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Abstract

This report describes work to classify webpages and tweets about important global
events and trends. Since most of the Twitter data is in text format, classification
of these tweets as to events discussed would prove to be useful for finding patterns
and relations. Classification of this data would allow users to analyze, visualize,
and explore content related to crises, disasters, human rights, inequality, population
growth, shootings, violence, etc. To limit the amount of information posted by
an individual, Twitter established a maximum length of 140 characters, and then
doubled that on 7 November 2017. This resulted in tweets consisting of short forms,
slang words, hashtags, and other non-standard use of language. The traditional
methods of text classification will not work efficiently on such data. For webpages,
since most of the data is in text and it is following the standard usage of the language,
the main aim is to extract information about a particular event by selecting the
correct features.

Once we received the cleaned data from the CMT and CMW teams in CS5604, we
used that data to perform machine learning techniques for classification. During
this process, we faced some challenges like hand-labeling the data so that we had
sufficient training data. We also faced some challenges while selecting the models
for webpage data due to the size of webpages. We tested different models on the
hand-labeled webpage data. We were able to select a model with good performance
metric scores and efficiency. We integrated this model into our framework and then
had a tweet and webpage classification framework ready.

We learned the importance of feature selection before building the classification
model. We trained a Word2Vec model on the entire corpus available in the HBase
table. In the future, Google’s or Stanford’s pre-trained Word2Vec models could be
compared, possibly making the feature selection process more robust.

We have implemented binary classification, which can be used in the future to sup-
port hierarchical classification. This is more flexible than the multi-class classifica-
tion model from the 2016 team. It allows more models to be trained and added
efficiently into our framework, as more global events occur.
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Chapter 1

Introduction

This chapter is dedicated to describe the role of the classification (CLA) team in the
overall class project. The CLA team’s input is the data collected by the Collection
Management Tweets (CMT) team and Collection Management Webpages (CMW)
team. The CLA team then outputs the classified data. This data is useful to
the SOLR and CTA teams. The main function of the CLA team can be outlined
as follows: it receives cleaned raw webpage and tweet data from the two mentioned
teams, and it classifies the data into a specific class of events using advanced machine
learning schemes. This classified data is put in HBase for other teams. For instance,
the SOLR team will index the classified data. A schematic diagram of the CLA
team role is shown in Fig. 1.1.

CLA HBase

CMT

CMW

1

Data that has 
been classified 

into several 
categories

Processed 
data including 

web pages 
and tweets

Figure 1.1: Schematic role of classification team

The CLA team of Fall 2016 has already developed a framework for classifying tweets.
This framework gives good accuracy and uses good techniques. However, no work
has been done on webpage classification. The goal of our team is to enhance the
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implemented approach of classifying tweets and to extend this model for webpage
classification.
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Chapter 2

Literature Review

The CLA team from the Fall 2016 class has made headway with classifying tweets [1].
Their classification process begins with the training phase. They first read raw
tweets from HBase and pre-process these raw tweets. This pre-processing includes
cleaning the raw tweets, removing stop words, and performing lemmatization. The
cleaning in the pre-processing step involves eliminating non-English words, URLs,
and emojis. They have made use of the Word2Vec feature selection model to generate
word vectors. After the feature selection phase using Word2Vec, they have used the
multi-class Linear Regression classifier for classifying the tweets into nine classes. To
find the best linear regression model they performed 10-fold cross validation. Both
their Word2Vec and Linear Regression models persisted in the Hadoop Distributed
File System (HDFS). After they trained the Word2Vec and Classifier models and
saved them in HDFS, they performed the prediction step. This prediction step runs
periodically (once every 4 hours) using a cron job in Linux. The tweets which need to
be classified are read from the database and pre-processed. The trained Word2Vec
and Classifier models are loaded from HDFS and this data is passed through the
models. The output of the classifier is one of the nine class labels for each tweet.
The label is written back in HBase in the column ‘real-world-events’ which is a part
of the column family ‘clean-tweet’.

To figure out the best classifier model, the CLA team also used an ‘Association rules’
classifier model and compared its results with the Word2Vec with Linear Regression
classifier. They computed the F-1 score for comparison and found that Word2Vec
with Linear Regression gave an F-1 score of 0.96 whereas the Association Rule model
gave a score of 0.90 [1].

In the textbook ‘An Introduction to Information Retrieval’, the authors have in-
cluded a chapter on Text Classification [2]. This chapter begins with the authors
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defining the need for classification as ‘the ongoing need of information by differ-
ent users and applications’. They inform about standing queries and hand-crafted
rules and also state the problems associated with these methods. They mention the
approach of machine learning based classification and describe it as the approach
where ‘the set of rules or, more generally, the decision criterion of the text classi-
fier, is learned automatically from training data’. The documents that need to be
classified are generally represented in high dimensional spaces. Hence, the authors
describe the use of feature selection for improving the efficiency of the classifiers.

Feature selection is defined as the process of picking a subset of terms as features and
discarding the rest of the terms. This reduces the overall vocabulary for training the
classifier and improves the efficiency. It also helps in removing noise features, i.e.,
features that lead to misclassification due to insufficiency or inaccuracy of training
data available. As described in the book, feature selection methods are based on the
principle of computing a utility matrix of all the terms and then selecting those terms
which have high value in the utility matrix. The Mutual Information, Chi-Square,
and Frequency based feature selection methods are introduced in the book [2].

The feature selection techniques that we researched are described below:

• TF-IDF: Term frequency–inverse document frequency is a statistic that mea-
sures the importance of a word for a document. This value increases as the
term appears more frequently but is scaled by how often the term appears in
the entire corpus. This makes a term that is common throughout the text,
such as “the”, to not be weighted heavily even though it would appear many
times in each specific document [1].

• Word2Vec: Word2Vec creates word embeddings to create a representation of
words that capture meaning and semantic relationships and different contexts.
Word embeddings mean generating numerical vectors for words using a dic-
tionary. This conversion is done for ease of using these features in machine
and deep learning models. The context of the word is defined as the word
and its surrounding neighbors. For example, a word might have words pre-
ceding it and succeeding it. The word along with its surrounding neighbors
forms the context. Two techniques that identify the context of a work are the
CBOW (continuous bag of words) and the skip-gram method. The skip-gram
method predicts a context given a word. The CBOW technique predicts the
probability of a word in a context. A neural network is trained based on these
techniques and the trained hidden layer weights are used to generate the word
vectors. Once the word vectors are generated, the words that are closer in
context to each other are close to each other in vector space based on their
cosine distances. This attribute of the word vectors makes them very useful
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for text classification. The word vectors based on the skip-gram technique
give the state of the art results for text classification. From a feature selection
perspective, since each word generates a vector, we average all the values in
the vector and use that value as the feature value for a given word. The bigger
the corpus is, the more effective the word vectors become from the perspective
of text classification.

• Doc2Vec: Paragraph vectors were proposed to extend the Word2Vec model.
Embeddings are formed by learning from sentences instead of learning from
words as is the case with Word2Vec. Doc2Vec has two models: ‘DBOW’ and
‘DMPV’. DBOW works in the same way as skip-gram of Word2Vec. DMPV
works as CBOW of Word2Vec. The authors mention that with a large corpus
of data, Doc2Vec performs better. They ran Doc2Vec, Word2Vec, and n-
gram techniques for a document duplicate identification task. They compare
the results using ROC curves and conclude that Doc2Vec performs better for
some classes and is comparable for others. The DBOW technique performs
better than DMPV [3].

The authors of ‘An Introduction to Information Retrieval’ also mention improving
‘classifier effectiveness’ as one of the areas of machine learning research. This re-
search has led to development of advanced classifiers like support vector machines,
boosted decision trees, regularized logistic regression, and neural networks. The
authors state that many machine learning algorithms have been used for classifi-
cation and SVMs are very prominent among them. It is worth mentioning that
SVMs perform remarkably well. The general idea behind SVMs is designing a large
margin classifier. The decision boundary has to be such that it is maximally far
from any point of any class in the training data. The decision boundary is specified
by a subset of points which defines the position of the separator. These points are
the support vectors. Maximizing the margin helps because if we have to put a fat
separator between the classes, we have fewer choices of where to put it [2].

SVMs are designed as two-class classifiers. However, many techniques exist for
constructing a multi-class classifier from SVMs. One of the basic approaches includes
building a one-versus-all classifier and choosing the class which this classifier classifies
with the greatest margin. Another approach is to build a set of {|C|(|C| − 1)/2}
one-versus-one classifiers and pick the class that is selected by the most classifiers [2].

A logistic regression classifier model measures the relationship between the cate-
gorical dependent variable and one or more independent variables by estimating
probabilities using a logistic function, which is the cumulative logistic distribution.

The Naïve Bayes classification method is based on applying Bayes Rule under the
assumption of independence. This means it treats each feature as independent of the
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others with respect to the class the document will fall into. Despite the assumptions,
Naïve Bayes has been shown to perform well in real world situations.

We plan on exploring SVMs, Logistic Regression, and Naïve Bayes classifier mod-
els for webpage classification along with the above mentioned feature extraction
techniques.

