and o3 to N2

(Figure 10.4(b)). In this way, it minimizes the contention on oid = 1, reducing aborts.

10.2.4 Protocol Correctness

LOCAL-FLOW ensures 1-copy serializability (1CS) [57]. The proof is straightforward and is
omitted, but we provide the basic reasoning:

A) The protocol does not rely on a multi-version scheme. Indeed, each object has only one global
version available. If two operations performed by different transactions access the same object,
and at least one is a write operation, they generate a conflict. Such conflicts are resolved by
aborting at least one of the two concurrent transactions.

B) Before updating the written objects, the protocol implements mutual exclusion based on dis-
tributed locking (i.e., two-phase-commit [57]). After sending the lock request for an object, a
transaction waits until all the replicas reply. Subsequently, the transaction compares the col-
lected pairs <#retry,#locks> with its local pair. Only if the transaction has the highest #retry
and highest #locks, it can proceed; otherwise the transaction is aborted and restarted. All
concurrent committing transactions collect the same set of pairs sent by object owners along
with the NACK message. If multiple transactions have the same <#retry,#locks>, then all are
aborted and restarted (after an exponentially distributed back-off time). Only one transaction
at a time can access a shared object in the write mode for updating. Deadlock detection is
implemented using a timeout based strategy.

C) Once all the objects belonging to a transaction’s write-set are locked, the protocol checks
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whether the transaction has observed an up-to-date view of the shared data, despite optimistic
reads and concurrent updates. This validation compares the current timestamp of the read
objects with the timestamp of the current committed version. Given that each transaction in-
creases an object’s timestamp every time it commits a new version, validation detects previous
commits that have made the object inconsistent. Only after a successful read-set validation, a
transaction can safely proceed to commit; otherwise, an abort is issued.

By locking all objects in the write-set and subsequently validating the read-set, each committing
transaction acts as in centralized settings, blocking all the concurrent participants. The protocol
ensures that only one conflicting transaction at a time proceeds to commit.

10.2.5 Algorithm Description

When a transaction starts, the open function firstly checks the location of the corresponding object
ID querying its local cache (called CurrMap). Only when the object is not locally maintained, a
remote lookup is issued.

The V alidation procedure illustrated in Algorithm 11 is invoked when the transaction starts its
commitment phase. A transaction needs to acquire locks on write-set first. For each object in write-
set, the transaction sends a lock request to its owners, along with two parameters (i.e., #locks, and
#reruns). Then it waits until it receives the corresponding ACK or NACK. In case all NACKs
are received, the transaction aborts and restarts after a back-off time, increasing its #reruns.
When the transaction collects all ACKs, then it can safely consider the object successfully locked.
When the transaction receives at least one ACK and other NACKs, compareTwoFactors is re-
sponsible for comparing all the collected pairs of <#retry,#locks> associated with the transactions
that received the ACK against their lock requests on the object. Only when the transaction has
the pair with maximum #reruns or, in case of a tie for the maximum #reruns, the maximum
#locks, then it can consider the lock granted, otherwise it has to abort and restart.

Only after the successful lock acquisition of all the objects in the write-set, the transaction calls
validateReads for checking the consistency of objects in its read-set. Unless the objects in read-set
are modified, the replicas storing the objects in write-set will be updated, finalizing the transaction
commitment phase.

Algorithm 12 shows the work of the locality-aware transactional scheduler invoked by an object
owner when a transaction commits. We define a fixed time window, called time-frame (e.g., 10 sec)
in which we measure the number of aborts observed by a node. Whenever an abort occurs, the abort
rate for an element in ownerList or nonownerList is updated. We notice that the abort rate per
node is maintained as a number of aborted transactions, started on that node, caused by a specific
object in the last time-frame. Both ownerList and nonownerList consist of pairs < key,value
> = < node,abortRate >. The elements in the lists are sorted according to the abortRate value.
Whenever the abort rate increases the ownerList’s sorting is refreshed in descending order of
abort rate, and nonownerList in ascending order of abort rate. Thus, the complexity of sorting
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Algorithm 11: Local-Flow commitment phase
1 Procedure Validation
2 Input: write-set, read-set
3 Output: commit, abort
4 local num locks = write-set.size();
5 foreach object obj ∈ write-set do
6 send lock request with < local num locks,local reruns > to obj’s owners;
7 result = retrieve < num locks,reruns > from all obj’s owners;
8 if result == NACKs then
9 . All NACKs are received from the owners

10 return abort;

11 . if at least one ACK is received from the owners
12 if compareTwoFactors(result) == false then
13 return abort;

14 . At this stage, all objects are successfully locked
15 if validateReads(read-set) == false then
16 . validateReads checks for whether or not the objects in read-sets have been committed by previous concurrent

transactions
17 return abort;

18 foreach object obj ∈ write-set do
19 updateReplicas(obj);

20 return commit;
21 Procedure Abort
22 Input: local reruns
23 local reruns ++;
24 wait back-off time;
25 restart transaction;

the lists is O(log n), where n nodes invoking aborted transactions.

