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uniform load intensity 
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total load on plate 
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INTRODUCTION 

The purpose of the present investigation is to determine the de­

flection surface of circular and annular plates supported on multipoint 

supports; and them from the derived analytical surface, study the in­

fluence of support circle diameter and the size of the hole for any 

given number of concentrated force supports and thus predict suitable 

analytical criterion for minimum deflection of plates. 

The above class of problems frequently occurs in structural engi­

neering; for example, the offshore platforms, as well as the floor 

system of high-rise buildings which are supported essentially by columns. 

The results and conclusions to be derived in· this dissertation would also 

be of value in optical engineering, where optical mirrors are designed 

for least deflection, while the lens and its support structures are 

subjected to minimum weight. The latter requirement is often achieved 

by introducing concentrated supports rather than continuous supports. 

LITERATURE REVIEW 

The problems to be investigated in the dissertation are generally 

called "Concentrated Force Problems in Transverse Bending of Plates. 1I 

A historical literature survey on this topic will now be given. 

The solution corresponding to a rigidly clamped circular plate 

under a concentrated load at the center was first obtained by Poisson 

(10 in (1829). Clebsch (~ in (1862) was the first to formulate the 

problem of a clamped circular plate subjected to a concentrated force at 

an arbitrary point. Slight errors in the complex computation of this 
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problem were later corrected by Foeppl (3). Clebsch's solution did not, 

however, contain the concentrated load singularity in closed form. 

Michell Ci) has the merit to simplify the Clebsch's problem by 

using the process of inversion--which leads to the solution for an eccen-

tric load by the inversion of that for a centrally loaded circular plate. 

Mathematically, Michell found a closed form expression for the HGreen's 

function" for the differential equation V4w = 0 within a circular bound-

ary. Twenty years later Melan (~ recovered the same solution by use of 

bipolar coordinates. 

At present there are a number of solutions to various types of prob-

lems on bending of plates subjected to concentrated forces. Most of 

these problems are approached by means of the complex variable method of 

Muskhelishvili, which was extended to plate bending problems by 

Lechnitskii (6). 

Lurie (2) applied the Muskhelishvili-Lechnitskii method for solving 

the biharmonic equation and discussed several problems in the bending of 

circular plates. Friedmann (~ considered the problem of the bending of 

a thin isotropic plate when acted upon by any number of normal concen-

trated forces at interior or boundary points. Applying the complex var-

iable method, Chankvetadze (~ found a solution in closed form for a 

thin circular plate normally and uniformly loaded over the whole plate 

and supported at a number of points on its periphery. The same method 

was used by Washizu (10) to discuss the bending of a circular plate under -. 
several concentrated loads on the boundary, the faces of the plate being 

free from normal forces. The boundary condition taken by Washizu is of 

a form different from that used by Friedmann and Chankvetadze, and may 
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be obtained from it by differentiation. 

In Reference (11) Yi-Yuan Yu studied the bending of isotropic 

homogeneous thin plates, the boundaries of which were subjected to 

isolated couples and forces. An excellent paper by Bassali (12) con­

siders the problem of a thin circular plate supported at several interior 

or boundary points and transversely loaded over the area of an eccentric 

circle. This latter problem is formulated and solved in great generality 

by means of complex variables; therefore, it would require considerable 

amount of analysis prior to its engineering application. 

Nadai (13), without making use of complex variables, gave a general 

method for handling problems of circular plates symmetrically loaded with 

respect to the center and supported at several points along the boundary. 

The method of Nadai is also outlined by Timoshenko and Woinowsky-Krieger 

(14). The same method was used by DeBeer (15) to obtain the deflection 

at any point of a symmetrically loaded circular plate supported in a 

number of points regularly distributed around the boundary. Following 

smmilar reasoning and using the superposition principle, Bassali (16) 

found infinite series solutions for circular plates subjected to certain 

loadings over the area of an eccentric circle, where the plate is sup­

ported at several points along the boundary. In another paper by Yu and 

Pan (17) a circular plate supported on symmetrical points located along 

a concentric interior circle was investigated. Leissa and Wells (18), 

by means of a Fourier series in real variables, have also found a solu­

tion to a uniformly loaded circular plate having two, four and eight 

symmetrically located interior point supports. By extending the method 

of Nadai (13), mentioned above, the solution for the circular plate 
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plate supported by uniformly distributed reactions over finite arcs of 

the boundary is given by Girkmann (19). Reismann (20) investigated the 

effect of an elastic boundary restraint upon the deflection, moments 

and critical buckling loads of a circular plate while the plate is sub­

jected to a concentrated force at an arbitrary point. 

All of the above discussion on literature survey are for circular 

plates. As regards annular plates, there are only a few known solutions 

when the plate is under the action of concentrated forces. Symonds 

(21), by means of inversion, has found a closed form solution of the 

problem of an infinitely large plate clamped at an inner circular edge, 

with outer edge free, and loaded by a concentrated force at an arbi­

trary point. From this result, Symonds also finds an infinite series 

solution to a ring shaped plate of finite outer radius, with force ap­

plied either at the outer edge or at any point between the inner clamped 

edge and the outer edge. The first case, in which the force is applied 

at the outer boundary was originally solved by H. Reissner (22). In 

another paper, Amon and Widera (23) outlined the procedure for handling 

an annular plate calmped at both inner and outer boundaries and loaded 

by a concentrated force. The bending by uniform load of an annular 

plate supported at one or both of the circular edges on equally spaced 

columns is considered by Agabein, Lee and Dandurs (24). 

Having discussed the available solutions to bending problems in 

the presence of concentrated forces, the contents of the dissertation 

will now be given. 
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CONTENT OF DISSERTATION 

1.1 Explicit formulae are to be derived for the deflection surface 

of a symmetrically loaded circular plate having several point supports 

which are situated at equal distances apart on a single concentric 

circle, which may be as large as the diameter of the plate itself. 

1.2 Compare the derived results, which would be exact in accord­

ance with classical thin plate theory, with the experimental data given 

by Emerson (25) and Dew (26). 

1.3 Provide numerical deflection coefficients for a uniformly 

loaded circular plate; this information could be utilized for optimizing 

the position and the number of supports. 

1.4 Provide a numerical method which would give deflection surface 

for a uniformly loaded circular plate which is point supported, but has 

two support circles; the supports being all in the same level. 

2. Derive the expression for the deflection surface of a uniformly 

loaded annular plate having any number of point supports which are 

situated at equal distances apart on any single concentric circle; 

and from this resu~t, determine the optimum position for support circle 

for a given size of hole and the number of supports. 

METHOD OF SOLUTION TO PLATES ON MULTIPOINT SUPPORTS 

In the presence of concentrated forces, solutions to plate bending 

problems are complicated. However, as was illustrated by Bassali (12), 

these types of problems can be systematically and successfully solved 

by means of the complex variable method. Unfortunately, the solutions 
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that are available by this method are too general and the final results 

given by the authors are in terms of functions of complex variables. 

Because of this reason, it would require further mathematical analysis 

to adapt the solution to a physical problem--or to extend the analysis 

and solution to some other related problem. 

Of course, there are a number of solutions to plate bending prob­

lems in the presence of concentrated forces, which are approached in 

terms of functions of real variables. Solutions available in terms of 

real variables are, however, restricted to cases where the support points 

are along the boundary: The reason for this limitation is due to the 

following fact. When the support points are anywhere other than the 

boundary, the problem has to be approached by means of the method sug­

gested by Clebsch (~, and this method is also given in page 290 of 

Reference (14): The solution obtained by the C1ebsch method would be in 

terms of infinite series, and as was shown by Yu and Pan (17), the solu­

tion consists of two parts; one for the region interior to the support 

circle and the other for the region exterior to the support circle. A 

general difficulty of this method is due to the slow convergence of the 

series in the neighborhood of the supports, which makes numerical evalu­

ation tedious if not impossible. However, when the supports are at the 

boundary, the problem is relatively easy and can be solved by the method 

suggested by Nadai (13): This method is also given in page 293 of Ref­

erence (14). Nadai's method also gives an infinite series solution, but 

the series converges much more rapidly. 

Tn the following pages, a method will be given to derive the de­

flection surface of a symmetrically loaded circular plate having several 
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point supports which are situated equal distances apart on a single 

concentric circle. There is no restriction on the diameter of the 

support circle, which may be as large as the diameter of the plate 

itself. The approach to the problem here is essentially superposition 

of relevant known solutions. In particular, the singularity effects 

associated with the concentrated supports on the plate are accounted 

for by considering the solution obtained by Michell (~ for a clamped 

circular plate subjected to an eccentric point load. The approach to 

annular plate on multipoint supports is similar to that of a circular 

plate. 

1.1 CIRCULAR PLATE ON MULTIPOINT SUPPORT 

STATEMENT OF PROBLEM 

The problem to be investigated consists of determining the deflec­

tion surface of a constant thickness circular plate of radius c subjec­

ted to the following three conditions: 

1. The total load W is symmetrically distributed with respect to the 

center of the plate. 

2. The plate is supported by N (N ~ 2) concentrated forces; each of 

magnitude (WIN), and located equal distances apart on a single 

concentric circle of radius b. 

3. The plate has the boundary conditions of a free edge. 

The circular plate with the above specified conditions, illustrated 

in Figure 1, will be referred to as System 1. The loading and support 

conditions on the plate of System 1 are such that, the equilibrium of 

forces and moments are satisfied. 
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METHOD AND SOLUTION 

The solution to the above problem will now be found on the basis 

of classical small-deflection theory. According to this theory, the 

transverse deflections wI of System I are characterized by 

4 
V wI = q(r)/D (1) 

where D is the flexural rigidity and q(r) is the axi-symmetric load 

intensity, which is related to the total load W by 

(2) 

In view of the conditions on System 1, it will be assumed that the 

deflections wI are of the form 

(3) 

such that, w
2

' w3 and w
4 

correspond respectively to deflections of the 

following three systems. The boundary, loading and the support condi-

tions of these three systems are illustrated in relation to System 1 

in Figure 2. 

System 2: This system is a simply supported circular plate ~f radius c 

subjected to the same type of loading as the plate of System 1. 

System 3: The effects of concentrated supports on the plate of System 1 

are accounted for by defining System 3 as a clamped circular plate of 

radius c, subjected to a loading condition which is identical to the 

support condition of System 1. 

The deflections, bending moments and edge reactions corresponding 

to Systems 2 and 3 are obtainable from Reference (14); however, for 
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reference purposes, relevent data on Systems 2 and 3 are given in 

Appendix A. 

System 4: This system consists of a circular plate of radius c which 

is not subjected to any surface loading but has applied moment and 

reaction distributions along the periphery. These distributions are 

such that the total moment and reaction at the boundary of Systems 2, 

3, and 4 are zero. 

The deflection surface w4 corresponding to System 4 will now be 

found on the reasoning that the System 1 has the boundary conditions of 

a free edge. By Kirchhoff's theory of plates, the boundary conditions 

of a free edge for the plate of System 1 are characterized by 

2 -
(I-v) a wI = 

+ c2 ax2 x=l 0 
(4) 

since there is no bending moment along a free edge. 

