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I

INTRODUCTION

In dairy husbandry, biological assay, agricultural crop rotation
trials and various other fields, it is sometimes desirable or even
necessary to apply different combinations of treatments in succession
to the same subject or plot. At first experimenters, realizing that
the effects of a particular treatment might be affecting the treat-
ments applied after it, decided to leave an interval of time between
two successively applied treatments. It was hoped that any lingering
or "residual" effects would become negligible. For example, if the
experiment consisted of testing animal feeds, a control feed was fed
to the subjects during the interval lapse. This control interval nec-
essarily increased the length of time necessary to complete the exper-
iment. In some experiments the time factor is of critical importance.
For example, in cow feeding experiments there is a necessity to com-
plete the experiment during a single lactation, there being only so
many months during the milking period.

A number of experimental designs have been constructed to elimi-
nate the need for this '"rest" interval, and in addition supply infor-
mation about the residual or carry-over effects of a treatment from
one time period to another. These designs are known by several names.
Among them are change-over designs, carry-over designs, switch-over

designs and cross-over designs.




At first these designs were not used to eliminate residual effects;
the method which was commonly used " . . . was to base interpretations
on the performances during only the latter portions of the experimental
periods". [7}. Cochran, et. al. [3] 1in 1941, were the first to in-
corporate an analysis which permitted the elimination of these effects.

Since then other designs have been constructed., Advantages of
these designs follow: (1) ease of analysis, (2) fewer observations,
and (3) elimination of effects of treatments applied two or more periods
before an observation.

As Williams [2] points out, there are two basic limiting factors
on the feasibility of these designs: (1) the time element, and (2) the
suitability of the subject or plot for repeated applications of
different treatments.

Once the experimenter examines these factors, he must decide how
much time can be allotted for each subject. Then he must divide this
allotted time into "periods'"; a different treatment will be applied to
each period on each subject. The number of possible subjects must al-
80 be determined. Then he should estimate how many periods the residual
effects of a treatment can be expected to last, as the number of resi-
dual effects eliminated affects the efficiency of the design. 1If it is
the first time an experiment of this type is to be run, intuition will
play a large part in this determination. If other experiments have been
run before, the results may be of some aid. All of these factors

contribute to choosing the proper design.



The purpose of this paper is to give the reader a rather broad
look at change-over designs. No specific examples will be given as
the literature already contains many, and usually the reference cited
for a design contains at least one.

An extensive list of available designs will be presented in an
appendix so the experimenter need not consult other sources when
choosing his design. It will be necessary, however, to limit the
number of treatments discussed to nine, most of these designs dealing
with three, four, five or six treatments. This limitation is not
seriously confining for most practical situations.

A detailed analysis of a number of major types of cross-over de-
signs will be discussed. These designs come from the following sources.
If no source is indicated, the designs were constructed by the author.

Type 1 Designs - Cochran, et., al. [3]

Type 1I Designs Lucas (7]

Type 1II Designs Patterson [4]

Type IV Designs

Berenblut [11]

Type V Designs Williams {5]

Type VI Designs

Type VII Designs Berenblut (9] and [13]

Type VIII Designs

Type IX Designs

Normal equations, analysis of variance, variance estimates and
efficiency comparisons will be presented for Designs I through V, also

VII and VIII. No efficiencies are computed for Design IX. Also



missing value formulae for one and two missing observations will be pre-
sented for Designs I through V. Designs I through IV are primarily for
estimation of first-order residual effécts. Designs V and VI are for
second-order residual effects, Designs VII, VIII, and IX are orthogonal
for the linear component of first-order residual effects, VII and VIII
dealing with one treatment and IX dealing with more than one.

Lastly, some miscellaneous designs will be presented without
analysis.

Unless otherwise stated, an assumption of additivity of all treat-
ment effects will be assumed. A test will be given for this additivity
under the assumption that the treatments correspond to equally spaced

levels of a given treatment or treatments.



