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Abstract

In this project, we are building an Information Storage and Retrieval System that works as
a search engine to support searching, ranking, browsing, and recommendations for two large
collections of data.

The first collection is part of Virginia Tech’s collection of Electronic Theses and Disser-
tations (ETDs). The Virginia Tech Library has an extensive collection of ETDs. Currently,
Virginia Tech is moving towards digitizing the pre-1997 theses and dissertations and loading
them into VTechWorks. This dataset contains thirty thousand (30K) ETDs. The second col-
lection is the tobacco settlement documents. These documents are of several different types,
such as depositions, articles, letters, conference proceedings, reports, etc. In total, there are
fourteen million (14M) documents in this dataset. Thus, the goal is to build a state-of-the-art
information retrieval and analysis system for these two important collections.

To achieve this goal, the class is divided into six teams: Collection Management ETDs,
Collection Management Tobacco Settlement Documents, Elasticsearch, Front-end and Kibana,
Integration and Implementation, and Text Analytics and Machine Learning. We are using
ceph, a distributed storage system, to share data among the teams for storing and retrieving
information.

This report addresses the work performed by the Elasticsearch (ELS) team. The ELS
team helps to enable searching and browsing by ingesting the 30K ETDs and 14M tobacco
settlement documents into Elasticsearch. As the team name suggests, we use Elasticsearch,
which is a document-oriented search engine designed to store, retrieve, and manage document-
oriented or semi-structured data. Using Elasticsearch, we not only ingest the metadata and
full-text data from the data sets, but also incorporate the data from the TML team related to
text summarization, clustering information, named-entity recognition, and sentiment analysis.
Therefore, the ingestion of the data is supported based on facets associated with information
extracted from documents, analysis, classification, clustering, summarization, and other pro-
cessing. Furthermore, for in-depth search inside each document, we have implemented nested
queries. Unit testing also has been incorporated to facilitate work of the Integration team in
the future. Lastly, we have developed code for automatically ingesting and updating scripts
to monitor a designated directory on ceph for new incoming files.

The report covers goals, overview, and the process of implementation with Elasticsearch.
The Elasticsearch team works closely with the other subteams from CS 5604. The data
ingested in Elasticsearch is consumed by the FEK team for information visualization and
data retrieval on the webpage. The report also describes the connections established with
the other groups, as a high-level overview of the course project. The user manuals have been
provided for the reference of other groups.
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1 Overview

In this project, we are building a state-of-the-art information retrieval and analysis system that
can support two important content collections, i.e., (1) at least thirty thousand (30K) Electronic
Theses and Dissertations (ETDs), and (2) fourteen million (14M) tobacco settlement documents.
The goal of the Elasticsearch (ELS) team in this project is to ingest the document data into
Elasticsearch to perform indexing for easy retrieval and full-text search of the ETD and tobacco
settlement data.

To achieve this goal, we perform a detailed study of the data and present the appropriate schema
designs for the associated datasets. The data received from the Collection Management ETDs
(CME) team and Collection Management tobacco settlement documents (CMT) team are analyzed
to decide the indexing pattern. We also coordinate with the Front-End Kibana development
(FEK) team to understand their requirements for the data input query. The main challenges at
this step include collecting the data in the desired JSON format from the CME and CMT teams
and then indexing the data as per the requirement of the FEK team. For ingesting data into
Elasticsearch, we study the Elasticsearch documentation and related tutorials thoroughly. We
test the Shakespeare sample dataset on the cloud to learn Elasticsearch commands and study
the indexing mechanism. To establish the connection with Kibana, we changed the Elasticsearch
configuration files to support ReactiveSearch, a tool used by the FEK team.

Furthermore, the metadata and full-text data for the tobacco settlement documents and ETDs
have been ingested into Elasticsearch. According to the statistics, the ingestion operation has
achieved a success rate of 99.8% of the ETDs and 99.9% of the tobacco settlement documents.
Apart from the high success rate, we have incorporated the expected data format generated by
the text and machine learning (TML) team. We have discussed with the TML team about clus-
tering results and using them to improve the rankings and recommendations in searches. We have
also discussed about the interaction of the Elasticsearch, front-end, and TML teams to support
recommendation on the dashboard. This will help us to analyze the habits of different users and
create a more personalised search for the user. In the future we plan to provide user-specific logs
and index logs to support user logging and recommendation.

Finally, we have implemented a working prototype that uses Elasticsearch in conjunction with
Kibana to search the metadata and full-text data of the documents given by the CME and CMT
teams. Figure 1 shows the entire workflow of the project for a better understanding.

1.1 Challenges Faced

Here we provide a summary of the challenges we faced throughout the project.

• The primary challenge we faced in our implementation is deciding what fields should be
made searchable. After reviewing the user demands and preferences, we decided on a set of
searchable fields for both the ETD and the tobacco datasets. This information is also relayed
to the FEK team to help them in their website structure.

• Determining how to display the data according to the user preferences is not easy. The
anticipated user preference options include ordering the results based on the date or relevance
search score. Thus, we performed research to understand which fields should be used for
filtering and which ones should be used for searching.
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• To implement the searching and sorting functionalities, we have to choose to declare our
fields as either text or keyword. A keyword field can only be used for filtering, whereas a
text field can only be used for searching. We had several issues determining field types as,
at places, the requirement is to have a field that is both filterable and searchable. To resolve
this, we created an inner object that affords both functionalities.

• The next challenge we faced is in regards to updating the existing fields in Elasticsearch. We
wrote a script to update the fields as per the requirements from the TML, CMT, and CME
teams.

• Elasticsearch lists results with one of its default rankings, but this may not be the desired
setting for every field. To fix this, we use the boost functionality in Elasticsearch to provide
custom weightings for different fields. The adjusted search scores of related documents can
help present tailored search results that best meet a user’s information needs. Specifically,
while searching, boost can add more weights to fields we choose so that Elasticsearch pays
more attention to the important fields and pays less attention to those fields which are not
as important.

• The TML team requested us to update the default score field in Elasticsearch. The major
challenge is that Elasticsearch computes scores using TF-IDF weighting by default. We did
not know if it was possible to overwrite the default settings until we figured out a method to
calculate a custom similarity score.

Figure 1: Workflow of the project
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2 Literature Review
Manning et al. [10] introduces us to the foundation of information storage and retrieval systems. In
their textbook, Chapters 4 and 5 give us an idea about index construction and compression. Zhai
and Massung [14] discuss the implementation of search engines in depth. From the Elasticsearch
website [1], we learned from the documentation that Elasticsearch is an open-source analytics
engine that can facilitate several use cases. Elasticsearch uses Apache Lucene [12] to create the
inverted index. These well-written materials helped us to understand the creation of an inverted
index using Elasticsearch, as well as the stop-word list concept and single-pass in-memory indexing.

Shaik [11] describes how Elasticsearch is related to Lucene and how it is imperative to know
about the Apache Lucene library to understand how Elasticsearch works. The paper compares
Elasticsearch, Solr [13], and Lucene in detail to analyze their features and use cases. The extensive
features of Elasticsearch are highlighted such as that it is scalable to megabytes of structured and
unstructured data and can be used as an alternative to MongoDB. We concluded that Elasticsearch
can power extremely fast searches that will be beneficial for the search engine we are trying to
build around the ETDs and tobacco settlement documents.

From the Apache Log4j2 website [3], we learned the use case of Elasticsearch in log analytics
to load log data into Apache Log4j2 on the Elastic Stack. This supports full-text searching and
distributed document storage, among others, which will help us in our future implementations.