Hierarchies are becoming ever more popular for the organization of text documents,
particularly on the Web. Web directories and Wikipedia are two examples of such
hierarchies. Along with their widespread use comes the need for automated clas-
sification of new documents to the categories in the hierarchy. As the size of the
hierarchy grows and the number of documents to be classified increases, a number
of interesting machine learning problems arise. In particular, it is one of the rare
situations where data sparsity remains an issue, despite the vastness of available
data: as more documents become available, more classes are also added to the hier-
archy, and there is a very high imbalance between the classes at different levels of
the hierarchy. Additionally, the statistical dependence of the classes poses challenges
and opportunities for new learning methods.

In our literature review we studied a similar Kaggle problem posed in 2014 named
‘Large Scale Hierarchical Text Classification’ [4] and gained insights upon the dif-
ferent approaches to go about it. The winning solution consists mostly of an en-
semble of sparse generative models extending Multinomial Naïve Bayes [5]. The
base-classifiers consist of hierarchically smoothed models combining document, la-
bel, and hierarchy level Multinomials, with feature pre-processing using variants of
TF-IDF and BM25.

The ensemble algorithm optimizes the macro F-score by predicting the documents
for each label, instead of the usual prediction of labels per document. Scores for
documents are predicted by weighted voting of base-classifier outputs with a Feature-
Weighted Linear Stacking. The number of documents per label is chosen using label
priors and thresholding of vote scores.

The macro-average method [6] is straightforward. Just take the average of the
precision and recall of the system on different sets. For example, the macro-average
precision and recall of the system for the given example is,

Macro-average precision =
P1 + P2

2

Macro-average recall =
R1 +R2

2
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where precision (P ) and recall (R) are

P =
True Positive

True Positive+False Positive
,

and
R =

True Positive
True Positive+False Negative

,

respectively. The Macro-average F-Score will be simply the harmonic mean of these
two figures.

A hierarchical classifier has been designed in [7] for a medical diagnosis application.
This hierarchical classifier includes a training phase and a classification phase. In the
training phase, the data are clustered into sub-populations and these are relabeled
as sub-classes. A reduced feature set is generated from these results. A super-
classifier is then constructed from cluster information and new data. We know that
the objective of classifiers is to generate a decision boundary to separate data and
put it into classes. Classification algorithms work on the premise of minimizing the
error for training data. However, this may lead to overfitting of the model over
the training data. Hence, the decision boundaries need to be generalized to some
extent. Hierarchical classifiers help in this case. With sub-classes being present,
the estimated boundaries can be close to the actual boundary. This improves the
accuracy of the classifier.

In the model described in [7], the data is clustered and each cluster is a sub-
population. Here, the distribution of each cluster is different than that of the orig-
inal data. The distribution is based on sub-classes and the decision boundary is
calculated. By finding the decision boundary, the classifiers for sub-classes are de-
signed. Every data cluster’s feature’s mean and covariance also are preserved. Each
classifier generates the probability and all these probabilities are added to give the
next level (super-class) classification model. This model maintains the strength of
the multiple-classifier approach and also solves some of the problems of the multi-
classifier approach. This model was run on two large data sets, and sensitivity and
specificity were measured to validate the model.

We plan to explore hierarchical classifiers to identify if they would help with text
classification of webpages and tweets.

13



Chapter 3

Requirements, Design And
Implementation

3.1 Requirements

In the big picture, when you think of the CLA team as a function which requires
input and output data, the input data is provided by the CMT and CMW teams,
and the output data is delivered to the SOLR and CTA teams. Therefore it is
important for our team to actively communicate with associated teams to have a
common expectation about the input/output data.

To provide acceptable training data for classifiers, the input data should be cleaned
from characters that are not the subject of classification. For example, there can be
non-English words or characters like (<?/=> . . . ), which should be removed from
the input data. The CMW and CMT teams need to clean the data and provide us
with clean raw text for webpages and tweets, respectively.

The major goal of our team is to create a classifier model which is trained by the
input data. We will explore TF-IDF, Word2Vec, and Doc2Vec feature extraction
techniques before passing the features to train our classifier model. We plan to
evaluate Logistic Regression and Support Vector Machines classifier models for our
data sets. Since the Apache Spark framework provides us with machine learning
libraries, we will use them to pursue our goal. Beside these classification models, we
would like to evaluate if hierarchical clustering suits for the input data. We will go
through chapter 17 of the textbook (hierarchical clustering) to get more theoretical
perspectives about possible choices (such as top-down or bottom-up) for our data
sets [2].
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In the final stage of our work, the output of our model will be a column having class
labels and a probability-list column having the probability values for the classes
predicted. This output will be written into an HBase column family for the use of
other teams.

3.2 Design

3.2.1 Classifying Webpages

One major goal for this semester is to classify webpages provided by the CMW
team. We plan to test various models for webpage classification. We will first apply
the existing tweet classifier code to webpages, and then we will transition to trying
different models and frameworks. We plan on executing these models on the shooting
data provided at first and then we will use other data as and when provided by the
CMW team. We will do various experiments to find an optimal and efficient model
and framework. From there, we will optimize the implementation and finalize the
code for the next CLA team.

3.2.2 Tuning Tweet Classification Model

The Fall 2016 CLA team, as explained in Chapter 2, has developed a framework that
cleans and pre-processes the tweets, trains the tweet classifier and feature selection
models, and uses these models to find features and classify new tweets. The team has
tested and compared various feature selection techniques, and they have concluded
to use the Word2Vec model for feature selection. The previous team has also tested
and optimized the tweet cleaning methodology. The previous team chose Logistic
Regression as the classifying model. Their framework uses Apache Spark jobs to
minimize the training and prediction time taken by the classifier model.

We will attempt to improve the tweet classification framework by implementing
a hierarchical classification framework. This way, we can allow users to search
something like Hurricanes > Hurricane Harvey, allowing a broader and more in-
depth search. We will also try out other models and compare their performance,
selecting and implementing the best one.
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3.2.3 Original Framework

The tweet classifier framework from the Fall 2016 CLA team will mostly still be used
for tweet classification as it is accurate and fast. However, modifications need to be
done to fit it into the new framework. Fig. 3.1 shows the original framework that
was used to classify tweets. The design is divided into two main phases: training
and prediction. Here we will provide a brief overview of each phase.

Training Phase:

• First, the framework takes the raw training and testing tweets stored in HBase
and pre-processes them into ‘clean tweet data’.

• The clean tweet data in the overall course HBase table is used to train the
Word2Vec model which produces features that are used to train the linear
regression classifier.

• Once the Word2Vec and classifier models are trained and tested, they are
stored in HDFS.

Prediction Phase:

• Cron, a Linux utility, allows scheduling of parsing new tweets every 4 hours,
and handing off to the pre-processing step.

• Similar to the training phase, the pre-processing step cleans the tweets.

• The Word2Vec and classifier models are loaded from HDFS and are used to
predict which class (real world event) each tweet belongs to.
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TRAINING

PREDICTING

Figure 3.1: Training and predicting processes of the previous framework [1]

From understanding and testing the previous team’s provided git repository code, a
few noticed drawbacks of the old framework are listed below:

• The code has hard coded classification ID values for classification-labels.

• The process assumes that all data in a table was a single collection with ex-
pected table settings.

• The process does not account for handling empty tweets post-cleaning.
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• Word2Vec training corpus limited to only the training data set.

3.2.4 New Framework

Our team plans to utilize the previous framework with modifications to fix some of
the existing drawbacks. Also, these modifications aim to add webpage classification
and support the new class HBase schema. A majority of cleaning done in the pre-
processing step will be done by the CMT and CMW teams.

First, the training of Word2Vec models is now separated. This was done because
the old process limited the Word2Vec model to a vocabulary only present in the
training data. This resulted in a number of words not present in the Word2Vec
model’s vocabulary when processing documents on the real table. With this training
process separated, the Word2Vec model can now be trained off a different data set.
It was decided to train off all the documents present in a defined source table.
Due to the classification process reading from various columns, all columns that the
classification process could look at will be used to train the Word2Vec model. This
new training process guarantees that all possible input words from all documents in
a table will be in the trained Word2Vec model’s vocabulary. Figure 3.2 shows the
new Word2Vec model training process.

Figure 3.2: New training process of the Word2Vec model

Training of the Logistic Regression models for tweet documents remains relatively
the same, though with some changes. First, the input arguments list all of the
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classes of the data set, and the training process checks the input training file for a
matching number of classes. This is done because hard coded classes will no longer
be used. From there, the training and testing data set will be split 80% and 20%
respectively with splitting and randomization per class, guaranteeing proper 80%
and 20% of training documents per class. Figure 3.3 shows the new training process
of tweet Logistic Regression models.

Figure 3.3: New training process of the tweet Logistic Regression model

Training a webpage Logistic Regression model is similar to training the tweet Logistic
Regression model. However, the only difference is that data is read from an HBase
table rather than from the local training file. This was done because early efforts did
not have clean webpage data available for training purposes. When cleaned webpage
data became available, it was easier to quickly retrain with the up-to-date cleaned
data off the table rather than re-export a new training file with hand labels. Figure
3.4 shows the new webpage Logistic Regression model training process.
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Figure 3.4: New training process of the webpage Logistic Regression model

Classification has been redesigned to support the HBase configuration with scan fil-
tering to read the desired collection and document type from the source data table.
For tweet classification, tweets are restricted to 140 (and later 280) characters. This
makes tweets have very low information per document. Also, the CMT team gener-
ated clean tweet data has a lot of data removed such as hashtags. Therefore, tweet
document data had to first be retrieved from multiple columns and concatenated.
From there, the tweet data was cleaned for items such as hashtag and URL syntax
characters and then classified. Figure 3.5 depicts our new tweet prediction process.
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Figure 3.5: New class prediction process for tweets

From experimentation (see Section 5.2), using Word2Vec with Logistic Regression
had high accuracy while being very fast. Therefore, a similar process used for clas-
sifying tweets was used to classify webpages. Due to webpage clean text being rel-
atively abundant and high in word count, only the webpage clean text was needed
to classify webpages. Figure 3.6 depicts our new webpage prediction process.