II

DESCRIPTION, CONSTRUCTION AND ANALYSIS

2.1 Notation

In the analysis of even one change-over design there is a necessity

for a large amount of notation. In analyzing the designs, the following

set of notations will hold unless otherwise stated:

n

Tab

'
F v

number of treatments

number of squares

number of periods

total for treatment "v'

total for period "j" in square "k"

total for subject "i"

total for square "k"

over-all total

total of all observations immediately following

treatment
total of all observations following treatment "t" by two
periods’

total of all observations which receive the direct effect
of treatment "a" and the first order residual effect of

treatment 'b"

sum of all subject totals receiving treatment "v' last



F" - sum of all subject totals receiving treatment "v'" in the

next to the last period

P = I T,.(k); the sum of all the rth period observations
(r)

M' - last treatment in the subject to which it refers

M" - next to the last treatment in the subject to which it
refers

(TC,) -~ sum of all subject totals which include treatment "v"

sum of all subject totals which include treatment "v", and

{tc,}
treatment ''v' is not in the last period; or
- - 1]
{tc,} = (1C,) - F',
The absence of a variable on a summation sign indicates summation

over the entire range of each subscript.

The symbol I shall indicate summation over all subscripts, sub-
(k) :

script k held constant. Usually k will not be a subscript of the
effect, but will be used rather to indicate summation of the effect over

all its subscripts which exist for a given k.

2.2 Type I Designs

These designs were first discussed by Cochran, et. al. [3]; refer
to Designs 1, 5, 9, 10, 13, 14, 17, 22, 23, 24, 25, 26, 29, 30, 31 and
32 for examples.

The basis for these designs is a "balanced" set of m Latin

squares, Williams [2] states the following two conditions for balance:



(1) each treatment shall be preceded by each other treatment equally
often and (2) each treatment shall occur equally often at each position,
in order of application to the sites (so that the treatment effects shall
be unaffected by possible effects of order of application).

Williams lists two advantages of a balanced design over an unbal-
anced design, these being (1) increased efficiency (more accurate esti-
mates of effects) and (2) simplification of analysis.

He also proves that the above-mentioned balance can be achieved by
using Latin squares, any number of squares for an even number of treat-
ments and an even number of squares for an odd number of treatments.

The direct and first order residual effects from these designs can
easily be seen to be non-orthogonal (the orthogonal case will be pre-
sented as Design II). From this non-orthogonality one finds there are
two separate ways to compute the sums of squares for treatment effects.
Both of these methods will be presented and will be as follows:

(1) Direct (adjusted for residual) + Residual (unadjusted) and (2) Di-
rect (unadjusted) + Residual (adjusted for direct).

The model for this design is

Yijkvs = u+ Cy+ pj(k) + 1y + 6, + Eijkvs
1=1,2, .v., m
ij=1, 2, .eey, n
k=1,2, ,.., m
v=1l 2, ..., n

s=1, 2, ..., n



where

C; is the effect of the ith subject,

pj(k) is the effect of the jth period in the ktP square,

1, is the effect of the vth treatment,

0g is the effect of the sth treatment on the observation which
immediately follows it, and €jjyys * N(0,00).

The analysis comes from least square theory. The equation
Elegykys)? = D0 jqpys = 0 = € = py(k) = 1y - 092

is minimized with respect to u, Cy, oj(k), 1, and Oy, and the following

normal equations are obtained:

nmy + nXCi + nipj(k) + nmﬁ%v + m(n-l)l‘@s = G

n; + néi + nzﬂj(k) + z?v + ziés = TC; i=1,2, ..., om
nu 4 L Co+ g (k) 4 Iny, = Ty (K) k=1,2, ..., m
(k)
nn + L C, 4+ np (k) + S, 4+ IO, = T, (k) §=2,3, ...y n
i i v 3 3 y s ’
(k) kes1l1l, 2, ..., m
nmy + IC, + Zgj(k) + nm;V + mZ‘uéS =T, v=1,2, ..., n

mn-Du + tcy + 1 o 00 + mrlViy 4 m(n-1)0, = A

s
j=2

s=1,2, ..., n



where

Ziés = the sum over all residual effects except when s is the last
treatment in subject i,

Ziiés = the sum over all residual effects except where s is the
same as treatment v,

Xiiiéi = the sum over all subjects where s is not the final
treatment,

and Zivxv = the sum over all v such that v is not the same as s.

