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I 

INTRODUCTION 

In dairy husbandry, biological assay, agricultural crop rotation 

trials and various other fields, it is sometimes desirable or even 

necessary to apply different combinations of treatments in succession 

to the same subject or plot. At first experimenters, realizing that 

the effects of a particular treatment might be affecting the treat-

ments applied after it, decided to leave an interval of time between 

two successively applied treatments. It was hoped that any lingering 

or "residual" effects would become negligible. For example, if the 

experiment consisted of testing animal feeds, a control feed was fed 

to the subjects during the interval lapse. This control interval nec-

essarily increased the length of time necessary to complete the exper-

iment. In some experiments the time factor is of critical importance. 

For example, in cow feeding experiments there is a necessity to com-

plete the experiment during a single lactation, there being only so 

many months during the milking period. 

A n\Dlber of experimental designs have been constructed to elimi-

nate the need for this "rest" interval, and in addition supply infor-

mation about the residual or carry-over effects of a treatment from 

one time period to another. These designs are known by several names. 

Among thea are change-over designs, carry-over designs, switch-over 

designs and cross-over designs. 

1 
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At first these designs were not used to eliminate residual effects; 

the method which was commonly used " • • • was to base interpretations 

on the performances during only the latter portions of the experimental 

periods". (7). Cochran, et. al. (3) in 1941, were the first to in-

corporate an analysis which permitted the elimination of these effects. 

Since then other designs have been constructed. Advantages of 

these designs follow: (1) ease of analysis, (2) fewer observations, 

and (3) elimination of effects of treatments applied two or more periods 

before an observation. 

As Williams (2) points out, there are two basic limiting factors 

on the feasibility of these designs: (1) the time element, and (2) the 

suitability of the subject or plot for repeated applications of 

different treatments. 

Once the experimenter examines these factors, he must decide how 

much time can be allotted for each subject. Then he must divide this 

allotted time into "periods"; a different treatment will be applied to 

each period on each subject. The number of possible subjects must al-

so be determined. Then he should estimate how many periods the residual 

effects of a treatment can be expected to last, as the number of resi-

dual effects eliminoted affects the efficiency of the design. If it is 

the first time an experiment of this type is to be run, intuition will 

play a large part in this determination. If other experiments have been 

run before, the results may be of some aid. All of these factors 

contribute to choosing the proper design. 
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The purpose of this paper is to give the reader a rather broad 

look at change-over designs. No specific examples will be given as 

the literature already contains many, and usually the reference cited 

for a design contains at least one. 

An extensive list of available designs will be presented in an 

appendix so the experimenter need not consult other sources when 

choosing his design. It will be necessary, however, to limit the 

number of treatments discussed to nine, most of these designs dealing 

with three, four, five or six treatments. This limitation is not 

seriously confining for most practical situations. 

signs 

If no 

A detailed analysis of a number of major types of cross-over de-

will be discussed. These designs come from the following sources. 

source is indicated, the designs were constructed 

Type I Designs - Cochran, et. al. [3] 

Type II Designs - Lucas (7) 

Type III Designs - Patterson [ 4] 

Type IV Designs - Berenblut (11] 

Type V Designs - Williams [5] 

Type VI Designs 

Type VII Designs - Berenblut [9] and (13) 

Type VIII Designs -

Type IX Designs 

by the author. 

Normal equations, analysis of variance, variance estimates and 

efficiency comparisons will be presented for Designs I through V, also 

VII and VIII. No efficiencies are computed for Design IX. Also 
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missing value formulae for one and two missing observations will be pre-

sented for Designs I through V. Designs I through IV are primarily for 

estimation of first-order residual effects. Designs V and VI are for 

second-order residual effects. Designs VII, VIII, and IX are orthogonal 

for the linear component of first-order residual effects, VII and VIII 

dealing with one treatment and IX dealing with more than one. 

Lastly, some miscellaneous designs will be presented without 

analysis. 

Unless otherwise stated, an assumption of additivity of all treat-

ment effects will be assumed. A test will be given for this additivity 

under the assumption that the treatments correspond to equally spaced 

levels of a given treatment or treatments. 



II 

DESCRIPTION, CONSTRUCTION AND ANALYSIS 

2 .1 No ta ti on 

In the analysis of even one change-over design.there is a necessity 

for a large amount of notation. In analyzing the designs, the following 

set of notations will hold unless otherwise stated: 

n - number of treatments 

m - number of squares 

p - number of periods 

Tv - total for treatment "v" 

Tj (k) - total for period "j" in square "k" 

TCi - total for subject "i" 

Tit •• - total for square "k" 

G - over-all total 

As - total of all observations immediately following 

treatment "s" 

Bt - total of all observations following treatment "t" by two 

periods· 

Tab - total of all observations which receive the direct effect 

of treatment "a" and the first order residual effect of 

treatment "b" 

F'v - sum of all subject totals receiving treatment "v" last 

5 
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F" - sum of all subject totals receiving treatment "v" in the v 

M' 

M" 

next to the last period 

- ET (k); the sum of all the rth period observations 
(r) r 

- last treatment in the subject to which it refers 

- next to the last treatment in the subject to which it 

refers 

(TCv) - sum of all subject totals which include treatment "v" 

. {TCv} - sum of all subject totals which include treatment "v", and 

treatment "v" is not in the last period; or 

The absence of a variable on a summation sign indicates summation 

over the entire range of each subscript. 

The symbol E shall indicate sunnnation over all subscripts, sub-
(k) 

script k held constant. Usually k will not be a subscript of the 

effect, but will be used rather to indicate summation of the effect over 

all its subscripts which exist for a given k. 

2.2 Type I Designs 

These designs were first discussed by Cochran, et. al. [3]; refer 

to Designs 1, 5, 9, 10, 13, 14, 17, 22, 23, 24, 25, 26, 29, 30, 31 and 

32 for examples. 

The basis for these designs is a ''balanced" set of m Latin 

squares. Williams [2] states the following two conditions for balance: 
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(1) each treatment shall be preceded by each other treatment equally 

often and (2) each treatment shall occur equally often at each position, 

in order of application to the sites {so that the treatment effects shall 

be unaffected by possible effects of order of application). 

Williams lists two advantages of a balanced design over an unbal-

anced design, these being (1) increased efficiency {more accurate esti-

mates of effects) and (2) simplification of analysis. 

He also proves that the above-mentioned balance can be achieved by 

using Latin squares, any number of squares for an even number of treat-

ments and an even number of squares for an odd number of treatments. 

'nle direct and first order residual effects from these designs can 

easily be seen to be non-orthogonal (the orthogonal case will be pre-

sented as Design II). From this non-orthogonality one finds there are 

two separate ways to compute the swns of squares for treatment effects. 

Both of these methods will be presented and will be as follows: 

(1) Direct {adjusted for residual) + Residual {unadjusted) and (2) Di-

re ct {unadjusted) + Residual (adjusted for direct). 

The model for this design is 

Yijkvs • µ + Ci + Pj(k) + Tv + 9s + £ijkvs 

i .. 1, 2, ... , mn 

j ... 1, 2, ... ' n 

k - 1, 2, ... ' m 

v - 1, 2, ... , n 

s - 1, 2, ... ' n 
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where 

Ci is the effect of the ith subject, 

pj (k) is the effect of the jth period in the kth square, 

TV is the effect of the vth treatment, 

95 is the effect of the 5 th treatment on the observation which 

inmediately follows it, and £ijkvs ~ N(O,cr~). 

The analysis comes from least square theory. The equation 

is minimized with respect to 1i, c1 , pj(k), tv and 05 , and the following 

normal equations are obtained: 

i • 1, 2, ••• ,nm 

nu + E C 
(k) i 

+ np 1 (k) + E; v "' T1 (k) k - 1, 2, ... ' m 

~ 

nu + i: Ci + npj(k) + t1v + H\:; -· Tj(k) j - 2, 3, ... ' n 
(k) k .. 1, 2, •••• m 

nmµ + ECi + tpj(k) + run1v + mEii() 
s "" T v v .. 1, 2, ... ' n 

riiic + 
k 

A 

m(n-1)µ + 1: pj(k) + m"iv; + m(n-1)0 • As i ... v s 
j:.t2 

s • 1, 2, ... , n 
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where 

rie • the sum over all residual effects except when s is the last s 

treatment in subject i, 

r 1ies = the stun over all residual effects except where s is the 

same as treatment v, 

riiici = the sum over all subjects where s is not the final 

treatment, 

and riv~ = the sum over all v such that v is not the same as s. v 

One now applies the following constraints: 

A 

rci = r Pj (k) - LTV ... Hls = 0 . 
(k) 

Then the equations become 

nmµ + nnrrv - me = T v v 

n A 

i • l, 2, ••• ,nm 

j • 1, 2, •.• , n 
k • 1, 2, ••• , m 

v = 1, 2, ••• , n 

m(n-1)µ rvc1 + r pj(k) - m1
5 

+ m(~-1)05 =As s • l, 2, ••• , n 
j=2 
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where rVci • the s\lll over all those subjects where treatment s is in the 

final period. 
... 

Expressing Ci and Pj(k) in terms of Tv and es one arrives at the 

following set of reduced normal equations for t and e . v v 

-m ] 
:cn2-n-1) v • 1, 2, ••• , n 

where T' • T - 1 G v v n 

A'v ~ ~ + "*2CnP1 + nF'v - (n+l)G] 

'nlen 

1 

[ ~(n
2 -n-l) m] [T' v] 

m nm A'v 
m2(n2-n-2) 

v • 1, 2, ••• , n. 

The analysis of variance can be seen in Table I. 



Source 

Subjects 

Periods/squares 

{

Direct (unadjusted) 

Residual (adjusted) 

{

Residual (unadjusted) 

Direct (adjusted) 

Error 

Total 

11 

TABLE I 

ANALYSIS OF VARIANCE 

Degrees of 
Freedom 

nm-1 

m(n-1) 

n-1 

n-1 

n-1 

n-1 

(n-l)(nm-m-2) 

Sums of Squares 

.l...._rT2 _ --L.c2 
nm v n2m 

- see below -

___..;;.( n_2_-_n_-_l .... ) -.11:; 2 
nm(n2-n-2) v 

subtraction 

ry2 _ ___l_c2 
ijkvs nzm--

Before explaining how to find Residual Sums of Squares 

(unadjusted) it will be necessary to explain how to find Direct 

(adjusted) and Residual (adjusted). Taking Direct (adjusted) as an 
" example, first note that in the simplified normal equation for Tv, 

Tv is called the unadjusted total for the direct effect of treatment 
A A 

v. By solving the remaining equations for ev in terms of Tv' one can 
" substitute the result into the equation for tv' along with the 
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estimate of µ, and get an equat1.on only in terms of T v· '11lis was 

shown to be 

T • [ ~(n2-n-l) m J v m2 (n2-n-2) " [ ::: J 
v•l,2, ••• ,n 

or v • 1, 2, ••• , n. 

Recalling what T'v is, and substituting its value into the above 

equation, one gets 

v • 1, 2, ••• • n. 

Now, in this reduced normal equation for Tv• if one makes the coeffi-
A 

cient of the unadjusted total for Tv equal to unity, one gets 

(1) nm(n2 -n-2)~ • Tv - !c + n A' 
(n2-n-l) v n (nZ-n-1) v 

v • 1, 2, ••• , n. 

The unadjusted direct total now can be said to be adjusted for 
A 

µ and 9v, and the entire right-hand side of (1) is called the adjusted 

direct total. If one now takes the sum of the products of the esti-

mators times their respective adjusted totals, one obtains the adjust-

ed sum of squares for direct effects. '11le same procedure can be 
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applied to the normal equation for ev• solving the remaining equations 
A A 

for Tv in terms of ev and substituting in the same way. 

It must now be explained how to find the unadjusted residual sum 

of squares. It should first be noted that by "unadjusted" one means 

that it is unadjusted only for direct effects. It actually will need 

to be adjusted for the remaining effects with which it is not mutually 

orthogonal. 

Both the normal for Tv and the normal for ev have been solved in 

terms of each other already. By taking the reduced normal equation 
... ,. 

for ev in terms of Tv• we get 

[ -m jj!<n2-n-1) J 
,. 

Ignoring the term for Tv yields 

• A' v 

(2) :<n2-n-l)G'v • A,,+ ~[nP1 + nF'v - (n+l)G) 
n 

A A 

v • 1, 2, ••• , n. 

v • 1, 2, ••• , n . 

Note that e'v is not the same as ev. Now, Av can be described as 

the unadjusted total for residual effects, and therefore the right-

hand side of (2) will be the residual total adjusted for all effects 

except direct effects. One can now obtain the residual sum of squares 

(unadjusted for direct effects, adjusted for all other effects), which 

is denoted by residual (unadjusted), by taking these new estimates and 

multiplying them by their corresponding partially adjusted totals, and 
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adding them together. This can be shown to be as follows 

Residual (unadjusted) • re' A' v v v • 1, 2, ••• , n 

v • 1, 2, ••• , n. 

The expected mean squares for the adjusted terms will be of some 

interest. 

E(MS Direct (adjusted)] • a~ + mn(n2 -~-2 ) r(tv-t )2 
(n-l)(n -n-1) 

E[MS Residual (adjusted)]• a2 + mCn2-n-2>rce -~ )2 . 
£ n(n-1) s 

Also, the variance of a difference between two adjusted direct effects 

is 

2(n2-n-l) 02 • 
nm(n2-n-2) c 

The variance of a difference between two unadjusted direct effects is 

2 
nm 

The variance of a difference between two adjusted residual effects is 

2n a2 
m(n2-n-2) c 



15 

and the variance of a difference between two unadjusted residual effects 

1s 

2.3 rype II Designs 

These designs were first presented in a paper by Lucas [7]. They 

are formed from the same designs given as Type I designs, by merely 

repeating the final period, forming an (n+l) 5 t period identical to the 

nth period. He refers to these designs as "extra-period designs". 

In discussing change-over designs before his addition of the extra 

period, Lucas says, "In all of the published series of designs, the 

precision with which residual effects are estimated is considerably 

less than that with which the direct effects of treatments are esti-

mated. This is in part because the residual effects are replicated 

fewer times than are the direct effects, but also in large share be-

cause the residual effects are non-orthogonal both to sequences and to 

direct effects." [7]. 