Figure 3.6: New class prediction process for webpages
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The HBase schema for the class’s shared table was designed and documented this
semster. Table 3.1 shows which HBase table columns that the entire classification
process will read from or write to.

Column Family Column Usage Example

metadata collection-name Input collection filter “#Solar2017”
metadata doc-id Input tweet/webpage filter “tweet”
clean-tweet clean-text-cla Input clean tweet text “glasses stare sun hurts eyes”
clean-tweet long-url Input URL in tweet “https://www.cnn.com/faulty_glasses/”
clean-tweet hastags Input tweet hashtags “#NASA;#Solar2017”
clean-tweet sner-organizations Input SNER text “NASA”
clean-tweet sner-locations Input SNER text “Virginia”
clean-tweet sner-people Input SNER text “Thomas Edison”
clean-webpage clean-text-profanity Input clean webpage text “glasses dangerous chemicals”
classification classification-list Output classification names “glasses;chemicals”
classification probability-list Output class probabilities “0.899;0.101”

Table 3.1: HBase schema
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Implementation

The main() function of the code has been modified to take in input arguments to
determine the runtime configuration. It determines if hand labeling, training, or
classification is being done, webpage or tweet data is being processed, which HBase
tables to input and output data from, the processed table collection name, and
classification classes to use. Currently, bash shell .sh scripts with user defined inputs
are used to run the code, and multiple different runtime parameters can be defined at
once to, for example, classify tweets for a set of collection names. Eventually, most
of these inputs will be loaded from a configuration file and work off of a separate
HBase table that maps event names to collection names.

4.1 Hand Labeling Process

4.1.1 Tweets

Our team provides code to hand label tweets in the class cluster, called by a bash
script. The code will access directly to the main HBase table, filter out the un-
related tweets based on several predefined filters, and retrieve important columns
for classification. Our team filters the tweets based on the correct collection name,
tweet document type, false retweet flag, and non-empty clean text. For tweets, our
team identified the important input columns as the following:

• clean-tweet:clean-text-cla

• clean-tweet:sner-people

• clean-tweet:sner-locations
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• clean-tweet:sner-organizations

• clean-tweet:hashtags

• clean-tweet:long-url

After gathering all the columns, the script will display the raw tweet and ask the
developer to label it. Figure 4.1 shows an example of what the script would display
after being executed. For our implementation, our team also provides flexibility to
choose how many tweets are to be labeled. After all the tweets have been labeled,
the tweet row key, tweet clean text and other column information, and classification
label, will be stored in a .csv directory on the Hadoop file system. A “hadoop fs
-get “〈generated_file_name〉” ” command will pull it to the local file system. This
output will be a folder of parts. Use “cat part-* > trainingFile.csv” to merge the
parts into a single .csv file for training usage. For our team’s objective to classify data
for the Solar Eclipse in 2017, we have hand labeled 500 tweets from the "#Eclipse"
collection in the "getar-cs5604f17" table.

Figure 4.1: Example of the hand labeling process after running the script

4.1.2 Webpages

Hand labeling the webpage data was more challenging than for tweets. One of the
main challenges we faced with the webpage data was the “size” of contents; it could
vary from one line to multiple paragraphs. The size difference in data entries causes
problems in the process of classification. For example, a spam instance in the data
could be fairly middle size (which was good) but a non-spam page might have few
words which means it is not high quality as an input for the feature selection models.
On the other hand, some of the instances had only non-text contents such as images,
advertisements, and videos.

Apart from the obstacles we pointed out, the actual contents of the webpages also
held challenges. First, we had to read the entire webpage content rather than just
the first few lines. This was because we found that some of the webpages had just
the first line about the event and then the rest of the content was not related to the
event at all. For example, in the ‘Dunbar High School Shooting’ data the suspect
‘Amy Bishop’ was involved in a few other events and not just the shooting. During
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our hand labeling we found webpages starting with her name but that would detail
some other event which she was a part of.

As we had to read entire webpages, this task took some time. However, we hand
labeled about 550 webpages related to the ‘Solar Eclipse’ event and 800 webpages
related to the ‘Las Vegas Shooting’ event. We also hand labeled six ‘School Shooting’
collections to test different classification models for the framework.

4.2 Class Cluster Classification

For tweet classification, our team has the tweet classifier Scala code used last year.
The problems with this framework were mentioned in Section 3.2. In addition, the
provided code repository had code commits made ahead of the previous team’s final
report submission, deprecating some sections of the previous team’s final report.
The tweet classification code has been modified to reflect the new framework design
described in Section 3.2.4.

4.2.1 General Improvements

Time was taken to remove unused or test code from the master branch of the code
such as incomplete functions and injected return nulls. In addition, a lot of hard
coded values such as table names, class labels, and file names were included in local
function scopes or local object scopes. These local scope variables now refer to
higher scope variables so that constants such as column family names do not need
to be defined in multiple locations. Also, the code no longer needs to be recompiled
to change table names, input training data sets, and model files. This is thanks to
using more input argument fields when calling the main() function.

4.2.2 Word2Vec Model Training Data

For classification model training, a Word2Vec model must be trained first. Currently,
the Word2Vec model naming scheme is: ‘<SrcTableName>_table_w2v.model’.
Word2Vec models are named after the source data table since its entire corpus was
used for training, making it applicable to all events, document types, and collections
stored in the table.

To train the Word2Vec model, the code first collects column data of all documents in
the table. This column data is gathered through a table scanner, and the columns
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read from are only the ones used as inputs to the classification process defined
in Table 3.1. To train a Spark library Word2Vec model, the entire corpus must
be input, as one massive data structure, in one go. Iterative training of the Spark
library Word2Vec model is not possible due to the training function’s re-initialization
of internal class values. Therefore, a massive (RDD) data structure containing the
entire corpus of the table is built first. Large tables may take up to hours to compile
the entire corpus, and it is recommended to only train the Word2Vec model on high
system memory computers (i.e., >8GB). As a performance metric for estimating
how long this process will take, one hour was needed to train the Word2Vec model
off of the 3.3 million documents in the class cluster table. This table is composed of
mixed tweet and webpage documents, mostly tweets (>75%). After compiling the
data into an RDD, the model is trained and saved. Due to the long training times,
it is not recommended to retrain the Word2Vec model often.

4.2.3 Logistic Regression Model Training

After a Word2Vec for the source table is trained, Logistic Regression models may be
trained for each event in that table. Initially, hand labeled training documents are
fed in through a .csv training file. The formatting of the training file should be three
comma separated values in the order of: row key, concatenated classification text,
and class label. Note that the webpage training code may use a .tsv training file with
different layout due to how the initial unlabeled webpage data was pulled. The name
of the training file should be: ‘<EventName>_<DocumentType>_training.csv’. A
training and testing document set is needed, so the training document data set must
be split.

The training documents are randomly split into 80% training and 20% testing set.
The splitting is done randomly on a per class label basis. This means that for
every class, 80% of that class’s training documents are for training and 20% for
testing. This ensures that each class has an adequate amount of training and testing
data. However, this does not balance the class data set size against other classes.
For example, a training data set has 100 ‘Solar Eclipse’ and 200 ‘Spam’ classified
documents. Then the training data sets will each have 80 ‘Solar Eclipse’ and 160
‘Spam’ documents. This split was used because of a low count of hand labeled
training documents, which means it is better to train as much as possible, and
further testing for optimal splitting of training to testing data sets is needed. It may
also be a good idea to have dedicated training and testing sets that are both hand
labeled and hand picked.

Note that, when training the tweet Logistic Regression models, the tweet document
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data is read from the .csv training file. However, for training the webpage Logistic
Regression models, the webpage document data is read from the specified source
table, but the hand labeling and row key are provided from a .csv training file.
This was done because clean webpage data was not initially available when the
hand labeling of classes was done. Ideally, in the future, all training will read the
latest cleaned document data off the table due to possible collection cleaning process
adjustments, and the training files may only have the document row key and hand
labeled class. Finally, training Logistic Regression models is very quick, only taking
around 15 seconds per model for around 600 hand labeled documents of either type.