Kılıç et al. [7] and Luburic et al. [9] provided a detailed comparison of Solr and Elasticsearch.
They concluded with the following differences:

• Indexing/Searching: Solr is text-oriented whereas Elasticsearch is keyword-centric and is also
inverted-indexed which results in better performance.

• Scalability and Clustering: Solr provides Solrcloud (a cluster of Solr servers that combines
fault tolerance and high availability [4]) but Elasticsearch has better inherent scalability and
is designed for the cloud.

• Query execution: Solr currently has limited capability in this aspect, but Elasticsearch im-
plements faster range queries depending on the context.

• Multi-tenancy: Elasticsearch uses denormalization to improve search performance and han-
dles multi-tenancy very easily when compared to Solr.

Additionally, the project reports from previous years from teams that worked on Solr [8, 6]
were also helpful when comparing the two search engines. We not only focused on the differences,
but also discovered the similarities, that will help us in our implementation of Elasticsearch. We
realize that Solr and Elasticsearch are very similar and there is even an Elasticsearch plugin that
allows using Solr clients/tools with Elasticsearch.
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3 Requirements
The following list covers our envisioned requirements for the ELS team:

1. Create data schemas for the ETD metadata as well as its entire text to index into Elastic-
search with the CME team.

2. Create data schemas for the tobacco settlement document text and its metadata to index
into Elasticsearch with the CMT team.

3. Incorporate additional metadata from the TML team, including text summarization, named-
entity recognition (NER), sentiment analysis, and clustering information to improve recom-
mendations, by updating indexed ETD and tobacco settlement data.

4. Help establish a connection with Kibana for the visualization of information and aid in
creation of a front-end for searching and generating logs with the FEK team.

5. Implement a customized ranking function based on the clustering information from the TML
team to improve search results.

6. Keep track of search results from previous user searches and generate the log files for the
TML team.

7. Implement a recommendation function which will use data from the TML team such as
clustering and topic information.

8. Provide feedback to the CME and CMT teams to improve data schema design. This includes
removal of less accessed data fields, changing field data types, etc.

9. Modify configuration values to achieve optimized performance. For example, the logged data
index is constantly growing and updating, the ETD dataset will gradually grow to 200K or
even over 5M, whereas tobacco settlement data is rather static. Therefore, we should specify
different Index Lifecycle Management (ILM) for the different datasets.

10. Explore various data types in Elasticsearch for improved searching and filtering and provide
HTTP query examples to the FEK team.

11. Use boosting on search results for the ETD and tobacco settlement data to assign higher
weights to more important fields, improving search results for the users.

12. Implement nested queries to enable searching inside documents.

13. Implement automatic ingesting and updating scripts that can monitor a designated directory
on ceph for new incoming data files.

14. Implement unit testing scripts for ingesting and updating.

10



4 Design

4.1 Approach

The schema for Elasticsearch is set into 3 parts: metadata, text data, and the data generated by
the TML team. The ETDs (stored in MongoDB) and tobacco settlement documents (stored in
MySQL) have both metadata and data, but no TML data. Metadata stores the details of the
records, and that describes and gives information about the source data and the TML generated
data. The data part stores the text content of the ETD and tobacco settlement datasets (page-
wise). Data generated by the TML team consists of clusterID, text summary, sentiment analysis,
and NER keywords. The following points describe in detail the approach of our design for the
metadata and data.

• The pre-processed text and metadata is delivered in JSON formats. The JSON files shared
by the CMT team have been provided with a unique ID field. However, the JSON files
shared by the CME team do not have a unique ID field. So, a Python script is written to
generate the unique ID on the go while ingesting. For the tobacco dataset, the file names
are considered as a unique ID. For the ETD dataset, the field value of identifier-uri is being
processed as a unique ID by the Python script. Our team has ingested the data from both
teams in Elasticsearch as “tobacco” and “30k” indices for tobacco settlements and ETD data
sets respectively. Text and metadata will be stored in Elasticsearch as different schemas,
as listed below in Table 2 and Table 3. Dependent on the inputs from the FEK team,
we applied different indexing techniques on desired fields to assist searching, filtering, and
recommendation.

• Initially, all available data fields will be indexed. Based on the feedback from the TML
team, improvements can be made by eliminating less important attributes. The FEK team
utilizes the indexed text and metadata to help visualize the information retrieved from the
ETD and tobacco settlements documents. Also, facet names, field types, and search queries
are provided to the FEK team for searching, filtering, and recommending on the ETD and
tobacco datasets. Starting with the default settings, we will explore different configuration
values to optimize effectiveness and usability.

• Nested search functionality, which is used in tobacco settlement documents, is used for
searching the data in the tobacco index where the data is stored page-wise in a nested object.
Since the data in tobacco settlements are large, just by returning the resultant record details
when a user searches would not be helpful for the user to locate matching terms in that
chunk of data The nested search functionality will help in this scenario by returning the page
number of a search term hit, along with the count of hits.

• The indexing of the ETD and tobacco settlement datasets is done using a Python script that
uses the BULK API and INDEX API from Elasticsearch. The script also logs the errors we
get while indexing, which helps us to fix them. The BULK API is used to index large chunks
of data and we are using it for tobacco settlement datasets primarily due to the size and
number of records (14M). The Python script also allows parsing and transforming files into
the desired format for ingesting. This gives us the capability to fix a few of the data format
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issues. Additionally, we are using this script to assign an ID and the name of the index for
ETD datasets when ingesting into Elasticsearch.

• Index Lifecycle Management: The indices created in Elasticsearch should be managed prop-
erly over time. Depending on its nature, each index is handled differently. The four stages
in the lifecycle are cold, warm, hot, and delete. The tobacco index for tobacco settlement
documents and the 30k index for the ETD documents are put in the warm stage as long as
possible. As there will be frequent addition of records to both these indexes in the future
they are assigned to the warm stage. The index used for logs is put in the hot stage as the
frequency of updating or inserting records into the index is almost daily.

• User activity logs will be generated by the FEK team, and Elasticsearch will index the log
data along with additional information such as the top 5-10 results of the search query. The
indexed log data along with the search results will be forwarded to the TML team to help
with the recommendation function.

• The TML team provided the clusterID, text summary, NER keywords, and sentiment analysis
result data by making them available on ceph. This data will be appended to the tobacco
and 30k index using the UPDATE API in Elasticsearch by invoking a Python script written
specifically for this purpose. Table 4 displays the fields which are created for accommodating
the data generated by the TML team. The fields with this data are shared with the FEK
team to pull them up on their platform for visualization and searching functionality.

• With the clusterID received from the TML team, recommendations are provided when a
user searches for a term. A Python script is written to facilitate this. The script gets the
clusterID of the top hit from the search result and queries the index for the records with
the same clusterID, and these results can be displayed on the front-end. The summary field,
which consists of the results of the text summarization, is given a boost using the boosting
functionality available in Elasticsearch in addition to the abstract field. This would assign
an extra weight to the field when displaying the search results.

• In the future, we will need to ingest new ETD and tobacco settlement documents. While this
could be done manually, one of our goals was to create a procedure that could automatically
ingest new documents into Elasticsearch. We have created a shell script for that purpose.
The shell script uses a tool called inotify to watch a directory for new files either moved into
or created in the directory. First, the CME and the CMT teams will parse and format the
new documents for us to ingest. The teams will move the files into specific directories for
us. The shell script will call our ingesting script for the correct document type. There will
be two directories, one for each of the document types. We can also extend this shell script
to an update script for the fields used by the TML team.

12



Figure 2: Overall architecture of the search engine and the role of Elasticsearch in it

Figure 2 displays the architecture of the project with detailed focus on the role of Elasticsearch
in this project. It also depicts the flow of data to-and-from Elasticsearch.

