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Abstract
In order to monitor the quality of parts in printing, the methodology to monitor the geometric quality of the printed parts in
fused deposition modeling process is researched. A non-contact measurement method based on machine vision technology is
adopted to obtain the precise complete geometric information. An image acquisition system is established to capture the image
of each layer of the part in building and image processing technology is used to obtain the geometric profile information. With
the above information, statistical process control method is applied to monitor the geometric quality of the parts during the
printing process. Firstly, a border signature method is applied to transform complex geometry into a simple distance-angle
function to get the profile deviation data. Secondly, monitoring of the profile deviation data based on profile monitoring
method is studied and applied to achieve the goal of layer-to-layer monitoring. In the research, quantile-quantile plot method
is used to transform the profile deviation point cloud data monitoring problem into a linear profile relationship monitoring
problem and EWMAcontrol charts are established tomonitor the parameters of the linear relationship to detect shifts occurred
in the Fused Deposition Modeling process. Finally, laboratory experiments are conducted to demonstrate the effectiveness of
the proposed approach.

Keywords Fused deposition modeling · Machine vision · Profile monitoring · Quality control · Statistical process control

Introduction

With the rise of technological innovation and the indus-
trial revolution, AdditiveManufacturing (AM, also called 3D
printing) technology has entered a period of rapid develop-
ment and becomes a symbol of the third industrial revolution.
In recent years, many countries around the world have put a
lot of effort to promote the development of the 3D printing
industry, and already made great breakthroughs in this field.
Additive Manufacturing, with the advantages of rapid pro-
totyping and free manufacturing, is the significant character
of 3D printing. This production mode will be an important
trend of global manufacturing transformation.

Fused depositionmodeling (FDM) is one of themain tech-
niques in additive manufacturing. It has been widely used
for its lower cost and better reliability. There are three steps

B Ketai He
heketai@ustb.edu.cn

1 School of Mechanical Engineering, University of Science and
Technology Beijing, Beijing, China

2 Department of Statistics, Virginia Tech, Blacksburg, VA, USA

in the production process. Firstly, three-dimensional design
software is used to create the theoretical model, which will
then be converted into anSTLfile, the standard document for-
mat for rapid prototyping. Secondly, one chooses appropriate
printing process parameters, such as layer thickness, extruder
diameter, base plate and extruder temperature, printing speed
and extrusion speed. Then three-dimensional model slicing
software is used to generate G-code, which can be under-
stood and executed by a 3D printing machine. Lastly, when
the temperature of the nozzle reaches the preset value, an
autonomous building will take place layer by layer with the
movement of the nozzle and work plate. From this point
of view, it can be found that the manufacturing quality of
the parts is affected by a variety of factors. Low and incon-
sistent geometric accuracy is a major issue of FDM. The
dimensional inaccuracy of FDM parts can be attributed to
model error and processing error sources. The model error
refers to the staircase effect that occurs in the process of slic-
ing. Processing error sources include material phase change,
extruder positioning error, and other variations (Wang et al.
2017a, b). Therefore, defect detection and quality control
of the fused deposition modeling process is necessary. Wu
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et al. (2016) used acoustic emission techniques tomonitor the
FDM process, and effectively identified the failure mode of
material breakage or depletion and extruder clogging. Yoon
et al. (2014) and He et al. (2017) developed a prognostics
and health management approach to the 3D printer health
monitoring, using acoustic emission sensor and piezoelec-
tric strain sensor. Wang et al. (2006) built a real-time remote
monitoring system for FDM. Fang et al. (1998) proposed
FDMprototype internal defect detectionmethod using image
processing technology. Many scholars have also studied the
optimization of process parameters, because layer thickness,
temperature, speed and other process parameters have a great
impact on the part quality (Garg et al. 2014; Thorsten et al.
2014; Mohamed et al. 2016; Sbriglia et al. 2016; Sood et al.
2011; Luo et al. 2016). Rao et al. (2015) used multi-sensor
to monitor the manufacturing process and studied the influ-
ence on the surface roughness of the parameters, such as
material extrusion speed, layer thickness, and extruder tem-
perature. Some researchers studied the method of reducing
the model error by adapting the layer thickness and optimiz-
ing the STL model (Pandey et al. 2003; Siraskar et al. 2015;
Zha and Anand 2015). Some scholars have also studied the
compensation of shape deviations. Tong et al. (2003); Tong
et al. (2008) propose a parametric error model, whichmodels
the repeatable errors of stereo lithography appearance (SLA)
machine and FDM machine with generic parametric error
functions. Huang and his research team have been dedicated
to developing a predictivemodel of geometric deviations that
can learn from the deviation information obtained from a cer-
tain number of tested product shapes (Huang et al. 2014a, b,
2015; Kusiak et al. 2008; Xu et al. 2013). Geometric accu-
racy is one of the most important indicators of FDM product
quality. However, there is lack of studies on monitoring geo-
metric error of the product in the FDM process.