= 1 av
2

WI + (I-V) L {.!. aWl} = 
-0 C ax 3 axae x ae 1 0 

c x x= 
(5) 

Since there is no edge reaction for a free edge, 

where, 

x = ric 

and, 
(6) 

Substituting equation (3) in equation (4) gives 

(7) 
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where 

(Mr2 )r=c and (Mr3)r=c are given by equations (A2) and (A7) respectively, 

and 

2 -
2 (I-V) a w4 

(Mr4) r=c = -D 'V'l w 4 + c2 ax2 x=l 
(8) 

Substituting equations (A2) t (A7) in equation (7) yields 

W(1-s2
) (M) = - ~---r4 r=c 2'1T 121 + N1 ~ ~ m l L s cos m (e-nex) 

_ n=l m=2 
(9) 

Substituting (3) in equation (5) gives 

(10) 

where, 

(V2)r=c and (V3)r=c are given respectively by equations (A3) and (A8), 

and 

(V ) = -D 
4 r=c 

-2 
1 a'l w4 
- + c ax 

(I-v) 
3 

c x 

Substituting equations (A3), (A8) in equation (10) yields 

The form of the boundary values for System 4, given by equations (9) 

and (12) suggests that deflections w 4 are of the form 

2 N 00 

w4 = A + B x + 1: 1: 
n=l m=2 

If equation (13) is substituted in equations (9) and (12), it can be 

shown that 

(11) 

(13) 
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Wc2 2 
B = (l-s ) 

81fD (l+v) 

Wc 2 2 2(1+\1) 1 A 
s = --m 2'lfN D (3+v) m 2 (m-l) m (m-I) (I-v) 

Wc 2 1 2 
B s 

;:: 

21fN D (3+v) m m (m+l) 

By substituting equation (14) in equation (13), w4 becomes 

Wc2 (l_s2) 2 Wc 2 (x2+s 2) N 00 m m 
w4 = A + 8nD (l+v) x + 2'lfN D (3+v) I I ~ cos mCe-no) 

n=l m=2 m 

Wc
2 

N 00 I 1 s 2x2 m m 
- 2nN D (3+v) n~1 m~2 ~m-l) + em-1) x s cos mC6-na) 

2 N 00 mm 
We (l+v) \ \ lX S 

- 'lfND (I-v) (3+v) [. L 
n=l m=2 ill (m-I) 

cos m(e-no) 

(14) 

(15) 

Substituting equations (B1), (B4) and (BS) of Appendix B in the above 

equation yields 

where, 

00 

2 2 
s x 

2 (3+v) 

(l+v) \ m m 
(3+v) (I-v) L x S cos me 

m=N, 2N, .... m2 (m-1) 

x log 11 + x
2
s

2 
- 2xs cosce-na)]} 

(16) 

1 N 2 2 I rx +s -2xs cos(e-no)] 
41fN(3+v) n=l 

(17) 

By substituting equation (16) in equation (3), the constant A can 

be evaluated using the conditions that the deflections WI are zero at 



12 

the support points, and that wI are periodic with a period of a = 2w/N; 

thus 

A :::; - IW2 + w3· + w*] 
4 .x=s, 8=0 (18) 

On substituting equations (16) and (A6) in equation (3), and using 

equations (17 and (18), it can be shown that the deflections WI are of 

the form 

where 

~ (x, 8) 

where, 

2 2 2 2 2 N 1 2 i 
K(A -s ) ex -s) Ks - 12 (1 ] /\ = - A ('A + 1) + N'A L (I-cos nu) log s 4 -~os n~ 

. n=l l+s -2s cos nu 

+ 

A = (3+v) 
(v-I) 

(19) 

(20) 

(21) 

By using equations (B14) and (Bi7) of Appendix B, it can be shown 

that equation (19) is in agreement with Bassali's result (11). Although 

Bassalits results are compact in form, it must be realized that they are 

expressed in terms of complex quantities. For practical numerical prob-

lems, it would be convenient to express the deflections WI in terms of 

real quantities, as in equations (19) and (20). The application of 

these two equations to practical problems may be illustrated considering 
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the following examples. 

EXAMPLE 1. Circular plate subjected to symmetrical loading and sup-

ported by N point forces which are situated at equal distances apart 

on the circumference of the plate. 

For this problem s=l. Since the deflections w2 correspond to a 

simply supported plate, it follows that they vanish along the edge of 

the plate; that is, (w2)~=s=1 = O. Therefore from equations (19) and 

(20) 

K(~-I) 2 K(l2_1) 
= w 2 + A- - (x -1) + A 

00 m ex cos mS-l) 
2 m (m-I) 

I 
m;:::N.,,2N, ... 

+ K(l-A) 
2NA-

N 2 2 I II+x -2x cos (a-nex)] logII.+x -2x cos (S-nex)] 
n=l 

K(A .... I) N-I 
+ NA - I (I-cos nex) log 12(I-cos nex)] 

n=I 

Using equations (B7) it can be shown that 

(22) 

lim (WI) 
K(A-I) 

oa 

I 1 (1..+1) x2 xm cos rna 
= w2 -

A- mem-l) 2 
5+1 m=N, 2N, ••. m em-I) 

m (m+I) 

K(A-I) 
00 -
I 2 (A+I~ + A 2 2 m=N, 2N, ... m(m -1) m em-I) 

(23) 

Equation (23) is the general expression for the deflection surface 

of a ci+cular plate of radius c, subjected to a symmetrical loading and 

supported by equally spaced point loads along the edge of the plate. 

This result was originally derived by Nadai (13) by a different method 

and the derivation procedure is also given in Reference (14). 

EXAMPLE 2. Circular plate of radius c, is subjected to a concentrated 

force W at the center: The plate is supported at equal distances apart 
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on a concentric circle of radius b by concentrated forces (Figure 3). 

With reference to equation (19), the deflections w2 for this ex­

ample corresponds to a simply supported circular plate of radius c 

subjected to a point load W at the center of the plate; thus, from 

Reference (14), these deflections are given by, 

w = ~ l3+'\) (1+x2) + 2x2 1 
2 2 tl+v og x (24) 

therefore 

K 3+v 2 2 
wZ(x=s) = 2 l+v (l+s ) + 2s log s (25) 

Substituting equations (24) and (25) in equation (19) yields, 

K 3+v 2 2 2 2 
WI ="2 l+v (s -x ) + 2(x log x - slog s) + <J>(x,6) (26) 

where, <I>(x,6) is defined by equation (20). 

The central deflection corresponding to this example obtained by 

substituting x = 0 in equation (26); thus, 

2 2 
K 3+v 2 

WI Cx=O) = 2" 1+" s 2s2 log s 2 
+ K slogs lA -s) 2 

K A(A+l) s 

2 N-l 2 A 
+ Ks t (I-cos n )log 12s (I-cos nn)] 
~ l 4 2 

n=l (1+5 -25 cos nn) 

+ K (A-I) 
A 

00 2m 
I --=-~--

m=N,2N, •.• m (m-l) 

The formulae corresponding to central deflection of a circular 

(27) 

plate loaded at center by a concentrated force Wand supported by six 

point forces at the circumference of the plate will now be derived. 

Substituting s=l in equation (27) then using equation (B22) and 
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the relation, 

(1 - cos na) = 2 sin
2
na/2 

gives the following expression for the central deflection 

WI (x=O) = K 
:\ (:\+1) 

(:\ 2_1) 
+ K A 

5 
L sin2 ~a log (2 sin na/2) 

n=l 

'IT 2 1 5 
216 - IT I ('IT-na) sin na 

n=l 

The above equation may be simplified, to give 

_ _ K 1 (:\_1)2 (3 
wI (x-O) -. 'f (:\+1) - 3 4" log 3 + log ) 

2 112 
2 + (A -1) 216 

EX~WLE 3. A circular plate of radius c is supported at N equally 

spaced points on a concentric circle of radius b and it is subjected 

to a total load W, which is uniformly distributed along a concentric 

circle of radius d, such that b >- do. (Figure 4) 

(28) 

The deflections w
2 

for this example consists of two parts; these 

are given by (Reference C~, page 64) for the inner portion of the plate 

(i. e., 0 2. r 2. d) 

(29) 

and for the outer portion of the plate (i.e., d < r ~ c) 

log x (30) 

in which, 

t = dIe; x = rIc 

With reference to equation (19), the quantity Iw2]x=s' must be such 
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such that, the deflections wI vanish at the support points. Since the 

support circle is larger than the loading circle, it follows that the 

support points are at the outer portion .of the plate, and therefore, for 

wI to,be zero at the support points [w
2

]x=s has to be found from equa­

tion (30). Thus, 

== K 
2 

(l-s ) 
2 { 3+v _(~) t 2} + (t2 

l+v l+v 
2 + s ) log s (31) 

The deflections wI for the plate, shown in Figure 4, consist of 

two parts: One of which is for the outer portion of the plate, and the 

other for the inner portion of the plate. 

The deflections for the outer part (d ~r ~ c) are obtained by sub­

stituting equations (30) and (31) in equation (19). If the deflections 

are required for the inner portion (0 ~ r ~ d) then equation (29) must 

be used instead of equation (30). 

EXAMPLE 4. A circular plate of radius c is subjected to a uniform load 

and supported on a concentric circle of radius b by point forces. 

(Figure 5). 

With reference to equation (19), the deflections w
2 

for this ex­

ample corresponds to a simply supported circular plate of radius c sub-

jected to a uniformly distributed load. In this case the deflections 

w
2 

are given by (page 57 J Reference 14). 

2 (5+v) 2 w
2 == K(l-x ) x 

8 1.1+\)) 
(32) 

therefore, 

2 (5+v) 2 
[w2] x==s == K(l-s 1 s 

8 _(1+\)) (33) 



17 

substituting equations (32) and (33) in equation (19), and using equa-

tion (20) yields, 

K N 
wI = 2NA I 

2 2 2 2 l+x 5 -2xs cos (e-na) (x + 5 - 2xs cos C8-na))10g 
n=l 

2 2 A _[x +5 -2xs cos (e-na)] _ 

2Ks2 N-l 2 
+ -m I (sin na/2) log 

[25 sin na/2]2A 

n=l 4 2 (1+5 - 25 cos na) 

+ 2 x 5 cos me K(A
2
-l) (00 m m 

A m=N,2N, ... _ m2 Cm-l) _ 

4 4 K(x -5 ) 
+ 8 

where, 

2 4 
K = Wc = qc 

81fD 8D 

2 2 
(x -5 ) 

in which q is the uniform load intensity. 

00 

L 
m=N ,2N" ... 

- -] 2m 

!!!.2~m-ll 

(34) 
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1.2 COMPARISON WITH EXPERIMENTAL RESULTS 

In his article, "Determination of Planeness and Bending of Optical 

Flats," Emerson (25) has given some valuable information regarding the 

determination of bending deflections from experiments. His experimental 

self weight deflection curves are compared herein with the theoretical 

deflection curves which are ohtained using equation (34). 

The experimental specimen used by Emerson was an optical flat of 

fused quartz: Relevant dimensions and physical properties of the test 

specimen are given in Figure 6. The theoretical self weight deflection 

curves shown in Figures 7, 8 and 9, were obtained by substituting the 

constants provided by Emerson in equation (34). The total distributed 

loading on the plate is assumed equal to the weight of the plate. 

