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Critical behavior at m-axial Lifshitz points: Field-theory analysis and e-expansion results
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The critical behavior ofd-dimensional systems with ann-component order parameter is reconsidered at
(m,d,n)-Lifshitz points, where a wave-vector instability occurs in anm-dimensional subspace ofRd. Our aim
is to sort out which ones of the previously published partly contradictorye-expansion results to second order
in e541m/22d are correct. To this end, a field-theory calculation is performed directly in the position space
of d541m/22e dimensions, using dimensional regularization and minimal subtraction of ultraviolet poles.
The residua of the dimensionally regularized integrals that are required to determine the series expansions of
the correlation exponentsh l2 andh l4 and of the wave-vector exponentbq to ordere2 are reduced to single
integrals, which for generalm51, . . . ,d21 can be computed numerically, and for special values ofm,
analytically. Our results are at variance with the original predictions for generalm. For m52 andm56, we
confirm the results of Sak and Grest@Phys. Rev. B17, 3602 ~1978!# and Mergulha˜o and Carneiro’s recent
field-theory analysis@Phys. Rev. B59, 13 954~1999!#.
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I. INTRODUCTION

A Lifshitz point1–4 is a critical point at which a disordere
phase, a spatially homogeneous ordered phase, and a
tially modulated phase meet. In the case of ad-dimensional
system with ann-component order parameter, it is called
(m,d,n)-Lifshitz point ~or m-axial Lifshitz point! if a wave-
vector instability occurs in anm-dimensional subspace. Suc
multiphase points are known to occur in a variety of distin
physical systems, including magnetic ones,5,6 ferroelectric
crystals,7 charge-transfer salts,8,9 liquid crystals,10 systems
undergoing structural phase transitions11 or having domain-
wall instabilities,12 and theANNNI model.13,14 A survey
covering the work related to them till 1992 has been given
Selke,4 which complements and updates an earlier review
Hornreich.3 Recently there has also been renewed interes
various aspects of the problem,15–19 including the effects of
surfaces on the critical behavior at Lifshitz points.20–22

From a general vantage point, critical behavior at Lifsh
points is an interesting subject in that it presents clear
simple examples ofanisotropic scale invariance. Epitomized
also by dynamic critical phenomena near therm
equilibrium,23 and known to occur as well in other stat
equilibrium systems~e.g., uniaxial dipolar ferromagnets!,
this kind of invariance has gained increasing attention
recent years since it was found to be realized in many n
equilibrium systems such as driven diffusive systems24 and
in growth processes.25

Systems at Lifshitz points are good candidates for stu
ing the general aspects of anisotropic scale invariance.26,27

For one thing, the continuum theories representing the
versality classes of systems with short-range interaction
(m,d,n)-Lifshitz points are conceptually simple; secon
they involve the degeneracym as a parameter, which ca
easily be varied between 1 andd. A thorough understanding
PRB 620163-1829/2000/62~18!/12338~12!/$15.00
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of critical behavior at such Lifshitz points is clearly ver
desirable.

The problem has been studied decades ago by mean
an e expansion about the upper critical dimension1,28–30

d* ~m!541
m

2
, m<8. ~1!

Other investigations employed the dimensionality expans
about the lower critical dimension31 d* (m)521m/2 for n
>3, or the 1/n expansion.2,32,33 Unfortunately, the
e-expansion results to ordere2 one group of authors1,28,29

obtained for the correlation exponentsh l2 and h l4 and the
wave-vector exponentbq are in conflict with those of Sak
and Grest30 for the casesm52 andm56.

In order to resolve this long-standing controversy, Me
gulhão and Carneiro17,18 recently presented a reanalysis
the problem based on renormalized field theory and dim
sional regularization. Exploiting the form of the resultin
renormalization-group equations, they were able to der
various~previously given! general scaling laws one expec
to hold according to the phenomenological theory of scali
However, their calculation of critical exponents was limite
in a twofold fashion: They treated merely the special ca
m52 andm56, in which considerable simplifications oc
cur. Their results forh l2 andh l4 to ordere2, agree with Sak
and Grest’s30 but disagree with Mukamel’s.28 Second, the
exponentbq ~an independent exponent that does not follo
from these correlation exponents via a scaling law! was not
considered at all by them. Thus it is an open quest
whether Sak and Grest’s or Mukamel’sO(e2) results forbq
with m52 andm56 are correct. Furthermore, for other va
ues ofm, the publishedO(e2) results28,29 for the exponents
h l2 , h l4, andbq remain unchecked. It is the purpose of th
12 338 ©2000 The American Physical Society
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PRB 62 12 339CRITICAL BEHAVIOR AT m-AXIAL LIFSHIT Z . . .
work to fill these gaps and to determine thee expansion of
the critical exponentsh l2 , h l4, andbq for general valuesof
m to ordere2.

Technically, we employ dimensional regularization
conjunction with minimal subtraction of poles ine. This way
of fixing the counterterms appears to us somewhat more
venient than the use of normalization conditions~as was
done in Refs. 17 and 18!. In order to overcome the rathe
demanding technical challenges, we have found it usefu
work directly in position space. Thus the Laurent expans
of the distributions to which the Feynman graphs of t
primitively divergent vertex functions correspond in positi
space must be determined to the required order ine.

