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(ABSTRACT)

In this work, a finite element formulation and associated computer program is
developed for the transient large deformation analysis of laminated composite
plate/shell structures. In order to satisfy the plate/shell surface traction
boundary conditions and to have accurate stress description while maintaining
the low cost of the analysis, a newly assumed displacement field theory is
formulated by adding higher-order terms to the transverse displacement
component of the first-order shear deformation theory. The laminated shell
theory is formulated using the Updated Lagrangian description of a general
continuum-based theory with assumptions on thickness deformation. The
transverse deflection is approximated through the thickness by a quartic
1olynomial of the thickness coordinate. As a result both the plate/shell surface
tractions (including nonzero tangential tractions and nonzero normal pres-
sure) and the interlaminar shear stress continuity conditions at interfaces are

satisfied simultaneousiy. Furthermore, the rotational degree of freedoms be-



come layer dependent quantities and the laminate possesses a transverse

deformation capability(i.e the normal strain is no longer zero).

Analytical integration through the thickness direction is performed for both the
linear analysis and the nonlinear analysis. Resuitants of the stress integrations
are expressed in terms of the laminate stacking sequence. Consequently, the
laminate characteristics in the normal direction can be evaluated precisely and
the cost of the overall analysis is reduced. The standard Newmark method and
the modified Newton Raphson method are used for the solution of the nonlin-

ear dynamic equilibrium equations.

Finally, a variety of numerical examples are presented to demonstrate the va-

lidity and efficiency of the finite element program developed herein.
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INTRODUCTION

1.1 MOTIVATION

Composite materials have increasingly been accepted as ideal materials in the high-
performance but weight-sensitive structures such as space vehicles and automobiles.
This is due to the high strength-to-weight and high stiffness-to-weight ratios offered
by composite materials. Laminated composite materials consist of two or more layers
of different materials so as to achieve desired structural properties. Since laminated
composite are made of different materiail layers, the material property is discontin-
uous through its thickness. The material miss-match across the laminate interfaces,
bending-stretching coupling, and geometric nonlinear effects make the analysis of
composite structures very complicated. Consequently, the oid design procedures,
traditionai analysis methods and experimental experience cbtained from isotropic
materials can not be applied to composite materiais directly. New design procedures,
analysis methods and testing techniques should be developed to ensure the integrity

of laminated composite structures.
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Composite laminates place special kinematic modeling requirements because of
their low modulus transverse to the plane of the laminae. The Kirchhoff plate theory,
known as the classical laminate theory, underestimates the deflections and over
predicts the natural frequencies and critical buckling loads [1]. The first-order shear
deformation theory (FSDT), known as the Mindlin piate theory, gives excellent results
for global response characteristics, such as displacements, natural frequencies and
buckling loads. But this theory yields very poor resuits for the interlaminar shear
stresses. The interlaminar shear stresses obtained from FSDT through the
constitutive relations are discontinuous across the laminar interfaces [1]. Obviously
these results can not satisfy the lamina interface continuity conditions and the equi-
librium conditions, which are the major sources of layer debonding/delamination as
proved by many micromechanics studies [2,3] of composite materials. The well-

known free edge effect [4] is a good example of this category.

Many refined higher order shear deformation theories [5,6] were introduced to im-
prove this defect. For instance, the most recent and probably the most advanced one
is the Generalized Laminated Plate Theory (GLPT) developed by Reddy [7] and ad-
vanced by his colleagues [8]. This theory is based on an assumed layer-wise dis-
placement field, and it yields accurate stresses, including the interlaminar shear
stresses. However, nonzero plate/shell surface boundary conditions are not com-
monly satisfied by the existing theories in the literature. Furthermore, these theories

often neglect the transverse normal stress.

lgnoring normal stress may not introduce any significant error in the linear analysis.
However, in nonlinear analysis the situation is quite different; the tangential stiffness

and the out-of-balance force vector are stress dependent quantities. Ignoring the
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normal stress together with the unrealistic distribution of the in-plane shear stresses
will slow the numerical convergence and yield less accurate resuits. Because of this
reason there exists a need for an improved theory which can relax the Kirchhoff as-
sumptions completely. Also, all plate and shell thecries are based on certain as-
sumptions concerning kinematics and/or : tress distributions. In a continuum-based
theories such assumptions are not required. Motivated by these observations, the
present study was undertaken to develop a continuum-based shell finite element that
accounts for transverse stresses, nonzero surface tractions, and large deflections.

The literature reviewed in the next section forms a background for the present study.

1.2 LITERATURE REVIEW

The earliest need for shell structure design probably came with the development of
the steam engine. However, it was not until 1888, that the first general theory was
presented by Love. Surveys of various classical shell theories can be found in the
works of Naghdi [9] and Bert [10,11]. These theories, known as the Love’s first ap-
proximation theories [12], are expected to yield sufficiently accurate results when (i)
the thickness-to-span ratio is small; (ii) the dynamic excitations are within the low-
frequency range; (iii) the material anisotropy is not severe. However, appiication of
such theories to layered anisotropic composite shell could lead to as much as 30%

or more errors.
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Ambartsumyan [13,14] was considered to be the first one to analyze laminates that
incorporated the bending-stretching coupling. In 1962, Dong, Pister and Taylor {15]
formulated a thin laminated anisotropic shelis theory. Cheng and Ho [16] presented
an analysis of laminated anisotropic cylindrical shells using Flugge’s sheil theory
[17]. The first approximation theory for the unsymmetrical deformation of nonhomo-
geneous, anisotropic, elastic cylindrical shells was derived by Widera [18,19]. An ex-

position of various shell theories can be found in the article by Bert [20].

The effect of transverse shear deformation and transverse isotropy as well as thermal
expansion through the shell thickness were considered by Gulati and Essenberg [21]
and Zukas and Vinson [22]. Dong and Tso [23] presented a theory applicable to lay-
ered, orthotropic cylindrical shells. Whitney and Sun [24] developed a higher order
shear deformation theory. This theory is based on a displacement field in which the
displacements in the surface of the shell are expanded as linear function of the
thickness coordinate. Reddy [25] presented a shear deformation version of the
Sander’s shell theory for laminated composite shells. As far as the finite element
analysis of shells is concerned, the early works can be attributed to those by Dong
{26], Dong and Selna [27], Wiison and Parsons [28], and Schmit and Monforton [29].
The studies of those works are confined to the analysis of the orthotropic shells of
revolution. Cther finite element analyses of laminated anisotropic composite shells
inciude the works of Panda and Natarajan {30}, Shivakumar and Krishna Murty [31],
Rao [32], Seide and Chang [33], Venkatesh and Rao [34] and Reddy and his col-

leagues [35,36,37,38], among others.

Geometricaily nonlinear laminated composite structure finite element analysis has

recently been studied by quite a few researchers. For instance, Necor and his col-
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leagues [39,40,41] investigated the static response of a noniinear shell via mixed
isoparametric elements. Chang and Swamiphakdi [42] presented a updated
Lagrangian foerlation of 3D degenerated shell element for geometrically noniinear
bending analysis of laminated composite shells. However no numerical results are
given to laminated shel! in their examples. Chao and Reddy [43] presented a total
Lagrangian formulation for a 3D degenerated shell with application to composite
shells. Liao and Reddy [45] extended the work done in [44] to develop a solid-shell
transition eiement for geometrically nonlinear analysis of laminated composite

structures [45].

In reviewing finite element applications, three approaches are used for analyzing a
plate/shell type structures. The first one is the 2D sheil element approach. For in-
stance, Reddy [46] presented a generalization of Sander’s shell theory(1959) to lami-
nated, doubly curved anisotropic sheil. In this approach, a well developed plate or
shell theory is adopted. Through-the-thickness analytical integration together with the
plate/shell assumptions reduce a 3D continuum field problem to a 2D one such that
problems can be solved in a relatively simple and efficient way. However since a
predefined plate/shell theory is being used, the geometrical shape can not be chosen
arbitrarily. Only the theory specified shape can be used (to fit the theory) in this ap-
proach. Thus the application of this approach is limited. The element based on
Sander’s doubly curved shell theory is good for a plate surface, a cylindrical surface
or a spherical surface. But it may not be good for a twisted surface or a distorted
surface [1,47]. Another shortcoming of using this approach to a general three dimen-
sional shell structure is the stiffness matrix transformation protiem. !deally, one can
divide a general three-dimensional shell structure into a series of flat, cylindrical or

even doubly curved surfaces such that plate element, cylindrical element and curved
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element can be used to simulate their corresponding surfaces. However, a fictitious
rotational stiffness should be introduced {47] in element stiffness assembly. Researg:h
conducted by Greene, Stome and Weikel [48] indicate that the accuracy of the analy-
sis is controlled by the size of the fictitious rqtational stiffness [47]. This means an
iteration procedure should be used to decide the fictitious rotational stiffness before
a final answer can be accepted. This shortcoming plus the increase of the problem
size (from a 5-dof problem to a 6-dof problem) makes this approach almost impracti-
cal for a transient nonlinear structural analysis of a general three-dimensional shell.
But it is a very ideal tool for structures which can nearly maintain its shape to the

theory specified shape.

The second approach is to model shell with three-dimensional elements [49]. No
particular plate/shell theory is followed in this approach. However, in this approach
numerical integrations must be performed in all three dimensions. This shortcoming
plus the high cost of a 3D modeling makes this approach relatively expensive, pre-

cludes its use in most composite sttuctural analysis.

The third approach is the degenerated 3D approach. Ahmad [50] was considered to
be the first one using this approach. It is cailed a degenerated 3D approach because
a three-dimensional elasticity is degenerated to a 2D model [51]. In this approach, the
structure can be directly discretized using 2D finite elements without applying any
plate or shell theory. This feature coupied with the 2D finite element modeling enable
the 3D degenerate element (or continuum based 2D element) to solve most shell
structure. However, formulation of this approach is much complex than the other two.
This element also requires numerical integration in all three dimensions [50,51],

which means numerical integration through-the-thickness must be carried out. Re-
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cent research by Chao and Reddy {43] indicates that in this approach there may exist
a way to avoid the numerical integration through the thickness. Current work verified
this concept and extended it into geometric nonlinear formulation. Mathematical for-
mulations derived in section 5.3.2 of this work completes the required analytical in-

tegration quantities for laminated plate/sheil structural analysis.

1.3 PRESENT WORK

The standard Kirchhoff assumptions are; (i) straight lines normal to the mid-surface
remain straight and normal after deformation, (ii) the displacement gradients are
small, (iii) the length of a normal remains unchanged, (iv) the effects of normal stress
are small and it can be neglected. Thus the classical plate theory does not account
for the transverse deformations. The first order shear deformation theory [FSDT] re-
moves the normality assumption. Consequently it accounts for constant state of
transverse shear stresses but does not satisfy the non-zero surface traction condi-
tions. The refined higher order shear deformation theory including the latest Gener-
alized Laminated Plate Theory can satisfy stress-free boundary condition and
continuous shear stress distribution through the thickness. However, Kirchhoff’s last

assumption is still not removed in these theories.

in all the mentioned theories, improvements are made by adding higher order terms
to the in-plane displacements. In this work, contrary to the traditional way, higher
order terms are added to the out-of-plane displacement. The purpose of doing so is

to relax the last two assumptions of Kirchhoff theory. As a resuit, boundary condi-
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tions on the plate/shell surfaces and the interlaminar shear stress continuity condi-
tions across the laminar interfaces are all satisfied simultaneously. in applying this
new idea to the plate/shell structural analysis, the first order shear deformation the-

ory (FSDT) is adopted as a base line in the current work.

The goal of this research is to develop a finite element program for general dynamic,
geometrically nonlinear laminated composite structural analysis. This program has

three features.

1. Generality
A continuum based shell element approach is being used. Shape of the

shell is not bounded by any plate or shell theory.

2. Computational Efficiency
Using FSDT as a base line, refined displacement and stress fields
are recovered. Thus the cost of the analysis is at the same level
as the FSDT analysis. Besides, the integration through the shell
thickness is performed analyticaily. Thus, the whoie cost of analysis

is relatively low.

3. Completeness
Higher order terms are added to the out-of-plane displacement
component such that the surface boundary conditions and the
continuity conditions at the laminar interfaces are satisfied. As a
result, the rotational degree of freedom become layer dependent

quantities. This allows a more accurate description of the kinematics
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and stress state in a composite laminate.

The finite element form of the equations of motion is derived in Chapter 2. A review
of an orthotropic single-layer constitutive equations is presented in Chapter 3. In
Chapter 4, a new set of higher-order displacement field and a stress recovery iter-
ation technique are developed. This technique is used to recover the refined dis-
placement fields of each layer and to satisfy all the laminate surface boundary
conditions and the interface continuity conditions. In Chapter 5, a continuum-based
sheil element is developed for transient large deformation shell structural analyses,
and analytical integrations through the sheil thickness is performed. Several illustra-

tive problems are presented in Chapter 6. Conclusions are presented in Chapter 7.
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EQUATIONS OF MOTION

2.1 UPDATED LAGRANGIAN FORMULATION

By means of the principle of virtual displacements, the Updated Lagrangian de-

scription of the motion of a continuous body, can be expressed as [44,45]

At st+A A
Jt+tt3q ot+tt8’j dtV=t+ttR 2.1)
t,

14

where S; are the 2nd Piola-Kirchhoff stress components and ¢, are the Green-
Lagrange strain tensor components. The 2nd Piola-Kirchhoff stress tensor relates to

the Cauchy stress tensor t by

t
t+At p t t+At t
19y = At H+Atim Tmn t+at¥),n (2.2)
0
. . 5tx.'
where p represents the material density, and ,.}x,, = et
n
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The variation of the Green-Lagrange strain tensor is

t+A 1 44 At _ A A
5™ !t&ij= 57(t+ :tUu + t+t u, = H-ttuk,l t+:tuk‘;) (2.9)
The applied load is
g = j X Suy d°V + f HET U I°A (2.4)
0 1]

14 A

when the loading is not a function of deformation, and

Halp = f *¥P u, d'V + J. T 0] d'A (2.5)
2, t

|4 A

if the loading is a function of deformation. Here f® represents the body force, and T

represents the surface traction.