4.2 Tools

The tools that we will be incorporating into our project, can be summarised as follows:

• Elastic Stack: A set of open source tools for data ingestion, enrichment, storage, analysis,
and visualization:

– Elasticsearch (v 7.4.0): It is a distributed, open source search and analytics engine.

– Kibana (v 7.4.0): It lets you visualize data in Elasticsearch and navigate the Elastic
Stack to do anything from tracking query load to understanding the way requests flow
through your applications.

– Apache Log4j 2: It is a Java-based logging utility.

• Container Teaching Cluster (cloud.cs.vt.edu): It is a departmental resource that provides
the ability to run Linux containers. It uses Rancher, Kubernetes, and Docker.

• Apache Lucene: It is a free and open-source search engine software library.

13
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4.2.1 Elasticsearch

Elasticsearch is one of the most popular search engines available today, which is used for searching
and analysis. This search and the analytic engine is built on Apache Lucene and also helps in
storing data. The ingested data is indexed by Elasticsearch. It uses an inverted file index which
is based on a keyword-centric data structure. That is the reason it is able to retrieve the search
results quickly; it searches through the index instead of the text. It uses denormalization to improve
search performance and handles multi-tenancy very easily as compared to Apache Solr. Table 1
displays the available data types in Elasticsearch.

Table 1: Elasticsearch data types

Column Name
Elasticsearch type

Elasticsearch SQL
type

SQL type

null null NULL
boolean boolean BOOLEAN
byte byte TINYINT
short short SMALLINT
integer integer INTEGER
long long BIGINT
double double DOUBLE
float float REAL
keyword keyword VARCHAR
text text VARCHAR
binary binary VARBINARY
date datetime TIMESTAMP
ip ip VARCHAR

4.3 Data Schema

Tables 2 and 3 display the data schema for the tobacco settlement and ETD datasets, respectively.
The first column in both tables represents the name of the fields. The second column represents
the data type of those fields in their respective databases, i.e., MongoDB and MySQL. The third
column represents the data type of these columns after ingesting into Elasticsearch. For all the
text/string variant fields we are using both the ‘Keyword’ data type and the ‘Text’ data type which
is clubbed into a nested data type where the Text data type of the field is used for searching and
the Keyword data type of the field is used for filtering, sorting, and aggregations. To access them,
you can use ‘field_name’ for text data type variant and ‘field_name.keyword’ for keyword data
type variant.

Table 2: Tobacco settlements data schema

Column Name Data Type Elasticsearch Data Type
Access URL/String Text, Keyword
Adverseruling String-(Alphanumeric) Text, Keyword
Area String Text, Keyword
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attending List<String> Text, Keyword
Author List<String> Text, Keyword
availability String Text, Keyword
Bates ID-Alphanumeric Text, Keyword
Batesalternate ID-Alphanumeric Text, Keyword
batesmaster List<Id>-Alphanumeric Text, Keyword
Box Number Numeric
Brand String Text, Keyword
Case ID-Alphanumeric Text, Keyword
Cited String Text, Keyword
Collection String Text, Keyword
Copied List<String> Text, Keyword
Country String Text, Keyword
Dateaddedindustry Date Date
Dateaddeducsf Date Date
Datemodifiedindustry Date Date
Datemodifieducsf Date Date
Dateprivilegelogged Date Date
Dateproduced Date Date
Dateshipped Date Date
Depositiondate Date Date
Description String Text, Keyword
Documentdate Date Date
Exhibitnumber Number Numeric
Expresswaiver String Text, Keyword
File String Text, Keyword
Format String Text, Keyword
Genre String Text, Keyword
Grant String Text, Keyword
ID ID-Alphanumeric Text, Keyword
Language String Text, Keyword
Mentioned List<String> Text, Keyword
Metadata String Text, Keyword
Minnesotarequestnumber ID-Alphanumeric Text, Keyword
Organization String Text, Keyword
Othernumber ID-Alphanumeric Text, Keyword
Otherrequest String Text, Keyword
Pages Number Numeric
Person List<String> Text, Keyword
Privilegecode Id-Alphanumeric Text, Keyword
Recipient List<String> Text, Keyword
Recommend List<string> Text, Keyword
Referenceddocument String Text, Keyword
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Requestnumber String Text, Keyword
Text String Text, Keyword
Tid ID-Alphanumeric Text, Keyword
Title String Text, Keyword
Topic String Text, Keyword
Type String Text, Keyword
Witness String Text, Keyword

Table 3: ETD data schema

Column Name Data Type Elasticsearch
Data Type

dc.contributor.author String Text, Keyword
dc.date.accessioned Date/Time Date
dc.date.available Date/Time Date
dc.date.issued Date/Time Date
dc.identifier.other String-(Alphanumeric) Text, Keyword
dc.identifier.uri URL Text, Keyword
dc.description.abstract String-(Alphanumeric) Text, Keyword
dc.format.medium String Text, Keyword
dc.publisher String Text, Keyword
dc.rights String Text, Keyword
dc.subject List<String> Text, Keyword
dc.title String Text, Keyword
dc.type String Text, Keyword
dc.contributor.department String Text, Keyword
dc.description.degree String Text, Keyword
thesis.degree.name String Text, Keyword
thesis.degree.level String Text, Keyword
thesis.degree.grantor String Text, Keyword
thesis.degree.discipline String Text, Keyword
dc.contributor.committeechair String Text, Keyword
dc.contributor.committeemember List<String> Text, Keyword

Table 4: Data schema of the fields added in ETD and
tobacco datasets for the data generated by the TML team

Column Name Data Type
clusterID Text, Keyword
summary Text, Keyword
sentiment Text, Keyword
NER Text, Keyword
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4.4 Deliverables

The deliverables that we achieved for this project have been listed below:

• Data schema for ETD and tobacco settlement datasets: The data schema has been provided
to the FEK, CMT, CME, and TML teams and this would help maintain uniformity in the
schema across all the teams.

• Storing ETD (30K records) and tobacco settlement (14M records) data in Elasticsearch by
ingesting them from ceph into Elasticsearch: This would, in turn, be used by other teams,
mostly by the FEK team.

• Indexing data/metadata: This supports searching and browsing, which would get imple-
mented whenever we ingest new records into Elasticsearch.

• Indexing logs generated from the front-end on user search activity: The TML team will
implement a recommendation system using these logs. The logs will contain essential in-
formation regarding user session activities, such as terms searched and filters applied along
with user credentials.

• Facet names, field types, usage recommendation, and field examples: All these are provided
to the FEK team for supporting them in filtering, searching, and visualizing both the ETD
and tobacco datasets.

• Incorporating the cluster results received from the TML team to help in ranking and rec-
ommendations: The cluster results would be in the form of scores that would be assigned to
each record in the tobacco and ETD datasets as a new field. These scores will be constantly
updated via the ‘Update’ API of the Elasticsearch platform.

• Configuring elasticsearch.yml file: This helps to enable the FEK team to implement the
Reactivesearch tool which connects the front end interface to Elasticsearch. Additional per-
missions are granted to enable the Reactivesearch tool to access Elasticsearch.

• Providing the details of the fields to the FEK team: This will contribute to searching, sorting,
and filtering purposes on the ETD and tobacco settlement datasets. Tables 5 and 6 display
the fields which will be used for searching and filtering, along with examples.

• Search query format with an example: Different types of search queries are shared with the
FEK team, along with the examples, to help them retrieve better results while searching
or filtering the datasets. An ordinary search query is used to directly search for a term in
a certain field. It can search in multiple fields and query the documents in a specific date
range. Another search query is the nested search query which is used to locate the page that
contains the searched term in the text data.