The source of the technical difficulties is that these Fe
man graphs, at criticality, involve a free propagatorG(x)
which is ageneralized homogeneousrather than a homoge
neous function, because of theanisotropicscale invariance
of the free theory. While such a situation is encountered a
in other cases of anisotropic scale invariance, the sca
function associated withG(x) turns out to be a particularly
complicated function in the present case of a gene
(m,d,n)-Lifshitz point. ~For general values ofm, it is a sum
of two generalized hypergeometric functions.!

In the next section, we recall the familiar continuu
model describing the critical behavior at a (m,d,n)-Lifshitz
point and discuss its renormalization. In Sec. III details
our calculation are presented, and our results for the re
malization factors are derived. Then renormalization-gro
equations are given in Sec. IV, which are utilized to dedu
the general scaling form of the correlation functions, to ide
tify the critical exponents, and to derive their scaling laws
well as the anticipated multi-scale-factor universality. This
followed by a presentation of oure-expansion results for the
critical exponentsh l2 , h4l , and bq . Section V contains a
brief summary and concluding remarks. Finally, there
two Appendixes to which some computational details ha
been relegated.

II. THE MODEL AND ITS RENORMALIZATION

We consider the standard continuum model represen
the universality class of a (m,d,n)-Lifshitz point with the
Hamiltonian

H@f#5
1

2E ddxH r0~¹ if!21s0~D if!2

1~¹'f!21t0f21
u0

12
ufu4J . ~2!

Here f(x)5(f1 , . . . ,fn) is an n-component order-
parameter field. The coordinatexPRd has anm-dimensional
parallel component,xi , and a (d2m)-dimensional perpen
dicular one,x' . Likewise,¹ i and¹' denote the associate
parallel and perpendicular components of the gradient op
tor ¹, while D i means the Laplacian¹ i

2 . At the level of
Landau theory, the Lifshitz point is located atr05t050.

The Hamiltonian is invariant under the transformation

xi→a xi , x'→x' , f→a2m/2f,

s0→a4s0 , r0→a2r0 , t0→t0 ,
n-

to
n

-

o
g

al

f
r-
p
e
-
s
s

e
e

g

a-

u0→amu0 . ~3!

Thus, appropriate invariant interaction constants
u0s0

2m/4, r0s0
21/2, andt0, and the dependence on the pa

allel coordinates is through the invariant combinati
s0

21/4xi .
Dimensional analysis yields the dimensions@ #:

@xi#5@s0#1/4m21/2, @x'#5m21,

@t0#5m2, @r0#5@s0#1/2m,

@u0#5@s0#m/4me with e5d* ~m!2d,

@f i~x!#5@s0#2m/8m (d222m/2)/2, ~4!

wherem is an arbitrary momentum scale. Let

Gi 1 , . . . ,i N
(N) ~x1 , . . . ,xN!5^f i 1

~x1! . . . f i N
~xN!&cum ~5!

denote the connectedN-point correlation functions~cumu-
lants! and G i 1 , . . . ,i N

(N) (x1 , . . . ,xN) denote the correspondin

vertex functions. Using power counting one concludes t
the ultraviolet ~uv! singularities of these functions can b
absorbed through the reparametrizations

f5Zf
1/2f ren, ~6a!

t02t0c5m2Ztt, ~6b!

s05Zss, ~6c!

u0s0
2m/4Ad,m5meZuu, ~6d!

~r02r0c!s0
21/25m Zrr, ~6e!

where

Ad,m5Sd2mSm5
4 pd/2

GS d2m

2 DG~m/2!

~7!

is a convenient normalization factor we absorb in the ren
malized coupling constant. Here

SD5
2 pD/2

G~D/2!
~8!

is the surface area of aD-dimensional unit sphere.
The quantitiest0c and r0c correspond to shifts of the

Lifshitz point. In our perturbative approach based on dime
sional regularization they vanish. If we wanted to regular
the uv singularities via a cutoffL ~restricting the integrations
over parallel and perpendicular momenta byuqiu<s0

21/4AL
and uq'u<L), they would be needed to absorb uv singula
ties quadratic and linear inL, respectively.

In the renormalization scheme we use, the renormal
tion factorsZf , Zs , Zt , Zr , andZu , for given values of the
parameterse, n, and m, depend just on the dimensionles
renormalized coupling constantu; that is, they are indepen
dent of s, t, and r. This follows from the fact that the
primitive divergences of the momentum-space vertex fu
tions G̃ (2)(q) and G̃ (4)(q1 , . . . ,q1), at any order of
u0s0

2m/4, are poles ine whose residua depend linearly o
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q'
2 , r0qi

2 , s0qi
4 , andt0 in the case of the former and ar

independent of these momenta and mass parameters i
case of the latter. Subtracting these poles minimally as u
implies that these renormalization factors differ from
through Laurent series ine:

Zi511 (
p51

`

ai,p
(r )~u;m,n!e2p

511(
r 51

`

(
p51

r

ai,p
(r )~m,n!

ur

ep
, i5f,u,t,s,r. ~9!

III. OUTLINE OF COMPUTATION AND PERTURBATIVE
RESULTS

We compute the leading nontrivial contributions to the
renormalization factors. In the cases ofZf , Zs , and Zr ,
whoseO(u) contributions vanish, these are of orderu2; for
Zu andZt they are of first order inu.

To this end we expand about the Lifshitz point, using t
free propagator

G~x!5E
q

ei (qi•xi1q'•x')

s0qi
41q'

2
. ~10!