In case of transient analysis, by means of D’Alembert’s principle, the inertia force can

be included as a part of the body force by
- f v du, d'v (2.6)
Ty

Hence, assuming that the applied loading is a function of deformation, the equations

of motion for a large displacement and large rotation ccntinuous body can be ex-

pressed in integral form
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j tp t+AtU’_ oy, dtV+f tﬂ?tsij 5&%25!} d'V= J t+%tf;s oy dtV+J. t+AttT16Uis d'v (2.7)
. ¢

y ty 1% fa

2.2 INCREMENTAL DECOMPOSITION

The 2nd Piola-Kirchhoff stress components with respect to current configuration (time

= t ) can be expressed as
t+At
+tSij = fsij + tSij = ttr] + tslj (2-8)

where S, ='t,, 't are the Cauchy stress components and S, are the incremental
stress components. The Green-Lagrange strains decomposed according to the

equation

t+AL 1 — =
t5:/="§'(tU:J + ot Wy ) = € T My = gy

in which the following notation is used
1 1
€ =7 (euyj+e4;,) and g, = 2 Yk iy (2.9)

where ¢, denotes the incremental Green-Lagrange strain components and &, and

#1, denote the linear and nonlinear parts of ¢,, respectively.

Recalling the stress and strain relationship .S, = ,C,, £, equation(2.8) can be written

as
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t+4at = t = ¢ >
!S// T// + tSu T'[ - tcr/k/ :ekl

Substituting this expression and equation (2.9) into equation (2.7), one obtains

+At.. t o t t -
j Po * u; 5ui av + f tcukl €k ot‘glj av + f rij 0!”/] dtv
ty ty ty

(2.10)
A -
= Bl j 2, 618,y AV
e,

14

where “¥R is defined by either equation (1.4) or equation (1.5) depending on the

loading conditions, and *p = p, = constant.

Using the approximation .S, = ,C,, e, and d&,; = 6,6, the equation of motion (2.10)

can be simplified to

j po G, 8u, d'v + J Cipr € 08, AV + J zf'! odty ¢V
t

A4 ty ty

=R J ', 08, d'V

y

(2.11)

This is the incremental Updated Lagrangian description of the equation of motion that

a transient nonlinear continuum medium has to follow.
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2.3 FINITE ELEMENT MODEL

Let

[H]1= the displacement interpolation matrix ;

{u *} = nodal dispiacement vector of element “e”

¢, = shape function of nodal point “i”

{*r} = stress vector (2.12)

[tr] = stress matrix

[L]1= linear differential operator

[B]= [L]){H] strain-displacement matrix

{ e} = [BI{u *} strain of any point inside element “e”

{u}= displacement vector of any point inside an element i.e {u}=[H]{u ¢} ,then the
continuous incremental Updated Lagrangian description of equation of motion

equation (2.11) can be replaced by a discretized finite element model

[M] {0} + (LK + [ D00} = (2R} - (v} (2.13)

The consistent mass matrix is

(1= | o 0TtHIa @.14)

fy

The linear stiffness matrix is

(= | 8aTerse 2.9
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The nonlinear stiffness matrix is

(d= [ (B TIEI Y 2.16)

The stress induced reaction force is

(= | e tadv @.17)
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SINGLE PLY CONSTITUTIVE RELA.TIONS

3.1 ASSUMPTIONS

The macroscopic view of composite material [57] generally assumes that there is
perfect bonding between the matrix and fiber, each ply is homogeneous and linearly
elastic. It has three elastic symmetric planes pe;pendicular to each other which re-
quires nine independent material constants to describe its constitutive behavvior.
Also, it is assumed to be free from any manufacturing defect and residual stresses.
In this work, these assumptions are ail accepted. Besides, the material’s behavior
is examined only as an average apparent properties of the composite layer. The ef-

fects of thermal, moisture and viscoelastic influences are ignored.
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3.2 MATERIAL PROPERTIES IN PRINCIPAL

COORDINATES

It has been proved in continuum mechanics [58] that an orthotropic material has three
orthogonal elastic symmetrical planes with nine independent material preperties.
According to Hooke’s law, in the material principal coordinates(1,2,3), the stress-

strain relations are given by

(9 [- 1 Va1 Vs (
811 E1 E2 E3 0 0 0 T4
e —V12 A Ve 0 0 0 p
22 E1 E2 E3 22
—Viz Vo3 1
£33 £ 3 = © o o 033
Vel |06 o o == o o fonlf &Y
y -_ g
723 Gpa 1 23
‘/13 0 0 0 O 'E'— 0 013
13 ]
:,’12 J 0 0 O 0 0 G_12 { 012 )
; i 1 ( ]
014 Cyy Cp Gy O 0 0 €11
022 Ci2 Cp Cyp O 0 0 €22
4 Ga3 Ciz Cp Gy O 0 0 €33 + (3.2)
> = < .
Toa 0] 0] 0 C44 0] 0 Y23
G4 0 0 o] 0 c55 0 713
. 0 0 0 0 0 C s
\‘7 2 | I 66 IR 712
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where

E\(1 = vayvy)

_ Ey(vay + v5yvy)

Cu= A Co= A
E,(1 — vigvyy) E3(vys + VipVa)
Cp= 2 Awn Cp= 3 sA 12V
Ey(1 = vyvyy) Ey(vyy + vyyvi)
Cu= A Cua= A
Cu=Gy Cug=G,; Cu=0G, A=1=VuVy — VyVy — VarVyg — 2VyViaVyy

3.3 MATERIAL PROPERTIES IN PROBLEM COORDINATES

The transformation between the problem coordinate system (x,y,z) and the principal

material coordinate system (1,2,3), as depicted in Figure 3.1, is

3

j\\

\§

Figure 3.1 A single ply
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where

[T1] =

Qo O o

-mn

and [T,] = [T,]" with the symbol m =cos 8, n = sin 4.

{o}y =[T )0}k

{e}s = [Ta){e}x

mn 0 0 O

2mn

-2mn

(3.3)

(3.4)

Substituting equation (3.1) into equation (3.3) and using equation (3.4), the trans-

formed 3-D stiffness matrix [C] is obtained as

{0} = [T (o0} = [T:]7'[CHes} = [T.]T[CUT 16k = [Ciels

Hence [C]=[T.]"'[CI(T.]

SINGLE PLY CONSTITUTIVE RELATIONS
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where

Cy = m*Cyy + 2m?n¥(Cy, + 2C5) + 1°Cpy

2 =mn¥Cy + Cp — 4Cy) + (Mm* + n*)C,,

O

13 = M?Cy3 + NCyy

O

Cis = malm¥Cyy — Cy; — 2C5) + n¥(Cy, — Cpp + 2C4)]

CZZ = n‘Cﬁ <+ 2m2n2(c1z + 2C55) + m‘Cn

Ezs = n*Cyy + m*Cy

Cos = mn[n¥C,; — Cy; — 2C¢) + m¥C,, — C, + 2C)]
Eza =Cpy
Eas =mn(Cy; — Cy)

Cuu= mCy + NCy

Ciu=mn(Ces — Cy)

CSS = nzc“ -+ mZCSS

Ess = er)Z(‘C11 —Cp—=Cyp)++ Ces(m? — n?)?

SINGLE PLY CONSTITUTIVE RELATIONS
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3.4 REDUCED STIFFNESSES

The general three dimensional stress-strain relations defined in equation (3.5), can

be simpified by rewriting it in two parts

Ox ’E” (_:—12 513 516 Ex

Oy _ Ciz Cpy Cos Cos €y (3.6)
1 Cis Cos Ca Cy €z .
xy _516 Ezs E:as Ess ] Txy

and
o C.. C. y
yz 44 45 yz
Oxz Cas Css | L7z
. . . T, Cy Cay Cas
from which the normal strain is defined by e, ==—~—=—¢, —=¢,——=—7,, .
Cy Cas Ca Ca

Substituting last expression into equation (2.6) yields

_ -
- Ox Cir Cip Ci3 Cyg €x
oy Ciz Cp Cp3 Cys &,
=l_ - - v g, z g (3.8)
o Ciq Chn Coy C z 2 2., 20 v
b4 13 23 33 36 = = x - = y - = X
Ca3 Caa Caz 7 Gy ¥
Oxy Cis Co Css Css ] Vxy

Writing these stress components into a condensed form, equation (3.8) becomes
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Ox Qy Quz Qiz Qg Ex C13/Ca3
o, Quz Q2 Q3 @5 €y Co3/Ca3
= _ _ _ _ + az
oz Qiz Q3 Qa3 Qs v 1
Oxy Qi Q6 Qas Qo5 Vxy Cas/Caz

provided that

Quatx + Qaat, + Qasvxy =0

0|

where Q;=C,;,—C,

(for i=12,3,6 andj=1,2,86).

O

33

Eliminating the normal stress o,, the generalized Hooke’s law becomes :

Ox Qi Q2 Qe Ex
oy }= | Q2 Qpp Qup &y
Oxy Qe Q5 Qe 7xy

and

Oxz 545 555 7xz

(3.9)

(3.10)

(3.11)

(3.12)

where k? is the shear correction factor. Comparing equation (3.11) and equation (3.12)

with equation (3.6) and equation {3.7), it is found that 5,, are equal to or smaller than

E,,. Thus they are called “reduced stiffnesses”.
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TRANSVERSE DEFORMATION THEORY TO PLATES

In this chapter, a first-order (for u and v) shear/fourth-order (for w) transverse defor-
mation theory is introduced. Instead of using this theory directly to develop a finite
element model, a technique is developed to recover all the “refined” generalized
displacements for each individual layer after the FSDT “averaged” generalized dis-
placements are obt'ained. As a part of the refined displacement recovery, the plate
surface boundary conditions and the interlaminar interface continuity conditions are
all satisfied identically. The following review of the existing theories provides a

background for present theory.

4.1 A REVIEW OF PLATE THEORIES

A transversely and edge loaded piate is shown in Figure 4.1. The transient dis-
placement components(u,v and w) at any location inside the plate are functions of the

coordinates(x,y and z) and time(t). These displacement components can be expanded

into Taylor’s series about z :
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Figure 4.1 A loaded plate

y:v
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U(X.Y.Z,8) = Ug(X,Y,t) + ZU (XY, ) + Z2E(xyt) + 220 (x.7,0) + ...
V(Y28 = Vo(xy.8) + U (x.y.8) + 228 0y, ) + 2°0(xy.0) + ... (4.1)
W(X,Y.Z,8) = Wo(X,Y,8) + 2, (xy.8) + 228 (x.8) + 2°5,(x.5.0) + ...

where u,, v, W,, ¥,, £, {0, €, L 0, € and (... are functions to be determined. In
general, to find all these functions which can satisfy the equilibrium equations, com-
patibility conditions, boundary conditions and initial conditions is extremely difficult
[75]. Finite expansions are used tc develop plate theories. For instance the ciassical
plate theory is based on the assumptions due to Kirchhoff {1]. The displacement field

of the classical plate theory is

ow,

u(x,y,z) = uy(x,y) + 2z x

cw, 4.
v(x,y.2) = v,(x.y) — z 6;’ (42)

w(x,y.Z) = wy(x.y)

which contains only three unknowns u, v, and w, representing the mid plane dis-

placement components. The displacement field yields zero transverse strains.

To include the transverse shear strains, one may write the simplest shear deforma-
tion displacement field by direct observation of a deformed plate, such as the one
shown in Figure 4.2:

ulx, y, z) = uy{x, y) + 20,{x, y)

VX, ¥, 2) = V(x, ¥) — 264(x. y) (4.3)

w(x, ¥, z) = wy(x, y)

This displacement field contains five unknowns (u,, v,, w,, 8, and 8,), where 8, and 6,

represent the shear deformations about the coordinates 1 and 2. respectively. Thus
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this theory allows for constant state of transverse shear stresses. However, plate
surface boundary conditions and interface continuity conditions for laminated com-

posite plates, in general, are not satisfied by this theory.
By retaining higher-order terms of the expansion, one can write

u(x, ¥, 2) = Up(x, ¥) + 204 (X, y) + 228,(x, ¥) + 2°L4(x, )
V(X, ¥, 2) = Vo(X, ¥) + 2Uy(x, y) + 2°5,(x, ¥) + 2°5,(x. ) (4.4)
w(X, ¥, 2) = Wy{x, ¥)

After applying free surface boundary conditions, Reddy [1,5,6] proved that this dis-

placement field can be simplified to

ow,
u(x, y, 2) = uy(x, y) + z[6, — % ( % )2(92 + ;; )]

V(3. 7.2) = Vol ) = 2001 + 5 (= 0 + 52 )] (49)

w(x, ¥, 2) = wy(x, y).

All of the above mentioned theories do not account for the stretching of the trans-
verse normals (i.e. ¢, = 0). But some higher-order theories containing higher-order
terms in the out-of-plane displacement(w) can account for transverse deformation.

For instance the displacement field given below is used for free edge effects [76] :
U(X.y.2Z) = Ug(X.y) + ZW(x.y)

v(x.y.Z) = vo(x.y) + 20, (x.y) (4.6)

w(x,y.z) = wy(x.y) + 2¥,(x.y)
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4.2 NEED FOR A REFINED TRANSVERSE DEFORMATION

THEORY

There are quite a few physical conditions which can not be satisfied by the above
reviewed plate theories. First, all of the plate theories (i.e. equations 4.2, 4.3 and 4.5
) assume non-stretching of the transverse normals. This assumption results in igno-
rance of the transverse normal stress through out the entire plate. However trans-
verse normal stress does exist in some loading conditions. For instance, in a
pressurized vessel the radial stress has the same magnitude as the hoop stress.
Inclusion of the radial stress is required in the failure analysis [59] of a pressurized

vessel.

Second, non-zero surface traction (P, and P,, of Figure 4.1) boundary conditions are
not satisfied by the above mentioned plate theories. Existence of these non-zero
surface tractions are found in many plate/shell contact surfaces. Example of these
surfaces are: mechanical power transferred beit-pulley contact surfaces or roiling-
drum contact surfaces or the external surfaces of a high-speed flying object such as
missiles. Ignorance of these non-zero surface tractions also resulits in an incomplete
stress field, and therefore the failure prediction could not be accurate. For example,
the maximum principal stress criterion assumes that “tensile fracture surfaces will
form in a previously uncracked isotropic material when the maximum principal stress
reaches a limiting value in tension” [89). From tensor analysis, it is known that the

sum of the principal stresses is the first invariant of the stress tensor
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Ox Oxy Oxz

Oy O, O (4.7)

Oz Ozy O

According to maximum principal criterion, ignoring transverse norr..al stress o, from
the stress tensor, definitely will yield incorrect principal stress. Similarly, the Tresca
criterion states that ” yielding of an isotropic material will begin when the maximum
shear stress reaches a limiting value” [59]. From continuum mechanics [58], it is
known that the maximum shear stress is defined by
Oy — 0Ogy

Tmax = 2 (4.8)

where g, and o, represent the largest and the smallest principal stresses respec-

tively. According to this criterion, incorrect principal stresses wiil also result in an

incorrect Tresca failure evaluation.