Statistical process control (SPC) methods are widely used
to monitor quality characteristics of manufacturing pro-
cesses, which can quickly detect out-of-control conditions.
This paper presents an approach to monitoring the geometry
quality of FDM parts using SPC method. Traditional SPC
techniques are mainly applicable to the conditions where
the quality of the product is represented by key product
characteristics (KPCs) or a small number of sampling data.
However, 3D printing is generally used to build parts with
complex structure, so the KPCs of the products may lose
a lot of important information, which results in the inade-
quate fault detection capability. The choice ofKPCs ismainly
up to the limitation of measurement technologies years ago.
Nowadayswith the advancedmeasurement and sensing tech-
nology, it is no longer difficult to collect a huge number of
samples in real time.Machine vision has recently emerged as
a measuring technology that can rapidly provide such infor-
mation. Therefore, it is necessary to develop SPC methods
to handle these large data sets.

Profile-monitoring techniques transform point clouds into
linear profiles that can be monitored by well-established uni-
variate or multivariate control charts. Profile monitoring is
applied to the situation that quality characteristics are not
dependent on a single variable but functionally dependent
on two or more variables. At present, some scholars study
on profile monitoring techniques and apply it to the analy-
sis and optimization of the complex manufacturing process.
Kusiak et al. (2008) adopted parametric and non-parametric
models to monitor the turbine performance which was cap-
tured with a power curve constructed using historical wind
turbine data. Long et al. (2015) proposed a wind power curve
profile monitoring method based on multivariate and resid-
ual approaches to identify the turbines with weakened power
generation performance. Kang and Albin (2000) put forward
a quality control method of semiconductor manufacturing
process based on the linear relationship between pressure and
the rate of flow. Woodall et al. (2004) and Woodall (2007)
gave a broad review of current research on profile monitor-
ing and suggested that the monitoring of the linear profile
can be replaced by monitoring linear regression parameters
using univariate or multivariate control charts. The estimated
regression parameters include the slope, y-intercept and the
variance of the errors. He et al. (2017) used control charts in
Enhancing themonitoring of 3D scannedmanufactured parts
and achieved an ideal effect. Xiong et al. (2014) used a neu-
ral network to predict the geometry of rapid manufacturing
and got an ideal result. Woodall et al. (2004) also pointed out
that the research on monitoring product shapes using pro-
file control chart is valuable because the shape is usually an
important quality characteristic. Therefore, in this paper pro-
file monitoring technology is applied to detect the geometric
quality of FDM products basing on large image data.

In the following sections, a machine vision system is
provided to capture the entire product geometry informa-
tion during the fused deposition modeling process. A border
signature method is adopted to analyze the geometrical devi-
ation from nominal of the parts and to generate contour error
point cloud data. Afterwards, to take advantage of the huge
number of sample points, Quantile–Quantile (Q–Q) method
is used to transform the huge sample to a linear profile,
which can be monitored by well-established profile chart-
ing techniques. Then, two EWMA control charts are used
to monitor the quality of fused deposition modeling process.
Finally, laboratory experiments are conducted to demonstrate
the effectiveness and applicability of the proposed approach.

Geometric deviation of the fused deposition
modeling parts

The geometric feature of FDMparts is an important aspect of
quality evaluation. In current practice, the control of dimen-
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sional accuracy remains a major issue for application of
FDM in direct manufacturing. Different from subtractive
techniques that are used in traditional manufacturing pro-
cesses, FDM is a class of additive manufacturing technique
that forms part’s surface geometry layer by layer by joining of
materials. Therefore, in the manufacturing process, the geo-
metrical deviation of each layer could affect the whole part
quality. In this section, the geometrical deviation is inspected
by comparing the profile of manufactured parts with their
corresponding design (CAD) profile.

Profile detection using image processing technology

With the development of computer and sensing technology,
machine vision is widely used in non-contact measurement,
which makes it possible to collect a huge number of samples
intelligently and automatically during themanufacturingpro-
cess. In this paper, CCD camera is used to capture pictures
of each layer of the part, by which the measurement of the
profile will not be limited by its complex structure. The com-
position of the machine vision detection system is given in
Fig. 1, mainly including the hardware system and software
system. Accordingly, an image acquisition system is estab-
lished and shown in Fig. 2. In the first place, CCD camera
will transform the optical signal of the part on the work plate
into an analog current signal, which will then be converted
into digital image information by an image acquisition card.
After that, a computer is used to store the information and
obtain the profile data.
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Fig. 3 Illustration of the image processing process

The profile presents the geometric information of the
manufactured parts. To obtain the profile of each layer, the
following image processing stages are necessary, which are
illustrated in Fig. 3.