Here the~dimensionally regularized! momentum-space inte
gral is defined through

E
q

. . . 5E
qi
E

q'

. . . 5E
Rm

dmqi

~2p!mERd2m

dd2mq'

~2p!d2m
. . . .

~11!

Let r i[uxiu and r'[ux'u. Then the free propagator can b
written in the scaling form

G~x!5r'
221es0

2m/4F~s0
21/4r ir'

21/2! ~12!

with

F~y![F~y;m,d!5E
q

ei (qi•y1q'•e')

qi
41q'

2
, ~13!

whereyPRm is a vector of lengthy and arbitrary orienta-
tion, while e' means the unit vectorx' /r' . Note that the
scaling functionF depends parametrically onm andd. For
the sake of brevity, we will usually suppress these variab
writing F(y;m,d) only when special values ofm andd are
chosen or when we wish to stress the dependence on t
parameters.

The integration overq' in Eq. ~13! yields

F~y!5~2p!2(d2m)/2E
qi

qi
d2m22K (d2m)/221~qi

2!ei y•qi.

~14!

Upon introducing spherical coordinatesq5uqiu and
V (m)5(u1 , . . . ,um21) for qi , with dV (m)

5sinm22um21dum21dV(m21), one can perform the angular in
tegrations. This gives
the
al

e

e

s,

se

F~y!5
y2(m22)/2

~2p!d/2 E0

`

dq q22eJ(m22)/2~qy!K (d2m)/221~q2!.

~15!

The integral remaining in Eq.~15! can be expressed as
combination of generalized hypergeometric functions1F2
~see Appendix A!. For special values ofm andd, the result
reduces to simple expressions, which we have gathere
Appendix A.

~Gs,w!5„r'
2s(22e)Fs~r ir'

21/2!,w…

5E ddxr'
2s(22e)Fs~r ir'

21/2!w~x!

5E dd2mx'r'
2s(22e)1m/2cs~x'!, ~16!

where the functions cs(x')[cs(r' ,V') are defined
through

cs~x'!5E dmxiF
s~r i!w~r iAr',V i ;r' ,V'!. ~17!

The final result in Eq.~16! is the linear functional
(r'

2s(22e)1m/2,cs). Generalized functions such asr'
( . . . )

and their Laurent expansions are discussed in Ref. 34.
c(x')[c(r' ,V') be a smooth (C`) test function onRd2m

and

c̄V'~r'![
1

Sd2m
E dV'c~r' ,V'! ~18!

its spherical average. Then we have

~r'
2s(22e)1m/2,c![E dd2mx'r'

2s(22e)1m/2c~x'!

5Sd2mE
0

`

dr r 322s1e(s21)c̄V'~r !

5Sd2m~r 1
322 s1e(s21),c̄V'!. ~19!

Herer 1
l is a standard generalized function in the notation

Ref. 34. Its Laurent expansion about the pole atl52p5
21,22, . . . reads

r 1
l 5

~21!p21

~p21!!

d (p21)~r !

l1p
1r 1

2p1O~l1p!, ~20!

where the generalized functionr 1
2p is defined by
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„r 1
2p ,w~r !…5E

0

`

dr r 1
2pFw~r !2 (

j 50

p22
r j

j !
w ( j )~0!

2
r p21

~p21!!
w (p21)~0!u~12r !G . ~21!

Using these results, the leading terms of the Laurent
pansions of (Gs,w) can be determined in a straightforwa
manner. However, it should be noted that the functio
cs(x') introduced in Eq.~17! are nota priori guaranteed to
have the usually required strong properties of test functi
~continuous partial derivatives of all orders and sufficien
fast decay asux'u→`). In particular, one may wonde
whether the dependence on the variabler i Ar' of w in Eq.
~17! does not imply that derivatives such as¹'cs become
singular at the origin. Closer inspection reveals that this
not the case since the problematic term;r'

21 involves the
vanishing angular integral*dV i xi w( . . . ).

One obtains

~G2,w!

Sd2m
5Fc2~0!

e
1„r 1

21 ,c2
V'~r !…1O~e!G ~22!

and

~G3,w!

Sd2m
5Fc3

V'9 ~0!

4 e
1„r 1

23 ,c3
V'~r !…1O~e!G . ~23!

From its definition in Eq.~17! we see that the residuum
c2(0) on the right-hand side of Eq.~22! reduces to a simple
expression}w(0). We thus arrive at the expansion

G2~x!

Ad,m
5

J0,2~m,d* !

e
d~x!1O~e0!, ~24!

whereJ0,2 is a particular one of the integrals

Jp,s~m,d![E
0

`

ym211pFs~y;m,d!dy. ~25!

In order to convert the Laurent expansion~23! into one

for G3(x), we must computec3
V'9 (0). This in turn requires

the calculation of the following angular average:

]2

]r 2 w~r iAr ,V i ;r ,V'!
V i ,V'U

r 50
5

2

4!
~xi•¹ i!

4w~0!
V i ,V'

1~e'•¹'!2 w~0!
V i ,V'

5
r i

4~n i
2w!~0!

4m~m12!
1

~n'w!~0!

d2m
.

~26!
Using this in conjunction with Eq.~23! gives

G3~x!

Ad,m
5

J4,3~m,d* !n i
2d~x!