Third, a reasonable distribution of transverse shear stresses through the plate thick-
ness can not be obtained by the above mentioned theories. The first order shear de-
formation theory ( equation 4.3 ) yields constant state of transverse shear stresses
and Reddy’s higher order shear deformation theory {equation 4.4) yields parabolic
transverse shear stresses with zero surface traction loading cases. None of the
above mentioned plate theories can yield reasonable transverse shear stress dis-
tribution for non-zero surface tractions. Unreaiistic state of transverse shear stresses
does not only cause inaccurate failure prediction but also siow down the convergence

rate in a nonlinear analysis. As demonstrated in Table 6.4 of Chapter 8, unrealistic
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state of transverse shear stresses requires more iterations before an acceptable

convergence criterion can be satisfied. Also it generates less accurate stress field.

Finally, the interlaminar shear stress continuity conditions are not satisfied in lami-
nated composite plates and the peak value of the shear stresses can not be correctly
predicted by the above mentioned theories. As pointed out by many composite
structural micromechanics studies [2,3] the interlaminar shear stresses are usually
responsible for the laminate debonding/delamination in laminated composite struc-
tures. Failure to predict the peak values of shear stresses represents a serious defi-
ciency in laminated composite structurai analyses. Therefore, a theory that

overcomes the deficiencies of the existing theories is needed.

4.3 A PROCEDURE FOR STRESS RECOVERY

From last section, it is seen that a new theory is needed to improve the deficiencies
of the existing plate theories. The conventional way of improvement is to retain
higher order terms in the in-plane displacements (u and v). Effects of this improve-
ment is too slow at considerable computational expense. in this work, a new higher
order theory is proposed by retaining higher order terms in the out-of-piane dis-
placement (w) only. Improvements of this new theory are remarkably good. To de-
scribe the new theory it is necessary to review the first order shear deformation
theory (FSDT). The foilowing review of the finite element model of FSDT provides a

background for present theory.
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The displacement field of FSDT is given by equation (4.3). The strain components at

any point inside the plate are :

Ty 4 Ugq + 26,4 h
€2 Vo2 — 201,
< Y23 > = 4 =0, +w,, >
Y13 6, + w,,s
&) \Uo,z + 2055+ Vo1 — 204,
6. 0 0 0 2z, (4t
|0 2 0 28, O v’ |
=20 08, —e 0 | (W) “9)
= 0 0 ¢, 0 —¢, 6
| Pz by O —26, 26, | (8

where wu, v, w, 8, and 0, represent the mid plane displacements before
discretization, while v, v/, w', 8, and 0 represent the mid plane displacements at .he
nodal point “i” after discretization, and ¢, are the interpolation functions. This ex-

pression can be written in a short form as;

(e} = ) [B]{u))

where n is the number of nodes per element (NPE) and u! represent the generalized

j-th displacement value at node i. Substituting [B,] into equation {1.15), the linear

stiffness matrix is

TRANSVERSE DEFORMATION THEORY TO PLATES 31



[K1= f [8.17[Q1(B,1av
v

Substituting the strain-displacement matrix [ B,] defined in equation (4.9) into last

equation, the linear stiffness matrix [ K,] becomes

kd = [ @B v + [ (81T3IE] + (BT TRABD 20V

(4.10)
- [ e @us v
v
where [B,]=[8,]+ z[B,] is a direct decomposition of equation (4.9),i.e.
r A {' ‘
¢4y 0 0 0 O 000 0 ¢
O (b':g O O O 0 0 0 —(b,”z 0
[Bq] = O 0 (b,‘vz "'d)" O [Bz] = O 0 0 0 0 (4.11)
0 0 ¢,y 0 -9 0 00 O 0
260y 0 0 O | 0 0 0 —9d;y 9,

As illustrated in Figure 4.3, in the standard notation of a laminated plate, the laminate

stiffness are
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mid plane. ‘
of lamina | , & layer 1 {
- | : b layer 2j h
Tz B
2 — s
mid plane _ %
of piate 2._'1 - t -
L — 2 l t_, layer k-1
! ~h
{L — t. t layer k 2

Where

t. is the thickness of each layer and Z, is the height of middle plane
of each layer to the middle plane of the laminated plate.

Figure 4.3 Laminated plate



nj2

(A, B, D] = J [Q,1(1, 2. 23) dz

—h/2
NLY (4.12)
N
= Z[Q:‘;](tk- (2o 2yt + E7) )
K=1

where ¢ is the thickness of each layer for totai number of NLY layers through the plate
thickness and Z, is the height of middle plane of each layer to the middle plane of the
piate. With these notations, the element linear stiffness matrix can be constructed

easily. Equation (4.10) thus becomes

kix kig Kig Keg Kys

K1y Koo Koz Kas Kos
[KL] = | K1z Koz Kag Ky Kas (4.13)

Kia Kos Kag Kag ks

K18 Kos Kas Kus ks |

where
Ky = Ay;Sy +A(Sy; +Sa) + AssSo,
Ky = ApSi; +A16S1 +A5S, + AeS,,
Ky =0
Kig = —B1;S1; —BisSsy —BySzs — BesSay
kis = B;Sy +B.(S1; + Sy) + BesSan
Kup = ApSy +A%(Si; +S5) + AsSy

0

&
“w
I

Koo = —BpSy —Buy(S+; +S2) — BesSiy
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kas = B1;Sy +B8:Sy + B1eS1y + BssSe;

ki = ASis +AuSy +AsSy

Ky = —AgS;; —AuSx

Ky = AssSi +AsSy

Ku = AyuSe +DS +Dzs(sz1 + S12) + DSy

kis = —D1Sy —DySz —DisS1y — DgeS1 — AsSy

kss = AssSop +D11S4y +Dig(S12 + Sp) + DseS2,

in which the integration S, = qu‘),-m @,,dxdy for i,j=1,NPE and m,n=1,2 (coordi-

nate 1,2) has to be conducted numerically over the entire plate surface A. Once the

stiffness matrix [K,] is determined, the whole problem is reduced to a finite eiement

discretized system

(K J{U} = {R}

(4.14)

from which the generalized nodal displacements of the entire plate can be solved.

Once displacement field is solved, the stress-strain relaticn can be used to solve for

the stress components. For instance the stress components in the k-th layer are

r~

QuQiQz 0 0 Qe
Qi Q@ O 0 Qi
Qi3 Q3 Qs O 0 Qs
0 0 0 K°Qu K*Qus ©
0 0 0 k%@ k*Qss O

Qs Qs Qs 0 0 Qs
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v + 265
v{é—-z&’m
0
- 6, +w,
& + wy

Uy + 265, + v — 20,

> (4.15)

/
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where 64,(m =1,2) represent the averaged rotations at node j. From equation (3.8)
to (3.10), it is understood that the normal stress is assumed to be zero. This is a resuit
of Kirchhoff assumption. There are several features need to be noticed about the
stresses of the first order shear deformation theory :

1. Surface boundary conditions

h h

oa3(x. y, i“z‘ = Pya(x, ¥, i—z‘)
h h

o13(%, Yo £ 5 ) =Pralx v, £57) (4.16)
h h

are not satisfied at the plate surfaces.

2. In-plane stresses o,, and g, are symmetrical with respect to the z=0
piane, which is not true in general.

3. Shear stresses o,, and o,, are independent of z such that the shear
continuity conditions are not satisfied at the lamina interfaces.

4. Constant rotations §, and 8, are assumed through out the whole plate
thickness in spite of the fact that different material has been used for each

layer. This means that the strains are not layer dependent quantities.

From elasticity solution [78], it is known that above mentioned features are not con-

sistent with the physical conditions.

To improve the stress field of the FSDT, a new set of displacement field is proposed

as following
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u(x, ¥, 2) = ug(x, y) + z85(x, y)
V(X, y’ Z)=VO(X, y)_281(x' y) (4.17)
3, G

c
wix, ¥, Z) = wy(x, y) + x(a,z + 3222) + y(bz + b222) + 71 '+ z*

Following the same procedure as used in obtaining equation (4.15), the stress-strain

relations for the displacement field (4.17) are :

7 N -_ - _ T 4 N
011 Q1 Q2@ 0 0 Qs v + 207 4
022 Q2@ @y O 0 Qg vl — 28,

< 033 > N i QiaQ@3Qm O 0 Qu < f(x.y,2) 418
Ta3 =1 0 0 O a2544 52545 0 - 0’1 -+ W_j2 + béZ + b§z2 .
O3 0 0 0 Qs v°Qss O &) + W'y + alz + as2®
%12 |, Qig Qs Qs O 0 Qg P \sz + 20, + vy — 26} 4 )«

. L i

where f(x, y, z) = x(a{ + 2a4z) + y(b} + 2b4z) + ¢122 + ¢32° , n = NPE (nodes per element)
and a{, bf and c! (i=1,2) are constants to be determined using surface and inter layer

conditions.

it is important to note the difference between stress-strain relations (4.18) and those
of the FSDT defined in equation (4.15). In equation (4.18) the subscript "k” at the right
lower corner means that the strain is in the k-th layer, which indicates that all the
generalized displacements are layer dependent quantities. In addition, the new shear

correction factors( «?, f?and y? ) can be defined by comparison with the exact solution.
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There are too many unknowns in equation (4.17). It represents a very complex
equation for solving. Although it is possible to solve all the unknowns directly, the
cost would be high. Furthermore it is against the goal of computational efficiency to
do so. Therefore, instead of solving for all unknowns directly, a fast displacement and
stress recovery technique which allows ail the generalized displacements at each
layer to be recovered such that the surface boundary conditions and shear continuity
conditions are all satisfied is proposed. The displacement and stress recovery tech-

niques developed herein requires the solution of equation (4.15).

Denoting 8% and 6% the “refined” rotations of k-th layer, the shear stresses of each
layer can be written as
a§3 = 52',(4[ -0 + Wo+ bz + bzzz] + 5:5[8'2‘ +w,q+az+ azzz]

. _ _, (4.19)
aﬁfa = Qfs[ - 65+ W, + bz + b222] + o;s[og +w,+a.z+ a222]

where the subscript “j” for each nodal point is omitted for simplicity. Applying the

plate surface traction boundary conditions, it is found that

h
aga(x, y, + ?) = Tzra(xv y)
h
Gza(X; Y +?) = T{a(x- y)
. . . (4.20)
Oa(X, ¥, — ‘2') = Toa(X, ¥)

i+ h
ois(x. ¥, = 5 ) = Tha(x. )

in which 7 and t® represent the specified shear stresses at plate top surface and

bottom surface, respectively. Write equation (4.20) in terms of the constants a,, a,, b,

and b, ,
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- - h =T 1 1
HCs HCs H 2] |, T3+ 01 = Wz — Cs(0} + w,,1) )
8 N N
—H CB Hzcs - H2 < a, > 23 + 91 — Wo’2 -— C5(02 + Wo'1) >
b =4 .r 1
H H2 H CT H C? b1 713 + (91 - wo‘z)C7 - (0; + Wo'1)
- 2 —=-HC 2 8 N v
| H A ° HG | tra + (6Y = Wo2)Cs — (85 + W,
\. ./ J
1 ), ) oY,
where C,=g : C,=g"—; C,=&; C,=&, H=-’l-
“ Q4 Qs QY% 2
T 1.3 7 ,:.a
and ==t =t Heo—ak; B,
QL Q4 58 Q%

(4.21)

Hence, there are four equations for four unknowns, the coefficients a, a, b, and b, can

be determined. However, since the rotations 8% and 6% (k=1 for the top surface layer

and k=N for the bottom surface layer ) are unknown in the last expression, the

interface shear continuity conditions must be used to soive for them. The continuity

conditions at each interlaminar surface require that

033(%: ¥, hi) = a3 (%, ¥, i)

ay3(%, ¥ ) = 013 (%, y, By

Writing these equations explicitly, one obtains
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1 1 1 1 0o 0 0 0 re}\ (" N§° )
0 0 0 0... 1 1 11 6? N63
-C4 C4 0 0...Cs-C% o0 0. p?
-Cis C% 0 0...C5-C o 0. : D?
6 -C4,CTh0...0 3% -3%0. {.?=$D$?(4.23)
0 -C4sCso0... 0 C% -C4o. 63 D3
63
d\') ./

where Df = CLUE, — Ci'Usy* + Ci Uk, — Cis Uy

Dt = CyU, - Cg"Usy* + Coliy — Ciy Uiyt

and Uy =w,, +ah, +a,h

Ut =w,, + b,h, +b,h2.

Since U4 and Uk, depend on a’s and b’s, an iterative scheme must be used to obtain
a set of satisfactory a,, a,, b,, b, and 6%, 6% The numerical experiments indicate that the
convergence among equations (4.21) and (4.22) is very fast. From the examples which
have been solved in this study, it is found that 3 toc 6 iterations is enough to obtain

10-3 convergence tolerance.

Once coefficients a,, a,, b, and b, are solved, the coefficients ¢, and ¢, can be deter-
mined easily. Using equation (3.10), the normal stress component g, from equation

(4.18) can be written as
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ag(x, ¥, 2) = Qaa[x(ay + 2a,2) + y(b, +2b,2) + ¢,2° +0223] (4.24)

Applying the normal pressure boundary condition on both the top and bottom sur-

faces, it is seen that

+h h? h®
o3, ¥, =5~ ) = Q'[x(ay + 23,h) + y(by +byh) + c4 7 T g1=P "(x,¥)
(4.25)
—h = h? h®
as(x, y, T) = Qv[x(a1 — 2ayh) + y(by —byh) + ¢4 T ¢ T] =P8(x, y)
from which the coefficients ¢, and c, are given by
2 . pl  pB
ci=—5[(—=+—=7)—2ax + byy)]
Qa3 33 (4.26)
4 .. pT Pt '
¢y =3 [(—=—— =7 ) —2h(axx + byy)]
h 33 33

Hence equation (4.18) is soived.

The comparison between FSDT and current theory is made in Figure 4.4. It can be

seen that the proposed theory can not just satisfy all the boundary conditions and

continuity conditions, but also can yield more reasonable rotational displacements.

Of course this is due to the contribution of transverse deformation throughout the

plate thickness.

Cemparing the stress-strain relations of FSDT with the stress-strain relations of the

current theory, it is easy to make the following observations :

1. Straight lines normal to the plate mid surface are no longer straight. Each layer
has its own rotations.

2. The length of a normal changes after deformation.
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3. The normal stress may be small but not necessarily negligible.