In his paper Extra Period Latin Square Change-Over Designs one 

can see that each treatment is now preceded by itself the same number 

of times that it is preceded by each other treatment, a condition 

which renders the direct and residual effects orthogonal to each other, 

and also renders residual effects orthogonal to subjects. 

Example: 

From Design 5 

ab c 
b c a 
c ab 
c ab 

a b c 
c a b 
b c a 
b c a 

The letters 
denote treatments. 
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Exam2le: a b c d 
b d a c 

From Design 9 c a d b 
d c b 8 

d c b a 

While the replication of the final period does make residual ef-

fects orthogonal to subjects, it also makes direct effects non-orthogo-

nal to subjects. However, as Lucas states, " : the degree of non-

orthogonality is not great." (7). nte direct sum of squares 'must 

therefore be adjusted for subjects, while the residual sum of squares 

can be computed directly from the 2nd, 3rd, ••• , (n+l) 5 t periods. 

Since residual effects are orthogonal to all other effects, and since 

they do not, of course, occur in the first period, this sum of squares 

will be easily computed. 

The model for this design is 

i • 1, 2, ... ' nm 

j - 1, 2, .... (n+l) 

k - 1, 2, ••• t m 

v - 1, 2, ... , n 

s .. 1, 2, . ... n . 

The normal equations before applying constraints are 

"' _. A A 

nm(n+l)µ + (n+l)rc1 + ntnj(k) + m(n+l)rrv + nmEe8 • G 
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A A A A A 

(n+l)µ + (n+l)Ci + (~)pj(k) + ETV + TM' + res • TCi 

.. ... .. 
nµ + r c + npj(k) + E;v + re6 • Tj(k) 

(k) i 

A A A A 

nmµ+ rc1 + tpj(k) - tp 1(k) + mETv +runes• A8 

i • 1, 2, ••• , n11 

k • 1, 2, ••• , m 

j • 1, 2, 
k • 1, 2, 

•••• (n+l) 
•••• m 

v • 1, 2, ••• , n 

s • 1, 2, ••• , n 

which become, after applying the necessary constraints 

nm(n+l)µ • G 

(n+l)µ + (n+l)C1 + TM' • TC1 

.. 
nmµ+ nme1 - Ep 1(k) • Aa 

k • 1, 2, ••• , nm 

j • 1, 2, 
k • 1, 2, 

... ' (n+l) 
• • • • m 

v • 1, 2, ••• , n 

s•l,2, ••• ,n 
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i" where ! Ci • the sum of all subject effects in which treatment v 

appears last. 

Solving for tv, one gets 

nm(n+2)tv • (n+l)Tv - F'v - G 

and the analysis of variance Table II is formed as follows: 

Source 

Subjects (unadjusted 
for direct) 

Periods/squares 

Direct (adjusted for 
subjects) 

Residual 

Error 

Total 

TABLE II 

ANALYSIS OF VARIANCE 

Degrees of 
Freedom 

nm-1 

nm 

n-1 

n-1 

(n-l)(nm-2) 

nm(n+l)-1 

Suma of Squares 

.!.tr2 (k) 
n j 

- see below -

subtraction 

1 c2 
nm(n+l) 

tY2 - 1 c2 
ijkvs nm(n+l) 

As was previously stated, by simply ignoring the fiDSt period one 

can obtain the residual &\Ill of squares as follows: 
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The expected mean square for adjusted direct effect• is 

E(MS Direct (adjusted)] • a2 + mn(n+2)r(t -~ ) 
£ (n2-l) v 

The variance of a difference between two adjusted direct effect• i• 

and that for a difference between two residual effect• ii 

2 0 2 

-- £ • 

2.4 Ttpe III Designs 

The third design to be discussed is a balanced incomplete Latin 

square design. first mentioned in 1950 in a paper by Patterson (4]. 

The basis for these designs is a set of completely orthogonal 

Latin squares. "This is a set of (n-1) squares such that when any two 

squar .. are superimposed. each letter of one square occurs (exactly) 

once with every letter of the other square." (1). These squares are 

balanced for all orders of residual effect•. however only first order 

effecta vill be considered here. 
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From this set of (n-1) orthogonal Latin squares, p corresponding 

rows (periods) are chosen, where p~n, such that balance is still main-

tained. This can always be done. Now one has a set of (n-1) nxp Latin 

rectangles balanced for all orders of residual effects. Designs 5, 10, 

17, 29, 31 and 32 are orthogonal sets for 3, 4, 5, 7, 8 and 9 treat-

ments respectively. No orthogonal set of squares exists for n•6 

treatments. 

As an example, one could take the first three rows from each of 

the squares of Design 10. 

ab c d 
b a d c 
c d a b 

ab c d 
d c b a 
b a d c 

ab c d 
c d ab 
d c b a 

Again, as in Design I, the combined sums of squares which lead to 

the total treatment effect must be computed in two different ways. 

Again, also remember that these two sets of sums of squares add to the 

same result. This fact can be used as a computational check. These 

two sets of sums of squares are 

(1) Direct (adjusted for residual) +Residual (unadjusted), 

and (2) Direct (unadjusted) +Residual (adjusted for direct). 

The model for this design is 

yijkvs • µ+Ci+ Pj(k) + TV + e + s Eijkvs 

i - 1, 2, ... ' n(n-1) 
j - 1, 2, ... ' p 
k • 1, 2, . .. ' (n-1) 
v. 1, 2, . .. ' n 
8 - 1, 2, •••• n. 
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The normal equations are 

where 

A A A A A 

np(n-1)µ + prci + nrpj(k) + p(n-l)rTv + (p-l)(n-l)re8 • G 

... 
nµ + r Ci+ np 1 (k) + rTv • T1 (k) 

(k} 

nµ + 
... 

r ci + npj(k) + rTv +res• Tj(k} 
(k) 

i • 1, 2, ••• , n(n-1) 

k • 1, 2, ••• , (n-1) 

j - 1, 2, 
k - 1, 2, 

... ' ... ' p 
(n-1) 

v • 1, 2, ••• , n 

(p-l)(n-1)µ + rvc + 
i 

n+l ... 
r pj(k) + (p-l)rvi~v + (p-l)(n-l)G8 •As 

j•2 
s•l,2, ••• ,n 

i ... 
E Tv • the sum over all treatment effects which appear in 

subject i, 

Eiies • the sum over all residual effects which appear in 

subject i, 

riiic • the sum over all subject effects which include the i 

effect of treatment v, 

rives • the sum of all residual effects excluding the residual 

effect of treatment v, 
... 

rvci • the sum over all subject effects which include the 

residual effect of treatment s, 

and rvi; • the sum over all treatment effects excluding treatment s. v 
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After applying the usual constraints, the normal equations become 

,. 
np(n-1)µ • G 

i • 1, 2, ••• , n(n-1) 

" nµ + t Ci+ np (k) • Tj(k) 
(lt) j 

j • 1, 2, .· ...... p 
k • 1, 2, ••• , (n-1) 

A iii" A A 

p(n-1)µ + t Ci + p(n-l)tv - (p-l)ev • Tv v • 1, 2, ••• , n 

s • 1, 2, ••• , n. 

Solving the abov~ system of equations in terms of tv and e8 , one gets 

n(p-1) 

- !!.(p-1) p 

n --(p-1) p 
(p-1) (np-n-1) 

p 

where, in this design 

T'· • v 
1 T - -(TCv) v p 

A' • A + _nl p.l - ! G - .!{TC } v ·-v np P v 

A 

v • 1, 2, ••• , n 

v • 1, 2, ••• , n 

v • 1, 2, ••• , n • 

By ignoring the terms for ev and tv in the above two equations 

respectively, one arrives at the following unadjusted estimates, 
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A A 

denoted t' and 0' v v 

A 

n(p-l)t'v • T'v v • 1, 2, ••• , n 

and (p-l)(np-n-1)9, • A' 
p v v v • 1, 2, ••• , n • 

The adjusted estimates are formed by solving the previous set of 
A 

equations for tv and 0v as follows 

A 

(p-l)(n2p2-n2p-np-n2)tv • (np2-np-p)T'v + npA'v v • 1, 2, ••• , n 

A 

(p-l)(n2p2-n2p-np-n2)ev • np2A'v + npT'v 

The analysis of variance is now constructed as in Table III. 

The expected mean squares for the adjusted effects are 

E[MS Direct (adjusted)] • a2 + Cp-l)(n2
p

2-n2p-np-n2 >t(t -T )2 
£ p{n2p-np-l)(n-1) v 

[ ( ] 02 + (p-l)(np2-np-p-n>~ce _-9 )2 E MS Residual adjusted) • - - - - ~ 
£ p2 s 

The variance of a difference between two adjusted direct effects is 

2p(np-n-l) 
0

2 
(p-l)(n2p2-ti2p-np-n2) c 



Soi t'ce 

Subjects 

Periods/squares 

{

Direct (unadjusted) 

Residual (adjusted) 

{

Residual (unadjusted) 

Direct (adjusted) 
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TABLE III 

ANALYSIS OF VARIANCE 

Degrees of 
Freedom 

n(n-1)-1 

(p-l)(n-1) 

n-1 

n-1 

n-1 

n-1 

Sums of Squares 

1rTc2~ - 1 c2 
p .1. np(n-1) 
1 ,_ 
.:.rT2j (k) - !..J:T2k. • n np 

.. 
n(p-l)Et' 2 

v 

1 .. 
~(p-l)(np2-np-p-n)te2 p2 8 

!<p-l)(np-n-l)te' 2
8 

Error (n-1) [n(p-1)-(p+l)] subtraction 

Total np(n-1)-1 i;y2 _ 1 c2 
ijkvs np(n-1) 

that of a difference between two unadjusted direct effects is 

2 02 
n(p-1) E 

that of a difference between two adjusted re•idual effects is 

2~2 02 
tp-i)(np -np-p-n) E 
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and that of a difference between two unadjusted residual effects is 

2p 2 
(p-l)(np-n-1) 0 e: 

2.5 !ype IV Designs 

These designs were introduced by Berenblut [11]. He describes the 

construction of these designs for n treatments as follows (where 

a, b, ••• denote treatments). 

"Let a • ab c d u v 
e - v ab c t u 
y - u v a b s t 

= 
ljJ - d e f g b c 

' - c d e f a b 
w - b c d e v a 

"If n is odd, the design for n treatments can be written 

symbolically as 

Subject (1 to n2 ) 

1 a a a 
2 e y a 
3 y y y 
4 6 e: y 
5 £ e: £ . . ... . . . ... . 

Period n-1 
' w 

ljJ 
n w w w 

n+l w a ' n+2 ' ~ ' 
2n-1 e e e 

2n a e w 
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"If n is even, the lines for periods n and n+l, for periods n-1 

and n-2, etc., are interchanged." These directions are not very clear. 

However, the designs can be easily constructed if one follows these 

simple rules: 

(1) Define a, 8, ••• , w as stated above. 

(2) Write them down a page in forward order, then backward 

order, which yields a column the same as Beren~lut's 

column one. 

(3) Starting with the first letter in period one, replicate 

it n times altogether in a row, and do the same for every 

odd period. 

(4) For the even periods, write the elements in order, a 

following the final letter, and so on. 

Refer to Designs 2, 6, 11 and 18 for examples. 

In this group of designs, direct effects and residual effects are 

orthogonal. Also, subjects and direct effects are orthogonal, but sub-

jects and first order residual effects are not. Therefore, it will be 

necessary to split up the total sum of squares for subjects and 

residuals as follows: 

Subjects (unadjusted) +Residual (adjusted for subjects). 

The design consists of one block (replicated if desired) of treat-

ments which is 2nxn2 , i. e. 2n periods and n2 subjects. 

Example 

Design 2 

ab ab 
b a ab 
b ab a 
ab b a 
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Or, utilizing the above notation, letting a • a b and B • b a, one gets 

The model for this design is 

a a 
8 a 
8 8 
a 8 

yijvs • ~ + Ci + pj + TV+ 9s + tijvs 

i • 1, 
j • 1, 
v. 1, 
8 • 1, 

where pj is the effect of the jth period. 

The normal equations are 

2, . .. ' n2 
2, ... , 2n 
2, . .. ' n 
2, •••• n 

e • 1, 2, ••• , n 



28 

, where r1e • the sum over all treatments which do not occur last s 
r 11c1 • the sum over all subjects in which treatment s is not 

last 

Eiiici • the sum over all subjects in which treatment s occurs 

last . 

Upon applying the usual constraints, one gets the following set of 

normal equations 

2n 3 ~ • G 

n{2n-l)~ + n{2n-l)es - riiici 

i • 1, 2, ••• , n2 

j • 1, 2, ••• , 2n 

v • 1, 2, ••• , n 

np •A s•l,2, ••• ,n. 
l s 

Solving for 08 yields the following equation 

s • 1, 2, ••• , n. 

One can now obtain the following analysis of variance as shown 

in Table IV. 
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TABLE IV 

ANALYSIS OF VARIANCE 

Degrees of 
Source Freedom Sums of Squares 

Subjects (ignoring n2-l 1 rTc2 · - -1..c2 
residuals) Tn' i 2n3 

Periods 2n-l !...rp2 
n2 j 

- _!_G2 2n3 

Direct Effects n-1 _!_ ET2 - ...!..c2 
2n2 v 2n3 

Residual (adjusted for n-1 (4n2-2n-lhe2 
subjects) 2 s 

Error 2n 3-n2-4n+3 subtraction 

Total 2n3-l rY2ijvs 1 02 
- 2n3 

The expected mean square for adjusted residuals is 

a2 + (4n2-2n-l)r(e - e )2 
£ 2(n-l) 6 8 

The variance of a difference between two direct effects is 

and that for a difference between two adjusted residual effects is 

4 0 2 
(4n'-2n-l) £ 
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EFFICIENCIES 

lbe method of determining efficiencies will be that of Patterson 

and Lucas (8) described as follows by Berenblut, " . . • the efficiency 

factor of design X compared with design Y is the ratio of the product 

of the number of observations and the variance of a contrast' in Design 

Y to the corresponding quantity in Design X." (11). 