When a transaction updates an object to the owners, other transactions accessing the same ob-
ject are aborted. The owners increase the abort rate of ownerList and nonownerList corre-
sponding to the updated objects. In order to switch the ownership of an object, the abort rates of
ownerList and nonownerList are compared only if the gap between the abort rate of ownerList
and nonownerList is larger than a predefined threshold. When this happens, the node in nonownerList
becomes the candidate for getting the new ownership. Whenever LTS finds a candidate node, the
replicas are sent to that node (the new owner).

Contextually, LTS decides whether or not the object fields are split. After the decision, the new list
of object owners is updated to all nodes. This procedure is executed only when the new candidates
for being object owners are found.

Whenever an abort is detected, the aborted transaction identifies the differences between original
objects, that have been requested, and modified objects, that have been updated but not committed
globally. The updated fieldIDs and the objectIds are sent to current owners when a transaction is
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Algorithm 12: Locality-aware transactional scheduling phase
1 Procedure LTS
2 Input: ownerList, nonownerList
3 candidateList = null;
4 foreach {O node,O abortRate} in ownerList do
5 {node, abortRate} = nonownerList.getFirst()
6 . getFirst returns the first key and element in the list
7 if abortRate - O abortRate > threshold then
8 nonownerList.remove(node);
9 candidateList.append(node);

10 if candidateList.length 6= 0 then
11 splittingObject(candidateList);
12 updateOwnerList(candidateList); . updateOwnerList includes changing the ownership

13 Procedure splittingObject
14 Input: candidateList
15 objects = null;
16 . objects indicate an object list that will be sent to owners
17 ids = abortedTxList.get(candidateList);
18 . get returns the field ids of objects that nodes in candidateList try to update
19 foreach node ∈ candidateList do
20 if ids.isIndependentSet(node) = true then
21 . isIndependentSet returns true or false representing whether or not node’s field ids are not overlapped with

the others
22 objects = split(ids(node));

23 else
24 objects = ids(node);

25 updateRelicas(objects, node); . send objects to node

aborted. In the splittingObject procedure in Algorithm 12, the owners maintain abortedTxList
used to find which fields aborted transactions tried to update. For each candidate (new object
owner), the procedure checks for whether the fields that the candidate wants share with the other
candidates’. If there are no candidates, only those fields are sent to object owner. Otherwise, the
entire objects are sent. Finally, the new candidate list will be updated to all nodes.

10.3 Experimental Study

We implemented LOCAL-FLOW in HyFlow2 [91], a high-performance, open-source DTM frame-
work for the JVM, written in Scala.

We conducted experiments using a private cluster and using the Future Grid public infrastructure1.
Our private cluster consists of 48 nodes, where each node is comprised of 4 Intel Xeon 1.9GHz

1www.futuregrid.org
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processor cores, running Ubuntu Linux 10.04 OS. In Future Grid, we used up to 16 nodes (a
Future Grid limitation). Future Grid was used to reproduce the same test-bed used in evaluating
Score [42].

We compared LOCAL-FLOW against CTS [36] and Score [42]. CTS is a cluster-based transac-
tional scheduler [36] that aborts some transactions in advance to enhance the concurrency of other
transactions in a partial replication model. Our benchmarks included TPC-C [83] (representative
of on-line transactional workloads) and micro-benchmarks including Linked List and Skip List
data structures. To produce locality-aware behavior, we developed two versions of each bench-
mark: one where object accesses are skewed (called local) and the other where transactions access
random objects (called random).
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Figure 10.5: Transactional throughput of TPC-C.

Figure 10.5 shows transactional throughput of TPC-C with local and randomly accessed objects.
(The number of read and write transactions were configured according to the TPC-C specification.)
Each plot has four curves because we considered configurations with object replication degrees of
2 and 3. For LOCAL-FLOW, this is reflected with ORD=2 and ORD=3. In order to enhance
concurrency by object splitting, when ORD=3, we set FRD=2.