4. For any non-zero plate surface pressure difference, the in-plane stresses are
unsymmetrical with respect to the mid plane of the plate.

5. The shear stresses are continuous functions of z, and plate surface

boundary conditions can be satisfied.

TRANSVERSE DEFORMATION THEORY TO PLATES
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TRANSVERSE DEFORMATION THECRY OF SHELLS

5.1 INTRODUCTION

An uniform thickness plate is a solid continuum bounded by two paraliel flat planes,
while a shell is a solid continuum bounded by two separated curved surfaces by a
small distance compared to the surface dimensions. A transversely loaded plate, af-
ter deformation, will never be flat. Because of this reason, geometric nonlinear ana-
lyses are not performed using plate theory unless its geometry change is very smali
compared to its dimension. Since one may like to describe the structure motion from
an Updated Lagrangian viewpoint, all parameters(i.e. displacements, strains,

stresses.....) are referred to the current configuration.
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3.2 THE FIRST-ORDER CONTINUUM SHELL ELEMENT

5.2.1 DISPLACEMENT FIELD

Let x,y,z be the original coordinate system (a coordinate system at time t=0),
X3, Xz X3 the current coordinate system (a coordinate system always attached to the
mid plane at current time t ) and &, , { the natural coordinate system( a mathematical
coordinate system at the center of the mid plane of each element), as shown in Figure
5.1, it is easy to write the displacement fieid of the first order shear deformation the-

ory for an arbitrarily oriented shell in the current coordinate system as follows :
0
Us(Xq, Xgu X3, 8) = Us(Xy, Xp, ) + X304(X4, X, £) (5.1)
0
Up(X1s X, X, £) = Un(Xy, Xg, 1) = X304(X4, Xp, )
0
Ug(Xs Xg X3, ) = Us(Xy, Xp, 1)
where uf, v}, and u} represent the mid plane displacements, 8, and 8, represent the

“averaged” rotations. By means of tensor transformation, the displacement compo-

nents in the original coordinate system can be obtained as

0
u Uy Viy Vo Vi (u, +x382)
T 0
v ) =IVI(u ) =V Vyp Vi Uy = X304 (5.2)
0
w Us Vi Va3 Vi Us
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Figure 4.5 Notations used In continuum-based shell deformation



u uo V1162 - V2101
v = Vo + X3 V1202 bt V2291 (5.3)

w w Vi30; — Va0,

in which [V] denotes the transformation matrix between the current configuration

(X1, X, X;) @and the original configuration (x,y,z). Conversely,

Uy u
by =[vi( v (5.4)
Uy w

The transformation between the gradients of displacements in the original coordinate

system and the current coordinate system can be easily found [47]

Ugq Upq Uz, Ux Vx Wy
.
Ugg Ugpy Uay [ =[V]ju, v, w, 6 [[V] (8.5)
L]
Ugg U3 Uag u vz w,

Let

U= ) BE MU+ x Y B ) (OFVE — BF V)
k=1

=1

V=D bUE IV X ) by(E ) (05 Vi — 6V (5.6)
k=1 k=1

W=D BEm W + xs Y buE ) 5V — 65V
=1 k=1
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where ¢, is the shape function of node k, and n is the total number of nodal points
of an element(NPE). In this expression u*, v*, w* are the nodal mid plane displace-
ments in the original coordinate system, and 6%, 6% are the nodal averaged rotations
in the current coordinate system, while Vi and Vj are the components of \7, and \72 at

node “k”.

The transformation between the original coordinates and the natural coordinates of

the global displacements is defined by

Ux Vx Wy s Vg W

_ -1
Uy Vy Wy = [J] Uy Vg Wy, (5.7)
Uz vy w, Yeg Vg W

in which [J] is the Jacobi matrix,

Xe Y 2

[Vl1=1{x (5.8)

o Yon

Xe¢ Yo 2

In order to determine the Jacobi matrix, the original coordinates (x,y,z) must be ex-
pressed in terms of the natural coordinates (£, {, 7). This can be done by using the
unit vector of x, coordinate. By definition, the unit vector of x, coordinate (see Figure

5.1) is
I’;; = V31T -+ V32]. -+ Vsal-(.

Hence, the location of each point inside the shell is
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n n
X=X + XVar = D 05 DX + x5 bl DV,
k=1 k=1

Y=Yo * XaVer = D B OV + 1) BilE OVEy (5.9)
=1

=1
n n
I » k |4
z2=25 + x3Vg3 = Z‘pk(C- Ozo + st¢k(€. Vi
o= k=1

Substituting equation (5.9) into equation (5.8) yields

- X i -

b, . k 0by . Kk Gby Kk
) ‘f (X + X3V31) _6-5— (Yo + X3V3p) 7;-_' (2o + x3Va3)
J =Z 8dy k 0o, 0dy 5.1
/] - W(Xo + X3V34) 7(}’5 + X3V3)) o (Zg + X3Vio) (5.19)
h k h K h k
?‘f’ Va, —2'¢kv32 E’d’szs

in which the relation x; ={ % is used. Here h denotes the thickness of the shell, and
{ ranges from -1 to 1 representing the natural coordinate in the x, -direction. It is
found that this expression can be simplified by neglecting all the x, terms. The argu-
ment which allows doing so is that x; is far smaller than x% y% and z&. For any plate
or shell the thickness is always far smaller than the other two dimensions. Thus x,

terms are all dropped. After simplification, the notation [J " ] is used to represent the

inverse of the Jacobi matrix
v']=r7"

Similarly the first derivatives of the displacements in original coordinates with re-
spect to the natural coordinate can be obtained. By taking the first derivative of u, v

and w with respect to &, # and ¢, it is seen that
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O O o

o

0 0]
0] 0
0] 0]
be: O
by O
0 0]
0 ¢ s

—X30, ;V;
—X3Py, r,V:1
;2/1_ SiVa1
~X30y, §V2kz
—X30y, r;ng
A

P
—X39y, Va3

K
C o9 n —Xa3Pi V23

—h k
T¢kV23

X3¢, ;V1kx
X3®y, ﬂVf,
2 BV
Xa@y. §V1kz
X3b4, r,V1k2
‘g‘ GiViz
X3®y, :V1ks
X3, qV:‘3

h .
> DuVis

(uk\

P (5.11)

Substituting equation (5.10) into equation (5.7) and using last equation, the first de-

rivatives of the displacements in current coordinates with respect to the current co-

ordinates are,

(Um\

u.

Y33

where

T
i
i
G
b1
")
I
T

J
Ja1

%2 ¢13
qéZ qéB
qéZ qéS
Ga2 Tia
qé2 qé3
C?éz Gb3
G2 Gra
b2 G
Ghr Gs

(qre%3 + q1a)
(G36%3 + G3a)
(TheXa + Gha)
(qaeXs + Gaa)
(9deXs + T5s)
(GéeXs + Tos)
(Grex3 + G7a)
(986X5 + Gaa)
(qheXs + Gha)
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(q17%3 + G1s)
(G27%3 + 925)
(G37x3 + G3s)
(Garxs + qis)
(Gk7%3 + is)
(Gs7X3 + Gbs)
(Gr7%3 + G1s)
(qa7%3 + Gts)

(gbr%s + Gos)

® 5 s <

S

> (5.12)
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g1 =Rqd, s + R.'Z‘bk,n

T2=Ru®y s + Rsd, ,

93 =Rid4 s + Redy
9= t5ds (5.13)
g5 = t;‘ém

qv6=t)‘;¢’k,§ + tz';‘bk,q

Py k
97 = t;A(Dk,g + t/5¢k, n

where i = 1,2,3,4,5,6,7,8.9 and
t Riq R4 Ry V3,
ff; = - R12 RIS R/B V;Z (5'14)
’ h h h ;

t > Ra > Rs - Re| | Vas

ti: R11 Rm Rr? V§1

K

t:5 = R/2 RIS R/B V;2

k h h h

te -5 R o> R > R Va3

and R; are the elements of the product matrix of the matrix defined in equation (5.5)

to the matrix defined in equation (5.7).
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5.2.2 STRAIN COMPONENTS

The strain components are obtained directly from equation (5.12), namely

{e}= < Upz + Uag

Uyz+ Us 4

Uy g + Uy
\.

or in a short form

b

il
a

-

j

=1

The strain-displacement matrix is

I
n P21 Pz P23
- Dol
= P31 Pa2 P33
/ J J
Pa1 P2 Pa3

Psq Péz Pés

P11 Pia Py (PleXs + Pla) (Pir¥s + Pis)
(P3eXa + P2s) (Ph7Xs + Pis)
(Pagxs + P3s) (ParXa + Pis)
(PigXs + PLs) (PlrXa + pPhs)

(pssXs + Pha) (PhrXs + P§5)_J

=1

(811 = [P1] + x[P}]

—

(&) = D ([P1+xF) (v} = D (B

Comparing equation (5.15) with equation (4.9), it is found that

(7] =

J
P11
J
P21

/
P31

Pi1 Piz Pf;s 0 Pis

P51

piz Pis O
Pay Phs 0

;g
Paz P33 Pas

Péz Pés 0

QO O

0

0
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Pyl =

000 0 pi;
000plk O
0000 O
000 0 O

0‘30,17éf3ﬁ'§7-J

——__
2 3 <

[

> (5.15)

r
SR
—

(5.16)

(5.17)

(5.18)
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Thus, the Updated Lagrangian strain-displacement matrix is defined by equation

{5.17) and (5.18).

5.3 ELEMENT MATRICES AND FORCE VECTORS

5.3.1 LINEAR STIFFNESS MATRIX

Once the strain-displacement matrix is determined, the linear stiffness matrix can be

constructed easily. According to equation (2.15), the linear stiffness matrix is

k3 = | 8IT@BIV

Substituting the linear strain-displacement matrix (equation (5.17)) into last equation

yields

k] = | PI@UAIY + [ (PI@NP + Y (RIF Drsddgaig
' ’ (5.19)
G

Performing the analytical integration in x, direction explicitly, and using the notations

defined in equation (4.12), the linear stiffness matrix can be obtained easily from fol-

lowing expression
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(K] = fA (P11 AL Jaxidx, + L ((P,ITBICP:] + [P, BIIP Dexydx,
_ _ (5.20)
+ | NP

Where [A], [B] and [D] are the usual laminate stiffnesses. A complete listing of the

elements of [K,] are given in Appendix A.

5.3.2 THROUGH-THE-THICKNESS INTEGRATION

For the reason it will become obvious in the next two sections, three integration
quantities are defined below. These quantities can be called “resultants ”, because

they represent thickness-weighted stress summations.

The force resultants are the integrations of the stress components through the shell

thickness,i.e.

\
(51\ (01 ( g4 )
E, g, N 2
h/2/ P }
{E} = E4 > = J. 04 > dX3 = ? J T4 dX3

< -2 ) = >

Es o5 o5

E

% \78/ )"

where the single-subscript notation g, = gy, 6, = 04, 0, = 04, 05 =0y, and g, =g, is
used. Recalling the stress-strain relations (3.11) and (3.12) and the strain-

displacement relation (5.17), the last equation can be written as
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Noeno N o & 3
@ =2 [" @ehora = [ 1@ P+ 6lPH ()
=1

h=1" Moy k=1" k=1

N n
= ) D (P + {PIIE

k=1 ;=1

(5.21)

where vectors {pi}, = [@[Pi]{w}, and {ps}, = [QI[PL]{w}, are defined in Appendix
B. Note that N is the total number of layers (NLY), and n is the number of nodes per

elements(NPE).

Similarly, the moment resultant {F} and the inertia resuitant {G} can be defined as

follows :
/F1\ (‘01\
F, ) .
' h2 N P . n
Fi= (F > - j (00 ) x %= > f (@1 (TP}, + xlPYl) (e 1o %y
—hf2 =1 Pt =1
Fs as “ s
F
. N,
N n t2
(FY = D D (Pt + (PRE + =) (5.22)
k=1 =1
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‘;/G1\ (01\
j G, Gq N
hj2 P ., o —
G- GAP - f-n/a (o) Bam = 2 fnk_vto"];cpnkﬂstﬁgk) (W) 55 o
G5 Os
%) e
N n ‘ ¢ t2
(G} = D D (PtZE +=5) + (PE(Z: + =) (5.29)

k=t =t

This completes the analytical integration formulations through the shell thickness.

5.3.3 NONLINEAR STIFFNESS MATRIX

Writing equation (5.12) in a short form, one obtains

(Una} = D ([T + w[BD() (5.24)

j=1

where u,,,, represents the first derivatives of the displacement “m” with respect to the
current coordinate “n”, The symbol “j” on the r.h.s represents the j-th nodal point of
the element. Thus according to equation (2.16), the nonlinear stiffness matrix be-

comes

il = [ (BuITABIY = [ (81 + oG TIE) + ulEdv (529
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where the stress matrix [z] and matrices [q,] and [g,] are defined below

[(t]=|{0 = 0 0 =, O 0 7, O (5.26)

0 o 0 0 r,, O 0 1 O

- - A
T Gaqis 0 O l_o 00 0 g
Ghy Gha Goa O O 000 0 qh7
G G T 0 gls 000 0 O
Giy T2 Gz 0 O 000gg O
[(3]=|d g2 9k 0 o [(G]={0 00 g O (5.27)
To1 Ge2 Tés Tae 0 000 0 O
G G2 13 0 0 000 0 O
GG s 0 0 600 0 O
For Ter Foa 0 O 0C0 0 O

Substituting the resultants obtained in equations (5.21), {5.22) and (5.23) into the last

eguation, the nonlinear stiffness matrix becomes
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Kl = | @7 TENGIamon, + | @rtaE + EEDses,
A A (5.28)
+ | eI omax,

where [E],[F] and [G] are the 9x9 matrices and A denotes the area of the midsurface
of the element. Again the integration of last equation must be carried out numericaily
over the shell surface. A complete listing of the elements of [K,,] is given in Ap-

pendix C.

