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COLLECTION, ANALYSIS, AND UTILIZATION OF BIOGAS GENERATED 

BY THE ANAEROBIC TREATMENT OF CRAB PROCESSING WASTEWATER 

by 

Jeffrey Smith Rodenhizer 

Dr. Gregory D. Boardman, Chairman 

(ABSTRACT) 

Energy recovery from the anaerobic treatment of crab processing wastewater was 

investigated. Biogas from two laboratory-scale, upflow anaerobic filters (Systems A and 

B) was collected and analyzed to determine percent by volume composition of methane 

(CH,), carbon dioxide (CO,), and hydrogen sulfide (H,S). Biogas produced by System 

A (upflow anaerobic bed filter) produced biogas averaging 68, 28, and 1.5 % CH,, CO,, 

and HS, respectively. System A average gas production ranged from 6.3 to 15.8 liters 

per day (L/d) (6.6 to 10.0 L gas/L feed) for COD reductions ranging from 11,000 to 

27,000 milligrams per day (mg/d) and COD loadings ranging from 16,700 to 43,600 mg/d. 

System B (upflow anaerobic packed filter) produced biogas averaging 68, 28, and 1.4 % 

CH,, CO,, and H,S, respectively. System B average gas production ranged from 7.5 to 

19.5 L/d (7.1 to 11.9 L gas/L feed) for COD reductions ranging from 11,700 to 28,700 

mg/d and COD loadings ranging from 16,100 to 48,500 mg/d. 

A pilot-scale biogas collection system was constructed to collect, treat (remove 

H,S), store, and utilize the biogas produced by an anaerobic/aerobic crab processing 

wastewater treatment system treating between 15 and 30 gallons per day (gpd). Biogas



was produced by a 190 gallon upflow anaerobic bed filter and a 190 gallon anaerobic 

clarifier operated in series. Preliminary results indicated biogas production rates 

comparable to maximum average gas production rates of the laboratory-scale systems at 

approximately 10 L gas/L feed. Biogas was stored in a 120 gallon tank at up to 12 

pounds per square inch (psi) following removal of hydrogen sulfide. Biogas was then 

burned in a modified natural gas hot water heater to produce heated water for maintaining 

the anaerobic reactors at 35°C.
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CHAPTER L INTRODUCTION 

Concern over regulations limiting discharge levels for biochemical oxygen demand 

(BOD), total suspended solids (TSS), and ammonia (NH,/NH, -N) has stimulated interest 

among many small seafood processors in developing economical, efficient, and low 

maintenance wastewater treatment systems. High rate anaerobic treatment was selected 

for study due to its ability to reduce high levels of BOD typically found in seafood 

processing wastewater, while requiring a relatively small reactor size when compared to 

typical aerobic treatment systems. The decision to use anaerobic treatment also provided 

an opportunity for energy recovery in the form of methane. For example, a crab 

processor might use the methane to offset or eliminate current energy requirements for 

boilers, automated crab cleaning equipment, lighting, heating, etc. 

The crab processing wastewater treated in this study was generated by the 

steaming of live blue crabs (Callinectes sapidus). Crab processing begins as live blue 

crabs are received at a crab processing facility by boat or truck. The crabs are first 

passed through a reel washer to remove sand, dirt, and other materials from the body of 

the crab. The crabs exit the reel washer and are immediately collected in large perforated 

metal baskets. Three baskets, containing approximately 1,200 pounds (Ibs) of live crabs, 

are then stacked in a retort. The crabs are then steamed at 15 pounds per square inch 

gauge (psig) and 120°C for 10 to 15 minutes. Approximately 50 gallons of crab 

processing wastewater, with a chemical oxygen demand (COD) from 9,300 to 33,700 

milligrams per liter (mg/L), is generated per 1,200 lbs of live crabs (Diz and Boardman,



1994). The typical crab processor performs 6 to 20 cooking cycles per day, which yield 

400 to 1,000 gallons of crab cooker wastewater (Boardman et al., 1993). 

The generation of energy, while degrading the vast quantities of organic waste 

material generated in today's society, make anaerobic treatment very promising as not 

only a means of organic waste stabilization, but also as an alternative energy source. The 

stabilization of organic materials in an anaerobic environment and the subsequent use of 

the methane by product is by no means a recent development. Anaerobic treatment dates 

back as far as 100 years. Cameron of Exeter, England constructed a tank he called a 

"septic tank" which provided preliminary treatment for approximately 60,000 gallons of 

wastewater per day. The methane gas produced was used for heating and lighting at the 

treatment facility (McCarty, 1982e). One hundred years later, anaerobic treatment for the 

sole purpose of producing methane, is still not economically feasible with existing prices 

for fossil based fuels (Frank and Smith, 1993b). This includes the operation of "energy 

farms" dedicated to growing biomass feedstocks such as Sorghum, Pennisetum, and 

Succharum species for anaerobic methane production (Frank and Smith, 1993a). Biogas 

production may, however, be economical when it is a by-product of another process, such 

as waste treatment (Frank and Smith, 1993b). Modern day wastewater treatment plants 

often collect and utilize the biogas produced by the anaerobic digestion of sludge. 

This study focused on collection, analysis, treatment, storage, and utilization of 

biogas generated by the anaerobic treatment crab cooking waters. Thus, this research was 

divided into two overlapping phases. Phase I consisted of the collection and 

characterization of biogas derived from the laboratory-scale, anaerobic treatment of crab



processing wastewater. The primary goal of Phase I was to determine the relative 

composition of the biogas in terms of percent by volume CH,, CO,, and H,S, as well as 

the volume of biogas generated. Phase II consisted of constructing a pilot-scale biogas 

collection, treatment, storage, and utilization system linked to an anaerobic biological 

treatment system treating crab processing wastewater. The goal of Phase II was to 

determine if a biogas system could be constructed and operated so as to be economical 

and practicable for the crab industry.



CHAPTER I. LITERATURE REVIEW 

Anaerobic Treatment 

Anaerobic treatment is a biological process whereby complex organic compounds 

are broken down into simple molecular components followed by the subsequent 

production of methane and carbon dioxide. Anaerobic treatment involves a very complex 

ecosystem made up of a variety of anaerobic microorganisms. (Figure 1) 

The first stage of the anaerobic treatment process involves the hydrolysis of 

complex organic compounds (i.e. carbohydrates, proteins, lipids) into simple organic 

compounds (i.e. sugars, amino acids, fatty acids). Fermentative bacteria are responsible 

for this stage. The fermentative bacteria produce enzymes capable of hydrolyzing 

complex organic materials and producing simple materials which can be further 

assimilated by the bacterial cells (Novaes, 1986). 

The second stage involves the conversion of these simple materials to hydrogen 

(H,), carbon dioxide (CO,), acetate, and longer chain fatty acids by the anaerobic bacteria 

called acidogens. In the third stage, the long chain fatty acids are converted into acetate, 

H,, and CO, by the acetogens, also referred to as H,-producing or proton (H’) reducing 

acetogenic bacteria. Homoacetogenic bacteria, a special group of acetogenic bacteria, 

convert a portion of the H, and CO, to acetate (Novaes, 1986). 

In the final stage, the substrates produced in the second and third stages are 

consumed by the methanogenic bacteria. Carbon dioxide is reduced to CH, by the CO,
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Figure 1. Stages of anaerobic treatment and gas production (Anderson, 1982).



reducing methanogenic bacteria. Acetate is decarboxylated to CH, and CO, by the 

acetoclastic methanogenic bacteria. 

Methane Production Pathways 

CO, reducing methanogens. Most methanogens are capable of utilizing H, to 

reduce CO, to CH, as follows (Thauer et al., 1993): 

4H,+CO, —- CH,+ 2H,0 [1] 

Of the five orders of methanogenic bacteria in the proposed taxonomy, four 

consist mainly of species that can utilize H, and CO,. The hydrogen and carbon dioxide 

are generally produced by other anaerobic bacteria such as the acidogens and acetogens, 

with the hydrogen being quickly consumed by the methanogens. Hydrogen is typically 

the electron donor for the reduction of CO, to CH, as shown in reaction [1]. However, 

formate can also be used as an electron donor for CO, reduction. (Boone et a/., 1993) 

Acetoclastic methanogens. The other main route of methane production is acetate 

degradation by acetoclastic methanogens. Acetate is cleaved, with the carboxyl group 

being oxidized to CO, and the methyl group being reduced to methane. Acetoclastic 

methanogenesis can be represented as follows (Karhadkar ef al., 1987): 

CH,COOH — CH, + CO, [2] 

Methylotrophic methanogens. Methylotrophic methanogens are a broader group 

of methanogens, including those that decarboxylate acetate, that produce methane from 

compounds containing methyl groups. The methyl groups from compounds such as 

methanol, trimethylamine, and dimethyl sulfide are reduced to methane. Hydrogen is 

often the electron donor for this reaction. (Keltjens and Vogels, 1993)



Mesophilic vs. Thermophilic Treatment 

Anaerobic treatment is typically divided into two temperature regimes: mesophilic 

and thermophilic. The mesophilic range is generally considered from 85 to 100°F, or 

approximately 30 to 40°C. The thermophilic range is generally considered from 120 to 

135°F, or approximately 50 to 60°C. (McCarty, 1964b) The higher temperatures of the 

thermophilic range allow for higher loading rates than the mesophilic temperatures and 

generally result in increased organic stabilization for similar loadings and retention times 

(Harmon e¢ a/., 1993; Chynoweth and Isaacson, 1987). Disadvantages of operating in the 

thermophilic range include a narrower optimum temperature range, as well as the 

additional energy required for maintaining high system temperatures (Chynoweth and 

Isaacson, 1987). 

Advantages and Disadvantages of Anaerobic Treatment 

Anaerobic treatment offers several advantages over conventional aerobic treatment. 

Sludge production is significantly reduced due to the lower cell yield inherent under 

anaerobic conditions (McCarty, 1964a; Parkin and Speece, 1983; Anderson ef al., 1977). 

Higher cell growth in aerobic systems represents a transfer of organic waste material to 

cellular material without stabilization. However, anaerobic systems transfer a large 

portion of the waste material to methane gas. This results in 80 to 90 % stabilization 

rates for anaerobic systems compared to approximately 50 % for aerobic systems 

(McCarty, 1964a). Lower cell yield also translates into lower nutrient requirements for 

anaerobic treatment systems (McCarty, 1964a; Parkin and Speece, 1983). Another 

advantage of anaerobic treatment is the absence of a need for energy for oxygen transfer.



In addition, anaerobic treatment produces energy in the form of methane gas (McCarty, 

1964a; Parkin and Speece, 1983). Anaerobic treatment systems are capable of 

maintaining a viable cell population even after prolonged periods of zero loading, while 

aerobic systems will typically require reseeding (McCarty, 1964a; Anderson et al.,1982). 

Two main disadvantages are associated with anaerobic treatment. One 

disadvantage is the relatively slow growth rate of methanogens. The slow cell growth 

results in longer start-up times (when seed sludge is not available), susceptibility of 

systems to upsets caused by shock loadings and toxicants, and fluctuations in temperature. 

This disadvantage can be overcome in many situations by careful control of bacterial 

solids retention time (Parkin and Speece, 1983). Another disadvantage of anaerobic 

treatment is the requirement for maintaining relatively high temperatures necessary for 

efficient system operation (McCarty, 1964a). 

Conversion of waste organic matter to a source of energy (i.e. biogas) is perhaps 

the most attractive of the advantages associated with anaerobic treatment. Biogas is a 

mixture of CH, and CO,, with small amounts of H,S (Stafford, 1980). The CH, content 

ranges from 50 to 80 % by volume (Camargo, 1986; Wise, 1981; Stafford ef al., 1980; 

Rohlich et al., 1977; Auerbach, 1973; Gunnerson and Stuckey, 1986; Orth, 1982). The 

remainder of the biogas is primarily CO,. Hydrogen sulfide also may be present in 

amounts ranging from 0.1 to 5 % or higher (Soto and Lema, 1991; Wheatly, 1980). 

Biogas will produce a stable blue flame and can be burned in most gas burning 

appliances (i.e. generators, boilers, hot water heaters, internal combustion engines) with 

little or no modification (Rohlich et al, 1977; Auerbach, 1973; Fredericks and Boll,



1980). The CH, content of the biogas is the sole contributor of calorific value (i.e. 

heating value). 