16m~m12!e
1

J0,3~m,d* !n'd~x!

4~d* 2m!e
1O~e0!.

~27!
x-

s

s

is

2~¹ iG* ¹ iG!~x!5s0
2~m12!/4r'

211eJ~s0
21/4r ir'

21/2!,
~28!

where

J~y![J~y;m,d!5E
q

qi
2ei (qi•y1q'•e')

~qi
41q'

2 !2
~29!

is the analog of the scaling functionF(y) @cf. Eq. ~12!#.
Proceeding as in the case of the latter, one obtains

J~y!5
1

2~2p!(d2m)/2Eqi

qi
d2m22K (d2m24)/2~qi

2!ei y•qi

5
y2(m22)/2

2~2p!d/2E0

`

dq q22eJ(m22)/2~qy!K (d2m24)/2~q2!.

~30!

The remaining single integral can again be expressed
terms of generalized hypergeometric functions. The co
sponding general expression, as well as the simpler one
which this reduces for special values ofm and d, may be
found in Appendix A!.

D~x!52G2~x!~“ iG*“ iG!~x!. ~31!

whose pole term can be worked out in a straightforward fa
ion by the techniques employed above. One finds

2G2~x!~“ iG*“ iG!~x!

Ad,m
5

I 1~m,d* !n id~x!

4 m e
1O~e0!

~32!

with

I 1~m,d![E
0

`

ym11F2~y;m,d!J~y;m,d!dy. ~33!

Let us introduce coefficientsbi(m) for the leading non-
trivial contributions to the renormalization factorsZi , writ-
ing these in the form

Zu511bu~m!
n18

9

u

e
1O~u2!, ~34!

Zt511bt~m!
n12

3

u

e
1O~u2!, ~35!
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and

Z§511b§~m!
n12

3

u2

e
1O~u3!, §5f,s,r. ~36!

From the pole terms ofG2(x2y) given in Eq.~24! one
easily deduces that

bu~m!53bt~m!5
3

2
J0,2~m,d* !. ~37!

The pole terms proportional ton'd(x), n i
2d(x), and

n id(x) of the two-loop graphs considered above are
sorbed by counterterms involving the renormalization fact
Zf , Žs[ZsZf , andŽr[ZrZfZs

1/2, respectively. Utilizing
the Laurent expansions~27! and ~31!, one finds that their
coefficients are given by

bf~m!52
1

24

1

d* 2m

J0,3~m,d* !

Ad* ,m

, ~38!

b̌s~m!5
1

96

1

m~m12!

J4,3~m,d* !

Ad* ,m

, ~39!

and

b̌r~m!5
1

8m

I 1~m,d* !

Ad* ,m

. ~40!

The coefficientsbs andbr are related to these via

bs~m!5b̌s~m!2bf~m! ~41!

and

br~m!5b̌r~m!2
1

2
bf~m!2

1

2
b̌s~m!. ~42!

IV. RENORMALIZATION-GROUP EQUATIONS AND
e-EXPANSION RESULTS

The reparametrizations~6! yield the following relations
between bare and renormalized correlation and vertex fu
tions:

G(N)~xi ,x'!5Zf
N/2Gren

(N)~xi ,x'!, ~43a!

G (N)~xi ,x'!5Zf
2N/2G ren

(N)~xi ,x'!, ~43b!

wherexi andx' stand for the set of all parallel and perpe
dicular coordinates on whichG(N) andG (N) depend. For con-
ciseness, we have suppressed the tensorial indicesi 1 , . . . ,i N
of these functions and will generally do so below.

Upon exploiting the invariance of the bare functions u
der a changem→m̄( l )5m l of the momentum scale in th
usual fashion, one arrives at the renormalization-group eq
tions

FDm1
N

2
hfGGren

(N)50, ~44!
-
s

c-

-

a-

FDm2
N

2
hfGG ren

(N)50 ~45!

with

Dm5m ]m1bu]u2hss]s2~21ht!t]t2~11hr!r]r ,
~46!

where the beta and eta functions are defined by

bu[m]mu0u52u@e1hu~u!# ~47!

and

hi[m]mu0 ln Zi , i5f,s,r,t,u, ~48!

respectively. Here]mu0 means a derivative at fixed bare var
ablesm0 , r0 , s0, andt0. Owing to our use of the minima
subtraction procedure, the functionshi can be expressed in
terms of the residuaai,1(u;m,n) as

hi~u!52u
dai,1

du
, i5f,s,r,t,u. ~49!

To solve the renormalization-group~RG! equations~43!
via characteristics, we introduce flowing variables throug

l
d

dl
ū~ l !5bu@ ū~ l !#, ū~1!5u, ~50!

l
d

dl
s̄~ l !52hs~ ū!s̄, s̄~1!5s, ~51!

l
d

dl
r̄~ l !52@11hr~ ū!#r̄, r̄~1!5r, ~52!

and

l
d

dl
t̄~ l !52@21ht~ ū!#t̄, t̄~1!5t. ~53!

The flow equation~50! for the running coupling constan
ū( l ) can be solved forl to obtain

ln l 5E
u

ū dx

bu~x!
. ~54!