5.3.4 UNBALANCED FORCE

.The unbalanced force is the right hand side of equation (2.13), where {R} is the vector
of externally applied forces, and {U} is the vector of internal, stress-induced, reaction
forces. From this equation it is seen that this force is a time dependent and stress
dependent quantity. Substituting the linear strain-displacement matrix [B,] from
equation (5.17) and the stress matrix [t] from equation (5.26) into equation (2.17), the

vector {U} becomes

W = [ BaEev = [ P + xlPINmav (5.29)

Again using the resuitants {E} and {F} defined in equation (5.21) and (5.22), the vector

{U} can be found easily.
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5.3.5 CONSISTENT MASS MATRIX

There are two types of mass matrices that are used in the finite element dynamic
analysis. One is the diagonalized lumped-ma.ss matrix. The other is the cor;sistent
mass matrix. The lumped-mass matrix reduces the numerical operation significantly.
However in spite of the fact that a systematical procedure has been set up to lump
the element mass to nodal point, in coarse mesh analysis the lumped-mass matrix
may still yield inaccurate results {55]. This is due to the fact that the formulations
among the stiffness matrix, the nodal point load and the mass matrix are inconsistent.
Because of this reason, the consistent mass matrix is used in this work. From

equation (5.4) it is seen that

us V= V1{ v (5.30)

Substituting u?, u, u obtained from this equation into equation (5.1), it is found that

Uy = Viglp + VigVg + VW + x50,
u, = V21 Up + V22VO -+ V23WO - X361 (531)

Uy = Vaqlg + Vaovp + Vg

In terms of the finite element interpolation, equation (5.31) takes the form
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n

Uy = Z(¢lv41ué + d)lv‘lmvtl) + ¢,V;3W6+X3¢,9I2)

i=1

I
Uy = ) (BiVyrthy + B ViV + b Visy = x0,6) (532

=1

n
Uy = D (BVistly + B ViV + b Vigwi)

1=1

or in short,

n

(U} = D (M1 + x[HsD) (u) (5.33)

=1

Substituting [H] into equation (2.15), the consistent mass matrix can be obtained as
M1 = [ p.LHTTH] dv

= [, plHT + x[H:T) ([H] + x,[HED) av (5.34)

= [,plHT [Hddv + [ p,x([HI [H] + (KT [HD) av + [ p, ELH:T [Hilav

where
[ i i I ]
O Viy ®Vig @Viz 0 O
[HU: ¢Ivé1 ¢/V52 ¢:Vés 00 (5.35)
OVay Bz DV 0 O
and
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[H]=]0 00 —¢, O (5.36)
000 C O
Defining the mass inertias
(I, fpu Ig) = f Pol1, X5 X3)dIxs (5.37)

equation (5.34) can be expressed as

(M = Iy fA[HUT [Hi1dA + I L(tHéJ’ [H1] + (A1 [H1)dA + 1y L[Hﬁ]’ [H;]dA (5.38)

A complete listing of the mass matrix is given in Appendix D. This mass matrix is
called consistent mass matrix “because the same interpolation functions are em-
ployed in the caiculation of the load vectors and the mass matrix as in the evaluation

of the stiffness matrix” [55].

5.3.5 EQUATIONS OF MOTION

Substituting the mass matrix [M], the linear stiffness matrix [K,] ,the nonlinear
stiffness matrix [K,,] and the unbalanced force vector {U} into equation (2.13), the

equations of motion become
[M] (%) + (LK + [ D{ou) = (TR} — () (5.39)
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Several methods can be used to solve for the ordinary differential equation (5.39) in
time. In this work the Newmark direct integration method and the Modified Newton

Raphson iteration are used.

3.4. THE STRESS RECOVERY TECHNIQUE

5.4.1 DISPLACEMENTS AND STRESSES

The displacement field is assumed to be of the form,

0
Us(X1y X, X3) = Us(Xs, X) + X305(Xy, Xp)

0
Ua(X1, X, X3) = U3(Xy, Xg) — X304(Xs, Xy) (5.40)
0 2 2 Ci 3, C 4
Uz(Xy, Xg, X3) = U3(Xs, Xp) + X1(@1X3 + 35%3) + Xp(b1Xz + bpX3) + 3Rt X

Computing the strains associated with the displacement field (5.40) and substituting

into the lamina stress-strain relations, one obtains

- -
/011\ Q1 Q12Q3 0 0 Qu ( Ut g + X305, w;
92 Qi Q@ O 0 Qs Upa = X3 2 %
{ 033> _ Z": Q130 Qs 0 0 Qu < f(x1, X3, X3) ? (5.41)
023 | 0 0 0 a*Qy Qs 0 — 0 + Uy + bixy + bhx]
O3 0 0 0 fQu Qs 0 O + ub, + alxy + ajx?
L 0-.2/,( _C—?we Qs Qs O 0 5&3‘ p \U4,z + x50+ Ug s = X3 |,
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where f(x,, X, X;) = X,(8} + 2a4x;) + x,(b4 + 2byx,) + cixZ + ¢3x3 , n = NPE and o2, 82 and 32

are the shear correction factors.

5.4.2 SURFACE TRACTION AND INTERFACE CONTINUITY CONDITIONS

Denoting 6% and 6% the "recovered or refined” rotations of k-th layer, the shear
stresses of each layer are
k Y. k 2 ~K K 2
023 = Qual =07 + U3 + baXy + boxa] + Qus[0; + Uz 4 + a1x3 + apx3]

- - (5.42)
043 = Qus[ = 05 + Uz + byxy + box3] + Qs[04 + Usy + 81X3 + 3,%5]

where the subscript “j” for each nodal point is omitted for simplicity. Applying the

plate surface traction boundary conditions, we have

h T
T2a(Xp, X + ?) = Ta3(X1, Xp)
h
a13(X1. Xg. + )= T43(X1, %)
(5.43)

N h B
093(X1, X3, — ‘2") = Ty3(X4, Xp)

N h ]
T13(Xss Xg, — ) ) = T13(X1, X3)

in which =7 and 78 represent the shear stresses at plate top surface and bottom sur-

face, respectively. The continuity conditions at each interlaminar surface require that

X k=1
02a(Xqs Xgu Py) = ao3 (X4, Xp, ) (5.44)
P (1 :
aa3(Xss Xp D) = 015 (X4, Xg, By
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Equations (5.43) and (5.44) can be used to determine a,, a,, b, and b,. Using the con-
dition of equation (3.10), the normal stress component g, from equation (5.41) can be

written as
oa(Xy, Xa, X3) = @ [xs(ay + 2ayX3) + X5(by +2byx3) + c,xg +c2x33] (5.45)

Applying the normal pressure boundary condition on both the top surface and bottom

surface, it is seen that

+h | = | h? K r
3%, ¥, =57 ) = Q@ [x4(ay + 2a,h) + xy(bs +byh) + ¢4 = Teg1=P X, x)
, s (5.46)
h

_h — h
a3(X. ) = Q"[xy(ay — 2a,h) + xy(bs —byh) + ¢, 2 —Ggl= P(xy, x,)

Equations (5.46) provide the conditions to determine ¢, and c, as

o pT pB
¢ ===+ —=7) —2ax + b1xy)]

h Qgs 33

T (5.47)
Co=—73 = ——7) —2h(ax; + byx,)]

—
h 033 Q33

Clearly, equations (5.43) and (5.44) are coupled to equation (5.47). Therefore, an it-

erative method is needed to compute a,, a,, b,, b,, ¢, and ¢,.

5.5 SOLUTION PROCEDURES

Two numerical techniques needed for the solution of the nonlinear finite element

equations are briefly mentioned in this section. The dynamic equations of motion are
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first reduced to algebraic equations using the Newmark direct time integration
method. Then the resulting nonlinear algebraic equations are sclved using the

Newton-Raphson iterative method. These methods are summarized below.

5.5.1 THE NEWMARK DIRECT INTEGRATION METHOD

In the Newmark method, the displacements and the velocities are approximated by
*A) = (A} + (Aa)at+ [(F — o) + {AD) + oADMY (5.48)

*AYAGY = Y{AG) + [(1 - AT} + 6 A A (5.49)

in which ¢ =-;— and « =% correspond to the constant-average-acceleration method
which also called the trapezoidal rule. This method provides unconditional stability
and has the seif-start capability. Substituting these two relations into equation (5.39)

and rearranging it, one obtains (see [1,56])
[R‘]HM{AU} = z+Az{§} _ z+Az{U} (5.503)

where

[K] = =2 [M] + [K,J + [Kud

oA ) . (5.500)

HAURY = FAR) + [MI( =5 {Au) + == A} + (A}
At At

Once **{Au} is solved from equation (5.50), the acceleration increments ™&{A{} at
time t+ At can be determined from equation (5.48). Then substituting =*{Au} and

=»fAu} into equation (5.49), the velocity increment *“3{Ay} at time ¢+ At can be
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solved from equation (5.49). Repeating these steps iteratively, consecutive config-
urations can be determined. At time =0, the vector °{Au} is computed from equation

(5.39), and °{Au} and °{Au} are known from the initial conditions.

5.5.2 THE MODIFIED NEWTON RAPHSON METHOD

Equation (5.50) can not be solved by a single step because the nonlinear stiffness
matrix and the unbalanced force are stress dependent quantities. At each time step
the nonlinear stiffness matrix and the unbalance force are unknown quantities. Thus
an iteration scheme must be used to solve equation (5.50). The most frequently used
iteration schemes for the nonlinear finite element equations is the Newton-Raphson

iteration method [55]. The incremental iteration form of equation (5.50) is given by
1[R']t+At{AU}(x) - z+At{§}(/—1) _ z+At{U}(i—1) (5.51)

which is known as the modified Newton-Raphson methed. Without any a-priori
knowledge of the system behavior, it may be most efficient to update the tangential
stiffness matrix at the beginning of each time step [55]. However convergence is not

guaranteed by this method [55,79,47].
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NUMERICAL RESULTS

6.1 INTRODUCTION

To evaluate the new-higher order transverse deformation theory developed in this
work, several example problems are solved and the results are presented in this
chapter. Each of the example problem either contains an analiytical solution or a par-
ailel ABAQUS finite element analysis result for comparison. For those problems for

which no solutions are available may be used as reference for future studies.

As emphasized at beginning of the work, the goai of this work is to obtain an accurate
stress field for both plate and arbitrarily oriented shell laminated composite struc-
tures. Thus attention is paid to the accuracy and completeness of stress results,
particularly the transverse normal and shear stresses. Shear stress continuity condi-
tions across the layer interfaces and the satisfaction of the nonzero traction boundary

conditions are illustrated.
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6.2 PROBLEM 1: CANTILEVER PLATE

One of the major goals of this work is to obtain reasonable distribution of shear stress
through the plate/shell thickness. Another major goal of this work is to prove and to
obtain the transverse normal stress. To demonstrate the achievements of these two

goals, several example problems are presented here.

A. Isotropic cantilever plate with concentrated load at free end

The geometry, material property and loading condition of an isotropic cantilever

plate are shown in the figure below.

y

1‘

—— | c——————

DR

L=4" H=0.1" B=1.0" E=1.0x10’psi v =0.0 F=-30.0lb

H
1
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The analytical solution from [61], and the results of the first-order shear deformation
theory (FSDT) and current theory are plotted in Figure 6.1. From this plot it is clear
that current solution yields compatible analytical shear stress, which is a great im-
provement over the FSDT solution. The excellent agreement between current work

and analytical solution (see Table 6.1) verifies the formulation of the linear stiffness

matrix derived in this work.

—* — FsOT
000 A Current work
Analytical

THICKNESS(IN)
4 b o o o
F 3 S ¥ b4

b
4

— -

T

-0.00 Y T T T
~700 -800 -300 -400 ~-300 -200 ~-100 -]

%4y (PSi)

Figure 8.1 Shear stress distribution
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Table 6.1 Stresses of a Cantilever Plate

X y a, (psi) Ty (Psi)

Exact FEM Exact FEM
0.050 72000.00 72001.75 0.00 0.00

0.025 | 36000.00 36000.87 -337.50 -337.51

0.0 | 0.000 0.00 0.00 -450.00 -450.01
-0.025 | -36000.00 -36000.87 -337.50 -337.51
-0.050 | -72000.00 -72001.75 0.00 0.00
0.050 36000.00 36000.39 0.00 0.00
0.025 18000.00 18000.19 -337.50 -337.50

2.0 0.000 0.00 0.00 -450.00 -450.01
-0.025 | -18000.00 -18000.19 -337.50 -337.50
-0.050 | -36000.00 -36000.39 0.00 0.00
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B. cantilever plate with uniform load

The gecmetry, loading and boundary conditions and finite element meshes of a
cantilever plate with uniform load are shown in Figure 6.2, where plate mesh is used
for current work analysis and ABAQUS mesh is used for ABAQUS [60] analysis. Two
different material plates are investigated, namely isotropic plate and laminated com-

posite piate.

(i) isotropic plate

The Young’s modulus is assumed 1.0E7 psi and the Poisson’s ratio is assumed 0.3 for
this plate. The stresses of current plate theory are compared with the ABAQUS plane
stress element analysis in Table 6.2. A good agreement between current work re-

sults and ABAQUS resuits is observed.

(ii} laminated composite plate

The same problem is analyzed for a four layer cross-ply [0/90/90/0] composite plate.