The deflection surfaces shown in Figures 7, 8 and 9, are given 

relative to the points P and PI of Figure 6 instead of the more usual 

practice of giving deflections relative to plane of supports. This 

permits direct comparison between the accuracy of the theoretical re­

sults and the experimental results obtained and presented in this form 

by Emerson.' 

It was found by Emerson that, if the circular flats were supported 

at 0.7 of the radius of the plate, then the bending deflections would 

be quite small. Considering that he measures the deflections only along 

a single line (i.e., the line joining the points P and PI of Figure 6), 

one could debate on the suggested support position for the overall 

least sag. In examining Emerson's results, Dew (26) remarks that 

the overall least sag for the three point support of optical flats 
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can be achieved by supporting them at 0.6 of the radius of the flat, 

rather than 0.7 as suggested by Emerson. 

As there is no definite answer as regards the suitable position 

for supports by experimental means, it was decided to utilize equation 

(34) to conclude upon a support circle radius which yields least over­

all sag. 

Figure 10 shows the theoretical deflections at the points QI' Q2 

and the center of the flat (shown in Figure 6) when it is supported at 

different distances from the center of the flat. The deflections shown 

in this figure are relative to the plane of the supports. The reason for 

considering the deflections at these three positions is that the de­

flections at any location of the flat would be bounded by the deflections 

occuring at any two points of the above mentioned three locations. 

The maximum deviation in deflections, i.e., the maximum peak-to-peak 

deflections, are calculated from the numerical data of Figure 10. These 

deviations in deflections are shown with respect to various support 

positions in Figure 11. 

It can be seen from this latter figure, that the least overall 

sag for a circular plate with three equally spaced point supports occurs 

when the support circle radius is 0.66 of the radius of the plate. 
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1.3 TABLES OF DEFLECTION COEFFICIENTS 

The deflection surface wI corresponding to a circular plate of con­

stant thickness, subjected to uniform pressure over the entire plate and 

having N symmetrical point supports is defined by equation (34). How-

ever, manipulation of this equation to select the optimum number and 

position of supports would constitute a lengthy process. For this 

reason, numerical deflection coefficients are provided here, which can 

be conveniently utilized to obtain the maximum and minimum bending 

deflections. 

The deflections wI' given by equation (34) may be written as, 

(35) 

in which, a is the dimensionless deflection coefficient. 

a = a (x, s, e, N, v) 

The numerical value of a provided here are for Poisson's ratio 

v = 0.17 (Fused Silica) and, 

N = (3, 6, 9, 15) 

s = blc = jllO 

x = ric = illO 

e = 0, 0./4, 0./2 

(j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 

(i = 1, 2, 3, 4, 5" 6" 7" 8, 9, 10) 

where a = 2 IN 

Since the plate is uniformly loaded and the supports are arranged 

in a symmetrical manner, the form of the entire deflected plate can be 

obtained by knowing the deflections in the shaded portion of Figure 

l2(a). By specifying the values of Nand s, which are within the above 

range, the numerical values of a can be found from the tables for the 
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points marked with a dot C·) in Figure 12Cb) , corresponding to the 

shaded portion of Figure 12(a). 

The deflection coefficient S provided here are relative to the 

plane of the supports. Relative to the support plane, downward deflec­

tions are positive and upward deflections are negative. 
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1.4 CIRCULAR PLATE ON MULTIPOINT SUPPORTS: 

SUPPORTS ARE ON TWO CONCENTRIC CIRCLE 

In Section l.i, the deflection surface of a circular plate sub­

jected to a uniform load was derived for the case when the supports 

of the plate were an equal distance apart from one another and on a 

single concentric circle. Be·cause of the symmetrical arrangement of 

supports, the equations of static equilibrium are automatically 

satisfied, that is 

1. Net force on the plate is zero. 

2. Net moment of forces about the center of the plate is zero. 

This section considers the case when there is more than one 

support circle, such that the support circles are concentric with 

respect to the plates and where the supports are all on the same 

level. 

NUMERICAL METHOD 

The results derived in the previous section can be utilized for 

some special arrangements of supports. Consider the case when a 

circular plate is subjected to a uniform load, and is supported as 

shown on Figure 13. 

Since the supports on each support circle are an equal distance 

apart, the reactions at any point on the outer circle would be the same. 

Let the reaction at any support point on the outer circle be R2. 

Let the reaction at any support point on the inner circle be R
l

. 
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For equilibrium of forces 

NRl + TR2 
2 = 1TqC (36) 

For equilibrium of moments 

N T 
b1Rl I cos a + b2R2 L cos a = 0 

n=l n t=l t 

N T (37) 

bl Rl L sin e + b2R2 L sin e = 0 
n=l n t=l t 

where, 

a = 21Tn/N and n 

at = <5 + t 21T/T 

Equation (1) can be satisfied by choosing y such that, O<y~l, and 

where, 

2 2 
NRI = y1TqC and TR2 = (l-y)1Tqc 

Equations (2) are satisfied from the relations 

M 
L sin(x+my) = sin(x + M+l y) sin ~ cosec f 

m=l 2 

M 
L cos(x+my) = cos(x + M;l y) sin ~ cosec ~ 

m=l 

When M;l and y = 21T/M, the above equations vanish. 

The equation governing the deflection surface w for the system 

shown in Figure 13 is 

where, 

q is the load intensity, and 

(38) 

(39) 
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D is the flexural rigidity. 

A suitable solution to (39) that would satisfy equation (36) 

would be to take the solution to (39) as a sum 

w = w + w* + A (40) 

and such that with the assumption of (38), 

4- = 1.9. 
'V w D 

(41) 

(42) 

Where A is a constant, which is introduced so that the deflection w 

can be given with reference to some datum plane. 

The equations (41) and (42) can be solved in exactly the same 

manner as in the previous section with the boundary conditions of a 

free edge, so the combined system shown in Figure 13 will have the 

required boundary conditions of a free edge. As the method of solution 

of equations (41) and (42) has already been given, the deflection wand 

w* can be obtained by making the following changes in the notation of 

equation (34) of the previous section. 

For W 

For w* 

s ~ s = b Ic and q ~ yq 
1 1 

s ~ s2 = b2/c; q ~ (l-y)q; N ~ T; a ~ (a-o) 

After making the above changes, the deflection w of equation (40) 

is completely defined except for the constant A. The deflection at any 

point on the plate can now be given with reference to the datum plane 

as 
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4 
t3

l 
+ el-y) .9.L.£... t3 + A 

Eh3 2 

S2 = sex ,s=s2,N=T,Ce- o),V) 

(43) 

The deflection coefficients Sl and S2 can therefore be determined from 

the previous section, where their numerical values are provided for 

Poisson's ratio v = 0.17 and for various values of N and S. The fol-

lowing numerical example will illustrate the method of using the tables 

of the previous section in determining the constant y. 

EXAMPLE: To determine the deflection surface of a circular plate of 

radius "c", sub jected to a uniform load "q" over the entire plate. 

The plate is supported on three points, equal distance apart on a 

concentric circle of radius blC=0.5c), and also supported on six points, 

equal distance apart on a concentric circle of radius b2C=0.8c). The 

offset angle 0 for this problem is n/6 = 30°. Assume the Poisson's ratio 

of the plate material to be 0.17. 

By equation (43), the deflection at any point of the p~ate for this 

example, 

4 
w(x,e,O.5,O.8,3,6,0.17) = yq~ Sl(x,6,N=3,S=0.5,V=O.17) 

Eh 
4 

+ (l-y) ::3 2(x,6-o,N=6,S=O.8,V=O.17) + A 

Consider the Deflection at One of the Support Points on the Inner 

Support Circle. 

(44) 
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At this point x = rIc = 0.5, and since there is a support at 8 = 0, 

we may consider the support at ex = 0.5, 8 = 0). 

From the tables 

61(x=0.5, 8=0, S=0.5, N=3,v=0.17) = 0 

62 (x=0.5, 8-0=-0=-30°, S=0.8, N=6,v=0.17) = 0.137683 

Note: 

i.e., 62(8 0) in an even function. 

Substituting the above values of 61 and 62 in equation (44) I 

the deflection at anyone of the support points on the inner support 

circle, with reference to the datum plane is, 

4 
[wlSUPPORT = (l-y) ;:3 0.137683 + A 

consider the Deflection at One of the Support Points on the Outer 

Support Circle. 

At this point x = rIc = 0.8, and since there is a support at 

8 = 0 = 30°, we may consider the support at ex = 0.8, 8-0 = 0). 

From the tables 

a1(x=0.8, 8=30°, S=0.5, N=3, v=0.17) = 0.226135 

62 (x=O.8, 8-0=0, S=0.8, N=6, v=0.17) = 0 

(45) 

Substituting the above values of 61 and 62 in equation (44), the 

deflection at anyone of the support points on the outer support circle 

with reference to the datum plane is 
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c4 
[w]SUPPORT = ~ 0.226135 + A 

Eh 
(46) 

Since all supports are in the same level, the deflection at the 

support points must be the same with reference to any datum plane. 

Hence, 

Equation (45) = Equation (46) 

i.e: 

0.137683(1-y) = 0.226l35y 

therefore, 

y = 0.378439 

Hence, by equation (3) 

2 2 Rl = 0.126l46uqc , R2 = 0.103593uqc 

Substituting the above value of y in equation (45) or (46) gives 

the deflection at the support points with reference to the datum plane. 

4 
[w]SUPPORT = 0.085578 qC 3 + A 

Eh 

By taking A = -0.085578 qc4/ Eh3, (i.e: Taking the datum plane 

as the plane of supports), the deflection at any point of the plate 

can be given with reference to the support points. Substituting the 

above values of y and A in equation (44), the deflection, W, at any 

point of the plate relative to the support plane is, 

where, 

4 qc w = ---3 (0.37843961 + 0.62156162 - 0.085578) 
Eh 

(47) 
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al = alex, 8=0.5, 6, N=3, v=0.17) 

a2 = B2(x, 8=0.8, (6-30°), N=6, v=0~17) 

The example chosen is such that it is necessary to do the 

deflection analysis only for the shaded portion of the plate, shown 

in Figure 13; the deflection at any other point can be determined 

from the symmetry of the problem. With equation (47) and the numeri-

cal value provided for a's in the previous section, the deflection, w, 

can be calculated. One form of graphical representation of the de-

flection surface, w, with respect to the radius r,(=xc) of the plate 

is shown in Figure 14. From Figure 14, the contour map of the 

deflected plate can be obtained. To obtain the absolute value of 

the deflections, the coefficients of Figure 15 have to be multiplied 

4 3 by the factor (c q/Eh ), where q, the load intensity on the plate, c, 

the radius of the plate, E, modulus of elasticity and h, the thickness 

of the plate. 
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2. ANNULAR PLATE ON MULTIPOINT SUPPORTS 

STATEMENT OF PROBLEM 

The problem to be investigated consists of determining the de-

flection surface of a constant thickness annular plate of outer radius, 

c, and inner radius, a, subjected to the following three conditions: 

1. The total load, W, is uniformly distributed with respect to the 

center of the plate. 

2. The plate is supported by N(N~2) concentrated forces, each of 

magnitude (WIN), and located equal distances apart on a single 

concentric circle of radius b. 