• Search Preference using Boosting: Elasticsearch rank searching results are based on a de-
signed score. A certain field can contribute more to the score by adding more boosting
weight to it. The boosting weights are added to the field directly when ingesting or can also
be determined in queries while searching.
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• Automated scripts: These scripts can automatically ingest new documents into Elasticsearch.
A shell script is written for monitoring new files with the help of a Linux tool named inotify
and a Python script is written for ingestion and updating of the documents.

• Unit Testing: Unit tests are written on the Python scripts that are coded by our team which
can be used by the INT team to implement CI/CD. These unit tests are written in such a
way that, they will run on an updated code that is pushed to a repository before the code is
committed and is run on production servers. If they pass the tests, the code will be deployed
to production servers. If they fail in the tests, the developer will be notified and the errors
will be fixed. These tests are written in Python using the unittest Python testing framework.

Table 5: ETD dataset fields used for searching and filtering

Field Name Field Type Searching Filtering Example
degree-level Text, Key-

word
Yes Yes masters

contributor-
department

Text, Key-
word

Yes Yes Computer science

contributor-
author

Text, Key-
word

Yes Tony Stark

contributor-
committeechair

Text, Key-
word

Yes John Wick

contributor-
committeecochair

Text, Key-
word

Yes Chris Scott

contributor-
committeemember

Text, Key-
word

Yes David Knight

date-available Date Yes 1/23/2017
date-issued Date Yes Yes 2/21/2018
degree-name Text, Key-

word
Yes MS or PhD

description-
abstract

Text, Key-
word

Yes This field conveys the abstract of
the thesis in 10-15 lines

Author Email Text, Key-
word

Yes tony_s@stark.com

subject-none Text, Key-
word

Yes Soils – Aluminum content
Cations

title-none Text, Key-
word

Yes Hydrolysis of aluminum in syn-
thetic cation exchange resins and
dioctahedral vermiculite

type-none Text, Key-
word

Yes Yes Dissertation

Table 6: Tobacco settlements dataset fields used for searching and filtering
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Field Name Field
Type

Searching Filtering Example

Case Text, Key-
word

Yes Minnesota v. Philip Morris
Inc.

Brands Text, Key-
word

Yes Marlboro

Witness_Name Text, Key-
word

Yes Wyant, Timothy (affiliation:
Decipher; expertise: Statis-
tical analysis; job_title: In-
dependent Statistical Consul-
tant; side: Plaintiff; wit-
ness_type: Expert)

Topic Text, Key-
word

Yes advertising; health effects

Person_Mentioned Text, Key-
word

Yes Burns, David Michael, M.D

Organization_Mentioned Text, Key-
word

Yes R.J. Reynolds Tobacco Co.

Description Text, Key-
word

Yes The plaintiffs expert witness,
a statistician, was deposed by
the defendants.

Title Text, Key-
word

Yes Deposition of TIMOTHY
S. WYANT, Ph.D., August
19, 1997, MINNESOTA v.
PHILIP MORRIS INC.

Date_Added_UCSF Text, Key-
word

Yes Yes 1/20/2006

Document_Date Text, Key-
word

Yes Yes 1/21/2006

Document_Type Text, Key-
word

Yes Yes deposition

availablility Text, Key-
word

Yes Yes public

availablilitystatus Text, Key-
word

Yes Yes no restrictions

Context Text, Key-
word

Yes Described the methodology
he used to analyze ma-
jor tobacco-related diseases
among nursing home entrants
and the conclusions he drew

page-number numeric Yes ’3’, ’12’
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4.5 Quality Control

The Elasticsearch team has delivered the finalized indexed metadata and data of the ETD doc-
uments and tobacco settlement documents to the FEK team. We play an important part in the
data quality control process. Thus, we take the advantage of Python scripts written by our team
and the available tools in the Elasticsearch platform to validate and fix our indexed data in various
ways as follows:

• Convert and provide timestamps in the format as requested from the FEK team

• Convert necessary data to different data types (e.g., text to date or text to keyword).

• Provide a fix on improper data format (e.g., the date fields in the ETD documents which are
not in the prescribed format by Elasticsearch, making it not possible to filter data based on
date fields.)

• Drop records in different scenarios (e.g., invalid entries such as date-“0000-00-00”)

• Remove unnecessary fields based on the input from the FEK and the TML teams

• Add/Remove values to certain fields

• Sanitize unknown Elasticsearch fields that could cause errors

• Logging the errors while indexing and ingesting data into Elasticsearch

4.6 Configuration

This section refers to the log4j2.property for logging and elasticsearch.yml for Elasticsearch con-
figuration. We will introduce both of them in Section 7.
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5 Implementation

5.1 Overview

The general goal of the project is to build a state-of-the-art search engine for ETD and tobacco
settlement data. Based on current understanding and previous work [6, 8], our team hopes to
maintain the same high quality work as teams from previous years. Our approach is as follows:

• Become familiar with Elasticsearch by following the tutorials and instructions posted on the
Elasticsearch official website [2].

• Examine the ETD and tobacco settlement data to extract useful and essential information.

• Work with other teams to design data schemas for each of the document collections and
receive feedback from collaborating teams to refine the schemas.

• Properly index the ETD and tobacco settlement data.

• Incorporate cluster information from the TML team to support ranking and recommendation
for the ETD dataset.

• Incorporate text summarization, NER, and sentiment analysis from the TML team for the
tobacco settlement documents.

• Work with other teams to exploit the search activity log file for a better recommendation.

• Assist the FEK team by understanding their roles and functionalities thoroughly. As an
outcome, provide an easy to understand user guide for them to connect to Elasticsearch and
search the indexed data of ETD and tobacco settlement data.

• Optimize search engine performance by enabling boost, supporting, filtering, etc.

• Provide scripts for automatic ingesting and updating upon receiving new data.

• Provide unit testing scripts to validate ingesting and updating methods.

• Assign an appropriate index lifecycle management policy to different indices corresponding
to the read/write nature of their respective dataset.

5.2 Tasks and Schedule

Our planned schedule is listed in Table 7. We update the table to keep track of our progress and
incorporate new design requirements. The table includes: simple task description, planned work
time (in weeks), team member that is assigned to a given task, and whether the task has been
completed or not.

Table 7: Tasks and Schedule
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Task Description Planned
Completion
Week

Assignee Completed

Sign up and form the ELS team. 1 All Yes
Set up shared Google Drive to exchange documents,
Slack to promptly communicate within team and be-
tween teams, and Trello to assign and track tasks
among team members.

1 All Yes

Finish the Elasticsearch tutorial provided by TA on
cloud.cs.vt.edu.

1 All Yes

Create shared Google Slides to present and update on
the ELS team progress during class sessions.

1 All Yes

Learn Elasticsearch by completing Elasticsearch Tuto-
rial [1].

2 All Yes

Learn Elasticsearch queries and interaction with the
FEK team.

2-3 Soumya,
Tianrui,
Nick

Yes

Learn Elasticsearch logging functionality. 3 Satvik,
Yuan

Yes

Draft final report using Overleaf and iteratively up-
dating.

3 All Yes

Specify initial schema which includes all fields to
gather initial data from the CME and the CMT teams,
and hear feedback.

3-4 Yuan,
Satvik

Yes

Index ETD and tobacco settlement data on Elastic-
search container, starting with metadata only.

3-4 Soumya,
Tianrui,
Nick

Yes

Prepare for team presentation 1. 4 All Yes
Draft interim report 1. 4 All Yes
Locate and modify the configuration file for Elastic-
search and Log4j2 to provide better searching experi-
ence.

5 Satvik,
Yuan

Yes

Write Python script to automatically index JSON data
file provided by CME and CMT.