For e.0, the beta functionbu(u) is known to have a non-
trivial zero u* , corresponding to an infrared-stable fixe
point. Expanding about this fixed point gives the famili
asymptotic form

ū~ l ! 5
l→0

u* 1~u2u* !l vu1O~ l 2 vu! ~55!

in the infrared limitl→0, where

vu[
dbu

du
~u* ! ~56!

is positive.
The solutions to the other flow equations,~51!–~53!, can

be conveniently written in terms of the anomalous dime
sionshi* [hi(u* ) and the renormalization-group-trajecto
integrals
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Ei@ ū,u#5expH E
u

ū( l )
dx

hi* 2hi~x!

bu~x! J , i5f,s,r,t,

~57!

which approach nonuniversal constants

Ei* ~u![Ei~u* ,u!, i5f,s,r,t, ~58!

in the infrared limitl→0.
One finds

s̄~ l !5 l 2hs* Es@ ū~ l !,u#s '
l→0

l 2hs* Es* ~u!s, ~59!

r̄~ l !5 l 2(11hr* )Er@ ū~ l !,u#r '
l→0

l 2(11hr* )Er* ~u!r, ~60!

and

t̄~ l !5 l 2(21ht* )Et@ ū~ l !,u#t '
l→0

l 2(21ht* )Et* ~u!t. ~61!

Solving the RG equation~43a! in terms of characteristics
yields

Gren
(N)~xi ,x' ;r,t,u,s,m!

5F l hf*

Ef~ ū,u!
GN/2

Gren
(N)~xi ,x' ; r̄,t̄,ū,s̄,m l !

5F ~m l !d222
m
2 l hf*

s̄m/4Ef~ ū,u!
GN/2

Gren
(N)@~m2l 2/s̄ !1/4xi ,m l x' ;

3 r̄,t̄,ū,1,1#. ~62!

To obtain the second equality, we have used the relation

Gren
(N)~xi ,x' ; r̄,t̄,ū,s̄,m̄ !

5@m̄d222m/2s̄2m/4#N/2Gren
(N)~ s̄21/4m̄1/2xi ,m̄x' ;

3 r̄,t̄,ū,1,1!, ~63!

implied by our dimensional considerations~4!.
Let us assume that the functionGren

(N) on the right-hand

side of Eq.~62! has a nonvanishing limitū→u* for e.0.
This assumption is in conformity with, and can be check
by, RG-improved perturbation theory. We choosel 5 l t such
that

t̄~ l t!561 for 6t.0 ~64!

and consider the limitt→06. To write the resulting
asymptotic form ofGren

(N) in a compact fashion, we introduc
the correlation-length exponents

n l25
1

21ht*
~65!

and

n l45
21hs*

4~21ht* !
, ~66!
d

the crossover exponent

w5n l2~11hr* !, ~67!

as well as the correlation lengths

j'[m21l t'm21@Et* ~u!utu#2n l2 ~68!

and

j i[F s̄~ l t!

m2l t
2 G1/4

'm21/2@Es* ~u!s1/4@Et* ~u!utu#2n l4.

~69!

In terms of these quantities the asymptotic critical beh
ior of Gren

(N) becomes

Gren
(N)~xi ,x' ;r,t,u,s,m!

'Fm2hf*

Ef*
j'

2(d2m221hf* )j i
2mGN/2

3G 6
(N)Fxi

j i
,
x'

j'

;Er* r~mj'!w/n l2G ~70!

with

G 6
(N)~xi ,x' ;r![Gren

(N)~xi ,x' ;r,61,u* ,1,1!. ~71!

The result is the scaling form expected according to the p
nomenological theory of scaling. As it shows, the scali
functionG 6

(N) is universal, up to a redefinition of the nonun
versal metric factors associated with the relevant sca
fields, i.e.,Es* , Er* , Et* , and Ef* . ~Note thatEf* , whose
change would affect the overall amplitude ofG 6

(N) , as usual
corresponds to a metric factor associated with the magn
scaling field; see, e.g., Ref. 35.!

The correlation exponentsh l2 andh l4 are given by

h l25hf* ~72!

and

h l454
hs* 1hf*

21hs*
. ~73!

This can be seen either by taking the Fourier transform of
above result~70! with N52 or else by solving directly the
renormalization-group equation ofG̃ ren

(2)(qi ,q'). In order to
identify the wave-vector exponentbq , we utilize the scaling
form

G̃ ren
(2)~qi ,q' ;t,r,u!'utugY6~qij i ,q'j' ;rutu2w! ~74!

of the inverse susceptibilityG̃ (2) and argue as in Ref. 28: O
the helical branchThel(r) of the critical line, the inverse
susceptibility vanishes atqc5(qi

c ,0)Þ0. Hence in the scal-
ing regime, the lineThel(r) is determined by the zeroes o
the scaling functionY(p,0,%). Denoting these aspc and%c ,
we obtain the relations

qi
c5pcj i

21;pcutun l4 ~75!

and
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r5%cutuw, ~76!

which yield

qi
c;utubq ~77!

with

bq5
n l4

w
5

21hs*

4~11hr* !
, ~78!

where the last equality follows upon substitution of Eqs.~67!
and ~66! for w andn l4, respectively.

To compute the exponent functions~48! and theb func-
tion ~47!, we insert the residua of the renormalization facto
~34!–~36! into Eq. ~49! and expressbt in terms ofbu using
Eq. ~37!. We thus obtain

h§~u!522
n12

3
b§~m!u21O~u3!, §5f,s,r, ~79!
s

ht~u!52
1

3

n12

3
bu~m!u1O~u2!, ~80!

and

bu~u!52uFe2
n18

9
bu~m!u1O~u2!G . ~81!