A mixture of 60 % CH, and 40 % CO, has a calorific value of approximately 600 

British thermal units per cubic foot (Btu/ft*) at 25°C and atmospheric pressure, as 

compared to 978 Btu/ft’ for pure CH,. Natural gas is comprised of 97-98 % CH, with 

propane and butane as the balance; resulting in a calorific value of approximately 1,000 

Btu/ft? (Dehart, 1995). Upon combustion, H,S can form sulfur dioxide and sulfur 

trioxide, which can then react with moisture to form sulfuric acid resulting in damage to 

burner assemblies or engine parts. If the gas is used in engines, removal of H.S has been 

suggested when concentrations exceed from 0.25 to 0.7 % to prevent corrosion (Rohlich 

et al., 1977). Some suggest concentrations of not more than 1 % are acceptable (Dohne, 

1980). Specific manufacturers generally set limits for H,S. Removal of H,S may be 

advisable regardless of the way the gas is used because of its extremely toxic nature 

(Dohne, 1980). Removal of CO, will increase the heating value per unit volume of the 

gas. However, economics of CO, removal must be considered on a case by case basis. 

Carbon dioxide removal is generally only required when the gas is intended for use in a 

public supply system (Dohne, 1980). 

Gas Scrubbing 

Caustic Scrubbing 

Caustic scrubbing can be used to accomplish removal of both CO, and H,S from



biogas. Sodium hydroxide (NaOH), potassium hydroxide (KOH), and calcium hydroxide 

(Ca(OH),) are commonly used for this purpose. Carbon dioxide is removed in carbonate 

forming reactions as follows: 

2NaOH + CO, — NaCO, + H,O [3] 

Na,CO, + CO, + H,O # 2NaHCO, [4] 

Extending contact time will also result in the removal of H,S by the carbonate formed in 

reaction [3] as follows (Rohlich, 1977): 

H,S + NaCO, — NaHS + NaHCO, [5] 

Caustic Scrubbing can be very costly for small systems not capable of regenerating the 

spent caustic solutions. 

Water Scrubbing 

Water scrubbing can be used for the removal of CO,. This process takes 

advantage of the solubility of CO, in water. This process does have disadvantages. 

Water requirements are high (i.e. 24.2 gallons of water per 2.45 ft’ of CO, at 20°C and 

1 atmosphere). Increased pressures and decreased temperatures will increase the solubility 

of CQ, in water, thereby increasing CO, removal efficiency. However, increased 

pressures will also lead to corrosion problems in compressors. In addition, the acid water 

may pose a disposal problem. (Rohlich, 1977) 

Monoethanolamine Process 

The monoethanolamine (MEA) process is widely used in the natural gas industry 

for the removal of both CO, and H,S from natural gas (Stafford et al, 1980). The gas 

is forced upward through a packed tower against a countercurrent flow of aqueous low 
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temperature MEA. Carbon dioxide and hydrogen sulfide are absorbed by the MEA 

solution. The contaminated MEA solution is then passed through a stripping tower where, 

upon heating, the CO, and HLS are released. 

Iron Sponge 

The use of "Iron Sponge" is a relatively simple and economical method for the 

removal of H,S from biogas (Connelly GPM, 1994). "Iron Sponge" consists of hydrated 

iron oxide (Fe,0,* H,O), wood fiber, soda ash (Na,CO,), and limestone prior to use. The 

reaction effecting the removal of H,S from biogas is as follows: 

Fe,0,e H,O + 3H,S -— _ Fe,S, + 4H,O + heat [6] 

The hydrated iron oxide reacts with H,S under slightly alkaline conditions (pH 8-9) to 

produce ferric sulfide (Fe,S,), water and modest heat. The spent "Iron Sponge" is 

regenerated as shown in reaction [7]. 

2Fe,S, + 30, + 2H,O —- 2 Fe,0O,eH,O + 6S + heat [7] 

Ferric sulfide, in the presence of oxygen and sufficient moisture, is converted back to iron 

oxide with the evolution of elemental sulfur and significant heat. The life of the "Iron 

Sponge" is usually limited to a single regeneration and reuse, as the efficiency of the 

sponge decreases with increasing amounts of elemental sulfur (Connelly GPM, 1994). 

The removal of H,S under neutral to slightly acidic conditions is undesirable 

because of the formation of ferrous sulfide (FeS) shown in reaction [8]. 

Fe,0,° H,O + 3H,S —- 2FeS + S + 4H,O + heat [8] 

The ferrous sulfide can also be converted back to hydrated iron oxide as shown in 

reaction [9]. 
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4FeS + 30, + 2H,O —- 2Fe,0,°H,O + 4S [9] 

However, at the elevated temperatures generated by the reaction of iron oxide with 

hydrogen sulfide, ferrous sulfide is converted to iron disulfide (FeS,), as shown in reaction 

[10]. 

FeS + S + FeS, [10] 

Iron disulfide is inert and not reoxidized to iron oxide. Ferrous sulfide will also create 

acidic conditions in the presence of water. The addition of a soda ash and water mixture 

to the "Iron Sponge" during the operation and regeneration of the sponge will help to 

prevent this condition. Slaked lime (Ca(OH).) addition is not recommended because of 

reaction with CO,, rendering the slaked lime inactive as calcium carbonate. (Stafford, 

1942a) 

Several factors affect the life of the "Iron Sponge". Various grades of sponge are 

available; from a CH grade with approximately 9 pounds of dry basis Fe,O, per bushel 

(1 bushel = approximately 1.25 ft loose or 1 ft’ installed) to a Cl grade with 

approximately 15 pounds of Fe,O, per bushel (Taylor, 1956b). The denser grades 

typically result in a slightly longer time between revivification (Taylor, 1956c). 

Continuous versus periodic regeneration of the "iron Sponge" has a significant effect on 

the overall capacity of the sponge remove sulfur from the gas. Continuous regeneration 

is accomplished by the addition of enough air (three percent) to supply a few tenths of 

a percent oxygen to the sponge to catalyze the transformation of Fe,S, to Fe,O, with 

liberation of elemental sulfur. Continuous regeneration of the CH grade sponge can result 

in as much as 22.5 pounds of sulfur removed per cubic foot of sponge compared to five 

12



pounds of sulfur removed per cubic foot of sponge without continuous regeneration. 

(Taylor, 1956d) 

Membrane Separation 

Carbon dioxide and hydrogen sulfide can also be separated from the methane 

component of biogas using membrane separation processes (Wise, 1981). These processes 

rely on the different diffusion speeds of CH,, CO,, and H,S through a membrane. 

Membrane separation often requires gas pressurization of 350 to 400 psi. 

Nutnent Limitations 

Nutrient limitations can have a wide range of effects on the microbial population 

in an anaerobic treatment system. Nutrient limitations can slow cellular growth, lower 

treatment efficiency by limiting substrate utilization, and halt cellular growth completely; 

all resulting in a decrease or cessation of methane production (Chynoweth and Isaacson, 

1987). Nutrient requirements for methanogens include (decreasing order of importance): 

nitrogen, sulfur, phosphorus, iron, cobalt, nickel, molybdenum, selenium, riboflavin, and 

vitamin B,, (Speece, 1985). 

The nutrients of most importance are nitrogen, sulfur, and phosphorus. Ammonia 

appears to be a source of nitrogen for all methanogens. Most methanogens use sulfide 

as a sulfur source, while some can utilize cysteine. (Takashima and Speece, 1990) 

Understanding the nutrient limitations of the methanogens will not necessarily result in 

a "healthy" anaerobic treatment system. A nutrient that is limited for other anaerobic 
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microorganisms in the system, such as the acidogens and acetogens, will directly affect 

the methanogens, resulting in system upset (Chynoweth and Isaacson). 

The relative amounts of carbohydrates, proteins, and fatty acids in the waste being 

treated will ultimately increase or decrease cell production, hence have an effect on 

possible nutrient limitation. The synthesis of new cells from a high carbohydrate waste 

is much greater than cell synthesis from a high protein or fatty acid waste. This 

relationship is shown in Figure 2. The higher cell synthesis from the high carbohydrate 

waste will increase the chances of a nutrient limitation as greater numbers of cells 

compete for existing nutrients. 

Ammonia Inhibition 

Significant levels of total ammonia are typically present when wastes containing 

a high proportion of proteinaceous material are anaerobically degraded. The amount of 

protein in the waste being treated, in addition to the pH in the anaerobic reactor, 

contribute to the overall effect that ammonia will have on the anaerobic system. 

Ammonia will be present in the anaerobic environment as either ammonium ion (NH,’) 

or as dissolved ammonia gas (NH,). The relative concentration of each depends on the 

pH. Ammonium ion and ammonia gas will be in equilibrium based on the following 

equations: 

NH, # NH, + H [11] 
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K, = (H'J][NH,] [12] 

[NH,"] 

For a K, = 1.13E-9 at 35°C, the free ammonia (NH,) concentration will be approximately 

0.1, 1, and 11 % of the total ammonia (NH, + NH,’) concentration at a pH equal to 6, 

7, and 8, respectively (Anderson ef a/., 1982). According to McCarty (1964c), "The 

ammonia gas is inhibitory at a much lower concentration than the ammonium ion." The 

pH range from 6.6 to 7.6, considered acceptable for stable operation of anaerobic 

systems, favors the less toxic ammonium ion (McCarty, 1964b). 

Total ammonia concentrations of from 1,500 to 3,000 mg/L at pH values above 

7.4 to 7.6 may result in NH, concentrations that can become inhibitory. At total ammonia 

concentrations above 3,000 mg/L, inhibition can occur regardless of pH, because of NH," 

toxicity (McCarty, 1964c). Sathananthan (1981) reported no inhibition at pH 7 and total 

ammonia concentration of 7,000 mg/L, indicating possible acclimation to the anmonium 

ion. Sathananthan (1981) also reported inhibition at pH 7.5 and total nitrogen 

concentrations of between 2,000 and 3,000 mg/L and inhibition at free ammonia 

concentrations of greater than 80 mg/L regardless of pH. McCarty and McKinney (1961) 

reported failure of acetate utilizing methanogens at free ammonia concentrations 

exceeding approximately 150 mg/L as N. Parkin et a/. (1983) reported acclimation of a 

submerged anaerobic filter to a maximum level of 6,000 mg/L NH,’-N at pH levels not 

exceeding 7.5. 

Velsen (1979) reported acclimation of a digested sewage sludge to an ammonia 

nitrogen concentration of 5,000 mg/L following a 50 day lag period. In addition, results 
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with the same digested sewage sludge indicated a threshold level between 1,210 mg/L and 

2,360 mg/L, supporting the results of Melbinger and Donnellon (1971) who reported 

ammonia nitrogen inhibition at concentrations above 1,700 to 1,800 mg/L when the 

ammonia nitrogen concentration increased faster than the acclimation of the methanogens. 

Soto ef al. (1991) reported acclimation of a mesophilic sludge to fish canning wastewaters 

with ammonia concentrations reaching 4,000 mg/L, only after 38 days of adaptation. 

Sulfide Inhibition 

The presence of sulfurous compounds, such as sulfate and sulfite, in wastewaters 

can have an inhibitory effect on the anaerobic treatment process. In addition to sulfate 

and sulfite, the presence of sulfur containing organic compounds can contribute to the 

overall sulfur levels when these compounds are anaerobically degraded. Sulfur reducing 

bacteria utilize sulfate (SO,”) as an electron acceptor in the oxidation of hydrogen and 

acetate; the same substrates utilized by the methanogens. The reduction of sulfate to 

hydrogen sulfide yields more energy than that derived by the methanogens in the 

reduction of carbon dioxide and acetate decarboxylation, and is therefore favored 

[equations 13 - 16]. 

Methanogenesis: 

CO, + 4H, -—- CH, + 2H,O ; AG=-135 kJ [13] 

CH,COOH ~ CH, + CO, ; AG=-285kJ [14] 
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Sulfate Reduction: 

SO, + 4H, > HS + 2H,O + 20H ; AG=-154kJ [15] 

SO,7 + CH,COOH —> HLS + 2HCO, ; AG=-43 kJ [16] 

Hence, theoretically sulfate reducing bacteria will outcompete the methanogens 

(Karhadkar et al., 1987, Anderson et al., 1982; Sarner et al., 1988; Velsen, 1979). 