Efficiencies will be presented for estimation of differences in 

direct and first order residual effects, for all comparisons for 

designs Type I through IV. 

3.1 Differences in Direct Effects 

It will first be necessary to determine the total number of 

observations x variance of a difference between two direct effects for 

all designs. 

Design 

I 

II 

III 

IV 

A 

Number of Observations x Variance (ty-1',,t) 

30 

2n(n2-n-l) 0 2 
(n2-n-2) £ 

2(n+l)2 o2 
(n+2) £ 

2p2 (n-l)(np-n-1) 0 2 
(p-l)(np2-np-p-n) £ 

2no 2 
£ 
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Efficiencies will be formed for n•3 and n•4. Also, since the 

variance for Type III depends on the number of periods chosen, for n•3, 

p•3 and for n•4, p•3. Note, when p•n Type Ill is equivalent to Type II. 

The numbers in these tables refer to efficiencies of Design!~ 

Design !.· 
TABLE V 

y y 

I II III IV I II III IV 

I -- 64 1 4 
75 ) 

125 945 10 I -- - -- -
132 748 11 

x 75 75 15 II - -- -64 64 16 x 132 567 24 
II -- -

125 425 25 

III 1 64 4 
75 -- -5 III 748 425 136 m 567 -- 189 

IV 5 16 5 --4 15 4 
11 25 189 

IV - - --10 24 136 

n=3 

For "small" values of n Design IV is noticeably better than 

Designs I, II or III. As n increases, the efficiency of Design IV to 

the others approaches 1. Even for n•lO and p•S the efficiencies of 

Design IV to I, lt·and III are 1.01, 1.01 and 1.19 respectively. 

Efficiency alone should not be the criterion for selecting one de-

sign over another. If there is a cost per observation, certainly the 

experimenter may wish to consider the number of observations when mak-

ing comparisons. In the above case of n•3, p•3 Designs I, II, III and 

IV have 18, 24, 18 and 54 observations respectively. If the cost per 
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observation is great, one could find some justification for using 

Designs I, II or III instead of IV. Design III, although not as effi-

cient as I, II or IV must be remembered to have only p<n periods, a 

distinct advantage over the other designs. 

Design II also should not be overlooked. It is only slightly less 

efficient than Design IV, even for "small" n, and it is easy to con-

struct and easy to analyze. 

It can only be concluded that there is no set reason for choosing 

one design over another. 

3.2 Differences in Residual Effects 

'nle same four designs will now be compared for estimating differ-

ences in residual effects. 

Again it will be necessary to find the total nllllber of ob•ervations 

x variance of a difference between two residual effects. 

Design 

I 

II 

Ill 

IV 

A A 

Number of Observations x Variance (98 - 98 •) 

2n 3 
0 2 

(n2-n-2) e: 

2(n+l)o~ 

2np 3 (n-1} 
0

2 
(p-l}(np2-np-p-n) £ 

8n 3 

(4n2-2n-l) 0~ 
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Again, efficiencies will be found for the two cases, n•3, p•3 and 

n•4, p•3. The numbers in the tables refer to efficiencies of Design ! 
to Design .!_. 

TABLE VI 

y y 

I 11 III IV I II llI IV 

I 16 1 16 -- - -27 29 
50 40.5 8 I -- -64 272 11 

x 11 27 27 27 -- - -16 16 29 x II 64 162 256 
50 -- 8s --275 

III 1 16 16 - -- -27 29 
272 85 2176 

III -- - -- -405 162 4455 

IV 29 29 29 - - --16 27 16 
11 275 4455 IV 8 -- - --256 2176 

One sees again that design IV is more efficient than Designs I, II, 

and III for small n. In fact, the same relationships hold here as in 

the case of direct effects. The same comments in regard to number of 

observations and advantages also apply. 

3.3 Design Efficiency for Estimation of Residual Effects 

Since residual effects never occur as many times in a design as 

direct effects, a design will always yield better estimate of direct 
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effects. One might, however, be interested in estimating residual ef-

fects as the principle purpose of the design, or simply desire good 

estimates of residual effects. In this case he would be interested in 

how efficient a design is for estimating residual effects to direct 

effects. The same method utilized in the preceding section applies, 

but since the two variances come from the same design, no weighting 

factor will be necessary. Comparisons will be made for n•3, 5 and 10. 

P will be equal to 3 for Design III. 

Numbers in Table VII represent the efficiency of a design for 

estimating residual effects as compared to direct effects. 

TABLE VII 

n 

3 5 10 

I .556 • 760 .890 

Design II .800 • 857 .917 

III .556 .600 .633 

IV .806 .890 .948 

It can be seen that Design IV is better at estimation of residual 

effects in comparison to direct effects than the other designs in all 

cases. The total number of observations necessary to produce these 

results should not be overlooked, however. For n•S, Type I designs 

require a minimum of 50 observations, Type II require a minimum of 60, 
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Type III a minimum of 60 (with p•3) and Type IV a minimum of 250. If 

cost is not relevant Design IV is certainly the best; however, if cost 

is a factor, Design II with less than one-fourth the number of 

observations could certainly be used. 
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ESTIMATION OF MISSING VALUES 

4.1 Notation 

The below listed notation will hold for this chapter only, x and z 

will be considered to be missing observations. Before computation of 

missing value formulas, x and z must be set equal to zero. 

TCi(x) • total for the subject containing x 

Tj(k)(x) • total for the period (in the square) containing x 

Ay(x) • total of all observations immediately following the 

treatment immediately preceding x 

• total for the square containing x 

if x was to receive treatment v 

otherwise 

if x was to receive the first residual of treatment v 

otherwise 

if x was to receive the second residual of treatment v 

otherwise 

if x does not occur in the final period 

otherwise 

if treatment v occurs in the subject containing x 

otherwise 

if treatment v is laet on the subject containing x 

otharvi•• 
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c' • 1-
0

1 if treatment v appears last or next to on the subject 

containing x 

otherwise 

d • {-

0

1 if x is in the first period 

otherwise 

d' • {-

0

1 if x is in the second period 

otherwise 

d". • { o

1 

is x is in the first period 

otherwise 

h = { 
0

1 if x and z occur in the same period and block 

otherwise 

h' = { 
0

1 if x and z occur in the same subject 

otherwise 

h" ::a { 1 if x and z occur in the same block 

0 otherwise 

k • { 1 if x and z receive the same treatment directly 

0 otherwise 

k' • { 1 if x and z receive the same first residual treatment 

0 otherwise 

k" • { 1 if neither x nor z are in the first period 

0 otherwise 

4.2 General Remarks 

The missing value formulae which will be presented were obtained 
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by the method suggested by Coons [16}. She states, "The purpose of this 

paper is to illustrate the full details of a method which can be used 

when one or more missing observations exist in an experiment of any 

statistical design. The advantages of this method are its generality 

of application and the ease with which exact tests of significance may 

be obtained. Here the word "exact" is used to mean exact when errors 

are normally and independently distributed." 

She goes on to list six properties which she uses in order to 

justify her computational procedures. Of these six properties, two will 

be of interest here. These are 

(1) "If an analysis of variance is made with symbols s1, B2, 

••• , sq in the place of missing observations, then the best linear un-

biased estimates of the missing observations are the quantities s1 , s2, 

••• , Bq which minimize the error sum of squares." 

(6) "The sum of squares for treatments obtained by analyzing 

the dat·a augmented by the missing value estimates is always greater than 

or equal to the exact sum of squares for treatments." 

The first property can best be seen from a simple example. 

Consider the following model: 

i • 1,2 and j • 1,2 

Now suppose observation Y12 is missing. Let B represent the missing 

observation. The full set of equations can now be rewritten as 

follows: 
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yll a µ + Tl + £11 

B • µ + tl + £12 

y21 • µ + T2 + £21 

y22 • µ + T2 £22 

which can in turn be written as 

Y11 • µ + Tl + Bxll + £11 

0 • µ + Tl + BX12 + £12 

Y21 • µ + T2 + Bx21 + £21 

Y22 • µ + T2 + Bx22 + £22 

where the coefficients of B, that is x11 , x12 , x21 and x22 are equal to 

O, -1, 0 and 0 respectively. These xij's form the vector X. 

Now, wherever a missing observation appears, one simply inserts a 

O. These original observations, with the O's,are considered to be the Y 

variable. 'nle X variable takes on the value O, except where it corres-

ponds to a missing observation, in which case it is set equal to -1. 

This vector will be denoted as Z for a second missing value. 

This paper will not present the entire analysis of convariance. 

Rather, the above method yields an estimate for B, which will be called 
A A 

either x or z, (refer to Section 4.3) and which will be merely calculated 

and inserted into the original data. The usual analysis of variance is 

then performed. 

From property 6 one sees that this test will not be exact. The F 

value that one calculates will be larger than that for an exact test. 

This problem will not be great, however. If the calculated F value ia 
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in the "acceptance" regions as compared to the tabulated value. the 

results are used without further concern. Only if the calculated F 

value is "slightly" larger than the tabulated F value will it be 

necessary to perform the exact test. For this test the reader is 

referred to Coons (ln]. 

Note that in performing the analysis of variance one degree of 

freedom is lost from error and total for each missing value. "nlis 

method yields the same results as the more familiar method of substi-

tuting an unknown quantity for the missing value and minimizing the 

error sum of squares. 

This paper will merely present the missing value formulae. Type I 

designs will of fer a more detailed description of how this was done. 

The formulas are derived under the assumption that the residual 

effects of the missing value actually occurred. In actual experimenta-

tion it seems plausible that this assumption will generally be correct; 

for if it were not possible to apply a treatment during a particular 

period, it would be better to disregard the entire subject. 

4.3 Missing Value Formulae 

By following the method of Coons [16), the procedure reduces to 

the following. Where one missing value is to be estimated, it will be 
~ 

denoted by x. If two values are to be estimated, they will be denoted 
A 

by x and z. 

The general formulas will be as follows: 
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(1) For one missing value 

x -

(2) For two missing values 

x,,. 

z -

ExyEzz-Ez;)'Exz 
ExxEzz-E2xz 

EzyExx-ExyEzx 
ExxEzz-E2 xz 

The meanings of the various quantities will be explained under design 

Type I. 

Type I: First it will be necessary to find the error sum of 

squares. Again, note that the data with the missing values set equal 

to zero are the Y values, and the X values are all zero except those 

corresponding to missing values, which are set equal to -1. 

Errors ss • ry2ijkvs - !..rTc2i - .!.rr2 (k) + .!.?Lf2k •• - nmCn2-n-2>r; 2 
n n j n- (n2-n-l) v 

n E [As 
m(n2-n-l) 

which simplifies to 

._ .lp + .!.r• 
n 1 n s 

_ (n+l)G J 2 
n2 
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- 1 r((n2-n-l)Tv + n.A,, + F'v + P1 - nG) 2 
nm(n2-n-l)(n2-n-2) 

- 1 E [n2A,, + nP1 + nF' v - (n+l)G).2 

n 3m(n2-n-l) 

Now, for the case of one missing value one needs Exx and Exy. All 

the x values are known, so an exact value can be obtained for Exx which 

differs depending on where in the design the missing value occurs. Eu 
is simply the error sum of squares using only the x values. 

The first bracketed quantity above reduces Lo 

a(n2-n-l) + bn + c + d + n v • 1, 2, ••• , n 

which will be called Xvx. The second quantity reduces to 

bn2 + dn +en+ n+l v • 1, 2, ••• , n 

which will be calle~ X'vx• Note that EXvx • rx'vx • O. Tiiis result 

holds true for all values of Xvx and X'vx which will be computed be-

cause they come from values Of ~V and eV which also SUl'll to zero by 

constraint. 

Exx can now be written as 

nm(n-1)2(n2-n-l)(n2-n-2)-n2rx2vx - (n2-n-2)rx•2vx 
n3m(n2-n-l)(n2-n-2) 
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Exy is known as the error sum of products of the X and Y values. 

Each squared quantity in the Error ss is replaced by the product 

of two quantities, the total for the x's and the total for the y's. 

For example, ETC2
1 will be written as E(TC1)x(TC1)y, where (TC1)x is the 

total of the x's for subject i, and (TCi)y is the total of the y's for 

the same subject. 

nie two quantities in brackets can again be reduced as follows 

v • 1, 2, ••• , n 

for the first quantity, which shall be denoted by Wv, and 

n2Ay + nP1 + nF'v - (n+l)G v • 1, 2, ••• , n 

for the second quantity, which shall be denoted by W'v· Note again that 

EWv • rW'v • O. Exy can now he written as 

nm(n2-n-l)(n2-n-2)[nTC (x)+nT (k)(x)-T (x)• J-n2rw Xvx-(n2-n-2)rW' 
n3m(n -n-l)(n2-n-2 

For the case of two missing values it is necessary to find three 

more quantities. '!be quantities Ezz and Ezy are found in a similar 

manner to those for Exx and Exy. The fact that z occurs in a different 

location will change the values of the coefficients in the reduction of 

the bracketed quantities, and the same formulas are used to find 
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Xyz • a(n2-n-l) + bn + c + d + n 

and X'vz • bn2 + dn + en + n + 1 

v ~ 1, 2, •••• n 

v • 1, 2, ••• , n 

Note that these values do change for different missing values. The fact 

that the Wv and W'v values remain unchanged yields the desired results 

for Ezz and Ezy, using the formulas for Exx and Exy- respectively. This 

method will hold true for all remaining designs also. Only Exz remains 

to be found. It is found from the Error ss also, by considering the X 

values as before, and the Z values also as from before. Note that the 

X values and Z values are all zero, except for one -1, which is in a 

different location for both sets of data. Since all the data is known, 

Exz can be simply found as 

-nm(n2-n-l)(n2-n-2)[n(h+h')-h"J-n2rX,,xX,,z-(n2-n-2)rX'yxX'yz 
n3m(n2-n-l)(n2-n-2) 

The fact that the variables change for the different locations of 

the missing values eliminates the necessity for separate equations, 

this one case taking care of all combinations. 

Again note that EXvz • rx'vz • O, and will hold true for all de-

signs. Once all the quantities are found, they can be substituted in 

the formulae at the beginning of the section. It will now only be 

necessary to give the various quantities represented above for the 

remaining designs, the method remains the same. 