Stage 1 (image preprocessing) At this stage, preprocess-
ing techniques are used to obtain valid part images and
improve image quality, including image cropping, smooth-
ing, sharpening and enhancement techniques.

Stage 2 (image segmentation) Themainwork at this stage
is to identify the target image from the original image and
segment it from the background. Threshold segmentation
method is used to transform the grayscale into a binary image.
Threshold segmentationmethod is as follows. Assuming that
f (x, y) is a grayscale image after extracting the component
map, and T is selected as the gray threshold. The image after
segmentation is given by:

g(x, y) =
⎧
⎨

⎩

1, f (x, y) > T

0, f (x, y) ≤ T
(1)

Stage 3 (profile extraction) At this stage, a boundary tracking
technique is used to extract the part profile and to obtain
the position coordinates of each point of the profile, prior to
which the morphological operation and image filling steps
need to be done.

Geometry deviation analysis based on border
signature method

After given the two-dimensional profile consisting of pixels,
the entire geometry of each layer of themanufactured part can
be obtained. As mentioned earlier, to detect the part’s dimen-
sional deviation fromnominal, the comparison between these
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Fig. 4 Deviations from nominal analysis based on border signature
method. a The X–Y coordinate representation of boundary pixels of the
part. b The polar coordinate representation of boundary pixels of each
layer. c Geometry deviation representation under the d–θ coordinate

as-built profiles and their corresponding design (CAD) mod-
els should be made. Traditionally, the method of the fitting
parametric function is often used to characterize the profile
and calculate profile error. However, it is difficult and even
impossible to have an accurate function for a complex profile.
To deal with the problem, this paper proposes to transform
the profiles into a function about distance and angle using the
border signature method. This method is applicable to both
simple and complex shapes (Li et al. 2012). It analyzes the
deviation from nominal more conveniently and accurately.
Figure 4 shows the representationof geometrydeviation anal-
ysis based on the border signature method.

Since the relative position of printed layers is fixed, this
paper establishes a polar coordinate system with reference

to the first layer. As shown in Fig. 4a, the center point of the
first layer profile, O(X0,Y0), is selected as the origin, and
θ denotes the angle, ddenotes the radius, and z denotes the
layer height in the polar coordinate system. Then each of the
other layers is projected in this polar coordinate system. We
assume that Fig. 4b is the projection relationship between
layer 1 and layer i (i = 2,3,…), while the dashed represents
the ideal design profile. Therefore, at an angle θ (−180◦ <

θ < 180◦), the actual profile point on layer i (i = 1, 2,…) is
Pi (zi,di,θ), while the point on the ideal profile is P ′(zi,d ′, θ).
At this point, the geometric deviation of each layer of the part
can be characterized by the radius difference between the
corresponding points on the ideal profile and actual profile
at the same angle.

Calculating the angles and radius of every boundary pixel
of each layer, and taking the angle as the horizontal axis,
radius as the vertical axis, plotting them in plane Cartesian
coordinates. The illustration is shown in Fig. 4c. Thus, the
profile error of layer i at angle θ (−180◦ < θ < 180◦) can
be calculated by:

errori (θ) = d ′(θ) − di (θ) (2)

where d′(θ ) denotes radius of the ideal profile at an angle θ ,
and di (θ) denoting radius of the actual profile layer i at angle
θ .

Based on the analysis above, obtaining the profile error
point cloud data of each layer of the printed part, which can
be noted as:

errori = {errori (θ1), errori (θ2), . . . , errori (θ j ), . . . } (3)

where i denotes layer number, i=1,2,…, and −180◦ <

θ j ≤180◦.
Noted that the image information collected by machine

vision system is represented in units of pixels. To obtain the
physical size of the measured part, CCD dimension calibra-
tion needs to be conducted. To simplify the computation, one
needs to avoid the effects of translation, torsion, and lens dis-
tortion as much as possible. Then the pixel equivalent can be
given by a constant:

d = L

N
(mm pixel−1) (4)

where N is the total number of pixels corresponding to the
physical length L (mm).

Statistical process monitoring of FDM part
geometry quality

As mentioned earlier, it is impossible to express a complex
shape with an exact parameter model. Thereby a geome-
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try description method based on border signature is used to
detect the distribution of deviations from nominal, which is
a discrete function with angles and distances as variables.
However, such a distribution of deviations only provides the
information of a single layer rather thanmonitoring the layer-
to-layer variation, which is important for fused deposition
modeling process quality control. In this section, this paper
proposes to apply profile-monitoring techniques to the qual-
ity control of fused deposition modeling process.