Parkin et al. (1983) reported inhibition of unacclimated batch systems by 50 mg/L 

S*. McCarty (1964c) stated that up to 200 mg/L soluble sulfides can be tolerated in 

continuous systems with acclimation, while concentrations exceeding 200 mg/L are toxic. 

Rinzema and Lettinga (1988) reported stable granular sludge anaerobic degradation of 

propionate in the presence of excess sulfate at total sulfide concentrations of 700 mg/L, 

as long as H.S was kept below 100 mg/L S. Soto et al. (1991) investigated H,S toxicity 

in the anaerobic treatment of fish canning wastewater. They reported an inhibition 

threshold of H,S at 40 mg/L S (1.5 % HLS in the gas phase) and an increase to 50 % 

inhibition at 133 mg/L S (5 % HS in the gas phase) at pH 7.0 to 7.2. 

Therefore, there is evidence supporting two mechanisms of inhibition of 

methanogenesis due to hydrogen sulfide formation: indirect inhibition of methanogenesis 

due to competition between the methanogens and sulfur reducing bacteria for the same 

substrates, and direct inhibition of methanogenesis due to the action of soluble sulfides 

on cellular functions. 

Karhadkar e¢ al. (1987) attempted to determine if inhibition is caused by 

competition for substrates and/or by sulfide inhibition of cellular functions. They reported 
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greater total methane production in batches with 40 and 80 mg/L sulfide as S added 

compared to a control (< 5 mg/L sulfide as S), indicating that sulfide is growth limiting 

below a certain concentration. Increasing inhibition was observed in batches with 160 

mg/L (as S added) and greater sulfide concentrations. Batches with sulfate added showed 

no inhibition at up to 5,000 mg/L sulfate, reportingly ruling out the possibility of 

competition for substrates. Karhadkar also reported 20 mM molybdate caused inhibition 

to both sulfate reduction and methanogenesis. 

Soluble sulfides will exist in their various forms in solution based on pH as 

expressed in reactions [17] and [18] and in Figure 3. 

HS #= HS + [17] 

HS = S* + H [18] 

For the typical range of pH involved in anaerobic treatment, reaction [18] is displaced to 

the left and S* is negligible. Therefore, reaction [17] is of greater importance, with the 

relative amounts of HS and H.S being dependent on pH. 

Soluble HS will be in equilibrium with H,S in the gas phase according to Henry's 

law as shown in reaction [19]. 

H,S 2“ gas 

[19] 
HS, # HS + H’ 

Increased gas production will shift the equilibrium to the left, as the partial pressure of 

HS in the gas phase drops, thus, increasing the transfer of H,S from the liquid to gas 

phase. This equilibrium relationship is the basis for a H,S toxicity reduction procedure 

in which gas is removed from the reactor, washed to remove H,S, and returned to the 
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Figure 3. Sulfide species as a function of pH (Sarner et al., 1988). 
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reactor (Samer ef al., 1988). This method promotes the removal of the reportedly toxic 

unionized H,S from the liquid phase , thereby reducing sulfide inhibition (Rinzema and 

Lettinga, 1988). 

Gas Production 

The volume of CH, produced by anaerobic treatment of organic waste is directly 

related to the degree of waste stabilization achieved. As stated by McCarty (1964a) 

"the ultimate oxygen demand of the waste being degraded is equal to the ultimate 

oxygen demand of the methane gas produced. The ultimate oxygen demand of methane 

iS given by reaction [20]. 

CH, + 20, — COQ, + 2H,O [20] 

Two moles of oxygen is required to completely oxidize one mole of methane to carbon 

dioxide and water. As stated above, the converse of this is also true. In other words, if 

the amount of stabilization achieved, in terms of COD reduction of the waste , is known, 

an estimate of the methane production can be made. Theoretically, one gram of COD 

reduced will produce 350 ml! of CH, at standard temperature and pressure (STP) (STP: 

0°C, 1 atmosphere) based on reaction [20]. This is equivalent to 5.62 ft? of methane per 

pound of COD stabilized. In the same manner, if the volume of methane produced is 

measured, the theoretical degree of waste stabilization can be calculated. 
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Gas Storage 

Biogas is typically stored in one of three pressure ranges: low pressure storage 

(0 to 60 inches of water column) (Stafford et al., 1980; Dohne, 1980; Hobson er al., 

1981; Ru-Chen, 1982), medium pressure storage (100 to 350 psi) (Stafford et a/., 1980; 

Dohne, 1980; Hobson et a/., 1981), and high pressure storage (2,000 psi and up) (Dohne, 

1980; Hobson et al/., 1981). 

Low Pressure Gas Storage 

Low pressure gas storage includes the following types: fixed dome, floating cover, 

and membrane type storage devices (Gunnerson and Stuckey, 1986; Ru-Chen 1982). 

Fixed dome. The fixed dome reactor allows the gas pressure to increase within 

the reactor headspace, thus displacing a portion of the reactor contents into an elevated 

effluent chamber. An example of the fixed dome type reactor is shown in Figure 4a. The 

effluent chamber is typically designed to allow the liquid level to reach a maximum of 

1.0 to 1.5 meters (m) (40 to 60 inches (in.)) above the liquid level in the reactor, thereby 

allowing for a gas pressure from 1.0 to 1.5 m (40 to 60 in.) of water column pressure. 

(Ru-Chen, 1982) 

Floating cover. The floating cover reactor consists of two major parts. The 

reactor walls and bottom are typically constructed of brick or concrete. The reactor cover 

is made from materials such as steel, polyethylene, and fiberglass. As gas 1s produced, 

the cover slides upward on a central guide or on vertical channels constructed along the 

reactor walls. An example of the floating cover reactor is shown in Figure 4b. The gas 
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Figure 4. Low pressure gas storage in anaerobic digestion (Ru-Chen, 1982). 

a. Fixed dome reactor 
b. Floating cover reactor 

c. Membrane gas holder reactor 
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pressure is determined by the force required to lift the cover; namely, the weight of the 

cover itself. However, additional control of gas pressure can be attained by using a 

weight and pulley system to increase or decrease the weight of the cover (Stafford er al, 

1980). The floating cover type reactor typically stores gas at pressures of 2 to 35 

centimeters (cm) (0.8 to 14 in.) of water column pressure (Ru-Chen, 1982). A slight 

variation of the floating cover is shown in Figure 4b. The reactor is of the fixed dome 

type. The gas is transported to a separate gas holder that is based on the floating cover 

type reactor where water takes the place of the reactor contents. 

Membrane storage devices. There are two basic types of gas membrane storage 

devices (Gunnerson and Stuckey, 1986; Ru-Chen, 1982). One employs a flexible and 

impermeable membrane cover that is attached directly to the top of the reactor as shown 

in Figure 4c. The other type consists of a storage balloon connected by a gas line to the 

headspace of a fixed dome type reactor. The membrane is allowed to inflate as gas is 

produced. Once full, the pressure within the membrane is typically allowed to increase 

to only 2 to 3 cm ( 0.8 to 1.2 in.) of water column pressure. The ultimate pressure is 

controlled using gas pressure relief valves (Ru-Chen, 1982). Operating pressures 

approaching 40 cm (16 in.) of water column have been used with a Norprene coated 

nylon fabric bag in Taiwan, China (Gunnerson and Stuckey, 1986). 

Medium Pressure Gas Storage 

Medium pressure gas storage involves compressing biogas to pressures from 100 

to 350 psi in commercially available tanks. Compression of biogas can result in corrosion 

of compressors due to H,S, NH,, and CO, as these biogas components react with moisture 
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in the biogas. Corrosion problems are aggravated with increasing pressures. Therefore, 

gas scrubbing is recommended prior to compression of the gas to medium range pressures 

(Hobson ef al., 1981). When compressing the gas, the energy requirements of the 

compression must be considered against the energy value obtainable from the gas itself. 

Another disadvantage of compression is related to the pressure of gas required by gas 

burning devices. The pressure of the stored gas must generally be reduced using a 

pressure reducer/regulator device prior to the point of use. An advantage of compression 

lies in the ability to store large volumes of gases in relatively small tanks consuming 

relatively little space. 

High Pressure Gas Storage 

High pressure gas storage (2,000 psi and up) is almost entirely reserved for very 

large biogas production facilities and specialized uses (Hobson ef a/., 1981). The biogas 

must be scrubbed and dried to produce relatively pure methane gas in order to avoid 

corrosion problems. Again, as with medium pressure compression, costs of specialized 

equipment (heavy cylinders, appropriate gas safety devices, pressure gauges, pressure 

reducing devices, etc.) and handling related costs, along with energy requirements, must 

all be considered. 

High pressure gas storage is most frequently used for special applications which 

require large volumes of gas in small spaces. An example of this is the use of purified 

biogas for fueling methane powered vehicles (Lapp et al., 1974). Cylinders with gas 

compressed to in excess of 2,500 psi are stored on the vehicle and used to power the 

engine which has been designed or adapted to burn methane gas. The high pressures are 
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necessary to provide an adequate supply of methane (in a confined space) which will 

enable reasonable travelling distances between refuelings. High pressure gas cylinders 

are also sold to specialty gas suppliers who sell and distribute the gas cylinders to 

laboratories (Hobson ef al., 1981). 

Liquefaction of the methane component of biogas is not practical for small scale 

systems. Liquefaction of methane requires a temperature of -82.5°C (181°F) and a 

pressure of 46 atmospheres (676 psi). 

Biogas Utilization 

Biogas Handling and Safety Devices 

Biogas utilization systems require various devices for safe and efficient operation. 

Notwithstanding equipment associated with the type of gas storage (low, medium, high 

pressure) and the extent of gas treatment (removal of H,S and/or CO,), all biogas 

utilization systems should include the following devices where appropriate: 

* Condensate trap 

e Flame trap (Flame arrester) 

e Pressure relief valve 

® Pressure regulator 

© Check valve 

This list is not meant to be all inclusive. Individual systems may require additional gas 

handling equipment for specific applications. This list does include those devices highly 

recommended for all biogas utilization systems (Rohlich, 1980; Fredericks and Boll, 1980; 

Price and Cheremisinoff, 1981; Fry, 1974). 

26



Condensate traps are typically installed at low points in the gas collection and 

utilization system. Water condenses in gas lines as the biogas cools. Condensate traps 

allow for the removal of this water enabling the gas to flow freely through the system and 

preventing ice from forming in colder environments. 

Flame arresters are extremely important safety devices. The flame arrester 

prevents flames from travelling back through gas lines from a point of gas ignition to a 

point of gas storage. Flame arresters should be installed prior to any point where gas is 

in contact with and open flame or the possibility of gas ignition exists. 

Pressure relief valves are necessary to maintain safe operating pressures within the 

system. The possible build up of unsafe pressures due to blockages in the gas lines 

caused by particulate matter, condensate, and/or ice, can be prevented by the strategic 

placement of pressure relief valves. 

Check valves prevent gas from flowing backwards through the gas collection and 

utilization system to the anaerobic reactor(s). Check valves are particularly important 

when the gas is pressurized. The check valve acts as a safety device which helps to 

maintain pressure differences in the gas system should a pump or compressor fail. 

Pressure regulators, or pressure reducers, are typically used at the point of gas 

usage. The regulator maintains a constant delivery pressure required by gas burning 

devices. This allows for the direct use of gas stored at pressures exceeding the pressure 

required by the gas burning device. 

Additional Safety Precautions 

In addition to the safety and control devices described above, additional safety 

27



precautions should be taken prior to and during the operation of a biogas collection and 

utilization system. At the initial start-up of the anaerobic reactor, the reactor headspace, 

gas lines, and gas storage equipment will contain air. Methane is explosive when mixed 

with air in proportions of 5 to 15 % by volume. The range of the explosive limits 

narrows with increasing amounts of inert gas, such as carbon dioxide and nitrogen as 

shown in Figure 5 (Zabedakis, 1965). The range increases with increasing pressure and 

temperature. For this reason, it is recommended that the system be purged of air 

(Rohlich, 1977; Fry, 1974). This can be accomplished in a variety of ways. The air can 

be purged from the system by allowing the biogas being generated to displace the air. 

A sample of gas can then be taken and analyzed to determine if the gas is of sufficient 

quality to burn. The system can also be flushed with an inert gas (i.e. N,). 