One now applies the following constraints:

IC, = I pa(k) = E1. = IO =0 .
i v 8
) 3

Then the equations become

nzmu = G

n;""néi-é”""rci i'l,z, ooo,m

nu+ ICo o+ naj(k) = Tj(k) j=1,2, ..., n
x) k=1,2, ..., m

nm; + nm;v - mev = Tv v=1l,2, ..., n

n . -
+ T e,.(k) - mi_ + m(n-1)0, = A

a(n-1)pn - TVC
j=2 3

1]
N
P
-
N
-

ceey N

i s
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where chi = the sum over all those subjects where treatment s is in the

final period.

Expressing C1 and pj(k) in terms of 7, and Os one arrives at the

following set of reduced normal equations for ;v and Gv.

-m -ﬁ(nz-n-l) A' v=1l, 2, ..., n

1
where T'y = Ty iy G

Ay = A, + Lnpy 4 nF' ) - (n41)6)

Then
; 1 M(n2_pn-1) m T
Ve m@iany | ¢ v
0, m nm A'v

v=1l,2, ..., 0.

The analysis of variance can be seen in Table I.
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TABLE 1

ANALYSIS OF VARIANCE

Degrees of
Source Freedom - Sums of Squares
Subjects nm-1 %{Tczi - L2
nZm
1.2 1 sm2
Periods/squares m(n-1) ntT j(k) - ﬁixT ke
Direct (unadjusted) n-1 112 - L g2
nm n?m
Residual (adjusted) n-1 %(nz-n-Z)Zézs
Residual (unadjusted) n-1 - see below -~
2.p-1) _*
Direct (ad ted -1 (n’-n 2
(adjusted) " nm(n2-n-2) v
Error (n-1) (am-m-2) subtraction
2. 2 - 1 2
Total n“m-1 IY 1jkvs ETEG

Before explaining how to find Residual Sums of Squares
(unadjusted) it will be necessary to explain how to find Direct
(adjusted) and Residual (adjusted). Taking Direct (adjusted) as an
example, first note that in the simplified normal equation for ;v'
T, is called the unadjusted total for the direct effect of treatment

v. By solving the remaining equations for év in terms of ;v’ one can

substitute the result into the equation for ;v’ along with the
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estimate of py, and get an equation only in terms of Tye This was

shown to be

v=1l,2, ..., n
or mz(nz-n—Z)rv --i'—(nz-n-l)'l"v +mA' vel,2, «.., 0.

Recalling what T', is, and substituting its value into the above

equation, one gets

mz(nz—n-Z);v = E(nz-n—l) [%v - %é] + mA'v v=1, 2, ..., n.

Now, in this reduced normal equation for ;v- if one makes the coeffi-

cient of the unadjusted total for 7, equal to unity, one gets

(1 nm(nz-n-Z);v =Ty - lG + n A'v v=1l, 2, ..., 0,
(nZ-n-1) n (nZ2-n-1)

The unadjusted direct total now can be said to be adjusted for
; and év- and the entire right-hand side of (1) is called the adjusted
direct total. If one now takes the sum of the products of the esti-
mators times their respective adjusted totals, one obtains the adjust-

ed sum of squares for direct effects. The same procedure can be
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applied to the normal equation for ©y» solving the remaining equations
for ;v in terms of év and substituting in the same way.

It must now be explained how to find the unadjusted residual sum
of squares. It should first be noted that by "unadjusted" one means
that it is unadjusted only for direct effects. It actually will need
to be adjusted for the remaining effects with which it is not mutually
orthogonal.

Both the normal for ;v and the normal for év have been solved in
terms of each other already. By taking the reduced normal equation

for 6, in terms of Ty We get

[ -m %'-(nz-n-l)] ;V - A'V vel, 2, ..., n.

2

Ignoring the term for ;v yields

@) B(n?-n-1)0'y = A, + L [oP) + nF'y - (@1)6] v=1,2, ..., 1.
n

Note that é'v is not the same as év' Now, A, can be described as
the unadjusted total for residual effects, and therefore the right-
hand side of (2) will be the residual total adjusted for all effects
except direct effects. One can now obtain the residual sum of squares
(unadjusted for direct effects, adjusted for all other effects), which
is denoted by residual (unadjusted), by taking these new estimates and

multiplying them by their corresponding partially adjusted totals, and
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adding them together. This can be shown to be as follows
Residual (unadjusted) = ZO'VA'V ve1l, 2, ..., n
= 2(!\2-“—1)29'?" v = 1' 2' ceny n.,

The expected mean squares for the adjusted terms will be of some

interest.