4.2.4 Predicting Document Classes

The prediction process first checks the source and destination HBase tables for the
expected column family names. It will throw an exception if the required column
families are missing. See Section 3.2.4 for the HBase Schema. Next, the Word2Vec
and Logistic Regression models are loaded. Afterwards, a Scan object and many
ColumnValueFilter objects are generated to pull the desired data from the source
HBase table. These filters check for empty or missing cleaned input text, as well as
for the desired collection and document type. See Section 7.3 for more information
on these filters. The scan pulls the clean text and other desired column data for
concatenation of the document data to classify. The scan results are pulled in cached
batches to not steal too much processing time of the table from other class cluster
processes. A batch of tweet scan results includes up to 20,000 tweets per batch. A
batch of webpage scan results includes up to 2,000 webpages. Scanning an HBase
table is a serial operation done by the driver (main) process, and the results are
stored into an RDD. After pulling the filtered batch of documents, the driver process
partitions the batch of documents into RDD partitions for parallel class prediction
via parallel task processes. The driver process spawns these task processes, where
Spark distributes the task to cluster nodes for parallel computing, speeding up the
process. Figure 4.2 shows an overview of this RDD partition processing.
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Figure 4.2: Data flow of a RDD of a batch of documents during prediction process

Prediction consists of a quick basic cleaning of some punctuation and symbols as
some column data fields that can be accumulated may not be cleaned. See Sec-
tion 10.5 for Future work that the CMT team can do to help remove this cleaning
process from our end to integrate into their cleaning process. Most parts of this
process is done in RDD partitions to apply parallel task processes to portions of the
batch of documents at the same time. For each RDD partition, the Word2Vec model
transforms all document word strings into features, filtering for any words not in the
Word2Vec model vocabulary. If none of the document words are in the vocabulary,
that document is filtered and marked as class ‘0.0’ for the ‘CouldNotClassify’ class
with a probability of 100%. Then, the document data is classified by the Logistic
Regression model using an overridden predictPoint() function in ClassificationUtil-
ities.scala. This is done because the original Logistic Regression API outputs only
the final predicted class. The probabilities of each class are normalized over all prob-
abilities. The output of predicting is an RDD with a tuple of the document and an
array of probabilities per class. The probabilities are of type double and the index
in the array is the class label ID number.

After predicting, the probabilities and classes of the documents in each partition are
output to the destination HBase table. This partition-based writing can be done
in parallel as each document per partition should always have a unique row key,
naturally preventing concurrent writing to the same row. The probability array
index is not the class name, rather the class label. The class label ID is mapped
to the class name string. The probabilities are the elements in the array. The
outputs are lists that are semi-colon (‘;’) separated. The lists are indexed such
that the first class label in the ‘classification-list’ corresponds to the respective first
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probability in the ‘probability-list’. All classes with a probability of 0 are omitted. A
higher probability threshold may be used in the future for omitting low probability
labels. After writing the classification information to the destination HBase table,
the predict phase will loop over the next batch of documents until there are no more
documents matching the scan filter requirements.

Classifying tweets and webpages have some slight differences. The scans that return
document data are different. This is because of the different table columns being
read. Also, tweet clean text data is sparse, so more columns of data need to be read
per tweet document to maximize classification accuracy.
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Chapter 5

Experiments

5.1 Classifying Webpages with Tweet Framework

As no work had been done with webpage data previously, it was decided to adapt the
original Word2Vec with Logistic Regression framework of classifying tweets to clas-
sify webpage data as a functionality test. Several data sets were given to our team
to run our tests and benchmarks by the GTA. Two shooting collections were picked.
These were the ‘2009SchoolShootingDunbar’ and the ‘2008SchoolShootingNIU’ col-
lections. As the original framework had multi-class classification, ‘2009SchoolShoot-
ingDunbar’ was encoded as instances of class 0.0 and the ‘2008SchoolShootingNIU’
as class 1.0.

The ‘2009SchoolShootingDunbar’ instances were all from Facebook webpages and so
a lot of spam contents, non-English text, and other unnecessary data were included.
On the other hand, though the ‘2008SchoolShootingNIU’ data set was small, it
had good document quality. The tweet cleaning code performed a basic cleaning
for the provided webpage data. Since the CMW team had planned to provide a
better quality cleaned data set, it was decided to run this experiment on the above
data set only as a quick test. With that, it was possible to evaluate how well the
tweet classifier worked on the webpage classification. The data sets were broken
up randomly with about a 50:50 ratio for training:testing purposes. This was done
as the smaller 2008SchoolShootingNIU collection would have few test documents.
The data had 125 training and 132 testing documents. The models were retrained
multiple times, and the best scoring model was kept. Figure 5.1 shows the results
obtained.
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Figure 5.1: Results for Word2Vec with Logistic Regression for initial webpage clas-
sification for 2009SchoolShootingDunbar and North Illinois University Shooting

The results showed that the class 0.0 (2009SchoolShootingDunbar) classification
performance is really high, which was not expected due to the high spam count of the
data set. Class 1.0 (2008SchoolShootingNIU) classification performed very poorly as
expected due to the small data set. This data set had only 14 instances. This shows
that a large training data set is important to increase classification performance.
Analyzing the ‘2009SchoolShootingDunbar’ data set in both the original and cleaned
content strings showed some patterns of how spam data was treated as classified
correctly into the collection event. The Facebook webpage had common substrings
such as “facebook” in all the entries, both English and non-English. This is shown
in Figure 5.2.
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Figure 5.2: Example of common substrings in documents; each line is one document

To avoid an issue of a spam instance from a collection being classified as belong-
ing to that event, a few methods of fixing this were devised: switch Word2Vec for
another word embedding algorithm such as Doc2Vec which puts less emphasis on
the common substrings, clean the document with specific types of stop words such
as the webpage’s website name, or provide better training data for the Logistic Re-
gression model. Most of the non-English entries were cleaned with only the English
words such as “facebook” left, leaving the Logistic Regression model too little data
to accurately classify the documents with. Also, because all of the 2018School-
ShootingDunbar webpages had the common Facebook substrings after cleaning, the
Logistic Regression model became trained to recognize Facebook webpages as be-
longing to only the 2018SchoolShootingDunbar class. Better training data which
does not enable the Logistic Regression model to associate the Facebook substring
word embeddings to a class is needed. A spam class data set for training could
also be added with the Facebook substrings to encourage the Logistic Regression
model to associate documents with only the Facebook substrings after cleaning as
spam rather than an event class. In the end, this analysis shows that quality of the
training data is also as important as quantity.

5.2 Model Selection for Webpage Classification

Based on the experiment results of Section 5.1 we realized the need of two important
things: cleaned and good quantity of webpage data, and a model which would work
efficiently.

Before the CMW team provided us with the cleaned data, we used the data for the
‘shooting collections’ provided by the GTA. We built binary classification models
using different feature selection and classification techniques.
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In order to build the right framework for webpage data collections, we tried dif-
ferent combinations of TF-IDF and Word2Vec (as feature selectors) with Logistic
Regression and SVM (as classifier models)

We used the six shooting collections provided and built binary classification mod-
els for each of these. These shooting collections are the ‘2010SchoolShootingU-
niversityAlabama’, ‘2008SchoolShootingNIU ’, ‘2014SchoolShootingReynoldsHigh-
School’, ‘2012SchoolShootingSandyHook’,‘2015SchoolShootingUmpqua’ and the
‘2009SchoolShootingDunbar’ collection. This was done to figure out the optimal
combination which produces the highest accuracy and fastest processing time.

For each of the shooting collections we built four combinations of the above models.
We randomly split the data into an 80:20 ratio of training and testing data. We then
performed tokenization on the body of text to get each separate word. After this we
removed stop words. These are words which occur frequently over the whole text.
Word2Vec was then performed on this processed data set for feature extraction.
Once this was done, Logistic Regression was performed and the threshold was set to
0.5 for logistic regression. This whole process was done using the Pipeline feature
in Spark. In Figs 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8 we show the quality of each
combination.

In these initial comparisons, we compare the accuracy and the F-1 score. When we
had the data provided by the CMW team for the ‘Solar Eclipse’ and the ‘Las Vegas
Shooting’ collections, we evaluated other performance measures before selecting our
final model.

Figure 5.3: 2010SchoolShootingUniversityAlabama collection. The webpages be-
longing to the event and not belonging to the event are 71 and 180, respectively.
The quality and number of instances were enough to conclude that the accuracies of
different combinations are comparable. Word2Vec with SVM and Logistic Regres-
sion have better performance.
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Figure 5.4: 2008SchoolShootingNIU collection. The webpages belonging to the event
and not belonging to the event are 1 and 14, respectively. The number of instances
for each class is not sufficient, and hence the results are not reliable.

Figure 5.5: 2014SchoolShootingReynoldsHighSchool collection. The webpages be-
longing to the event and not belonging to the event are 34 and 192, respectively.
The instances were insufficient and were of poor quality. Accordingly, we believe the
results are not comparable.

Figure 5.6: 2012SchoolShootingSandyHook collection. The webpages belonging to
the event and not belonging to the event are 31 and 303, respectively. For this col-
lection we believe that even though the instances are few, they are good enough such
that we can conclude Word2Vec with Logistic Regression has better performance.
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Figure 5.7: 2015SchoolShootingUmpqua collection. The webpages belonging to the
event and not belonging to the event are 9 and 408, respectively. The numbers of
instances are very unbalanced and their quality is not good enough either. Thus no
conclusion about the performance can be made.

Figure 5.8: 2009SchoolShootingDunbar collection. The webpages belonging to the
event and not belonging to the event are 7 and 211, respectively. Over fitting can
be seen in the results of this collection and it might be related to the low number of
‘No’ instances. We believe the results are not comparable.