The material properties of each layer used in this anaiysis are :

E,=1.0x10" psi, E,=E,=20x10°psi, v,=v,=v,=0.3
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Figure 6.2 Cantilever plate with uniform load
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Table 6.2 Stresses of an isotropic plate due
uniformly distributed transverse load

X y o,(psi) o,(psi) T, (PSi)
FEM ABAQUS| FEM ABAQUS| FEM ABAQUS
0.50 1350.0| 1350.0 | 0.00 0.0034 0.00 | -1.87
0.25 675.0 | 675.0 | 0.00 0.0008 | -33.75 | -35.60
10.0 | 0.00 0.0 0.0 0.00 | -0.0006 | -45.00 | -46.90
-0.25 -675.0 | -675.0 | 0.00 0.0001 | -33.75 | -35.60
-0.50 | -1350.0| -1350.0 { 0.00 | -0.0001 0.00 | -1.87
0.50 411.2 | 448.0 | -6.00 | -3.07 0.00 | -1.87
0.25 205.2 | 225.0 | -5.06 | -2.58 -33.75 | -35.40
15.0 | 0.00 -0.6 0.0 | -3.00 | -1.50 -45.00 | -46.60
-0.25 -206.5 | -225.0 | -0.94 | -0.42 -33.75 | -35.90
-0.50 -412.5 | -448.0 | 0.00 0.07 0.00 | -2.34
0.50 1474 | 158.0 | -6.00 | -6.18 0.00 | -1.87
0.25 72.8 80.2 | -5.06 | -5.18 -33.75 | -35.40
17.0 | 0.00 1.3 0.0 -3.00 | -3.01 -45.00 | -46.60
-0.25 754 | -80.2 | -0.94 | -0.85 -33.75 | -35.90
-0.50 -150.0 | -158.0 | 0.00 0.12 0.00 | -2.34
NOTE:

1. FEM is current work with free end vertical deflection = -0.07747 in.

2. ABAQUS free end vertical deflection = -0.07831 in.
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Table 6.3 Stresses of a laminated composite plate due to
uniformly distributed transverse load

X y o.(psi) o, (psi) Ty (Psi)
FEM |ABAQUS | FEM |ABAQUS | FEM ABAQUS

0.50 | 1462.7| 1500.0 0.00 | -0.134 000 -1.92
0 0.375| 1097.1| 1125.0 0.00 | -0.138 -19.92| -20.8
0.25 731.4 450.0 0.00 | -0.055 -34.15| -38.8
0.25 139.2 450.0 0.00 | -0.055 -34.15| -38.8
10.1 90 | 0.00 0.00 0.0 0.00 | 0.000 -38.71| -40.4
-0.25 | -139.2 | -450.0 0.00 | -0.058 -34.15| -38.8
-0.25 | -731.4 | -450.0 0.00 | -0.058 -34.15| -38.8
0 | -0.375| -1097.1| -1125.0 0.00 | 0.143 -19.92| -20.8

-0.50 | -1462.7 | -1500.0 0.00 | 0.137 0.00 | -1.93
0.50 146.1 169.0 | -6.00 | -6.30 0.00| -1.25
0 0.375] 109.1 132.0 | -5.74 | -5.64 -11.95( -12.50
0.25 72.3 57.4 -5.06 | -4.94 -20.49| -23.30
0.25 16.7 574 -5.06 | -4.94 -20.49| -23.30
17.1 90 | 0.00 -0.9 -0.6 -3.00 | -2.98 -23.22| -24.3

-0.25 -18.6 -8.9 -0.94 | -0.965 -20.49| -23.30
-0.25 -74.6 -8.9 -0.94 | -0.965 -20.49| -23.30
0 | -0375| 1114 | -134.0 | -0.26 | -0.365 -11.95| -12.50
-0.50 | 1485 | -170.0 | 0.00 | 1.31 0.00| -1.25

NOTE:
1. FEM is current work with free end vertical deflection = -0.08814 in.
2. ABAQUS free end vertical deflection = -0.08740 in.
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The stresses of current plate theory are compared with the ABAQUS plane stress
results in Table 6.3. The transverse shear stress and the transverse normal stress
at x = 17” are plotted in Figure 6.3 for comparison. From Table 6.3, it is seen that
there is a better stress agreement at x=10" than those at x=17". In Figure 6.3, it is
shown that current work fits the boundary conditions much better than the ABAQUS
resuit and demonstrates a more smooth stress distribution which may indicate the

superiority of current work.

It is important to realize that in above demonstrated examples, two completely dif-
ferent finite elements have been used for comparison, namely plate element for cur-
rent work versus plane stress element for ABAQUS. The good agreement between
these two elements clearly verifies the existence of the transverse normal stress and
the reasonable shear stress generation capabilities of current work. Besides, the
coarse plate model versus the fine plane stress model proves the computational ef-

ficiency of current work.
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6.3 PROBLEM 2: LARGE BENDING DEFLECTION

The most common large deformation test problem is a cantilever beam subjected to
cylindrical bending. The reason to choose this problem as a large deformation test
problem is because the availability of the analytical soiution for an isotropic beam.

The geometry, loading condition and finite element mesh used are shown below :

L=4" H=0.1" B=1.0" M,=-30.0 in-Ib
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An isotropic beam and a three layer [0/90/0] laminated composite beams are inves-

tigated.

A. isotropic beam

For this beam, the Young’s modulus is assumed to be E=1.0E7 psi and the
Poisson’s ratio is assumed to be v =0.0 to simulate a pure bending state. Analytical

solution of this problem are :

= ius =-£L
o= Radius v

B. symmetrical three layer [0/90/0] composite beam

Material properties used for this beam are :
E, = 7.586 psi, E,=E, =2.0E6 psi,
Gy, = 1.25E6 psi, G,, =G, =G,

Vi =V, =V, = 0.25

The results of the isotropic beam are presented in Table 6.4. The excellent agreement
between current work soiution and the analytical solution verifies the nonlinear ma-
trix derivation of this work. In this exampie, since there is no shear loading, the shear
stresses are zero. The number of iterations taken for convergence of the first order
shear deformation theory and the current theory of this example provides a strong
evidence that reasonable shear stress distribution will accelerate the numerical iter-
ation procedures. The reason is because unrealistic shear stresses can not generate
correct stress resultants. For this reason, current work show strong superior con-

vergent speed. Radius of both isotropic beam and orthotropic beam are piotted in
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Figure 6.5, where a smooth curve of radius distribution shows a reasonably good re-
sult has been obtained for the laminated composite beam. The major bending radius

and the minor bending radius of the composite beam are listed in Table 6.5 for future

comparison.

NUMERICAL RESULTS 79



(re-01%G0— c-01X0°€) = jos 5 |

“}1oMm juesind sjyuasaidaa 134 (b)

"4OM JuaLInd Joj swes ay) s) 1S4 Joj snipes oy (g)

"019z a1v *'o pue 9 jo senjen Joexe ayy (2)

AQ.:.V

uoudID 83ualbiaauod

{iNws} — {1y 11} |

Buimojjoj oy o} Bugpiodoe paujuLia)sp sy (1) suonesa) jo saqunpy (1)

: 9JON
9'8-| 821- 00 1’298 | 0008y .166Z4 o0008Y 922 AV XA 1 4 8 no't
6't-| 86 00 v'8Ls | oovby 8eevy oovvy 9ve | 2ve 14 Vi ne'o
£l-| 61- 00 £'65¢ | 0080y 66204 00804 Z'9v | g9y 14 YA n9'o

<o €0 00 £'98 00cL | 661L | 002L | £69 b'69 € y A Wv'o
00 00 00 00 009¢ | 009g | 009F | 6'6EL | 8°8EL c A weo
w34 | 1aSd | wW3H | LasH | WIS | Las4 exy o34 | pex3 | wiv3Id | 1asH
(1sd)fo (15d)fjo (1sd)"'s (uhsnipey | uoneisii | peory

Bujpueq 1edupulf) g o|qe)

80



IN

RADIUS

—_— ISOTROPIC BEAM

— -&—— [0/90/0] COMPOSITE BEAM

140"

1207

100- Analytical solution

80"

607

40"

201

0.0 0.2 0.4 0.6 0.8 1.0 1.2
APPLIED LOAD M=30 IN-LB
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Table 6.5 Radii of cylindrical bending of a composite beam

Load Major Minor
M=30in-lb Radius(in) Radius(in)
1'! 2’ 30 4’
0.2M 95.2 805.8 | 402.9 | 476.5 | 583.0
0.4M 47.2 403.3 | 201.6 | 238.0 | 290.0
0.6M 31.6 269.9 | 134.9 | 158.7 | 191.8
0.8M 23.3 203.8 | 101.9 | 119.2 | 1423
NOTE :

1. Major radius is the radius along the beam.
2. Minor radius is the radius across the beam.



6.4 PROBLEM 3 : FOLDED STRUCTURE

The purpose of this example is to illustrate the capability of the present program to
model folded structures, which requires transformation of element matrices and ac-
tivates the rotational degree of freedom (about the z-axis). In this example, a “L”
shaped structure (see figure below) is chosen as a test problem because the avail-
ability of its analytical solution. The geometry, loading, material properties and mesh

used are shown in foilowing figure.

L=4" H=0.1" B=10" E=10x10" psi, v=0.0 F=6.0b
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The analytical solution of this problem is given in [61] :

A.Displacements:

=MLz s 5b b= £L2

02= oE] 02,= 08, ot=0L+ 3E]

Xy  F F h .,

B. Stresses o =7 + ) T =3; { n —x32)

The dispiacements and the stresses obtained using the present element are given in
Tables 6.6 and 6.7, respectively. The analytical solutions are not included due to their
simplicity. The good agreement between current work and the analytical solution

verifies the transformed stiffness matrix derived in current work.
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Table 6.6 Displacements

Node u(in) v(in) w(in) | 0,(rad) | 0, (rad) 8, (rad)
a 0.0 0.0 0.1152 | 0.04073| -0.04073 | 0.0
b 0.2172 | 0.2172 | 0.1152 | 0.06109] -0.06109 | 0.0
Table 6.7 Stresses
Node | x, oy, (psi) T43 (psi)
0.05 -7170.19 0.0
0.025 -3570.05 0.0
e 0.0 30.00 0.0
-0.025 3630.05 0.0
-0.05 7230.10 0.0
0.05 -7185.04 0.0
0.025 -3585.02 16.88
a 0.0 15.00 22.50
-0.025 3615.02 16.88
-0.05 7215.04 0.0
0.05 0.0 0.0
0.025 0.0 33.75
b 0.0 0.0 45.00
-0.025 0.0 33.75
-0.05 0.0 0.0

Note : Node ”a” yields the average solutions.
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6.5 PROBLEM 4: COMPOSITE PLATE

This example deals with a three-layer cross-ply (0/90/0) square laminate with all four
edges simply supported and subjected to sinuscidally distributed transverse load
(see figure below). This problem has a 3-D elasticity solution [57]. Due to

symmetricity, only quarter of the laminate is modeled by eight-node quadratic ele-

ments.

q(x.y) = qq sin —?— sin ﬂTy

The ply thickness are h, = h,= hf4, h,= h/2.

E G G
The lamina properties are =— =25, —==10.5, —==10.2, V,, = V,; = vy, = 0.25 .
Ez Ez Ez
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The nondimensional stress and displacement quantities are defined as

—  w(aj2, a/2)E,h*x100 _ h +h

W= q°a4 : 4 a1 = (? )20'1(A'A9 —2—-)

- h *h - h £h .

o, = (7 Vo (AA, —4-), 9. = (3 J0.(8,8, —2—) inply1 &3

- h . - h .
du=(7)ou(B,A)inply2,  Gy=(7)ou(AB)in ply 2.

where A and B are the Gauss-Point coordinates (w.r.t the center of the piate) given

below:
2x2Q mesh  4x4Q mesh

A 0.05283a 0.02642a
B 0.44720a 0.47360a
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The three-dimensional elasticity soiution, and results of the first-order shear defor-
mation theory and current work are compared at Gauss points for different plate
thicknesses in Table 6.8. As expected, there is no improvement in the accuracy of the
displacement solution. The reason for this is that the higher order terms 6fthe normal
displacement are not being used in the kinematics conditions and stiffness matrix
formulation for the global displacement solution. However, remarkable improvement
can be observed in the stress components. The transverse shear stresses (G5, Gog)

show higher degree of improvements than the in-piane shear stress (G12)-

Similar comparisons are made in Table 6.9 at different nodal points. Note that the in-
plane stress (g,) is unsymmetrical for thick plates as predicted by 3-D elasticity soi-
ution. Such unsymmetricity is not predicted by the first-order shear deformation
theory. The nondimensional displacement (U) and the nondimensional transverse
shear stresses (., 0,5) are plotted through the plate thickness in Figures 6.6, 6.7 and
6.8. As expected, the rotational degrees of freedom of current work are layer de-
pendent quantities. The continuous distribution and relative accuracy of the trans-

verse shear stress verifies the improvements of the current work.
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Table 6.8 Resuit comparisons at Gauss points

a’h | Method| w G, v, Tra T1s Gas
3D | 7.434 | 0.599 | 0.403 0.0276 | 0.301 0.196
FEM4 | 6.262 | 0.5586 | 0.3710 | 0.0250 0.3196 | 0.1660
10 FSDT4 | 6.262 | 0.495 | 0.359 | 0.0240 0.414 | 0.128
FEM2 | 6.152 | 0.5245 | 0.3605 | 0.0239 0.3126 | 0.1626
FSDT2 | 6.152 | 0.4842 | 0.3509 | 0.0234 0.404 | 0.1255
3D $.173 0.543 0.308 0.0230 | 0.328 0.156
FEM4 | 4.911 0.5402 | 0.2961 | 0.0222 | 0.3353 | 0.1397
20 FSDT4 | 4.911 0.524 | 0.294 | 0.0219 | 0.434 | 0.108
FEM2 | 4.901 0.5224 | 0.2890 | 0.0215 | 0.3275 | 0.1368
FSDT2 | 4.901 0.5112 | 0.2870 | 0.0214 | 0.424 | 0.1057
3D 4.385 | 0.539 | 0.271 0.0214 | 0.339 | 0.139
FEM4 | 4.336 | 0.5351 | 0.2686 | 0.0212 0.3411 | 0.1296
100 | FSDT4 | 4.336 | 0.535 | 0.269 | 0.0212 0.442 | 0.1002
FEM2 | 4.319 | 0.5217 | 0.2621 | 0.0206 0.334 | 0.1131
FSDT2 | 4.319 | 0.5214 | 0.2621 | 0.0206 0.435 | 0.1020
Where

1. 3D : 3D-Elasticity Solution [57]
2. FEM4 : Present work with 4X4Q mesh
3. FEM2 : Present work with 2X2Q mesh
4. FSDT4 : First Order Theory with 4X4Q mesh [1]
S. FSDT2 : First Order Theory with 2X2Q mesh [1]
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6.6 PROBLEM 5: PLATE WITH SURFACE TRACTION

Plate with nonzero surface traction are not frequently found in the literature. In this
example, a cantilever plate with continuously distributed constant surface traction

and partially distributed constant surface traction are investigated.

A. isotropic plate with fully distributed constant surface traction

The geometry, loading condition and material properties of an isotropic plate is

shown in the figure below.

I

E=3.0x10°psi, v=0.0, L=20", B=1.0", 2c=1.0", =6 psi
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The finite element mesh used in this problem is the same as in Problem 1. The exact

solution of the problem from Ref. [63] is listed below :

(i) at point A: ¢, = —ctL ; Ty=0
(ii) at point B: g, = ZEL P Ty =T

Stress comparisons are listed in Table 6.10. The excellent agreement of analytical

solution and current work solution validates the stress recovery technique developed

in this work.

