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(ABSTRACT)

In this work, a finite element formulation and associated computer program is

developed for the transient large deformation analysis of Iaminated composite

plate/shell structures. ln order to satisfy the plate/shell surface traction

boundary conditions and to have accurate stress description while maintaining

the low cost of the analysis, a newly assumed displacement field theory is ·

formulated by adding higher-order terms to the transverse displacement

component of the first-order shear deformation theory. The Iaminated shell

theory is formulated using the Updated Lagrangian description of a general

continuum·based theory with assumptions on thickness deformation. The

transverse deflection is approximated through the thickness by a quartic
Q

lolynomial of the thickness coordinate. As a result both the plate/shell surface

tractions (including nonzero tangential tractions and nonzero normal pres-

sure) and the interlaminar shear stress continuity conditions at interfaces are

satisfied simultaneously. Furthermore, the rotational degree of freedoms be-



come layer dependent quantities and the laminate possesses a transverse

deformation capability(i.e the normal strain is no longer zero).

Analytical integration through the thickness direction is performed for both the

linear analysis and the nonlinear analysis. Resultants of the stress Integrations

are expressed in terms of the laminate stacking sequence. Consequently, the

laminate characteristics In the normal direction can be evaluated precisely and

the cost of the overall analysis is reduced. The standard Newmark method and

the modified Newton Raphson method are used for the solution of the nonlin-

ear dynamic equilibrium equations.

Finally, a variety of numerical examples are presented to demonstrate the va-

lidity and efficiency of the finite element program developed herein.
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INTRODUCTION

1.1 MOTIVATION

Composite materials have increasingly been accepted as ideal materials in the high-

performance but weight-sensitive structures such as space vehicles and automobiles.

This is due to the high strength—to-weight and high stiffness·to-weight ratlos offered

by composite materials. Larnlnated composite materials consist of two or more Iayers

of different materials so as to achieve desired structural properties. Since laminated

composite are made of different material layers, the material property is discontin-

uous through its thickness. The material miss-match across the Iaminate interfaces,

bending-stretching coupling, and geometric nonlinear effects make the analysis of

composite structures very complicated. Consequently, the old design procedures.

traditional analysis methods and experimental experience obtained from isotropic

materials can not be applied to composite materials directly. New design procedures,

analysis methods and testing techniques should be developed to ensure the integrity

of laminated composite structures.

iwrnopucvion 1



Composite laminates place special kinematic modeling requirements because of

their low modulus transverse to the plane ofthe laminae. The Kirchhoff plate theory,

known as the classical Iaminate theory, underestimates the deflections and over

predicts the natural frequencies and critical buckling loads [1]. The first-order shear

deformation theory (FSDT), known as the Mindlin plate theory, gives excellent results

for global response characteristics, such as displacements, natural frequencies and

buckling loads. But this theory yields very poor results for the interlaminar shear

stresses. The interlaminar shear stresses obtained from FSDT through the

constitutive relations are discontinuous across the laminar Interfaces [1]. Obviously

these results can not satisfy the Iamina Interface continuity conditions and the equi-

librium conditions, which are the major sources of layer debonding/delamination as

proved by many micromechanics studies [2,3] of composite materials. The well-

known free edge effect [4] is a good example of this category.

Many refined higher order shear deformation theories [5,6] were introduced to im-

prove this defect. For instance, the most recent and probably the most advanced one

is the Generalized Laminated Plate Theory (GLPT) developed by Reddy [7] and ad-

vanced by his colleagues [8]. This theory is based on an assumed layer-wise dis-

placement field, and it yields accurate stresses, including the interlaminar shear

stresses. However, nonzero plate/shell surface boundary conditions are not com-

_ monly satisfied by the existing theories in the literature. Furthermore, these theories

often neglect the transverse normal stress.

lgnoring normal stress may not introduce any significant error in the linear analysis.

However, in nonlinear analysis the situation is quite different; the tangential stiffness

and the out~of·balance force vector are stress dependent quantities. lgnoring the
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normal stress together with the unrealistic distribution of the in·plane shear stresses

will slow the numerical convergence and yield less accurate results. Because of this

reason there exists a need for an improved theory which can relax the Kirchhoff as-

sumptions completely. Also, all plate and shell theories are based on certain as-

sumptions concerning kinematics and/or ztress distributions. In a continuum-based

theories such assumptions are not required. Motivated by these observations, the

present study was undertaken to develop a continuum-based shell finite element that

accounts for transverse stresses, nonzero surface tractions, and large deflections.

The literature reviewed in the next section forms a background for the present study.

1.2 LITERATURE REVIEW
’

The earliest need for shell structure design probably came with the development of

the steam engine. However, it was not until 1888, that the first general theory was

presented by Love. Surveys of various classical shell theories can be found in the

works of Naghdi [9] and Bert [10,11]. These theories, known as the Love’s first ap-

proximation theories [12], are expected to yield sufficiently accurate results when (i)

the thickness-to—span ratio is small; (ii) the dynamic excitations are within the low-

frequency range; (iii) the material anisotropy is not severe. However, application of

such theories to layered anisotropic composite shell could lead to as much as 30%

or more errors.

iN‘rRo¤ucTloN 6



Ambartsumyan [13,14] was considered to be the first one to analyze Iaminates that

incorporated the bending·stretching coupling. ln 1962, Dong, Pister and Taylor [15]

formulated a thin Iaminated anisotropic shells theory. Cheng and Ho [16] presented

an analysis of Iaminated anisotropic cylindrical shells using Flugge’s shell theory

[17]. The first approximation theory for the unsymmetrical deformation of nonhomo-

geneous, anisotropic, elastic cylindrical shells was derlved by Widera [18,19]. An ex-

position of various shell theories can be found in the article by Bert [20].

The effect of transverse shear deformation and transverse isotropy as well as thermal

expansion through the shell thickness were considered by Gulati and Essenberg [21]

and Zukas and Vinson [22]. Dong and Tso [23] presented a theory applicable to lay-

ered, orthotropic cylindrical shells. Whitney and Sun [24] developed a higher order

shear deformation theory. This theory is based on a displacement field in which the

displacements in the surface of the shell are expanded as linear function of the

thickness coordinate. Reddy [25] presented a shear deformation version of the

Sander’s shell theory for Iaminated composite shells. As far as the finite element

analysis of shells is concerned, the early works can be attributed to those by Dong

[26], Dong and Selna [27], Wilson and Parsons [28], and Schmit and lvlonforton [29].

The studies of those works are confined to the analysis of the orthotropic shells of

revolution. Other finite element analyses of Iaminated anisotropic composite shells

include the works of Panda and Natarajan [30], Shivakumar and Krishna l\/lurty [31],

Rao [32], Seide and Chang [33], Venkatesh and Rao [34] and Reddy and his col-

leagues [35,36.37,38], among others.

Geometrically nonlinear Iaminated composite structure finite element analysis has

recently been studied by quite a few researchers. For instance. Noor and his col-
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leagues [39,40,41] investigated the static response of a nonlinear shell via mixed

isoparametric elements. Chang and Swamiphakdi [42] presented a updated

Lagrangian formulation of 3D degenerated shell element for geometrically nonlinear

bending analysis of laminated composite shells. However no numerical results are

given to laminated shell in their examples. Chao and Reddy [43] presented a total

Lagrangian formulation for a 3D degenerated shell with application to composite

shells. Liao and Reddy [45] extended the work done in [44] to develop a solid·shell

transition element for geometrically nonlinear analysis of laminated composite

structures [45].

ln reviewing finite element applications, three approaches are used for analyzing a

plate/shell type structures. The first one is the 2D shell element approach. For in-

stance, Reddy [46] presented a generalization of Sander’s shell theory(1959) to lami-

nated, doubly curved anisotropic shell. ln this approach, a well developed plate or

shell theory ls adopted. Through—the-thickness analytica! integration together with the

plate/shell assumptions reduce a 3D continuum field problem to a 2D one such that

problems can be solved in a relatively simple and efficient way. However since a

predefined plate/shell theory is being used, the geometrical shape can not be chosen

arbitrarily. Only the theory specified shape can be used (to fit the theory) in this ap-

proach. Thus the application of this approach is limited. The element based on

Sander’s doubly curved shell theory is good for a plate surface, a cylindrical surface

or a spherical surface. But it may not be good for a twisted surface or a distorted

surface [1,47]. Another shortcoming of using this approach to a general three dimen-

sional shell structure is the stlffness matrix transformation problem. ldeally, one can

divide a general three—dimensional shell structure into a series of flat, cylindrical or

even doubly curved surfaces such that plate element, cylindrical element and curved
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element can be used to simulate their corresponding surfaces. However, a fictitious

rotational stiffness should be lntroduced [47] in element stiffness assembly. Research

conducted by Greene, Stome and Weikel [48] indicate that the accuracy of the analy-

sis is controlled by the size of the fictitious rotational stiffness [47]. This means an

iteration procedure should be used to decide the fictitious rotational stiffness before

a final answer can be accepted. This shortcoming plus the increase of the problem

size (from a 5-dof problem to a 6-dof problem) makes this approach almost impracti-

cal for a transient nonlinear structural analysis of a general three-dimensional shell.

But it ls a very ideal tool for structures which can nearly maintain its shape to the

theory specified shape.

The second approach is to model shell with three-dimensional elements [49]. No

particular plate/shell theory is followed in this approach. However, in this approach

numerical integrations must be performed in all three dimensions. This shortcoming

plus the high cost of a 3D modeling makes this approach relatively expensive, pre-

cludes its use in most composite structural analysis.

The third approach is the degenerated 3D approach. Ahmad [50] was considered to

be the first one using this approach. lt is called a degenerated 3D approach because

a three-dimensional elasticity is degenerated to a 2D model [51]. ln this approach, the _

structure can be directly discretized using 2D finite elements without applying any

plate or shell theory. This feature coupled with the 2D finite element modeling enable

the 3D degenerate element (or continuum based 2D element) to solve most shell

structure. However, formulation ofthis approach is much complex than the other two.

This element also requires numerical integration in all three dimensions [50.51],

which means numerical integration through—the-thickness must be carried out. Re-
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cent research by Chao and Reddy [43] indicates that in this approach there may exist

a way to avoid the numerical integration through the thickness. Current work verified

this concept and extended it into geometric nonlinear formulation. Mathematical for-

mulations derived in section 5.3.2 of this work completes the required anaiytical in-

tegration quantities for Iaminated plate/shell structural analysis.

1.3 PRESENT WORK

The standard Kirchhoff assumptions are; (i) straight lines normal to the mid·surface

remain straight and normal after deformation, (ii) the displacement gradients are

small, (iii) the length of a normal remains unchanged, (iv) the effects of normal stress

are small and it can be neglected. Thus the classical plate theory does not account

for the transverse deformations. The first order shear deformation theory [FSDT] re-

moves the normality assumption. Consequently it accounts for constant state of

transverse shear stresses but does not satisfy the non-zero surface traction condi-

tions. The refined higher order shear deformation theory including the latest Gener-

alized Laminated Plate Theory can satisfy stress-free boundary condition and

continuous shear stress distribution through the thickness. However, Kirchhoff’s last

assumption is still not removed in these theories.

ln all the mentioned theories, improvements are made by adding higher order terms

to the in-plane displacements. ln this work, contrary to the traditional way, higher

order terms are added to the out-of-plane displacement. The purpose of doing so is

to relax the last two assumptions of Kirchhoff theory. As a result, boundary condi-
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tions on the plate/shell surfaces and the interlaminar shear stress continuity condi-

tions across the laminar interfaces are all satisfied simultaneously. ln applying this

new idea to the plate/shell structural analysis, the first order shear deformation the-

ory (FSDT) is adopted as a base line in the current work.

The goal of this research is to develop a finite element program for general dynamic,

geometrically nonlinear laminated composite structural analysis. This program has

three features.

1. Generality

A continuum based shell element approach is being used. Shape of the

shell ls not bounded by any plate or shell theory.

2. Computational Efficiency

Using FSDT as a base line, refined displacement and stress fields

are recovered. Thus the cost of the analysis is at the same level

as the FSDT analysis. Besides, the integration through the shell

thickness is performed analytically. Thus, the whole cost of analysis

is relatively low.

3. Completeness

Higher order terms are added to the out-of-plane displacement

component such that the surface boundary conditions and the

continulty conditions at the laminar interfaces are satisfied. As a

result, the rotational degree of freedom become layer dependent

quantities. This allows a more accurate description of the kinematics

lN‘rRo¤ucTioN 6



and stress state in a composite laminate.

