CS5604, Information Retrieval, Fall 2016

Collection Management (Tweets) Final Presentation

Faiz Abidi

Mitch Wagner

Shuangfei Fan

December 1, 2016 Virginia Tech @ Blacksburg, VA Professor: Dr. Edward Fox

Additions regarding tweet updates

		Before	Now
MySQL to HDFS	Mode of transfer	Batch mode	Incremental update
HDFS to HBase		Batch mode	Incremental update

What features did we improve?

What was done before?	How did we improve it?
Limited amount of tweet parsing.	We are extracting a lot more fields now as per different teams' requirements.
Social network based on users as nodes, and links using mentions and re-tweets. Only one kind of node, with little emphasis on importance value.	Three kinds of nodes - users, tweets, and URLs. We are using the Twitter API to calculate an importance value for the users and the tweets, and taking the number of occurrences of a URL in a tweet collection as an indication of its importance within that collection.

Incremental Update From MySQL to HDFS

No. of tweets	Time	%CPU	Memory (MB)
155657	1 min 35 sec	29	19.7

			,
No. of tweets	Time	%CPU	Memory (MB)
155657	7.89 sec	57	169.9

Incremental Update from HDFS to HBase + Tweet Processing

Tweet Processing Pipeline

Running Time Test

Collection: 312 (Water Main Break)

Number of Tweets: 155657

Initial Read: ~ 2 minutes

Lemmatization: ~33 minutes

Cleaning Step: ~27 minutes

Total time: 1 hour

Asynchronous Updates

Two clean-tweet columns are better suited for asynchronous updates:

- URL Extraction (Twitter has best information on URLs in tweets, rate-limited)
- Google Geolocation (rate-limited)

Social Network

Build a social network based on the tweet collection

Credit: http://www.touchgraph.com

Objective

Rank the nodes for social network based recommendations

Credit: http://thenextweb.com/twitter/2014/05/09/twitter-updates-web-layout-third-column-content-recommendation/

Objective

Rank the nodes for social network based recommendations

Credit: http://thenextweb.com/twitter/2014/05/09/twitter-updates-web-layout-third-column-content-recommendation/

Objective

Popular people

Rank the nodes for social network based recommendations

Credit: http://thenextweb.com/twitter/2014/05/09/twitter-updates-web-layout-third-column-content-recommendation/

Pipeline

Work	Data Collection	Social Network Building	Importance Factor Calculation	Visualization
Details	Collect useful information from cleaned tweets in Hbase, download into .csv file	V: users, tweets, URLs; E: user-user, tweet- tweet, user-tweet, tweet-URL	Users: data from Twitter API; URLs: number of occurrences in tweets; Tweets: IF(user) + IF(URLs)	Use the node list and edge list to build the social network with NetworkX

Previous work

- The S16 team built a social network G(V, E) where:
- Nodes (V): Users
- Edges (E): Edges between users according to RTs and mentions (@)
- Importance factor (IP): For edges (count)

Nodes	Color
Users	Red
URLs	Blue
Tweets	Green

Edges	Sources	
User - User	Retweet (RT) , Mention (@)	
Tweet - Tweet	Retweet (RT)	
User - Tweet	If User posts the tweet	
Tweet - URL	If the tweet includes the URL	

Importance Factor

Nodes	Importance Factor (IF)	Methods
Users	#followers, #friends, #statuses, #favorites, #listed (Twitter API)	IF(user) = 0.25 * #followers + 0.25 * #friends + 0.15 * #statuses + 0.25 * #favorites + 0.1* #listed
URLS	Number of occurrences of the URL in the tweet collection	IF(URLs) = #occurrences of a given URL / total number of URLs in the collection
Tweets	Importance factor of the tweeter and importance factor of URLs in the tweet	IF(Tweet) = .70 * IF(Users) + .30 * IF(URLs)

Visualization

- Tools
 - Python (NetworkX)

- Statistics
 - Number of tweets: 300
 - Collection z_3
 - Twitter API imposes size constraints
 - (180 queries every 15 minutes)

- Nodes
 - \circ 300 tweet nodes
 - 158 user nodes
 - 110 URL nodes
- Edges
 - 73 user-user edges
 - 54 tweet-tweet edges
 - 300 user-tweet edges
 - 140 tweet-URL edges

Visualization

Green: tweets

Red: users

Blue: URLs

Visualization

Summary & Future Work

- We have delivered a robust ETL pipeline for moving tweets
- Can store and process thousands of tweets quickly
 - Flexible scripts accommodate large or small volumes of tweets
- In the future:
 - Do not remove comma, and double quotes from the text file of tweets
 - Develop asynchronous scripts to enhance tweets via API calls
 - Rigorous speed tests/processing pipeline optimization (including schema)
 - More extensive plan for handling profanity
 - Add hashtags to social network

Challenges Faced

- Incomplete documentation from the previous semester

 Schema
- Unfamiliarity with HBase, Pig, Twitter, Stanford NER
- Large, pre-existing system to understand
- Working in groups
 - Meeting time that works for all
 - Difficult to divide work based on our varying expertise
 - Dilemma to work together, or individually on parts of the project

As a Learning Experience

- Exposure to different technologies
 - HBase + Hadoop Framework
 - Pig
 - Stanford NLP
 - Regex
- Concepts:
 - Extract, Transform, Load (ETL) Pipeline
 - NoSQL databases
 - Text parsing
 - Communication & synchronization between teams

- Overall
 - Divide responsibilities
 - Work iteratively
 - Ask questions

Acknowledgement

- IDEAL: NSF IIS-1319578
- GETAR: NSF IIS-1619028
- Dr. Edward A. Fox
- GRA: Sunshin Lee

References

- 1. Percona, "Percona the database performance experts." https://www.percona.com/, 2016.
- 2. "csv2avro Convert CSV files to Avro ." https://github.com/sspinc/csv2avro, 2016.
- A. A. Hagberg, D. A. Schult, and P. J. Swart, "Exploring network structure, dynamics, and function using NetworkX," in Proceedings of the 7th Python in Science Conference (SciPy2008), (Pasadena, CA USA), pp. 11–15, Aug. 2008.
- 4. "CMT Team's Codebase on GitHub." https://github.com/mitchwagner/CMT, 2016.
- 5. "Touch Graph." http://www.touchgraph.com/news, 2016.
- N. Garun, "Twitter updates its Web layout with a third column for content recommendation." http://thenextweb.com/twitter/2014/05/09/ twitter-updates-web-layout-third-column-content-recommendation/, 2014.