A positive pressure should be maintained in all gas lines to prevent air from 

infiltrating the system, resulting in an explosive mixture of methane in air (Fry, 1974). 

The entire system should be checked for leaks prior to operation. This can be 

accomplished by pressurizing the system with an inert gas such as nitrogen. Soapy water 

is then applied to areas that may leak. A vigorous bubbling action is evidence of a leak 

(Auerbach, 1973). 

Adequate ventilation around all gas lines and equipment is necessary to prevent 

the accumulation of gas in the event a leak should occur (Rohlich, 1977; Fry, 1974). 

Ventilation should be provided at both floor and ceiling level to allow for the ventilation 

of heavier-than-air and lighter-than-air gases, respectively (Fry, 1974). Gas burning 

equipment should be located separately from the anaerobic reactor and gas collection 
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Figure 5. Effect of inert gases on the flammability range of methane/air mixture 
(Zabedakis, 1965). 
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equipment to minimize the possibility of a gas build-up near an open flame or other 

source of ignition (Fredericks and Boll, 1980). 

Biogas Utilization Systems 

Typical collection and utilization flow diagrams are shown in Figures 6 through 

9. These diagrams show the use of the gas handling and control devices discussed 

above, as well as other gas handling devices found in biogas utilization systems. The 

system shown in Figure 7 consists of a 270 m’, glass-fiber, reinforced polyester reactor 

with a floating gas cover. The system is fed fresh manure from 1700 pigs. The floating 

cover holds from 50 to 100 m° gas at a pressure of 0.015 bar. Gas production is 

approximately 250 m’/d. Gas is used to power two 15 kilowatt (kW) generators. The 

total investment for the system was $84,000 (1979), with an estimated running cost of 

$2,000 per year (1979). The generators produced 135,000 kilowatt-hours per year 

(kWh/yr) of electricity, of which 100,000 kWh/yr was used on-site, while 35,000 kWh/yr 

was sold to a public grid for a total value of $6,300 (1979). 

The system shown in Figure 8 consists of two 200 m’ concrete block reactors with 

flexible PVC gas covers. The system is fed manure from 150 cows. Each PVC cover 

holds 120 m?’ gas. Gas production is approximately 300 m*/d. Electricity is produced 

from the gas using a modified 40 kW diesel engine and an A/C generator. The total cost 

of the system was $96,000 (1979) with an estimated running cost of $2,000 per year 

(1979). The total value of the electricity used and sold (160,000 kWh/yr) was $7,300 per 

year (1979). 

The system shown in Figure 9 consists of two 180 m° precast concrete reactors 
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|. MANHOLE COVER 

2.HANDHOLE COVER 

3. COVER POSITION INDICATOR 
WITM HI-LOW ALARM 

4. SEDIMENT @ ORIP TRAP ASSEMBLY 

5. COMPRESSOR 
6. FLAME TRAP ASSEMBLY 
7. GAS PURIFIER 

6. ORIP TRAP 

9. PRESSURE REGULATOR 

10. CHECK VALVE 

18. SEOIMENT @ ORIP TRAP ASSEMBLY 

12. FLAME TRAP ASSEMBLY 

13. PRESSURE REGULATOR 

14. FLAME TRAP ASSEMBLY 

15. PRESSURE REGULATOR 

16. METER 

(7. CHECK VALVE 

16. THREE UNIT MANOMETER 

19. WASTE GAS BURNER 

20. FLAME TRAP 

21. PRESSURE RELIEF ANO 
FLAME TRAP ASSEMBLY 

    

Figure 6. Typical flow and installation diagram (Price and Cheremisinoff, 1981). 
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with flexible PVC gas covers each holding a maximum of 80 m*. The system is fed fresh 

manure from 96 cows and 600 pigs. Gas production is approximately 350 m°/d. Two gas 

fired boilers are powered by biogas. The total cost of the system was $101,000 (1979) 

with an estimated yearly operating cost of $2,000 (1979). A total of $15,000 per year 

was saved by heat generation using biogas instead of oil. 

Biogas Combustion 

Commercial gas burning devices designed to burn natural gas, propane, etc., 

normally require minor modifications to combust biogas. Two properties of the biogas 

make modifications necessary: lower heating value and lower flame velocity than natural 

gas and propane. Both of these properties are due to the presence of the inert gas, CO.,. 

Higher concentrations of CO, result in lower heating values and flame velocities. 

The problems associated with both of these properties can be overcome by 

increasing the volume of biogas burned per unit time (Fredericks and Boll, 1980; Jiang 

et al., 1987; Walsh et al., 1988; Orth, 1982) and restricting air intake (Jiang ef al., 1987, 

Walsh et al., 1988). Increasing the volume of biogas available for burning per unit time 

is accomplished by enlarging the gas orifice or by increasing the biogas delivery pressure. 

Equations [21] (Jiang et a/., 1987) and [22] (Orth, 1982) can be used to calculate required 

orifice diameter modifications when biogas delivery pressure is unchanged. 
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(d,/d,) = [(S,/S,)°* ]((4,/A,)""] [21] 

d = gas orifice diameter (cm) 

S = specific gravity of gas 

H = energy value of gas (kJ/m’) 
subscript 1 = biogas 
subscript 2 = other gases 

D, = [D,J[Wo/Wo] [22] 

D, = original orifice diameter 
D, = modified orifice diameter 

W,, = Wobbe-Index for original gas 
W,. = Wobbe-Index for biogas 

Equation [22] relies on the Wobbe-Index of the gases involved. The Wobbe-Index is 

defined as follows: 

Wobbe-Index = H/(G)” [23] 

H = heating value of gas 

G specific gravity of gas 

The Wobbe-Index ranges from 41.9 to 47.7 MJ/m’ and 19.8 to 27.2 MJ/m’ for natural gas 

and biogas (55-70 % CH,), respectively. The Wobbe-Index can be used when blending 

biogas and natural gas or biogas and propane. The objective is to create a fuel mix with 

a similar Wobbe-Index to that of the original gas used for orifice design (Walsh er al., 

1988). This allows for the use of natural gas and propane as back-up fuels. 

Alternatively, the gas delivery pressure can be increased, while maintaining the 

same orifice diameter as shown in equations [24] and [25] (Jiang ef al.,1987; Orth, 1982). 
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(p,/p.) = [(S,/S))](,/H,)"] [24] 

p = gas pressure (mm H,O) 

S = specific gravity of gas 
H = energy value of gas (kJ/m’) 
subscript 1 = biogas 

subscript 2 = other gases 

P, = [Py][(Wo/Wo2)'] [25] 

P, = original gas pressure 

, = biogas pressure 
W,, = Wobbe-Index for original gas 

W,. = Wobbe-Index for biogas 

Equation [24] is used to calculate the required gas delivery pressure required to burn 

biogas in the existing gas orifice. The modification is based on the specific gravities and 

energy values of the respective gases. Equation [25] is also used to calculate the required 

gas delivery pressure necessary to burn biogas in the existing gas orifice. The 

modification, as in equation [23], relies on the Wobbe-Indices of the respective gases. 

Table 1 lists orifice diameter multipliers for calculating orifice enlargements when 

converting from natural gas or propane to biogas. The existing orifice diameter is 

multiplied by the correct orifice multiplier for the corresponding biogas methane content. 

In addition to modification of the main gas orifice, enlargement of the pilot gas 

orifice will improve pilot flame stability. Some installations have experienced difficulty 

in maintaining a stable pilot flame. Based on this problem, a separate propane fired pilot 

may be more effective than a biogas fired pilot. (Walsh ef al., 1988) 
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Table 1. Orifice diameter multipliers for gas appliances (Walsh, 1988). 

Orifice Diameter Multipliers 

  

Percent Methane Natural Gas Propane 

in Biogas (1,050 Btu/ft’) (2,500 Btu/ft*) 

70% 1.32 1.63 

65% 1.39 1.72 

60% 1.46 1.81 

55% 1.54 1.92 

50% 1.64 2.04 

38



CHAPTER Ill. METHODS AND MATERIALS 

This chapter will focus on the methods and materials used for data collection from 

laboratory and pilot-scale upflow anaerobic reactors designed for the treatment of crab 

processing wastewater. Particular attention will be given to a description of the pilot- 

scale biogas collection, storage, treatment, and utilization system. 

Laboratory-Scale Systems 

Biogas from two laboratory-scale treatment systems, constructed and operated by 

a fellow graduate research assistant, was collected, measured, and analyzed. For a 

complete description of each system, consult "Anaerobic/Aerobic Pretreatment of Crab 

Cooker Wastewater" (Diz and Boardman, 1994). Each system consisted of two upflow, 

4 L anaerobic reactors and an 8 L aeration tank. (Figures 10 and 11) A layer of 240, 0.5 

in. foam cubes was added to the first anaerobic reactor of System A to serve as a filter 

to retain biomass. Both anaerobic reactors of System B were filled with 180 foam pieces 

(1 x 1 x 0.5 in.) each. Both systems were inoculated with the same concentration of 

anaerobic sludge on day 0. During the research period, average wastewater flow through 

each system varied from 0.96 to 2.32 L/d and 0.91 and 2.40 L/d for systems A and B, 

respectively. Characteristics of the retort waters anaerobically treated in the laboratory- 

scale systems during this study are provided in Table 2. 

Systems A and B were both monitored for a total of 280 days. The first 132 days 
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Table 2. Characteristics of Crab Cooker Wastewater (Diz, 1995). 

  

  

Parameter Unit Mean Min.-Max. 

cop!” mg/L 18,900 9,300-33,700 

Bods") mg/t 14,100 12,200-15,500 

TSS mg/L 1,430 530-4,000 

VSS mg/L 1,150 250-2,200 

pH std. unit 7.1 6.87.4 

NH3a/NHa-N mg/L-N 1060 470-1,770 

VFA mg/L-HAc 6,370 3,400-8,900 

Alkalinity mg/L-CaCO3 78) 60-2,000 

Metais: 
Sodium mg/L 1,770 890-2,570 

Potassium mg/L 600 340-870 

Magnesium mg/L 230 140-380 

Calcium mg/L 330 200-530 

Iron mg/L 5.6 2.5-8.9 

Nickel pgit 95 26-150 
Cobalt pg/L 12 1-24 
Molyodenum po/L 4 37 

Anions: 

Chloride mg/L 8,300 3,000-20,000 

Nitrite mg/L-N 12 nd).39 
Nitrate mg/L-N 4 nd-19 

Phosphate mag/L-P 70 14-160 

Suifate mg/L-S 250 30-460 
  

(1) COD and BODs values were not necessarily obtained for every sampie. Therefore, comparison of minimum, 
maximum, and mean values for these two parameters is not appropnate. 

(2) nd = not detected 
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was designated as the acclimation period during which waste fed to each system was 

diluted. The degree of dilution was progressively decreased at various times during the 

132 day acclimation period. Full strength waste was fed beginning on day 133 and 

continued until the end of the 148 day study period. Consult "Anaerobic/Aerobic 

Pretreatment of Crab Cooker Wastewater" for a detailed description of the operation of 

systems A and B (Diz and Boardman, 1994). The 148 day study period was divided into 

five "pseudo-steady state" periods based on chemical oxygen demand (COD) loadings. 

Gas Collection 

Flexible Tygon tubing, initially connected to the top of both anaerobic reactors in 

each system, connected the reactor headspace to the point of gas collection. During the 

study period, biogas was collected only from the first anaerobic reactor of each system. 

Biogas generated by the anaerobic reactors of systems A and B was collected daily in 

separate Tedlar gas sample valves, each fitted with a septum and polypropylene valve. 

The type of gas collection bag used was chosen based on minimizing the 

reactivity of the compounds of interest with the bag and valve materials, as well as 

facilitating gas collection and analysis (Parmar, 1991). Twelve and 40 L size bags were 

used based on the amount of gas being produced by each system during a particular 

period. The polypropylene valve allowed for direct connection of tubing from reactor 

headspace to gas bag. The septum was used for withdrawing small samples for analysis 

using a gas-tight syringe. 

Gas Measurement 

A 6 foot (ft.) long, 8 in. internal diameter acrylic pipe was adapted for measuring 
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gas volumes. This size was selected to provide a 60 L of volume for gas measurement; 

approximately one and one-half the maximum expected daily production from both 

systems. The acrylic pipe was sealed at both ends and fitted with valves to control the 

flow of water into and out of the column (Figure 12). Two fittings were placed side by 

side directly on the top end of the column to allow for gas to enter and exit the column. 