The finite element form of the equations of motion is derived in Chapter 2. A review

of an orthotropic single-layer constitutive equations is presented in Chapter 3. in

Chapter 4, a new set of higher-order displacement field and a stress recovery iter-

ation technique are developed. This technique is used to recover the refined dis-

placement fields of each layer and to satisfy all the laminate surface boundary

conditions and the interface continuity conditions. ln Chapter 5, a continuum-based

shell element is developed for transient large deformation shell structural analyses,

and analytical integrations through the shell thickness is performed. Several illustra-

tive problems are presented in Chapter 6. Conclusions are presented in Chapter 7.

iN‘rRo¤ucTioN 9



2.1 UPDATED LAGRANGIAN FORIVIULATION

By means of the principle of virtual displacements, the Updated Lagrangian de-

scription of the motion of a continuous body, can be expressed as [44,45]

’v

where 8,, are the 2nd Piola-Kirchhoff stress components and 6,, are the Green-

Lagrange strain tensor components. The 2nd Piola—Kirchhoff stress tensor relates to

the Cauchy stress tensor 1 by

A
{P

Att+ t t z+ t
t S1) = t+ArXi,m Tmn Z+Atxj,!7 (22)

ö'x,
where p represents the material density, and ,,g,x,_,,

=EQUATIONSOF MOTION 10



The variation of the Green~Lagrange strain tensor ls

T z+iExz%J T z-t-étukvl z+azukJ) (2.3)

The applied load is

‘*^‘R
= I

’*‘ä,‘g"
au,

J’v+
f

’+‘§,’n
öuf dOA (2.4)

°v °A

when the loading is not a function of deformation, and

_ ‘+^'R= I
‘+‘§’rF

6u,Jv+
jl ‘+‘§·’r,

öuf dtA (2.5)’v
'A

lf the loading is a function of deformation. Here F represents the body force, and T

represents the surface traction.

ln case of transient analysis, by means of D’Alembert’s principle, the inertia force can

be included as a part of the body force by

- I
tp 'ü, 6u, Jv (2.6)’v

Hence, assuming that the applied loading ls a function of deformation, the equations

of motion for a large displacement and large rotation continuous body can be ex-

pressed in integral form

EQuArtons ot= Morton 11



I
tp ‘+^‘ü,

611,
d‘v+

öu, (2.7)’v
*v

’v
'A

2.2 INCREIVIENTAL DECOIVIPOSITION

The 2nd Piola-Kirchhoff stress components with respect to current configuration (time

= t ) can be expressed as

1 At _ z _+:Sq ‘ (SU T xs;) ‘ ITU T :81) (2-8)

where ;S,,EtT,,, *1,, are the Cauchy stress components and ,5,, are the incremental

stress components. The Green-Lagrange strains decomposed according to the

equaüon

1 T 1%,1 T zuk.1 zUk,)) = za) T :*71; = :81;

in which the following notation is used

1 _ 1and (2-9)

where ,6,, denotes the incremental Green~Lagrange strain components and ,e,, and

,1;,, denote the linear and nonlinear parts of ,6,,, respectively.

Recalling the stress and strain relationship ,5,, = ,C,,,,, ,6,,,, equation(2.8) can be written

as

EQuAT1oNs OF Motion 12



Herst] =
{T1}

+ tsv] tctjkl ts/rl

Substituting this expression and equation (2.9) into equation (2.7), one obtains

( ,„,, ¤+^*d, dd, d!V + ( ,6,,,,, ,6,, 6,6,, dtV + ( td, 6,,, oltV
tv tv tv

(2.10)
=

‘+^’R —
I *6,, 6,6,, 6*v’v

where **^*R is defined by either equation (1.4) or equation (1.5) depending on the

loading conditions, and *,0 = p,, = constant.

Using the approximation ,8,, 2 ,C,,,,, e,,, and 6,6,, 2 6,e,,, the equation of motion (2.10)

can be simplified to -

po
t+AtÜt

öui zcykl Lekiözeqtv
tv tv

(2.11)
=‘+^’R - I *6,, özG,, d’v’v

This is the incremental Updated Lagrangian description of the equation of motion that

a transient nonlinear continuum medium has to follow.

EQuArtons OF Morton 13



2.3 FINITE ELEMENT MODEL

Let

[H]= the displacement interpolation matrix ;

{u
•}

= nodal displacement vector of element "e"

d>, = shape function of nodalpoint{*1}

= stress vector (2.12)

[*1] = stress matrix

[L] = linear differential operator

[B]= [L][H] strain-displacement matrix

{6} = [B]{u ' } strain of any point inside element
"e”

{u}= displacement vector of any point inside an element i.e {u}= [H]{u = } ,then the

continuous incremental Updated Lagrangian description of equation of motion

equation (2.11) can be replaced by a discretized finite element model

um (2-16)

The consistent mass matrix is

[1/Vl]= f 0 EHJTU/J¤"V (2-14)
'v

The linear stiffness matrix is

(2-15)

EQUATIONS oi= motion 14



The nonlinear stiffness matrix is

[ZKM] = _|~ Eß~i.]T[‘rJ[;B~t]d”V (2-16)‘v

The stress induced reaction force is

vu} = f rßt1’t’=i¤‘v am
'v

EQUATIONS oi= Motion 15



SINGLE PLY CONSTITUTIVE REL/‘.TIONS

3.1 ASSUIVIPTIONS

The macroscopic view of composite material [57] generally assumes that there is

perfect bonding between the matrix and fiber, each ply is homogeneous and linearly

elastic. It has three elastic symmetric planes perpendicular to each other which re-

quires nine independent material constants to describe its constitutive behavior.

Also, it is assumed to be free from any manufacturing defect and residual stresses.

In this work, these assumptions are all accepted. Besides, the materiaI’s behavior

is examined only as an average apparent properties of the composite layer. The ef-

fects of thermal, molsture and viscoelastic influences are ignored.

siN<:i.E PLY CONSTITUTIVE Rsl.ATtoNs 16



3.2 MATERIAL PROPERTIES IN PRINCIPAL

COORDINATES

lt has been proved in continuum mechanics [58] that an orthotropic material has three

orthogonal elastic symmetrical planes with nine independent material properties.

According to Hooke’s law, in the material principal coordinates(1,2,3), the stress-

strain relations are given by

1
_V21 _V3‘l

——
——·· l O O O811 E1 E2 E3 U11

. l L -—"’=*2 O O O „ ·22 E1 E2 E3 22
—v13 °v23 1

833 *l O O 0 a33
= E1 E2 E3

1 (3_1)

23 1
713 O O O O 013

712 O O 0 0 O
E

U12

G11 C11 C12 C13 0 O O E11

U22 C12 C22 C23 0 0 O 822

633 C13 C23 C33 O O O E33
= (3.2)

623 0 0 O C44 O O 723

U13 0 O O O C55 O 713

SINGLE PLY CONSTITUTIVE RELATIONS 17



where

E,(1-vv) 6E(v -l—vv)
C11 =

=E(1—vv) E(v.-l-vv)C2z= 2
A

13 31 Cu: 3 3
Ls

12 23

E(1—v.v) E(v 4-vv.)C„= 3 A221 Cu: 3 23A213

Cu = G2: Cs: = G13 Cas = G12 A = 1 ' v12V21 ' V23v32 " v31v13 " 2v21v32v13

3.3 MATERIAL PROPERTIES IN PROBLEM COORDINATES

The transformation between the problem coordinate system (x,y,z) and the principal
”

material coordinate system (1,2,3), as depicted in Figure 3.1, is

Y

2

1
¢‘
?Y 9 X

Figure 3.1 A single ply
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(¤)« = £T1](¤}„ (3-3)

{¤}« = [T2](#=}„ (3-4)

where

mz nz O O O 2mn
nz mz 0 O O -2mn

0 O 1 0 O O
[T1] =

O O O m —n O

0 0 O n m O

—mn mn 0 0 O mz — nz

and [T2] = [T„]·' with the symbol m = cos 9, n = sin 9.

Substituting equation (3.1) into equation (3.3) and using equation (3.4), the trans-

formed 3-D stiffness matrix [Ö] is obtalned as

(¤}„ = [T1T°(¤«} = [T1]‘°[CJ(+=«) = [T«]“1[CJ[T2](¤}„ = [GHS}, (3-3)

H@¤¢@ [Ö] = ET-TTCJLTZJ
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E11 Ö2 Ö3 0 O Ö6
612 522 E23 0 O E26

_ E13 @6 Ess 0 0
0 0 0 Q, Q, 0

0 0 0 Q, Q, 0

(:6 @6 E36 O O EGG
l

where

@2 = m‘C,, -1- 2mznz(C,2 + 2C22) -1- n‘C22

@2 = mznz(C„ -1- C22 — 4C,,) + (m‘ + n‘)C,2

@2 = mzC,2 -1- nzC22

C], = mn[mz(C„ — C22 — 2C,„) + nz(C,2 - C22 -1- 2C,2)]

@2 = n‘C„ + 2mznz(C,2 -1- 2C,,) -1- m‘C22

@2 = nzC„2 -1- mzC22

@2 = mn[nz(C,, — C,2 — 2C2,) -1- mz(C,2 — C22 -1- 2C,,)]

Ö3 = C22
Q, = mn(c,, - 6:2,)

C-,2 = mzC,,, -1- nzC„

Q, = mn1c,, — 6,,)
C

Q, = n¤c„ + m=c,,

@2 = mznz(C,, — C,2 — C22) + + C22(mz — nz)?

smcnz PLY coNs—rn·u·nvs ms1.A·no~s 20



3.4 REDUCED STIFFNESSES

The general three dimensional stress-strain relations defined in equation (3.5), can

be simpitfied by rewriting it in two parts

Gx Ö1 C62 Ö3 (:6 Ex

Uy Ö2 E22 523 E26 Ey
=____ (3.6)

az C13 C23 C33 C36 sz

dxy Ö6 C26 E36 666 Vxy

and

Gyz 644 645 Vyz
= _ _ (3.7)

Uxz C45 Css Vxz

. . . . dz C1: EZB Ess
from which the normal strain IS defined by 6, =1-16, — 16, -1- y„.

Cas Cs: Cas Cas

Substituting last expression into equatlon (2.6) yields

· ax Ö1 E2 EI3 as 8x

°y (:2 522 E23 @6 Sy
= dz Ö3 523 E36 (33)

U « —?8
—- 8, -?

‘z .3 23 33 36 C33 C33 x C33 y C33 /xy
Uxy C16 C26 C36 C66 Vxy

Writing these stress components into a condensed form, equation (3.8) becomes
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Gx @1 az @6 ÖIS dx E13/633

dy @2 622 Ö-23 @6 Ey 623/633=____ + az (3.9)
dz O13 O23 Q33 O36 O 7

Gxy Ö36 626 636 666 Vxy E36/E33

provided that

äaöx ')" + ögöyxy =0—

— — öl . .where Q,) = Q, — Q3? (for 1= 1,2,3,6 and )=1,2,6).
33

Eliminating the normal stress 6,, the generalized Hooke’s law becomes :

dx @1 @2 @6 Ex

· dy = @2 622 @6 Ey (3-77)

Uxy @6 Ö-26 666 Vxy

and

o Ö Ö v{”z}=k2
_“ _°5 (H} (3.12)

Uxz Qzs Qss Vxz

where kd is the shear correction factor. Comparing equation (3.11) and equation (3.12)

with equation (3.6) and equation (3.7), it is found that Ö] are equal to or smaller than

Q!. Thus they are called "reduced stiffnesses".
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TRANSVERSE DEFORMATION THEORY TO PLATES

In this chapter, a first—order (for u and v) shear/fourth-order (for w) transverse defor-

mation theory is introduced. instead of using this theory directly to develop a finite

element model, a technique is developed to recover all the "refined" generalized

displacements for each individual layer after the FSDT "averaged" generalized dis-

placements are obtlained. As a part of the refined displacement recovery, the plate

surface boundary conditions and the interlaminar interface continuity conditions are

all satisfied identically. The following review of the existing theories provides a

background for present theory.

4.1 A REVIEW OF PLATE THEORIES

A transversely and edge loaded plate is shown in Figure 4.1. The transient dis-

placement components(u,v and w) at any location inside the plate are functions ofthe

coordinates(x,y and z) and time(t). These displacement components can be expanded

into TayIor’s series about z :
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u(x.y,z,t) = u„(x,y,t) + z»11X(x.y,t) + z2(x(x.y,t) + z3(X(x,y,t) -l- ....

v(x,y,z,t) = vo(x,y,t) -1- zi/1,,(x,y,t) + z2(,,(x,y,t) + z3(y(x,y,t) + .... (4.1)

w(x,y,z,t) = w„(x,y,t) + z(;9Z(x,y,t) + z2(Z(x,y.t) + z3§Z(x,y,t) + ....

where u,, v„, w„,, (/1,, (Z, (Z, wy, (Y, (Y, 1/1Z, (Z and (Z...... are functions to be determined. ln

general, to find all these functions which can satisfy the equilibrium equatlons, com-

patibility conditions, boundary conditions and initial conditions is extremely difficult

[75]. Finite expansions are used to develop plate theories. For instance the classical

plate theory is based on the assumptions due to Kirchhoff [1]. The displacement field

of the classical plate theory is

( ( + öwc
u x,y,z) — uo x,y) z öx

'w

which contains only three unknowns u,,, vo and w„ representing the mid plane dis-

placement components. The displacement field yields zero transverse strains.

To include the transverse shear strains, one may write the simplest shear deforma-

tion displacement field by direct observation of a deformed plate, such as the one

shown in Figure 4.2:

u(x, y, z) = uZ,(x, y) + z82(x. y)
v(><„ v- Z) = v.„(><- v) - z9i(><- vi (4.3)

w(><· v- Z) = Wotxi vi

This displacement field contains five unknowns (u,,, v,,, w„, 8, and 82). where 8, and 8,

represent the shear deformations about the coordinates 1 and 2, respectively. Thus
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this theory allows for constant state of transverse shear stresses. However, plate

surface boundary conditions and interface continuity conditions for laminated com-

posite plates, in general, are not satisfied by this theory.

By retaining higher-order terms of the expansion, one can write

u(X„ v. zl vl vl vl + Z3Ö1(X• vl
v(X, v„ zl = v„(X- vl vl vl vl (4-4)

w(X„ v- zl = w„(X„ vl

After applying free surface boundary conditions, Reddy [1,5,6] proved that this dis-

placement field can be simplified to

• • o · 2 4 h 2 Ex
¤(X v zl=¤ (X

_ 1 1 2_v(X-v„zl—v„(X•vl2181+ 4 ( h l( 9i+ öy l]
w(X„ v. zl = Wo(X· vl

All of the above mentioned theories do not account for the stretching of the trans-

verse normals (i.e. sz = O ). But some higher-order theories containing higher-order

terms in the out-of-plane displacement(w) can account for transverse deformation.