Q–Qmethod for monitoring profile error point cloud
data

As can be learned from Eq. (3), a distribution of deviations
from nominal may consist of huge profile sample data. The
illustration of profile error point cloud data of one layer can
be shown in Fig. 5.

The profile points on each layer can be measured at a fast
rate by the machine vision system. To monitor the process
using such rich data, we’d better not use the summary statis-
tics of the sample, because the out-of-control data would be
averaged out and buried in the huge sample (Wang and Tsung
2005). To deal with such a problem, they proposed a Q–Q
method to transform this situation into a profile monitoring
problem, which played a good effect in a data-rich manu-
facturing environment (Wang and Tsung 2005; Wells et al.
2012).

Quantile–Quantile (Q–Q) plot is a graphical method to
check the goodness of fit. It provides a powerful method for
visualizing distributional data and helps practitioners check
whether the two sample sets come from the same population
(NIST/SEMATECH 2003), which is generated by plotting
the quantiles of the first data set against the quantiles of the
second data set.

If the second data set is fixed as the reference, the Q–Q
plot can compare the distributional differences betweenmany
data sets by one-by-one comparison with the reference. A
linear trend will be observed once the reference data set and
the compared dataset follow the same distribution (Wang and
Tsung 2005).

During a fused deposition modeling process, distribution
of deviations fromnominal of each layer is regarded as a sam-
ple data set.When themanufacturing process is only affected
by random factors, that is, the process is in a controlled state,
the distribution of each sample will be very similar. On the
other side, when a shift in the process occurs, the distribution
of out-of-control sample data will less resemble the refer-
ence in-control distribution (Wells et al. 2012). Therefore,
an in-control layer’s deviation distribution is set as the refer-
ence first. And then the following layers are compared to the
reference by drawing their Q–Q plot. Afterwards, the least-
squaresmethod is used to estimate the parameters of the fitted
line for each Q–Q plot, including slope k and y-intercept b
parameters.

Profile monitoring using control charts techniques

Process parameters (mean and variance) are the key to statis-
tical process control. The main goal of phase I is to obtain an
accurate estimation of the process parameters. One impor-
tant work is to check whether the historical sample data are
collected from the in-control process, and to remove the out-
of-control data. After that, the target value of the process
parameters is estimated from the in-control historical obser-
vations.

In this paper, linear profile monitoring based on Q–Q
method is applied in SPC of 3D printing process.

The targeted sample data here is the profile point error data
set (distribution of deviations from nominal) of the printed
layer i(i =1,2,…):

errori = {errori (θ1), errori (θ2), . . . , errori (θ j ), . . .}

It is assumed that an in-control layer profile point error data
set is:

error0 = {error0(θ1), error0(θ2), . . . , error0(θ j ), . . .}

which is fixed as the reference. Then the Q–Q plots are gen-
erated by plotting the quantiles of errori (i = 1,2,…) and
against the quantiles of error0.

Each of theQ–Qplots can be fittedwith a linear regression
model using least squares method, and parameters of the
linear profile include slope and y-intercept:

yi = bi + ki x, i = 1, 2, . . . (5)

where yi and x represent the i th layer observation and
the reference distribution respectively, and kiandbi are the
regression coefficients of the i th layer observation.

Suppose that there are n groups of historical sample data
available for process parameters estimation. Denote μk and
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Table 1 Summary of parameters of simulation

Cases μ σ w ARL0

Slope (k) 0.999 0.00226 2.849 200

y-intercept (b) 0.0000512 0.0317 2.886 200

μb as the mean value of slope k and y- intercept b, σkand σb
as the standard deviation value of slope k and y-intercept b,
respectively.

Then the process parameters can be easily calculated by

μk =
∑n

i=1 ki
n

, σk =

√
√
√
√
√

n∑

i=1
(ki -μk)2

n

μb =

n∑

i=1
bi

n
, σb =

√
√
√
√
√

n∑

i=1
(bi -μb)2

n
(6)

Fig. 6 Out-of-control ARL for:
a global mean shift, b global
variance shift, c localized mean
shift, d localized variance shift
introduced in the simulation
process
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Fig. 7 The printed models,
where model 1, 2 are nominal
parts with different shapes, and
model 3, 4, 5 are defective parts
with different types of variation

model 1       model 2        model 3         model 4        model 5 

Table 2 Basic parameters of the
printed models

Cases Model 1 Model 2 Model 3 Model 4 Model 5

Radius (side length) (mm) 10 20 20 10 20

Height (mm) 20 20 20 20 20

Layer thickness (mm) 0.2 0.2 0.2 0.2 0.2

Total layers 100 100 100 100 100

Defect type – – Shift-variation Step-variation Trend-variation

Defect layers – – 61th–100th 61th–70th 61th–100th
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Table 3 Basic experimental parameters

Printing
parameters

Extruder temperature (◦C) 220

Work plate temperature (◦C) 105

Printing speed (mm/s) 60

Layer thickness (mm) 0.2

Profile scanning
parameters

CCD resolution (pixel) 1280×960

Sampling interval (s) 3

The main job in phase II is designing control chart and
monitoring the modeling process state. When an out-of-
control alarm occurs, practitioners need to check and adjust
the process promptly.