Two fittings were placed opposite from each other approximately three inches from the 

bottom end of the column. The column was then filled with water by opening and 

closing the appropriate valves. The column was graduated using a calibrated Masterflex 

pump to introduce one liter of air to the column per unit time. The changing water level 

in the column was marked at appropriate time intervals to correspond to | L volume 

changes. 

The modified acrylic column was placed in a 24 x 12 x 6 in. plastic pan. The 

column was then filled with water using a hose connected to valve (1), with valve (2) 

open to allow air to escape. Valves (3) and (4) were also left opened until water reached 

an equilibrium level marked by two 0.5 in. holes drilled approximately 2 in. from the top 

of the plastic pan. Valves (3) and (4) were then closed to allow the column to fill with 

water. Valve (1) was closed and a Tedlar gas bag, containing gas to be measured, was 

attached to valve (2). Valves (3) and (4) were then opened to drain water from the 

column, forming a vacuum in the column immediately filled by gas from the Tedlar gas 

bag. 

Gas Analysis 

Percent by volume of CH,, CO,, and H,S were determined using gas 
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Valve | Valve2 

  
Graduations 

    Valve3 -J Valve 4 
  

Figure 12. Modified acrylic pipe used for biogas measurement 

Dimensions: 6 ft. long, 8 in. internal diameter 

Capacity: 60-L 
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chromatography. Gas samples from systems A and B were analyzed weekly using a 

Hewlett Packard 5880A Series Gas Chromatograph equipped with a single filament 

thermal conductivity detector (TCD). A Hamilton 1725, gas tight, 250 microliter (uL) 

syringe was used for withdrawing 100 pL samples of biogas from Tedlar gas sample bags used for 

gas collection. The samples were then injected directly into the gas chromatograph injection 

port. Helium was used as the carrier gas to provide the highest possible sensitivity for 

detection of the gases of interest (Cowper and DeRose, 1987). Two 6 ft. long, 0.125 in. 

outside diameter stainless steel columns packed with Porapak Q 80/100 mesh were used. 

The reference and sample flows were set to 15 milliliters per minute (mL/min). The 

modulator flow was set to 30 mL/min. Temperatures for oven, injector, and detector were 

set at 35, 100, and 150°C, respectively. 

Duplicate injections of varying amounts of a gas standard with known % by 

volume composition (+/-2 %) of CH,, CO,, and H,S were made to monitor 

reproducibility. These were followed by duplicate injections of 50 and 100 nL amounts 

of pure CH, and CO, (> 90 %). Together, this data was used to plot a standard curve of 

peak area versus moles of gas. CH,, CO,, and H,S peak areas generated from 100 uL 

injections of biogas with unknown composition were then used to calculate relative molar 

amounts of CH,, CO,, and H.S based on the standard curves. 

Reproducibility of the peak areas for CH, and CO, were determined by making 

12 consecutive injections of the same standard and calculating the relative standard 

deviations (RSD) of the peak areas. The RSD for CH, and CO, were 1.2 % and 1.3 %, 

respectively. A similar procedure was used for H,S, yielding a RSD of 0.27 %. 
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Biogas from System B was analyzed for NH, concentration using Gastec (1-60 

ppm) ammonia analyzer tubes. A calibrated Masterflex pump was used in place of a 

Gastec hand pump for delivery of the samples to the analyzer tubes. The pump was 

calibrated to deliver the same sample volume (100 mL) as the hand pump over the same 

sample period (1 minute). 

Effluent Collection and Analysis 

The volume of effluent treated by each system was collected and recorded daily 

in graduated 4 L polyethylene containers at the time of gas sample bag replacement. 

Chemical Oxygen Demand (COD) and Volatile Suspended Solids (VSS) were measured 

using Methods 5220C and 2540E, respectively, as outlined in Standard Methods for the 

Analysis of Water and Wastewater (1992). 

Pilot-Scale System 

Crab Cooker Anaerobic Wastewater Treatment 

The pilot-scale anaerobic treatment system was constructed by a fellow graduate 

research assistant. The system 1s located at the Virginia Polytechnic Institute and State 

University Seafood Research and Extension Center in Hampton, Virginia. Only the 

components of the crab cooker wastewater treatment system pertinent to gas collection 

will be discussed here. 

The treatment system is located approximately 100 yards from a privately owned 

crab processing facility. The crab processor operates two retorts. All wastewater from 
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one retort was collected in a 55 gallon drum at the crab processing facility. The 

wastewater was automatically pumped through 0.75 in. polyvinylchloride (PVC) piping 

to a 250 gallon holding tank located in a building at the VPI & SU Seafood Research and 

Extension Center. Wastewater from the other retort emptied directly into the Hampton 

Creek. Wastewater exceeding the 250 gallon holding tank capacity overflowed into an 

effluent collection pipe that also emptied into the Hampton Creek. 

A Masterflex pump controlled by a pressure switch transferred wastewater from 

the 250 gallon holding tank into the bottom of the first upflow anaerobic reactor P] at 

approximately 30 gpd (Figure 13). Flow was temporarily decreased during periods when 

a decrease in the quantity of crabs harvested resulted in shortages of wastewater. Effluent 

flowed from P1 to an anaerobic clarifier, P2, through a line of flexible tubing. P1 and 

P2 each had a total volume of 190 gallons; approximately 160 gallons of useful liquid 

volume and 30 gallons of gas headspace volume. 

Biogas Collection 

Biogas accumulated in the headspace of reactors P! and P2 up to approximately 

3 in. of water column pressure. When this pressure was reached, a pressure switch (G) 

activated a Masterflex pump (E) and opened a solenoid valve (F) (Figure 13). The gas 

was then pumped from the reactor headspace, through 0.5 in. PVC piping, until the 

pressure dropped to approximately 1 in. of water column, at which time the pressure 

switch cut off the pump and closed the solenoid valve. The solenoid valve served as a 

check valve to prevent gas from flowing in the reverse direction. 

The selection of 1 to 3 in. of water column pressure range was somewhat arbitrary. 
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Automatic transfer of biogas from the reactor headspace through H.S scrubbing columns 

and into storage at elevated pressure required the use of a pump controlled by a pressure 

switch. Large pressure changes within the reactors as gas was generated and removed 

would have resulted in significant changes in liquid levels within the reactors effecting 

wastewater flow throughout the system. In addition, the pressure range was maintained 

as low as possible to minimize the potential for gas leaks from the anaerobic reactors. 

Gas sample valves were located at various points throughout the gas system for 

monitoring gas composition. Condensate drains were installed at low points in the system 

to drain condensate from the gas lines to prevent blockages. 

Hydrogen Sulfide Removal 

Biogas was pumped through two 3 in. internal diameter, 6 ft. long carbon steel 

pipes (J) filled with "Iron Sponge”. "Iron Sponge" consists of hydrated iron oxide 

(Fe,0,° H,O) and a sodium carbonate (Na,CO,) buffer on a support media of wood chips. 

Hydrogen sulfide is removed from the gas when the H,S reacts with the hydrated iron 

oxide, at a slightly alkaline pH from 8 to 9, to form ferric sulfide (Fe,S,). Carbon steel 

gas lines were required in the immediate area of the hydrogen sulfide scrubbing columns 

to withstand temperatures, in excess of 38°C, generated by the reaction of H,S with 

Fe,QO,. 

A valve (I) was installed at the top of each column for water addition and pH 

adjustment of the "Iron Sponge". A drain valve (K) was installed at the top of each 

column to remove excess condensate and water generated upon the removal of H,S from 

the biogas. A H.S tester (L) and a gas sample valve (C) were installed at the base of the 

50



first column in order to monitor the removal of H,S from the biogas. Gas shut-off valves 

were located to allow for isolation and removal of a single H,S scrubbing column without 

interruption of gas flow. 

Biogas Flow Measurement and Control 

The methane and carbon dioxide gas mixture then flowed through an Omega mass 

flow meter (M). The flow meter was used to monitor the cumulative gas produced by the 

anaerobic reactors. The mass flow meter was followed by a 120 gallon storage tank (O). 

Varying amounts of gas could be stored depending on the pressure allowed to accumulate 

in the storage tank. The maximum pressure was limited by the maximum sustained 

operating pressure (25 psi) of the Masterflex pump (E) used to pump biogas. The actual 

operating pressure was controlled by venting gas from the drain valve (D) on the storage 

tank. An in-line pressure relief valve (Q) was installed following gas storage as a safety 

device. The relief valve was set to automatically release gas if the pressure in the system 

reached 24 pst. 

Biogas Combustion 

The stored gas was then burned in a modified 26,000 Btu/hr natural gas hot water 

heater (T). Modification of the hot water heater consisted of enlarging both the pilot gas 

orifice and main gas orifice. Based on information presented in the literature review on 

burner modification, the existing burner orifice (0.094 in.) was enlarged to 0.125 in. (See 

Appendix B). Prior to burning, the gas pressure was reduced to the 4.5 to 5 in. of water 

column required by the hot water heater using a pressure reducer/regulator (R). A flash 

arrestor (S) was installed prior to the hot water heater to prevent a flashback from the 
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burner assembly to the gas storage tank. 

Hydrogen Sulfide Scrubbing Column Design 

An estimate of biogas production for the proposed pilot-scale system treating 100 

gpd was made based on maximum laboratory-scale system gas production of 

approximately 30 L of gas per gallon of waste treated. This estimate was set at 3,000 

L/d. An estimate of the percent by volume H,S was set at 1.3 % based on early gas 

analysis by gas chromatography. 

Calculations of required H,S scrubbing column dimensions were made based on 

various design parameters. The first design parameter was based on limiting sulfur 

deposition within the "Iron Sponge" material. It was suggested that sulfur deposition be 

limited to less than 15 grams of sulfur per square foot of column cross-sectional area per 

minute (Taylor, 1956b). Based on this limit, and the estimated biogas production (3,000 

L/d; 1.3 % H.S), a minimum column diameter of approximately 2.6 in. would be 

required. 

The second design parameter was based on limiting the rate of gas flow through 

the column. It was suggested that gas flow through the column be limited to a maximum 

of 30 ft’ of gas per hour per cubic foot of sponge material (Connelly GPM, 1994). Based 

on this limit, and the estimated biogas production (3,000 L/d; 1.3 % H.S), a minimum 

volume of 0.15 ft’ of sponge would be required. 

A minimum sponge bed thickness of 10 ft. was recommended to produce a 

pressure drop sufficient to create a high gas velocity within the sponge material. 

Pressurizing the gas from one to two pounds per square inch produces this effect, and 
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therefore, eliminates the need for a 10 ft. deep column. (Taylor, 1956b) 

The final H,S scrubbing column dimensions were based on the calculate 2.6 in. 

minimum column diameter, the 0.15 ft’ minimum value of “Iron Sponge", and the 

available space where the column would be operated. The requirement for ease of 

removal of the column from the gas system for replacement and regeneration of the 

sponge material also factored into this decision. 

A section of carbon steel pipe, 6 ft. long with a three inch internal diameter was 

selected. This provided an internal volume of 0.29 ft’, taking into consideration void 

space within the column. A second column of equal size was designed into the system 

to allow for removal of one column without interrupting gas flow. The columns were 

operated in series during normal operation. 
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CHAPTER IV. RESULTS AND DISCUSSION 

Phase I: Laboratory-Scale Biogas Collection and Characterization 

Laboratory results are presented in terms of changes in gas production relative to 

changes in COD reductions, COD loadings, feed rates, and biomass (expressed as VSS) 

that occurred during periods designated 1 through 5. The length of each period, and its 

corresponding mean feed rate and mean COD loading, is given in Tables 3 and 4, 

respectively. A three day running average was used to smooth out fluctuations among the 

volumes of effluent collected daily from each system. The values for mean feed rates 

(3dAVGQ) represent the mean of these three day running average values for each period. 

The following mean system parameters are also included: COD concentration (mg/L), gas 

production (L gas/d , L gas/L feed, mL gas/g COD reduced, mL gas/g VSS), COD 

reduction (mg/d), and methane production (mL CH,/g COD reduced). 