_ For instance the displacement field given below is used for free edge effects [76] :

w(X„v„zl = w„(X„vl + zvZ(X„vl
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4.2 NEED FOR A REFINED TRANSVERSE DEFORMATION

THEORY

There are quite a few physical conditions which can not be satisfied by the above

reviewed plate theories. First, all of the plate theories (i.e. equations 4.2, 4.3 and 4.5

) assume non·stretching of the transverse normals. This assumption results in igno-

rance of the transverse normal stress through out the entire plate. However trans-

verse normal stress does exist in some loading conditions. For instance, in a

pressurized vessel the radial stress has the same magnitude as the hoop stress.

inclusion of the radial stress is required in the failure analysis [59] of a pressurized

vesseL

Second, non-zero surface traction (PZ, and PZ, of Figure 4.1) boundary conditions are

not satisfied by the above mentioned plate theories. Existence of these non-zero

surface tractions are found in many plate/shell contact surfaces. Example of these

surfaces are: mechanical power transferred belt-pulley contact surfaces or rolling-

drum contact surfaces or the external surfaces of a high—speed flying object such as

missiles. lgnorance ofthese non-zero surface tractions also results in an incomplete

stress field, and therefore the failure prediction could not be accurate. For example,

the maximum principal stress criterion assumes that "tensile fracture surfaces will

form in a previously uncracked isotropic material when the maximum principal stress

reaches a limiting value in tension” [59]. From tensor analysis, it is known that the

sum of the principal stresses is the first invariant of the stress tensor
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ox Gxy Gxz

6,,,, 6,, 6,,2 (4.7)

Uzx dzy cz

According to maximum principal criterion, ignoring transverse normal stress 6, from

the stress tensor, definitely will yield incorrect principal stress. Similarly, the Tresca

criterion states that " yielding of an isotropic material will begin when the maximum

shear stress reaches a limiting value" [59]. From continuum mechanics [58], it is

known that the maximum shear stress is defined by

Tmax (43)

where 6, and 6, represent the largest and the smallest principal stresses respec-

tively. According to this criterion, incorrect principal stresses will also result in an

incorrect Tresca failure evaluation.
-

Third, a reasonable distribution of transverse shear stresses through the plate thick-

ness can not be obtained by the above mentioned theories. The first order shear de-

formation theory ( equation 4.3 ) yields constant state of transverse shear stresses

and Reddy’s higher order shear deformation theory (equation 4.4) yields parabolic

transverse shear stresses with zero surface traction loading cases. None of the

above mentioned plate theories can yield reasonable transverse shear stress dis-

tribution for non-zero surface tractions. Unrealistic state of transverse shear stresses

does not only cause inaccurate failure prediction but also slow down the convergence

rate in a nonlinear analysis. As demonstrated in Table 6.4 of Chapter 6, unrealistic
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state of transverse shear stresses requires more lterations before an acceptable

convergence criterion can be satisfied. Also it generates less accurate stress field.

Finally, the interlaminar shear stress continuity conditions are not satisfied in lami-

nated composite plates and the peak value ofthe shear stresses can not be correctly

predicted by the above mentioned theories. As pointed out by many composite

structural micromechanics studies [2,3] the interlaminar shear stresses are usually

responsible for the laminate debonding/delamination in laminated composite struc-

tures. Failure to predict the peak values of shear stresses represents a serious defi-

ciency in laminated composite structural analyses. Therefore, a theory that

overcomes the deficiencies of the existing theories is needed.

4.3 A PROCEDURE FOR STRESS RECOVERY

From last section, it is seen that a new theory is needed to improve the deficiencies

of the existing plate theories. The conventional way of improvement is to retain

higher order terms in the in-plane displacements (u and v). Effects of this improve-

ment is too slow at considerable computational expense. ln this work, a new higher

order theory is proposed by retaining higher order terms in the out-of-plane dis-

placement (w) only. Improvements of this new theory are remarkably good. To de-

scribe the new theory it is necessary to review the first order shear deformation

theory (FSDT). The following review of the finite element model of FSDT provides a

background for present theory.
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The displacement field of FSDT is given by equation (4.3). The strain components at

any point inside the plate are :

4
$1 uo,1 + 292,1 \ '
$2 V¤,2 ’ 261,2

V23 = — 61 + Wo,2

713 62 + Wo,1

V12 uo,2 ‘+'
262,2 + Ve,1 " 291,1

$1,1 O OOn
¤ 15,,2 ¤ -215,,2 O v' I

I

0 0 $1,2 ‘$1 O
W,

(4-9)
,*:1

0 O ¢I,1 O

$1,1 0 ‘2$,,1 2$,,2

92whereuc, v,, w,, 9, and 9, represent the mid plane displacements before

discretization, while u', v', w', 8; and 0; represent the mid plane displacements at ihe

nodal point after discretization, and cb, are the interpolation functions. This ex-

pression can be written in a short form as;

~

{1} = ZEBQHU,'}
1:1

where n is the number of nodes per element (NPE) and uj represent the generalized

j-th displacement value at node i. Substituting [B,] into equation (1.15), the linear

stiffness matrix is
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[Kl.] = j\[Bl.]T[Ö][BL]dV
v

Substituting the strain—displacement matrix [ BL] defined in equation (4.9) into last

equation, the linear stiffness matrix [ KL] becomes

[KL] = [B«]TEÖ][B«]dV + ([B1]T{Ö][B2] + [B2]T[Ö][B1])ZdV
V V

(4.10)
+ ( EBZJTKOJEBQJZQ ¤lV

v

where [BL]=[B,] -l-z[BL] is a direct decomposition of equation (4.9),i.e. -

cbm 0 0 0 O 0 O 0 O cbm

0 cbm 0 0 0 0 0 0 —cb,_2 0

[B„]= 0 0 cb,2 ——cb, O [B2]= 0 0 0 0 0 (4.11)

0O@,10-Lpi 00000

@,2 @,1 O O 0 0 0 O —@,1 @,2

As illustrated in Figure 4.3, in the standard notation of a laminated plate, the Iaminate

stiffness are
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n 2r
[A,j,BU,D,,] = [Öj](1,z,z§) dz

—n/2
mv

—
_

{2 (4.12)

))
«=1

where t,, ls the thickness of each layer for total number of NLY layers through the plate

thickness and 2,, is the height of middle plane of each layer to the middle plane ofthe

plate. With these notations, the element linear stiffness matrix can be constructed

easily. Equation (4.10) thus becomes

/*11 /*12 /*13 /*14 /*16

/*12 /*22 /*23 /*24 /*26

[Kl.] = /*13 /*23 /*33 /*34 /*36 (4-13)

kl, *24 im klu /46

/*16 /*26 /*36 /*45 /*66

where

k,, = A,,5,, +A,6(5,2 -l-52,) + A66522

2
k,2 = A,25,2 +A,65,, ·l-A26522 + A6652,

/<,2 = O

/<,, = -8,25,2 -8,65,, -826522 — 86652,

k,, = 8,,5,, +B,6(S,2 -1- 82,) + 866822

k22 = A,2822 +A2,(8,2 +82,) + ,4668,,

k22
·‘=

0

k2,, = -822522 —826(5,2 +52,) — 8665,,
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kas = 5,252, +526522 —+- 5,55,, + 5565,2

k25 = A665,2 -+-A66522 -l-A555,,

k66 = —A655,2 —A„522

k26 = A565,,, -l—A,652,,

k„ = A„5,,„ -l-D22522 +D26(52, -l- 5,2) + 0565,,

/<66 = -0,656, -066566 -0,65,, — 0665,6 — /466566

k55 = A5556„ -l-D,,5,, —l-D,5(5,2 + 52,) —+- D56522

in which the integration S„,„ = fA¢>,_,,, 45,,, dxdy for i,j= 1,NPE and m,n = 1,2 (coordi·

nate 1,2) has to be conducted numerically over the entire plate surface A. Once the

stiffness matrix [K2] is determined, the whole problem is reduced to a finite element

discretized system

[KL]{U} = {R} (4-14)

from which the generalized nodal displacements of the entire plate can be solved.

Once displacement field is solved, the stress·strain relation can be used to solve for

the stress components. For instance the stress components in the k·th layer are

611 (-21äZ @2 O O +292,1
622 @2 622 @2 O 0

616622633 O
(4.15)

023 F, 0 O 0 k2O,,„,_ k2O65 O — GQ -·l- w{2

6,6 ¤ ¤ ¤ kzöas /*666 ¤ @6 + W3,
612 2 @6 @6 @6 O 0 666 k
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where 6;, (m = 1,2) represent the averaged rotations at node j. From equation (3.8)

to (3.10), it is understood that the normal stress is assumed to be zero. This is a result

of Kirchhoff assumption. There are several features need to be noticed about the

stresses of the first order shear deformation theory :

1. Surface boundary conditions

h h°s:s(X— Y- i' 3*) = Pa2(X- Y- i 3*)
h h°13(X•Y·i'?)=P1s(X·Y·i?) (4-16)
h h

are not satisfied at the plate surfaces.

2. ln-plane stresses 6,, and 6,, are symmetrical with respect to the z = 0

plane, which is not true in general.

3. Shear stresses 6,, and 6,, are independent of z such that the shear

continuity conditions are not satisfied at the lamina interfaces.

4. Constant rotations 6, and 6, are assumed through out the whole plate

thickness in spite of the fact that different material has been used for each

layer. This means that the strains are not layer dependent quantities.

From elasticity solution [78], it is known that above mentioned features are not con-

sistent with the physical conditions.

To improve the stress field of the FSDT, a new set of displacement field is proposed

as following
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ulx- v- Z) = ¤2l><2 v) + 292iX- y)
v(><„ y- Z) = vo(X¤ v) — Z@1(><• 1) (M7)

w(x, y. z) = wo(x, y) + x(a,2 -+- a5z2) -+- y(b„z -+- b222) -+- -#- -%-24

Following the same procedure as used in obtaining equation (4.15), the stress-strain

relations for the displacement field (4.17) are :

VU11 @1 @2 @2 0 O @6 (41+202,1

622 ÖIZ Ö-22 623 0 0 @6 V12 · Z6);

G33
n Ö12 @2 633 0 O Ö36 Ölx- Y- Z)= Z 2- 2- 20 0 0 6o,,,,ßo,,_20 —6(+w{5+1-(z+¢-51

U13 O 0 0
ß2ö45

Yzöss O 8/2 '+' Wfz '+' aéz +
aézz

012 ,, @6 Ö-26 536 0 O 666 ,, ,,

where @(x, y, 2) = x(a4 -l- 2a52) -1- y(b( -+- 2b52) + 6423 -1- 6523 , ri = NPE (nodes per element)

and a), b) and 6; (i= 1,2) are constants to be determlned using surface and inter layer

conditions.

lt is important to note the difference between stress-strain relations (4.18) and those

of the FSDT defined in equation (4.15). ln equation (4.18) the subscript "l<" at the right

lower corner means that the strain is in the k-th layer, which indicates that all the

generalized displacements are layer dependent quantities. ln addition. the new shear

correction factors( az, ßzand y3 ) can be defined by comparison with the exact solution.
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There are too many unknowns in equation (4.17). lt represents a very complex

equation for solving. Although it is possible to solve all the unknowns directly, the

cost would be high. Furthermore it is against the goal of computational efficiency to

do so. Therefore, instead of solving for all unknowns directly, a fast displacement and

stress recovery technique which allows all the generalized displacements at each

layer to be recovered such that the surface boundary conditions and shear continuity

conditions are all satisfied is proposed. The displacement and stress recovery tech-

niques developed herein requires the solution of equation (4.15).

Oenoting 8§ and 8; the ”refined" rotations of k-th layer, the shear stresses of each

layer can be written as

-8:+ wg -+- b:z -+-
bgzz] -l- @[8: + wg + a:z + agzz]

( ). _ _, 4.19
6:3 = Q:-;,[ - 8: + wg -+- b„z + bgz2] + O§5[8: + wg + a„z + agz2]

where the subscript for each nodal point is omitted for simplicity. Applying the

plate surface traction boundary conditions, it is found that

h<m(x- y- + g) = mlx- M)
hvlglx- v- + g) = mtx- v)

N h é (4.20)
·m(x- y- — g) = mlx- vi

. h¤Ä'g(x- y- — gi = rfglx- y)

in which 1:’ and 1** represent the specified shear stresses at plate top surface and

bottom surface, respectively. Write equation (4.20) in terms of the constants a., az, b,

and bg ,
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H C5
Hzcs

H
H2

8*
?g3 + 01 '°wo,2-H

6,, H2C6 —H H2 *22 Tga + HT ·· wo,2 — Cslüg + W2;)
2 H c H2C b2 = —T 1 1 ("·2‘)

H H 7 7 b T13 + (61 ‘ W¤,2)C7 " (02 + Wo,1)
- 2 —H C 2 2 -H 11 T H °¤ «?2+w$'- wo,2)C8 - wä + 12.,.)

w —
Ö

—

0:. oz oa. Gä 2
T 61 T 2H

andOL
Oi'. 022 Oé'2

Hence, there are four equations for four unknowns, the coefficients a,, a,, b, and b, can

be determined. However, since the rotations 8; and 8; (k=1 for the top surface layer

and k=N for the bottom surface layer ) are unknown in the last expression, the

interface shear continuity conditions must be used to solve for them. The continuity

conditions at each interlaminar surface require that

¤ä2<x. 2. h„> = ¤§;‘<¤. 2. H.) 44 42)¤§2<¤. 2. H..> = ¤$;‘<x.
2. Hi

Writing these equations explicitly, one obtains
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1 111...00 00... 0; ~0$
0 0 OO...1111...9$ /v0;’

—E§_,ö§zoo...E,’5—ö§5o0... . of
—E;5E§500...E‘,5—E§500... . 0;

.= 02 (4.23)
o—ö§5E:'§*5o...oE§5—E§50... 0; 0;
. . . ..... . . .... 0; .

where D: = wk — wrkr + wk -ww
Ds = wk - + - w‘<k·

and LZ', = w,_, + a,h„ -l-azhf

Lk, = w,_z + b.n,, +0,11;.