(n2-n-2) ., _=
E[MS Direct (adjusted)] = oi + (:Tl?(ng-nil)u(tv-T )2

E[MS Residual (adjusted)] = o2 + '_“.(1(2_";_.“_"’.).2(@9-6 )2 .
n(n-
Also, the variance of a difference between two adjusted direct effects

is

2(n’-n-1) ,
nm(n2-n-2) €

The variance of a difference between two unadjusted direct effects is
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and the variance of a difference between two unadjusted residual effects

is

2(n?-n-1
(n mn )0%

2.3 Type 11 Designs

These designs were first presented in a paper by Lucas [7]. They
are formed from the same designs given as Type I designs, by merely
repeating the final period, forming an (n+1)St period identical to the
nth period. He refers to these designs as "extra-period designs".

In discussing change-over designs before his addition of the extra
period, Lucas says, "In all of the published series of designs, the
precision with which residual effects are estimated is considerably
less than that with which the direct effects of treatments are esti-
mated. This is in part because the residual effects are replicated
fewer times than are the direct effects, but also in large share be-
cause the residual effects are non-orthogonal both to sequences and to
direct effects." [7].

In his paper Extra Period Latin Square Change-Over Designs one

can see that each treatment is now preceded by itself the same number
of times that it is preceded by each other treatment, a condition
which renders the direct and residual effects orthogonal to each other,

and also renders residual effects orthogonal to subjects.

Example: abe abe
beca cab The letters

From Design 5 cab bca denote treatments.
c ab b c a



16

Example:

From Design 9

AN oM
Nnowmacoo
ooo.pn
[ I T~ o T - W

While the replication of the final period does make residual ef-
fects orthogonal to subjects, it also makes direct effects non-orthogo-

" . . . the degree of non-

nal to subjects. However, as Lucas states,
orthogonality is not great." [7]. The direct sum of squares must
therefore be adjusted forAsubjects, while the residual sum of squares
can be computed directly from the an, 3rd’ veey (n+1)St periods.
Since residual effects are orthogonal to all other effects, and since
they do not, of course, occur in the first period, this sum of squares

will be easily computed.

The model for this design is

= p+C +

1 pj(k) + LI 08 + €

Yijkvs ijkvs

v=1 2, ..., n
s=1, 2, ..., n.
The normal equations before applying constraints are

am(n+l)y + (41)IC, + nZp, (k) + m(n+)ET + nmI0g = G

3
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(n+l)p + (n+1)C1 + Lo, (k) + er + Ty + 10, = TCi

() 3
1= 1, 2, seey NM
n+ LG+ noy (k) + L1, = T, (k) k=1, 2, ..., m
(k)
np+ L€ +np, (k) + LT, + 10, = T, (k) j=1,2, ..., (o+l)
@i i k=1, 2, oovm

m(n+1); + Z&

L]
3

1-. ~ ~ a
4 + I Ci + ij(k) + m(n+1)tv + mZO,

v=1l, 2, ..., N
nmu + IC, + Ip

i

k) - Zpl(k) + mIt, + nmes - As

3

s=1, 2, ..., n

which become, after applying the necessary constraints

m(n+l)y = G

(n+l)y + (n+1)f:1 + %M. - TC, k=12, ..., nm
np + I C1 + npj(k) = Tj(k) j=1,2, ..., (n+l)
(k) k-l’ 2. oon’m

m(l&l); + Eiéi + m(n+l);v = Tv v s 1’ 2, coey n

N Y

nmy + nmé, - Zal(k) = A, s=1,2, ..., n
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where zici = the sum of all subject effects in which treatment v
appears last.