5-6 Nick, Tian-
rui

Yes

Write HTTP search queries to guide the FEK team
testing the actual searches.

5-6 Soumya Yes

Study Elasticsearch and Log4j2 configuration files to
change logging levels.

6 Satvik,
Yuan

Yes

Work with the INT team to export logging files. 6 Satvik,
Yuan

Yes

Prepare for team presentation 2. 7 All Yes
Draft interim report 2. 7 All Yes
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Provide feedback on recommendation to the CME and
the CMT teams to improve ETD and tobacco settle-
ment data.

8-9 Soumya,
Tianrui,
Nick

Yes

Provide HTTP query examples to the FEK team for
searching and filtering functions.

8 Satvik,
Yuan

Yes

Changed default data type for custom use. 8 Satvik,
Yuan

Yes

Fix wrongly indexed column that were made by de-
fault setting.

8 Soumya,
Tianrui,
Nick

Yes

Use text and keyword data types simultaneously for
improved searching and filtering.

9 Satvik,
Yuan

Yes

Optimize updating existing values in indexed dataset
without re-indexing.

9 Satvik,
Yuan,
Soumya

Yes

Help the FEK team to implement range searching
within a time frame.

9 Soumya,
Tianrui,
Nick

Yes

Help the TML team to update the cluster information
in Elasticsearch.

9 Soumya,
Tianrui,
Nick

Yes

Implement nested query to support detailed search in-
side documents.

9 Satvik,
Yuan

Yes

Prepare for team presentation 3. 9 All Yes
Draft interim report 3. 9 All Yes
Collaborate with the TML team to find ways to use
cluster information to implement recommendation.

10-14 Soumya,
Satvik,
Yuan

Yes

Extract search activity log from Elasticsearch. 11-12 Tianrui Yes
Adjust specific data type such as keyword, date to
both ETD and tobacco settlement document.

11-12 Tianrui,
Yuan

Yes

Communicate with the FEK team to inform them
about the specific data types along with detailed query
examples.

11-12 Satvik Yes

Based on the text summary samples provided by the
TML team, implemented script for adding new field
to existing index in Elasticsearch.

11-12 Nick, Tian-
rui

Yes

While waiting for the TML team to deliver cluster
information, explore recommendation query based on
anticipated cluster information.

12-14 Satvik,
Yuan,
Soumya

Yes

While waiting for the TML team to deliver text sum-
marization, NER and sentiment analysis information.

12-14 Nick, Yuan,
Tianrui

Yes
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Implement shell script to monitor specific directory for
new-coming files.

12-13 Yuan,
Satvik

Yes

Integrate python scripts used for indexing and updat-
ing with shell script to implement automatic ingesting
and updating.

12-13 Yuan, Nick Yes

Implement unit testing scripts for indexing and updat-
ing.

12-13 Yuan, Nick Yes

Ingest 30K ETD data with full text. 11-13 Nick,
Satvik,
Tianrui

Yes

Ingest 5.6M tobacco settlement document metadata
as Elasticsearch can store for its current setup.

11-13 Nick, Tian-
rui, Yuan

Yes

Ingest 100K tobacco settlement document metadata
with full text data.

11-13 Nick,
Tianrui,
Soumya

Yes

Prepare final presentation. 14 All Yes
Finish final report. 14 All Yes

5.3 Search Implementation

Figures 3 and 4 depict our planned search engine implementation for tobacco settlement and ETD
datasets with fields that will be utilized for searching and sorting. Our implementation allows the
user to search through multiple field options as required for a particular document. For example, for
the ETD dataset, the search fields contain department, title, author, committee chair, committee
member, and abstract. Similarly, for the tobacco dataset, the search fields include case, topic,
author, witness name, etc. In the second part of our implementation, it allows us to sort the data
according to the user demand. The sorting is structured to re-arrange the documents according to
relevance and date. This is a useful tool on the front-end, to enable the user to make an effective
search.

24



Figure 3: Planned search implementation for tobacco settlements dataset

Figure 4: Planned search implementation for ETD dataset
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5.4 Expected Outcomes

We list our expected outcomes in Table 8:

Table 8: Expected Outcomes
Completion Date Expected Outcome
09/05 Test out Elasticsearch.
09/19 Send out initial data schema to both the CME and the CMT

teams.
10/10 Share initial log file with the TML team.
10/10 Share sample HTTP queries with the FEK team.
10/30 Provide a nested query example to the FEK team.
10/30 Provide data schema for both ETD and tobacco settlement orig-

inal data.
11/20 Provide guideline for recommendation functionality to the FEK

team.
11/21 Provide detailed data type along with usage suggestion to the

FEK team.
11/23 Provide unit testing scripts for ingesting and updating opera-

tions.
11/25 Provide shell scripts for automatic ingesting and updating when

there is new file in ceph.
12/1 Index 5.6M tobacco settlement documents metadata into Elas-

ticsearch.
12/1 Index 100K tobacco settlement documents metadata with page-

wise full text into Elasticsearch.
12/8 Index 30K ETD metadata with full text into Elasticsearch.
12/10 Incorporate cluster from the TML team for the ETD dataset.
12/10 Incorporate text summarization, NER, and sentiment analysis

from the TML team for the tobacco settlement documents.

5.5 Achievements

Here we list what has been accomplished by the end of the course.

• For ETD dataset: we have successfully ingested 30,925 ETD documents of metadata and
full text data.

- The ingestion operation achieved a success rate of 99.8%.

- All documents are fully searchable.

- The dataset can be filtered and sorted by designated fields. We are able to query for
documents in a date range.
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- We also provide tested scripts that can monitor new data files and automatically ingest
and update new data into existing index.

• For tobacco settlement documents: we have successfully ingested 5,595,936 tobacco settle-
ment documents of metadata.

- The ingestion operation achieved a success rate of 99.9% with only 81 records failed to
be indexed.

- Within the ingested metadata index, we also include 100,000 records with full text data

- All documents are fully searchable.

- The dataset can be filtered and sorted by designated fields. We are able to query for
documents in a date range.

- We also provide tested scripts that can monitor new data files and automatically ingest
and update new data into existing index.

• We have tested to sample data provided by the TML team. Yet, due to the fact that the
TML data were uploaded on ceph only two days prior to the course deadline, we could not
fully check, analyze, update into the indexed dataset.

- After discusssion with the TML team, both teams agreed all TML data to be written in
plain text files that are named after the document ID for the tobacco settlement documents.

- When generating cluster information for the ETD dataset, the TML team used a dif-
ferent field that we originally set up as document ID. We re-indexed the ETD dataset to
accommodate their changed cluster information.

- We receive 97,484 records of text summarization only for the tobacco settlement docu-
ments.

- We receive 765,530 records of sentiment analysis only for the tobacco settlement docu-
ments. We randomly checked 10 files and all of them were empty.

- We receive 213,883 records of NER only for the tobacco settlement documents.

- We were promised cluster information only for the ETD dataset. Yet, at the end of the
course, the cluster information still was not provided to us.

- Based on the initial design of the additional TML data (plain text, named after document
ID), we wrote a Python script and shell script that could detect newly added files and
update the existing indices accordingly. The scripts are validated with the sample text
summarization files.

• We have provided helpful information to the FEK team.

- We provide detailed data schema for both ETD and tobacco settlement documents, in-
cluding field names, data type, and usage suggestions.
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- We provide HTTP search query examples, covering common search, nested search, and
recommendation-based search.
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6 User Manual

6.1 Kibana

This section is used to help others interface with Elasticsearch. There will be step-by-step guides
connecting Kibana to Elasticsearch. We firstly show how to connect Kibana to Elasticsearch
indices.