Since (Z', and Ügz depend on
a’s

and b’s, an iterative scheme must be used to obtain

a set of satisfactory a,, az, bz, bz and 8';, 8;. The numerical experiments indicate that the

convergence among equations (4.21) and (4.22) is very fast. From the examples which

have been solved in this study, it is found that 3 to 6 iterations is enough to obtain

10-* convergence tolerance.

Once coefficients az, az, b, and bz are solved, the coefficients c, and cz can be deter-

mined easily. Using equation (3.10), the normal stress component oz from equation

(4.18) can be written as
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a;(x, y, 2) = Ö§2[x(a„ + 2822) + y(b„ -+-2b2z) + 0,22 +0223] (4.24)

Applying the normal pressure boundary condition on both the top and bottom sur-

faces, it is seen that

h 2 a
o2(x, y, %) = ÖT[x(a, + 2a2h) + y(b„ -+-b2h) + 02 JZ- +02 —%—] = PT(x, y)

-/1 -1) h2 /13 B (425)
¤3ix- vi T) = O' -7 —¢2 7] = P (X, v)

from which the coefficients 0, and 02 are given by

2 PT PB
G1 =7 [( :7+7) —2(@1X + bw]

T" Qss Oas
4 PT PB (4.26)

P2 = — Ei7— :7) —2h(a2>< + bm]h3 öais Os;

Hence equation (4.18) is solved.

The comparison between FSDT and current theory is made in Figure 4.4. It can be

seen that the proposed theory can not just satisfy all the boundary conditions and

continuity conditions, but also can yield more reasonable rotational displacements.

Of course this is due to the contribution of transverse deformation throughout the

plate thickness.

Comparing the stress-strain relations of FSDT with the stress-strain relations of the

current theory, it is easy to make the following observations :

1. Straight lines normal to the plate mid surface are no longer straight. Each layer

has its own rotations.

2. The length of a normal changes after deformation.
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3. The normal stress may be small but not necessarily negllgible.

4. For any non-zero plate surface pressure difference, the in-plane stresses are

unsymmetrical with respect to the mid plane of the plate.

5. The shear stresses are continuous functions of z, and plate surface

boundary conditions can be satisfied.
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TRANSVERSE DEFORMATION THEORY OF SHELLS

5.1 INTRODUCTION

An uniform thickness plate is a solid continuum bounded by two parallel flat planes, .

while a shell is a solid continuum bounded by two separated curved surfaces by a

small distance compared to the surface dimensions.-A transversely loaded plate, af-

ter deformation, will never be flat. Because of this reason, geometric nonlinear ana-

lyses are not performed using plate theory unless its geometry change is very small

compared to its dimension. Since one may like to describe the structure motion from

an Updated Lagrangian viewpoint, all parameters(i.e. displacements, strains,

stresses.....) are referred to the current configuration.
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5.2 THE FIRST-ORDER CONTINUUM SHELL ELEMENT

5.2.1 DISPLACEMENT FIELD

Let x,y,z be the original coordinate system (a coordinate system at time t=0),

x,, x2,x„ the current coordinate system (a coordinate system always attached to the

mid plane at current time t ) and é, rg, C the natural coordinate system( a mathematical

coordinate system at the center ofthe mid plane of each element), as shown in Figure

5.1, it is easy to write the displacement field of the first order shear deformation the-

ory for an arbitrarily oriented shell in the current coordinate system as follows :

U1(X1· X2- X2» Ü = u?(X1v X2- Ü ‘1' X282(X1· X2· Ü „ (5-1)

U2(x1· X2- X2- tl =
U€<Xi-

X2- 0 — X2@1<X1-X2- 0

U2(X1,X2,X2- Ü = Ug(X1· X2· Ü

where ul', ug, and ug represent the mid plane displacements, 0. and 8, represent the

"averaged" rotations. By means of tensor transformation, the displacement compo-

nents in the original coordinate system can be obtained as

U U1 V11 V21 V21 (U? + X382q

v = li)/JT U2 = V12 V22 V32 US —X291 (52)
¤W U2 V12 V23 V22 U2
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u u° V„82 — V2,0„

v = vo + x3 V1262 —
V226„ (5.3)

w wo V1392 — V238„

in which [V] denotes the transformation matrix between the current configuration

(x,, xz, x,) and the original configuration (x,y,z). Conversely,

u„ u

V2 = D/Il V (5-4)
us w

The transformation between the gradients of displacements in the original coordinate

system and the current coordinate system can be easily found [47]

U1,1 u2,1 UB,1 U,x V,x W,x

U1,2 u2,2 Us,2 = [V] U? V? W,y
Ü/JT

(5-5)

U1;) U2.:) Us.:) u,z V,z W,z

Let

{7 V7

u = Z¢)„(é- V1)uk{(:1
{(:1

V7 V7

V = Z mt:. V) V“
+ V-E mc. Vw; V4; — @5 V2;) (5-5)

k=1 {(:1
V7 V7

VV wkk=7
K=1
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where tb, is the shape function of node k, and n is the total number of nodal points

of an element(NPE). ln this expression u*, v*, w" are the nodal mid plane displace-

ments in the original coordinate system, and 87, 87 are the nodal averaged rotations

in the current coordinate system, while V7, and V;] are the components of Ü, and Ü, at

nodeThe

transformation between the original coordinates and the natural coordinates of

the global displacements is defined by

uz vz wz uzg vz wz
_ -1uv}, vz, w_y — [J] um v_„ w_„ (5.7)

uz vz wz uz v_; w';

in which [J] is the Jacobi matrix.

x.: Y.: Z.:
[J] = x_„ y_„ 2,,, (5.8)

X.: Y.: Z.:

ln order to determine the Jacobi matrix, the original coordinates (x,y,z) must be ex-

pressed in terms of the natural coordinates (§, §, 17). This can be done by using the

unit vector of xs coordinate. By definition, the unit vector of x, coordinate (see Figure

5.1) is

I'? = )/31;. + '+' V33Ä.

l-lence, the location of each point inside the shell is
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F7 F7

X=X0 T XBV31k=1
k=1

F7 F7

Y=l/0 + X;Vg2 = Z¢«(€»€)YS ‘*‘ X3Z¢1«(€•€)VSz (5-9)
i<=T k=1

F7 F7

Z=Z¤ + X3V33 = Z<z>1.(€•C)ZS + ><;·,Z<l>«(é„ ov;.
K=1 k=l

Substituting equation (5.9) into equation (5.8) yields

ö¢* k Ölßk 11 Ö¢>1«
n ag (X0 (Yo +X3VI§2)Tg.1

:2 ä¢ @¢ ö<?> 5.10

in which the relation x, = Z % is used. Here h denotes the thickness of the shell, and

Z ranges from -1 to 1 representing the natural coordinate in the x, -direction. lt is

found that this expression can be simplified by neglecting all the x, terms. The argu-

ment which allows doing so is that x, is far smaller than xg, yg and zg. For any plate

or shell the thickness is always far smaller than the other two dimensions. Thus x,

terms are all dropped. After simplification. the notation [J ' ] is used to represent the

inverse of the Jacobi matrix

ra '1 = [JV

Similarly the first derivatives of the displacements in original coordlnates with re-

spect to the natural coordinate can be obtained. By taking the first derivative of u, v

and w with respect to Z, 1; and Z, it ls seen that
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U,„ <@«,„ O0V,5

II
O (@,5 O "‘X3<@«,5V212 X3<@«,5V112 Vk

V,„ O @,1, O _X3d)k,r;V;2 Xa@,„V112 Wk (5-17)

I -4;
1:1 0 @1

W,5 O 0 @,5 -X3¢/<,§V;3 X3@,51/113 921

1 W,„ O 0 ‘@«,q
“x3<@«,„V213 X3¢k,»gV1(3

L4; 0 0

0Substitutingequation (5.10) into equation (5.7) and using last equation, the first de-

rivatives of the displacements in current coordinates with respect to the current co-

crdinates are,

U1,1 711 712 713 714) (7171%+ 716) I
u1,2 721 7122 723 (726X3 ‘7' 724) (727X3 ‘1‘ 726)

U1,3 77.1 752 753 (756)% + 17134) (757)% + 7136) [,*/1
U2,1 II 7211 7142 7143 (7716173+ 7144) (7117)%+ 7146) ·

V1

U2,2 763 W1 (5-12)

U2,3
1:1 7164) (7(s7X3 +

766)U3.1771 712 773 (716X3 + 714) (717X3 '1' 716) G2

U3.2 7111 71a2 7113 (qéöxß + 7é4) (7ÄrX3 + 7116)

u3,3 7121 752 753 (756Xs + 71:4) (757)% '1' 7126)

where
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(711q12

= RI4¢k„: + R15¢k, ay

q13 = R17‘bk,§ + R1B¢k, ay

qu =11Ä¢« (5-13)

q15q16

tiädjk, ay

q17 ay

where i = 1,2,3,4,5,6,7,8,9 and

(Ä R11 R14 R11 VÄÄ
{1; = ° R12 R15 R18 V;2 (5-14)

· h h h 1
tg! ?R13

_5°R16
?R19

V2(3

t1; R11 R14 R17 V;

tg = R12 R15 R18 V;2

h h htg
F

R13 E- R16 E- R19 V;3

and R,} are the elements of the product matrix of the matrix defined in equation (5.5)

to the matrix defined in equation (5.7).
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5.2.2 STRAIN COMPONENTS

The strain components are obtained directly from equation (5.12), namely

*/1,1 p11 P12 P16 [P16/‘6+P14) [p17X3+p15) */I

U2,2 n P11 P12 P16 (P16/*6 +P14) (P1?/‘6+P1s) V1

(¤)= ¤;,ä+¤ä,; = E nä1 nä; nä; (nä6><;+nä4) (¤ä1»<ä+näs)
w’

(5-15)
k=1 . .

*/1,6 + */6,1 P11 P12 P16 (PÄSXS +P1.1) (P17X6 +P1s) *91

U1,2 + */2,1 pé1 P12 91

or in a short form

77 D

{8} (5-16)
j=1 _/=1

The strain-displacement matrix is

[B1] = [/2] + X3[/ä] (5-17)

Comparing equation (5.15) with equation (4.9), it is found that

nä1nä;nä; O O 000 0 ni;
n2„p2;n22 0 0 000):2. 0

051 = p2„ p2; 1023 p2. 0 E/323 = 0 0 0 0 0 (5-10)
pi1pi2 PÜ16 O P15 O O 0 O O

„¤2„ ¤22 p2. 0 0 0 0 0 n26 p2;
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Thus, the Updated Lagrangian strain-displacement matrix is defined by equation

(5.17) and (5.18).

5.3 ELEMENT MATRICES AND FORCE VECTORS

5.3.1 LINEAR STIFFNESS MATRIX

Once the strain·displacement matrix is determined, the linear stiffness matrix can be

constructed easily. According to equation (2.15), the linear stiffness matrix is

[K1.] =
II

[Bt]T[Ö°][Bt]</V
V

Substituting the linear strain-displacement matrix (equation (5.17)) into last equation

yields

im = I E/$«]T[Ö][/ä]dV + I iuäiiiöicäi + rF.1’iö1rä1>¤.d¤„¤¤2dx3
V V

(5.19)
T

IIV

Performing the analytica! integration in x, direction explicitly, and using the notations

defined in equation (4.12), the linear stiffness matrix can be obtained easily from fol-

lowing expression
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um = t/ä1’tA1tä1¤¤,d¤2 + f <tä1’tBJtF.1 + tF21’tB1tF,1>¤¤,¤x.A A
(5.20)

+ L [P2] [DJK/’2Jd><«d><2

Where [A], [B] and [D] are the usual laminate stiffnesses. A complete listing of the

elements of [KL] are given in Appendix A.

5.3.2 THROUGH-THE-THICKNESS INTEGRATION

For the reason it will become obvious in the next two sections, three integration

quantities are defined below. These quantities can be called "resultants ", because

they represent thickness-weighted stress summations.

The force resultants are the integrations of the stress components through the shell

thicl<ness,i.e.

E1 U1U1E2

¤2¤2n/2N n,,

'h(2 K:] hk-1

E5 US G5

E6 U6 U6 K

where the single-subscript notation 6, = 6,,, 6, = 6,,, 6, = 6,,, 6, = 6,,, and 6, = 6,, is

used. Recalling the stress-strain relations (3.11) and (3.12) and the strain-

displacement relation (5.17). the last equation can be written as
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N h N h n{ - :1 - - -{E} =2f [O”]{¤}kdX3 = [Ok]Z(EP{]«+X3[P$]«) {¤’}« dxg
k=1 hk•1 k=1 hk—1 )=1

N n (5.21)

· = Zjttpm + t¤=;}¢„Z„>
k=1j=1

where vectors {p4},,= [Ö-"][Ä]{u/},, and (p5},,= [Ö'][Ä]{u#},, are defined in Appendix

B. Note that N is the total number of layers (NLY), and n is the number of nodes per

eIements(NPE).