The EWMAcontrol chart waswell used in detecting small
shift of the monitoring process. In addition, the EWMA
statistic removes the uncontrol-label noise based on com-
bining information from all previous observations through
a smoothing parameter. Kim et al. (2003) proposed EWMA
control chart methods for linear profile process monitoring.
The validity of the EWMA method was verified by Wang
et al. (2017a) and Wells et al. (2012).

In this paper, two EWMA control charts are used to moni-
tor the parameters of the linear profile (slope k and y-intercept
b). The recursive relations and control limits are given by

{
Ek(i) = λki + (1 − λ)Ek(i − 1)

CLk = μk ± wσk

√
λ
1-λ

(7)

{
Eb(i) = λbi + (1 − λ)Eb(i − 1)

CLb = μb ± wσb

√
λ
1-λ

(8)

whereEk(i)andEb(0)are the EWMA statistics for the i th
observation tailored to slope k, y-intercept b, respectively;
CLK andCLbare the control limits of the twoEWMAcontrol
charts; λis the smoothing parameter of EWMA control chart,

Fig. 9 Geometric shape and its representation based on border signa-
ture, for: a the ideal profile, b the actual as-built profile
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Fig. 10 Visualization of the profile error curve at the range of [−180◦,
180◦]
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Fig. 11 The Q–Q plot and its fitting, where (a), (c), (e) are the linear models of non-defective layers and (b), (d), (f) are the linear models of
defective layers

and wis the design parameter of the control chart. What’s
more, Ek(0) is taken as μk , and Eb(0) is taken as μb.

Experimental studies

The effectiveness of the approach for monitoring the Q–Q
plot has been verified by Wells et al. (2012), using Monte
Carlo simulations. In that simulation, 10,000 in-control
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Fig. 12 The linear models from
the three in-control layers and
one of each of the defective
models

e 
c 

b 
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a 

Table 4 Process parameters of the slope (ki ) and y-intercept (bi )

Cases Model 1 Model 2 Model 3 Model 4 Model 5
ki bi ki bi ki bi ki bi ki bi

μ 0.9611 − 0.0051 0.9229 0.3177 0.9904 0.0867 0.9114 − 0.0293 0.9183 − 0.2630

σ 0.0787 0.0946 0.1004 0.2824 0.1181 0.4317 0.0748 0.2919 0.0983 0.3359

Table 5 Control limits of the slope (ki ) and y-intercept (bi )

Cases Model 1 Model 2 Model 3 Model 4 Model 5
ki bi ki bi ki bi ki bi ki bi

UCL 1.0397 0.0895 1.0233 0.6001 1.1085 0.5184 0.9862 0.2625 1.0166 0.0729

LCL 0.8824 − 0.0996 0.8225 0.0353 0.8723 − 0.3450 0.8366 − 0.3212 0.8201 − 0.5989

observations (parts geometrical deviations from nominal)
were simulated and each observation includes 1000 sam-
pling points that independently follow the standard normal
distribution. Process parameters and the control charts design
parameters under ARL=200 are shown in Table 1.

Afterwards, global and localized shifts were introduced
to the mean and variance of the process respectively. For
that situation, the sampling points would be followed the
distribution N (δμ, (1 + δσ )2). The out-of-control ARLs of
each case were shown in Fig. 6, from which we can see the
detecting performance of this method.

In this section, the proposed method was applied to
monitor practical fused deposition modeling process and
to detect the geometrical deformations of the manufactured
parts. In the course of this experiment, two normal parts
with different shape and three defective parts with differ-
ent detection mode were printed to emulate the in-control
and out-of-control states of fused deposition modeling pro-
cess, as shown in Fig. 7. The deformation modes include
shift-variation, step-variation, and trend-variation, which are
the typical defects of fused deposition modeling parts. The
basic parameters of the printed 3D models are shown in
Table 2.

In this paper, these models were printed by a Flash Cast
Creator 3D printer. During the fused deposition modeling
process, image data of as-built part was collected by a version
MVC13000F-M00CCD image sensor, whichwas connected

with a computer system. Table 3 shows the basic experimen-
tal parameters.