1. Login to cloud.cs.vt.edu

Go to cloud.cs.vt.edu and login with your account username and password.

2. Select Project from Clusters
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Select the cs5604 project from the testing cluster

3. Select the Port that is running Kibana

Click on the 5601/tcp under the kibana-kibana workspace

4. Using Elasticsearch Data
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Click on the Connect to your Elasticsearch Index Hyperlink. This link will move you to the
webpage used to connect Kibana to Elasticsearch indices.

5. Create an Index Pattern

You can create an index Pattern here. The index pattern can make one or more indices.
The * symbol is used as a wildcard. Clicking the Next Step button will bring you to a
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confirmation page.

You can review your index pattern here before creating the Index Pattern, connecting Kibana
to Elasticsearch. The latest created index pattern is used as default unless overwritten in
the index patterns settings.

6.2 Searching an Elasticsearch Index

6.2.1 Basic Searching

Elasticsearch is designed as a powerful search engine. It’s capable of many kinds of searching.
In this section, we will introduce several basic searching query. And, we will show how to
use Kibana to conduct the searching. Let’s see the most simple searching query first, which
is querying for a single document:

GET /tobacco/_doc/ffvv0000

As shown in Figure 5, the request will get the results that match the query. In this case, the
query will match with the document with ID ffvv0000 in the tobacco index. Note that ID
can be string or integer in Elasticsearch as long as it is unique for each document.
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Figure 5: Searching single document

If you’d like to search for general information, you can write requests with _search API:

GET /tobacco/_search

Figure 6 shows that it returns 10000 documents with the tobacco index. The maximum hits
for a query is 10000 by default. The results are shown in the order of ID since no other query
information is sent except the index.

Figure 6: Searching
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The search criteria can be specified as request body parameters. Here is an example for the
most simple criterion. It queries for matches with the word TEXT from the FIELD field.

GET /tobacco/_search
{

"query": {
"match": {

"FIELD": "TEXT"
}

}
}

The _mapping command can help you when looking for what fields an index has as well as
their datatype. It will list all fields in the tobacco index as shown in Figure 7.

GET /tobacco/_mapping/

Figure 7: Mapping

For instance, if we are going to search for documents with “info” in the “Title” field:

GET /tobacco/_search
{

"query": {
"match": {

"Title": "info"
}
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}
}

It will return documents contains “info” as shown in Figure 8.

Figure 8: Search Hamlet

Here is an example of how to use a cURL command to do the searching:

curl -X GET "10.43.54.87:9200/tobacco/_search?pretty"
-H ’Content-Type: application/JSON’ -d’
{

"query": {
"match": {

"Title": "Retrieve"
}

}
}
’

If we would like to know how many documents are from the “United States of America”,
the following “agg” command will help you aggregate documents by “Country” field in the
tobacco index.

GET /tobacco/_search
{
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"size": 0,
"aggs": {

"play_name": {
"terms": {

"field": "Country.keyword",
"size": 20

}
}

}
}

From Figure 9, we can see that there are 35668 documents in total from the USA.

Figure 9: Aggregate

TF-IDF, term frequency inverse document frequency, is an important weighting method in
information retrieval. The _termvectors API can calculate the term frequency and document
frequency for each word in documents.

GET /tobacco/_termvectors/stlj0158
{

"fields" : ["Title"],
"offsets" : true,
"payloads" : true,
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"positions" : true,
"term_statistics" : true,
"field_statistics" : true

}

Figure 10: Term vectors

6.2.2 Searching in Nested Field

Nested datatype: The nested datatype allows arrays of objects to be indexed in one
field, and they can be queried independently of each other. As mentioned before, we add a
nested field for storing text contents for each document. A sample structure of the nested
field is shown below. The “user” field is a nested field with two sub-fields “first” and “last”.
It contains two documents, “John Smith” and “Alice White”.

PUT my_index/_doc/1
{

"user" : [
{

"first" : "John",
"last" : "Smith"

},
{

"first" : "Alice",
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"last" : "White"
}

]
}

Searching query and highlight: The nested query can search a nested field as if the
objects in it were indexed as separate documents. If an object matches the search, the nested
query returns the root whole document instead of the separate document. However, our goal
is to show the page number on which content matches the searching query. So, we use the
inner hits parameter, which allows us to highlight the matching nested documents.

POST tobacco/_search
{

"query": {
"nested": {

"path": "text_content",
"query": {

"match": {"text_content.content" : "SANDRIDGE"}
},
"inner_hits": {

"highlight": {
"fields": {

"text_content.page": {}
}

}
}

}
}

}

6.2.3 Date Range Searching

The range query returns documents that contain terms within a provided range. In our
project, we use the range query with date fields. As shown below, we can search for a
document within a time span. The format of date datatype is: yyyy-MM-dd

GET /tobacco/_search
{

"query": {
"range" : {

"Date_Modified" : {
"time_zone": "-04:00",
"gte": "2000-01-01",
"lte": "now"

38



}
}

}
}
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7 Developer Manual
In this section, we show how to connect and interact with Elasticsearch. Initially, all operations
were tested on the sample file. In this section, we don’t show the architecture, module overviews,
etc. We focus on showing how to process data in Elasticsearch.

7.1 Tutorial

7.1.1 Connecting to Elasticsearch by terminal

Elasticsearch is a distributed search and analytics engine which provides real-time search and ana-
lytics for all types of data. You can interact directly with your Elasticsearch server by submitting
HTTP requests to its API.

First, we can use a cURL command to send HTTP requests to our Elasticsearch server. The
internal server IP is 10.43.54.87:9200. If you are using the terminal of the Elasticsearch container
on the Computer Science cloud, you can send the following empty request to check if you are
connecting to Elasticsearch correctly:

curl 10.43.54.87:9200

If you’d like to access the Elasticsearch server from your own terminal, you can use the one with
external IP.

curl 2001.0468.0c80.6102.0001.7015.40b4.a1fb.ip6.name:9200

Figure 11: Connecting

Figure 11 shows that Elasticsearch works well and then we can start exploring its features.
Firstly, we can use this command:
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curl 10.43.54.87:9200/_cat/indices?v

It can list every existing index in Elasticsearch as shown in Figure 12.

Figure 12: Listing indices

7.1.2 Importing Data

In our project, all data will be stored in ceph connecting to Elasticsearch. If you log into the ceph
container and go to the /mnt/ceph/ dictionary, you will find the data in JSON format storing
there as shown in Figure 13.

Figure 13: Ceph

If you’d like to import new data to Elasticsearch, you should send the data file to the ceph
first. One simple way to do that is executing this command on the ceph container:

curl -O https://your-file.JSON
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Note that Elasticsearch expects the following newline delimited JSON (NDJSON) structure:

{ "index" : { "_index" : "index", "_id" : "0" } }
{ "field1" : "value1" }

It must end with a newline character \n. After data is prepared, we can import it into Elasticsearch
by this command:

curl -s -H "Content-Type: application/x-ndJSON" -XPOST
10.43.54.87:9200/_bulk --data-binary "@tobacco.JSON"

Run the listing indices command again and you will see the new index imported.

7.1.3 Kibana API

Kibana, a front-end platform which lets you explore and visualize your data in Elasticsearch, is
also installed and running on our server. We can send the requests, access, and interact with
Elasticsearch through the Kibana console.

Figure 14: Kibana indices

Figure 14 shows that we can send the HTTP request to query information from Elasticsearch
through the Kibana console. Kibana will package the request and send it to the Elasticsearch
server the same as a cURL command. In the following section, we will show our commands and
results mainly in Kibana. We will also show how to convert HTTP requests to cURL commands
if necessary.