Penod 1 

The mean COD loadings during the first period, at 33,038 and 33,388 mg/d for 

systems A and B, respectively, were the second highest loadings of the five periods 

(Tables 3 and 4). Systems A and B showed the greatest reductions in COD (System A 

= 26,967 mg/d ; System B = 28,683 mg/d) during period 1. Gas production reached a 

maximum average of 15.8 L/d for System A. Gas production per amount of COD 

reduced averaged 587 and 588 mL/g COD for systems A and B, respectively (Figures 14 

and 15). 
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System A; numbers 1-5 represent time periods. 
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Period 2 

The mean COD loading decreased approximately 27 % for System A and 24 % 

for System B from period 1 to period 2 (Tables 3 and 4). COD reductions decreased 49 

% and 41% for systems A and B, respectively. Mean gas production decreased slightly 

from 15.8 L/d to 15.2 L/d for System A and stayed relatively constant for system B (16.9 

L/d to 17.0 L/d). Both systems appeared to have the highest gas production per amount 

of COD reduced during period 2 at 1,099 and 1,011 mL/g COD reduced in systems A and 

B, respectively. 

Penod 3 

A five day transition period preceded period 3 during which COD loadings 

averaged lower than those of either periods 2 or 3. The COD loadings increased 

significantly from period 2 to period 3 for both systems to the maximum average values 

for the five periods. The COD loading in System A increased from 24,007 to 43,631 

mg/d. The COD loading in System B increased from 25,303 to 48520 mg/d. System A 

gas production dropped from 15.2 to 14.7 L/d. COD reductions reached the second 

highest values of the five periods for both systems. System B gas production increased 

from 17.0 L/d during period 2 to a maximum of 19.5 L/d during period 3. Gas produced 

per amount of COD reduced decreased to 684 and 703 mL/g COD in systems A and B, 

respectively, during period 3. 

Period 4 

The lowest mean COD loadings of the five periods were observed during period 

4 for systems A and B, at 16,957 and 16,087 mg/d, respectively. COD reductions also 
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decreased to the minimum mean values for the five periods of 10,956 and 11,723 mg/d 

for systems A and B, respectively. System A gas production decreased by 57 % from 

14.7 L/d during period 3 to 6.3 L/d. System B gas production decreased by 62 % from 

19.5 L/d during period 3 to 7.5 L/d. Gas produced per amount of COD reduced 

decreased from the previous period to 577 and 644 mL/g COD for systems A and B, 

respectively. 

Period 5 

COD loadings increased, relative to period 4, by 41 % and 46 % to 23,942 and 

23,494 mg/d for systems A and B, respectively. COD loadings and COD reductions 

returned to the levels observed during period 2 for System A, while COD loadings and 

reductions averaged slightly lower during period 5 than period 2 in System B. Gas 

production increased to 9.1 and 10.3 L/d for systems A and B, respectively. Gas 

produced per amount of COD reduced increased, relative to period 4, to 670 and 692 

mL/g COD in systems A and B, respectively. 

Gas Composition 

System A. Percent by volume CH,, CO,, and H,S showed little variation 

throughout the period of analysis at 68, 28, and 1.5 %, respectively, with standard 

deviations of 4.5, 4.4, and 0.6 %, respectively. Methane ranged from a low of 60 % to 

a high of 74 %, while CO, ranged from 21 % to 37 %. HS ranged from 0.5 % to 2.7 

% (Figure 16). 

System B. System B produced a biogas with an average composition for the 

period of analysis almost identical to System A of 68, 28, and 1.4 % CH,, CO,, and HLS, 
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Figure 16. Biogas composition over 120 days during study period for System A; 

numbers 2-5 represent time periods. 
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respectively. Methane ranged from 60 % to 76 %; CO, ranged from 22 % to 35 %; and 

H,S ranged from 0.5 % to 2.6 % (Figure 17). Ammonia (NH,) was measured and 

consistently found to be less than 0.5 ppm (part per million; volume basis), with the 

exception of two measurements at approximately l1ppm. 

Biogas versus COD Reduction 

System A. Gas produced by System A increased with increasing COD reductions 

from 6.3 L/d at 10,956 mg/d and 9.1 L/d at 13,512 mg/d, to a maximum of approximately 

14 to 16 L/d for COD reductions of 14,000 to 27,000 mg/d (Figure 18) (See Appendices 

F and G). System A gas production ranged from 577 to 684 mL gas/g COD reduced with 

the exception of period 2 when gas production was 1,099 mL gas/g COD reduced. 

Theoretically, 393 mL of CH, is produced for every gram of COD digested at 

35°C (McCarty, 1964a) (See discussion in Literature Review). Systems A and B 

produced biogas with an average percent by volume CH, content of 68 %. Therefore, 

system A produced from 389 to 462 mL CH,/g COD reduced during the study period, 

with the exception of period 2, when CH, production averaged 742 ml CH,/g COD 

reduced (Table 3). The average value of 742 mL CH,/g COD reduced indicates that CH, 

production was almost twice that which would theoretically be expected. The analysis 

of the biogas composition during period 2, and subsequent periods, showed that the gas 

collection bags were not contaminated with air (Figures 16 and 17). A _ possible 

explanation for this discrepancy lies in the different frequencies of gas collection versus 

COD measurement. Gas was collected and measured daily, whereas COD was measured 

only three times during the second period. Thus, it is possible that the limited number 
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of COD measurements do not accurately reflect the actual COD reductions during the 

second period. Actual COD reductions were apparently greater than that measured. 

System B. System B gas production increased with increasing reductions in COD 

from 7.5 L/d at 11,723 mg/d and 10.3 L/d at 14,847 mg/d, to a maximum of 

approximately 16 to 20 L/d for COD reductions of 17,000 to 29,000 mg/d (Figure 19). 

System B gas production ranged from 588 to 703 mL gas/g COD reduced with the 

exception of period 2 when 1011 mL gas/g COD reduced was produced. The average 

CH, content of gas from System B was 68 %. Therefore, System B CH, production 

ranged from 400 to 478 mL CH,,/g COD reduced, excluding period 2's high value of 687 

mL CH,/g COD reduced (Table 4). 

Again, the high value of 687 mL CH,/g COD reduced, which was observed during 

period 2, is significantly higher than the corresponding values for periods 1, 3, 4, and 5 

(Table 4). The same explanation as provided above for System A for the difference 

between actual and theoretical gas production is offered here. 

Biogas versus COD Loading 

System A. System A gas production increased with increasing COD loadings from 

6.3 L/d at 16,957 mg/d and 9.1 L/d at 23,942 mg/d to a maximum of 14 to 16 L/d at 

COD loadings of 24,000 to 44,000 mg/d (Figure 20). 

System B. System B gas production increased with increasing COD loadings from 

7.5 L/d at 16,087 mg/d and 10.3 L/d at 23,494 mg/d to a maximum of 16 to 20 L/d at 

COD loadings ranging from 25,000 to 50,000 mg/d (Figure 21). 
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Figure 21. Average gas production versus average COD loading for System B; numbers 

1-5 represent time periods. 

Vertical bar represents + one standard deviation about the mean 

™ = mean gas production 

> = maximum and minimum values 

67



Biogas versus Volume of Feed 

System A. System A gas production for periods 1 and 2 averaged 6.6 L gas/L 

feed. Gas production increased to 10 L gas/ L feed during period 3, corresponding to the 

maximum average COD loading of 43,631 mg/d. Gas production decreased to an 

average of 7.1 L gas/L feed during periods 4 and 5. (Table 3) 

System B. System B gas production followed the same pattern as System A, but 

with slightly higher gas productions. Gas production averaged 7.1 L gas/L feed during 

periods ] and 2. Gas production reached a maximum of 11.9 L gas/L feed during period 

3. During periods 4 and 5, the average was 8.5 L gas/L feed. (Table 4) 

Biogas versus Biomass 

The volatile suspended solids (VSS) in the first anaerobic reactor of each system 

was measured on three occasions. The VSS was measured on days 0, 160, and 280. The 

distribution of suspended solids and solids adhered to the foam pieces is shown in Table 

5. 

The first reactor of each system was inoculated with 5,500 mg/L VSS on day 0. 

The solids had increased to 7,900 and 21,700 mg/L VSS in reactors Al and B1, 

respectively, by day 160. Solids were measured at 14,100 and 27,800 mg/L VSS in 

reactors Al and B1, respectively, on day 280. It was assumed that the bacterial growth 

followed a linear pattern between measurements as shown in Figure 22. 

System B, while having approximately twice the concentration of biomass as 

System A, did not exhibit significantly higher reductions in COD for the COD loadings 

observed during the study period. In addition, the total amount of gas produced by both 
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Table 5. Volatile solids in reactors Al' and B1* (Diz, 1994). 

  Mass (mg) 
Suspended On Cubes Total Solids 

Reactor Al 

Day 0 22,000 0 22,000 

Day 160 8,600 23,100 31,700 

Day 280 33,300 23,000 56,300 

Reactor B] 

Day 0 22,000 0 22,000 

Day 160 9,900 76,900 86,800 

Day 280 27,300 83,700 111,000 

(1) Al = first anaerobic reactor of System A 

(2) B1 = first anaerobic reactor of System B 
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systems is not significantly different for the study period. However, gas production per 

amount of VSS averaged approximately twice as high for System A as for System B 

(Tables 3 and 4). 

System B had three times the volume of foam pieces as System A, while the foam 

pieces in System A were one-fourth the size of those in System B. The cubes in both 

reactors became completely filled and covered with biomass. There are various 

consequences of these conditions that could explain the similar performance of System 

B, with twice the biomass, to System A in terms of COD reduction and gas production. 

First, the greater volume of foam pieces in System B would tend to decrease the operating 

liquid volume of the system, hence decreasing the hydraulic retention time (HRT). 

Second, the larger individual foam pieces in System B, relative to System A, may have 

resulted in a lower rate of diffusion of substrate to the microorganisms located within the 

foam pieces of System B. This may have resulted in a correspondingly lower metabolic 

rate for those microorganisms located within the foam pieces in System B. Third, the 

higher sludge age inherent in the larger biomass population of System B, may result in 

a larger inactive fraction of biomass relative to System A. All three of these factors may 

have contributed to the similar gas productions and COD reductions observed in systems 

A and B. 

Energy Value 

The typical crab processor performs 6 to 20 cooking cycles per day, which yield 

400 to 1,000 gallons of crab processing wastewater (Boardman et al., 1993). Gas 

production in this study ranged from 6.6 to 11.9 L gas/ L feed. A crab processor 
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producing 400 gallons of waste could, therefore, theoretically produce between 353 and 

637 ft’ of gas per day at 6.6 and 11.9 L gas/L feed, respectively. This corresponds to 

212,000 and 382,000 Btu/d for 6.6 and 11.9 L gas/L feed, respectively, for a biogas of 

60 % CH, (heating value equals 600 Btu/ft’) (Wheatly, 1980). A crab processor producing 

1,000 gallons of waste could theoretically produce between 883 and 1592 ft’ of gas per 

day for conversions of 6.6 and 11.9 L gas/L feed, respectively. This corresponds to 

530,000 and 955,000 Btu/d, respectively, for a gas of 60 % CH,. 

Sixty percent methane and 6.6 L gas/L feed are the minimum average methane 

concentration and the minimum average gas production, respectively, observed during this 

study. These numbers, thereby, provide a conservative estimate of the value of the 

available biogas; whereas, 11.9 L gas/L feed is the maximum yield of biogas observed 

which might be used in predicting the most favorable scenario for utilizing the biogas. 

Phase Il: Pilot-Scale System 

System Costs 

The major components of the pilot-scale gas collection, treatment, storage, and 

utilization system are tabulated in Appendix E with the price of each item. The total cost 

of the major system components was approximately $3,800. This does not include 

miscellaneous equipment (e.g. shut-off valves, sample valves, piping, etc.) which cost an 

additional $300 to $400. Therefore, the total cost of the system was approximately 

$4,200. 
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CO, Removal 

As cited in the literature review, the removal of CO, from the biogas is generally 

only economical and necessary when a large quantity of gas is available for sale to a 

public natural gas line. The estimated cost of caustic scrubbing for CO, removal from 

the biogas produced by the pilot-scale system was calculated assuming an estimated 

wastewater treatment rate of 100 gpd and gas production of 3,000 L/d (30 % CO.) (See 

Appendix A). Carbon dioxide removal would average approximately $5.00 per day 

($1,825/yr). This expense was not justified based on the additional equipment and 

supervision that would be required. The only added benefit of CO, removal at the pilot- 

scale system would have been storage of a higher heating value of gas (1,000 versus 700 

Btu/ft’) in the existing storage tank. 