3. The plate has the boundary conditions of a free edge at both 

the inner and outer edges. 

The annular plate with the above specified conditions, illustrated 

in Figure 16, will be referred to as System 1. The loading and sup-

port conditions on the plate of System 1 are such that the equilibrium 

of forces and moments are satisfied. 

METHOD AND SOLUTION 

The solution to the above problem will now be found on the 

basis of classical small-deflection theory. According to this theory, 

the transverse deflections, wI' of System 1 are characterized by 

v4w = ~ (48) I D 

where D is the flexural rigidity and q is the uniform load intensity 

which is related to the total load, W, by 
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2 2 W = qTf(c -a ) 

In view of the conditions on System 1, it will be assumed 

that the deflections are of the form 

(49) 

(50) 

such that, w2 ' w3 and w4 correspond respectively to the following 

three systems. The boundary~ loading and the support conditions of 

these three systems are illustrated in relation to System 1 in 

Figure 17. 

System 2. This system is a uniformly loaded annular plate of outer 

radius c and inner radius a. At the outer periphery the plate has 

the simply supported edge conditio~ and at the inner periphery the 

plate has the free edge condition. The deflection, w
2

' associated 

with System 2 can be obtained by the method suggested in Chapter 3 

of Reference (14). Thus, 

- {(1_X2) 
w2 = K 8 

where, 

5+\> 
l+\> 

x = 

K= 

r a 
- p = -c c 

4 3+\> ~ and A = 'V-I 8D 

(51) 

(52) 

The bending moment, Mr2 , and Kirchhoff's shear, V2, associated 

with deflection, w2' can be found from the following expressions. 



- 2 
1 av w2 

V2 = -D cax-

where, 

Thus, 

+ (I-v) 
3 

c x 
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(V ) - 0 2 r=a -

System 3. The effects of concentrated supports on the plate of 

(53) 

(54) 

(55) 

System 1 are accounted for by defining System 3 as a clamped circular 

plate of radius c, subjected to a loading condition which is identical 

to the support condition of System 1. The expression for the de-

flection, w3, can be obtained from the work of Michell (4). In 

Appendix A, the method of adapting the Michell's solution to circular 

plate on multipoint support is given when the total load on circular 

2 plate of System 1 is W = qnc. In the case when the plate of System 1 

is an annular plate with outer radius c and inner radius a, and it 

is subjected to uniform load intensity, q, throughou~ the total load 

is qn(c2_a2). Thus, System 3 deflection associated with an annular 

plate can be readily obtained by replacing W by qn(c2_a2) in equation 

(A6). 
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where, 
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N 2 2 I [x +s -2xs cos (S-nu)] log 
n=l 

x = rIc , 5 = b/c , P = alc 

4 - qc u = 21T/N , and K = -
8D 

- 2 2 -
l+x 5 -2xs coseS-nu)I 

2 2 x +s -2xs cos (S-nul 

The expression for the outer edge radial bending moment, (Mr3)r=c' 

(56) 

and the outer edge reaction (V
3
)r=c' associated with an annular plate, 

can be obtained by replacing W by q1T(C2 _a2)' in equations (A7) and 

(A8). That is, 

2 -
2 (I-v) a w3 = -D vV w + --

3 c 2 ax2 x=l 

2 2 = qc (l-p ) r 2(1-5
2

)2 

n=l[l+s -2s cos (S-nu)] 4N 

~ 
N 00 -

1 + ~ I I sm cos mCS-nu) I . 
- n=l m=2 -

- 2 
= 1 av w3 + (I-v) a2 11 aW31 

-0 C ax 3 axas x ~I 
c x - - x=1 

r (1_52)3 

n=1 [1+s2_2s cos Cs-nu)]2 

(57) 
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2 N 
(1-S

222 gc(l-p ) I + 4N 2 n=l [1+5 -2s cos (S-na) ] 

2 N 00 

gc(l-p ) 1 I 1: [2 
2 m m(S-na) = 1 + + m(l-s )] 5 COS 2 N n=l m=2 

The deflection, w3, given above will now be expanded as a 

trigonometric series for the 'region r < b, (i.e., x < 5). From 

equation CBS) of Appendix B, 

N 
I (xs cos (S-nn)) log [1 + x2s2 - 2xs cos (a-na)] 

n=l 

N 00 

I I 
n=l m=2 

1 22 __ +xs mm 
m-l m+l x 5 , cos m(S-na) 

Therefore, from the above equation, also using equation (B1) 

N 
\' [x2 2 2 ()] [1 2 2 2 (a)] £ + s - xs cos a-nn log + x s - xs cos -nn 

n=l 

00 

= 2Nx2s
2 

- 2N I 
m=N,2N ... 

+ 2N I 
m=N, 2N ..• 

(58) 

(59) 

By using the expansion formulae provided by Symonds (21), page A185, 

equation (6a), it can be shown for x < s, 

N 
1: '[x2 + s2 - 2xs cos (S-nn)] log [x2 + 52 - 2xs cos (a-na)] 

n=l 

2N(x2 2 2 
= + s ) log s + 2Nx 

00 2 (ff cos me 2s2N I 1 (xIs) + 
m(m-l) m(m+l) m=N ,2N ... 

(60) 
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By using equations (59) and (60), equation (56) can be written as 

Ws = K(1_p2) {- (1-S2~(1+x2l _ (x2 + 52) log s 

00 

~ (x2 2) xmsm l.. + s -- cos me + 
m m=N,2N .•. 

1 x2s2 m m 
m-1 + m+1 x s cos me L 

m=N,2N ... 

2 
- s L 

m=N,2N ... 

1 
mem-I) 

2 
(xis) 
m(m+1) (~r cos me} (61) 

Equation (61) is the expression for the deflection, w3, for the region 

r < b (i.e.: x < s); from this expression, the bending moment, (Mr3)r=a 

and reaction (V3)r=a' where a < b, can be found. Thus, 

where, 

Y1m = 

- 2 { __ KD(~;P) (l+v) (1_s2+2 log s) 

- (I-v) I . lIm cos me} 
m=N, 2N .•. 

1

- - (m-2) 
-s m ( 1) m+~1 m-2 + ms - m- s p 

+ (m-A.-1) 
m+2 s-m 

s + -
m 

m (m+l)s m 
m p 

and 

where, 

00 

I Y2m cos me 
m=N,2N ..• 

(62a) 

(62b) 

(63a) 
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+ (I-v) _m2(1_s2) sm m+2 -(m-2) - ms + ms m-3 p (63b) 

The deflection surface, w4 ' corresponding to System 4 will now 

be found on the reasoning that the System 1 has the boundary conditions 

of a free edge at r = a and r = c. By Krichhoff's theory of plates, 

the boundary conditions of a free edge for the plate of System 1 are 

characterized by 

where, 

- 2 
1 _av_w_l + (I-v) 

VI = -D c ax c3x 

and 

Substituting equation (50) in equation (64) gives 

-(M) = (M) + (M ) r4 r=c r2 r=c r3 r=c 

and 

-(V) = (V ) + (V ) 4 r=c 2 r=c 3 r=c 

By using equations (55), (57) and (58), the above set of equations 

becomes 

(Mr4)r=c 
2DK 2 2 = - --S (l-p )(1-s ) 

c 

00 

1 + 2 I 
m=N,2N ... 

m s cos me 

(64) 

(65) 

(66) 

(67) 
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and 

4m 22m (V ) = - - (l-p ) t [2 + m(l-s )] s cos me 4 r=c 3 l. c m=N,2N ... 
(68) 

Substituting equation (SO) in equation (65) gives 

and (69) 

-(V) = (V ) + (V ) 4 r=a 2 r=a 3 r=a 

By using equations (55), (62) and (63) the above set of equations 

becomes 

and 

- 2 
(V ) = KD(l-p ) 

4 r=a 3 c 

00 

L YZm cos me 
m=N, 2N ..• 

(71) 

where, Ylm and Y2m are given by equations (62b) and (63b) respectively. 

The form of the boundary values for System 4, given by equations (67), 

(68), (70) and (71) suggests that deflections w4 are of the form 

2 w4 = A + A* log x + B x 
000 

00 

+ K I 
m=N, 2N ..• 

m -m m+2 -m+2 [A x + A*x + B x + B*x ] cos me m m m m 

The boundary conditions indicate 

(72) 



A* -2 [l-s 2 = Kp 
0 

2 
B =K (l-s ) 

0 (l+v) 

2 
A = 4(1-p) m 
m mA(l-v) s 
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+ ,(A+l) log s] 

2 2 
- 12- (1-5 +2 log 2 

2 (l-s ) + ..;:..(m_-_A_-~l );"'1 
mCm-I) 

m+l 
- m-1 (m-A)~ - (m+1-A)B; 

2 

s) 

B = _ 4(1-p ) sm 
m mA(l-v) 

2-
1 s m - m+l + rnA; + (m-l)B; 

The constants A* and B* are of the form m m 

A* = (p2_1)p2mA** and B* = (p2_1)p2(m-l)B** 
m m m m 

and the quantities A** and B** are solutions of the following 
Dl m 

pairs of simultaneous equations. 

f A** + g B** = ~ mm mm m ) h A** + K B** = W mm mm m 

where, 

fm = m(m+I)[(m_A_I)p2(m+l) - (m_A)p2m + 1] 

g = (m-l) [(m+l) (m_A_I)p2m - m(m+1_A)p2(m-l) + m+A+1] 
m 

h = m(m+l) [(1_A_m)p2(m+l) + (m_A)p2m + 1] 
m 

k = em-I) [(m+l)(I_A_m)p2m + m(m+l_A)p2(m-1) + m+l-A] 
m 

~ = ~ (m-A-l) 2 
'rm m m P 

s 

2 
- 5 

(73) 

(74) 

(75) 

(76a) 

C76b) 
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+ s 

_ 1 rn-A-m) 
tPm - m m 

s -

2 m 
- s m(l-s ) 

2 p + 

2 + s 
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2 4 (1-5 ) 
(I-v) 

+ 4(m-l) (1_s2) + 
. A(l-v) 

s~1 
2 4(m-l) (l-s ) + + 

. A(l-v) 

4 
mA(l-v) 

4(m-A-l) 
mACl-v) 

4 Cm-A.-l) 
rnA (I-v) 

2 -
+ p2sm 1-_(A-l)(1-S2) + 1 + (A-I) + mCl-s2) _ 4(1-A-m) [m(l-s )+1] 1 

m mA.(l-v) _ 

Substituting equations (73), (74) and (75) in ~quation (72) and 

then using equations (Bl), (B4) and (BS) of Appendix B, yields the 

following expression for the deflection w4" 

where, 

w = A + w* 404 

w* = K {(1_S
2

) 2 4(1_p2) 
4 (I-v) x + (3+v) 

2 2 
x s 

2 1- 2 x
2 

2-1 + p ~l-S) (log x - 2) + log s ((A.+l) log x - x ~ 

(77) 

2(1_p2) 
- N(3+v) 

N 2 2 2 2 I [x +s -2xs cos C6-na)] log [l+x s -2xs cos (6-na)] 
n=l 

00 

+ (p2_1) I 
m=N, 2N ... 