7.1.4 Python API

There is an official Python Elasticsearch client, which provides a more convenient way to write
and manipulate queries, especially when dealing with multiple queries. And it allows us to save
the returned results easily [5].

Here is a simple example using the Python client to connect and interact with Elasticsearch.
The returned results will be shown in Figure 15.
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import elasticsearch as els
# connect to Elasticsearch:
es = els.Elasticsearch( ’2001.0468.0c80.6102.0001.7015.40b4.a1fb.ip6.name’,
port= 9200)A
# list indices:
print(es.cat.indices())
# print the id=lzlj0158 doc from tobacco index
res = es.get(index=’tobacco’, id=’lzlj0158’)
print(res)
# search for docs with thesis in description-abstrac
res = es.search(index="tobacco", body={

"size": 20,
"query": {

"match": {
"description-abstrac": "thesis"

}
}

})
print(res)

Figure 15: Python results

7.1.5 Indexing

Create a new index:
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PUT /index
or curl -X PUT "10.43.54.87:9200/tobacco?pretty"

Figure 16: Create index

The Reindex command can help us organize documents to proper indices. It will link documents
from the source index to the destination index. Note that it won’t create the new index for you.
Please create the destination index before running a Reindex command.

POST _reindex
{

"source": {
"index": "tobacco"

},
"dest": {

"index": "new_tobacco"
}

}

If you only want to link part of documents from the source index, the search query can also be
added in the body part of the reindex request. For instance, this command will reindex all docs
with Document_Type deposition to the new index:

POST _reindex
{

"source": {
"index": "tobacco",
"query": {

"match": {
"Document_Type": "deposition"

}
}

},
"dest": {

"index": "new_tobacco"
}

}
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Figure 17: Reindex

All 4244 documents from Hamlet are listed in the Hamlet index. But they won’t be deleted
from the source index. If you want to delete them from the tobacco index, you can use the following
request:

POST /tobacc/_delete_by_query
{

"query": {
"match": {

"Document_Type": "deposition"
}

}
}

7.2 Indexing/Configuration

7.2.1 Fields

Firstly, we figured out which fields are searchable and which fields are not. Some fields can be set
as filters, so that we can filter search results with the option fields. The rest of the searchable fields
can be used for full text searching and partial searching. Full text searching means searching the
given keyword by the user in all the fields and partial searching means searching only in designated
fields. We can modify the setting of fields and delete some fields by running the reindex command
or _delete_by_query as mentioned before.

Then, we went over each of the fields to check their datatype. Most of the fields are a string or
integer which will be automatically converted into the text datatype when ingested into Elastic-
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search. But the text type is not the best datatype for all features. In order to make our searching
more effective and efficient, we are going to modify the datatype of part of the fields.

The way to change the datatype is shown below. For example, if we’d like to change the
datatype to keyword for “Country” field in the tobacco index, we need to create a temporary
index, with the keyword field “Country”. Then, we reindex all documents to the temporary index
and delete the original index. After that, we create the tobacco index again and reindex all
documents back.

PUT tobacco2
{

"mappings": {
"properties": {

"Country": {
"type": "keyword"

}
}

}
}
POST _reindex
{

"source": {
"index": "tobacco"

},
"dest": {

"index": "tobacco2"
}

}
DELETE tobacco
PUT tobacco
{

"mappings": {
"properties": {

"Country": {
"type": "keyword"

}
}

}
}
POST _reindex
{

"source": {
"index": "tobacco2"

},
"dest": {

"index": "tobacco"
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}
}

However, though it is feasible to operate as described above, it is inefficient.
Lastly, we add a boosting weight to certain fields. Elasticsearch rank searching results based

on a designed score. The scores are calculated by a similarity model based on TF-IDF as well as
using the Vector Space Model for multi-term queries. But what if we’d like to change the score
calculation? There are two ways. The first is to modify the score directly. We are able to do
that, but it will need a careful design. So, we didn’t implement it in our project. Another way
is to use boosting. If you want a certain field to contribute more to the score, then you can add
more boosting weight to it. The boosting weights can be added to the field directly when ingesting
or determined in queries while searching. Here is an example that the score of a field is boosted
automatically while searching, with the boosting parameter set. While searching in the tobacco
index, contents in the “Title” field will contribute two times that of others which are set by default
to the result ranking score.

PUT tobacco
{

"mappings": {
"properties" : {

"Title" : {
"type" : "text",
"boost": 2,
"fields": {

"keyword": {
"type": "keyword"

}
}

}
}

7.2.2 Configuration

In order to support Reactivesearch from the FEK team to connect to Elasticsearch, we needed to
configure the CORS (Cross-Origin Resource Sharing) in the configuration file in Elasticsearch to
enable access. The settings are listed as follows.

http.cors.enabled: true
http.cors.allow-credentials: true
http.cors.allow-origin: ’http://2001.0468.0c80.6102.0001.7015.bf2d.eb25.ip6.name:3000’
http.cors.allow-headers: X-Requested-With, X-Auth-Token, Content-Type, Content-Length,
Authorization, Access-Control-Allow-Headers, Accept

However, it’s not easy to configure files in a container since we need to redeploy the Elasticssearch
node to apply the changed settings. We worked with the INT and FEK teams to make it happen.

Moreover, we should specify the lifecycle for each index. Index Lifecycle Management (ILM)
APIs allow us to configure the lifecycle for indices. An index’s lifecycle changes, based on the use
of the index. There are four stages in a lifecycle [1]:
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• Hot: the index is actively being updated and queried.

• Warm: the index is no longer being updated, but is still being queried.

• Cold: the index is no longer being updated and is seldom queried. The information still
needs to be searchable, but it’s okay if those queries are slower.

• Delete: the index is no longer needed and can safely be deleted.

We can control the maximum size or age for an index. If an index reaches the maximum size
or age, it can be moved to the next stage or even be moved to other storage hardware.

We can create the index lifecycle policy in Kibana:

Figure 18: Lifecycle policy

We can also change the lifecycle policy by running the command below:

PUT my_index/_settings
{

"lifecycle.name": "my_policy"
}

7.3 Updating Elasticsearch Fields

The UPDATE API allows you to script document updates. This script enables us to modify,
update, or delete the desired field. This operation fetches the document from the supplied index,
then it runs the specified script and indexes the result. The update removes some network round
trips and also reduces the chance of a version conflict between the GET and index operation. The
“source” field must be enabled in order for the script to update.

POST tobacco/_update/1
{

"script" : {
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"source": "ctx._source.counter += params.count",
"lang": "painless",
"params" : {

"count" : 4
}

}
}

We have successfully managed to update sample fields in Elasticsearch. As per the requirement,
we need to update the following fields in our database: 1) Cluster ID, 2) Similarity Scores, 3)
NER, 4) Text Summary, and 5) Sentiment

7.3.1 Updating the Similarity Score in Elasticsearch

A similarity score or a ranking model defines the method by which the matching documents are
scored. The similarity is per field; therefore we can define a different similarity for each field. There
are multiple built-in similarity scores provided by Elasticsearch. These built-in similarities can be
tested when searching along with the custom similarities. Some of the similarities are described as
follows:

1. BM25 Similarity: This is the default similarity incorporated by Elasticsearch. This is a
TF-IDF based similarity that has built-in TF normalization and works better for short fields
(like names).

2. DFR Similarity: This similarity implements the divergence from the randomness framework.

3. IB Similarity: This similarity score is based on the fact that the information contained in any
symbolic distribution sequence is primarily determined by the repetitive usage of its basic
elements.

4. LM Dirichlet Similarity: This algorithm attempts to capture important patterns in the text
while leaving out the noise.