In the local setting, both LOCAL-FLOW and CTS exploit data access locality. However, splitting
objects under LOCAL-FLOW increases concurrency, improving its performance. In the random
scenario, even though an object does not exist in the local cache, LOCAL-FLOW exploits locality
through LTS. Indeed, after a certain time, LTS detects the need to move objects closer to requests’
source. However, in CTS, even if objects are fetched from a subset of nodes, communication
costs are incurred for moving those objects from, even closest, nodes. LOCAL-FLOW improves
throughput by as much as 2.2× over CTS.

Note that, both CTS and LOCAL-FLOW perform better when replication degree increases. This
is due to their ability to exploit locality. However, due to object splitting, LOCAL-FLOW has a
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lightweight commit cost, as it involves less replicas than CTS (which stores each object along with
all its fields).
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Figure 10.6: Transactional throughput of Linked List (LL) for different read %.

Figures 10.6 and 10.8 show throughput for Linked List and Skip List. For these micro-benchmarks,
we use multiple operations in a transaction. Each operation randomly selects objects to access.
Both LOCAL-FLOW and CTS may fetch objects from remote nodes. As the number of aborts
increases, LTS determines the optimal location for each object. After several aborts, the scheduler
moves objects toward nodes where transactions are suffering increasing aborts. This enables the
subsequent incoming requests to fetch objects from their local cache instead of contacting remote
owners. We observe that LOCAL-FLOW is effective for micro-benchmarks, improving throughput
by as much as 2.6× over CTS.

To compare LOCAL-FLOW with Score [42], we used the same settings as in [42]: we deployed
LOCAL-FLOW on Future Grid, and used TPC-C, configured with 50% write transactions and
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50% read-only transactions. (Note that Score is integrated into Infinispan [53], and therefore only
provides APIs like transactional put and get on a distributed map. This prohibits using micro-
benchmarks such as Linked List or Skip List.)
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Figure 10.7: Score vs. LOCAL-FLOW.

Figure 10.7 shows the results. The plot shows three curves: two for Score and one for LOCAL-
FLOW. This is because, Score offers its best performance with manually placed objects. Also,
being based on control-flow, it does not react when the workload changes. Therefore, we used
two scenarios: W(A), in which most of the transactional requests access local TPC-C objects, and
W(B), in which each node executes requests on objects that are mostly located on different nodes.
The latter scenario mimics situations in which clients, responsible for doing operations, change
their target node in favor of another.

LOCAL-FLOW’s performance is not affected by changing the workload from scenario W(A) to
W(B) after an initial phase in which it recognizes the need to move objects for exploiting the new
application locality. In contrast, Score is overloaded by communication costs and its potential
benefits are negated by the cost of remote operations. Here, LOCAL-FLOW outperforms Score
(W(B)) by up to 55%. We notice that, the configuration used for this experiments is not the best
for LOCAL-FLOW due to the large number of read-only transactions. We nevertheless used it for
a fair comparison with the settings in [42].

Score’s performance in W(A) is slightly better than LOCAL-FLOW (by≈15%). This is mostly due
to the configuration of TPC-C. With 50% read-only transactions, Score is better because it does
not validate such kind of transactions. In contrast, LOCAL-FLOW validates read-only transactions
concurrently with write transactions, generating possible conflicts and object invalidations.
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Figure 10.8: Transactional throughput of Skip List (SL) for different read %.



Chapter 11

Summary, Conclusions, and Future Work

11.1 Summary of Schedulers

In this dissertation, we studied seven different schedulers to improve throughput in data-flow cc
DTM. First, Bi-interval categorizes requests into read and write intervals to exploit concurrency of
read transactions. The key idea is to minimize object moving times and maximize concurrency of
read transactions. Bi-interval enhances throughput by as much as 1.77∼ 1.65× speedup under low
and high contention, respectively.

Second, CRF scheduler maintains a scheduling queue to identify commutative and non-commutative
transactions, and could decide to allow all commutative transactions to commit first than the others,
maximizing their concurrency. However, despite the significant performance obtained by adopting
the idea of commutativity transactions of CRF, there could be applications that do not admit such
kind of commutativity. CRF addresses this issue by permitting the developer to explicitly specify
non-commutative operations. CRF reveals that transactional throughput is improved by up to 5×
over a state-of-the-art DTM solution.

Third, RTS focuses on scheduling closed-nested transactions. The scheduler heuristically deter-
mines transactional contention level to determine whether a live parent transaction aborts or en-
queues. RTS is shown to enhance throughput at high and low contention, by as much as 1.53× and
1.88× speedup, respectively.