Similarly, the moment resultant {F} and the inertia resultant {G} can be defined as

follows :

F1 V1

F2 U2 _

I n12 N n,„ _k " 7 7{F} = F4 =f U4 xs dxa [Q dxs
—¤/2 k=1 hk-1 }=1

F5 G5

F8 U6

N n tg
{F} (5-22)

k=1j=1
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(/G1
U1

G2 U2

2
N"~-«”7

7 ,2{G} = G4 = ’ U4 X2 UX; [O {U }k X3 UX3
'h/2 k=‘I

hk-1 j=1
G5 G5

G6 U6

N H
t(Gi=

égciplntizäThiscompletes the analytical integration formulations through the shell thickness.

5.3.3 NONLINEAR STIFFNESS MATRIX

Writing equation (5.12) in a short form, one obtains

I7

(¤„„,„} = Z([<7ä3 + ><3lZ5éJ)(¤’) (5-24)
j=1

where u„,_,, represents the first derivatives of the displacement "m" with respect to the

current coordinate The symbol on the r.h.s represents the j-th nodal point of

the element. Thus according to equation (2.16), the nonlinear stiffness matrix be-

comes

KKNLJ (5-25)
V V
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where the stress matrix [1] and matrices [E,] and [E2] are defined below

T1 0 O T6 0 0 T5 O 0

0 11 O O 16 0 O 16 O

O O 14 O 0 16 0 O 16

TS O O T2 O O T4 O O

[1] = O 16 O O 16 O 0 14 0 (5.26)

O 0 16 O O 16 O O 14

16 0 O 14 0 0 16 O O

O 16 O O 14 O O 16 O

0 O 16 O 0 14 O O 16

<711
‘-712

*713 O O O 0 O O

0 O O O 0 0

CVÄ1 qiz qäa 0 O O 0 O VJÄ6 O

rä„J= qé. qéz qéa 0 0 0 ¤ #,6 ¤ (5-20
¢é« qéz 0 O O 0 0 O

$1 qéz via 0 0 0 O O O O
WÄ1 qäz 703 0 O O 0 O 0 0

‘7$1 qéz qéa Q 0 O O O O 0

Substituting the resultants obtained in equations (5.21), (5.22) and (5.23) into the last

equation, the nonlinear stiffness matrix becomes
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[KM] = [ E<7«]T[Ei[ä2]d><«d><2 + [ ([62]]/ilfäil + [<7«]T[Fi[<72])dx«d><2
A A

(5.28)
- T ..."’ [ [G2] [G][G2]GX1GX2

A

where [E],[F] and [G] are the 9x9 matrices and A denotes the area of the midsurface

of the element. Again the integration of last equation must be carried out numerically

over the shell surface. A complete listing of the elements of [KM] is given in Ap-

pendix C.

5.3.4 UNBALANCED FORCE

[The unbalanced force is the right hand side of equation (2.13), where {R} is the vector

of externally applied forces, and {U} is the vector of internal, stress-induced, reaction

forces. From this equation it is seen that this force is a time dependent and stress

dependent quantity. Substituting the linear strain-displacement matrix [BL] from

equation (5.17) and the stress matrix [1] from equation (5.26) into equation (2.17), the

vector {U} becomes

iwi = [ [B1]‘{r}dV = [ @1* + ><g[@]T){r}dV <6.2¤>
V V

Again using the resultants {E} and {F} defined in equation (5.21) and (5.22), the vector

{U} can be found easily.
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5.3.5 CONSISTENT MASS MATRIX

There are two types of mass matrices that are used in the finite element dynamic

analysis. One is the diagonallzed lumped-mass matrix. The other is the consistent

mass matrix. The lumped·mass matrix reduces the numerical operation significantly.

However in spite of the fact that a systematical procedure has been set up to Iump

the element mass to nodal point, in coarse mesh analysis the lumped·mass matrix

may still yield inaccurate results [55]. This is due to the fact that the formulations

among the stiffness matrix, the nodal point load and the mass matrix are inconsistent.

Because of this reason, the consistent mass matrix is used in this work. From

equation (5.4) it is seen that

..2) „,
ug = [V] Vo (5-39)
ug! wo

Substituting u2, ug, ug obtained from this equation into equation (5.1), lt is found that

U1 = Viiuo + V12VO + Viawo ‘*' *392

u2 = Vmuo -l- V22v¤ + Vzgwc — x36. (5.31)

U3 = V31UO 'I” V32Vo + V33W0

ln terms of the finite element interpolation, equation (5.31) takes the form
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D

U- = Zu/»„v4„U6 + «U,v;3v„; + U>„v;3w3+x3¢,U;>
21

lf?

U2 (5-32)
/=1

H

U3I=1

or in short,

f1

{U} (U,} (5-33)
/:1

Substituting [H] into equation (2.15), the consistent mass matrix can be obtained as

[MJ dv

= fv p.([H4]’+><3[H3]’) (E//i]+»<3[/·/il) dv (5-34)

fv U3 ><3([Hé]’ [H4] + [Hi? [HQ) dv [Hüdv

where

O O

[H;] 0 0 (5.35)

and
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0 0 0 0 ¢>,

[HQ] = 0 0 0 -4b, 0 (5.36)

0 0 O 0 0

Defining the mass inertias

(/1- /2- /6) xa- X§)dX6 (5-37)

equation (5.34) can be expressed as

[MJ = A LHlJTtHl1dA + / <tH‘J’t+/li + tH§1’tH’1>dA + / L/1’1’tH'1dA (5-36)A 2 A 2 2 6 2 2
A

A complete listing of the mass matrix is given in Appendix D. This mass matrix is

called consistent mass matrix "because the same interpolation functions are em-

ployed in the calculation of the load vectors and the mass matrix as in the evaluation

of the stiffness matrix" [55].

5.3.5 EQUATIONS OF MOTION

Substituting the mass matrix [M], the linear stiffness matrix [KL] ,the nonlinear

stiffness matrix [K„,_] and the unbalanced force vector {U} into equation (2.13), the

equations of motion become

wi
<"‘^‘üi + im rw)
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Several methods can be used to solve for the ordinary differential equation (5.39) in

time. ln this work the Newmark direct integration method and the Modified Newton

Raphson iteration are used.

5.4. THE STRESS RECOVERY TECHNIQUE

5.4.1 DISPLACEMENTS AND STRESSES

The displacement field is assumed to be of the form,

U1(X1* X2· X2) X2) + X382(X1' X2)
~2(X1- X2- X2) =

~€lX1-
X2) - x381(x1· X2) (5,40)

c, c¤2(X2- X2- X2) = ¤€(X1- X2) + X1 <a1X2 + @2X§) + X2(b1x3 + b2X§) + -5 XS +{ XS

Computing the strains associated with the displacement field (5.40) and substituting

into the lamina stress-strain relations, one obtains

611 ä1Öl2 @2 0 O @6 U1,1+X39é,1-
- - — l622 O12 O22 O23 0 O O26 U2.: ‘x392,2—

- )622 _
il

O12 O23 O33 O O O36 X2) (5 41)
623 F1 0 0 O a2Ö„ ßzöß O — 8Q -+- u§_2 -l- bixa + béxä

Ugg O 0 O ßzöds
Yzöss O

O O 666 1) U12 + X392,2 + U21- XSÜL.7 A,
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where xs) = x,(a4 + Zagxs) + xs(b4 -+- Zbgxs) -+- c4x§ -+- cgxä , n = NPE and :12, ,82 and 72

are the shear correction factors.

5.4.2 SURFACE TRACTION AND INTERFACE CONTINUITY CONDITIONS

Denoting O'; and 8; the "recovered or refined" rotations of k·th layer, the shear

stresses of each layer are

u3,2 ‘*‘ btX6 Us,1 ‘*' a1X6 (5 42)
J6 u3.2 + b1X6 U6,1 +

a1X6wherethe subscr_ipt "j" for each nodal point is omitted for simplicity. Applylng the

plate surface traction boundary conditions, we have

h¤22<X-- X2- + g) = t22<X-- X2)
hX2· X2)

N h E (5.43)
a23(X1-X2' ‘ E') = T23(x1• X2)

h°:l6(X1· X2· ‘ 'E) = ’·'?6(X1· X2)

in which
c’

and 1-** represent the shear stresses at plate top surface and bottom sur-

face, respectively. The continuity conditions at each interlaminar surface require that

U;3(XI‘ X2‘ hk) x2' hk)

X2- h-) = 2f;’<X-- X2- h-)
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Equations (5.43) and (5.44) can be used to determine a,, az, b, and bz. Using the con-

dition of equation (3.10), the normal stress component o, from equation (5.41) can be

written as

a;(x1, xz, xz) = Ök[x1(a1 + Zazxz) + xz(b1 +2bzxz) + c1x§ -1-czxä] (5.45)

Applying the normal pressure boundary condition on both the top surface and bottom

surface, it is seen that

+/1 _
-

, J_ /12 h3 163(x, y, T) — O [x1(a1 -1- Zazh) . xz(b1 -+-bzh) + c1
T -+- cz T] = P (x1, xz)

(5.46)-/1 —, h2 h3
¤3(X· Y1 T) C1 T" C2 T] = PB(X1· X2)

Equations (5.46) provide the conditions to determine c, and cz as

2 PT PB
C1 -1 + -N )_2(a1X1 '+' b1X2)]

h Qaa Gas
-

4 PT PB (5.47)
C X -i-b X)]2 hg ögs 2 1 2 2

Clearly, equatlons (5.43) and (5.44) are coupled to equatlon (5.47). Therefore, an it-

erative method is needed to compute a1, az, b1, bz, c, and cz.

5.5 SOLUTION PROCEDURES

Two numerical techniques needed for the solution of the nonlinear finite element

equatlons are briefly mentloned in this section. The dynamic equatlons of motion are
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first reduced to algebraic equations using the Newmark direct time integration

method. Then the resulting nonlinear algebraic equations are solved using the

Newton-Raphson iterative method. These methods are summarized below.

5.5.1 THE NEWMARK DIRECT INTEGRATION METHOD

In the Newmark method, the displacements and the velocities are approximated by

‘+A‘{Au}
= t{Au} + t{Aü)At + r( Q — 6) + f[Aü} + o¢t+°t{Aü}](At)2 (5.48)

'+^'(Au) = t{Aü} + [(1 - ö)z{Aü} + 6 t+Al{Aü}](At) (5.49)

in which ö =-Q and oz =% correspond to the constant-average-acceleration method

which also called the trapezoidal rule. This method provides unconditional stability

and has the self-start capability. Substituting these two relations into equation (5.39)

and rearranging it, one obtains (see [1,56])

= Z+At{§} _ :+Az{U} (5.508)

where

~ 4[K] = -5- [M] + [K1] +[/<~1]
At_

4 4 (5.501:)‘*^‘<6i
=

’*^‘t6)
+ rM1<7‘(4~i + -144) + t{Aü})

Az At

Once '*^‘{Au} is solved from equation (5.50), the acceleration increments '*^'{Aü} at

time t-i-At can be determined from equation (5.48). Then substituting *·^'{Au} and

**^‘{Au} into equation (5.49), the velocity increment *‘^‘{Au) at time t-+-At can be
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solved from equation (5.49). Repeating these steps iteratively, consecutive config-

urations can be determined. At time=0, the vector °{Au} is computed from equation

(5.39), and °{Au} and °{Au} are known from the initial conditions.

5.5.2 THE MODIFIED NEWTON RAPHSON METHOD

Equation (5.50) can not be solved by a single step because the nonlinear stiffness

matrix and the unbalanced force are stress dependent quantities. At each time step

the nonlinear stiffness matrix and the unbalance force are unknown quantities. Thus

an iteration scheme must be used to solve equation (5.50). The most frequently used

iteration schemes for the nonlinear finite element equations is the Newton-Raphson

iteration method [55]. The incremental iteration form of equation (5.50) is given by

which is known as the modified Newton-Raphson method. Without any a·priori

knowledge of the system behavior, it may be most efficient to update the tangential

stiffness matrix at the beginning of each time step [55]. However convergence is not

guaranteed by this method [55,79.47].
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6.1 INTRODUCTION

To evaluate the new-higher order transverse deformation theory developed in this

work, several example problems are solved and the results are presented in this

chapter. Each of the example problem either contains an analytical solution or a par-

° allel ABAQUS finite element analysis result for comparison. For those problems for

which no solutions are available may be used as reference for future studies.

As emphasized at beginning ofthe work, the goal of this work is to obtain an accurate

stress field for both plate and arbitrarily oriented shell Iaminated composite struc-

tures. Thus attention is paid to the accuracy and completeness of stress results,

particularly the transverse normal and shear stresses. Shear stress continuity condi-

tions across the layer interfaces and the satisfaction of the nonzero traction boundary

conditions are illustrated.

NUMERICAL RESULTS 67



6.2 PROBLEM 1: CANTILEVER PLATE

One of the major goals of this work is to obtain reasonable distribution of shear stress

through the plate/shell thickness. Another major goal of this work is to prove and to

obtain the transverse normal stress. To demonstrate the achievements of these two

goals, several example problems are presented here.

A. isotropic cantilever plate with concentrated load at free end

The geometry, material property and loading condition of an isotropic cantilever

plate are shown in the figure below.