As we see in many comparisons above, due to insufficiency of data, we can’t judge
our models accurately. Hence, we evaluated all of the models for the collections
obtained by the CMW team.

The data provided by the CMW team had good quality webpages, i.e., webpages
with multiple paragraphs. Some of these webpages had appropriate content which
related to the event. There were many quality webpages which did not relate to
the event as well. The webpage team had cleaned the data along with removal of
profane words.

We hand labeled 550 ‘Solar Eclipse’ webpages by reading through the content of each
webpage. We performed a 80:20 split on the 550 webpages and built our models.
Below are the results of our models for this data.
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Figure 5.9: Solar Eclipse webpage collection

We also hand labeled 800 ‘Las Vegas Shooting’ webpages by reading through the
content of each webpage. We performed a 80:20 split on the 800 webpages and built
our models. Below are the results of our models for this data.

Figure 5.10: Las Vegas Shooting webpage collection

From Figures 5.9 and 5.10, we concluded that the combination of Word2Vec with
Logistic Regression can give us the best performance among the other combinations
and so we have planned to use this combination for future cleaned collections. This
conclusion was reached as the performance of this model remained consistently good
throughout our analysis. You can also observe that Word2Vec with SVM performs
better than Logistic Regression in some cases and is on-par with Logistic Regression
in other cases. However, SVM is slower than Logistic Regression and considering the
amount of data we will have with the addition to more events and more webpages,
we decided to go ahead with Word2Vec with Logistic Regression.
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5.3 Initial Classification of Tweets on Class Cluster

With the original tweet classification framework refactored to function and meet
the class HBase table schema, the framework was executed on the local machine
and class cluster. A few unexpected classification result cases were found, because
the ‘classify tweets’ method written by the previous team had some issues. One is
that they will not assign any class to tweets with document text that is completely
not in the Word2Vec vocabulary. Also, when tweets have the same probability for
two classes, the Spark library default classification prediction method will choose
the first class with the highest probability. This means that cases with 50%/50%
classification will only result in the first 50% class it sees.

To fix these issues, the empty tweets and tweets where all text is not in the Word2Vec
vocabulary have been assigned the class 0.0 for ‘CouldNotClassify’ to account for
this edge case. For testing purposes, the previous team used an overridden ‘.pre-
dictPoint()’ function defined in the ‘ ClassificationUtility.scala’ to not only return
the highest probability class but also the probabilities of all classes. This is because
returning only the highest probability class is the default functionality of the ‘.pre-
dictPoint()’ function in the Spark library. This overridden function is now used in
the normal classification process to return all class probabilities. After making these
fixes, all 100 tweets in the ‘eclipsedatasample1’ table’s ‘solareclipse’ collection doc-
uments were classified. This ‘eclipsedatasample1’ table was generated by the CMT
team as a test output of their HBase interactions, but a number of these documents
were retweets or were empty after cleaning. Note that the models were trained with
all collections in the ‘eclipsedatasample1’ table for the ‘2017EclipseSolar2017’ event,
but only the ‘solareclipse’ collection was classified. It was initially thought that
models should be trained per collection rather than per event, but it was clarified to
not be a mistake to train and classify in the way that was done. Multiple training
runs were done, generating newly trained models every run. The best performing
model in terms of weighted F-1, precision, and recall scores was saved for classi-
fication usage. Figure 5.11 shows the saved model performance metrics used for
classification.
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Figure 5.11: Trained model accuracy of kept models

Figure 5.12 shows the classification done by the trained models on the class cluster.
A lot of tweets have 50%/50% probabilities. It was recommended that an “Un-
known” default class can be made for such cases if no anomalies were found to cause
such results. Further investigation showed that training data splitting was done
incorrectly, where some documents under one class were also trained as if under the
other class. However, after fixing this issue, some 50%/50% classified documents
changed, while some still remained 50%/50%.
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Figure 5.12: Sample of classification results for the ‘solareclipse’ tweet collection

Checking the clean text data showed that a number of tweets only included hash-
tags or webpage URLs. The cleaned text in the ‘clean-text-cla’ column removes all
hashtags and webpage URLs out of the clean text. This resulted in empty clean
texts despite the tweet having useful data in the text. After this experiment, it was
decided that the training data and classification process needed to include data from
other columns to maximize the information provided by the tweet document. There-
fore, a number of tweets were marked as ‘CouldNotClassify’ due to empty cleaned
tweet text, while a number of tweets were correctly classified (with a number of
results still 50%/50%). The training data had a large number of tweets that were
empty as well, which means the models had a smaller training data set than the
tweet count suggests.

Due to the low quantity of training document data, the 50%/50% results still ap-
pearing was suspected to be caused by insufficient training of the Logistic Regression
model. In traditional binary Logistic Regression, 50%/50% probabilities translates
to a Boolean 0. In the Spark implementation for binary Logistic Regression, the
first class it sees in an all equal class probabilities case (such as 50%/50%) is the 0
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Boolean result. Therefore, for a multi-class situation resulting in all classes having
equal probabilities, the document should be marked as ‘Unknown’. However, for bi-
nary classification cases such as this one, 50% probability should translate to NOT
in the event class, and so the minimum threshold for a document to be related to
an event should be greater than 50%.

5.4 Classification of Documents on getar-cs5604f17

After fixing discovered issues from the previous experiment and implementing web-
page classification into the framework, the final new framework implementation was
tested. This final implementation is what is reflected in the design and implementa-
tion chapters of this report. New tweet training data was generated using document
data that was accumulated from multiple columns to not have empty tweet text
data. A Word2Vec model was trained with the entire corpus on the ‘getar-cs5604f17’
HBase table as of 6 Dec 2017. This model has a 42,350,232 vocabulary of unique
words. Originally, it was desired to use a pre-trained 300 billion word Google News
Word2Vec model, but see Section 10.4 as there are memory constraints to the Spark
Word2Vec model vocabulary.

For Logistic Regression models, 500 tweets were hand labeled and used for train-
ing the ‘2017EclipseSolar2017’ event tweet Logistic Regression model. Specifically,
104 webpages were labeled as “NOT2017EclipseSolar2017”, and 396 webpages were
labeled as “2017SolarEclipse2017”. Figure 5.13 shows the performance metrics of
this model. 544 webpages were hand labeled for the ‘2017EclipseSolar2017’ event
webpage Logistic Regression model. Specifically, 221 webpages were labeled as
“NOT2017EclipseSolar2017”, and 323 webpages were labeled as “2017SolarEclipse2017”.
Figure 5.14 shows the performance metrics of this model. 798 webpages were labeled
for the ‘2017ShootingLasVegas’ event webpage Logistic Regression model. Specifi-
cally, 466 webpages were labeled as “NOT2017EclipseSolar2017”, and 332 webpages
were labeled as “2017SolarEclipse2017”. Figure 5.15 shows the performance metrics
of this model. Let it be noted that, for all of the trained model metrics, the F-1
score is equal to the recall and precision scores by pure coincidence. This is due to
the confusion matrix results (shown in the figures). Re-running the current training
code again, yielded a different confusion matrix with non-equal F-1, recall, and pre-
cision scores. These models were the ones used for class cluster classification as they
were the highest performing ones based on these performance metrics after greater
than 10 training runs. The solar eclipse models do not have high accuracy, so in the
future, more hand labeled data for training is needed to improve accuracy. The Las
Vegas shooting model has a high enough score to be considered accurate enough.
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Full logs of the training process for these Logistic Regression models will be saved,
and these logs are available in the ‘oldLogs’ folder as described in Section 6.2.

Figure 5.13: Metrics of saved 2017EclipseSolar2017 tweet Logistic Regression model

Figure 5.14: Metrics of saved 2017EclipseSolar2017 webpage Logistic Regression
model
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Figure 5.15: Metrics of saved 2017ShootingLasVegas webpage Logistic Regression
model

These models were then used for classification of data on the ‘getar-cs5604f17’ HBase
table. The full classification logs are available at the file location described in Sec-
tion 6.2. The general classification performance metrics indicate that reading from
and writing to the HBase table is the most time consuming process, especially read-
ing from the HBase table. As previously mentioned, the class prediction process is
done in batches, and classifying and writing to the HBase table is done in parallel.
However, reading from the table can only be done serially due to the nature of the
HBase scan library. Generally, predicting (clean document data, vectorize using
a Word2Vec model, and Logistic Regression classification) a batch of webpages or
tweets will take at most up to 20 milliseconds maximum based on the classification
process logs. However, the classification processing speed is orders of magnitude
slower, resulting in about 33 webpages per second and 360 tweets per second. Pro-
cessing speed can vary wildly by more than 50% per batch depending on how busy
the table is as well. One possible way to speed up reading from the table is to
use asynchronous scanning which involves pipelining the scanning and processing
of documents, greatly increasing the throughput of the entire classification process.
However, this will put more burden on the servers, so considerations must be taken
for server and network workload if this is to be implemented. There is more burden
due to the fact that the existing process first reads a set of documents from the
table, classifies, and then writes it back to the table in a serial manner, resulting in
bursts of activity. If pipelining is used, the previously mentioned 3 steps could be
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done continuously and as concurrently as possible.