Solving for ;v’ one gets
am(n+2) 1y, = ()T, - F', - G
and the analysis of variance Table II is formed as follows:

TABLE II

ANALYSIS OF VARIANCE

Degrees of
Source Freedom Sums of Squares
l 1
Subjects (unadjusted nm~-1 ZTC2 - —¢?
for direct) (n+1) nm(n+l)
| 1 1
Periods/s n -{TZ k) - --—————-}:T2
/squares m (k) 2D
Direct (adjusted for n-1 EESE:ELZ;Z
subjects) (n+1)
Residual n-1 - see below -
Error (n-1) (nm-2) subtraction
Total nm(n+1)-1 rY?2 -1 g2
(n+1) 13kvs ~ Tmtatl)

As was previously stated, by simply ignoring the finst period one

can obtain the residual sum of squares as follows:
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n+l |2
1epa2 _ 1

The expected mean square for adjusted direct effects is

E(MS Direct (adjusted)] = o + 3%£§§%%E(Tv-; ) .

The variance of a difference between two adjusted direct effects is
2(atl) 2
m(nt+2) €

and that for a difference between two residual effects is

2.4 Type III Designs

The third design to be discussed is a balanced incomplete Latin
square design, first mentioned in 1950 in a paper by Patterson [4].

The basis for these designs is a set of completely orthogonal
Latin squares. "This is a set of (n-1) squares such that when any two
squares are superimposed, each letter of one square occurs (exactly)
once with every letter of the other square.” [1]. These squares are
balanced for all orders of rvesidual effects, however only first order

effects will be considered here.
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From this set of (n-1) orthogonal Latin squares, p corresponding
rows (periods) are chosen, where p<n, such that balance is still main-
tained. This can always be done. Now one has a set of (n-1) nxp Latin
rectangles balanced for all orders of residual effects. Designs 5, 10,
17, 29, 31 and 32 are orthogonal sets for 3, 4, 5, 7, 8 and 9 treat-
ments respectively. No orthogonal set of squares exists for n=6
treatments.

As an example, one could take the first three rows fromAeach of

the squares of Design 10.

abed é bed abed
bade decba cdabd
cdab badec deba

Again, as in Design I, the combined sums of squares which lead to
the total treatment effect must be computed in two different ways.
Again, also remember that these two sets of sums of squares add to the
same result., This fact can be used as a computational check. These
two sets of sums of squares are

(1) Direct (adjusted for residual) + Residual (unadjusted),
and (2) Direct (unadjusted) + Residual (adjusted for direct).

The model for this design is

i=1, 2, .,., n(n-1)
j=1,2, ..., P
k=1, 2, ..., (n-1)
vel, 2, ..., 1
s=1, 2,

es ey nl
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The normal equations are

ap(a-1)u + pICy + nlp, (k) + p(a-1)Ir, + (p-1) (n-1)10, = G

PU + PC + I oy (k) + fr, + oMo, =T, 1=1,2, ..., n(e-1)
(k)
nw+ I C o+ mpg (k) 4 Ery = Ty (K) k=1,2, ..., (a=1)
k)
O+ IC, +np,(k) + Ity +Z6_ =T, (k) J=1,2, cc0, p
&+ 3 voTe o k=1, 2, ..., (a-1)

p(n-D)u + tillc, + 5o, () + pla-1)1, + (-DIlVe, = 1,

v=1l,2, ..., n

(p-1) (n-D)u + 5VC, + ;E:Bj(k) + -1V + (p-1)(n-1)8g = A,
s=1, 2, ..., n
where Zi;v = the sum over all treatment effects which appear in
subject 1,
Ziiés = the sum over all residual effects which appear in
subject 1,
Ziiiéi = the sum over all subject effects which include the
effect of treatment v,
Xivé = the sum of all residual effects excluding the residual

effect of treatment v,
IVC, = the sum over all subject effects which include the
residual effect of treatment s,

and tVit = the sum over all treatment effects excluding treatment s.
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After applying the usual constraints, the normal equations become

np(n-1)u = G

1168 = Tc' i - 1’ 2’ seey “(n-l)

-~ -~ ia
pu + pCi + I Ty + I i

ny + (E)Ci + npj(k) = Tj

° iii~ - -

(k)

- 1, 2._"000'

3 P
k - 1’ 2’ seey (Il-l)

(p-1) (1) + L%, = 5, (k) - (p-1)7y + (p=1)(n-1)0, = Ay
s=1, 2, ..., n,

Solving the above system of equations in terms of ;v and é., one gets

n(p-1) -%(p-l)

;v V'l, 2, ceesg N
- E(P-l) -(.L-_l.l(np—n-l) é - A'
P P v

where, in this design

'r'-v-'rv-%.('rcv) ve1l, 2, .u., n

A'v-Av+%P1‘;];-pG-%{TCv} V'l, 2. seey n.