Forth, DATS schedules open-nested transactions. The key idea behind DATS is to avoid com-
pensating actions regardless of conflicted objects and minimize the number of requesting abstract
locks, improving performance. Our implementation and experimental evaluation shows that DATS
enhances throughput for open-nested transactions by as much as 1.41× and 1.98× under low and
high contention, respectively.
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Fifth, SPN considers parallel closed-nested transactions in DTM. Object owners maintain a trans-
actional table containing on-going inner transactions to identify which inner transactions can be
executed in parallel. SPN exploits the parallelism of executing inner transactions and requesting
objects in DTM. SPN reveals that throughput is improved by up to 3.5× in micro-benchmarks and
up to 4.5× in TPC-C over closed-nested DTM without SPN.

Sixth, CTS focuses on the partial object replication model. The key idea of CTS is to avoid brute
force replication of all objects over all nodes to minimize communication overhead. Instead, repli-
cate objects across clusters of nodes, such that each cluster has at least one replica of each object,
where clusters are formed based on node-to-node distances. Our implementation and experimental
evaluation shows that CTS enhances throughput over GenRSTM and DecentSTM, by as much as
(average) 1.55× and 1.73× under low and high contention, respectively.

Seventh, LTS exploits locality in a partial object replication model called LOCAL-FLOW. LTS
monitors nodes invoking aborted transactions for detecting the effectiveness of the current object
placement. Before the aborted transactions re-start, LTS moves objects’ ownership to the nodes.
When the aborted transactions restart, fetch the objects from their local cache without remote
requesting. Also, transactions typically access only a subset of the field of an object, so the object
is splinted into multiple fields according to the need of the transactions. Our results revealed that
LOCAL-FLOW outperforms CTS by up to 2.6× on micro-benchmarks and by up to 2.2× on TPC-
C. Moreover, LOCAL-FLOW outperforms Score by up to 1.5× on TPC-C when the workload
changes.

Bi-interval and CRF focus on single- and multi-version DTM, respectively. CTS and LTS consider
partially replicated DTM, which increases concurrency and availability. RTS, DATS, and SPN
have been proposed for scheduling closed, open-nested, parallel-nested transactions, respectively.

All seven proposed transactional schedulers focus on data-flow DTM, but consider different object
replication, version, and transaction models. In Table 11.1, we summarize the schedulers in terms
of these models.

To help DTM programmers identify the scheduler that is best suited for a given application context,
in Table 11.2, we characterize the schedulers in terms of their inputs, outputs, strengths, and limita-
tions. Since read-set and write-set are common inputs to all schedulers, Table 11.2 omits those. As
inputs, the schedulers consider two types of transactions: “live transactions” and “aborted transac-
tions”. Live transactions are those that are in progress, and aborted transactions are those that have
been aborted.

Table 11.1: Summary of Proposed Distributed Transactional Schedulers
Bi-interval CTS RTS DATS CRF LTS SPN

Object version Single Single Single Single Multi version Single Single
Object copy No Partial No No No Partial No

Transaction type Flat Flat Closed Open Flat Flat Closed
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Table 11.2: Properties of Proposed Distributed Transactional Schedulers

Bi-interval

Input Aborted transactions and delay matrix consisting delays for the pair of nodes
Output The list of ordered write transactions

Strength Minimizing object moving time and maximizing the parallelism of
read transactions

Limitation Overhead to sort aborted transactions according to their shortest paths

CTS

Input Live transactions
Output A live transaction to be aborted

Strength Avoiding the conflicts of live transactions with high dependencies for
minimizing overall number of abort

Limitation Working only if the size of write-set is at least 2

RTS

Input Live outer-transactions and their committed inner transactions
Output A live outer-transaction to be aborted

Strength Minimizing the aborts of inner transactions committed internally
Limitation No performance gain if all outer transactions have the same number

of committed inner-transactions

DATS

Input Live outer-transactions and their commutable information
Output A live outer-transaction to be aborted

Strength Minimizing the compensation action and abstract locks of
inner-transactions committed globally

Limitation No performance gain if all inner-transactions depend on their
outer transaction

CRF

Input The commutativity of live write transactions
Output The list of commutative write transactions

Strength Enhancing the concurrency of write transactions through identifying
commutative transactions on the same shared objects

Limitation No performance gain if all write operations do not commute

LTS

Input Two lists of owners and non-owner for each object and aborted transactions
Output The list of nodes to receive ownership

Strength Minimizing remote fetch for each transaction
Limitation Incurring object moving time to switch ownership in high contention

SPN

Input Parallel live inner transactions
Output Objects and backoff times

Strength Enhancing the parallelism of inner transactions
Limitation No performance gain when all the inner transactions have data-dependency
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11.2 Conclusions

Bi-interval’s design, implementation, and evaluation shows that the idea of grouping concurrent
requests into read and write intervals to exploit concurrency of read transactions – originally de-
veloped in BIMODAL for multiprocessor TM – can also be successfully exploited for DTM. Doing
so poses a fundamental trade-off, however, one between object moving times and concurrency of
read transactions. Bi-interval’s design shows how this trade-off can be effectively exploited to-
wards optimizing throughput.