HS Removal 

The two 6 ft., three inch internal diameter columns filled with "Iron Sponge" 

successfully removed the hydrogen sulfide from more than 1,200 liters of biogas. Further 

operation of the gas system will be necessary to determine if water and/or pH adjustment 

of the "Iron Sponge” material will be necessary. Initial performance suggests that the 

moisture present in the biogas 1s sufficient to prevent dehydration of the "Iron Sponge". 

The "Smyly H,S tester" located at the base of the first column was used to monitor the 

removal of H,S from the biogas. Operation of the tester is based on exposing a paper 

disk treated with lead acetate to the gas for one minute. The absence of discoloration of 

the paper disk indicated that there was less than 4 ppm H.S in the gas leaving the first 

column. In addition, hydrogen sulfide was not detected in treated gas analyzed using gas 
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chromatography. 

The H.S scrubbing columns contained a total of 0.60 ft? of "Iron Sponge". This 

material costs $6.50 per bushel (1 bushel = approximately 1 ft’ installed). The H,S 

scrubbing columns costs $180.00 for the carbon steel pipe and fittings. Therefore, the 

complete H,S removal system cost less than $190.00 for materials. The life of the "Iron 

Sponge” material will depend on variations in the H,S concentration of the biogas and the 

volume of biogas treated. 

System Operation 

Prior to operation, the gas system was pressurized with nitrogen to check for leaks. 

The system was pressurized up to 25 psi. Several leaks were found at pipe connections 

with threaded fittings. One leak involved an improperly glued PVC fitting. Attempts 

to repair existing leaks resulted in discovery of additional leaks. It was finally determined 

that the system was capable of handling pressures up to approximately 12 psi. 

The completed gas collection and storage system was operated with virtually no 

supervision. Daily replacement of gas pump tubing was required. The use of pumps 

requiring tubing poses a problem in terms of possible breaks which may occur in the 

tubing, resulting in gas leaks. The pressure gauge indicating gas storage pressure had 

to be checked daily. This was done to determine if gas had to be vented from storage to 

prevent pressure from exceeding the predetermined safe level of 12 psi. 

Preliminary operation of the pilot-scale system at 30 gpd (December 1994) 

indicated that the system performed comparably to the laboratory-scale systems. Gas 

production averaged approximately 10 L gas/L feed. This is comparable to the maximum 
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observed laboratory-scale gas production of 11.9 L gas/L feed. The flow rate was 

decreased to approximately 16 gpd on January 27, 1995 due to a decrease in the amount 

of waste available for treatment. 

Biogas Analysis 

Biogas generated by the pilot-scale system was analyzed using the procedure 

outlined previously for gas collected from the laboratory-scale systems. The methane 

content of the biogas was 73 %. 

Biogas Combustion 

At the time the hot water heater was initially operated, a sufficient quantity of 

biogas had not been generated to displace all the nitrogen gas used to leak/pressure test 

the system. Therefore, the gas in the 120 gallon storage tank was 54 % methane as 

compared to 70 % methane in the gas being generated by the anaerobic reactors. The 

pilot gas orifice had to be enlarged slightly to obtain a stable pilot flame. To compensate 

for the lower methane content of the stored gas, the modified main gas orifice had to be 

enlarged from 0.125 in to 0.213 in. to obtain a stable flame. The required gas orifice size 

will decrease significantly (e.g. from 0.213 in. to 0.125 in.) as the methane content in the 

storage tank approaches 70 %. 

Summary of Results 

Laboratory-Scale Systems 

The biogas generated in this study by the anaerobic treatment of crab processing 
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wastewater ranged from 60 to 76 % CH,, 21 to 37 % CO,, and 0.5 to 2.7 % H,S.. 

Laboratory-scale biogas production ranged from 6.6 to 11.9 L gas/L of wastewater. Based 

on laboratory results, a small crab processor (6 cooks/day) may expect to produce from 

212,000 to 382,000 Btu/d for a gas production rate of 6.6 and 11.9 L gas/L feed, 

respectively, whereas a large crab processor (20 cooks/day) could expect between 530,000 

to 955,000 Btu/d. The range of 212,000 to 382,000 Btu/d corresponds to 212 to 382 ft*/d 

of natural gas (1000 Btu/ft’) or a savings of from $1.19 to $2.14 per day ($0.56 per 100 

ft’) (Virginia Natural Gas, 1995). The high range of expected available energy of 530,000 

to 955,000 Btu/d corresponds to 530 to 955 ft’/d of natural gas, or a savings of from 

$2.97 to $5.35 per day. 

The crab processor involved in this study used natural gas for boiler operation and 

for heating during winter months. Records obtained indicated an average monthly natural 

gas consumption to be approximately 160,000 ft* per month. At 70 % methane, biogas 

has a heating value of approximately 700 Btu/ft’ (Rohlich, 1977). Therefore, 160,000 ft’ 

of natural gas is equivalent to approximately 230,000 ft* of biogas. Based on the range 

of gas productions observed in the laboratory-scale systems (6.6 to 11.9 L gas/L feed), 

4,800 to 8,700 gallons of waste would have to be treated daily to produce enough gas to 

satisfy the crab processors monthly natural gas requirements for boiler operation and 

heating. 

As noted in the literature review, the average large crab processor may produce 

up to 1,000 gallons of wastewater per day. Under these conditions, the most attractive 

scenario for the crab processor may be to charge a fee to collect and treat wastewater 
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from nearby seafood processors. Treatment of the additional wastewater would increase 

gas production, while the fee charged for wastewater collection and treatment could be 

used to offset the cost of discharging the treated waste to the municipal sewer and the 

cost of treatment system operation. 

Pilot-Scale System 

The pilot-scale biogas system was shown to be capable of collecting, treating, 

storing, and utilizing biogas generated by the anaerobic treatment of crab processing 

wastewater, while requiring minimal supervision. Supervision included daily replacement 

of gas pump tubing and observation of accumulated gas pressure. A tubeless pump would 

be more appropriate for pumping gas. This would eliminate the need for tubing 

replacement and the possible danger associated with a break in tubing. 

Intermittent pumping of biogas from the reactor headspace using a pump 

controlled by a pressure switch was an effective means of transferring biogas from the 

reactors, through the H,S scrubbing columns, and into the gas storage tank. The 

maximum pressure allowed to accumulate in the reactor headspace (3 in. of water column 

pressure) minimized effects of pressure changes on wastewater flow through the waste 

treatment system. 

Pressurization of the biogas demanded that additional time and care be taken in 

the construction of the gas collection system to insure that all pipe fittings were properly 

sealed. PVC connections proved to be more reliable than threaded carbon steel and 

galvanized steel fittings. However, steel components were required near H,S scrubbing 

columns due to heat produced by the reaction of H,S with Fe,O, . 
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Only a minor modification of the natural gas hot water heater burner assembly was 

necessary to combust the biogas. Modification consisted of enlarging the existing main 

gas orifice to accommodate the lower heating value and flame velocity of the treated 

biogas. The pilot gas orifice was also enlarged slightly to produce a stable pilot flame. 

The required enlargement of the main gas orifice was larger than that originally calculated 

(0.213 in. vs. 0.125 in.) due to the presence of nitrogen used to test the system for leaks. 

Biogas production from the pilot-scale system (10 L gas/L feed; 73 % CH,) at a 

feed rate of 30 gpd was comparable to the maximum average gas production from the 

laboratory-scale systems (11.9 L gas/L feed). The gas production rate of 10 L gas/L feed 

corresponds to 1,340 ft* of biogas per 1,000 gallons of waste treated; assuming that the 

crab processor produces and treats 1,000 gallons of wastewater per day. This is 

equivalent to 936,000 Btu/d or $6.25 in terms of the cost of an equivalent heating value 

of natural gas. 

Pilot-scale gas production estimates were made based on preliminary results 

obtained during winter months when the crab processor was not receiving crabs on a 

regular basis. Because of this, the pilot-scale treatment system suffered from shortages 

in wastewater. The feed rate had to be adjusted accordingly to maintain a constant supply 

of wastewater to the anaerobic reactors. Further data on gas production under conditions 

of prolonged system operation (with an ample supply of wastewater) will have to be 

collected to determine if pilot-scale system gas production is similar to gas production 

observed in the laboratory-scale systems. Further operation of the pilot-scale system will 

also be necessary to determine the life of the H,S scrubbing columns and the possible 

78



difficulties associated with removal and regeneration of the "Iron Sponge". 
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CHAPTER V. CONCLUSIONS 

The following conclusions can be drawn from this research study with crab cooker 

wastewater: 

1. The biogas generated by the anaerobic treatment of the wastewater ranged from 60 

to 76 % CH,, 21 to 37 % CO,, and 0.5 to 2.7 % HS with an approximate heating value 

of 700 Btu/ft’. 

2. Laboratory-scale biogas production ranged from 6.6 to 11.9 L gas/L of wastewater for 

COD reductions ranging from 60 to 80 % at loadings of 16,000 to 50,000 mg/d. 

3. Based on laboratory-scale biogas production, a crab processor treating 400 gallons of 

wastewater per day (6 cooks/day) could expect to produce 212,000 to 382,000 Btu/d at 

a gas production rate of 6.6 to 11.9 L gas/L feed (60 % CH,), respectively. A crab 

processor treating 1,000 gallons of wastewater per day (20 cooks/day) could expect to 

produce 530,000 to 955,000 Btu/d at a gas production rate of 6.6 to 11.9 L gas/L feed (60 

% CH,), respectively. 

4. A pilot-scale biogas collection and utilization system was successfully demonstrated. 

Biogas production was approximately 10 L gas/L feed and the biogas contained 73 % 

CH,. COD reductions of approximately 60 % were observed for feed rates ranging from 

15 to 30 gpd. 

5. Anaerobic treatment of 4,800 to 8,700 gallons of wastewater per day would provide 

80



sufficient quantities of biogas (70 % CH,) to eliminate the natural gas requirements 

(160,000 ft® per month) of one of the largest crab processors in Virginia. Therefore, 

collection and utilization of the biogas from an anaerobic system may be a viable option 

provided that sufficient quantities of wastewater can be collected, a fee can be charged 

for treating wastewater from other seafood processors, and sufficient space is available 

for construction of the waste treatment system. 
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Appendix B: Gas composition data from lab System A 

Raw A‘1 

DATE %CH4 %CO2 %H2S 
03/22/94 74.2 34.5 1.28 
04/03/94 66 27.5 1.5 
04/04/94 70.9 29.5 1.72 
04/05/94 66.8 30.2 1.94 
04/06/94 64.8 28.1 1.87 
04/07/94 71.6 31.3 2.68 
04/08/94 61 29.3 2.7 
04/09/94 
04/10/94 65.4 31.8 1.69 
04/11/94 64 29 1.52 
04/12/94 60.1 36.8 2.13 
04/17/94 63.4 35.2 1.51 
04/26/94 60.9 34.2 2.05 
04/27/94 59.7 33.8 2.11 
05/03/94 67.3 28.8 1.37 
05/04/94 64.9 29.4 1.55 
05/10/94 69.8 26.2 1.44 
05/11/94 69.4 26.4 1.44 
05/21/94 74 21.3 0.8 
05/27/94 71.3 23.4 0.85 * 
06/03/94 74.1 23.3 0.74 ** 
06/12/94 74.1 20.8 0.53 ™* 
06/19/94 70 23.3 0.58 ** 
06/26/94 66.7 26.7 1.34 ™* 
07/04/94 70.7 22.4 0.89 ** 
07/11/94 67.6 26.9 1.37 ™* 
07/18/94 66.1 24.8 1.22 ** 

mean 67.5 28.3 1.5 

minimum 59.7 20.8 0.5 

maximum 74.2 36.8 2.7 

* H2S % based on STD run 5/21/94 

** H2S % based on STD run 5/12/94 

RSD < 2% 
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Appendix B cont.: Gas composition data from lab System 

Raw B1 

DATE %CH4 %CO2 %H2S %NH3 

03/22/94 76.1 35.1 1.31 

04/03/94 65 26.9 1.58 

04/04/94 72.8 28.6 1.7 

04/05/94 63.5 28.3 1.86 

04/06/94 69 28.4 1.94 

04/07/94 67.9 28.9 2.45 

04/08/94 62.2 28.1 2.57 

04/09/94 66.2 29.5 1.43 

04/10/94 67.5 32.6 1.72 

04/11/94 

04/12/94 64.6 33 1.74 

04/17/94 66.1 32.5 1.37 

04/26/94 60.1 31.9 1.82 

04/27/94 62.3 32.1 1.96 @1ppm 

05/03/94 67.2 27.9 1.34 <0.5ppm 

05/04/94 65.3 30.2 1.6 

05/10/94 73 23.6 1.11 <0.5ppm 

05/11/94 73 23.3 1.03 

05/21/94 67.4 21.5 0.77 <0.5ppm 
05/27/94 74.3 23.6 0.68 @1ppm * 
06/03/94 14.8 22.5 0.68 “* 

06/12/94 72.9 22.7 0.62 <0.5ppm *™* 

06/19/94 67.3 27 1.23 <0.5ppm ™ 

06/26/94 65.8 27.7 1.54 <0.5ppm ** 

07/04/94 70 23.6 0.98 <0.5ppm ** 

07/11/94 67.8 27.8 1.23 “* 

07/18/94 65.3 24.7 1.19 “* 

mean 68.0 27.8 1.4 0.61 

minimum 60.1 21.5 0.6 0.5 

maximum 76.1 35.1 2.6 1 

* H2S % based on STD run 5/21/94 

** H2S % based on STD run 5/12/94 

RSD < 2% 
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Appendix C: Modification of natural gas hot water heater 

Modification of the natural gas hot water heater to convert from natural gas to biogas 

involved enlargement of the main gas orifice. 