5.5 Classifier Accuracy

To confirm the classification accuracy of our classifier model and framework, sam-
pling and testing were done on the solar eclipse tweets that were classified on the
class cluster. However, the webpage training data included the entire webpage col-
lections, to have enough data for reasonable training. Therefore, the accuracy of
the webpage classifiers was not further studied, and is not discussed in this section.
This is because all of the webpage data was used for training and testing, and no
additional data was available for further classifier quality assessment. Consequently,
for now, the performance of the webpage classification models can only be deter-
mined based on the testing done during the training process. It is recommended for
future work, as mentioned in Section 10.6, to further investigate the performance of
the classification models when new webpage data for the event is available.

The tweet classification performance checking procedure is similar to the hand label-
ing process. The exception is that sampling was done by looking at 1 in every 500
tweets for the event, and 100 tweets were sampled for this test. The 1 in 500 sam-
pling was done to have a wide distribution or variety of tweets across the table and to
avoid most retweet documents, which often appear serially in the table. Every time
we retrieve a tweet, we look at our classification for the tweet to manually decide
whether it is a true positive, false positive, true negative, or false negative. After
we checked 100 tweets, we obtained the confusion matrix which lets us calculate our
performance metrics.

As previously mentioned, there is an existing issue of 50% belonging to an event and
50% not belonging to an event, where most of these documents appear to be spam
when manually checked. Therefore, any tweets that have 50%/50% classifications
were marked as NOT relevant to the event in this experiment, along with tweets
having <50% probabilities of being relevant to the event. Tweets that have a >50%
probability of being relevant to the event were treated as positive or as classified
relevant to the event. From the performance checking, we found the following:

• True Positive: 21 out of 100

• False Positive: 4 out of 100

• True Negative: 59 out of 100

• False Negative: 16 out of 100
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• Accuracy: .80

• Precision: .84

• Recall: .57

• F-1 Score: .68

The F-1 score is lower than the score measured in the training process. This is
largely due to the low recall score. Many of the 50%/50% labeled tweets were
indeed true negatives, and there were many spam tweets in this accuracy test set.
However, a number of false negatives were found in the 50%/50% tweets, where they
should be classified as relevant to the event. Therefore, the recall score went down.
Considering the training set with these 50%/50% tweets, a small number of words in
the document text were not in the training document set. Also, the words that were
in the training set were normally more generic and existed in both relevant and NOT
relevant classes. Examples of such words would be ‘solar’, ‘eclipse’, ‘viewing’, etc.
This is because spam would often use relevant terms for advertising while relevant
tweets would of course also use such terms. In the future, these 50%/50% should
definitely be added to the training document set. This should allow the classifier to
learn how to handle these documents better.

5.6 Classifier Examples

In this section, we provide a few examples of the tweets that we have classified on
the ‘getar-cs5604f17’ HBase table using our classifier model. Figure 5.16 provides
an example of a tweet that is related to the ‘2017EclipseSolar2017’ event and is
correctly classified by our classifier with a high probability value.

Figure 5.16: Example tweet classified in the ‘getar-cs5604f17’ table.
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Figure 5.17 provides an example of a tweet that is related to the ‘2017EclipseSo-
lar2017’ event but does not contain the usual content that the solar eclipse tweet
would have. However, our classifier catches this and is able to classify this tweet as
belonging to ‘2017EclipseSolar2017’ event correctly.

Figure 5.17: Example of another tweet classified in the ‘getar-cs5604f17’ table

Figure 5.18 provides an example of a tweet that is not related to the ‘2017EclipseSo-
lar2017’ event but does contain the hashtag for it. Our classifier catches this and is
able to classify this tweet as not belonging to ‘2017EclipseSolar2017’ event with a
high probability.

Figure 5.18: Example of a tweet not belonging to the event classified in the ‘getar-
cs5604f17’ table
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User Manual

6.1 Dependencies

Previous work was done on an older Cloudera CDH version. The cluster has been
updated to CDH 5.12, and the current code has been proven to work on CDH
5.12 using updated dependencies. Some dependencies were updated due to security
updates or Cloudera updates. There are two types of dependencies: compilation
dependencies and runtime dependencies.

Compilation Dependencies:

• Python 2.6.6

• SBT 1.0.2

• Java 8 (ver 1.8.0_144-b01)

Run-Time Dependencies:

• Java 7 or later

• Spark 1.5.0 for Hadoop 2.6

• Stanford Core NLP English Model v3.8.0 .jar

• Stanford Core NLP Model v3.8.0 .jar

• HBase-RDD 2.11-0.8.0 .jar

The .jar run time dependencies must be put into the ./jarlib/ folder in the ISRProject
folder. These .jar files are not included in the git repository as they are massive files,
so they must be manually downloaded and moved to the correct file location upon
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cloning a fresh copy of the repository. Note that the .sh bash files used to run
the code must have the “-jars” flag arguments for the “spark-submit” command be
up-to-date if the .jar model versions are updated.

The run-time dependencies should already be available on the class cluster, but
may need to be installed on a local test machine. The code must be compiled on
a local machine. This is because the class cluster does not have those compilation
dependencies, and Java 8 is a fairly difficult upgrade to have done upon the class
cluster. Of course, contact the class cluster administrators for available dependency
information as upgrades to the class cluster may be done after the writing of this
report.

6.2 Project File Structure

The project git repository is available on GitHub at:

https://github.com/madcat101010/ISRProject

This repository was forked from the previous team’s GitHub repository. It is rec-
ommended for the next semester team to fork this repository to their own remote
repository. The master branch contains the code and some useful data that was used
in classifying on the class cluster this semester. The folder structure of the project
folder is broken down in Table 6.1.

File Path Purpose

./ Project Root Directory

./jarlib/ .Jar Dependencies Folder

./data/ Data To Be Pushed To HDFS, Existing Models Saved Here

./data/training/ Training Data Sets

./src/main/scala/ .scala Source Code

./oldLogs/ Logs generated by code execution

./target/ Compiled Files Generated by “sbt package” Command

Table 6.1: Project folder structure
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6.3 Data Files

The ./data/ folder should be pushed to the Hadoop file system using “hadoop fs -put
./data/”. This is required to run the code. There are also training and test data
sets in text files in the ./data/training folder in the git repository. The training and
test data sets include some .csv-formatted webpage data for shooting events, and
some tweet data for shooting events and the solar eclipse. See Table 6.2 for the list
of files in the ./data/ folder. Note that all models are directories, but the internal
files of that model directory should not be modified by the user. Loading and saving
models should be done using the .model directory name.

File Path (inside ./data/) Purpose

2017EclipseSolar2017_tweet_lr.model/ Trained Logistic Regression model for 2017EclipseSolar2017 event tweets
2017EclipseSolar2017_webpage_lr.model/ Trained Logistic Regression model for 2017EclipseSolar2017 event webpages
2017ShootingLasVegas_webpage_lr.model/ Trained Logistic Regression model for 2017ShootingLasVegas event webpages
getar-cs5604f17_table_w2v.model Word2Vec model trained on getar-cs5604f17 complete corpus as of 06 DEC 2017
training/2017EclipseSolar2017_tweet_training.csv Hand labeled 2017EclipseSolar2017 event training tweets
training/2017EclipseSolar2017_webpage_training.csv Hand labeled 2017EclipseSolar2017 event training webpages
training/2017ShootingLasVegas_webpage_training.csv Hand labeled 2017ShootingLasVegas event training webpages

Table 6.2: Data files in the ./data/ directory

Some of the ./data/ files were generated by the classification code such as the trained
models. Trained model metrics are logged for future reference as the model data
itself doesn’t store these metrics. The relevant log files that relate to the current
getar-cs5604f17 table classification runs and trained models are in the ./oldLogs/
folder as shown in Table 6.3. There are other log files not listed in the table which
are out-of-date and do not reflect any data in the table or provided trained models.
The file names should be self-explanatory, and were kept as reference for older reports
and presentations.

File Path (inside ./oldLogs/) Purpose

log_class_eclipse_tweet.txt Log of 2017EclipseSolar2017 tweet classification run
log_class_eclipse_webpage.txt Log of 2017EclipseSolar2017 webpage classification run
log_class_vegasshooting_webpage.txt Log of 2017ShootingLasVegas webpage classification run
log_train_eclipse_tweet.txt Log of 2017EclipseSolar2017 tweet Logistic Regression model training
log_train_eclipse_webpage.txt Log of 2017EclipseSolar2017 webpage Logistic Regression model training
log_train_vegasshooting_webpage.txt Log of 2017ShootingLasVegas webpage Logistic Regression model training

Table 6.3: Useful log files in the ./oldLogs/ directory
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6.4 Calling the Code

Bash shell scripts should be used to compile and run the code. In the root directory,
there are many .sh bash scripts used to execute the code. Modify a copy or existing
script to meet the configuration need of the execution. Existing bash scripts in the
repository are shown in Table 6.4. The “sbt package” command is used to compile
the code, and the compiled code is stored in a folder called “target” in the local
directory. Two scripts are provided to scp the “target” directory with the compiled
code from a virtual machine to a local machine and from a local machine to the
class cluster. These may be modified if the current virtual machine, local machine,
or class cluster ssh login information or file location is changed. A “spark-submit”
command, contained within the bash script, is used to actually run the code. The
single line call can be broken down into the following segments:

spark-submit

This is the command to execute the compiled Scala code.

--master local

This flag sets the local node as the master node. Only need this flag for local machine
testing purposes.