5. Scripted Similarity: This similarity allows you to use a script to specify how scores should
be computed.

To select what type of similarity we want to use, we can use the following configuration:
Script for default similarity section:

PUT /tobacco
{

"settings": {
"index": {

"similarity": {
"default": {

"type": "boolean"
}

}

49



}
}

}

Script for configuring a different similarity:

PUT /tobacco
{

"settings" : {
"index" : {

"similarity" : {
"my_similarity" : {

"type" : "DFR",
"basic_model" : "g",
"after_effect" : "l",
"normalization" : "h2",
"normalization.h2.c" : "3.0"

}
}

}
}

}

Here the DFR similarity is configured to be referenced as my_similarity.

PUT /index/_mapping
{

"properties" : {
"title" : { "type" : "text", "similarity" : "my_similarity" }

}
}

7.3.2 Updating the Similarity Score using Custom Similarity:

Elasticsearch also allows us to configure a custom similarity, which is a high-level feature provided
by Elasticsearch. This is enabled by the scripted similarity measure mentioned above. This is an
important feature for our project, as it will enable us to use the similarity score computed by the
TML team’s algorithm. Thus, we can have our custom similarity measure and ranking for our
ETDs and tobacco settlement documents. Another advantage is that we can have multiple custom
similarities developed by the TML team and analyze which similarity works best for our dataset.
While scripted similarities provide a lot of flexibility, there are a set of rules they need to satisfy.
Failing to do so could make Elasticsearch silently return wrong top hits or fail with internal errors
at search time. The rules are:

• Returned scores must be positive.
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• All other variables equal, scores must not decrease when doc.freq increases.

• All other variables equal, scores must not increase when doc.length increases.

Here we present an example of customizing the existing TF-IDF similarity, making the calculation
slightly more efficient. The custom similarity can be configured by running the script below. This
will help us to change the existing formula of TF-IDF calculation to our custom formula. As
mentioned in the code, we update the variables IDF and TF in the weight_script. Therefore, now
the similarity score will be calculated based on our formula. This is a feature that we can exploit
to boost the searching process.

PUT /tobacco
{

"settings": {
"number_of_shards": 1,
"similarity": {

"scripted_tfidf": {
"type": "scripted",
"weight_script": {
"source": "double idf = Math.log((field.docCount+1.0)/(term.docFreq+1.0)) + 1.0;
return query.boost * idf;"

},
"script": {

"source": "double tf = Math.sqrt(doc.freq); double norm = 1/Math.sqrt(doc.length);
return weight * tf * norm;"

}
}

}
},
"mappings": {

"properties": {
"field": {

"type": "text",
"similarity": "scripted_tfidf"

}
}

}
}

In the above example, we can see that the type field is set as scripted.

7.4 Logs

7.4.1 Log4j2 Log

Elasticsearch applies a tool called Log4j2 for logging. We configured the logging setting in the
logging configuration file “log4j2.properties” and Elasticsearch configuration file “elasticsearch.yml”.
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7.4.2 Slowlog

In our project, we use a specific kind of logs called slowlog, which is designed to log slow searches
like queries into a dedicated log file. However, it can be configured to log all queries. We can use
the following command to configure the settings:

PUT /tobacco/_settings
{

"index.search.slowlog.threshold.query.warn": "0s",
"index.search.slowlog.threshold.query.info": "0s",
"index.search.slowlog.threshold.query.debug": "0s",
"index.search.slowlog.threshold.query.trace": "0s",
"index.search.slowlog.threshold.fetch.warn": "0s",
"index.search.slowlog.threshold.fetch.info": "0ms",
"index.search.slowlog.threshold.fetch.debug": "0ms",
"index.search.slowlog.threshold.fetch.trace": "0ms",
"index.search.slowlog.level": "info"

}

Levels, which include warn, info, debug, and trace, allow us to control under which logging level
the log will be logged.

The log file will contain the following fields.

• “timestamp”

• “cluster.name”

• “node.name”

• “cluster.uuid”

• “node.id”

• “message”

The message field contains all query information like: the term we are searching for, if the fields
are searchable, and so on.

7.4.3 User Log

A user is required to register before he or she is able to search in our front-end website. Therefore, it
enables us to collect user-orient information. The user log can be used for detecting and preventing
malicious behaviors or users, characterizing websites, and recommendation. We provide a designed
user log sample below. The fields with examples are followed by the datatype in the parenthesis.

• status:200 (Keyword)

• username:xxx (Keyword)

• email: xx@xx.xx (Keyword)
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• search query text (Text)

• filter (Keyword)

• sort by (Keyword)

• dataset (Keyword)

• time (Date)

• IP (IP)

Indices for these logs including system logs and user logs can be created continuously every
day, week, or month. It will depend on the number of users and amount of traffic flow that there
is for our website. We can decide how long we would like to keep these logs by index Lifecycle.
We are also able to merge several log indices into one, or split a log index into several indices if
necessary when the traffic changes rapidly. There are also several fields that are helpful, but we
may need more effort to collect them. Examples include:

• number of results retrieved (Numeric),

• time spent searching this query (Numeric),

• cookie (Keyword).

In addition, other features can also be taken into consideration. Another example is the ratio
of the numbers of clicks on an URL to the searching times. It can measure the quality of our
searching.

Lastly, the close index API could be used to close opened indices for old logs to save memory.

POST /tobacco/_close

7.5 Recommendation System

We will work with the clusterID values generated by the TML team to build the recommendation
system. When a user queries for Jeong-Ah in the “contributor-author” field for the tobacco index,
we would get the search result with the matching records. Then the Python script would take the
clusterID of the top hit search result and run another query to find the records with matching
clusterID and these results will be shown on the front-end as recommendations to the user. Figure
19 shows the Python script used to implement the recommendation system.
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Figure 19: Python script for recommendation system using clusterID

In Figure 20, you can see the results of this Python script, which includes the number of records
matching the query and its clusterID. The second query searches for the records with matching
clusterID 1 in this scenario and gives a result of 2 matching records.

Figure 20: Result of the executed Python script for recommendation system

7.6 Automatic Script

The ETD and tobacco settlement documents are in growing collections. There is a need to ingest
new documents created in the future into Elasticsearch. We could ingest these new documents
manually, but, in collaboration with the other teams, we can create a procedure to automatically
ingest new documents in the future. The CME and CMT teams will create and format these new
documents into the specified JSON format. They will move these files into a specific directory
where a script will be running in the background. This shell script watches for the addition of new
files in the directory and runs the ingesting script on these new files.
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7.7 Unit Testing

One of the goals of the project is to implement the requirements needed to practice Continuous
Integration and Continuous Deployment (CI/CD). In CI/CD, unit tests are run automatically to
test code that is pushed to a repository for the project. We have written a majority of our code in
Python. So, we have written our unit tests using the unittest Python framework to test our code.
These unit tests cover the methods used when ingesting the CME and CMT documents.
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8 Future Focus
After successfully building a working search engine for the two large document data sets, namely
tobacco settlement documents, and ETDs, we would continue to improve the performance of
Elasticsearch.

The first significant step forward is to increase the space limit for ingesting data in the future
so that we could continue to work on ingesting the rest of the documents into Elasticsearch.

Another task is to continue working with the TML team to improve the recommendations.
Additional TML data is not fully available, including text summaries, sentiment analysis, NER,
and clustering.

Furthermore, we need to extend support for user logs and recommendations that include user-
specific logs generated by the FEK team and index these logs once they are available on ceph.

Lastly, we can improve the potential text search use-case capability by further working on our
indexing formats while we continue to make Elasticsearch more robust to deliver faster responses.
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