The following equation was used for estimating the required gas orifice enlargement 
(Jiang et al., 1987): 

(d,/d,) = [(S,/S,)°*"] [(H,/H,)”"] [21] 

d = gas orifice diameter (cm) 

S = specific gravity of gas 
H = energy value of gas (kJ/m’) 
subscript 1 = biogas 
subscript 2 = other gases 

A sample of biogas from the pilot-scale system was analyzed to determine CH, content 

(approximately 70 %). The existing gas orifice measured 0.9375 in. The required gas 

orifice size of 0.126 in. was calculated from the above equation using the following 

information. 

CH, content = 70 % 

d, = 0.9375 in. 
S, = 0.85 
S, = 0.55 
H, = 700 Btu/ft’ 
H, = 1012 Btu/ft’ 

The required gas orifice enlargement was also estimated using the gas orifice multiplier 

for 70 % CH, found in Table 1. The modified gas orifice size of 0.124 in. was calculated 

using the following information. 

Orifice multiplier (Table 1) = 1.32 
d, = 0.9375 in. 
d, = (0.9375)(1.32) = 0.124 in. 

The actual gas orifice modification was carried out using successive enlargements based 

on drill bit sizes available. At the time the modified hot water heater was initially 

operated, a sufficient quantity of biogas had not been generated to displace all the 

nitrogen gas used to pressurize the system. Therefore, the gas in the 120 gallon storage 

tank was 54 % methane as compared to 70 % methane gas being generated by the 
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anaerobic reactors. The pilot gas orifice had to be enlarged slightly to obtain a stable 

pilot flame. The main gas orifice was then enlarged to 0.213 in. to obtain a stable flame. 

The required gas orifice size will decrease significantly (e.g. 0.124 in.) as the methane 

content in the storage tank approaches 70 %. 
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Appendix D: Cost Analysis of Carbon Dioxide Removal 

by Absorption into Sodium Hydroxide Solution 

The estimated cost of CO, removal from the biogas was calculated assuming pilot-scale 

wastewater treatment of 100 gallons per day (gal./day) and 3000 liters of biogas (30 % 

CO.) per day (L gas/day). Gas production was estimated based on initial laboratory-scale 

system gas production of approximately 30 L gas/1 gal. of wastewater treated. 

Removal of CO, from biogas by absorption of the CO, gas into a caustic solution is 

controlled by the following reactions: 

COx  *  COr00) K = 107° at 25°C 

COx + HO * HCO, K = 10° 

H,CO,; = H + HCO, K = 10° 
HCO, = CO + H K = 1073 

With the addition of 2 moles of OH per mole of CO.,, (or, in effect, the removal of two 

moles of H” per mole of CO,) the above reactions are forced to the right. The formation 

of CO,” is favored: the result is the transfer of CO, from the gas phase to liquid phase. 

The removal of CO, from biogas using a NaOH solution occurs based on the following 

reaction: 

2NaOH + CO, # Na,CO, + H,O 

Based on stoichiometry, two moles of NaOH would be required for every mole of CO.,. 

Therefore, approximately 3000 grams of NaOH would be require per day, costing 

approximately $5.00 per day (based on price quote by Allgood Chemical Co.; January 

1995). 
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Appendix E: Cost of materials used for construction of the pilot scale system 

Item description: Price ($): 

Masterflex gas/liquid pump (6-600 rpm, L/S, variable speed) 495.00 

25 psi continuous/40 psi intermittent 

Pump head (quick load; stainless steel rotor) 140.00 

Pump tubing (A60G; size 24; 50 ft.) 85.00 

Solenoid valve (ASCO 82638232 brass) 56.58 

Pressure switch (ASCO SA42D, 0-12 in w.c.) 253.00 

Transducer (ASCO TA40A11, 0-12 in. w.c.) 95.50 

Carbon steel pipe (S40 stl pipe for H2S columns) 180.80 

H2S tester (Smyly; Connelly GPM) 75.00 

Mass flow meter (Omega FMA 869-V; 0-5 SLM; N2) 834.00 

Power supply (Omega +/- 15 VDC; 200 mA) 95.00 

Batch controller (Omega DPF66-A) 435.00 

AC noise filter (Radio Shack 26-1365A) 31.34 

Gas storage tank (14355 30 in. x 46 in. vertical air receiver; 200 psi) 425.00 

Pressure gauge (2.5 in./0.25 in.; lm 0-60 psi) 35.65 

Pressure relief valve (3-50 psi) 19.90 
Natural gas regulator (Fisher R522 5-6 in. H20) 56.20 

Flash arrester (Scott M85 #55854) 106.00 

Hot water heater (30 gal, natural gas) 195.50 

Temperature/Pressure relief valve 4.96 

Stainless steel tubing (8 ft. x 0.25 in. internal diameter) 28.76 

Iron Sponge (2 bushel bag) 13.04 
Nitrogen (2 cylinders) 80.00 

Total: $ 3741.23 
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Appendix E cont.: Cost of materials used for construction of the pilot scale system 

Miscellaneous: 

Gas shut-off valves 

Sample valves 
Drain valves 

In-line shut-off valves 

Water heater insulation 

PVC: 

0.5 in. pipe ($/ft.) 
elbows 

T's 

Carbon steel: 

0.5 in. pipe ($/ft.) 

elbows 

T's 

unions 

No.: 

105 

W
a
h
 

un 
sb 

50 

26 

20 

Unit price ($): 

3.00 

15.00 

3.00 

4.50 

15.00 

1.00 

0.20 

0.30 

0.20 

0.50 

0.50 

2.00 

Total: 

42.00 

75.00 

12.00 

27.00 

45.00 

50.00 

5.20 

2.10 

4.00 

3.00 

5.50 

16.00 

$ 286.80



Appendix F 

Gas Production (L/d) 
System A System B 

Period 1 

Minimum 10.10 4.50 

25th Percentile 13.05 13.70 

50th Percentile 16.30 17.70 

75th Percentile 18.55 21.35 

Maximum 20.10 25.50 

Period 2 

Minimum 4.60 5.10 

25th Percentile 12.30 13.95 

50th Percentile 14.90 15.65 

75th Percentile 19.53 20.48 

Maximum 24.10 27.80 

Period 3 

Minimum 3.00 3.00 

25th Percentile 12.40 16.80 

50th Percentile 16.60 22.40 

75th Percentile 17.35 23.38 

Maximum 21.55 28.30 

Period 4 

Minimum 1.20 1.00 

25th Percentile 3.80 6.60 

50th Percentile 7.40 8.10 

75th Percentile 8.50 8.70 

Maximum 11.50 13.00 

Period 5 

Minimum 2.00 4.40 

25th Percentile 8.65 9.90 

50th Percentile 9.80 10.50 

75th Percentile 10.40 11.00 

Maximum 12.70 12.10 
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Appendix G: 

System A 

Period 1 

Mean 15.8364 

Standard Error 1.02401 

Median 16.3 

Mode 19.5 

Standard Deviation 3.39625 

Variance 11.5345 

Kurtosis -1.1348 

Skewness -0.3724 

Range 10 

Minimum 10.1 

Maximum 20.1 

Sum 174.2 

Count 11 

Confidence Level(0.950000) 2.00702 

Period 2 

Mean 15.1917 

Standard Error 1.12377 

Median 14.9 

Mode 13.7 

Standard Deviation 5.50533 

Variance 30.3086 

Kurtosis -0.5655 

Skewness -0.0933 

Range 19.5 

Minimum 4.6 

Maximum 24.1 

Sum 364.6 

Count 24 

Confidence Level(0.950000) 2.20255 
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System B 

Period 1 

Mean 16.8591 

Standard Error 1.99892 

Median 17.7 

Mode NA 

Standard Deviation 6.62966 

Variance 43.9524 

Kurtosis -0.4374 

Skewness -0.4604 

Range 21 

Minimum 4.5 

Maximum 25.5 

Sum 185.45 

Count 11 

Confidence Level(0.950000) 3.91781 

Period 2 

Mean 17.0417 

Standard Error 1.09347 

Median 15.65 

Mode 16 

Standard Deviation 5.35691 

Variance 28.6964 

Kurtosis 0.06497 

Skewness 0.33075 

Range 22.7 

Minimum 5.1 

Maximum 27.8 

Sum 409 

Count 24 

Confidence Level(0.950000) 2.14317



  

  

Period 3 

Mean 14.6532 

Standard Error 0.92263 

Median 16.5 

Mode 3.6 

Standard Deviation 5.21918 

Variance 27.2398 

Kurtosis 0.27033 

Skewness -1.109 

Range 21.55 

Minimum 3 

Maximum 21.55 

Sum 454.25 

Count 31 

Confidence Level(0.950000) 1.83725 

Period 4 

Mean 6.31778 

Standard Error 0.3962 

Median 7 

Mode 7.9 

Standard Deviation 2.7162 

Variance 7.37774 

Kurtosis -0.9213 

Skewness -0.4687 

Range 11.5 

Minimum 1.2 

Maximum 11.5 

Sum 284.3 

Count 45 

Confidence Level(0.950000) 0.7936 
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Period 3 

  

Mean 19.4494 

Standard Error 1.18429 

Median 22 

Mode 42 

Standard Deviation 6.69936 

Variance 44 8814 

Kurtosis 0.78586 

Skewness -1.3239 

Range 28.3 

Minimum 3 

Maximum 28.3 

Sum 602.93 

Count 31 

Confidence Level(0.950000) 2.35831 

Period 4 

Mean 7.54468 

Standard Error 0.32783 

Median 8.1 

Mode 8.5 

Standard Deviation 2.24747 

Variance 5.05111 

Kurtosis 1.81607 

Skewness -0.7942 

Range 12 

Minimum ] 

Maximum 13 

Sum 354.6 

Count 47 

Confidence Level(0.950000) 0.64253



  

Period § 

Mean 9.05556 

Standard Error 0.47305 

Median 9.7 

Mode 9.8 

Standard Deviation 2.54745 

Variance 6.48949 

Kurtosis 1.27098 

Skewness -1.3975 

Range 12.7 

Minimum 2 

Maximum 12.7 

Sum 244.5 

Count 27 

Confidence Level(0.950000) 0.96088 

109 

Period 5 
  

Mean 

Standard Error 

Median 

Mode 

Standard Deviation 

Variance 

Kurtosis 

Skewness 

Range 

Minimum 

Maximum 

Sum 

Count 

Confidence Level(0.950000) 

10.2724 

0.2695 

10.5 

10.5 

1.45133 

2.10635 

9.24767 

-2.587]) 

7.7 

4.4 

12.1 

297.9 

29 

0.52822
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