Type II: For one missing value 
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~ • a(n+l) - c + 1 v • 1, 2, ••• , n 

Wv • (n+l)Tv - F'v - G v • 1, 2, ••• , n 

E nm(n+2)(n-1) - rx2 - (n+l) (n+2)d"(l- !) 
ll• ~ n 

nm(n+l)(n+2) 

nm(n+2)TCi(x) + m(n+l)(n+2)Tj(k)(x) - m(n+2)Tk(x)• - EXyxWv 

nm (n+l) (n+2) 

(n+l)(n+2)d" r Ay(x)-n-;
1 

p J L j-2 jJ + -~---------,,--.....,-------,.---........:..---~ nm(n+l) (n+2) 

For two missing values: Ezz and Ezy are computed from the above formu-

las, the coefficients of Xvx changing for different missing values. One 

need again only find Exz• which is 

k" · -m(n+2)[nh '+(n+l)h-h"] - >=XvxXvz - (n+l) (n+2) [k '- n-1 

nm(n+l)(n+2) 

TyPe III: For one missing value 

Xvx • (p-l)(np-n-l)[pa-b'J + (p-l)[npa'+pd+l-nb'b] 
p2 p2 

1 X'vx • - [npa'+pd+l-nb'b] np 

v•l,2, ••• ,n 

v • 1, 2, ••• , n 
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v • 1, 2, ••• , n 

W' • !_[npAy+pP1-G-n{TC }] v np v v - 1, 2, . . . ' 

Some further notation will be required in order to reduce the 

complexity of the quantities to be found for this design. 

Let Q. (p-l)(np-n-1) 
p 

2 2 2 2 2 and Q' • (p-1) (n p -n p-np-n ) 
p2 

Q'Q(n2p-np-n2+2n-p-l)-np(n-l)rX2vx-np(n-l)Q'rX' 2vx 
Exx • Q'Qnp(n-1) 

n • 

Exy • 

Q'Q[n(n-l)TCi(x)+pTj(k)(x)-(n-l)Tk(x)•]-np(n-l)EXvxWv-Q'np(n-l)rX'vxW'v. 
Q'Qnp(n-1) 

For two missing values, Ezz and Ezy are again computed in a similar 

fashion as Exx and Exy• One need only find Exz' which is 

-Q'Q[n(n-l)h'+ph-(n-l)h"]-np(n-l)r~Xv2-np(n-l)Q'rX'vxX'vz 
Q'Qnp(n-

type IV: For one missing value 

~ • 8 , + (2ni l) + ~ + ~ 
2n2 2n n 

v•l,2, ••• ,n 
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WV • Ay - (2n+l)G + ~ + ,!p 
2n2 2n n 1 

(2n3-n2-3n+1)(4n2-2n-1) - 4n3rx2vx 

2n 3 (4n2-2n-1) 

v•l,2, ••• ,n 

(4n2-2n-l)[n2TCi(x)+2nTj(k)(x)+nTvx-Tk(x)·-G]-4n3rwvXvx--

For two missing values Ezz and Ezy are again computed in a similar 

fashion as Exx and Exy. One need only find Exz, which is 

-(4n2-2n-l)(n2h'+2nh+nk-h"-l) - 4n 3rXvxXvz 

2n 3 (4n2-2n-l) 
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DESIGNS FOR SECOND ORDER RESIDUAL EFFECTS 

5.1 Type V Designs 

General Remarks: When speaking about sets of (n-1) orthogonal Lat-

in squares, it was mentioned that these squares are balanced for all 

orders of residual effects up to the (n-l)St order. In this section an 

analysis of these squares will be presented when direct, first order 

and second order residual effects are believed to be present. Refer to 

Designs 5, 10, 17, 29, 31 and 32. Additivity of all treatment effects 

will be assumed. These designs were first described by Williams (SJ. 

Care must be taken in construction of the analysis of variance, 

for direct, first and second order effects are nonorthogonal. 

The combined treatment sum of squares for direct, first order 

residual and second order residual effects will be broken down in the 

following four ways: 

(1) Direct (adjusted 1st and 2nd order) + ist(adjusted 2nd order) 

+ 2nd (unadjusted) 

(2) Direct (unadjusted) + 1st (adjusted direct and 2nd order) 

+ 2nd (adjusted ist order) 

(3) Direct (adjusted 1st order) + ist (unadjusted) + 2nd (adjusted 

direct and 1st order) 

(4) Direct (unadjusted) + ist (adjusted direct) + 2nd (adjusted 

direct and 1st order). 

48 
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There are reasons for picking these specific sets of sums of 

squares, these being [5], 

(1) Method 1 yields a test on direct effects, 

(2) Method 2 yields a test on first order effects, 

(3) Methods 3 and 4 both yield a test for second order effects, 

and (4) Methods 3 and 4 together yield tests on direct and first order 

effects if for some reason second order effects are' to be 

ignored. 

The model for this design is 

yijkvst. µ + Ci+ Pj(k) + TV+ 0s + tt + £ijkvst 

i - 1, 2, •••• n(n-1) 
j - 1, 2, •••• n 
k - 1, 2, ••• t (n-1) 
v - 1, 2, •••• n 
6 -

1, 2, •••• n 
t - 1, 2, •••• n 

where tt represents the effect of the tth treatment on the observation 

in the second period following it. 

The normal equations are 

i • 1, 2, ••• , n(n-1) 

k • 1, 2, ••• , (n-1) 



so 

4 A 

n~+ r ci+np 2(k)+r1y+r08 • T2(k) 
(k) 

k • 1, 2, ••• , (n-1) 

where 

and, 

rie s • the sum over 

final one, 

riit t • the sum over 

all treatments in 

j - 3, 4, 
k ,.. 1, 2, 

•••• ... , n 
(n-1) 

v • 1, 2, •.• , n 

s•l,2, ••• ,n 

t - 1, 2, • •• , n 

subject i except the 

all treatments in subject i except those 

in the two final periods, 

riiie -s the sum over all s where s is not equal to v, 

riv; t • the sum over all t where t is not equal to v, 
A 

rvc i • the sum over all subjects for which treatment s is not 

in the final period, 

rvi; v • the sum over all v where v is not equal to s, 

rviif. • t the sum over all t where t is not equal to s, 
A 

I:viiici- the sum over all subjects where treatment t is not in 

either of the final two periods, 

rix; v • the sum over all v where v is not equal to t, 
A 

rxes • the sum over all s where s is not equal to t. 
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After applying the usual constraints, the normal equations become 

n2 (n-l)~ • G 

A 

nµ+ r c1+npj(k) • Tj(k) 
(k) 

A 

n(n-l)µ+n(n-l)Tv-(n-l)ev-<n-2)¢v • Tv 

i • 1, 2, ••• , n(n-1) 

j • 1, 2' 
k - 1, 2, 

~· .. ' ... ' n 
(n-1) 

v = 1, 2, ••• , n 

s = 1, 2, ••• , n 

t • 1, 2, ••. , n 

where rxic1 • the slDD over all subject effects where treatment s occurs 

last in subject i, 
.. 

rxiic1 • the SlDD over all subject effects where treatment t is 

either in the last or next to last period in subject i. 
A 

By solving the normal equations in terms of rv, es and ~t only, one 

arrives at the following set of reduced normal equations: 

n(n-1) -(n-1) -(n-2) TV T' v 

-(n-1) {n-l)~n2 -n-l~ (n+l)(n-2) 0 - A' v v n n 

-(n-2) - (n+l)(n-2) (n+l) Cn-2) 2 
¢v B' 

n n v 

v - 1, 2, ••• • n 
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where T' • Tv - .!c v n 

11le various adjusted and unadjusted effects which will be neces-

sary to find the different treatment sums of squares will be ,found by 

modifying this set of equations. 

At this point it will be necessary to change the notation some-

what, in order to incorporate the different adjusted and unadjusted 

estimates. The following notation will hold throughout the remainder 

of this section. 

Tv - estimate of unadjusted direct effect 

Ta - estimate of direct effect adjusted for 1st order residual 

effect 

Tab - estimate of direct effect adjusted for both 18 t and 2nd 

order residual effects 

9v - estimate of unadjusted 1st order residual effect 

9b - estimate of 1st order residual effect adjusted for 2nd 

order residual effect 

St - estimate of ist order residual effect adjusted for direct 

effect 

9tb - estimate of ist order residual effect adjusted for both 

direct and 2nd order residual effects 

tv - estimate of unadjusted 2nd order residual effect 
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tt - estimate of 2nd order residual effect adjusted for direct 

effect 

tat - estimate of 2nd order residual effect adjusted for both 

direct and 2nd order residual effects 

The following equations yield the required estimates~ 

v • 1, 2, ••• , n 

v • 1, 2, ••• , n 

v • 1, 2, ••• , n 

n(n-2)(n2-2n-l)eb • n(n-2)Av+Cn-l)F' +nB +F"v+Cn-l)P1+P2-nG v v . 

v • 1, 2, ••• , n 

v • 1, 2, ••• , n 

v • 1, 2, ••• , n 

A 

n(n+l)(n-2)(n-l)Ta • (n2-n-l)Tv+nA.v+F'v+P1-nG v • 1, 2, ••• , n 

n(n-l)(n-2)(n3-n2-5n-2);ab • (n+l)(n-2)(n2 -2n~l)Tv+n(n+l)(n-2)Ay 
' 

+(2n2-2n-2)F'v+n2(n-l)By+n(n-l)F"v 

+(2n2-2n-2)P1+n(n-l)P2-n2(n-l)G 

v • 1, 2, ••• , n 
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n(n-l)(n-2)(n3-n2-5n-2)etb • n(n-2)(n2-2)A,,+n(n-l)(n+2)Bv 

+(n3-n2-n+2)F' +(n-l)(n+2)F" v v 

+(n3-n2-n+2)P1+(n-l)(n+2)P2 
+n(n+l)(n-2)Tv-n(n+2)(n-l)G 

v • 1, 2, ••• , n 

n(n-2)(n3-n2-sn-2)tat • n(n2-l)Bv+n(n+2)A,,+n(n+l)F'v+(n2-l)F"v+(n2+n+l)P1 

+(n2-l)P2+n2Tv-(n2+4n+2)G 

v • 1, 2, ••• , n • 

The analysis of variance can now be written as shown in Table VIII. 

Source 

Subjects 

Periods/squares 

Treatment effects 

Error 

Total 

TABLE VIII 

ANALYSIS OF VARIANCE 

Degrees of 
Freedom 

n(n-1)-1 

(n-1) 2 

3(n-l) 

n2 (n-1)-l 

S\DDs of Squares 

_n11:TC2i - 1 G 
n 2 (n-1) 

.!.~r2 (k) !-.r2 
n" j - n2" k • • 

- see subanalysis -

subtraction 

The sums of squares for the treatment effects will be displayed in 
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a subanalysis (see Table IX). Rem2mber only one of the four sets of 

sums of squares can be used to calculate the error sum of squares. 

11te variance of a difference between any two estimates of the same 

kind is as follows: 

A A 2(n+l)(n2-2n-1) 
Variance C-rab - 'fab') •---------a~· 

n(n-l)(n3-n2-Sn-2) 

A 2 a2 Variance (T - Tv') -v n(n-1) e: 

A 2(n2-n-l) 02 Variance (Ta - Ta') -n(n2-l)(n-2) 
£ 

A 2(n2-2) a2 Variance (0tb - etb' > • 
(n-l)(nj-n2 -sn~2) 

e: 

Variance (eb - 0.,•) 

A A 

Variance (0t - 0t•> 

A 

Variance (0v --0v•) 

• ___ 2 __ 02 
I.:: (n2-2n-l) 

2n • ------ a2 £ 
(n2-l)(n-2) 

2n 2 
- ------- 0 

(n-l)(n2-n-l) £ 

2(n 2 -1) 2 Variance (~at - ~at•) • ----------- oe: 
(n-2)(n3-n2-5n-2) 

A A 

Variance <~t - tt•) 2n(n-1) 2 
- -------- 0 t: (n-2)2(n2-2) 
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TABLE IX 

SUBANALYSIS OF TREATMENT SUM OF SQUARES 

Degrees of 
Source Freedom 

Direct (adjusted for n-1 
1st and 2nd) 

(1) 18 t (adjusted for 2nd) n-1 

2nd (unadjusted) n-1 

Direct (unadjusted) n-1 

(2) 1st (adjusted for direct n-1 
and 2nd) 

2nd (adjusted for n-1 
direct) 

Direct (adjusted for 1st) n-1 

(3) 1st (unadjusted) n-1 

2nd {adjusted for direct n-1 
and 1st) 

Direct (unadjusted) n-1 

(4) ist (adjusted for direct) n-1 

2nd (adjusted for direct n-1 
and 1st) 

Sums of Squares 

n(n-l)(n 3-n2-Sn-2)r!2 
(n+1)(n2-2n-1) ab 

(n+l) (n-2>\i2 
n v 

-"'( n_-_2 ___ )_2....:..( n_2 ___ -_2.._) r ~2 
n(n-1) t 

n(n-1)(n-2)(n+l)ri2 
(n2-n-l) a 

(n-1) (n2-n-1) " re 2 
n v 

(n+l)(n-l)(n-2)re2 
n t 
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- 2n 2 ------a 
(n+l)(n-2) 2 c 

Missing Values: In finding missing value formulae it will be 

necessary to assume that the second order residual effect of the miss-

ing observation is actually present. The procedure is identical to 

that in Section 4.3. It will again only be necessary to compute Exx 

and Exy, Ezz and Ezy being computed in a like manner. It will also be 

necessary to compute Exz• after which the formulas from Section 4.3 

can be applied directly. 

It will be necessary to introduce some simplifying notation. 

Let D = (n+l)(n-2) 2 (n2-2n-l) 

D' • n(n-l)(n 3-n2-5n-2) 
(n+l) (n2-2n-l) 

and D" • (n 3-3n2+4) 
n 

The remaining notation is the same as that from Section 4.3. 