V F

I-I
x f

|.=4·· l-i=o.1” B=1.0" E=1.0x10' psi v =0.0 F=·30-0|b
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The analytical solution from [61], and the results of the first·order shear deformation

theory (FSDT) and current theory are plotted in Figure 6.1. From this plot it is clear

that current solution yields compatible analytical shear stress, which is a great im-

provement over the FSDT solution. The excellent agreement between current work

and analytical solution (see Table 6.1) verifies the formulation of the linear stiffness

matrix derived in this work.

mn
··*

— FSDT°‘°' A Current work
2* M.

—l Analytical
K ’l'“ "’ “ " ‘

°•Ül A _

ä A
MM ‘

U
A

b
A-•.u ‘

*
A

g.
-

..

-666 -m -•¤• —a¤• -z¤o —i¤o o
v., (psi)

Figure 8.1 Sheer stress dlstributlon
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Table 6.1 Slresses cf a Cantileuier Plate

X v ¤„ (psi) 1., (psi)

Exact FEM
Exact0.05072000.00 72001.75 0.00 0.00

0.025 36000.00 36000.87 -337.50 -337.51

0.000 0.00 0.00 -450.00 -450.01

-0.025 -36000.00 -36000.87 -337.50 -337.51

-0.050 -72000.00 -72001.75 0.00 0.00

0.050 36000.00 36000.39 0.00 0.00

0.025 18000.00 18000.19 -337.50 -337.50

0.000 0.00 0.00 -450.00 -450.01

-0.025 -18000.00 -18000.19 -337.50 -337.50

-0.050 -36000.00 -36000.39 0.00 0.00

'
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B. cantilever plate with uniform load

The geometry, loading and boundary conditions and finite element meshes of a

cantilever plate with uniform load are shown in Figure 6.2, where plate mesh is used

for current work analysis and ABAQUS mesh is used for ABAQUS [60] analysis. Two

different material plates are investigated, namely isotropic plate and laminated com—

posite plate.

(i) isotropic plate

The Young’s modulus is assumed 1.0E7 psi and the Poisson’s ratio is assumed 0.3 for

this plate. The stresses of current plate theory are compared with the ABAQUS plane

stress element analysis in Table 6.2. A good agreement between current work re-

sults and ABAQUS results is observed.

(ii) laminated composite plate

The same problem is analyzed for a four layer cross-ply [0/90/90/0] composite plate.

The material properties of each layer used in this analysis are :

E,=1.0x10’ psi, Ez = E, = 2.0x10° psi, v„, = v„, = vz, = 0.3
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q, = 6 lb/ in:

/
:

ß X

X

Z Plate Model

I
Y

7
11t11$11131ti1111$11

ÄIKIKIKIXKIKXXKKKÄÄ
X

ABAOUS Model (4x20 Plane Stress Q8)

Figure 6.2 Cantllever plate with uniform load
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Table 6.2 Stresses of an isotropic plate due
uniformly distributed transverse load

<7,(p3i) 3„(¤3¤)
ß A6Aous A6Aous ABAQUS

1350.0 1350.0 0.0034 -1.87
675.0 675.0 0.0008 -33.75 @

IEM-II-KHK -3-3333 EHI! 33-33
-675.0 -675.0 0.0001 -33.75 @-3333-3 IEHEIIIH -3-3333 EI!411.2 448.0 -3.07 -1.87

ä 333-3 ääüä -33-73 @3-33 I¤IHEE¤ä@ -33-33-3-33 -333-3 K -33-73 @EHI -333-3 -333-3 IE! 3-37 Ißlß
« 0.60 147.4 -6.18 -1.873-33 73-3 EKHH@ -33-73 @17.0 0.00 -1.3 -3.01 -46.60-73-3 Eßälli-33-73ä-333-3 EK 3-33 @@
NOTE:
1. FEM is current work with free end vertical deflection = -0.07747 in.2. ABAQUS free end vertical deflection = -0.07831 in.
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- Table 6.3 Stresses ef a laminated cempesite plate due te
unifermly distributed transverse lead

¤·
«.<¤=1> «.0=s¤> -.,1060ram ,464009 BAQUS FEM ABAQUS

0.60 1462.7
1500.00.3751097.1 1125.0 -0.138 -19.92 -20.8

¤
0.25 , 731.4] 450.0 -34.15 -38.8
0.25 ( 139.2 -34.15 -38.8
0.00 0.00 0.0 0.000 -38.71 -40.4

¤
-0.25 J -139.2l -450.0 -0.058 -34.15 -38.8

-731.4 -0.058 -34.15 -38.8

¤

-0.375 -1097.1-1125.0-0.60
-1462.7, -1500.00.167@

166-1 166-6 I1§IIH§Im@0.375 109.1 E -5.74 -11.956-66 16-661-6E
16.7 57.4 -20.49 -26.6017. -0.9 [ -0.6-3.00-0.25

-18.6 -0.966 -20.49m· -0.25 -74.6 -0.94-0.965-0.375
-111.4 -134.0 -0.26 -0.365 -11.95 -12.50
-148.5 -170.0 j 0.001.31NOTE:

1. FEM is current werk with free end vertical deflectien = -0.08814 In.2. ABAQUS free end vertical deflectien = -0.08740 in.
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The stresses of current plate theory are compared with the ABAQUS plane stress

results in Table 6.3. The transverse shear stress and the transverse normal stress

at x =
17”

are plotted in Figure 6.3 for comparison. From Table 6.3, it is seen that

there ls a better stress agreement at x=10” than those at x=17". In Figure 6.3, lt is

shown that current work fits the boundary conditions much better than the ABAQUS

result and demonstrates a more smooth stress distribution which may indicate the

superiority of current work.

It is important to realize that in above demonstrated examples, two completely dif-

ferent finite elements have been used for comparison, namely plate element for cur-

rent work versus plane stress element for ABAQUS. The good agreement between

these two elements clearly verifies the existence of the transverse normal stress and

the reasonable shear stress generation capabilitles of current work. Besides, the

coarse plate model versus the fine plane stress model proves the computatlonal ef-

ficiency of current work.
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Figure 6.3 Stresses of a uniformly Ioaded compositeplate at location under the loading(x=17")
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6.3 PROBLEM 2: LARGE BENDING DEFLECTION

The most common large deformation test problem is a cantilever beam subjected to

cylindrical bending. The reason to choose this problem as a large deformation test

problem is because the availability of the analytical solution for an isotropic beam.

The geometry, loading condition and finite element mesh used are shown below :

‘\2,W

, H—/ x,u l

L=4" H=0.1' B=1.0" M,=-30.0 in·Ib

NUMERICAL RESULTS 77



An isotropic beam and a three layer [O/90/O] laminated composite beams are lnves~

tigated.

A. isotrogic beam

For this beam, the Young’s modulus is assumed to be E=1.0E7 psi and the

Poisson’s ratio is assumed to be v =0.0 to simulate a pure bending state. Analytical

solution of this problem are :

MVC . El0, Radlus —T/T

B. symmetrical three layer l0/90/O] composite beam

Material properties used for this beam are :

E, = 7.5E6 psi, E2 = E, =2.0E6 psi,

G,2 = 1.25E6 psi, 6,, = G,3 = G„, ‘

vu = v,2 = vw = O.25

The results of the isotropic beam are presented in Table 6.4. The excellent agreement

between current work solution and the analytical solution verifies the nonlinear ma·

trix derivation ofthis work. In this example, since there is no shear loading, the shear

stresses are zero. The number of iterations taken for convergence of the first order

shear deformation theory and the current theory of this example provides a strong

evidence that reasonable shear stress distribution will accelerate the numerical iter-

ation procedures. The reason is because unrealistic shear stresses can not generate

correct stress resultants. For this reason, current work show strong superior con-

vergent speed. Radius of both isotropic beam and orthotropic beam are plotted in
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Figure 6.5, where a smooth curve of radius distribution shows a reasonably good re-

sult has been obtained for the laminated composite beam. The major bending radius

and the minor bending radius of the composite beam are listed in Table 6.5 for future

comparison.
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Flgura 6.5 Radil of cyllndrical bandlng cf a cantileval beam
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Table 6.5 Radii of cylindrical bending of a composite beam

Load Major MlnorM = 30in-lb Radius(in) Radlus(ln)

11*0.2M95.2 805.8 402.9 476.5 583.00.4M 47.2 403.3 201.6 238.0 290.00.6M 31.6 269.9 134.9 158.7 191.80.8M 23.8 203.8 101.9 119.2 142.3

NOTE:
1. Major radlus ls the radlus along the beam.2. Mlnor radlus is the radius across the beam.
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6.4 PROBLEM 3 : FOLDED STRUCTURE

The purpose of this example is to illustrate the capability of the present program to

model folded structures, which requires transformation of element matrices and ac-

tivates the rotational degree of freedom (about the z-axis). ln this example, a "L"

shaped structure (see figure below) is chosen as a test problem because the avail-

ability of its analytical solution. The geometry, loading, material properties and mesh

used are shown in following figure.

.V’

Y' Z ———
Li ’

x
¢ a“

W•8> “
>< ¤

1 F
. l*—B—~l

1-.)-|
F

L=4” H=O.l” B=i.0" E=l.Ox10’ psi, v=0.0 F=6.0lb
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The analytical solution of this problem is given in [61] :

A.Displacements:

a .. a
-

b b—6,,-

ZE, 6,,- 6,, 6,,- 8L + SE,

MX. F F h= 2B. Stresses 6,- E, 3 A
6,,- 2, ( 4 -—x,)

/

The displacements and the stresses obtained using the present element are given in

Tables 6.6 and 6.7, respectively. The analytical solutions are not included due to their

simplicity. The good agreement between current work and the analytical solution

verifies the transformed stiffness matrix derived in current work.
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Table 6.6 Displacements

IEEE] 8<1¤> w<1¤> 8-17881 8- 17887§§@ 8-1188 8-88878 -8-88878
Q 0.2172 0.2172 0.1162 0.06109 -0.06109

Table 6.7 Stresses

¤„ ·-„ <¤=1> T19 msn
ZK-7178-18ß
-8878-88ä

7888-180.06
-7185.040.025

16.88
Q 18-88

18-88
@7818-88@@

88-78
-0.025 0.0 33.75

ä 8-8 8-8
Note : Node "a" yields the average solutions.
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6.5 PROBLEM 4: COMPOSITE PLATE

This example deals with a three-layer cross-ply (0/90/0) square laminate with all four

edges simply supported and subjected to sinusoidally distributed transverse load

(see figure below). This problem has a 3-D elasticity solution [57]. Due to

symmetricity, only quarter of the laminate is modeled by eight-node quadratic ele-

ments.

. . rw
q(x,y) = qo sm lg-sin\

T "*M ~ - amv {vl, ¥
IIXX; g i, T

X3 \QX Je
x\X ; ‘l'°

/

The ply thickness are h, = h, = h/4, hz = h/2.

E G G
The lamina properties are ¥= 25. —i = 0.5, Ä- = 0.2, v.z = v., = vz, = 0.25 .

E2 E2 E2
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The nondimensional stress and displacement quantities are defined as

_ w(a/2, a/2)E h°x1OO _ h i h ,

h?z=(%>'¤2(A,A»%·)· Fu = (%)’¤«2(B„B„ %··) in ¤lv 1 & 3

- h . - h .<¤„„ = ( ;)¤„(B„A) ¤¤ plv 2- ¤„ =( 7)¤„(A„B) in plv 2-

where A and B are the Gauss·Point coordinates (w.r.t the center of the plate) given

below:

2x2Q mesh 4x4Q mesh

A 0.05283a 0.02642a

B 0.44720a 0.47360a
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The three—dimensiona| elasticity solution, and results of the first·order shear defor-

mation theory and current work are compared at Gauss points for different plate

thicknesses in Table 6.8. As expected, there is no improvement in the accuracy ofthe

displacement solution. The reason for this is that the higher order terms ofthe normal

displacement are not being used in the kinematics conditions and stiffness matrix

formulatlon for the global displacement solution. However, remarkable improvement

can be observed in the stress components. The transverse shear stresses (5,,, 5,,)

show higher degree of improvements than the in-plane shear stress (5,,).

Similar comparisons are made in Table 6.9 at different nodal points. Note that the in-

plane stress (8,) is unsymmetrical for thick plates as predicted by 3-D elasticity sol-

ution. Such unsymmetricity is not predicted by the first·order shear deformation

theory. The nondimensional displacement (Ü) and the nondimensional transverse

shear stresses (8,3, 8,3) are plotted through the plate thickness in Figures 6.6, 6.7 and

6.8. As expected, the rotational degrees of freedom of current work are layer de-

pendent quantities. The continuous distribution and relative accuracy of the trans-

verse shear stress verifles the improvements of the current work.
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Table 6.8 Result cemparisens at Gauss points

3/333D
| 7.434 0.0276 @ 0.19666044 6.262 0.5586 0.3710 0.6196 0.166010 66074 4 6.262 0.495 0.3590.0240FEM2

0.3605 0.0239 @ 0.162666072 6.152 0.4842 0.404 @33 3-333 ä 3-333 3-3333 EEK!FENI4 4.911 0.5402 0.2961 0.139766074 4.911 0.524 0.294 0.0219 @ 0.108FEM2 0.2890 0.3275 0.136866072 4.901 0.5112 0.2870 0.1057
3-333 Elällä 3-333ää 3-3333 3-3333 3-3333 IEHIIEH333 33333 3-333 ämä 3-3333 IZIHIHE66002 0.5217 0.26210.020666072

4.319 @ 0.2621 0.0206 0.435 0.1020
Where

1. 3D : 3D-Elasticity Solution [57]
2. FElVl4 : Present werk with 4X4Q mesh3. FEM2 : Present werk with 2X2Q mesh
4. FSDT4 : First Order Theory with 4X4Q mesh [1]5. FSDT2 : First Order Theory with 2X2Q mesh [1]
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6.6 PROBLEM 5 : PLATE WITH SURFACE TRACTION

Plate with nonzero surface traction are not frequently found in the literature. ln this

example, a cantilever plate with continuously distributed constant surface traction

and partially distributed constant surface traction are investigated.