A** f _ (m+l) em-A) xm + mxm+2 p2m cos me 
m m em-I) x 

+ (p2_1) I B** 1 - (m+l-A)xm + (m_l)xm+2 p2(m-l)cosme} 
m=N,2N... m x Cm- 2) _ (78) 
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By substituting equations (51), (56) and (77) in equation (50), 

the constant A can be evaluated by using the conditions that the 
o 

deflections wI are zero at the support points and that wI is periodic 

with a period of a = 2~/N; thus, 

Having now formed the expressions for the deflections w2 ' w3 

and w4 ' the deflection wI associated with System 1 can be given 

in the following form 

(79) 

Eh3 3 2 
wI ---4 = 2 (I-v) [F1(x,s,p) + F2(x,s,p,6,N) + F3(x,s,p,6,N)] (80) 

qc 

where, 

F1(x,s,p) 
( 4 4) 2 2 = x -s + p slog s 

8 
2 2 

P x log x 

2 1 x A 1 _ 52 p2(A+1) 1 ('+1) 1 + P og 5 2 +. + 2 og P + 1\ og s 

A 2 --.,..-_L 
2 (A+1) 2 

(l-p ) 

[
A+2\ 
A+1) 

222 
s +~ 

A(A+l) A 

p4 2 
~~- log P - P log s 
(1_p2) 

(81) 

N - 2 2 
t 2 2 l+x s -2xs cos (6-na) 
L (x + s - 2xs cos (6-na)) log 2 2 A 

n=l [x +s -2xs cos (6-na) ] 

+ 
2Cl-p2)S2 N~l 2 

- - L sin na/2 log 
[25 sin na/2]2A 

4 2 NA n=l (1+5 - 2s cos na) 



40 

2 2 [ ~ m m co - 2m - J 
+ 

(I-E) {A -1) . I x s cos me L m2~m-12.. (82) A 2 m=N, 2N ... _m em-I) m=N, 2n .•. 

{~ ,-2 1 (m+l) m m+2 2m 
F3 = (p -1) L A** - - (m-A)x + mx p cos me 

m=N,2N ... _m xm (m-l) 

co 

l B** 1 . m (m_l)xm+2 2 em-I) cos mS + m-2 - (m+l-A)x + p m m=N, 2N ... x 

co 

L A** 1 (m+l) m m+2 2m 
em-I) Cm-A)s + ms p m m m=N, 2N ... s 

-
lCm- 1)} 

co 

I B** 1 m (m-l) sm+2 (83) m m-2 - (m+l-A)s + 
m=N, 2N ... s 

The constants A** and B** occurring in equation (83) are governed 
m m 

by equation (76). 

Prior to studying the influence of size of hole, the magnitude 

of support circle and the number of supports on the deflection surface, 

some special limiting cases can be deduced from equation (80). 

For the case when the plate has no hole, i.e.: p + 0, the 

function F3 defined by (83) vanishes and equation (80) becomes, 

N 2 2 
1 t 2 2 1 l+x 5 -2xs cos(S-nn) 

+ 2NA L [x +s -2xs cos (S-nn) og 2 2 A 
n=l [x +s -2xs cos(S-nn)] 

2 N-l 
+ 

_2s \' 2 / L sin nn 2 log 
NA n=l 

[2s sin nn/2]2A 
4 2 11+s -25 cos nat 
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00 00 mm x s cos mO I 
m=N,2N ••• 

2 
_m em-I) 

2 
!!!. (m-lL m=N,2N ••• 

(84) 

The above equation is essentially the same as equation (34) derived 

in Section 1. 

For the case when there are large number of supports, i.e.: N + 00 

(equivalent to one continuous ring support) the function Fl remains 

the same, and the function F3 vanishes, but the function F2 takes the 

form 

For x ~ s 

lim F 
N+oo 2 

(1_p2) 2 2 2 2 2 2 = A [s ex -s )-A((X +s ) log x - 2s log s)] 

Therefore J for N + 00 and x > SJ equation (80) becomes 

(85) 

and for N + 00, and x ~ s, equation (80) takes the form 

+ p2 log x ~ + 1 _ s2 + p2 (A+l~ log P + (A+l) log s 
s 2 (l-p ) 
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2 2 p2 ( A ) 
+ (x -s ) "2 A+1] 

A+2 
2(A+1) 

s2 
+ 

(A+1) 
_p_4_ log p-10g _s } 
(1_p2) 

The deflection surface wI defined by equations (85) and (86) 

could also be derived by the method suggested in chapter 3 of 

Reference (14). 

RESULTS AND DISCUSSION 

(86) 

The expression given for deflection, wI' by equation (80) is 

rather long for numerical computation by conventional desk calculating 

machines. However, using relatively simpie computer programs, one 

could extract information of practical interests from this equation. 

The results of using such programs are illustrated in Figures 18 to 

21. In developing these figures Poisson's ratio v is taken as 0.17, 

which corresponds to fused silica. 

Figure 18 shows the relation between the nondimensional hole size 

and the optimum value for the nondimensional radius of the support 

circle for a uniformly loaded annular plate on multipoint supports. 

The optimum size for the support circle here means that the size of 

the support circle for which the peak-to-peak displacement is minimum. 

This information is of practical interest in testing of optical flats 

and in the preliminary design of mirrors for optical telescopes. In 

the case of three point supports, Emerson (25) states that the optimum 

position for the support circle is 0.7 of the radius of the plate. 

His conclusions are, however, based on measuring deflections along a 

single line for different support positions. In reviewing Emerson's 
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results and techniques, Dew (26) remarks that the overall least sag 

for three point support of optical flats can be achieved by supporting 

them at 0.6 of the flat. The present theoretical investigation, how­

ever, indicates this quantity to be 0.66. 

Pearson (27) in his papel; "Effects of the Cassegrain Hole on 

Axial Ring Supports," investigates the optimum size for the support 

circle when the support is a continuous ring. The analytical expres­

sions derived for the displacements by Pearson are the same as the 

equations (85) and (86), except that he uses the outer edge of the 

plate as a datum instead of the plane of the supports. Since the 

optimum size for the support circle depends only on the relative 

magnitudes of the peak-to-peak displacements, the choice of the 

datum plane does not effect the final results: the curve obtained 

by Pearson and the dotted curve shown in Figure 18 are the same. 

It seems from literature on optical mirror design that the 

optical engineers would prefer a fewer number of discrete point sup­

ports rather than a continuous ring support; but henceforth, there 

was no analytical expression for the displacements available for an 

annular plate on discrete point supports. In this respect, data pro­

vided by Figure 18 would be of practical value. 

It was found from the point of view of graphical representation, 

that when the number of supports is 12 or above, the optimum radius 

for the support circle is almost the same as the radius of optimum 

continuous ring support. For comparison purposes, Figure 19 is drawn 

to indicate the magnitude of peak-to-peak displacements for a given 

hole size and when the supports are at the optimum positions. Figures 



44 

20 and 21 are respectively the contour maps for a uniformly loaded 

annular plate on three equally spaced point supports; in Figure 20, 

the supports are not at the positions, and Figure 21 gives the 

contour map when the supports are situated at the optimum positions. 

SUMMARY 

Based on classical linear theory of plates, the deflection of a 

symmetrically loaded circular plate supported at discrete points 

equally spaced along the circumference of a concentric circle are de­

rived. It is assumed in the formulation that the plate material is 

isotropic and the plate is of constant thickness. Explicit expres­

sions for the plate deflection are given for a number of types of 

loading. A procedure is also outlined for obtaining contour maps of 

uniformly loaded circular plates with discrete supports on two con­

centric support circles. Analytical expression for the deflection of 

a uniformly loaded annular plate supported at discrete points is also 

developed. 

The above class of problems has been investigated previously by a 

nwnber of authors, utilizing different methods. However, all of the 

available techniques have certain limitations in their applicability 

to practical problems. 

In the case of circular plates, there are a number of papers uti­

lizing the techniques of functions of a complex variable. The solutions 

available by this method, even though mathematically elegant and 

rigorous, require a considerable amount of complicated analysis before 

they can be utilized by an engineer on practical problems. Also, at 



45 

present there is no established solution for an annular plate on multi­

point supports which utilizes functions of a complex variable. Because 

of the difficulties associated with using the complex variable techniqu~ 

a number of authors have adapted Clebschts method for solving plates 

on discrete supports. 

Clebsch's method has merit over the complex variable method only in 

the sense that the analysis is conducted and the final results are ob­

tained in terms of real variables. The notable difficulty with this 

method is that the analysis can be tedious and the final results often 

tend to be in a cumbersome form. The main reason for the latter is 

that his method gives the singular terms associated with the problems 

in terms of an infinite series, which makes the manipulation difficult 

if not impossible. Further, in the neighborhood of the concentrated 

supports, convergence of the series is rather slow. 

Another well-known approach to plates on multipoint supports is due 

to Nadai (13). This method utilizes real analysis, but its applications 

are limited to the case when supports are at the periphery. 

In this dissertation, a single procedure is adapted to investigate 

both the circular and annular plates on multipoint supports. By the 

selected procedure, all the analysis and the derived expressions for the 

deflections are in terms of real variables. Therefore, the results 

would be more meaningful to a broad spectrum of engineers. With the 

present method, the radius of the support circle can be as large as the 

size of the plate itself or as small as the size of the hole of the 

annular plate. Therefore, the derived solution contained herein for an 

annular plate on multipoint supports is the first of its kind. 
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The procedure adapted herein yields a much more compact and 

appealing solution to the present class of problems than the same 

problems approached by means of Clebsch's method. The relative compact­

ness of the derived results enables one to consider a large class of 

surface loadings. Furthermore, the infinite series terms that occur in 

the problems considered herein are due to boundary conditions and not 

due to singularities associated with the problem, and therefore, the 

rate of convergence is better. The simplicity of the procedure adapted 

may find use for the investigations of various related problems that 

have not been considered here but could occur in practice. 

In essence, the procedure adapted herein for handling plates on 

discrete supports utilizes only the superposition principle. Prior to 

using this principle, however, it was noted from the investigations of 

other authors that the difficulty associated with the present class of 

problems is due mainly to handling the singular terms arising in the 

problems. By realizing this fact, the singular terms are kept in the 

present analysis in a compact form so that numerical manipulation may 

be performed with ease. The singular terms associated with the prob­

lems considered here are constructed by extending Michell's 'inversion 

procedure (4). 

The results are verified by comparing published experimental re­

sults of others for the case of a uniformly loaded plate with three 

discrete supports. A design chart is also drawn. This chart gives the 

theoretical optimum size of the support circle that would produce least 

peak-to-peak displacements for any given size of hole and a specified 

number of supports. To show the influence of the size of the support 
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circle, contour maps of deflections are drawn for a uniformly loaded 

annular plate on three discrete supports. 

This dissertation provides a simplified approach to the solution 

of circular and annular plates on discrete supports. This approach 

leads to a solution which is compact and appealing for use by practicing 

engineers. 
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FIGURE 5. Uniformly loaded circular plate with multipoint supports 
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FIGURE 6. Details of the experiment.al specimen (from Reference 25) 
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Flr,URE 12a. Uniformly Loaded 
circular Plate on Multipoint supports . 