By ignoring the terms for Oy and Ty in the above two'equations

respectively, one arrives at the following unadjusted estimates,
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denoted ;'v and O'V

n(p-l)r'v - T'v vs 1' 2’ ssey n
and ip-l)(:p'n'l)é'v - A'v ve 1, 2’ ceeey N .

The adjusted estimates are formed by solving the previous set of

equations for ;v and o, as follows

(p-l)(nzpz-nzp-np-nz)tv = (npZ-np-p)T', + npA', v=1,2, ...y m
1) (n?p2-n20-npen?)0 = nnlA' '
(p-1) (n“p*-n“p-np-n )ev npcA', + npT', .

The analysis of variance is now constructed as in Table III.

The expected mean squares for the adjusted effects are

E[MS Direct (adjusted)] = 02 + .(Ll)..(n_z:n_m.m)z(x -1 )2

p (n2p-np-1) (n-1)

E[MS Residual (adjusted)] = oé + SEfl)(nPi;nP’P-n)S(Gs-é )2 .,

The variance of a difference between two adjusted direct effects is

2p (np-n-1) 2
Zp-lSIanZ-E?p-np-nzi %
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TABLE IIIX

ANALYSIS OF VARIANCE

Degrees of
Sot rce Freedom Sums of Squares
Subjects n(n-1)-1 liTczi - 1 2
P npin—ls
1) (e 1.2 21 o2
Pgriods/squares _ (p-1)(n-1) ~E{T j(k) EB:Tzk..
Direct (unadjusted) n-1 n(p—l)t;'zv
Residual (adjusted) ' n-1 ,%-i(p-l)(npz-np-pon)zézs
Residual (unadjusted) n-1 %—(p-l)(np-n-l)zé'zs
N S 2,2 2 2372
Direct (adjusted) (an—np-p)(p-l)(n p4-n‘p-np-n ?Zt v
Error (n-1) [n(p-1)-(p+1)] subtraction
Total - np(n-1)-1 ry? -1 62
1jkvs npzn-lf

that of a difference between two unadjusted direct effects is

2 2
n(p-1) %

that of a difference between two adjusted residual effects is

2

2 o2
19-T5ang~nv-p—n5 €
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and that of a difference between two unadjusted residual effects is

These designs were introduced by Berenblut [11].

2

P
(p-1) (np-n-1) %

2,5 Type IV Designs

2

He describes the

construction of these designs for n treatments as follows (where

a, b, ... denote treatments).

"Let

E o€« <X
B
(= 2 & T - V)

e <®

< o O
m TN

N Q.o -

Qs @ e

M 0Q .

e .

e o e

a0

e
e d

< e

m TN .

"If n is odd, the design for n treatments can be written

symbolically as

Period

Subject (1 to n?)

M o< R

s O E E © ¢ ¢+ o

m Mm< < Q

s S R E E v o o

.

cee QO

e o0

o
Y
Y
€

¢« O 9 E S ¢ o s

.
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"If n is even, the lines for periods n and ntl, for periods n-1
and n-2, etc., are interchanged." These directions are not very clear.
However, the designs can be easily constructed if one follows these
simple rules:

(1) Define o, B, ..., w as stated above.

(2) Write them down a page in forward order, then backward
order, which yields a column the same as Berenblut's
column one.

(3) Starting with the first letter in period one, replicate
it n times altogether in a row, and do the same for every
odd period.

(4) For the even periods, write the elements in order, a
following the final letter, and so on.

Refer to Designs 2, 6, 11 and 18 for examples.

In this group of designs, direct effects and residual effects are
orthogonal, Also, subjects and direct effects are orthogonal, but sub-
jects and first order residual effects are not. Therefore, it will be
necessary to split up the total sum of squares for subjects and
residuals as follows.

Subjects (unadjusted) + Residual (adjusted for subjects).