A. isotropic plate with fully distributed constant surface traction

The geometry, loading condition and material properties of an isotropic plate ls

shown in the figure below.

y

O

B
A TI:]

2<=
+LE

= 3.0xlO° psi, v = 0.0, L.=20”, B= 1.0", 2c= l.O", r = 6 psi
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The finite element mesh used in this problem is the same as in Problem 1. The exact

solution of the problem from Ref. [63] is listed below :

(i) at point A: ·c,„=O

(ai) at point B; 6, = 6,, = 6

Stress comparisons are listed in Table 6.10. The excellent agreement of analytical

solution and current work solution validates the stress recovery technique developed
in this work.

Table 6.10 Stresses of an isotropic plate with full surface traction

ä·=B¤—¤ BBB-Bi K3B¤¤¤¤ B EHI ·=4¤-B1 HKHK
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B. i§QtroQig Q ate with distributed Qgnstant gurface traction

The geometry, loading condition and material properties of this plate are shown in

the figure below.

Y

t ¤ ———-{ 1 1.3.1..
’

x 1
1:] - 2¤

L ·•·1·—¢—·i|

E = 3.0x10° psi, v = 0.0, L=20", B=1.0", 2c=1.0", z· = 6 psi, a=15"

Stresses computed in the current work are compared with those from ABAQUS pro-

gram in Table 6.11. In general, this table shows good agreement between these two

results.
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Table 6.11 Stresses of nonzero surface traction plate

Xy(in)(in) FEM ABAQUS FEM ABAQUS
0.0 -0.00106

EE 88-8 III 8-88888
IIHEIIEIIEI 8-88888@@ -88-8 II! 8-88888-0.6 -60.0 -60.0 -0.00060
@IEIl@II§E—88-8 88-8 IIEIEH88-8 älülüßßl 8-888-88-8 -88-8 I!-EIIEK
älähällißläü

72.0 72.0 5.79

ä 8-88888-8 8-8 EH 88-8 IEIIEI-8-88 EIIHI 8-88 E--8-8 EIIEIIIIH 8-888
is present work with free end vertical deflect. = -0.003525 ln.2.ABAQUS free end vertical deflect. = -0.0035259 in.3.Both FEM and ABAQUS yield 0-, = 0.0 through out the whole plate.
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C. composite plate with gartially distributed constant surface traction

The geometry, loading and finite element meshes used in this composite plate are

the same as in case B. The lamination scheme used is [0/90/0] with following material

properties of a layer :

E, = 25.0E6 psi, E, = E, =1.0E6 psi,

G,2 = G,, = 0.5E6 psi, G2, = 0.2E6 psi, v,2 = v„, = v,, = 0.25

The ply thicknesses are assumed to be h, = h, = 0.25/n, hz = 0.5in.

Stresses from the present work are compared with those from ABAQUS in Table 6.12.

ln general, a good agreement between these two results is noted, except at the

lamina interfaces, where the in-plane stress of current work is discontinuous (as it

should be) and that of ABAQUS is continuous. This is because ABAQUS computes

average stresses [60] at lamina interfaces even for in-plane stresses (which are dis·

continuous at interfaces).

The transverse shear stresses of Table 6.11 and Table 6.12 are plotted in Figure 6.9,

where current work results fit the boundary condition better and form more smooth

stress curve than the ABAQUS results. The discrepancy between the current results

and ABAQUS results is most Iikely due to the fact that the mesh used in ABAQUS is

not fine enough to generate accurate results. which further proves the computational

efficiency of current work.
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Table 6.12 Stresses of nonzero surface traction composite plate

¤ v ¤-<¤=*> il(rn) an) ram ABAQUS Fam ABAQUS
0.6 { 160.77{ 160.00 ü 0.00644
0.375 135.00 134.00 ü 0.00007
Q 109.23 -0.00286@I!I «>—¤¤2¤¤10.0 0.00016 ·

E 3.41 Q -0.00059
3.41 E -0.00059

-0.375 -0.00004
ä -44.58 -44.00 0.00113
E 97.94 96.10 5.72

0.375 82.1180.60Q
66.28 33.9 1.40 -0.794
2.57 1.40 -0.794

älßä
Q 4.57 1.99 -1.06

-0.375 -10.46 -11.4 Q -0.678

NOTE:
1.FEM is present work with free end vertical deflect. = ·0.0015993 in.2.ABAQUS free end vertical deflect. = -0.0016091in.
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6.7 PROBLEM 6 : CYLINDRICAL SHELL ROOF

SUBJECTED TO SELF-WEIGHT

An open circular cylindrical shell panel, supported at its two ends by rigid

diaphragms (i.e. walls) and has its longitudinal edges free, is subjected to

gravitational load due to its own weight. This problem has been investigated exten-

sively by many researchers [64,65,66,67,68,69] and constitutes a standard test prob-

lem for the verification of shell elements. The geometry, loading and finite element

meshes used in this work are shown below:

zjw

y!v

Supproted by /, ’
x,u

rigid dlaphragm ~><·;
‘ // ·\\

. /^\
Rg 25**

Free edge
9‘%

n ’ °
¢*

2¤2¤8 Sxsoa 4x4Q8
Meshes used
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Two different material shell roofs are investigated.

A. isotrogig shell [ggf

The material properties of this shell roof are taken to be E=3.0E6 psi and v =0.0,

which are the same values used in Ref. [68]. The 3x3Q8 mesh (3x3 mesh of quadratic

eight-node element) results of current work are compared with the exact solution [68]

in Table 6.13, which shows very good agreement. The results of different mesh sizes

of current work are plotted in Figure 6.10 for comparison with the analytical solution

due to Gibson’s series [68]. The agreement of the present solution with the exact

solution for different mesh sizes verifies the shell element stiffness matrix formu-

lation.
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Table 6.13 Deflectlons of an isotropic shell roof

Angle W(ft) at mid-span V(fl) at dlaphragm

0.043745 0.045912 0.000248 0.000174
6.67 0.028776 0.030570 0.000712 0.000567
ß-0.013887 -0.013380 0.001820 0.001823
a-0.077860 -0.078810 0.002719 0.002744

26.67 -0.153944 -0.156190 0.002004 0.002057
ß-0.232743 -0.234480 -0.002268 @
Q-0.308609 -0.307203 -0.012654

NOTE :
.1. EXACT is the exact solution obtalned from Glbson’s seriesfor fifty terms[68].

2. FEM ls present work with 2x2 Integration as recommended byZienkiewicz[65].
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Figure 6.10 Deflecticns of an isotropic cylindrical shell roof
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B. amingtgg ggmggsifg sbg}! [QQI

The geometry and boundary conditions are the same as in case A. The lamina
”
properties used are :

E. = 25.0x10’ psf. E2 = E2 = 1.0x10° psf

G,2 = G., = O.5x10° psf, G2, = O.2x10‘ psf

1/,2 = V2: = V2, = Ü.25 I

Lamina thickness ls t= 0.05ft.

Loading due to gravity is g=9.0 lb/ft:.

The stacking sequence is [O/O/0/45/~45/90/90/90/-45/45/O/O/O].

The displacement of the 4x4Q8 results of current work are listed in Table 6.14 for fu-

ture comparison. To examine the effect of mesh, three different meshes are used and

the results are plotted in Figure 6.11.
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Table 6.14 Deflectlcms ol a composite shell roof

Angle W(ft) at mid·span V(ft) at dlaphragm(degree)

a-0.0364529 0.0036092

-0.0435197 0.0032598

Q -0.0623128 0.0017436
-0.0741705 0.0001425

ß -0.0865092 -0.002416
a -0.0986092 -0.006234
Q -0.1100042 -0.0121672
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6.8 PROBLEM 7 : THICK CYLINDER UNDER PRESSURE

The conventional way of analyzing a pressurized vessel is to use a 3D solid element

to de*ermine the radius stress (i.e. transverse normal stress in shell element). This

approach requires larger amounts of computer memory and computational time. This

approach would become very combersome when the vessel is made of laminated

composite materials. ln this example, the 2D continuum-based shell element is used

to test the accuracy of the solution. The radial and circumferential stresses from the

2D elasticity solutions are given by

2 2mb a2 im bz
Eqn.1

2 2nb a2 pba bz Eqfl.2
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The geometry, loading and material properties of this problem are presented in the

figure below. „

az -l·· bzP;*‘;%
a —b

a

ll °'6 gb:°°l|iI P"-llll llllllll az - bz"··••• 6Bu"

L l
Pu

Stresses due te
a

internal pressure

6, ¢’g
_

gu p•'
l||;||ll"IIII-p°

2bZgp
•-"*"""

° az — bz \\

P
az + bz

f L ° az _ bz
Stresses due to extemal pressure

a = 22.5 in, b = 17.5 ln, E= 1.0x10’ v=O.3
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Three different cases of pressurizations have been considered here.

(i) internal pressure P, = 5.0 psi

The stresses due to internal pressure are listed in Table 6.15 and plotted in Figure

6.12 for comparison.

(ii) external pressure P, = 2.0 psi

The stresses due to external pressure are listed in Table 6.16 and plotted in Fig-

ure 6.13 for comparison.

(ii) internal pressure P, = 5 psi and external pressure P, = 2.0 psi

The stresses due to internal pressure and external pressure are listed in Table

6.17 and plotted in Figure 6.14 for comparison.

From Tables 6.15, 6.16 and 6.17 and Figures 6.12, 6.13 and 6.14, it is found that the .

transverse normal stresses (6,) predicted by current work are in good agreement with

the analytical solutions. However, the transverse shear stresses (6,,) present about

10% to 50% discrepancy from the analytical solutions. The possible reason for this

discrepancy is that in 2D shell element approach the surface pressure is loaded in the

mid-surface instead of the actual pressurized surface(s) which would enlarge the

hoop stress in case of internal pressure loading and would reduce the hoop stress in

case of external pressure loading. Based upon this explanation, it is understood that

the FEM hoop stresses of Table 6.15 and Figure 6.12 are all greater than the analytical

values. ln this case, pressure is applied on the mid-surface instead of the inner sur-

face of the cylinder which gives a larger membrane force resulting in a larger hoop
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stress discrepancy. This discrepancy ls expected to be small in a thin curve shell

analysis.

In spite of the said hoop stress discrepancy, the results for the transverse normal

stress (6,) through the wall-thickness of a pressurlzed curve thick—wall vessel by a

single shell element are very good. Usually, this can only be achieved by a multi-

layer solid element simulation.
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Table 6.15 Stresses due te intemal pressure

1* 3, (1331) v. (1331)um21
.875 20.1 0 15.756 -0.21 -0.44431-333 -3-73 11-3371ä 33-33 13-733 IE1@33-333 ä 17-313 @@113-373 31-17 17-331 ää18.750 21.81 18.681 -4.22 ß13-133 -1-73 -1-11317-333 33-13 33-313 @1

NOTE : FEM ispresent werk with 2x2Q8 mesh.
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Table 6.16 Stresses due te extemal pressure

umK
-7.14 -8.125 -2.000 -2.00088-888 -8-88 ä -8 -88 IEE188-888 -8-88 -8-888 ää. -7.42 -8.707 -1.67 -1.41820.000 -7.57 -8.938 Q -1.18788-888 -8-88

-8-88818.750-7.67 -6.476 -0.31 äIHH -8-88 -8-888 @@88-888 ä -88-888 @1
NOTE : FEM is present werk with 2x2Q8 mesh.
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Table 6.17 Stresses due te inner pressure and external pressure

8888-8ä 88-88 7-888 -8-8 188-878 88-88 7-888 IZEIEI
ß 13.27 8.061 Q -2.87388-888 I 88-888-88819.375

13.74 | 8.789 -4.05 -3.60118.750 13.95 ä ·4.53 -4.021
18.125 14.09 9.673 -4.87 -4.485@§ 88-8887 ii

NOTE : FEM is present work with 2x2Q8 mesh.
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6.9 PROBLEM 8 : NONLINEAR BENDING OF AN

ISOTROPIC PLATE

Nonlinear bending of a clamped isotropic square plate subjected to top surface uni-

form pressure is investigated to verify the the nonlinear capability of current work.