Table 6.10 Stresses of an isotropic plate with full surface traction

Location o, (psi) t,, (psi)
Exact | FEM Exact | FEM

Point A 480.0 | 480.01 | 6.0 6.0

Point B =240.0 | -240.01| 0.0 0.0
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B. isotropic plate with partially distributed constant surface traction

The geometry, loading condition and material properties of this plate are shown in

the figure below,

-
<

|
1

BANNNNNNNNNNY

E=23.0x10° psi, v=0.0, L=20", B=1.0", 2c=1.0", t=6 psi, a=15"

Stresses computed in the current work are compared with those from ABAQUS pro-

gram in Table 6.11. In general, this table shows good agreement between these two

resuits.
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Table 6.11 Stresses of nonzero surface traction plate

x |y s, (psi) 7, (Psi)

(in) | (in) | FEM | ABAQUS| FEM | ABAQUS
0.5 120.0 | 1200 | 0.0 | -0.00108
025 | 750 | 75.0 | 0. 0.00024

10.0 | 0.0 30.0 | 300 | 0.0 | -0.00007
025 | 150 | 150 | 0.0 0.00049
-0.5 -60.0 | -60.0 | 0.0 | -0.00030
0.5 120.0 | 123.0 | 3.0 2.91
025 | 75.0 | 73.8 | 113 | 0.465

15.0 | 0.0 30.0 | 291 | 00 | -0.843
025 | 150 | 143 | -0.38 | -1.03
-0.5 -60.0 | -59.0 | 0.0 | -0.092
0.5 720 | 720 | 6.0 5.79
025 | 450 | 450 | 25 0.946

17.0 | 0.0 300 | 18.0 | 0.0 | -1.69
025 | 90 | 9.0 |-075 | 204
-0.5 -36.0 | -36.0 | 0.0 | -0171

NOTE:

1.FEM is present work with free end vertical deflect. = -0.003525 in.
2.ABAQUS free end vertical deflect. = -0.0035259 in.

3.Both FEM and ABAQUS yield ¢, = 0.0 through out the whole plate.



C. composite plate with partially distributed constant surface traction

The geometry, loading and finite element meshes used in this composite plate are
the same as in case B. The lamination scheme used is [0/90/0} with following material

properties of a layer :

E, = 25.0ES psi, £, =E, =1.0E8 psi,
G, = G, = 0.5E6 psi, G,, = 0.2E6 psi, Vi =V =V, =0.25

The ply thicknesses are assumed to be h, = h, = 0.25in, h, = 0.5in.

Stresses from the present work are compared with those from ABAQUS in Table 6.12.
{n general, a good agreement between these two results is noted, except at the
lamina interfaces, where the in-plane stress of cu}'rent work is discontinuous (as it
should be) and that of ABAQUS is continuous. This is because ABAQUS computes
average stresses [60] at lamina interfaces even for in-plane stresses (which are dis-

continuous at interfaces).

The transverse shear stresses of Table 6.11 and Table 6.12 are plotted in Figure 6.9,
where current work results fit the boundary condition better and form more smooth
stress curve than the ABAQUS results. The discrepancy between the current results
and ABAQUS resuits is most likely due to the fact that the mesh used in ABAQUS is
not fine enough to generate accurate results, which further proves the computational

efficiency of current work.
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Table 6.12 Stresses of nonzero surface traction composite plate

X y o, (psi) T,y (PSi)
(in) (in) FEM ABAQUS| FEM ABAQUS
0.5 160.77| 160.00 | 0.0 0.00544
0.375 | 135.00| 134.00 | 0.0 0.00007
0.25 109.23| 56.60 0.0 -0.00286
0.25 4.32 | 56.60 0.0 -0.00288
10.0 | 0.0 2.30 2.31 0.0 0.00016
-0.25 0.29 3.4 0.0 -0.00053
-0.25 6.82 3.41 0.0 -0.00059
-0.375 | -18.63 | -19.00 | 0.0 -0.00004
0.5 -44.58 | -44.00 0.0 0.00113
0.5 97.94 | 96.10 6.00 5.72
0.375 82.11 | 80.60 3.50 2.43
0.25 66.28 | 33.9 1.40 | -0.794
0.25 257 | 33.9 140 | -0.794
17.0| 0.0 1.38 1.37 0.22 | -0.905
-0.25 0.18 1.99 | -0.31 -1.06
-0.25 4.57 1.99 | -0.31 -1.06
-0.375 | -10.46 | -11.4 -0.36 | -0.678
0.5 -25.48 | -26.6 0.0 -0.203
NOTE:

1.FEM is present work with free end ve
2.ABAQUS free end verticai deflect. =

rtical deflect. = -0.0015993 in.
-0.0016091in.
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6.7 PROBLEM 6 : CYLINDRICAL SHELL ROOF

SUBJECTED TO SELF-WEIGHT

An open circular cylindrical shell panel, supported at its two ends by rigid
diaphragms (i.e. walls) and has its longitudinal edges free, is subjected to
gravitational load due to its own weight. This problem has been investigated exten-
sively by many researchers [64,65,66,67,68,69] and constitutes a standard test prob-
lem for the verification of shell elements. The geometry, loading and finite element

meshes used in this work are shown below:

W

Supproted by
rigid diaphragm

g =90ib/ft?

Free edge

2x2Q8 3x3Q8 4x4Q8

Meshes used
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Two different material shell roofs are investigated.

A. isotropic shell roof

The material properties of this shell roof are taken to be E=3.0E6 psi and v =0.0,
which are the same values used in Ref. [68]. The 3x3Q8 mesh (3x3 mesh of quadratic
eight-node element) results of current work are compared with the exact solution [68]
in Table 6.13, which shows very good agreement. The results of different mesh sizes
of current work are plotted in Figure 6.10 for comparison with the analytical solution
due to Gibson’s series [68]. The agreement of the present solution with the exact
solution for different mesh sizes verifies the shell element stiffness matrix formu-

lation.
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Table 6.13 Deflections of an isotropic shell roof

Angle | W(ft) at mid-span V(ft) at diaphragm

(degree)| Exact FEM Exact FEM

0 0.043745 | 0.045912 | 0.000248 | 0.000174
6.67 0.028776 | 0.030570 | 0.000712 | 0.000567
13.33  |-0.013887 | -0.013380 | 0.001820 | 0.001823
20.0 -0.077860 | -0.078810 | 0.002719 | 0.002744
26.67  |-0.153944 | -0.156190 | 0.002004 | 0.002057
33.33  1-0.232743 | -0.234480 | -0.002268 | -0.002131
40.0 -0.308609 | -0.307203 | -0.012611 | -0.012654

NOTE :

1. EXACT is the exact solution obtained from Gibson’s series
for fifty terms[68].

2. FEM is present work with 2x2 integration as recommended by
Zienkiewicz[65].
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V(it) at diaphragm

W(ft) at mid-span

0.0087
-0.000
-0.005
— Exact
a 2x2Q8
-0.010]
v 3x3Q8
° 4x4Q8
-0.015 -
0 10 20 30 40
ANGLE(DEGREE)
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|
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~0.12]
-0.221
) 10 20 30 40

ANGLE{DEGREE)

Figure 6.10 Deflections of an isotropic cylindrical shell roof
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B. [aminated compgsite shell roof

The geometry and boundary conditions are the same as in case A. The lamina

properties used are :

E, = 25.0x10° psf, E,=E,= 1.0x10° psf
Gy, =Gy, = 0.5x10° psf,  G,, = 0.2x10° psf

Vip = Vo3 = Vpy = 0.25

Lamina thickness is ¢= 0.05f¢
Loading due to gravity is g=9.0 Ib/ft.

The stacking sequence is [0/0/0/45/-45/90/90/90/-45/45/0/0/0].

The displacement of the 4x4Q8 resuits of current work are listed in Table 6.14 for fu-

ture comparison. To examine the effect of mesh, three different meshes are used and

the results are plotted in Figure 6.11.
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Table 6.14 Deflections of a composite sheil roof

Angie W(ft) at mid-span | V(ft) at diaphragm
(degree)

0.0 -0.0364529 0.0036092

5.0 -0.0382482 0.0035227
10.0 -0.0435197 0.0032598
15.0 -0.0517973 0.0027117
20.0 -0.0623128 0.0017436
25.0 -0.0741705 0.0001425
30.0 -0.0865092 -0.002416
35.0 -0.0886092 -0.006234
40.0 -0.1100042 -0.0121372
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0.005

V(it) at dlaphragm
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Figure 6.11 Deflections of a laminated composite shell roof
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6.8 PROBLEM 7 : THICK CYLINDER UNDER PRESSURE

The conventional way of analyzing a pressurized vessel is to use a 3D solid element

to de*ermine the radius stress (i.e. transverse normal stress in shell element). This

approach requires larger amounts of computer memory and computational time. This

approach would become very combersome when the vessel is made of laminated

composite materials. in this example, the 2D continuum-based shell element is used

to test the accuracy of the solution. The radial and circumferential stresses from the

2D elasticity soiutions are given by

2 2 2
P a po b
9r=""3 bzm-r?) : 2 =3
2 2 2 2
p/ a poa b
oy = 1+ ) (1+—
0 22 2 2 2% — b2 -2
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The geometry, lcading and material properties of this problem are presented in the

figure below.

g9

g

Stresses due to

internal pressure

-Po 2p?
=Py 22 — b2 \
4 a® + b?
I “Fo a — p?

Stresses due to external pressure

a = 22.5in, b

17.5 in, E= 1.0x107 v=20.3

NUMERICAL RESULTS 109



Three different cases of pressurizations have been considered here.

(i) internal pressure P, = 5.0 psi

The stresses due to internal pressure are listed in Table 6.15 and plotted in Figure

6.12 for comparison.

(ii) external pressure P, = 2.0 psi

The stresses due to external pressure are listed in Table 6.16 and plotted in Fig-

ure 6.13 for comparison.

(ii) internal pressure P, = 5 psi and external pressure P, = 2.0 psi

The stresses due to internal pressure and external pressure are listed in Table

6.17 and piotted in Figure 6.14 for comparison.

From Tables 6.15, 6.16 and 6.17 and Figures 6.12, 6.13 and 6.14, it is found that the
transverse normal stresses (o,) predicted by current work are in good agreement with
the analytical solutions. However, the transverse shear stresses (o,) present about
10% to 50% discrepancy from the analiytical solutions. The possible reason for this
discrepancy is that in 2D shell element approach the surface pressure is loaded in the
mid-surface instead of the actual pressurized surface(s) which would enlarge the
hoop stress in case of internal pressure loading and would reduce the hoop stress in
case of external pressure loading. Based upon this explanation, it is understood that
the FEM hoop stresses of Table 6.15 and Figure 6.12 are all greater than the analytical
values. In this case, pressure is applied on the mid-surface instead of the inner sur-

face of the cylinder which gives a larger membrane force resulting in a larger hoop
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stress discrepancy. This discrepancy is expected to be small in a thin curve shell

analysis.

In spite of the said hoop stress discrepancy, the resuits for the transverse normal
stress (o,) through the wall-thickness of a pressurized curve thick-wall vessel by a
single shell element are very good. Usually, this can only be achieved by a multi-

layer solid element simulation.
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Table 6.15 Stresses due to internal pressure

r e, (psi) e, (psi)

(in) FEM | Eqn.2 FEM Eqn.1
225 20.01 | 15.315 0.0 0.0
21.875 | 20.10 15.756 -0.21 -0.444
21.250 | 20.34 16.240 -0.78 -0.927
20.625 | 20.68 16.768 -1.58 -1.455
20.000 | 21.08 17.346 -2.50 -2.034
19.375 | 21.47 17.981 -3.42 -2.669
18.750 | 21.81 18.681 -4.22 -3.369
18.125 | 22.06 19.455 -4.79 -4.142
17.500 | 22.15 20.313 -5.0 -5.0

NOTE : FEM is present work with 2x2Q8 mesh.
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Table 6.16 Stresses due to external pressure

r o4 (Psi) o, (psi)

(in) FEM | Eqn.2 FEM | Eqn.1
225 -7.14 | -8.125 -2.000 -2.000
21.875 | -7.18 -8.303 -1.91 -1.823
21.250 | -7.28 -8.496 -1.69 -1.629
20.625 | -7.42 -8.707 -1.37 -1.418
20.000 | -7.57 -8.938 -1.00 -1.187
19.375 | -7.73 -9.193 -0.63 -0.932
18.750 | -7.87 -9.473 -0.31 -0.653
18.125 | -7.96 -9.782 -0.09 -0.343
17.500 | -8.05 -10.125 0.0 0.0

NOTE: FEM is present work with 2x2Q8 mesh.
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Table 6.17 Stresses due to inner pressure and external pressure

r | o (psi) s, (psi)

(in) FEM | Eqn.2 FEM Eqn.1
22.5 12.86 7.188 -2.0 -2.0
21.875 | 12.92 7.454 213 -2.266
21.250 | 13.06 7.744 -2.47 -2.556
20.625 | 13.27 8.061 -2.95 -2.873
20.000 | 13.50 8.408 -3.50 -3.220
19.375 | 13.74 8.789 -4.05 -3.601
18.750 | 13.95 9.209 -4.53 -4.021
18.125 | 14.09 9.673 -4.87 -4.485
17.500 | 14.15 10.1887 -5.0 -5.0

NOTE : FEM is present work with 2x2Q8 mesh.
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STRESSES DUE TO INTERNAL PRESSURE
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X g, current work
. 40 A e, current work
—_———— ¢, Analytical
35
—_— o, Analytical
30 j
ZJ. J( X X X
a 20 - X X X
; - ——— - —~— - —
15
10

(9]}

o

]

|
a
:

17.5 18.5 19.5 20.5 21.5 22.5
THICKNESS(IN)

Figure 6.12 Stresses due to inner pressure
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STRESSES(PSI)

STRESSES DUE TO EXTERNAL PRESSURE
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Figure 6.13 Stresses due to external pressure
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STRESSES DUE TO PO AND PI

30
.4 g, current work
A o, current work
257
—_—— a, Analytical
o. Analytlcal
201
15
X X b X
107 ———~— _
\ -
\
\ - -\
5 1
0 e
.\
A
o A
-5& S r .
17.5 18.5 19.5 21.5 22.5
THICKNESS(IN)

Figure 6.14 Stresses due to inner pressure and external pressure
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6.9 PROBLEM 8 : NONLINEAR BENDING OF AN

ISOTROPIC PLATE

Nonlinear bending of a clamped isotropic square plate subjected to top surface uni-
form pressure is investigated to verify the the nonlinear capability of current work.
The geometry, loading, material properties, finite element mesh and nondimensional
vertical deflection at the center of the plate are shown in Figure 6.15. The dispiace-
ment of current work are smaller than the analytical solution. This is due to the nu-
merical displacement-hardening error introduced by the modified Newton Raphson

method [79].
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Figure 6.15 Bending of a clamped isotropic square
plate under uniform normai pressure
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6.10 PROBLEM 9 : NATURAL FREQUENCIES OF

SPHERICAL SHELL

The analytical solution for the nondimensionalized fundamental frequencies of a
cross-ply laminated Sander’s type sphericai shell are available in Ref. (71,1}, in
which, a simply supported spherical shell panel is analyzed. The geometry and ma-

terial properties are shown in the figure below :

E,=25.0x10° psi, E,=E;=1.0x10°psi, G, =G, = 0.5x10° psi,

Gy = 0.2¢x10% psi, v, = v, =v,, =0.25
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The nondimensional fundamental natural frequencies of the current work(FEM) are
compared with those of the first-order shear deformation theory (FSDT) and higher
order deformation theory (HSDT) in Tabie 6.18 for a wide range of radius-to-panel
length ratio. .The good correlation of FEM result to the FSDT result verifies the mass

matrix developed in current work.
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Table 6.18 Nondimensional fundamental frequency of spherical shells

R/a Method 0/90/0/ 0/90/90/0

FEM 13.007 13.067

10 FSDT 12.215 12.280

HSDT 11.860 11.840

FEM 12.384 12.447

20 FSOT 12.176 12.240
HSDT 11.81 11.79

FEM 12.203 12.268

50 FSDT 12.165 12.229
HSDT 11.79 11.78

FEM 12177 12.267

100 FSDT 12.163 12.228
HSDT 11.79 11.78

FEM 12.169 12.233

PLATE | FsSDT 12.162 12.226

HSDT 11.790 11.780

NOTE: FEM is present work with 2x2Q8 mesh for quarter structure.
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6.11 PROBLEM 10 : COMPOSITE CYLINDRICAL SHELL

The geometry, loading and finite element mesh of a clamped cylindrical shell sub-

jected to internal pressure is shown below:

H
‘i}ii!f!f!f?