From the last equation we can read off thee expansion of
u* , the nontrivial zero ofbu :

u* 5
9

n18

e

bu~m!
1O~e2!. ~82!

Evaluation of the above exponent functions at this fixe
point value gives us thee expansions of the anomalous d
mensionshi* . Substituting these into the expressions~65!–
~67!, ~72!, ~73!, and~78! for the critical exponents yields
n l25
1

2
1

n12

4~n18!
e1O~e2!, ~83!

n l4

n l2
5

1

2
1

27~n12!

~n18!2

bf~m!2b̌s~m!

2 bu~m!2
e21O~e3!5

1

2
1O~e3!2

27~n12!

~n18!2

e2

4 5
0.02152 for m51,

0.02195 for m52,

0.02231 for m53,

0.02263 for m54,

0.02290 for m55,

0.02313 for m56,

~84!

h l2522
27~n12!

~n18!2

bf~m!

bu~m!2
e21O~e3!5O~e3!1

27~n12!

~n18!2 e25
0.01739 for m51,

0.01646 for m52,

0.01564 for m53,

0.01488 for m54,

0.01418 for m55,

0.01353 for m56,

~85!

h l4524
27~n12!

~n18!2

b̌s~m!

bu~m!2
e21O~e3!5O~e3!2

27~n12!

~n18!2 e25
0.00827 for m51,

0.01097 for m52,

0.01334 for m53,

0.01548 for m54,

0.01743 for m55,

0.01920 for m56,

~86!

w

n l2
511

27~n12!

~n18!2

bf~m!22b̌r~m!1b̌s~m!

bu~m!2
e21O~e3!511O~e3!2

27~n12!

~n18!2 e25
0.02781 for m51,

0.05487 for m52,

0.07856 for m53,

0.09980 for m54,

0.11904 for m55,

0.13658 for m56,

~87!

and
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bq5
1

2
1

27~n12!

~n18!2

b̌r~m!2b̌s~m!

bu~m!2
e21O~e3!5

1

2
1O~e3!1

27~n12!

~n18!2 e25
0.00852 for m51.

0.02195 for m52.

0.03370 for m53.

0.04424 for m54.

0.05379 for m55.

0.06251 for m56.

~88!
en
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,

rs.

sys-
We have expressed the results in terms of the coeffici
bu(m), bf(m), b̌s(m), andb̌r(m), which according to Eqs
~37!–~40! are proportional to the integralsJ0,2(m,d* ),
J0,3(m,d* ), J4,3(m,d* ), and I 1(m,d* ), respectively. These
integrals are defined by Eqs.~25! and ~33!. The first one of
them—the one-loop integralJ0,2(m,d)—is analytically
computable36 for general values ofd andm. The result is

J0,2~m,d!5
2222e

~2p!d
G2S 12

e

2DGS 22
m

4
2e D

G~22e!
GS m

4 D ,

~89!

giving

bu~m!5
3

8

GS 22
m

4 DGS m

4 D
~2p!41

m
2

. ~90!

The fixed-point value that results when this value ofbu(m)
is inserted into Eq.~82! is consistent with the one found i
calculations based on Wilson’s momentum-shell integrat
method.28

The integralsJ0,3(m,d* ), J4,3(m,d* ), andI 1(m,d* ), and
hence the coefficientsbf(m), b̌s(m), and b̌r(m), can be
calculated numerically for any desired value ofm, using the
explicit expressions for the scaling functionsF(y;m,d* )
andJ(y;m,d* ) given in Eqs.~A4! and~A5! of Appendix A.
~As discussed there, the numerical evaluation of these i
grals for general values ofm requires some care becau
F(y;m,d* ) is a difference of two terms, each of whic

FIG. 1. Coefficients ofe2 terms of the exponentsh l2 ~triangles!,
h l4 ~stars!, andbq ~squares! for n51.
ts

n

e-

grows exponentially asy→`.! In this manner one arrives a
the values of thee2 terms given in the second lines of Eq
~84!–~88!.

In Fig. 1 the coefficients of thee2 terms of some of these
exponents are depicted for the scalar case,n51. As one
sees, they have a smooth and relatively weakm dependence,
especially forh l2 andh l4.

In the special casesm52 and m56, the functions
F(y;m,d* ) andJ(y;m,d* ) become sufficiently simple@see
Eqs. ~A6!–~A8!#, so that the required integrations can
done analytically. This leads to

bf~2!52
1

54

1

~4p!8 , ~91a!

b̌s~2!5
1

162

1

~4p!8 , ~91b!

b̌r~2!5
1

18

1

~4p!8 , ~91c!

bf~6!52
16

9

123 ln
4

3

~4p!12
, ~92a!

b̌s~6!5
14

81

1

~4p!12
, ~92b!

and

b̌r~6!5
8

9

116 ln
4

3

~4p!12
. ~92c!

If these analytical expressions for the coefficients are
serted into the expansions~85!, ~86!, and ~88! of h l2 , h l4,
andbq with m52 andm56, then Sak and Grest’s30 results
for those two values ofm are recovered~which in turn agree
with Mergulhão and Carneiro’s18 findings forh l2 andh l4).