The geometry, loading, material properties, finite element mesh and nondimensional

vertical deflection at the center of the plate are shown in Figure 6.15. The displace-

ment of current work are smaller than the analytica! solution. This is due to the nu-

merical displacement-hardening error introduced by the modified Newton Raphson

method [79].
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6.10 PROBLEM 9 : NATURAL FREQUENCIES OF

SPHERICAL SHELL

The analytical solution for the nondimensionalized fundamental frequencies of a

cross-ply laminated Sander’s type spherical shell are available in Ref. [71,1], in

which, a simply supported spherical shell panel is analyzed. The geometry and ma-

terial properties are shown in the figure below :

Z

i
}

I?
_;

—

äf•—„L.-•-~—.•„•--.**’ ' Ix Jz¢:_/' ,· a Y
R

Ä

X

E, = 25.0x10° psi, EZ = E, =1.0x10° psi, G,2 = G,,, = O.5x10‘ psi,

G2, = O.2x10° psi, 12,2 = vw = vz, = O.25
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The nondimensional fundamental natural frequencies of the current work(FEM) are

compared with those of the first-order shear deformation theory (FSDT) and higher

order deformation theory (HSDT) in Table 6.18 for a wide range of radius-to-panel

length ratio. The good correlation of FEM result to the FSDT result verifies the mass _

matrix developed in current work.
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Table 6.18 Nendimensional fundamental frequency ef spherical shells

R/a Methed 0/90/0/ 0/90/90/0
E11-1121111

12-211HSDT
1 1 .860 1 1 .840

12-1121111 12-121 IEK
HSDT 11.81 11.79

111112-111HSDT
11.79 11.78

ß 12.177 12.267
111112-111HSDT

11.79 11.78

PLATE FSOT 12.162 12.226 .
HSDT 11 .790 11.780

NOTE: FEM is present werk with 2x2Q8 mesh fer quarter structure.
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6.11 PROBLEM 10 : COMPOSITE CYLINDRICAL SHELL

The geometry, loading and finite element mesh of a clamped cylindrical shell sub-

° jected to internal pressure is shown below:

Z Z
,

Y

R

Ä
—"',

X

R = 20 in., A = 20 in., H = 1 in., P, = 2.0403664 psi

The lamina properties are 2

E, =· 7.5x10°psi, E, = 2x10°psi,
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This model ls used for both static and transient analysis. ln Table 6.19, the center
defiections for orthotropic and two-layer (0/90) cross-ply shells are compared with
known solutions.

Table 6.19 Comparlson of the Center Daflection (Inch)

Laminatlon Present Ref.[1] Ref.[72] Analytlcal[73]Schema Work 2x2Q8 2x2Q9
Q0.0003706 0.0003727 0.0003666 0.000367

0·/s0· 0.00018410.0001803The

center defiections of the same cylindrical shell subjected to an internal impulse
pressure of 5000 psi are shown in Figure.6.16, where results for both cross-ply and
antisymmetrlcal angle-ply composite shells are plotted. For the [0/90] cross-ply shell,
current work yields a slightly larger center deflection than that of Ref. [74]. However,
this discrepancy is within an acceptable range. This verifies the dynamic analysis
capability of current work.

[
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7.1 SUIl/Ill/IARY AND CONCLUSIONS

ln summary, following important goals have been achieved in this work :

(i) A continuum-based shell element is developed with Updated Lagrangian

formulation.

(ii) Nonzero surface boundary conditions and interlaminar shear stress continulty

conditions are satisfied.

(iii) The analytica! integrations through shell thickness are explicitly formulated.

(iv) Transverse normal stress is included thus completing the stress field

computation.

(v) Computational efficiency is increased by the stress enhancement technique.

The transverse shear stresses are also accurately obtained in such a way that the

interlaminar shear stress continulty conditions are fully satisfied and peak values of

the transverse shear stresses can be located in an inexpensive manner. These rep-
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rasant vary important achiavamants in tha analysis of laminatad composita shallstructuras. .
Tha purposa of structural analysis ls mora than just to undarstand its machanical ra- ·

sponsas, but also to maka an accurata failura/fatigua avaluation such that dasign

changas can ba mada to ansura tha raqulrad machanical functions ara parformad

safaly. Slnca tha most commonly usad failura critaria ara strass-basad crltarla, it is

important to datarmina tha strass fiald accurataly.

Howavar, as statad in tha litaratura raviaw and damonstratad in Chaptars 4,5 and 6

of this work, tha classical plata thaory, first ordar shaar daformation plata thaory and

soma othar highar ordar shaar daformation thaorias althar ignora tha normal strass

or yiald oftan inaccurata transvarsa shaar strassas and fall to satisfy tha nonzaro

surfaca traction boundary conditions. All tha abova mantionad thaorias could not

provida an accurata dascrlptlon of tha complata strass fiald.

Tha nawly assumad displacamant fiald and strass racovary tachniqua davalopad in

this work ara abla to provida a simpla and affactlva tool for a complata and accurata

strass fiald avaluation, which may raprasant an important contribution to shall finita

alamant davalopmant.
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7.2 RECOIVIMENDATIONS

As clearly stated in section 4.3, the whole solution strategy of this work is a refined

displacement and stress recovery procedure based on the first-order shear defor-

mation finite element. The transverse deformation parameters a,, az, b,, bz, c, and cz

are ignored from the kinematics conditions (equation 4.9 and 5.15) and are recovered

during the post-computation (equation 4.18 and equation 5.41), after the averaged

displacement components have been computed. Therefore no improvement is ac-

complished over the existing first-order theory displacements and natural frequen-

cies, but stresses are lmproved cosiderably. As an extension of this work, one may

try to apply this technique to the higher order shear deformation theory proposed by

Reddy [5,6] or put the transverse deformation parameters a., az, b,, bz, c, and cz into the

kinematics conditions (equation 4.9 and 5.15) and solve for them directly. Of course,

the latter requires much more computational effort.

In addition, one may perform the first-ply and post—first-ply failure analysis using the

more accurate stress field obtained by the present work. Comparing with the same

failure analysis performed with FSDT stress field, early failure is expected for any

surface pressurized or contacted shell structure such as a multi-layer automobile tire

or high speed flying missiles made by laminated composite materials. In these cases,

pressurization and surface tractions are significant loads, thus transverse normal

stress and nonzero transverse shear stress exist in both cases. lf this is true, the

first-ply failure analysis based upon the FSDT stress field can not provide a conserv-

ative design criterion to any laminated composite structure.
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APPENDIX A

SHELL LINEAR' STIFFNESS

k„ = A,,P,„, + AZZPM, -+- A„P,,„, + A„P„„ + A„P„,,,

-+- A,2(P2,„ +P,,2,) + A,s(P,,„ +P,,,,) + A„(P,,z, +P2,„,) + A_,5(P„,, +P,„,)

k,z = A,,P„,2 + AZZPMZ + A„P„„ -+- A,,P,,„2 + A„P5,„

+ A,2(P2„2 +P„,,,) + A,5(P,,,, +P„,„) + A26(P,,„ -+-P„„) + A„(P,,,„ +P„,„)

k,,k„

= A„P,,„ +A„P„,,

+ B,2P„„ + B„P2,„ + B,„P„„ + B„(P2,„ +P,,„) + B5„P,„„

k,, =
A_,„P,„, +A„P„,, —

+ B„P,„, + B,,P„„ -§- B„P„„ + B,„(P5„, +P,,,,) -+- B„P„,,,

k„ = A„P„,, + A„P„„ -+- A,,_,P„„ + A,,P_,,„ + ASSPSZSZ

BZSPZZ5,k„

= A„P,„„ + A„P„„ + A„P„„ + A5,P„„ + A„P„„

+ A,2(P„,„ +P,„,) + A„,,(P„,, +P„„,) + A„(P„„ «+-Pm,) + A„(P„„, -+-P,,„)

Ag, = A„P„„ +A„P,,„,
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+ B12/31326 + Bzzpzazs + B15/:1356 + BZGCPZSSG +P532S) + BSEPSJSB

k35 = A45P3345 +A55P4345

+ BHP1317 + BtZP2317 BZSPZSS7 + B15(P5317 +Pt357) + BSSPSBST

ku = AMP3434 +D22P2G26 + D26(PZS55 +P5S26) + Dsspssss

k45 = A45P3445 +D12P2617 + D16P2658 -1-DZSPZSS7 + DSSPSSS7

kas = A55P4545 +D11P1717 + Dt5(P5717 -+-P1757) + DGB/:5757

Where the symbol P„,,„„ represents the integration of P' to Pf over the element

surface,i.e.

Pumn = _/—APÄ1PÄm dxtdxz
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APPENDIX c

SHELL NONLINEAR STIFFNESS _

k,, = 5,/0,,,, +0,,,, +0,,,,) + E,/0,,,, +0,,,, +0,,,,) + E,/0,,,, +0,,,, +0,,,, +0,,,,)

+ /5,/0,,,, +0,,,, +0,,,, +0,,,, +0,,,, +0,,,,) + E,/0,,,, +0,,,, +0,,,, +0,,,,)

k,, = E,/0,,,, +0,,,, +0,,,,) + E,/0,,,, +0,,,, +0,,,,) + E,(0,,,, +0,,,, +0,,,, +0,,,,)

+ E,(0,,,, +0,,,, +0,,,, +0,,,, +0,,,, +0,,,,) + E,(O,,,, +0,,,, +0,,,, +0,,,,)

/<,, = E,/0,,,, +0,,,, +0,,,,) + E,/0,,,, +0,,,, +0,,,,) + E,/0,,,, +0,,,, +0,,,, +0,,,,)

+ 5,/0,,,, +0,,,, +0,,,, +0,,,, +0,,,, +0,,,,) + E,(0,,,, +0,,,, +0,,,, +0,,,,)

/«,, = E,/0,,,, +0,,,, +0,,,,) + E,/0,,,, +0,,,, +0,,,,) + E,(0,,,, +0,,,, +0,,,, +0,,,,)

+ E,/0,,,, +0,,,, +0,,,, +0,,,, +0,,,, +0,,,,) + E,/0,,,, +0,,,, +0,,,, +0,,,,)

/<,, = E,/0,,,, +0,,,, +0,,,,) + 5,/0,,,, +0,,,, +0,,,,) + 5,/0,,,, +0,,,, +0,,,,+0,,,,)+

E,/0,,,, +0,,,, +0,,,, +0,,,, +0,,,, +0,,,,) + E,/0,,,, +0,,,, +0,,,, +0,,,,)

k,, = 5,/0,,,, +0,,,, +0,,,,) + E,/0,,,, +0,,,, +0,,,,) + 5,/0,,,, +0,,,, +0,,,, +0,,,,)

+ E,/0,,,, +0,,,, +0,,,, +0,,,, +0,,,, +0,,,,) + /5,/0,,,, +0,,,, +0,,,, +0,,,,)

/<,, = /*,0,,,, +/*,0,,,, + F,(0,,,, +0,,,,) + E,0,,,, +5,0,,,, + /*,0,,,, +/*,0,,,,

/<,, = /*,0,,,, +/*,0,,,, + F,/0,,,, +0,,,,) + E,0,,,, +E,0,,,, + /*,0,,,, +/*,0,,,,

/<,, = /*,0,,,, +/*,0,,,, + /*,/0,,,, +0,,,,) + E,0,,,, +5,0,,,, + /*,0,,,, +F,0,,,,

/<,, = /*,0,,,, +/*,0,,,, + F,/0,,,, +0,,,,) + E,0,,,, +5,0,,,, + /*,0,,,, +/*,0,,,,

k,, = /*,0,,,, +/*,0,,,, + /*,/0,,,, +0,,,,) + E,0,,,, +5,0,,,, + /*,0,,,, +F,0,,,,

/<,, = /*,0,,,, +/*,0,,,, + /*,/0,,,, +0,,,,) + E,0,,,, +5,0,,,, + /*,0,,,, +/*,0,,,,

/<,_, = 0,0,,,, +0,0,,,, + G,(0,,,, +0,,,,) +F,/0,,,, +0,,,,) + /*,/0,,,, +0,,,,)

/<,, = 0,0,,,, +6,/0,,,, +0,,,,)

1+,, = 0,0,,,, +0,0,,,, + 0,/0,,,, +0,,,,) + /*,/0,,,, +0,,,,) + /*,/0,,,, +0,,,,)

coucwsaons Ann Rscommauomous A 132



Where the symbol O„,„,,, represents the integration of q* to ql over the element

surface,i.e.

O„„„„ = fAql„q1„„ dxldxz
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APPENDIX D

SHELL CONSISTENT MASS MATRIX

m,, = I, fd>,d>,(v;,v4, -I- v,,vg, + vg,v5,) dx,dx,

m,, = I, vg,vg,) dx,dx,

m,, = I, f¢>,d>,(v;,v4, + v,,v5, + vg,v5,) dx,dx,

m,, = I, fq&,d>,(v§,v{, -+— v,,v5, —I- v;,,v5,) dx,dx,

m,, = I, fd>,¢>,(v;,vI, -I- v;,v5, -I- vg,I/5,) cIx,dx,

m,, = I, f¢>,¢>,(v;,vI,, + v;,vQ, + vg,v5,) dx,dx,

m,, = I, fd>,d>,(v;,v4, -+— v;,v,, -+- vg,v5,) dx,dx,

m,, = I, fd>,d>,(v;,v4, + v;,,I/Q, + vg,v5,) dx,dx,

m,, = I, fd>,d>,(v;,vI, -+— v;,,v5, + vg,v5,) dx,dx, U
m,, = —/,f¢>,qS,v;, dx,dx,

m,, = I,f4b,d>,v;, dx,dx,

111,, = -1, f¢>,¢,v,,dx,dx,

m,, = 1, f1z>,¢>,v;, dx,¤1x,

m,, = —I,f¢>,¢>,v,,dx,dx,

m,, = I, fd>,¢>,v;, dx,dx,

m,, = —I, f¢>,d>,v5,dx,dx,

m,, = I, dx,dx,

m,, = —I,fd>,q>,v,,dx,dx,

m,, = I, f¢>,d>,v4, dx,dx,

/7743 - -1, j11>,¢>,v,, dx,«1x,

m,, = I, fq>,a§,v1, dx,dx,
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m„ = 1, f4>,q>,dx,dx,

17745 = O

/3Where¢>, is the shape fuctiun uf nude i.

0
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