Let Xvx • a+. 1 [a 'n+c ]+ 1 [a"n2 (n-1) 
(n2-2n-l) (n+l)(n-2)(n2-2n-1) 

+c'n(n-1)+2d(n2-n-l)+d'n(n-l)+n2 Cn-1)] v • 1, 2, ••• , n 

X' • D"[a'n2+n+cn+dn-l]+(n+l)(n-2)[a"n2+c'n+dn+d'n+n+2] vx n 
v • 1, 2, ••• , n 

X"vx • [a"n2+c'n+dn+n+2] v•l,2, ••• ,n 
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Wv • Tv+. 1 [nAv+F'vJ+. 1 {n2(n-l)Bv+n(n-l)[F'v+F"v1 
(n2-2n-l) (n+l)(n-2)(n2-2n-l) 

v • 1, 2, ••. , n 

v • 1, 2, ••• , n 

v - 1, 2, • ... , n • 

Now, 

Exx -~~~~~~~~~~~~~~~~~~~~~ 
n4DD'D" 

Exy • 

n2DD'D"[nTCi(x)+nTj(k)(x)-Tk(x)·J-n4DD"l:XvxWv-D'rX'vxW'v-DD'rX"vxW"v 

n4DD'D" 

As before, the variables in the above formulas for Xvx• X'vx and 

X"vx change for each different location in the design the missing value 

assmes and Xvz• X'vz and X"vz are found from the same formulae. 

-n2oo'D" [nh '+nh-h"J-n4 DD"rx x -o' rx' x' -DD' rx" x" vx vz vx vz vx vz 

n 4 DD'D" 

Efficiency: Type V designs will be compared to Designs I through 
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IV for the same cases as in Section III. Comparisons will be made first 

for differences in direct effects. The numbers in the tables represent 

efficiencies of Design V to Designs I through IV. The cases n•3, p•3 

and n•4, p=3 are presented. 

TABLE X 

Design I II III IV Design I II Ill IV 

v 5 2 5 1 - - -32 15 32 8 
143 65 351 26 v -- - --175 84 340 35 

n•3 

The method of analysis in Design V is primarily for second order 

residual effects, and if none were assumed to exist, the design could 

be analyzed by the method of Design I. This is the reason for the low 

efficiencies. Also note, however, that this design is not as efficient 

as Design Ill if p•n, but it is more efficient than Design Ill if p<n. 

The next two sections of Table XI contain comparisons for estimat-

ing differences in first order residual effect. The numbers represent 

efficiencies of Design V to Designs I through IV for the same two cases 

as previously illustrated. 

TABLE XI 

Design I II Ill IV Design I II Ill IV 
3 4 3 12 

v - - - --
28 63 28 203 

52 65 1053 208 v - -70 112 952 385 
n=3 
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This case also illustrates the low efficiencies of Design V to 

Designs I through IV. Also, the efficiencies are lower than for direct 

effects. Type V is still better than Type III for p<n. 

5.2 Type VI Designs 

If an experimenter wanted as much information about second order 

residual effects as possible, as might be the case in testing medicines, 

and if he could afford to have more periods than was necessary for De-

sign V, he could choose a design of this type. The reader is referred 

to Designs 3, 7 and 19. It can easily be shown that all treatment ef-

fects, direct, first and second order, are orthogonal. The only non-

orthogonality in the designs is found between residual effects and 

subject effects. 

For the most part these designs have no practical value, and are 

merely included for the sake of interest. Some attempt was made toward 

generalization of construction, but as practicality is small, it was 

abandoned. 

The sources for the analysis of variance for these designs will be 

as follows: 
Source 

Subjects (unadjusted) 
Periods 

Direct 
1st order (adjusted for subjects) 

2nd order (adju1ted for 1ubjecta) 
Error 
Total 
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DESIGNS BALANCED FOR THE LINEAR COMPONENT OF RESIDUAL EFFECTS 

6.1 Type VII Designs 

General Information: In the following designs only one treatment 

will be tested. However, it will be tested at a number of equally 

spaced levels, so that the treatment must be quantitative. Equal spac-

ing permits easier analysis for linear and curvature components. A set 

of Latin squares is constructed in such a manner that the linear compo-

nent of residual effects and the linear, quadratic, ••• components of 

direct effects are orthogonal. This type of change-over design was 

first discussed by Berenblut [13) where he deals with a specific example 

for four levels. In a second paper by Berenblut [9] he extends these 

designs to five levels, and includes a test for linear direct x linear 

residual interaction. This is essentially a test for additivity of 

direct and residual effects, assuming that direct and residual effects 

are predominantly linear. He gives no designs for n>5. 

In his paper he assumes a model proposed by Finney [17] in which 

" errors are uncorrelated but first residual effects are multiples 

of corresponding direct effects 11 [9]. 

He then gives the following reasoning and conditions for assuming 

linearity of residual effects: 

"It is ••• general for the constant of proportionality between 

residual and direct effects to be less than unity; if in fact, the 

residual effects ar·e very small by comparison with direct effects, even 

61 
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the presence of some curvature in the direct effects will not seriously 

affect the linearity of residual effects, so long as the linear compo-

nent in the direct effects is predominant. We extend this idea to 

quantitative treatments in general, and take as the conditions for as-

suming linearity of residual effects (i) direct effects to have a pre-

dominant linear component, (ii) residual effects to be small by compari-

son with direct effects and proportional to them." (9). 

For four levels he gives one design, that being Design 12. For 

five levels he gives 12 designs, those being Designs 15a through 151. 

Each design has a different degree of non-orthogonality, and must have 

a \U\ique analysis of variance. All 13 designs will be analyzed entirely. 

Note that Designs 12 and !Sa through 151 utilize the same notation 

as the rest of the designs, but that in this case the letters represent 

the different levels of a given quantitative treatment in either ascend-

ing or descending order. For example, a could represent the low level, 

b the next level, etc. Also, in this analysis v will represent one 

level of the given treatment, and Tv will represent the sum over all the 

observations at the vth level. 

Without Interaction: Only the design for four levels will be 

analyzed without interaction. It will also be analyzed in the follow-

ing section under an interaction model. 

i - 1, 2, ••• , 8 
j - 1, 2, 3, 4 

where TL, TQ and Tc are the linear, quadratic and cubic components of 

direct effects; 91., eQ and 9c are the linear, quadratic and cubic effects 
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of first order residual effects, and t.;1 , t.; 2 , ~3' n1, n2, and n3 are the 

orthogonal polynomials for four levels defined as follows: 

TABLE XII 

Treatment Applied a b c d 

t.;l -3 -1 1 3 n1 

t.;2 1 -1 -1 1 n1 

F.;3 -1 3 -3 1 n3 

a b c d Previous Treatment 

A 

Applying the constraints rci = rpj • O, the normal equations 

become 

32µ • G 

A A A A 

4JJ+4C1-0L+0Q+30c = TC1 

A A 

4µ+4C2-3eL-0Q-ec • TC2 

~ 

4µ+4c3+30L-OQ+0c • TC3 

A A 

4µ+4C4+E>y,+0Q-30c • TC4 

,.. A A A 

4µ+4C5+6r,+eq-30c ~ TC5 
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" A A A ,.. 

4~+4C6+38L-eQ+0c - TC6 

~ ' 
4µ+4C7-3SL-eQ-Gc = TC7 

j - 1, 2, 3, 4 

. 
160rL = -3T8 -Tb+Tc+3Td 

.,,.. .... A .... .... A A ... .... .., 

240q-241Q+C1-C2-CJ+C4+C5-C6-c-r-ca a A8 -Ab-Ac+Ad 

A A A .... A " 

1200c+3C1-Cz+crJC4-3C5+C6-C7+3Ca = -Aa+3Ab-3Ac+Ad • 

Solving the above equations for the residual linear, quadratic 

and cubic effects, one gets 
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tQ is also needed 

Two methods of analysis will be presented. The first will be for 

testing residual effects, the second for testing direct effects assuming 

residual effects are predominantly linear. 

The first analysis of variance follows in Table XIII. Note that v 

represents the different levels of the given treatment. A test for 

significance of curvature of residual effects is 

Also, the test for linear residual effects is 

However, this analysis does not yield a test for unadjusted 

direct effects. 

If one could asslDJle that the curvature components of residual 
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TABLE XIII 

ANALYSIS OF VARIANCE 

Degrees of 
Source Freedom Sums of Squares 

Subjects 7 hrc2 - .!-.. G2 
4 i 32 

Periods 3 ~[p2j - ~2c;2 

Direct (unadjusted) 3 .!rr2 - .!-.. c2 
8 v 32 

A A A 

Residual (adjusted) 3 11002 + 402 + 110e2c L Q 

Linear 1 11002 
L 

Quadratic 1 402 
Q 

A 

Cubic 1 uoe2c 

Error 15 subtraction 

Total 31 ry2 1 2 --G ~ ij 32 

effects are negligible it is possible to obtain a test for unadjusted 

direct effects and also for linear residual effects. This is because 

direct effects are orthogonal to linear residual effects, but not to 

quadratic residual effects. One merely pools the quadratic residual 

S\DD of squares unadjusted for direct effects with error. Also, the 

cubic residual swn of squares should be pooled with error. This yields 
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the analysis of variance in Table XIV. The test for linearity of 

residual effects now becomes 

in addition to the usual tests for direct effects.· 

TABLE XIV 

ANALYSIS OF VARIANCE 

Degrees of 
Source Freedom Sums of Squares 

Subjects (unadjusted) 7 hrc2 - !..c2 4 i 32 

Periods 3 .1;p2 _ .!... c2 
8 j 32 

Direct (adjusted for 3 l60;2L + ~2Q + 160;2c 
residual quadratic) 11 

Linear 1 160; 2L 

64A 
Quadratic (adjusted) 1 -r2 

11 Q 

Cubic 1 160~ 2 c 

Residual linear (adjusted 1 11002 

subjects) L 

Error 17 subtraction 

EY2 1 Total 31 - -c2 ij 32 
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The variances of the different effects are: 

A A 1 
Variance (TL) • Variance (TC) = ~- o2 

160 e: 

11 2 •-o 
64 e: 

Variance (eL) • Variance (Ge) = ~1- o2 
110 e: 

A 1 
Variance (SQ) = - 02 4 e: 

With Interaction: The example just discussed will be analyzed first 

to illustrate the procedure. Then the 12 designs for five levels will 

be analysed. 

Four Levels 

Model II 

i - 1, 2, ••• , 8 
j - 1, 2, 3, 4 

where everything is defined as in Model I, and (0T) represents the ef-

feet of the interaction of linear direct x linear residual. 

'Ole coefficients ~ are found by multiplying together the two ortho-

gonal polynomials ~l and n1 , both from linear terms. Upon doing this, 

one gets the following values of ~ as shown in Table XV. An asterisk 

is used to represent a treatment sequence which does not occur. 

The normal equations after constraints are applied become 
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TABLE XV 

Treatment Applied 

a b c d 

a * 3 -3 * 
Previous b 3 * * -3 
Treatment 

c -3 * * 3 

d * -3 3 * 

32µ = G 

A A 
4µ+4C1-e1+3(0T) • TCl 

A A 

4u+4Cz-301+3(Gr) s TC2 

,. ,.. ,. A 

4µ+4C3+301+3(0r) = TC3 

A ~ "' 

4µ+4C4+0L+3(0t) • TC4 

A A "' 

4µ+4c5+a1-3(8t) 2 TCs 

- "' ... ti". 

4µ+4C6+3o1-3(0t) = TC6 

II> "' ,.. A 
4µ+4Cr301-3(01) = TC7 
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A A A A 

4µ+4C8-e1-3(€t) • TC8 

j - 1, 2' 3, 4 

A 

160TL - -3Ta-Tb+Tc+3Td 

A 

32TQ - Ta-Tb-Tc+Td 

A AAA""'""'"',,.,. 
216(0r)+3[C1+C2+c3+C4-C5-c6-c7-c8 J = 3[Tab+Tba+TcQ+Tdc-Tbd-Tdb-Tac-Tcal 

"" Solving for 0L and (Bl)~ 

"" 198(0T) • 3[Tab+Tb8+Tcd+Tdc-Tbd-Tdb-Tac-TcaJ 
3 -4(TC1+TC2+TC3+TC4-TC5-TC6-TC7-TCg] • 

Define f (T) = [T8 b+Tba+Tcd+Tdc-Tbd-Tdb-Tac-Tca1 

g(B) • i[TC1+Tc2+TC3+TC4-TC5-TC6-TC7-TCg] 

Then one gets, 

"" 198(0t) • 3f(T) - 3g(B). 
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The analysis of variance can now be presented as in Table XVI. 

Source 

TABLE XVI 

ANALYSIS OF VARIANCE 

Degrees of 
Freedom 

Subjects (unadjusted) 7 

Per1oda 3 

Direct 3 

Linear 1 

Deviations 2 

Linear Residual (adjusted 1 
for subjects) 

Linear Direct x Linear Residual 1 
(adjusted) 

Error 16 

Total 31 

Sums of Squares 

hTc2 - .!.. c2 
4 i 32 

Lp2 8" j 

!rr2 - 1- c2 
8 v 32 

110e2L 

- see below -

subtraction 

Note that v represents different levels of the same treatment. 

Linear Direct x Linear Residual Sum of Squares • 198(~)2 

• ~1--[3f(T)-3g(B)] 2 
198 

- L[f(T)-g(B) ]2 
22 



Variance (91) • ~1- a2 
110 c 

Variance (~) • __ l_ a2 
198 c 
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Since direct effects are orthogonal to all other effects, a test 

statistic for testing direct effects is 

Direct MS 
EMS "'F 3,16 • 

Five Levels: As previously noted there are no general formulas 

for analyzing Designs 15a through 151. 

All the designs are orthogonal for direct, linear residual and 

linear x linear effects, but neither linear residual nor linear x linear 

effects are orthogonal to subject effects. Each design contains a dif-

ferent degree of entanglement so as to render the sums of squares 

different in each instance. 

The normal equations forµ, Pj' TL, TQ' Tc and Tq will be the same 

for all 12 designs, but those for Ci, e1 and (9T) will change. The 

normal equations will be similar to those for the previous case of four 

levels, and will not be presented. Only the method of analysis will be 

presented here. 