As was mentioned already in the Introduction, these
sults form52 andm56 disagreewith Mukamel’s.28 More
generally, ourO(e2) results~84!–~88!, for all values ofm
51, . . . ,6,turn out to be at variance with the latter author
The casem51 was also studied by Hornreich and Bruce29

who calculatedh l4(m51) andbq(m51) to ordere2. Their
results agree with Mukamel’s and hence diagree with ou

Upon extrapolating the series expansions~84!–~88! one
can obtain exponent estimates for three-dimensional
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tems. Unfortunately, there exist in the literature only ve
few predictions of exponent values produced by other me
with which we can compare our’s.4 Utilizing high-
temperature series techniques, Redner and Stanley37 found
the estimatebq50.560.15 for the case of a uniaxia
(m,d,n)5(1,3,1) Lifshitz point. This is in conformity with
the valuebq.0.519 one gets by settinge51.5 in the corre-
sponding m51 result of Eq. ~88!. A more recent high-
temperature series analysis by Mo and Ferer38 yielded 2bq
.1. For the susceptibility exponent

g l5n l2~22h l2!5n l4~42h l4!, ~93!

the correlation exponentn l4, and the specific-heat exponen

a l522m n l42~d2m!n l2 ~94!

of the (m,d,n)5(1,3,1) Lifshitz point these authors ob
tained the resultsg l51.6260.12, 4n l451.6360.10, and
a l50.2060.15. Utilizing these numbers to computeh l4 via
the scaling law implied by Eq.~93!, h l4542g l /n l4, yields39

h l4.0.0260.5. This may be compared with the valueh l4
.20.019 one finds from Eq.~86! upon settinge51.5.

As a further quantity for which Mo and Ferer’s results38

yield an estimate that can be compared with ourO(e2) re-
sults we consider the ratiob l /g l . Substituting their exponen
values intob l5(22a l2g l)/2 yields39 b l50.0960.135 and
b l /g l50.05510.094

20.081. From the asymptotic form~12! of
Gren

(N51) one reads off the scaling law

b l5
n l2

2
~d2m221h l2!1

n l4

2
m, ~95!

which may be combined with relation~93! for g l to conclude
that

b l

g l
5

d2m221h l21m
n l4

n l2

2~22h l2!
. ~96!

We now setm5n51 ande51.5 in Eqs.~84! and~85!. This
gives n l4 /n l2.0.488 andh l2.0.039. Then we insert thes
numbers into Eq.~96! with d53, obtainingb l /g l.0.134.

There also exist Monte Carlo estimates of exponents
the case of a (m,d,n)5(1,3,1) Lifshitz point.40,41 The more
recent ones,b l50.1960.02 andg l51.460.06, due to Kaski
and Selke,41 give39 b l /g l50.13660.02. In view of the fact
that the importance of anisotropic scaling and its implic
tions for finite-size effects in systems exhibiting anisotro
scale invariance42,43 has been realized only more recently,
is not clear to us how reliable these Monte Carlo estima
may be expected to be. Note, on the other hand, that
coefficients of thee2 terms of the series~84!–~88! are all
truly small. Thus it is not unlikely that the values one gets
d53 by naive evaluation of these truncated series are fa
precise, at least form51. @The e2 corrections of these ex
ponents grow withm because of the factor (d* 23)25(1
1m/2)2.#

V. CONCLUDING REMARKS

We have studied the critical behavior ofd-dimensional
systems atm-axial Lifshitz points by means of ane expan-
ns

r

-

s
he

r
ly

sion about the upper critical dimensiond* 541m/2. Using
modern field-theory techniques, we have been able to c
pute the correlation exponentsh l2 andh l4, the wave-vector
exponentbq , and exponents related to these via scaling la
to order e2. The resulting series expansions, given in E
~84!–~88!, correct earlier results by Mukamel28 and Horn-
reich and Bruce;29 for the special valuesm52 andm56, we
recovered Sak and Grest’s30 findings.

To clarify this long-standing controversy, it proved usef
to work directly in position space and to compute the La
rent expansion of the dimensionally regularized distributio
associated with the Feynman diagrams. There are two o
classes of difficult problems where this technique has de
onstrated its potential: field theories of polymerized~teth-
ered! membranes44–46 and critical behavior in systems wit
boundaries.35,47 In the present study an additional complic
tion had to be mastered: The free propagator at the Lifs
point, which because of anisotropic scale invariance is agen-
eralized homogeneousfunction rather than a simple power o
the distanceux2x8u, involves a complicated scaling function
For powers and products ofsimplehomogeneous functions,
lot of mathematical knowledge on Laurent expansions
available.34 Unfortunately, the amount of explicit mathemat
cal results on Laurent expansions of powers and product
generalized homogeneous functions appears to be ra
scarce. Since we had no such general mathematical resu
our disposal, we had to work out the Laurent expansions
the required distributions by our own tools.

Difficulties of the kind we were faced with in the prese
work may be encountered also in studies of other types
systems with anisotropic scale invariance. Hence the te
niques utilized above should be equally useful for fie
theory analyses of such problems.
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APPENDIX A: THE SCALING FUNCTIONS F„y… AND
J„y…

The scaling functionsF(y) andJ(y) introduced, respec-
tively, through Eqs.~12! and~13! and~28! and~29! are given
by single integrals~15! and ~30! of the form

i ~y!5y2mE
0

`

dq q22eJm~qy!Kn~q2!. ~A1!