Afterwards, image processing technologies were used to
obtain the geometric features of each layer of the part. MAT-
LAB software was used to calculate the layer’s deviations
from nominal based on border signature method. Details are
provided in Fig. 8.

Theoretically, each model will be sliced into 100 layers
so 100 observations can be obtained. Taking one layer of
model 1 as example, the border signature result is shown in
Fig. 9, and the profile error curve is given in Fig. 10 after
calculating the error between theoretical and practical values
at each angle θ .

As is shown inFig. 9, the center of the geometricfigurewas
selected as the origin, represented by a red dot. The horizontal
axis represents angle values,while the vertical axis represents
distance. Pixel equivalent is about 0.13mm pixel−1 in this
experiment. It can be seen from Fig. 10 that, in the case
of normal printing, the contour random error is within the
normal range of [−0.5, 0.5mm]. During the printing process,
the phase change of the material and the accuracy of the
machine are the main causes of errors. Note that, ideally the
smaller sampling angle interval is, themore accurately profile
information can be represented. In the study, the sampling
angle interval was set to 1◦. In other applications, the position
of sampling points can be different depending on the desired
minimum fault size to be detected.
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Fig. 13 EWMA control charts
in phase II for: a the slope of
model 1. b y-intercept of model
1. c the slope of model 2. d
y-intercept of model 2. e the
slope of model 3. f y-intercept
of model 3. g the slope of model
4. h y-intercept of model 4. i the
slope of model 5. j y-intercept
of model 5
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In this study, what need to be inspected and monitored
are the data sets (distributions of deviations from nominal)
that obtained from previous steps. For each of the models,
one of the nominal layers’ sample data was selected as the
reference at first. Afterwards, the linear profile model was
obtained by creating Q–Q plots of each of the remaining lay-
ers’ deviation data versus the reference data. Figure 11 shows
several Q–Q plots and their corresponding linear regression
model, where the lines (a), (c), (e) are the linear models of
the non-defective layer and (b), (d), (f) are the linear models
of defective layers. Furthermore, Fig. 12 shows these linear
models from the three in-control layers and one of each of
the defective models. It can be seen that the linear model of
the defective layers has obviously changed.

Multivariate EWMA control charts are used to monitor
the parameters (slope and y-intercept) of the linear model,
so as to monitor the quality of the products during FDM pro-
cess. In this experiment, 40 of normal layers were chosen
at random as the historical observations. In phase I analysis,
Shewhart-type I-MR control chart is used to check whether
the historical observations are in control. Then the process
parameters (mean and standard deviation) of each of pro-
file monitoring parameters (the slope and y-intercept) are
evaluated using Eq. (6). The process parameters are given in
Table 4.

After given the target value of process parameters, the
important work in phase II is to monitor the variations
using control chart techniques. In this paper, two individual
EWMA control charts are established to monitor the slope
and y-intercept, respectively. Control limits and monitoring
statistics are calculated according to Eqs. (7) and (8). The
control limits of each chart are given in Table 5. Figure 13
shows the EWMA control charts in phase II.

Figure 13a–d show the control charts for normal cylin-
drical model 1 and normal polygon model 2, respectively.
From the figures it can be seen that several observations of
both the slope and y-intercept are out of control, which can
be attributed to the warpage deformation caused by uneven
work plate and heat conduction at the beginning of the man-
ufacturing process. However, other observation values of the
nominal parts are within control limits. Figure 13e–j show
the control charts for defective models 3, 4 and 5, respec-
tively. The figures show that at least one of the control charts
can successfully detect the out-of-control condition.

Conclusions

The methodology of analysis of geometric manufacturing
errors and quality control in the process of FDM is researched
in this paper. The result shows that the machine vision based
non-contact measure method can overcome the shortcom-
ings of traditional measure methods like CMM that can only

get the key quality features and can only measure after the
manufacturing process is finished. In this way, the com-
plete geometry information of manufacturing process can be
obtained in time. In the profile based statistical quality con-
trol every layer is monitored so the whole process of FDM is
under control. In this paper five models are designed. Three
are designed separately with defects of dislocation, staircase
and gradual change. The other two are normal parts with dif-
ferent shapes. The experiments show thatwith themethod the
abnormities can be found effectively. When defect occurs, it
can be located in the part body and the corresponding error
information can be obtained in time.

Acknowledgements The work by Hong was supported in part by the
United States National Science Foundation Grant CMMI-1634867 to
Virginia Tech.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Fang, T., Jafari, M. A., Bakhadyrov, I., Safari, A., Danforth, S., &
Langrana, N. (1998). Online defect detection in layered manu-
facturing using process signature. International Conference on
Systems, Man, and Cybernetics. https://doi.org/10.1109/ICSMC.
1998.727536.