Certain properties and sums of squares will be the same for all 

the designs and will be given first. Thereafter, only four quantities 

will be needed to complete the analysis. 
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i. 1, 2, ••• , 10 
j • 1, 2, 3, 4, 5 

where t1 , tQ, tc, e1 , and (0t) are defined as in the case for four 

levels, tq is the quartic component of direct effects, and t1 , t2 , t 3, 

(4 and n are the orthogonal polynomials for five levels and for the 

linear level in five levels respectively. They are defined as .follows: 

TABLE XVII 

Treatment Applied a b c d e 

t1 -2 -1 0 1 2 n 

(2 2 -1 -2 -1 2 

() -1 2 0 -2 1 

~4 1 -4 6 -4 1 

a b c d e Previous Treatment 

~ is the product of t1 and n defined as shown in Table XVIII. 

Where an • indicates the combination does not occur. It should be 

noted that some of the above combinations without an asterisk do not 

occur for some designs. For example, consider Design 15a. Treatment e 

never immediately follows treatment a, or vice versa. nterefore, if 

either of the totals T8 e or Tea were required for a general formula, 

they would simply be zero for this design. 

The general analysis of variance is seen in Table XIX. Note 

that v represent• the different levels. 
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TABLE XVIII 

Treatment Applied 

a b c d e 

a * 2 0 -2 -4 

Previous b 2 * 0 -1 -2 
Treatment 

c 0 0 * 0 0 

d -2 -1 0 * 2 

e -4 -2 0 2 * 

For all designs let h(e) • -2A8 -Ai,+.\1+2Ae, 

and let 

Now, the sum of squares for Linear Residual (unadjusted for inter-

action) can be shown to be 

.!_(A' )2 
76 

and the sum of squares for Linear x Linear Interaction (adjusted) is 

C*[AT'+C**A'] 2 , 

where A'• h(e) + ~[g1 (B)], 
AT' • f(T) + .!.[g2(B)], 

5 
and C*, C**, g1(B) and g2(B) must be defined separately for each of the 

twelve designs. 
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TABLE XIX 

ANALYSIS OF VARIANCE 

Source 

Subjects (unadjusted) 

Periods 

Direct 

Linear 

Quadratic 

Cubic 

Quartic 

Degrees of 
Freedom 

9 

4 

4 

Linear Residual (unadjusted) 1 

Linear Direct x Linear Residual 1 

Error 30 

Total 49 

Design 

C* • .0115 

1 

1 

1 

1 

Sums of Squares 

!rtc2 - .! c2 
5 i 50 

.! rp2 - .! c2 
10 j 50 

! rr2 - .! c2 
10 v 50 

_1_[-T +2Tb-2T .+T ] 2 
100 a a· e 

- see text -

- see text -

subtraction 
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C** • -.0421 

C* • .0116 

C** • -.0210 

15c gl(B). [2TC1+TC3-2TC4-TC5+2TC6-2TC7-TCs+TC9l 

s2(B) • 2[-2TC1-TC2+TC3+2TC6-TCa+TC9] 

C* • .01157 

C** • .0105 

15d g1 (B) • [TC2-TC3+2TC4-2TC5+2TC6+TC7-TC8-2TC9] 

s2(B) - [-2TC1-4TC2-2TC3-TC5+3TC6+6TC7+2TCs-4TC9+2TC1ol 

C* • .0120 

C** • .0463 

15e gl(B) - [2TC2+TC3-TC4-2TC5+2TC6+TC7-TCs-2TC1ol 

g2(B) • [-2TC1+2TC3+6TC4-4TC5-TC6-4TC~3TC10J 

C* • .0092 

C** • -.0210 

lSf . gl (B) - [2!C2+TC3-2TC4-TC5+2TC6-TCa-2TC9+TC1ol 

g2(B) • [-3TC1-4TC2+2TC3+3TC6-2TC8+STC9-TC10J 

C* • .0106 

C** • -.0232 

15g g1 (B) = [TC2+2TC3-2TC4-TC5-TC6+TC7-2TCs+2TCg] 

s2(B) - 2[-TC1-2TC2+TCJ+2TC7-TCa+TC1ol 

C* - .01157 
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C** • .0210 

15h g1 (B) • [2TC2-TC3-2TC4+Tc5-Tc6+2TC7+Tc8-2TC9] 

g2(B) • [5TC1-4TC2-2TC3+3TC4-TC5-4TC7+3TCs+3TC9-3TC10J 

C* • .01427 

C** • .0630 

15i g1 (B) • [TC1-2TC2-2TC3-TC5+TC6+2TC8-2TC9-TC10J 

g2 (B) • 2[-2TC1+TC3-TC4+3TC5+3TC6-TC7-TCs-2TC1oJ 

C* • .01162 

C** • 0 

15j g1 (B) • [2TC1-2TC2+TC3-TC4-Tc6+2TC7+TC8-2TC9] 

g2(B) a [3TC1-TC2-4TC4+3TC5-4TC~2TCs+3TC9-2TC10J 

C* • .0106 

C** "" 0 

15k g1 (B) • [TC1-2TC2-TC3+2TC4-TC6+2TC~TC8-2TC9 ] 

s2(B) - 2[-2TC1-TC3-TC5+2TC6+TCs+TC101 

C* - .01157 

C** .,. -.0105 

151 g1(B) • [-TC1+2TC3-2TC4+TC5+Tc6-2rc8+2TC9-Tc10J 

g2(B) • 2[-TC2-TC3-2TC4+Tc7+TC8+2TC9] 

c• • .01158 

C** • .0210 

Variances: If interaction effects can be asswned negligible, and 
A 

no test for it is being made, the variance of e1 is the same for all 12 

designs, being equal to .!_ cr 2 • If, however, one is testing using the 
76 E 

A -interaction model, the different variances of e1 and (0T) can be found 
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from Table XX. 

TABLE XX 

. /". 
Design Variance (91) /o 2 Variance (&r) /a2 

!Sa 

15b 

!Sc 

lSd 

!Se 

15f 

lSg 

!Sh 

lSi 

lSj 

lSk 

151 

e: £ 

.01318 .Oll59 

.01316 .01158 

.01316 .011S7 

.01318 .01200 

.01316 .00920 

.01316 .01600 

.01316 .011S8 

.01321 .01427 

.01316 .01162 

.01316 .01059 

.• 01316 .OllS7 

.01316 .Ol1S8 

A 

Designs e and j are particularly good for estimating (9T) while 

Designs d, f and h _are not quite as good as the remainder of them. 
A 

All designs are about equal with respect to estimation of 9i.• Design h 

having the largest variance. 

6.2 Type VIII Designs 

General Re11U1rks: Unfortunately there have been no d11i1n1 
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published of Type VII for greater than five levels, and Berenblut [9] 

states that none exist for two or three levels. The extra-period type 

II designs can, however, be analyzed under the same model, also yield-

ing a test for interaction. These designs are orthogonal for linear, 

quadratic, direct effects and linear residual effects. The linear 

residual effect is now orthogonal to subjects, but the direct effects 

are no longer orthogonal to subjects. The linear x linear interaction 

effect is still nonorthogonal to subjects, but is now also nonorthogonal 

to periods. 

The efficiency of these designs to Type VII designs is quite low, 

and it would be advisable to use one of the latter designs if one is 

available. However, Type VIII designs are quite easy to find, exist 

for two and three levels, and are not much more complicated to analyze 

than those of Type VII. Again there is no general formula to follow 

for this analysis. 

Two designs will be analyzed, one for three levels and one for 

four levels. The four level design will be compared to the four level 

Type VII design. 

Since the linear residual effect is completely orthogonal to all 

other effects it need not be adjusted, and 

(Linear Residual MS) 
EMS 

will always be a proper test statistic for linear residual effects for 

these designs. 
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Three Levels: Design 5 will be used as an extra-period design. 

The model will be 

i - 1, 2, •••• 6 
j - 1, 2, 3, 4 

where t1 and t2 represent the two orthogonal polynomials corresponding 

to the linear and quadratic components for three levels, n represents 

the linear orthogonal polynomial for three levels, and r,; is merely txn 

representing the linear direct x linear residual interaction. 

t1 , t 2 and ~ are defined as follows: 

TABLE XXI 

Treatment Applied a b c 

t1 -1 0 1 n 

t2 1 -2 1 

a b c Previous Treatment 

and r,; is defined as : 

TABLE XXII 

Treatment Applied 

a b c 

a 1 0 -1 
Previous 
Treatment b 0 0 0 

c -1 0 1 
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Note that in this analysis the letters a, b, c ••• in the designs 

represent quantitative equally spaced levels of the same treatment in 

either ascending or descending order. 

After applying the constraints rci • Epj • 0, the normal equations 

become: 

.. 
24µ • G 

,. ,. ,. A 

4µ + 4Cl + TL + tQ + (0t) • TC! 

4µ + 4C2 - TL + TQ - TC2 

/'. 
4µ + 4C3 - 2TQ - (0T) • TC3 

A 
4µ + 4C4 - 2TQ - (9T) • TC4 

A 

4µ + 4C6 - TL + TQ + (0T) - TC6 

6µ + 6pl - pl 

. "' 
6'1J + 6p2 - 2(0T) • P2 

.. .. A 

6'1J + 6p3 - 2(9T) • P3 
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A A ,,,... 

6u + 6p 4 + 4(9t) • P4 

A A 

48tQ + c1 + C2 - 2c3 - 2C4 + c5 + c6 • Ta - 2Tb + Tc 

A - A A 

8(0t) + c1 - c3 - C4 + C6 - 2p2 - 2P3 + 4p 4 • T88 + Tee - Tac - Tea 

Solving for tL one gets 

" It will also be necessary to solve for TQ and (0t). Two quantities 

in terms of both effects are obtained, 

where 

- 1; + 1(~) • AT' 
2 Q' 
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and 

""' It will only be necessary to solve for (0t) 

177 (er) •AT' +.J:.Q• 
60 30 

The analysis of variance can now be constructed as in Table XXlll. The 
A ""' variances of GL and (Gt) are 

Variance (SL) • _! o2 
12 c 

"' Variance (Gt) • 60 o2 
177 £ 

The test statistic for additivity of direct and residual effects is 

177 (er) 2 /MSE 
60 

Four Levels: Design 9 is a completely balanced Latin square for 

four treatments. It will be used as an extra-period design with the 

treatments a, b, c, and d representing four equally spaced levels of a 

given treatment. 

The model is 

yij - ~ + Ci + pj + tL~l + tQ~2 + tc~3 + 9tn + (Gt)~ + £ij 

i - 1, 2, 3, 4 
j - 1, 2, 3, 4, 5 
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TABLE XXIII 

ANALYSIS OF VARIANCE 

Source 

Subjects (unadjusted) 

Periods (unadjusted) 

Direct (adjusted only for 
subjects) 

Linear (adjusted for 
subjects) 

Quadratic (unadjusted 
linear x linear) 

Linear Residual 

Linear Direct x Linear 
Residual (adjusted) 

Error 

Total 

Degrees of 
Freedom 

5 

3 

2 

1 

for 1 

1 

1 

11 

23 

Sums of Squares 

!rTc2i 
4 

%rp2j 

15; 2 
L 

15; 2 
L 

.J.q•2 
45 

- _!c2 
24 

- _lc2 
24 

+ _1Qt2 
45 

A 
177 (0t)2 

60 

subtraction 

where the notation is the same as that for four level Type VII designs 

with interaction, except that in this case ~ is defined as shown in 

Table XXIV because all possible combinations occur. 

After applying the constraints !Ci • tpj • O, the normal equations 

become: 
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TABLE XXIV 

Treatment Applied 

a b c d 

a 9 3 -3 -9 

Previous b 3 1 -1 -3 
Treatment 

c -3 -1 1 3 

d -9 -3 3 9 

20µ Q G 

A A /'-. 

Sµ+sc1+3,1+1q+1c+14(01) • rc1 

A A A A A /'. 

5µ+5C2+11-1q-3TC-14(0t) = TC2 

A ,,._ A ,._ """ 

5µ+Sc3-11-1q+3tc-14(0t) m Tc3 

,,. ,. ,,,. ... ~ """' 
5µ+5c4 -3T1+1q-1c+l4(01) • TC4 

~ A 

4µ+4p3-20{0T) • P3 



86 

" A A ,.. A 

100TL+3C1+c2-c3-3C4 • -3T8 -Tb+Tc+3Td 

A A 

20Tq+C1-c2-C3+C4 • T8 -Tb-Tc+Td 

,.. .... ,... ,,,. 
100Tc+Cl-3C2+3C3-C4 = -Ta+3Tb-3Tc+Td 

A 

80GL a -3A8 -At,+Ac+3Ad 

A. ,.. ,.. .... ,,. ,.. ,... 

400(9T)+l4C1-14C2-14C)+14C4-20pJ+20p5 • [Tbb+Tcc-Tbc-Tcb] 

Solving for tL and tc one gets 

A 

and 96Tc • c' 

and 

Let 80Ely, • R' 

+3fTab+Tb8+Tccf+Tdc-Tac-Tbd-Tca-Tdb1 

+9[Taa+Tdd-Tad-Tda1 • 



87 

where 

""' Now, solving for TQ and (0t) one gets the following set of equations: 

_ 56;Q + 216(~) • AT' 
5 5 

where 

and AT' • [Tbb+Tcc-Tbc-Tcb1+3[Tab+Tb 8+Tcct+Tdc-Tac-Tbd-Tca-Tdb] 

+9[Taa+Tdd-Tad-Tda1-1:[TC1-rc2-rc3+TC4]+5[P 3-P5]. 

It will only be necessary to find the adjusted interaction effect, 

which is 
,,,... 

110(0t) • AT' + ..!.i),' 
3 12 

The analysis of variance can now be constructed as in Table XXV. 

Note that in this design and in the previous design for three levels 

Linear Residual MS.i MSE s a valid test for linearity of residual effects be-

cause of orthogonality. 

The sum of squares for direct effects can be split up as shown in 

Table XXVI. 
r... 