UNIFORM LOAD INTENSITY q 
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0 

FIGURE 12b. Shaded Portion of Fiqure l2a. 
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are situated in two support circles. 
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FII1URE 15. Contour map of p'late shown in Fioure 13. 
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N EQUALLY SPACED SUPPORTS 

FIG. 16. UNIFORMLY LOADED ANNULAR PLATE 
ON MULTIPOINT SUPPORTS. 
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FIG. 17. SCHEMATIC SHOWING SYSTEM I IN RELATION TO SYSTEM 2,3. AND 4. 
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FIG. 18 OPTIMUM POSITION FOR LEAST PEAK -TO- PEAK 
DEFLECTION FOR A UNIFORMLY LOADED ANNULAR 
PLATE ON MULTI POINT SUPPORTS. 
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NUMBER OF SUPPORTS, N = 3 

POISSON'S RATIO, V= 0.17 

DEFLECTION COEFFICIENT $ 

K 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.1 -0.027370 0 0.080201 0.188926 0.312506 0.443259 0.576281 

0.2 -0.068665 -0.051202 0 0.090264 0.200'871 0.320916 0.444466 

0,3 -0.099569 -0.087961 ·0.055220 0 0.086705 0.188513 0.296118 

0.4 -0.105003 -0.097783 -0.078015 -0.046696 0 0.072958 0.157217 

0.5 -0.071502 -0.067911 -0.058851 -J.045769 -0.027923 0 0.050115 

0.6 0.015179 0.015586 0.015173 0.012309 0.006810 0.000589 0 

0.7 0.171589 0.169086 0.159929 0.14230~ 0.115524 0.080304 0.0394U 

0.8 0.418307 0.413065 0.395597 0.363859 0.316720 0.254168 0.177576 

0.9 0.783557 0.775683 0.750157 0.704626 0.637522 0.548187 0.437000 

1.0 1.317198 1.306757 1.273313 1.214138 1.127183 1.011126 0.865392 

ANGLE 8 = 0 

0.7 0.8 

0.708462 0.838033 

0.567903 0.689163 

0.404799 0.511940 

0.244612 0.331400 

0.108511 0.167967 

0.018095 0.041849 

0 -0.024117 

0.090291 0 

0.305602 0.157423 

0.690155 0.486295 

0.9 

0.964304 

0.807376 

0.616360 

0.415854 

0.225638 

0.064926 

-0.045154 

-0.078925 

0 

0.255331 

1.0 

1.087507 

0.922659 

0.718001 

0.497664 

0.280705 

0.085446 

-0.068472 

-0.157924 

-0.152540 

0 

-...J 
~ 



--

NUMBER OF SUPPORTS, N = 3 

POISSON'S RATIO, .J)= 0.17 

DEFLECTION COEFFICIENT fl 

~' 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.1 -0.027370 0.001562 0.081318 0.189714 0.313127 0.443792 0.576774 

0.2 -0.068665 -0.050085 0.006277 0.095955 0.205'557 0.325022 0.448309 

0.3 -0.099569 -0.087173 -0.049529 0.014389 0.101059 0.201620 0.308618 

0.4 -0.105003 ·0.097162 -0.073329 -0.032342 0.026795 0.101377 0.185387 

0.5 .. 0.071502 -0.067378 ·0.054746 ·0.032667 0.000496 0.045659. 0.100949 

0.6 0.015179 0.016079 0.019017 0.024809 0.034980 0.051424 0.075151 

0.7 0.171589 0.169572 0.163749 0.154874 0.144337 0.134144 0.126425 

0.8 0.418307 0.413569 0.399582 0.377066 0.347331 0.312336 0.274541 

0.9 0.783557 0.776225 0.754454 0.718949 0.670984 0.612481 0.S,!6012 

1.0 1.317198 1.307350 1.278029 1.229936 1.1::'4334 1.083146 0.989037 

ANGLE 9 = 30· 

0.7 0.8 

0.708949 0.838538 

0.571724 0.693148 

0.417364 0.525148 

0.273425 0.362011 

0.162350 0.226135 

0.105106 0.138814 

0.122452 0.121995 

0.236403 0.199634 

0.474585 0.401165 

0.885372 0.775973 

0.9 

0.964846 

0.811672 

0.630684 

0.449317 

0.289933 

0.173937 

0.123829 

0.164818 

0.328082 

0.664646 

1.0 

1.088100 

0.927376 1 

0.733799 

0.534795 

0.352725 

0.209091 

0.126745 

0.131754 

0.256775 

0.554748 

.....: 
c.,..3 



NUMBER OF SUPPORTS, N: 3 

POISSON'S RATIO, II: 0.17 

DEFLECTION COEFFICIENT f3 

~ 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.1 -0.027370 0.002542 0.082335 0.19048C 0.313740 0.444322 0.57726 

0.2 -0.068665 -0.049067 0.010223 0.100598 0.20g843 0.328951 0.452064 

0.3 -0.099569 -0.086407 -0.044887 0.023531 0.112095 0.213040 0.320210 

0.4 -0.105003 -0.096548 -0.069043 .. 0.021307 0.044257 0.122829 0.209307 

0.5 ~G.071502 -0.066848 -0.050816 -0.021243 0.021947 0.076672 0.1396"~ 

0.6 0.015179 0.016570 0.022771 0.036402 0.058900 0.090149 0.12873S 

0.7 0.171589 0.170058 0.167519 0.166902 0.170478 0.179462 0.1939513 

0.8 0.418307 0.414\173 0.403533 0.389915 0.376090 0.364223 0.355593 

0.9 0.783557 0.776766 0.758725 0.732994 0.702966 0.671552 0.64096Cl 

1.0 1.317198 1.307943 1.282722 1.245483 1.200123 1.150221 1.098812 

ANGLE 9 = 60-

0.7 0.8 

0.70943li 0.839042 

0.575493 0.697099 

0.429392 0.537997 

0.299566 0.390770 

0.207669 0.278022 

0.172639 0.219866 

0.213248 0.236248 

0.350656 0.349306 

0.612691 0.587554 

1.048273 1.000331 

0.9 

0.965387 

0.815943 

0.644728 

0.481299 

0.349003 

0.268895 

0.261935 

0.351206 

0.565996 

0.956198 

1.0 

1.088692 

0.932069 

0.749346 

0.570584 

0.419801 

0.318866 

0.289646 

0.356112 

0.548326 

0.916689 

-....J .::a. 



NUMBER OF SUPPORTS, N = 6 

POISSON'S RATIO, V= 0.17 

DEFLECTION COEFFICIENT ~ 

~ 0 0.1 0.2 0.3 0.4 0.5 0.6 

~ 

0.1 -0.028641 0 0.079997 0.188432 0.311852 0.442520 0.575502 

0.2 ... 0.073776 -0.055246 0 0.090319 0.200246 0.319822 0.443154 

0,3 -0.111335 -0.098949 -0.061819 0 0.087634 0.189011 0.296398 

0.4 -0.127131 ... 0.119294 -0.095658 -o.05613( 0 0.075765 0.161133 

0.5 -0.109838 -0.105715 -0.093169 -0.07184 -0.041324 0 0.056589 

0.6 .. 0.049190 -0.048291 -0.045397 -0.04001· -0.031514 -0.018995 0 

0.7 0.064966 0.062947 0.057100 0.047982 0.036377 0.023259 0.010062 

0.8 0.243654 0.238916 0.224913 0.202234 0.171752 0.134543 0.091931 

0.9 0.500561 0.493229 0.471445 0.435814 0.387248 0.326873 0.255989 

1.0 0.859348 0.849499 0.820167 0.771961 0.705803 0.622823 0.524252 

ANGLE 8 = 0 

0.7 0.8 

0.707677 0.837267 

0.566587 0.688020 

0.405329 0.513203 

0.249960 0.338956 

0.119754 0.184659 

0.030998 0.066488 

n 

0 -0.000558 

0.045821 0 

0.176150 0.089492 

0.411363 0.285462 

0.9 

0.963575 

0.806548 

0.618779 

0.426448 

0.248985 

0.102541 

0.001766 

-o.03851~ 

0 

0.147898 

1.0 

1.086829 

0.922253 

0.721908 

0.511986 

0.311917 

0.137787 

0.003963 

-0.075592 

... 0.085119 

0 

""-l 
VI 



-

NUMBER OF SUPPORTS, N = 6 

POISSON'S RATIO, 11= 0.17 

DEFLECTION COEFFICIENT 13 

~ 0 0.1 0.2 0.3 0.4 0.5 0.6 

-
0.1 -0.028641 0.000181 0.080022 0.188438 0.311854 0.442521 0.575503 

0.2 -0.073776 .. 0.055221 0.000726 0.090591 0.200346 0.319866 0.443176 

0.3 -0.111335 -0.098943 -0.061548 0.001633 0.088523 0.189441 0.296627 

0.4 -0.127131 -0.119293 -0.095557 -0.055242 0.002904 0.077680 0.162234 

0.5 -0.109838 -0.105714 -0.093125 -0.071412 -0.039408 0.004555 0.059954 

0.6 -0.049190 -0.048291 -0.045375 -0.Q39785 .... 0.030413 -0.015605 0.006676 

0.7 0.064966 0 .. 062948 0.057113 0.048116 0.037055 0.025498 0.015577 

-
0.8 0.243654 0.238916 0.224921 0 .. 20232'+ 0.172218 0.136147 0 .. 096148 

-----.-1---

0.9 0.500561 0.493229 0.471451 0.435884 0 .. 387619 0.328192 0.259599 

1.0 0.859348 0.849499 0.820173 0 .. 772023 0 .. 706144 0.624066 0.527775 
-~ 

ANGLE 8 = 150 

0.7 0.8 

0.707678 0.837267 

0.566600 0.688029 

0 .. 405464 0.513292 

0.250638 0.339422 

0.121993 0.186263 

0.036513 0.070705 

0.009669 0.008433 

0.054812 0.014863 

0.184362 0.105554 

0.419759 0.303120 

0.9 

0.963575 

0.806555 

0.618848 

0.426819 

0.250303 

0.106152 

0.009979 

·0.022451 

0.026345 

0.181686 

1.0 

1.086829 

0.922259 

0.721971 

0.512326 

0.313160 

0.141311 

0.012358 

-0.057902 

-0.051331 

0.059676 

~ 
Q'\ 



NUMBER OF SUPPORTS, N = 6 

POISSON'S RATIO. V= 0.17 

DEFLECTION COEFFICIENT f3 

~ 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.1 -0.028641 0.000291 0.080047 0.188443 0.311856 0.442522 0.575503 