--driver-memory 15G

This flag sets the driver or master node to allocate how much memory for this
execution. Sufficient memory is required when processing data sets in large batches.
Reduce this memory value when testing on local machines.

--jars
jarlib/stanford-english-corenlp-3.8.0-models.jar,
jarlib/stanford-corenlp-3.8.0.jar,
jarlib/hbase-rdd_2.11-0.8.0.jar

This specifies the runtime .jar dependency files required to run the compiled code.
This does not need to be copied to the Hadoop file system, but must be available
at the specified location on the node used to execute this command. This folder is
not included in the provided code repository as the .jar files are very large. These
dependencies can be downloaded online from their source, and the ./jarlib/ folder
needs to be created to hold these .jar files, too. Note: there should be no new lines
in between commas, but new lines are added to fit this onto the report page.

--class isr.project.SparkGrep target/scala-2.10/sparkgrep_2.10-1.0.jar
<train/classify/label> <webpage/tweet/w2v> <srcTableName>
<destTableName><event name> <collection name> <class1Name> <class2Name>
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[class3Name] [...]

This specifies the project package name and location of the compiled Scala code.
The flags in <> are required for execution. The flags in [] are optional. More than
2 classes can optionally be named for multi-class classification.

Bash Script File Name Purpose

compiledVMtoLocal.sh Move compiled code from a Cloudera VM to local machine
compiledLocaltoCC.sh Move compiled code from a local machine to the class cluster
classifyEclipseWebpage.sh Build and classify 2017EclipseSolar2017 webpages on class cluster
classifyEclipseTweet.sh Build and classify 2017EclipseSolar2017 tweets on class cluster
labelSolarEclipseCluster.sh Build and hand label 2017EclipseSolar2017 tweets on class cluster
trainEclipseTweet.sh Build and train 2017EclipseSolar2017 tweet Logistic Regression model
trainEclipseWebpage.sh Build and train 2017EclipseSolar2017 webpage Logistic Regression model
trainW2VModelGoogle.sh Deprecated: Build and convert Google News Word2Vec to Spark Word2Vec
trainW2VModelTable.sh Build and train Word2Vec model on class cluster

Table 6.4: Included bash scripts

Bash scripts can contain multiple spark-submit calls. For example, the classifyE-
clipseTweet.sh has three spark-submit calls to classify the 3 2017EclipseSolar2017
tweet collections, and more can be added to classify other events or collections. It
is recommended to log the outputs of the execution for review later. This is done
by commands such as: “./myExecutingScript.sh > log_example.txt”.
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Developer Manual

7.1 File Naming Convention

Naming conventions in the data folder must be adhered to for correct execution
of the classification framework. A common naming convention also allows easier
maintenance of data files. This is especially important when future events and
tables need to be classified. All training data must be named as:

<eventName>_<tweet/webpage>_training.csv

Models are automatically generated with the correct naming conventions. Logistic
Regression models that are imported must be compatible with Spark and be named
with the convention:

<eventName>_<tweet/webpage>_lr.model

Word2Vec models that are imported must be compatible with Spark and be named
with the convention:

<tableName>_table_w2v.model

Note that all models should be directories with file parts and other directories within.
The ‘2017EclipseSolar2017’ training data and Logistic Regression models should be
included in the repository. The ‘2017ShootingLasVegas’ webpage training data and
Logistic Regression model are also included. Finally, the ‘getar-cs5604f17’ table
Word2Vec model is included.
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7.2 Source Code Files

The source code is available at the GitHub repository and file location mentioned
in Section 6.2. Table 7.1 shows the current Scala source code files in the repository.

Scala File Name Code Functionality

ClassificationUtility.scala Overridden Spark library functions. Overrides .predictPoint()
CleanTweet.scala Some document cleaning functions
DataRetriever.scala Read a batch of documents from a table, classify, and write classification.
DataWriter.scala Writes document data to a table. Converts class label to class name
FpGenerate.scala Deprecated: frequent feature generator
HBaseInteraction.scala Basic functions for HBase table reading and writing
IdfFeatureGenerator.scala Deprecated: IDF model feature generator
MetricsCalculator.scala Test trained models and output performance metrics
SparkGrep.scala Main function here with training and testing functions
Word2VecClassifier.scala Word2Vec + Logistic Regression model training and class predicting

Table 7.1: Scala source code files.

Extending this code can be fairly confusing at first. The original code generated
many objects with essentially static functions within them rather than classes.
Therefore, care must be taken for handling object scope variables and values such
as HBase column family names and column names.

The main function parses the input arguments, and calls the desired function spec-
ified in the input arguments. Any modifications to training and the overall input
argument handling should be done in the ‘SparkGrep.scala’ file. Any modifica-
tions to the classify documents on an HBase table should be done in the ‘DataRe-
triever.scala’ file. To modify the Word2Vec and Logistic Regression class prediction
and training, modification should be done in the ‘ClassificationUtility.scala’ and
‘Word2VecClassifer.scala’ files. Modifiation to the writing to HBase table behavior
should be done in the ‘DataWriter.scala’ file.

In the future, it is recommended to better organize code in ‘DataRetriever.scala’.
The DataRetriever code should only handle HBase document retrieval, but it has
been made to include calling the clean document, classify document, and write
document class functions provided by the other .scala files.
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7.3 HBase Table Scanning

Documentation on the Hadoop filter library usage can be confusing when using filters
for HBase table scanning. This library is explained here for ease of usage to future
developers.

A Scan object is configured to add a column value to read from each row. The
Scan object can also be associated with Filter objects. It is recommended to use
a FilterList object from the org.apache.hadoop.filter library to use multiple filters.
Use the .addFilter() method to add filters to the filter list. The filter is set to
FilterList.Operator.MUST_PASS_ALL to ensure that rows read back pass all of
the filters rather than a single filter. Filter lists can be used hierarchically to AND or
OR together filters. Use FilterList.Operator.MUST_PASS_ALL to AND together
filters and FilterList.Operator.MUST_PASS_ONE to OR together filters. Let it be
known that the Apache documentation on filters uses the term ‘emit’. Rows emitted
by a filter means that the filter will keep that row as a result in the scan. Also note
that batching of the scan cannot be used when filter lists are used, but the .next(int
numRows) call can still limit the number of rows read back in a batch. Ensure that
this numRows does not exceed the scan caching, to maximize performance.

SingleColumnValueFilter objects are used for retrieving documents to classify in
the DataRetriever.scala file. Note that the scan must scan for columns using the
.addColumn() method first before the single column value filter can filter for that
column value. The filter condition resulting in true will result in the row being kept
as a result, whereas the filter condition returning false will omit (not emit) that row.
Also, each single column value filter can be set to run the filter or not depending
on if the column exists or not. This is done by the .setFilterIfMissing() method.
Setting .setFilterIfMissing(true) will omit that row if the desired column for that
row is missing. Setting .setFilterIfMissing(false) will keep that row if the desired
column for that row is missing (by not running that filter for that row).

7.4 Hand Labeling Tweet Training data

To hand label the tweet data for our training process, please follow the steps provided
below:

• Make sure that the class cluster has our team’s most updated code.

• Log in to the class cluster and node00.

53



Final Report Classification

• Go to the ISRProject folder. Then, replicate and open the copy of the script
‘labelSolarEclipseCluster.sh’.

• In the script, you can change the following to label a different collection or
table:

– 3rd argument is the main input HBase table.

– 4th argument is the number of tweets you want to label.

– 5th argument is the name of the output CSV file.

– 6th argument is the name of the collection that you want to sample the
tweets from.

– 7th and 8th argument are the binary classes that you want to label.

– Listing 7.1 shows the parameters we used to label 2017 eclipse tweets.
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spark−submit −−master l o c a l . . . " l a b e l " " tweet " " getar−c s5604 f17 "
"500" " ec l ipse_labe leddata_107th " "#Ec l i p s e " " So l a rEc l i p s e "
" NotSo la rEc l ip se "

#This s c r i p t ge t s 500 tweets from "#Ec l i p s e " c o l l e c t i o n in the
#"getar−c s5604 f17 " tab l e & wr i t e to " ec l ipse_labe leddata_107th " csv
#
#The s c r i p t l a b e l s the tweets as " So l a rEc l i p s e " / " NotSo la rEc l ip se "

Listing 7.1: YAML Usage Example For Hierarchical Framework

• Run the script and label tweets that the script asks you to. Figure 4.1 shows
an example of what the user will see after running the hand labeling script.