Garg, A., Tai, K., Lee, C. H., & Savalani, M. M. (2014). A hybrid
M5’-genetic programming approach for ensuring greater trustwor-
thiness of prediction ability in modelling of FDM process. Journal
of Intelligent Manufacturing, 25(6), 1349–1365.

He, K. T., Zhang, M., Zuo, L., Alhwiti, T., & Megahed, F. M. (2017).
Enhancing the monitoring of 3D scanned manufactured parts
through projections and spatiotemporal control charts. Journal of
Intelligent Manufacturing, 28(4), 899–911.

Huang, Q., Nouri, H., Xu, K., Chen, Y., Sosina, S., & Dasgupta, T.
(2014a). Predictivemodelingof geometric deviations of 3Dprinted
products–a unified modeling approach for cylindrical and poly-
gon shapes. International Conference on Automation Science and
Engineering. https://doi.org/10.1109/CoASE.2014.6899299.

Huang, Q., Nouri, H., Xu, K., Chen, Y., Sosina, S., & Dasgupta, T.
(2014b). Statistical predictive modeling and compensation of geo-
metric deviations of three-dimensional printed products. Journal of
Manufacturing Science and Engineering. https://doi.org/10.1115/
1.4028510.

Huang, Q., Zhang, J., Sabbaghi, A., & Dasgupta, T. (2015). Optimal
offline compensation of shape shrinkage for three-dimensional
printing processes. IIE Transactions. https://doi.org/10.1080/
0740817X.2014.955599.

Kang, L., & Albin, S. L. (2000). On-line monitoring when the process
yields a linear profile. Journal of Quality Technology, 32(4), 418–
426.

Kim,K.,Mahmoud,M.A.,&Woodall,W.H. (2003).On themonitoring
of linear profiles. Journal of Quality Technology, 35(3), 317–325.

Kusiak, A., Zheng, H. Y., & Song, Z. (2008). On-line monitoring of
power curves. Renewable Energy, 34(6), 1487–1493.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICSMC.1998.727536
https://doi.org/10.1109/ICSMC.1998.727536
https://doi.org/10.1109/CoASE.2014.6899299
https://doi.org/10.1115/1.4028510
https://doi.org/10.1115/1.4028510
https://doi.org/10.1080/0740817X.2014.955599
https://doi.org/10.1080/0740817X.2014.955599


958 Journal of Intelligent Manufacturing (2019) 30:947–958

Li, J., Wei, Y., Meng, L., Liu, W., Wang, S., & Zheng, K. (2012). Target
shape description method and application using border signature.
Journal of University of Jinan, 2012(3), 276–281.

Long, H., Wang, L., Zhang, Z., Song, Z., & Xu, J. (2015). Data-Driven
wind turbine power generation performance monitoring. IEEE
Transactions on Industrial Electronics, 62(10), 6627–6635.

Luo, X., Zhang, D., Yang, L. T., Liu, J., Chang, X., & Ning, H. (2016).
A kernel machine-based secure data sensing and fusion scheme in
wireless sensor networks for the cyber-physical systems. Future
Generation Computer Systems. https://doi.org/10.1016/j.future.
2015.10.022.

Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2016). Mathe-
maticalmodeling and FDMprocess parameters optimization using
response surfacemethodology based onQ-optimal design.Applied
Mathematical Modelling. https://doi.org/10.1016/j.apm.2016.06.
055.

NIST/SEMATECH. (2003). e-Handbook of statistical methods. http://
www.itl.nist.gov/div898/handbook/.

Pandey, P.M., Reddy,N.V.,&Dhande, S. G. (2003). Real-time adaptive
slicing for fused deposition modeling. International Journal of
Machine Tools and Manufacture, 43(1), 61–71.

Rao, P. K., Liu, J. P., Roberson, D., Kong, Z. J., & Williams, C. (2015).
Online real-time qualitymonitoring in additivemanufacturing pro-
cesses using heterogeneous sensors. Journal of Manufacturing
Science and Engineering doi, 10(1115/1), 4029823.

Sbriglia, L. R., Baker, A.M., Thompson, J. M.,Morgan, R. V.,Wachtor,
A. J.,&Bernardin, J.D. (2016). Embedding sensors inFDMplastic
parts during additive manufacturing. Topics in Modal Analysis &
Testing, 10, 205–214. https://doi.org/10.1007/978-3-319-30249-
2_17.

Siraskar, N., Paul, R., & Anand, S. (2015). Adaptive slicing in addi-
tive manufacturing process using a modified boundary octree data
structure. Journal of Manufacturing Science and Engineering.
https://doi.org/10.1115/1.4028579.