0.2 -0.073776 -0.055196 0.001166 0.090844 0.200'445 0.319911 0.443198 

0,3 -0.111335 -0.098938 .. 0.061295 0.002623 0.089294 0.189855 0.296852 

0.4 -0.127131 .. 0.119291 .. 0.095458 -0.054471 0.004666 0.079249 0.163258 

0,5 -0.109838 .. 0.105713 -0.093081 -0.070998 -0.037839 0.007324 0.062614 

0.6 -0.049190 -0.048291 -0.045352 -0.039559 .. 0.029389 -0.012945 0.010782 

0.7 0.064966 0.062948 0.057125 0.048249 0.037713 0.027519 0.019801 

0.8 0.243654 0.238916 0.224929 0.202413 0.172678 0,137683 0.099888 

0.9 0.500561 0.493229 0.471458 0.43595:; 0.387988 0.329485 0.263015 

1.0 0.859348 0.849499 0.820179 0.772086 0.706483 0.625295 0.531186 

ANGLE (J = 300 

0.7 0.8 

0.707678 0.837267 

0.566612 0.688037 

0.405598 0.513382 

0.251296 0.339883 

0.124015 0.187799 

0.040737 0.074445 

0.015828 0.015371 

0.061750 0.024982 

0.191589 0.118169 

0.427522 0.318123 

0.9 

0.963575 

0.806561 

0.618918 

0.427188 

0.251597 

0.109568 

0.017206 

-0.009835 

0.045085 

0.206788 

1.0 

1.086829 

0.922265 

0.722033 

0.512666 

0.314389 

0.144722 

0.020121 

-0.042899 

-0.026229 

0.096759 

""'-l 
-..,J 



NUMBER OF SUPPORTS, N = 9 

POISSON'S RATIO# l) = 0.17 

DEFLECTION COEFFICIENT (3 

~ 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.1 ~0.028759 0 0.079903 0.188320 0.311736 0.442403 0.575385 

0.2 ~0.074246 -0.055692 0 0.090086 0.199'871 0.319395 0.442706 

0,3 -0.112393 -0.100002 -0.062641 0 0.087299 0.188342 0.295557 

0.4 -0.129014 -0.121175 -0.097445 -0.057289 0 0.075371 0.160209 

0.5 -0.112795 -0.108672 -0.096084 ... 0.074410 -0.042792 0 0.056162 

0.6 -0.053564 -0.052665 -0.049749 -0.044171 '-0.034929 -0.020813 0 

0.7 0.058467 0.056449 0.050614 0.041613 0.030503 0.018656 0.007679 

0.8 0.233231 0.228493 0.214497 0.191898 0.161772 0.125570 0.085033 

0.9 0.481698 0.474366 0.452588 0.417019 0.368744 0.309246 0.240344 

1.0 0.820155 0.810306 0.780979 0.732829 0.666942 0.584813 0.488289 
, 

ANGLE e = 0 

0.7 0.8 

0.707560 0.837149 

0.566129 0.687558 

0.404402 0.512233 

0.248703 0.337517 

0.118692 0.183152 

0.030739 0.065639 

0 -0.000273 

0.042181 0 

0.164108 0.082881 

0.379451 0.260459 

0.9 

0.963457 

0.806084 

0.617789 

0.424925 

0.247263 

0.101386 

0.002089 

-0.036683 

0 

0.133386 

1.0 

1.086711 

0.921789 

0.720912 

0.510436 

0.310144 

0.136645 

0.004746 

-0.071792 

-0.079301 

0 

~ 
ce 



NUMBER OF SUPPORTS .. N = 9 

POISSON'S RATIO .. P= 0,17 

DEFLECTION COEFFICIENT f3 

~ 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.1 .. 0.028759 0.000053 0.079905 0.188320 0.311736 0.442403 0.575385 

0.2 -0.074246 -0.055691 0.000212 0.090116 0.199'876 0.319396 0.442706 

0.3 -0.112393 -0.100002 -0.062610 0.000478 0.087438 0.188379 0.295568 

0.4 -0.129014 0.121175 -0.097440 -0.057152 0.000849 0.075721 0.160333 

0.5 -0.112795 -0.108672 -0.096083 -0.074373 -0.042442 0.001327- 0.056841 

0.6 -0.053564 -0.052665 -0.049748 -0.044159 -0.034805 -0.020134 0.001914 

0.7 0.058467 0.056449 0.050614 0.041617 0.030551 0.018948 0.008815 

0.8 0.233231 0.228493 0.214498 0.191900 0.161793 0.125707 0.085615 

0.9 0.481698 0.474366 0.452588 0.417021 0.368756 0.309323 0.240689 

1.0 0.820155 0.810306 0.780979 0.732829 0.666949 0.584869 0.488554 

ANGLE 8 = 10· 

0.7 0.8 

0.707560 0.837149 

0.566129 0.687558 

0.404406 0.512234 

0.248751 0.337538 

0.118984 0.183288 

0.031876 0.066221 

0.002639 0.001527 

0.043981 0.003707 

0.165275 0.086006 

0.380415 0.263334 

0,9 

0.963457 

0.806084 

0.617790 

0.424936 

0.247339 

0.101731 

0.003256 

-0.033559 

0.006210 

0.140801 

1.0 

1.086711 

0.921789 

0.720913 

0.510444 

0.310199 

0.136909 

0.005709 

-0.068917 

-0.071886 

0.016998 

""'J 
1'.0 



NUMBER OF SUPPORTS, N = 9 

POISSON'S RATIO, V= 0.17 

DEFLECTION COEFFICIENT 13 

~' 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.1 -0.028759 0.000085 0.079906 0.188320 0.311736 0.442403 0.575385 

0.2 -0.074246 -0.055689 0.000340 0.090147 0.199881 0.319397 0.44270E 

0,3 -0.112393 -0.100002 .. 0.062580 0.000766 0.087567 0.188415 0.295579 

0.4 -0.129014 0.121175 .. 0.097435 ·0.057022 0.001361 0.076035 o .16045~ 

0.5 -0.112795 .. 0.108672 .. 0.096082 -0.074338 -0.042129 0.002127 0.057422 

0.6 -0.053564 -0.052665 -0.049748 -0.044148 -0.034685 -0.019553 0.003069 

0.7 0.058467 0.056449 0.050614 0.041622 0.030599 0.019229 0.009752 

0.8 0.233231 0.228493 0.214498 0.191902 0.161815 0.125842 0.086163 

----- '---._--->-. 

0.9 0.481698 0.474366 0.452588 0.417022 0.368767 0.309399 0.241028 
.. _--- ---'-- '--. 

1.0 0.820155 0.810306 0.780979 0.732830 0.666958 0.584924 0.488170 

ANGLE 9 = 20· 

0.7 0.8 

0.707560 0.837149 

0.566129 0.687558 

0.404410 0.512236 

0.248798 0.337559 

0.119265 0.183423 

0.032813 0.066769 

0.004244 0.002979 

0.045434 0.006059 

0.166363 0.088553 

0.381349 0.265956 

0.9 

0.963457 

0.806084 

0.617791 

0.424947 

0.247416 

0.102070 

0.004343 

-0.031011 

0.010513 

0.146657 

1.0 

1.086711 

0.921789 

0.720913 

0.510451 

0.310255 

0.137172 

0.006644 

-0.066295 

-0.066029 

0.027428 

co 
o 



NUMBER OF SUPPORTS, N = 15 

POISSON'S RATIO, V= 0.17 

DEFLECTION COEFFICIENT f3 

~ 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.1 -0.028797 0 0.079867 0.188282 0.311698 0.442365 0.575347 

0.2 -0.074399 -0.055843 0 0.089963 0.199723 0.319244 0.442553 

0.3 -0.112736 "().100345 -0.062955 0 0.087085 0.188035 0.295225 

0.4 "().129624 -0.121785 -0.098050 -0.057771 0 0.075015 0.159119 

0.5 -0.113749 -0.109625 -0.091037 "().075328 -0.043432 0 . 0.055799 

0.6 -0.054940 "().054041 -0.051125 -0.045536 -0.036186 -0.021599 0 

0.7 0.056561 0.054543 0.048108 0.039711 0.028644 0.017027 0.006737 

0.8 0.230489 0.225751 0.211756 0.189158 0.159051 0.122962 0.082834 

0.9 0.476890 0.469558 0.447181 0.412213 0.363948 0.304514 0.235872 

1.0 0.807848 0.197999 0.168673 0.720523 0.654643 0.572562 0.476243 
--

ANGLE (J = 0 

0.7 0.8 

0.707522 0.837111 

0.565977 0.687406 

0.404063 0.511891 

0.248139 0.336928 

0.118015 0.182332 

0.030328 0.064806 

0 -0.000669 

0.040949 0 

0.160381 0.080718 

0.368069 0.250769 

0.9 

0.963419 

0.805932 

0.617447 

0.424326 

0.246385 

0.100345 

0.001263 

-0.036781 

0 

0.127218 

1.0 
: 