CRF focuses on how to enhance concurrency of write transactions in multiversioning schemes en-
suring snapshot isolation, where write transactions are exposed to a high probability of conflicts.
CRF’s key idea is to detect conflicts between commutative and non-commutative write transac-
tions, and allow commutative transactions to commit concurrently before the others. CRF’s design
shows how commutativity-based scheduling impacts throughput in DTM. Experimental evaluation
shows CRF’s effectiveness: CRF enhances throughput over a state-of-the-art DTM solution by 3 –
5×.

With closed-nested transactions, when an outer transaction is aborted and re-issued, the inner trans-
actions will have to retrieve objects again, increasing communication delays. RTS reduces the
aborts of outer transactions, including their inner transactions.

When transactions with committed open-nested transactions conflict later and are re-issued, com-
pensating actions for the open-nested transactions can reduce throughput. DATS avoids this by
reducing unnecessary compensating actions, and minimizing inner transactions’ remote abstract
lock acquisitions through object dependency analysis. DATS’s design illustrates the importance
of scheduling open-nested transactions in order to reduce the number of compensating actions and
abstract locks in case of abort.

SPN focuses on parallel nesting in DTM. With SPN, all inner transactions request their objects
from object owners in parallel. This removes the initial overhead of parallelism and reduces overall
communication delay by parallel object requests, resulting in high performance. SPN’s design
illustrates that it is important to hide the communication costs in DTM for improving throughput,
and that parallel nesting is an effective way to do so.

CTS uses multiple clusters to support partial replication in fault-tolerant DTM. The clusters are
built such that inter-node communication within each cluster is small. To reduce object requesting
times, CTS partitions object replicas into each cluster (one per cluster), and enqueues and assigns
backoff times for aborted transactions. CTS’s design shows that such an approach yields significant
throughput improvement.

LTS’s design shows that locality matters, and that it can be effectively exploited in a distributed
transactional setting. When in-memory operations dominate transaction execution, time spent re-
trieving objects from remote nodes degrades performance. LOCAL-FLOW’s design, implementa-
tion, and evaluation demonstrates that transactional protocols for the data-flow model are effective
for improving performance in locality-aware transactional applications.
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To summarize, transactions may be aborted in DTM due to a number of reasons in different DTM
models (i.e., multi-version, replicated, nested), reducing throughput. Our work shows that, iden-
tifying the underlying causes (e.g., repeated abort of large write transactions, repeated acquisition
of remote objects/abstract locks, the initial overhead of parallel nesting, and low locality on object
accesses) and eliminating them can yield significant throughput improvement. The dissertation’s
results show that the proposed scheduling techniques – which at their core, identify and eliminate
those causes – are highly effective.

There are many different DTM models that the dissertation do not consider (e.g., control-flow
execution model, full replication model, dynamic system model). However, the dissertation’s pro-
posed techniques can likely be adapted and optimized for achieving high performance in those
models.

11.3 Future Work

Based on the dissertation’s results, we propose the following directions for future research.

An interesting direction is to evaluate some of our proposed schedulers in other models – active
replication and speculative execution. These models also target high performance in DTM, so our
approaches can enhance their purpose.

• The active replication paradigm exploits full replication to avoid service interruption in case
of node failures, allowing transactions to execute locally, costing them only a single network
communication step during transaction execution. When a replica is updated globally, a
conflict can be detected. Thus, CRF can be applied to the active replication model. Whenever
a conflict occurs, CRF checks the replica for commutativity.

• Under speculative execution, transactions accessing objects guess final commit order. Before
the commit, other transactions can access the object. Bi-interval, RTS, and CTS give aborted
transactions different backoff times to prevent them from aborting again. These schedulers
can exploit speculative execution, moving objects that belongs to the write-set of transactions
before committing to nodes invoking aborted transactions.

Scheduling transactions in a control-flow DTM is another interesting direction. Past transactional
schedulers have been implemented in the data-flow DTM model. Control-flow DTM (i.e., transac-
tions move from node to node and objects are immobile) outperforms data-flow DTM in throughput
with low contention. Thus, scheduling transactions in high contention may performs better than
data-flow models.
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