• To label a tweet, type "1" for the tweet that is related to the collection, or
type "2" otherwise.
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Timeline

Week Starting
date

Task Performed by

1 Aug 29 Forming the CLA team All Members
2 Sep 5 Reading the previous year’s report All Members

3 Sep 12
Going through the previous year’s source
code for tweets All members

Setting future plans and goals Ngo

4 Sep 19 Setting up the local machine All membersTesting the source code
5 Sep 26 Preparing the IR1 presentation and report All Members

6 Oct 3 Preparing a prototype for webpage classifica-
tion

Mulchandani,
Naik, Patil

7 Oct 10

Further work on the webpage prototype Azizi, Vezvaee
Adapt and test tweet framework on webpage
data Ngo, Yang

Working on TF-IDF idea Mulchandani
8 Oct 17 Preparing the IR2 presentation and report All Members

9 Oct 24
Further work on the webpage prototype Azizi, Vezvaee
Fix original tweet framework code Ngo, Yang
Doc2Vec implementation research Mulchandani
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10 Oct 31

Further work on the webpage prototype
Azizi, Vezvaee,
Mulchandani,
Naik, Patil

Generate training data from HBase Ngo
Hand label solar eclipse tweets Ngo, Yang
Update tweet framework for HBase interac-
tion Yang

Hand labeled the following six school
shooting collections: ‘2010SchoolShootin-
gUniversityAlabama’, ‘2008SchoolShooting-
NIU’, ‘2014SchoolShootingReynoldsHigh-
School’, ‘2012SchoolShootingSandyHook’,
‘2015SchoolShootingUmpqua’, ‘2009School-
ShootingDunbar’

Mulchandani,
Naik, Patil

12 Nov 7

Further work on the webpage prototype
Azizi, Vezvaee,
Mulchandani,
Naik, Patil

Increase tweet framework accuracy and han-
dle edge cases Yang

Generate results for comparison of webpage
classification models

Mulchandani,
Naik, Patil

Create a script to hand label tweets on the
class cluster Ngo

12 Nov 21 Thanksgiving Break All Members

13 Nov 28

Reclassify documents classified as not be-
longing to collection All Members

Code and test webpage classification and in-
tegrate into framework Yang

Benchmark our classifier’s predictions Ngo

14 Dec 5 Final report and presentation All Members
Finalize source code git repository Yang

Table 8.2: Timetable of tasks
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Conclusion

The classification framework has been updated to be capable of classifying both
webpage documents and tweets from an HBase table on the class cluster following
a system-level schema. Extra features such as hand labeling up-to-date tweet docu-
ments off the class cluster table also have been added to the classification framework.
Training data for events that need to be classified have been hand labeled, and an
improved file schema has been developed to better organize event classification data
and to apply it to the desired collections. Finally, the Word2Vec model training
process has been improved to generate a more complete vocabulary. This entire
framework has been tested and used to classify some tweet and webpage collections
for a few events on the class cluster HBase table.

The classification framework could use more improvements such as flagging doc-
uments that the Logistic Regression model cannot properly classify. This would
allow these documents to be added to the training set to improve model accuracy.
Also, more training data could be hand labeled to further improve the accuracy of
the classification models. The current classification models are accurate enough for
complete end to end processing for the GETAR project, but may not be accurate
enough to satisfy end users.

We classified the ‘#Eclipse2017’, ‘#solareclipse’ and, ‘#Eclipse’ tweet collections.
These comprised of about 1,562,215 tweets. We also classified the ‘Eclipse2017’,
‘#August21’,‘#eclipseglasees’,‘oreclipse’ and, ‘VegasShooting’ webpage collections.
These had 3,454 solar eclipse event webpages and 912 Vegas shooting webpages.

While obtaining results during this classification process, we found a few things
that could be implemented in a better way. These ideas could help serve GETAR’s
purpose in a better way. These are explained in Chapter 10 below.
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Future Work

10.1 Hierarchical Framework

In the future, we plan to compare a hierarchical classification model with the existing
linear regression classifier model. After Word2Vec generates features from raw text,
the hierarchical framework will classify it into general categories. Once a set of
features is classified into a general category, the framework will spin off a thread
that will classify the feature set into the more specific subcategories of the general
identified category. The whole process will continue until it reaches a specific event.

Some advantages of this include:

• The framework is scalable, meaning the framework will still be able to run with
a larger set of classes without compromising on the accuracy or performance.

• The training process can be accelerated by the use of multi-threads.

A disadvantage of this framework would be its runtime during training and pre-
dicting. In the worst case, when every row in a table is related to the same class,
this framework will lead to a sequential runtime to categorize the event, meaning all
threads that lead to a subclass will wait for each other to finish classifying.

To address the problem, our team proposes to benchmark all the classifier models on
the existing framework to choose which classifier will match with the specifications
listed below:

• The classifier has to train very quickly for small categories as it does not have
to predict for a big set of classes; the hierarchical framework will break down
the classes into more categories.
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• Because of this, it will not need to have a perfect or very high accuracy as long
as it gives us a low prediction error.

10.2 Cron task and YAML Configuration File

A cron task will be needed to detect the need of retraining models for new classes. A
YAML file is very helpful to map ‘Classification ID values to Classification-labels’.
Also, it is a good idea to provide an API to add a new class to the YAML configura-
tion file. Classification ID values are used internally by our code to quickly represent
an event class string. Whenever new event classes are added to the YAML file, once
the training task is executed again, it will detect the new event classes and retrain
the models. Potentially, we would like to retrain the models periodically, keeping
the model trained with both the old and newly classified data.

A YAML configuration file will need to include configurations for the hierarchical
framework. The YAML file can be used to create a tree representation of general
topics and their sub-topics and it does not limit users to have a fixed depth for all
the categories. Listing 10.1 proposes the potential use of the YAML configuration
file for the new hierarchical framework.
#Mapping o f c l a s s i f i c a t i o n events to c l a s s i f i c a t i o n IDs
ov e r a l lCa t e g o r i e s :

− na tu r a lD i s a s t e r s
− shoot ingEvents

na tu r a lD i s a s t e r s :
− hurr i cane
− earthquake

hurr i cane :
− Sandy
− Harvey

earthquake :
− . . .

shoot ingEvents :
− Las_Vegas

#This c on f i g f i l e w i l l generate the f o l l ow i ng :
c on f i g = yaml . load ( )
p r i n t c on f i g [ " o v e r a l lCa t e g o r i e s " ]
#This r e tu rn s : [ " na tu r a lD i s a s t e r s " , " shoot ingEvents " ]

p r i n t c on f i g [ " hur r i cane " ]
#This r e tu rn s : [ " Sandy " , "Harvey " ]

Listing 10.1: YAML Usage Example For Hierarchical Framework
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By using this format, we can traverse through the topics, from the top categories to
a specific event, to find every category that leads to the event.

10.3 Hand Labeling Process

There is some more work that could be done to the hand labeling process to improve
the accuracy of prediction. One of the improvements that could be made is sampling
randomly from the main HBase table, rather than from the top of the table. Our
team would also suggest to sample across multiple collection names of the same real
world event. Lastly, the similar hand labeling process can be replicated for webpages
to provide convenience.

10.4 Overriding Spark Library Word2Vec

The Google News pre-trained Word2Vec model has a 300 billion word vocabulary.
Some peers have reported that there are repeats of words in this model, but it is a
high word count regardless. The Spark Word2Vec models are not compatible with
this Google Word2Vec binary model, so a conversion function in SparkGrep.scala
called loadGoogleW2vBin() was written. However, Scala is based on Java, and the
Spark Scala implementation of the Word2Vec model uses a Java array to index the
model’s vocabulary. This Java array is indexed with 32-bit integers which cannot
fit a 300 billion word vocabulary. One method to overcome this issue is to override
the Spark library’s Word2Vec.scala code. The Spark library Word2Vec source code
can be found at:

https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/mllib/feature/Word2Vec.scala

Note that this type of override operation has been done before as seen in the Classi-
ficationUtility.scala file for the Logistic Regression predictPoint() method. Another
possible way is to redefine the token from words into other formats. Finally, the
least frequent words could be trimmed off the 300 billion vocabulary to save mem-
ory space as it isn’t uncommon to have the Word2Vec model ignore very uncommon
words.

Another override feature that would be desirable is to modify the training process of
a new Spark Word2Vec model. As previously mentioned, Word2Vec model training
cannot be done iteratively. This is disadvantageous as training is very time con-
suming, and prevents simply re-using the older model and further training on new
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incoming documents. Instead, the model must be re-training on the entire corpus,
old and new documents, again. An override to the training functions should remove
the internal variable re-initializations upon calling the training function. This was
what prevented iterative training in the first place.

10.5 More Cleaned Text for Tweet Documents

A requirement determined this semester was that the collection management teams
must complete the entire text cleaning process on their end. This semester, the text
of tweet and webpage raw data was cleaned and put into its dedicated clean text
columns. The text from webpages are generally substantial enough to not warrant
reading text from other data columns, but for tweets, data from other columns had
to be scanned and combined with the provided clean text.

The reason this was done was due to the tweet cleaning process removing hash-
tags, URLs, and mentions from the cleaned tweet text. These were put into other
clean-tweet data columns such as the “clean-tweet:hashtags” or “clean-tweet:long-
url” column. These columns were not cleaned of symbols such as the “#” symbol
or URL syntaxing symbols. However, these columns contain desirable data. The
reason that these columns were not fully cleaned is due to their usage by other pro-
cesses. Therefore, in the future work, it would be ideal for a clean-tweet column
that cleans and combines all of these columns for the CLA team to use. Otherwise,
a cleaned text column for each of these data columns would also be useful, and the
classification process will then combine them with the existing clean text column.

10.6 Webpage Classifier Performance

As previously mentioned in Section 5.5, the webpage classifier models were trained
using entire document collections of the event being classified. Therefore, it was not
feasible to test the performance of the models outside of what was tested via the
testing set. In the future, when more webpage data is collected that is outside the
training set, it is needed to evaluate the webpage classifier performance on the new
data.
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