I 

1.086673 

0.921636 

0.120569 

0.509833 

0.309245 

0.135529 

0.003764 

-0.071917
1 

-0.077969 

0 

co 
:-0 



NUMBER OF SUPPORTS. N = 15 

POISSON'S RATIO, II: 0.17 

DEFLECTION COEFFICIENT fj 

K 0 0.1 0.2 0,3 0.4 0.5 0.6 

0.1 -0.028797 O.OOOOll 0.079867 0.188282 0.311698 0.442365 0.575347 

0.2 -0.074399 0.055843 0.00004(, 0.089964 0.1997'23 0.319244 0.442553 

0.3 -0.112736 -0.100345 -0.062954 0.000103 0.087092 0.188036 0.295225 

0.4 -0.129624 -o.U1785 -0.098050 -0.057764 0.000182 0.075102 0.159722 

0.5 -0.113749 1-0.109625 -0.097037 -0.075327 ... 0.043405 0.000285 0.055864 

0.6 -0.054940 -0.054041 -0.051125 -0.045536 ... 0.036182 -0.021533 0.000410 

0.7 0.056561 0.054543 0.0487Q8 0.039711 0.028645 0.017039 0 .. 006862 

0.8 0.230489 10.225751 0.211756 0.189158 0.159051 0.122965 0.082864 

0.9 0.476890 0.469558 0.447781 0.412213 0.363948 0.304515 0 .. 235880 

1.0 0.807848 0.797999 0.768673 0.720523 0.654643 0.572562 0.476247 

ANGLE (J = 60 

-
0.7 0.8 

0.707522 0.837111 

0.565977 0.687406 

0.404063 0.511891 

0.248140 0.336928 

0.118028 0.182334 

0.030453 0.064837 

0.000558 -0.000459 

0.041159 0.000737 

0.160448 0.081068 

0.368101 0.250965 
-

0.9 

0.963419 

0.805932 

0.617447 

0.424326 

0.246386 

0.100354 

0.001330 

-0.036431 

0.001067 

0.128144 

1.0 

1.086673 

0.921636 

0.720569 

0.509833 

0.309246 

0.135533 

0.003795 

-0.071721 

-0.077043 

0.003569 

I 

co 
t\J 



NUMBER OF SUPPORTS, N = 15 

POISSON'S RATIO, 11= 0.17 

DEFLECTION COEFFICIENT 13 

~ 0 0.1 0.2 0.3 0.4 0.5 0.6 

0.1 '-0.028797 0.000018 0.079867 0.188282 0.311698 0.442365 0.575347 

0.2 -0.074399 -0.055843 0.000073 0.089964 0.199723 0.319244 0.442553 

0.3 -0.112736 -0.100345 -0.062953 0.000164 0.087099 0.188036 0.295225 

0.4 -0.129624 -0.121785 -0.098050 -0.057756 0.000292 0.075129 0.159726 

0.5 -0.113749 -0.109625 -0.097037 -0.075327 -0.043378 0.000456 0.055926 

0.6 -0.054941 -0.054041 -o.051U5 -0.045536 -0.036179 -0.021471 0.000656 

0.7 0.056561 0.054543 0.048708 0.039711 0.028645 0.017051 0.006977 

0.8 0.230489 0.225751 0.211756 0 .. 189158 0.159052 0.122967 0 .. 082895 

--
0.9 0.476890 0.469558 0.447781 0.412213 0.363948 0.304516 0.235889 

1.0 0.807848 0.797999 0 .. 768673 0.720523 0.654643 0.572562 0.476251 

ANGLE 8 = 12· 

0.7 0.8 

0.707522 0.837111 

0.565977 0.687406 

0.404063 0.511891 

0.248141 0.336928 

0.118039 0.182337 

0.030569 0.064867 

0.000894 -0.000271 

0.041348 0.001182 

---
0.160513 0.081375 

0.368132 0.251156 

0.9 

0.963419 

0.805932 

0.617447 

0.424326 

0.246386 

0.100362 

0.001395 

-
.. 0.036123 

0.001760 

0.128950 

1.0 
I 

1.086673 

0.921636 

0.720569 

0.509833 

0.309246 

0.135536 

--
0.003827 

-0.071530i 

-0.076237 

0.005740 
-

(X) 
(.>.3 
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APPENDIX A 

SYSTEM 2. System 2 is defined to be, a simply supported circular plate 

of radius c subjected to a total load W symmetrically distributed with 

respect to the centre of the plate. If the transverse deflections of 

the plate are denoted by w2 , then the deflections are related to the 

load intensity q(r) by, 

= 1 d { r dr 
d 

r­dr l
Id 

_ r dr ( r ::z )]} = 
q(r) 
-0-

where, 0 is the flexural rigidity and q(r) related to W by (2). 

As the plate is symmetrically loaded and simply supported, it 

CAl) 

follows that, the edge radial bending moment (Mr2 )r=c and the edge reac­

tion (V2)r=c are given by the following expressions 

a2 

(Mr2 ) r=c -D 2 (I-v) w2 0 (A2) = vV w2 
+ -2-

ax2 = 
c - x=l 

'-I 2 
a2 -,!. awZ -, = 

(V 1) r=c -D 
av w2 (I-v) W = IY 

+ - 21fc X 3 axae x ae I 3c x - -_ x=l (A3) 
2 where, x and V are defined by equation (6). 

SYSTEM 3. System 3 is defined to be, a clamped circular plate of radius 

c subjected to N concentrated forces, each of magnitude (WIN), and 

situated equal distance apart on a single concentric circle of radius b. 

The deflections w3 corresponding to this system will now be obtained 

by extending the work of Michell (i). The deflection surface w corre-

sponding to a circular plate of radius c carrying one eccentric force 

(-WIN) at r=b and e=o, is given by Michell and quoted in page 293 of 

Reference (14), as 



85 

Wc2 
{2 2 2 2 -1 2 2 2 6- } ( 1) ( 1 ) (. 2 S) 1 + x 5 - XS cos (A4) W = l6TIND x - -5 + LX +5 - XS cos og 2 2 

x +5 -2xs cos6 - -

where, x is defined by (6) and s is the ratio, 

5 = b/c (AS) 

Suppose that on the circle of radius r=b there are N concentrated 

forces, each of value (-W/N) and placed at equal distances apart; then 

by aprlying the principle of superposition, the deflections w3 due 

to these forces are 

Wc2 2 2 
w3 = 16nD (x -1) (l-s ) 

1 N 2 2 
+ - L [x +s -2xs cos (S-na)] log 

N n=l 

- 2 2 l+x s -2xs cos(6-na) 
2 2 

~ + 5 -2xs cos(S-na)_ 
0\6 ) 

where, a = 2n/N 

It can be verified that w3 is a biharmonic function. The edge bending 

moment and the edge reaction for this system are respectively 

2 (I-v) 
-D vV w3 + 2 

c 

W N (1_52)2 
= 4 n N L ----:::2~-..::.-----­

n=l [1+5 - 2s coseS-nu)] 

2 2 
= W(l-s ) + W(l~s ) 

4n 2'JrN 

N co 

L L 
n=1 m=2 

m 5 cos m(e-nu) (A7) 
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2 

(V 3)r=c 
1 av w3 (I-v) a2 

= -D c ax + 3 axae 
c x 

- -I 1 aW3 
x as-- - x=1 

W N (I_S 2)3 

= 4nNc n~l [1 + s2 - 25 cos C6-na)]2 

WIN 00 2 
= - 1 + - L ~ [2 + m(l-s )] smcos mCe-net) (A8) 

2wc N n=l m=2 
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APPENDIX B 

For ct = 2n/N 

N __ { N coos me 
1: cos m(e-nct) 

n=l 

if m is a multiple of N 
} (Bl) 

if m is not a multiple of N 

From Reference (28), page 41, for p 2 
< 1 

N 2 N 00 m 
I log [1 + P -2p (e-nct) ] -2 1: I p cos mce-nct) cos = 

n=l n=l m=l m (B2) 

Since the number of supports N is greater than or equal to 2, it 

follows from equation (B1) that 

N 
I cos(e-nct) = 0 

n=l 

substituting p=xs in equation (B2) and using equation (B3) gives, 

N N 00 

I log [1+x2s2_2xs cos(e-nct)] = -2 I I 
n=l n=l m=2 

m m x s cos mce-nct.) 
m 

(B3) 

(B4) 

By means of Fourier series and use of the integrals (6) and (8) in 

page 593 of Reference (28), it can be shown that, 

2 2 N 2 2 
Nx s + L xs cos(e-nct.) log [l+x s -2xs cos(e-nct)] 

n=l 

=' -
NL ooL 1 x2s2- m m 

- + -- x s cos mce-nct.) m-1 m+1 n=l m=2 
(Bs) 

By substituting s=l in equation (B4) and (B5) it can be established 

that 
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N 
2 [1 + x2 -2x cos(6-na)] log [1 + S2 -2x cos(6-na)] -

n=I 

N 00 

= 2Nx2 + 22 2 1 
m(m-I) mCm+I) 

m 
x cos m(8-na) 

n=I m=2 

00 

= 2Nx2 + 2N t 1 
L m(m-I) 

m=N,2N, •••. 

2 
x 

m(m+I) 

substituting x=I and 8=0 in equation (B7) yields 

xm cos m8 

N 00 

2 (I-cos na) Iog~(I-cos na)] = N + 2N 1: i 
n=I m=N,2N, .•• m(m -1) 

Consider the function L(~) 

where, 

l; = xs -i( 8-na) e n 

and 

00 l'; m 
L(l; ) 1: 

n 
= 2 n m=2 m (m-I) 

Denoting the real part of L(l';n) by Re L(~), 

00 mm 
R L(l;) = L x s cos m(8-na) 

e n mF2 m2 Cm-I) 

- 00 

= R 1: 
e m=2 

where J 

00 ~ m 

= 1: -2 
m=2 m 

and 

(B6) 

(B7) 

(B8) 

(B9) 

(BID) 
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00 mm 
= 2 x; cos mC 6-na) 

m=2 m 
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00 1; m- 1 00 1; m 
\_n __ \ n 
L = L - = - log (1-1; ) 

m=2 m-1 m=l m n 

it follows that the equation (B10) can be written as 

00 mm 
L x2 s cos m(6-na) = Re [(1-~) log (l-l;n) + ~] - Re r2(1;n) 

m=2 m (m-1) 

Summing both, sides of the above equation from n=l to n=N yields, 

N 00 

I I 
n=l m=2 

(B12) 

(B13) 

(B14) 

In the particular case when x=s and 6=0, equation (B14) reduces to 

N 00 2m 
2 I _s_ 

n=l m=2 m2(m-1) 
= cos rona = R 

1 2-~~ 2 -~a 
L (l-s e J log (l-s e ) 

n=l 

N 00 2m 
- I I T cos mna 

n=l m=2 m 

Using equation (B1), the above equation can be written as, 

00 2m 1 N 2 4 2 -
N2 s = 2 L (l-s cos no.) log (l+s -2s cos nn) 

m=N,2N, ••• m2{m-1) n=l 

N-1 00 2Nm 
- 2 52 ~(s) sin no. - ~ I ~ 

n=l n=l m 

where , 

':/!(s) = tan -1 ( s2 sin no. 1 
1 - s2 cos na.) 

substituting s=l in equation (B16) gives, 

(B1S) 

(B16) 

(B17) 
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L 
m=N ,2N, ... 

1 
2 m (m-l) 

1 N-l 
= 2N L (1- cos nex)log[2(1- cos na)] 

n=1 

00 1 N-l 
- N L '¥(1) 

n=1 
sin nex - ~ I 

N m=1 

1 
2" 

since, 

(1 - cos nex) = 2 sin2 nex/2 ' 

and from equation (BI7) 

'¥(1) = tan-1 ( sin nex )= 
1 - cos net 

-1 tan (cot net/2) 

= ('IT-nex) /2 

and from Reference (29), page 67, 

L 
m=l 

1 
2 
m 

= 
2 'IT 

6 

therefore using equations 

00 

L 1 
2 = 

m=N ,2N, ••. m (m-I) 

-

(BI9) , 

N-l 2 L N n=1 

1 N-l 
L 2N n=1 

(B20) and (B21) 

sin 2 nex log (2 2 

('IT-net) sin na 

m 

equation 

sin na/2) 

2 'IT -
6N2 

(BI8) 

(BI8) 

(B19) 

(B20) 

(B21) 

becomes, 

(B22) 
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ABSTRACT 

Analytical expressions for the deflection surface of symmetrically 

loaded circular and annular plates resting on discrete point supports 

are derived. The formulation of the problem is based on classical 

small deflection plate theory. It is also assumed, in the formulation, 

that the supports are situated equal distances apart on a single con­

centric circle. There is no restriction placed on the number of sup­

ports or on the size of the support circle which could be as large as 

the plate itself or as small as the size of the hole of the annular 

plate. 

The singularity effects associated with the concentrated supports 

on the plate problems considered here are accounted for in the solu­

tion, by drawing an analogy from the Michell's solution to a clamped 

circular plate subjected to an eccentric point load. This procedure 

yields solutions in much more suitable form for practical numerical 

problems than other known methods. 

In the case of circular plates on multipoint supports, explicit 

solutions are given to a number of loading conditions. Solutions to a 

uniformly loaded circular plate on multipoint supports are compared 

with the published experimental results; the conclusions are favorable. 

From the numerical data obtained for a uniformly loaded circular plate 

on multipoint supports, a procedure is outlined for obtaining contour 

maps of deformed uniformly loaded plates with discrete supports on 

two support circles. 

Solutions to annular plates on multipoint supports are derived for 



the first time. By utilizing this result, design charts are drawn to 

indicate the optimum size of the support circle, which would produce 

least peak-to-peak displacements for any given size of hole, and a 

specified number of supports. Contour maps associated with annular 

plates on three point supports are also drawn to illustrate the in­

fluence of support circle on the displacements. It was found that 

when there are a fewer number of supports and/or the size of the hole 

is small, the magnitude of peak-to-peak displacements and the size of 

the optimum support circle are considerably different from the asso­

ciated quantities when the support is a continuous ring. 