The variance of (0t) is 3 
-- cr2 
110 £ 
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TABLE XXV 

ANALYSIS OF VARIANCE 

Degrees of 
Source Freedom 

Subjects (unadjusted) 3 

Periods (unadjusted) 4 

Direct (adjusted for subjects) 3 

Linear Residual 1 

Linear Direct x Linear 1 
Residual (adjusted) 

Error 7 

Total 19 

TABLE XXVI 

Degrees of 
Source Freedom 

Direct (adjusted for 3 
subjects) 

Linear (adjusted 
subjects) 1 

Quadratic (adjusted 1 
subjects) 

Cubic (adjusted 1 
subjects) 

Sums of Squares 

!.rrc2i - __.!G2 
5 20 

.!rp2 
4 j - -!c2 

20 

- see text -

..J:.R' 2 
80 

A 
110(01)2 

3 

subtraction 

EY2ij - _!c2 
20 

Sums of Squares 

~·2 
96 

_!c•2 
96 
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and that for et is 1 2 -o . 
80 £ 

Efficiency: The design for four levels just discussed will be 

compared with design Type VII for four levels with interaction. It 

will be necessary to find the number of observations x the variance of 
,. "" 

the effects to be compared. nte effects to be compared are Sy. and (et). 

First for et: 

Design 

Type VII 

Type VIII 

Number of Observations X Variance et 

32(-1-) - .291 
110 

20(_!) - .250 
80 

nte efficiency of Type VIII to Type VII designs is 1.164. lbere-

fore, if one were mainly interested in estimating first order residual 

effects, one should use a Type VIII design which yields a slightly better 

estimate. TI'lis statement can only be made here for four levels. No at-

tempt will be made in this paper to extend this result to five levels 

or more. 

Now the two types of designs will be compared for estimation of 

interaction effects. 

Design 

Type VII 

Type VIII 

,,,.... 
Number of Observations x Variance (et) 

32 (-1-) - .165 
198 

20 (_3_) - • 545 
110 
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The efficiency of Design VIII to Design VII is seen 

to be .303. One sees that Design VII, or Berenblut's design is far 

better at estimating the interaction effect. 

It can only be concluded that the type of design utilized should 

be chosen by the amount of precision desired of the two effects. If 

more precision is desired for first order residual effects than inter-

action effects, design Type VIII should be used, and vice versa. 

6.3 Type IX Designs 

General Remarks: Type VII and VIII designs can be quite useful if 

the experimenter is only interested in testing one type of treatment at 

various equally spaced levels. Often this is not the case. What if he 

were interested in testing, say, two treatments, and still wanted some 

test for additivity? As long as his treatments are quantitative there 

may be another design he could use. The author has devised some de-

signs which can be analyzed for more than one treatment, each at this 

same number of equally spaced levels. 

Examples will be given for two treatments, each at two levels; two 

treatments, each at.three levels; and three treatments, each at two 

levels. 

Only the first example will be analyzed. 

Two Treatments at Two Levels: Construction of the design is as 

follows. Take Design 12. Let treatment a be one level of treatment 

one, denoted by a1 • Let treatment d be the second level of treatment 
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one, denoted by a2• Let treatments b .md c be the two levels of treat-

ment two, denoted by b1 and b2 respectively. 'lbe following design is 

now obtained: 

The four levels of the two treatments can actually be thought of as 

four separate treatments. Therefore, each level (or treatment) is seen 

to appear once in each subject and twice in each period, rendering 

treatments orthogonal to both subjects and periods. 

Other orthogonal properties will be discussed after presentation of 

the normal equations. 

The model for this design is 

Yij • µ+Ci+pj+T1~1+01~2+T2n1+02n2+(r1r2)A 1+Ce1e2)A2+Cr 1e2>~1+(r201)~2+tij 

i - 1, 2 ••••• 8 
j - 1. 2. 3, 4 

where Tl represents the (linear) direct effect of treatment 1, 

t2 represents the (linear) direct effect of treatment 2. 

0 1 represents the (linear) residual effect of treatment 1, 

02 represents the (linear) residual effect of treatment 2, 

(t1t 2) represents a linear contrast in the observations orthogonal to 

the direct effects of treatments 1 and 2; or 1 versus 2, 

(e1e2) represents a linear contrast in the observations orthogonal 

to the residual effects of treatments 1 and 2; or 1 versus 2, 



92 

(T1e2) represents the interaction effect treatment 1 direct x treat-

ment 2 residual, 

and (T291) represents the interaction effect treatment 2 direct x treat-

ment 1 residual. 

~l' ~2 , n1 and n2 can be defined as follows: 

TABLE XXVII 

Treatment Applied al 82 bl b2 

E;l -1 1 0 0 (2 

nl 0 0 -1 1 n2 

al a2 bl b2 Previous Treatment 

t1 and t 2 can be defined as follows: 

TABLE XXVIII 

Treatment Applied 

al •2 

al * * 1 -1 

Previous a2 * * Treatment 
-1 1 

bl 1 -1 * * 

b2 -1 1 * * 

t;l 
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and Al and A2 can be defined as follows: 

TABLE XXIX 

Treatment Applied 

al a2 bl b2 

).1 1 1 -1 -1 

). 2 -1 -1 1 1 

A 

The normal equations under the constraints rc1 • tpj • 0 are: 

32u • G 

A A "" A 
4µ + 4C1 - e2 - (t 102) + 2Ct 2e1> + (0102) • TC1 

A A A A /'. 
4µ + 4C2 + e2 + (t102) - 2(t201) + (0102) • TC2 

A A A A A 
4µ + 4C3 - e2 + (r162) - 2(1201) + (8182) • TC3 

A A A A 
4µ + 4C4 + e2 - (1102> + 2{-r 2e1) + (6102) • TC4 

A A A 
4µ + 4C5 - el + 2(T182) - (1201) - (f)1°2> • TC5 

. " .. ""' A A 
4u + 4C6 + 01 - 2(t102) + (t201) - (0102) • TC6 
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A 

81.1 + Sp j • P j j • 1, 2. 3, 4 

A A A 

12Gl - Cs + c6 - C7 + Ce • Aa2 - Aal 
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It can be seen that subject effects are nonorthogonal to residual 

effects, direct x residual interaction effects and the linear contrast 

among the residual effects. 

One first needs to obtain e1 and 02 as follows: 

where 

/'. 
One needs next to solve for (01e2) : 

where 

Lastly, one needs to solve for the interaction effects; doing so 

yields a set of simultaneous equations in both estimates as follows: 
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where 

and 

The adjusted estimates now become 

/'< 
33(T1G2) a 7(T1A2)' - 4(T2Ai)' 

The analysis of variance is shown in Table XXX. Only one pair of 

interaction sums of squares should be used when finding the error sum of 

squares. As a check, note that 

1 Direct x 2 Residual (adjusted) Sum of Squares + 1 Residual x 2 Direct 

(unadjusted) Sum of Squares • 1 Residual x 2 Direct (adjusted) Sum of squares 

+ 1 Direct x 2 Residual (unadjusted) Sum of Squares. 



Source 

Subjects (unadjusted) 

Periods 
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TABLE XXX 

Degrees of 
Freedom 

7 

3 

Direct Effects 3 

Treatment 1 Direct 1 

Treatment 2 Direct 1 

Treatment 1 vs Treatment 2 1 

Residual Effects 3 

Treatment 1 Residual 1 

Treatment 2 Residual 1 

Treatment 1 vs Treatment 2 1 

Dir x 2 Res (adj 1 Res x 2 Dir) 

Res x 2 Dir (unadjusted) 

{

1

1 

Res x 2 Dir (adj 1 Dir x 2 Res) 1

1

} 

Dir x 2 Res (unadjusted) 

Error 13 

Total 31 

Sums of Squares 

.!.rTc2 - _!.c2 
4 i 32 

.!.rp2 - -.!c2 
8 j 32 

.!.[T2 +T2 +T2 +T2 ]-_l.c2 
8 al a2 bl b2 32 

_![T8 -Ta 12 
16 1 2 

_![Tb -Tb ]2 
16 1 2 

_![Ta +Ta -Tb -Tb ]2 
32 1 1 1 1 

ue2 
1 

ue2 
2 

3\.('0 >2 
7 1 2 

subtraction 

'"Y _ 1,.2 [., ij ~ 32 
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Since in this design a treatment never directly follows itself, the 

interaction between a treatment direct effect and its own residual ef-

feet is of no concern. Also, the interactions between the two effects 
A A 

(t 1t 2) and (0102) and the two interaction effects are considered to be 

negligible. 

and 

The variances of the different effects are as follows: 

Variance (;
1

) = Variance (~ 2 ) • _!_ o2 
16 £ 

A A 1 2 
Variance (0

1
) • Variance (02) = ~ o 

16, f 

A A 7 Variance (t 102) s Variance (t 201) = ~a2 
33 £ 

Two Treatments at Three Levels: A design for two treatments each 

at three equally spaced levels is: 

'nle analysis of this design will not be considered here. 

'nlree Treatments at Two Levels: A design for three treatments each 

at two equally spaced levels is: 
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The analysis of this design will not be considered here. 



VII 

MISCELLANEOUS DESIGNS 

Designs 16, 27 and 28 are examples of balanced designs which do not 

fit any of the types already discussed. They might be classified as de-

signs for n treatments, p periods (p<n) and m squares. No attempt will 

be made to analyze these designs. 

Patterson, in regard to these designs, states, "When rectangles are 

considered it is found that there are not many balanced designs requir-

ing fewer than n(n-1) units." [14]. Of course a design based on Latin 

rectangles for n(n-1) units can always be formed from orthogonal Latin 

squares, which have been denoted as Type Ill designs. 

Another group of designs stems from what have been called Type VI 

designs. As was noted, the three Designs 3, 7 and 19 are completely 

orthogonal for all treatment effects up to second order residual effects. 

This orthogonality has been extended in Designs 4, 8 and 20 up to third 

order residual effects and in Design 21 up to fourth order residual ef-

fects. These designs are presented to give the reader an idea of what 

can be constructed. Other designs could be constructed for other ntDR-

bers of treatments,. but practicality does not seem to warrant the effort. 

Unfortunately the author is not aware of any other designs with the same 

orthogonality properties, but of smaller dimensions. As the presented 

designs were constructed by trial and error, none for smaller dimensions 

were found, and it does not seem that any might exist. 
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VIII 

SUMMARY 

A number of different types of change-over designs are analyzed. 

The analysis of variance for each type is given explicitly, along with 

variances and expected mean squares. In some cases different designs 

are compared and efficiencies are obtained. 

While efficiency is certainly a criterion for choosing a design, it 

has been shown that another major factor of consideration is the number 

of observations. In some cases a more efficient design leads to more 

periods than would necessarily be required. In these cases the subjects 

may not be able to handle this increase in number of periods. It also 

may be the case that there are simply not enough subjects available. 

In any case, no specific design can be recommended for all purposes. 

Each different problem requires its own solution, and the necessity to 

choose the best design available, for whatever reasons the problem 

dictates. 
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APPENDIX 

DESIGNS 

Designs will be listed by number of treatments. Rows represent 

periods and columns represent subjects. 

Design 1 

Design 2 

Design J 

Design 4 

2 Treatments 

a b 
b a 

a b a b 
b a a b 
b a b a 
a b b a 

a a b b 
a b b a 
a b a b 
b b a a 
b a a b 
b a b a 

a a a a b b b b 
a a b b a a b b 
a b a b a b a b 
a a b b b b a a 
b a b a a b a b 
b b b b a a a a 
b a b a b a b a 
b b a a a a b b 
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Design .5 

Design 6 

Design 7 

Design 8 

lOJ 

J Treatments 

a b c 
b c a 
c a b 

a b c a b 

a b c 
c a b 
b c a 

c a b c 
c a b b c a a b c 
b c a b c a b c a 
b c a a b c c a b 
c a b c a b c a b 
a b c c a b b c a 

a a a b b b 0 c c 
a b c b c a c a b 
a b c a b c ab c 
c c c a a a b b b 
c a b a b c b c a 
c a b c a b c a b 
b b b c c c a a a 
b c a c a b a b c 
b cab c a b c a 

a a ab b b c c 0 
a b c b c a c a b 
a b c a b c a b o 
a b c c a b b c a 
c c c a a a b b b 
0 a b a b c b o a 
c a b c a b c a b 
c a b b c a a b c 
b b b c c c a a a 
b o a 0 a b a b c 
b c a b c a b c a 
b c a a b c c a b 