N

L4

\\\\\X\f AAAN
\\\\\\j A2311331131319
A

pebibbbies
A

\

R =20in,A = 20in,H = 1in, P, = 2.0403664 psi

The lamina properties are :

£, =7.5x10%psi, E,= 2x10%psi,

qu = 1.25X10’p$i. qu = qu = Gn, Vip =V = 0.25
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This model is used for both static and transient analysis. In Table 6.19, the center
deflections for orthotropic and two-layer (0/90) cross-ply shells are compared with

known solutions.

Table 6.19 Comparison of the Center Deflection (inch)

Lamination| Present Ref.[1] Ref.[72] Analytical[73]
Scheme Work 2x2Q8| 2x2Q9

0° 0.0003706 | 0.0003727 | 0.0003666 | 0.000367
0°/30° 0.0001841 | 0.0001803 —_— —

The center deflections of the same cylindrical shell subjected to an internali impulse
pressure of 5000 psi are shown in Figure.6.16, where results for both cross-ply and
antisymmetrical angle-ply composite shells are plotted. For the [0/90] cross-ply shell,
current work yields a slightly larger center deflection than that of Ref. [74]. However,
this discrepancy is within an acceptable range. This verifies the dynamic analysis

capability of current work.
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Figure 6.16 Transient responses of a two-layer clamped
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CONCLUSIONS AND RECOMMENDATIONS

7.1 SUMMARY AND CONCLUSIONS

in summary, following important goais have been achieved in this work :

(i} A continuum-based shell element is developed with Updated Lagrangian
formulation.

(i) Nonzero surface boundary conditions and interlaminar shear stress continuity
conditions are satisfied.

(iii) The analytical integrations through shell thickness are explicitly formulated.

(iv) Transverse normal stress is included thus completing the stress field
computation.

(v) Computational efficiency is increased by the stress enhancement technique.

The transverse shear stresses are also accurately obtained in such a way that the

interlaminar shear stress continuity conditions are fully satisfied and peak values of

the transverse shear stresses can be located in an inexpensive manner. These rep-
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resent very important achievements in the analysis of laminated composite shell

structures.

The purpose of structural analysis is more than just to understand its mechanical re-
sponses, but also to make an accurate failure/fatigue evaluation such that design
changes can be made to ensure the required mechanical functions are performed
safely. Since the most commonly used failure criteria are stress-based criteria, it is

important to determine the stress field accurately.

However, as stated in the literature review and demonstrated in Chapters 4,5 and 6
of this work, the classical plate theory, first order shear deformation plate theory and
some other higher order shear deformation theories either ignore the normal stress
or yield often inaccurate transverse shear stresses and fail to satisfy the nonzero
surface traction boundary conditions. All the above mentioned theories could not

provide an accurate description of the complete stress field.

The newly assumed displacement field and stress recovery technique developed in
this work are able to provide a simple and effective tool for a complete and accurate
stress field evaluation, which may represent an .important contribution to shell finite

element development.
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7.2 RECOMMENDATIONS

As clearly stated in se_ction 4.3, the whole solution strategy of this work is a refined
displacement and stress recovery procedure based on the first-order shear defor-
mation finite element. The transverse deformation parameters a,, 8, by, by, ¢, and ¢,
are ignored from the kinematics conditions (equation 4.9 and 5.15) and are recovered
during the post-computation (equation 4.18 and equation 5.41), after the averaged
displacement components have been computed. Therefore no improvement is ac-
complished over the existing first-order theory displacements and natural frequen-
cies, but stresses are improved cosiderabiy. As an extension of this work, one may
try to apply this technique to the higher order shear deformation theory proposed by
Reddy [5,6] or put the transverse deformation parameters a, a,, b,, b,, ¢, and ¢, into the
kinematics conditions (equation 4.9 and 5.15) and soclve for them directly. Of course,

the latter requires much more computational effort.

In addition, one may perform the first-ply and post-first-ply failure analysis using the
more accurate stress field obtained by the present work. Comparing with the same
failure analysis performed with FSDT stress field, early failure is expected for any
surface pressurized or contacted shell structure such as a muiti-layer automobile tire
or high speed flying missiles made by laminated composite materiais. In these cases,
pressurization and surface tractions are significant loads, thus transverse normal
stress and nonzero transverse shear stress exist in both cases. If this is true, the
first-ply failure analysis based upon the FSDT stress field can not provide a conserv-

ative design criterion to any laminated composite structure.
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APPENDIX A

SHELL LINEAR" STIFFNESS

Kys = AuPiss + ApPoizy + AuPin + AsPae + APt
+ Ax(Pains +Purar) + AsglPsiny +Prsi) + Ags(Psrzr +Parse) + Aus(Piaar +Pja)
Ky = AuPise + ApPoz + AuPus + AsPae + AsPsis:
+ A(Paiz +Puizg) + Ag(Psire +Piss) + Ass(Pstzz +Pavse) + Aus(Pisse +Pyi)
Kia = APiiss + ApPras + AuPriss + AP + AssPsiss
+ APy +Purzs) + Aie(Psns +Poisa) + Aw(Piizs +Pass) + Aus(Pasas +Paras)
Ko = AyPiise +AsP o
+ BiPrizs + BiaPrizs + BrsPriss + Bys(Passs +Psizs) + BssPsiss
Kis = AisPaiis +AssP s
+ ByPisr + BioPany + BusPosss + Bis(Ps1zr +Pusss) + BegPsisr
Koo = APz + ApPoz + AP + AsPaw + AgPes
+ Ae(Prrz +Piza) + Aig(Pazre +Przsa) + Ass(Pszaz +Piass) + Aus(Pasz +Pizec)
Ko = AuPrags + APy + AuProy + AssPiaa + AP
+ APa2is +Piaza) + Ag(Psars +Pizss) + As(Pszes +Passa) + Aus(Pizss +Pizas)
Koo = AuPross T AP 231
+ Bi:Pisss + ByoPass + B16Puass + Bas(Paass +Psazs) + BesPss
Kis = AP ross +AssP s
+ BPiair + BuPay + ByPrs + Brs(Psay +P1as1) + BesPessy
Ky = AuPiaiz + ApPrgs + APy + AssP g + AP
+ Au(Pas +Pigas) + Arg{Psars +Puass) + A(Peszs +Puss) + AusPaass +Pagss)

ku = AuPi +AP 4331
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+ B12Piss + BaPasss + BisPirsss + Bas(Passs +Psuzs) + BssPiass
Kos = AusPiaes +AssP s

+ B1Prair + BioPasir + BysPassy + Bug(Psyr +Pissy) + BigPsssy
Ku = APy +D2Posss + Dis(Prsss +Psszs) + DesPsss
Kas = AusPrus +D1Pos1r + DisPrsss +DosPassy + DesPegsy

k55 = A55P4545 +D11P1717 + DﬂS(P5717 +P1757) + DGBP5757

Where the symbol P,,, represents the integration of P to P/ over the element

surface,i.e.

Pimn = fAPLt Pi, dx,dx,
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APPENDIX B

P VECTORS
(3,3 0 o @ [Phrhes 0 o] (&)
Q2 @r 0 0 Q| |Ph P Ply 0 O v
Ple=]0 0 Q@G 0| [PypPyrPhry, of (W
0 0 Q5 Q5 0| [Py PlaPly O Pis| |6
6‘:(65;6 c 0 C—Pge Pé1 P/szpéa 0 0 Kelzj
- Tk Tk k

((51‘(2’926 + Qy6Pse)0) + (@f4Pyr + 511{6,_357)0/2\
(@22P2s + QpPse)0 + (QUoPy7 + QpePsr)6h
{p é kK = < 0

0

\(5;6,326 + 5gspss)‘9l1 + (51‘(5/317 + agspsﬂejz/

CONCLUSIONS AND RECOMMENDATIONS 131



APPENDIX C
SHELL NONLINEAR STIFFNESS

ki = Ef(Qins +Qurar +Qir1) + E(Qorar +Qorsr +Qsrar) + Ea( Qarer +Qarar +Qursy +Qurs)
+ Es(Qarr +Qyizr +Qorar +Qursr +Qurr +@riar) + Eo Qurnr +Qragy +Crrer +Qurgy)

kiz = Ef Qi +Quriz +Qr172) + Eo Quraz +Qs1s2 +Qu162) + Eo(Qurze +Quosz +Qsrsp +Qsree)
+ Es(Qonnz +Qivze +Qs1iz +Qussz +Qurre +@r1sz) + Eo(Quire +Quraz +@rez +Quree)

Kia = E\(Quiny +Quria +Qrrra) + Ef Qurag +Qursy +Qutss) + Ex(@a1zs +Qirsz +Qeres +Q153)
+ E(Qa11s +Qurzs +Qs1is +Quiss +Qurrs +Qr1g3) + EQuirs +Quras +Qsres +Qures)

kee = E\(Quze +Quziz +Qrar) + E{ Quzzz +Qizsz +Quzez) + Ea(Quzar + @z +Queo +Qe2s2)
+ E5(Qarre +Quzze + Qs +Quzsz +Quzre +Qrasz) + Eo( Quzre +Quzz + Qe +Quee)

Koy = Ex(Quars +Quzia +Qrzr) + Eo( Quzs +Qiszss +Quzas) + Eo Quzzs +Quas +Quons +Quzsa)

+ Es(Qoars +Quzzs +Qsz03 +Quzss +Quzrs +Qraa) + Eo Quzrs +Qizas + Qe +Quss)

kyg = Ef(Qusrs +Quais +Qrar2) + Eo( Qurzs +Quass +Quss) + Ex(Quzzs +Qiazs +Qesss +Quass)
+ Ex(Quns + Qs +Qsss +Qussy +Quzrs +Qrasa) + Eu(Quprs +Quzas + Quaag +Quses)

Kis = FiQuras +F1Qurss + Fs(Qsras +Qurse) + EsQsres +EQurss + FiQurss +FiQsres

Koe = F1Qupas +F1Qsass + Fo(Qszas +Quzss) + EsQszss +EQuzgs + FiQszs +F.Quzes

ke = FiQusis +FrQs1s6 + Fo(Qezeg +Quzse) + EsQszsa +EQues + F3Qsass +FiQsnis

ks = Fi\Qusr +FoQuuzr + Fs(Qurzr +Qurry) + EsQpras +ECQrias + FiQurzr +F Qyrns

kys = FQuary +F Qa7 + Fs(Quazr +Quovs) + E1Qupus +EQuzzs + F1Quzer +FQupss

kys = F\Quy1y +F.Quuz + Fo(Quazr +Quarr) + ExQupss +EQunss + FiQusr +FeQastr

k= G1Qupus +G,Qsess + G Qoses +Qusss) +F3(Qsese +Qusss) + Fu Quese +Qiess)

Kis = G, Qus2r TG s(Qiss7 +Qusar)

k55 = GWQWU +GZQZTZ7 + GS(OZHT +Q1727) + FJ(QZTSS +QSSZ7) + F-t(QH’BS +Q’1517)
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Where the symbol Q,,,, represents the integration of ¢' to g’ over the element

surface,i.e.

Qumn = fAQ/'u Ghn dX,0X,
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APPENDIX D

SHELL CONSISTENT MASS MATRIX

My = Iy [&,0,(VieVi, + Viuvh, + viivi,) dx,dx,
My = Iy [O.B,(VieViy + ViVl + ViiVi,) dX,dX,
My = Iy [O,0(ViVis + Vivhy + Vivhs) dx,dx,
My = 1y [&,0(VigViy + vip¥hy + vgzvgj) dx,dx,
My = Iy [G.0 (VigViy + VigWhy + Vigvh,) dx,dx,
My = 1, [O,0,(VigWy + Vig¥iy + Vig¥t,) dx,dx,
My = Iy [&,0,(Vighy + Vighy + vigWi,) dx,dx,
My = 1y [0 ,(VigVhy + VigVip + Vigvi,) dX,dx,
My = Iy [0,0,(VigViy + ViaVhs + Vigvhy) dx,dx,
My = —h [6.6,v4 dx,dx,

mys = 1, f‘b:‘ﬁ,vh dx,dx,

My = —1, f(b.‘ijéz dx,dx,
My = |, f‘ﬁ:d’,vﬁ ax,dx,
My = —1 f‘b&f’,vés dx,dx,

Mys = b, [&,0,vi; dx,dx,
My = —h [¢.0w, dx,dx,
My, = I, [&,0,v4, dx,dx,
Mo = —l, [&.0,v4, dx,dx,
My = b [&,0,vi, dx,dx,

1, f(b,(f’,‘/és dx,dx,

My

I, [ &, dx,0x,

Ms;

CONCLUSIONS AND RECOMMENDATIONS 134



My = I; [6,6, dxdx,
mg =0

Mss = Iy fd’:d’, dx,dx,

Where ¢, is the shape fuction of node i.
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