This is a standard integral,48 which for arbitrary values of its
parametersm and n, can be expressed in terms of gener
ized hypergeometric functions2F3. For the special values
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m5m/221 and n512m/42e/2 or n52m/42e/2 for
which it is needed, it simplifies, giving

F~y;m,d!5
1

221mp (61m22 e)/4F GS 12
e

2D
GS 21m

4 D

31F2S 12
e

2
;
1

2
,
21m

4
;
y4

64D2
y2

4

GS 3

2
2

e

2D
GS 11

m

4 D

31F2S 3

2
2

e

2
;
3

2
,11

m

4
;
y4

64D G ~A2!

and

J~y;m,d!5
1

231mp (61m22 e)/4F GS 12e

2 D
GS m

4 D

31F2S 12e

2
;
1

2
,
m

4
;
y4

64D2
y2

4

GS 12
e

2D
GS 21m

4 D

31F2S 12
e

2
;
3

2
,
21m

4
;
y4

64D G . ~A3!

At the upper critical dimension, i.e., fore50, this becomes

FS y;m,41
m

2 D5
1

251mp (61m)/4F 8

GS 21m

4 D
31F2S 1;

1

2
,
21m

4
;
y4

64D
223m/4Apy22m/2I m/4S y2

4 D G ~A4!

and

JS y;m,41
m

2 D5
1

261mp (61m)/4 F23m/4Apy22m/2I m/421S y2

4 D
2

2 y2

G~21m/4!1F2S 1;
3

2
,
21m

4
;
y4

64D G ,
~A5!

respectively, where theI n( ) are modified Bessel functions o
the first kind.
In the special casesm52 and m56, these expression
reduce to simple elementary functions: One has

F~y;2,5!5
1

~4p!2 e2y2/4, ~A6!

J~y;2,5!5
1

2
F~y;2,5!, ~A7!

F~y;6,7!5

12S 11
y2

4 De2y2/4

~2p!3y4
, ~A8!

and

J~y;6,7!5
1

~4p!3

1

y2~12e2y2/4!. ~A9!

The reason for the latter simplifications is the followin
If m52 or m56 andd5d* 541m/2 ~upper critical dimen-
sion!, then Bessel functions Kn with n56 1

2 are encountered
in the integral~A1!, which are simple exponentials.49 This
entails that the required single integrations can be done
lytically to obtain the results~91a!–~92c! for the O(e2) co-
efficients.

For the remaining values ofm, i.e., for m51,3,4,5, the
required integrals did not simplify to a degree that we we
able to compute them analytically. However, proceeding
explained in Appendix B, they can be computed numerica
In the special casesm52 andm56, the results of our nu-
merical integrations are in complete conformity with the an
lytical ones.

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE
SCALING FUNCTIONS F„y… AND J„y…

According to Eq.~A4!, the scaling functionF(y;m,d* )
is a difference of a hypergeometric function1F2 and a prod-
uct of a Bessel functionI m/4 times a power. If one asks
MATHEMATICA 50 to numerically evaluate expression~A4! for
F(y) without taking any precautionary measures, the res
becomes inaccurate whenevery becomes sufficiently large
We found that such a direct, naive numerical evaluation fa
for values ofy exceedingy0.9.5. This is because both func
tions of this difference increase exponentially asy→`.

To cope with this problem, we determined the asympto
behavior of the scaling functionsF(y;m,d* ) and
J(y;m,d* ) for y→`. From the integral representations~13!
and ~29! of these functions one easily derives the limitin
forms

F~y;m,d! '
y→`

F (as)~y;m,d![y2412eF`~m,d! ~B1!

and

J~y;m,d! '
y→`

J (as)~y;m,d![y2212e
F`~m,d!

8~12e!
, ~B2!

with
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F`~m,d!5E
qi
E

q'

ei (qi•ei)

qi
41q'

2

5

22(d2m)25p (12d)/2GS d222
m

2 D
GS 32d1m

2 D . ~B3!

At the upper critical dimension, the latter coefficient b
comes

F`~m,d* !5
232mp2(61m)/4

GS m22

4 D . ~B4!

Note that form52 the asymptotic form~B1! is consistent
with the simple exponential form~A6! since F`(2,5)50.
However, for other values ofm, the coefficient~B4! doesnot
-

vanish. For example,F`(6,7)51/(8 p3), in conformity with
expression~A8! for the scaling functionF(y;6,7).

In order to obtain precise results for the integra
J0,3(m,d* ), J4,3(m,d* ), and I 1(m,d* ), on which the coef-
ficientsbf(m), b̌s(m), andb̌r(m) depend, we proceeded a
follows. We split the required integrals as*0

` . . . dy
5*0

y0 . . . dy1*y0

` . . . dy, choosingy059.3. In the integrals

*y0

` . . . dy, we replaced the integrands by their asympto

forms obtained upon substitution ofF and/or J by their
large-y approximationsF (as) and J (as) given in Eqs.~B1!
and ~B2!, respectively, and then computed these integr
analytically. The integrals*0

y0 . . . dy were computed nu-
merically, usingMATHEMATICA .50 We checked that reason
able changes ofy0 have negligible effects on the results. Th
procedure yields very accurate numerical values of the
quested integrals. The reader may convince himself of
precision by comparing the so-determined numerical valu
of the integrals form52 and m56 with the analytically
known exact values.
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