The design consists of one block (replicated if desired) of treat-

ments which is 2nyn?, i. e. 2n periods and n? subjects,

Example abab
baab
Design 2 baba
abba



27

Or, utilizing the above notation, letting o« = a b and 8 = b a, one gets

R W
DR

The model for this design is

Yijvs =vt Ci + pj + Tv + es + eijvs
i=1,2, ..., n2
J=1,2, ..., 2n
v.l. 2’ I..’ n
s=1, 2, ..., n

where py is the effect of the jth period.

The normal equations are

2n3y + 2nIC, + n2z5j + ZnZZ;v + n(2n-1)tés =C

i

200 + 20C, + Io, + 27, + zzies +8yp=TC, 1=1,2,...,n
n2y + £Cy + n2o, + nIt, = P
1 1 v™h

n? u + ZC + n? pj +nlt  + nxes = Pj j=2,3 ...p, 2n

2n2y + 21cy + an:l + 2n2;v + (Zn-l)zés =T, v=1,2, ..., n

R R T T 2n . - -
n(2n-1)u + 22 C,+I7Cy +n jfzpj + (n-1)I7, + n(2n-1)64 = A,

‘- 1’ 2. LA ) n
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where Ziés = the sum over all treatments which do not occur last
Ziiéi = the sum over all subjects in which treatment s is not
last
111 4

L' Cy = the sum over all subjects in which treatment s occurs
last ,
Upon applying the usual constraints, one gets the following set of

normal equations

2n3ﬁ = G

204 = Gy + 20C; = TC, 1=1,2, ..., n

nZp + n2p, = P j=1,2, «o., 2n
] b

2n2; + ZnZ;v =T, v=1l,2, ..., N

n(Zn-l)ﬁ + n(2n-1)és - Ziiiéi - “51 =A S8=1,2, ..., n.
8

-~

Solving for Og yields the following equation

n (6n7-2n-1)es = 2n2As +oF'; + 2nP, - (2n+1)G
s=1, 2, ,,., n,
One can now obtain the following analysis of variance as shown

in Table IV.
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TABLE 1V

ANALYSIS OF VARIANCE

Degrees of
Source Freedom Sums of Squares
1 1
Subjects (ignoring n2-1 ITC? = —=.G2
residuals) Zn 2n3
P - lgep2 __1¢c2
eriods . 2n-1 nZEP j 2n3G
- 1ep2 - _1g2
Direct Effects n-1 2n22 v " 353
2_92p-
Residual (adjusted for n-1 (4n?-2n-1 2928
subjects) 2
Error 2n3-n2-4n+3 subtraction
Total 3_ 2 _ .1 2
ota 2n°-1 LY 1jvs E;gc

The expected mean square for adjusted residuals is

(4n2-2n-1) -
Og + —-—-Z—E-;-T)——Z(es - 68)2 .

The variance of a difference between two direct effects is

of

:ut-l

and that for a difference between two adjusted residual effects is

4 02
(4nZ2-2n-1) €
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EFFICIENCIES

The method of determining efficiencies will be that of Patterson
and Lucas [8] described as follows by Beremblut, " . . . the efficiency
factor of design X compared with design Y is the r;tio of the product
of the number of observations and the variance of a contrast in Design
Y to the corresponding quantity in Design X." [11].

Efficiencies will be presented for estimation of differences in
direct and first order residual effects, for all comparisons for

designs Type I through IV,

3.1 Differences in Direct Effects

It will first be necessary to determine the total number of

observations y variance of a difference between two direct effects for

all designs.

-~

Design Number of Observations x Variance (Tuz;“')
1 ‘ 2n(n?-n-1) 62
(nZ2-n-2) €
11 2(n+1)2 ,
oy °F
Il 2p?(n-1) (np-n-1) 2

(p-1) (np?-np-p-n) "¢
v 2nc§

30
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Efficiencies will be formed for n=3 and n=4, Also, since the
variance for Type III depends on the number of periods chosen, for n=3,
p=3 and for n=4, p=3, Note, when p=n Type III1 is equivalent to Type II.