Design 9 

Design 10 

Design 11 

Design 12 

Design lJ 
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4 Treatments 

ab c d 
b a d c 
c d a b 
d c b a 

ab c d 
b d a c 
c a d b 
d c b a 

a b c d 
d c b a 
b a d c 
c d a b 

ab c d 
c d a b 
d c b a 
b a d c 

a b c d a b c d a b c d a b c d 
d a b c c d b a b c d a a b c d 
c d a b c d a b c d a b c d a b 
b c d a a b c d d a b c c d a b 
b c d a b c d a b c d a b c d a 
c d a b b c d a a b c d d a b c 
d a b c d a b c d a b c d a b c 
a b c d d a b c c d a b b c d a 

ab c d 
b a d c 
d c b a 
c d a b 

a b c d 
c d a b 
d c b a 
b a d c 

5 Treatments 

ab c d e 
b c d ea 
d e a b c 
e a b c d 
c d e a b 

a b c d e 
c d ea b 
b c d e a 
e a b c d 
d e a b c 



Design 14 

Design 15a 

Design 15b 

Design 15c 

Design 1.5d 

Design 15e 

Design 15t 

a b o d e 
b c d e a 
e a b 0 d 
0 d e a b 
d e a b c 

a b o d e 
b a e c d 
c d be a 
d e a b c 
e c d a b 

a bod e 
b a d e c 
e c a b d 
d e b c a 
c d e a b 

a b c d e 
b a e c d 
c d be a 
d e a b c 
e c d a b 

a b 0 d 8 
b a e c d 
e c d a b 
d e a b c 
0 d b e a 

a b o d e 
b a e c d 
e d b a 0 
d c a e b 
c e d b a 

a b c d e 
b a e c d 
d c b e a 
e d a b c 
c e d a b 
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a b c d e 
e a b o d 
b c d a a 
d e a. b c 
c d e a. b 

a b c d e 
d e a c b 
e d b a c 
c a e b d 
b c d e a 

a b o d e 
d e b a c 
e d a o b 
b o d e a 
c a e b d 

a b c d e 
d c e a b 
c e d b a 
bd a e c 
e a b c d 

a b 0 d e 
d o a e b 
b e d c a 
ca e b d 
e d b a o 

a b c d e 
0 a d e b 
b c e a d 
d e a b 0 
e d b c a 

a b c d e 
d a e b c 
b e d c a 
c d a e b 
e c b a d 



Design l.5g 

Design 15h 

Design 15i 

Design 1.5j 

Design 15k 

Design 151 

a b c d e 
b a d e c 
e c a b d 
d e b c a 
c d e ab 

ab c d e 
d a e b c 
b c d e a 
e d a c b 
c e b a d 

ab c d e 
b c de a 
c e a b d 
e d b a c 
d a e c b 

a b c d e 
c d b e a 
de a c b 
b c e a d 
e a d b c 

a b c d e 
b c ea d 
c e d b a 
e d a c b 
dab e d 

ab c d e 
d a b e c 
e d a c b 
c e d b a 
b c e a d 
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ab c d e 
c e d a b 
d c e b a 
ea b c d 
b d a e c 

a b c d e 
c a e b d 
d c a e b 
e d b c a 
b e d a c 

ab c de 
ea b c d 
b d a e c 
c e d b a 
d c e a b 

ab c de 
c a e b d 
d c be a 
e d a c b 
b e d a c 

ab c de 
d a e c b 
c db ea 
e c a b d 
b e d a c 

a b c d e 
c e b a d 
b de ca 
e a d b c 
d c a e b 
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Design 16 

abcde 
b c d ea 
d e a b c 

Design 17 

ab c de 
b c de a 
c d ea b 
d e a b c 
e a b c d 

ab c de 
d e a b c 
b c de a 
ea b c d 
c d e a b 

Design 18 

ab c d e 
de ab c 
c d e a b 

ab c d e 
c d e a b 
e ab c d 
b c d e a 
d e a b c 

ab c de 
ea b c d 
d e a b c 
c d e a b 
b c de a 

abcdeabcdeabcdeabcdeabcde 
e a b c d d e a b c c d e a b b c d e a a b c d e 
d e a b c d e a b c d e a b c d e a b c d e a b c 
c d e a b b c d e a a b c d e e a b c d d e a b c 
bcdeabcdeabcdeabcdeabcdea 
b c d e a a b c d e e a b c d d e a b c c d e a b 
c d e a b c d e a b c d e a b c d e a b c d e a b 
d e a b c o d e a b b c d e a a b c d e e a b c d 
e a b c d e a b c d e a b c d e a b c d e a b c d 
a b c d e e a b c d d e a b o c d e a b b c d e a 
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Design 19 

a a a a a b b b b b c c c c c d d d d d e e e e e 
a b c d e b c d e a c d e a b d e a b c e a b c d 
a b c d e c d e a b e a b c d b c d e a d e a b c 
b b b b b c c c c c d d d d d e e e e e a a a a a 
b c d e a c d e a b d e a b c e a b c d a b c d e 
b c d e a d e a b c a b c d e c d e a b e a b c d 
c c c c c d d d d d e e e e e a a a a a b b b b b 
c d e a b d e a b c e a b c d a b c d e b c d e a 
c d e a b e a b c d b c d e a d e a b c a b c d e 
d d d d d e e e e e a a a a a b b b b b c c c c c 
d e a b c e a b c d a b c d e b c d e a c d e a b 
d e a b c a b c d e c d e a b c a b c d b c d e a 
e e e e e a a a a a b b b b b c c c c c d d d d d 
e a b c d a b c d e b c d e a c d a a b d e a b c 
e a b c d b c d e a d e a b c a b c d e c d e a b 

Design 20 

a a a a a b b b b b o c c c c d d d d d e e e e e 
a b c d e b c d e a c d e a b d e a b c e a b c d 
a b c d e c d e a b e a b c d b c d e a d e a b c 
a b c d e d e a b c b c d e a e a b c d c d e a b 
b b b b b c c c c c d d d d d e e e e e a a a a a 
b c d e a c d e a b d e a b c e a b c d a b c d e 
b c d e a d e a b c a b c d e c d e a b e a b c d 
b c d e a e a b c d c d e a b a b c d e d e a b c 
c c c c c d d d d d e e e e e a a a a a b b b b b 
c d e a b d e a b c e a b c d a b c d e b c d e a 
c d e a b e a b c d b c d e a d e a b c a b c d e 
c d e a b a b c d e d e a b c b c d e a e a b c d 
d d d_d d e e e e ea a a a ab b b b b c c c c c 
d e a b c e a b c d a b c d e b c d e a c d e a b 
d e a b c a b c d e c d e a b e a b c d b c d e a 
d e a b c b c d e a e a b c d c d e a b a b c d e 
e e e e e a a a a a b b b b b c c c c c d d d d d 
eabcdabcdebcdeacdeabdeabc 
e a b c d b c d e a d e a b c a b c d e c d e a b 
e a b c d c d e a b a b c d e d e a b c b c d e a 
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Design 21 

a a a a a b b b b b c c c c c d d d d d e e e e e 
a b c d e b c d e a c d e a b d e a b c e a b c d 
a b c d e c d e a b e a b c d b c d e a d e a b c 
a b c d e d e a b c b c d e a e a b c d c d e a b 
a b c d e e a b c d d e a b c c d e a b b c d e a 
b b b b b c c c c c d d d d d e e e e e a a a a a 
b c d e a c d e a b d e a b c e a b c d a b c d e 
b c d e a d e a b c a b c d e c d e a b e a b c d 
b c d e a e a b c d c d e a b a b c d e d e a b c 
b c d e a a b c d e e a b c d d e a b c c d e a b 
c c c c c d d d d d e e e e e a a a a a b b b b b 
c d e a b d e a b c e a b c d a b c d e b c d e a 
c d e a b e a b c d b c d e a d e a b c a b c d e 
c d e a b a b c d e d e a b c b c d e a e a b c d 
c d e a b b c d e a a b c d e e a b c d d e a b c 
d d d d d e e e e e a a a a a b b b b b c c c c c 
d e a b c e a b c d a b c d e b c d e a c d e a b 
d e a b c a b c d e c d e a b e a b c d b c d e a 
d e a b c b c d e a e a b c d c d e a b a b c d e 
d e a b c c d e a b b c d e a a b c d e e a b c d 
e e e e a a a a a a b b b b b c c c c c d d d d d 
e a b c d a b c d e b c d e a c d e a b d e a b c 
e a b c d b c d e a d e a b c a b c d e c d e a b 
e a b c d c d e a b a b c d e d e a b c b c d e a 
e a b o d d e a b c c d e a b b c d e a a b c d e 

6 Treatments 

Design 22 

a b c d e r 
c d e r a b 
b c d 0 r a 
e f a b c d 
f a b c d e 
d e f a b c 



Design 2J 

Design 24 

Design 25 

Design 26 
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7 Treatments 

a b c d e f g 
b c d e r g a 
e r g a b c d 
c d e r g a b 
g a b c d e r 
fgabcde 
d e f g a b c 

a b c d e r g 
b c d e r g a 
efgabcd 
d e r g a b c 
c d e r g a b 
.f'gabcde 
gabcdef 

abcdefg 
bcdefga 
gabcdef 
cdefgab 
fgabcde 
defgabc 
efgabcd 

a b c d e r g 
bcdefga 
defgabc 
gabcdef 
c d e f g a b 
e f g a b c d 
tgabcde 

abcdefg 
gabcdef 
d e r g a b c 
fgabcde 
bcdefga 
c d e f g a b 
efgabcd 

abcdefg 
fgabcde 
c d e f g a b 
efgabcd 
gabcdea 
d e f g a b c 
bcdefga 

a b c d e r g 
gabcdef 
bcdefga 
fgabcde 
c d e r g a b 
e r g a b c a 
d e f g a b c 

abcdefg 
gabcdef 
efgabcd 
bcdefga 
fgabcde 
defgabc 
c d e £ g a b 



Design 27 

Design 28 

Design 29 

abcdefg 
b c d e f g a 
d e f g a b c 
g a b c d e f 

abcdefg 
fgabcde 
gabcdef 
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a b c d e f g 
gabcdef 
efgabcd 
bcdefga 

abcdefg 
d e f g a b c 
f g a b c d e 

a b c d e f g 
gabcdef 
d e f g a b c 

abcde!g 
b c d e f g a 
c d e f g a b 
gabcdef 
fgabcde 
defgabc 
efgabcd 

abcdefg 
defgabc 
gabcdef 
efgabcd 
bcdefga 
cdefgab 
fgabcde 

abcdetg 
cdefgab 
efgabcd 
fgabcde 
d e f g a b c 
g a b c d e f 
bcdefga 

abcdefg 
efgabcd 
bcdefga 
defgabc 
gabcdef 
fgabcde 
cdefgab 



Design 29 -
Continued 

Design JO 

Design Jl 

abcdefg 
f g a b c d e 
defgabc 
cdefgab 
e f g a b c d 
bcdefga 
gabcdef 
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abcdefg 
gabcdef 
fgabcde 
b c d e f g a 
cdefgab 
efgabcd 
d e f g a b c 

abcdefgh 
bcdefgha 
habcdefg 
cdefghab 
ghabcdef 
d e f g h a b c 
fghabcde 
efghabcd 

abcdefgh 
b a d c f e h g 
c d a b g h e r 
d c b a h g f e 
efghabcd 
f e h g b a d c 
g h e f c d a b 
hgfedcba 

abcdefgh 
g h e f c d a b 
efghabcd 
c d a b g h e f 
bgfedcba 
badcfehg 
dcbahgfe 
fehgbadc 

a b c d e r g h 
e f g h a b c d 
b a d c f e h g 
fehgbadc 
g h e f c d a b 
cdabghef 
h g f e d c b a 
dcbahgfe 

abcdefgh 
hgfedcba 
ghefcdab 
b a d c f a h g 
dcbahgfe 
efghabcd 
f e h g b a d c 
c d a b g h e f 



Design Jl -
Continued 

Design J2 

abcdefgh 
dcbahgfe 
hgfedcba 
efghabcd 
fehgbadc 
g h e f c d a b 
c d a b g h e f 
badcfehg 
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abcdefgh 
fehgbadc 
dcbahgfe 
ghefcdab 
c d a b g h e r 
h g r e d c b a 
b a d c f e h g 
e r g h a b c d 

a b c d e f g h 
c d a b g h e r 
fehgbadc 
h g r e d c b a 
badcfehg 
dcbahgfe 
efghabcd 
g h e f c d a b 

a b c d e f g h i 
b c a e r d h i g 
c a b f d e i g h 
d e f g h i a b c 
e r d h i g b c a 
r d e i g h c a b 
ghiabcdef 
h 1 g b c a e r d 
i g h c a b r d e 

a b c d a f g h 1 
i g h c a b f d e 
e f d h i g b c a 
f d e i g h o a b 
b c a e r d h i g 
g h i a b c d a r 
h i g b c a e r d 
d e f g h i a b c 
c a b f d e i g h 

a b c d e f g h i 
g b i a b c d e r 
d e f g h i a b o 
b c a e r d h 1 g 
h i g b c a e r d 
e r d h i g b c a 
c a b r d e i g h 
i g h c a b r d e 
r d e i g h c a b 

abcdefghi 
h i g b c a e f d 
f d e 1 g h c a b 
1 g h c a b r d e 
d e f g h 1 a b c 
b c a e r d h 1 g 
e r d h i g b c a 
c a b f d e 1 g h 
g h i a b c d e t 



Design )2 -
Continued 

a b c d e f g h i 
c a b f d e i g h 
b c a e f d h i g 
g h i a b c d e f 
i g h c a b f d e 
h i g b c a e f d 
d e f g h i a b c 
f d e i g h c a b 
e f d h i g b c a 

a b c d e f g h i 
e f d h i g b c a 
i g h c a b f d e 
h 1 g b c a e f d 
c a b f d e i g h 
d e f g h 1 a b c 
f d e i g h c a b 
g h i a b c d e f 
b c a e f d h i g 
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a b c d e f g h i 
d e f g h i a b c 
g h i a b c d e f 
c a b f d e 1 g h 
f d e i g h c a b 
i g h c a b f d e 
b c a e r d h i g 
e f d h i g b c a 
h i g b c a e f d 

a b c d e f g h i 
r d e i g h c a b 
h 1 g b c a e r d 
e f d h i g b c a 
g h i a b c d e f 
c a b f d e i g h 
i g h c a b f d e 
b c a e r d h 1 g 
d e f g h i a b c 
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CHANGE-OVER DESIGNS 

James Mark Mason 

Abstract 

When it is necessary to apply several different treatments in suc-

cession to a given subject, the residual effect of one treatment on 

another must be taken into consideration. A number of various designs 

have been developed for this purpose. A number of them are presented in 

this paper and can be summarized as follows: 

Type I: Balanced for first-order residual effects. For n, the 

number of treatments, even, any number of Latin squares can be used; 

for n odd, an even number of squares is necessary. 

Type II: Formed by repeating the final period of Type I designs. 

Direct and residual effects are orthogonal. 

Type III: Formed from p<n corresponding rows of n-1 orthogonal 

nxn Latin squares. 

Type IV: Complete orthogonality except for subjects and residuals. 

Very efficient but large numbers of observations are necessary. 

Type V: Designs balanced for first and second order effects. Also 

formed from orthogonal Latin squares. 

Type VI: Designs orthogonal for direct, first and second order 

residuals. Designs presented for n•2, 3 and 5. 



2 

Type VII: Orthogonal for linear, quadratic, ••• components of 

direct and linear component of residual effects. Analysis includes 

linear direct x linear residual interaction. Designs given for n•4, 5. 

Type VIII: Type II designs analyzed under model for Type VII 

designs. Less efficiency, but designs available for all n. 

Type IX: Designs useful for testing more than one treatment and 

direct x residual interactions. 

Analysis for most designs includes normal equations, analysis of 

variance, variances of estimates, expected mean squares, efficiencies 

and aisaing value formulas. 

A list of designs is presented in an appendix. 
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