Sood, A. K., Chaturvedi, V., Datta, S., &Mahapatra, S. S. (2011). Opti-
mization of process parameters in fused depositionmodeling using
weightedprincipal component analysis. Journal ofAdvancedMan-
ufacturing Systems, 10(2), 241–259.

Tong, K., Amine, Lehtihet E., & Joshi, S. (2003). Parametric error mod-
eling and software error compensation for rapid prototyping.Rapid
Prototyping Journal, 9(5), 301–313.

Tong, K., Joshi, S., & Amine, Lehtihet E. (2008). Error compensation
for fused deposition modeling (FDM) machine by correcting slice
files. Rapid Prototyping Journal, 14(1), 4–14.

Wang, A., Song, S., Huang, Q., & Tsung, F. (2017a). In-plane
shape-deviation modeling and compensation for fused deposition
modeling processes. IEEE Transactions on Automation Science
and Engineering, 14(2), 968–976.

Wang, K., & Tsung, F. (2005). Using profile monitoring techniques
for a data-rich environment with huge sample size. Quality and
Reliability Engineering International, 21(7), 677–688.

Wang, Q., Ren, N., & Chen, X. (2006). Java 3D-based remote mon-
itoring system for FDM rapid prototype machine. Computer
Integrated Manufacturing Systems, 12(5), 737–741.

Wang, L., Zhang, Z., Long, H., Xu, J., & Liu, R. (2017b). Wind turbine
gearbox failure identification with deep neural networks. IEEE
Transactions on Industrial Informatics, 13(3), 1360–1368.

Wells, L. J.,Megahed, F.M., Niziolek, C. B., Camelio, J. A.,&Woodall,
W. H. (2012). Statistical process monitoring approach for high-
density point clouds. Journal of Intelligent Manufacturing, 24(6),
1267–1279.

Woodall, W. H. (2007). Current research on profile monitoring. Pro-
duction, 17(3), 420–425.

Woodall,W.H., Spitzner, D. J.,Montgomery, D. C., &Gupta, S. (2004).
Using control charts to monitor process and product quality pro-
files. Journal of Quality Technology, 36(3), 309–320.

Wu, H., Wang, Y., & Yu, Z. (2016). In situ monitoring of FDM
machine condition via acoustic emission. International Journal
of Advanced Manufacturing Technology, 84(5–8), 1483–1495.

Thorsten, W., Christopher, I., & Klaus-Dieter, T. (2014). An approach
to monitoring quality in manufacturing using supervised machine
learning on product state data. Journal of Intelligent Manufactur-
ing, 25(5), 1167–1180.

Xiong, J., Zhang, G. J., Hu, J. W., & Wu, L. (2014). Bead geometry
prediction for robotic GMAW-based rapid manufacturing through
a neural network and a second-order regression analysis. Journal
of Intelligent Manufacturing, 25(1), 157–163.

Xu,L.,Huang,Q., Sabbaghi,A.,&Dasgupta,T. (2013). Shapedeviation
modeling for dimensional quality control in additive manufac-
turing. In ASME 2013 International Mechanical Engineering
Congress and Exposition. https://doi.org/10.1115/IMECE2013-
66329

Yoon, J., He, D., & Van Hecke, B. (2014). A PHM approach to additive
manufacturing equipment health monitoring, fault diagnosis, and
quality control. In PHM 2014—Proceedings of the annual confer-
ence of the Prognostics and Health Management Society 2014

Zha, W., & Anand, S. (2015). Geometric approaches to input file mod-
ification for part quality improvement in additive manufacturing.
Journal of Manufacturing Processes, 20(s1), 465–477.

123

https://doi.org/10.1016/j.future.2015.10.022
https://doi.org/10.1016/j.future.2015.10.022
https://doi.org/10.1016/j.apm.2016.06.055
https://doi.org/10.1016/j.apm.2016.06.055
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
https://doi.org/10.1007/978-3-319-30249-2_17
https://doi.org/10.1007/978-3-319-30249-2_17
https://doi.org/10.1115/1.4028579
https://doi.org/10.1115/IMECE2013-66329
https://doi.org/10.1115/IMECE2013-66329

	Profile monitoring based quality control method for fused deposition modeling process
	Abstract
	Introduction
	Geometric deviation of the fused deposition modeling parts
	Profile detection using image processing technology
	Geometry deviation analysis based on border signature method

	Statistical process monitoring of FDM part geometry quality
	Q–Q method for monitoring profile error point cloud data
	Profile monitoring using control charts techniques

	Experimental studies
	Conclusions
	Acknowledgements
	References