The numbers in these tables refer to efficiencies of Design X to

Design X,
TABLE V
Y Y
I | I (II1]| IV 1 II | III |1V
1 |6 1|4 L | 125[ 945 |10
75 5 132] 748 | 11
75 75| 15 132 567 | 24
X || el 16 X | 155 =" | %25 |25
641 __1 4 7481 425 136
ur 133 5 D 373) 567| == | 189
5 |16 | 5 11 | 25 | 189
w22 2| - =| == -
4 |15 4 v 10 | 24 | 136
n=3 n=4

For "small" values of n Design IV is noticeably better than
Designs I, II or III. As n increases, the efficiency of Design IV to
the others approaches 1. Even for n=10 and p=5 the efficiencies of
Design IV to I, Il and III are 1,01, 1.01 and 1.19 respectively.

Efficiency alone should not be the criterion for selecting one de-
sign over another. If there is a cost per observation, certainly the
experimenter may wish to consider the number of observations when mak-
ing comparisons. In the above case of n=3, p=3 Designs I, II, III and

IV have 18, 24, 18 and 54 observations respectively. If the cost per
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observation is great, one could find some justification for using
Designs I, II or III instead of IV. Design I1I, although not as effi-
cient as I, II or IV must be remembered to have only p<n periods, a
distinct advantage over the other designs.

Design II also should not be overlooked. It is only slightly less
efficient than Design IV, even for ''small” n, and it is easy to con-
struct and easy to analyze.

It can only be concluded that there is no set reason for choosing

one design over another.

3.2 Differences in Residual Effects

The same four designs will now be compared for estimating differ-
ences in residual effects,
Again it will be necessary to find the total number of observations

x variance of a difference between two residual effects.

Design Number of Observations y Variancegié&?r éall
I 2n3 g2
‘(nZ-n-2) ¢
11 2(n+1)o2
11 20p 3 (n-1) | o2

(p~1) (np2-np-p-n) €

1V 8n3

2
(4n2-2n-1) °¢
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Again, efficiencies will be found for the two cases, n=3, p=3 and

n=4, p=3. The numbers in the tables refer to efficiencies of Design X

to Design Y.
TABLE VI
Y Y
I | II|III| IV I |II | III(IV
R Y A U ; |- [50]%% s
27 29 64 | 272 | 11
27 27 | 27 64 162 | 256
x 11| 2| - || 4 64 | __ | 1621226
T3 16 | 29 X I |55 85 | 275
16 16 2721 85 2176
ImI| 1 (22— | = 1ir | 22| 2 - | ==
27 29 T 205 | 162 4455
29| 29 | 29 11 | 275]4455
Wi Tel27|16 |~ W =8 | 356|176 |
n=3 n=4

One sees again that design IV is more efficient than Designs I, II,
and IIT for small n. In fact, the same relationships hold here as in
the case of direct effects. The same comments in regard to number of

observations and advantages also apply.

3.3 Design Efficiency for Estimation of Residual Effects

Since residual effects never occur as many times in a design as

direct effects, a design will always yield better estimate of direct
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effects. One might, however, be interested in estimating residual ef-
fects as the principle purpose of the design, or simply desire good
estimates of residual effects. In this case he would be interested in
how efficient a design is for estimating residual effects to direct
effects. The same method utilized in the preceding section applies,
but since the two variances come from the same design, no weighting
factor will be necessary. Comparisons will be made for n=3,-5 and 10.
P will be equal to 3 for Design III.
Numbers in Table VII represent the efficiency of a design for

estimating residual effects as compared to direct effects.

TABLE VII

I .556 [ .760 | .890

Design II .800 | .857 | .917

III| .556 | .600 .633

IV | .806 | .890 | .948

It can be seen that Design IV is better at estimation of residual
effects in comparison to direct effects than the other designs in all
cases, The total number of observations necessary to produce these
results should not be overlooked, however. For n=5, Type I designs

require a minimum of 50 observations, Type II require a minimum of 60,
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Type III a minimum of 60 (with p=3) and Type IV a minimum of 250. If
cost is not relevant Design IV is certainly the best; however, if cost
is a factor, Design II with less than one-fourth the number of

observations could certainly be used.
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ESTIMATION OF MISSING VALUES

4.1 Notation

The below listed notation will hold for this chapter only, x and z
will be considered to be missing observations. Before computation of

missing value formulas, x and z must be set equal to zero.

'I‘Ci(x)
Tj(k)(x)

A, (x) = total of all observations immediately following the

total for the subject containing x

total for the period (in the square) containing x

treatment immediately preceding x
Tk(x)‘ = total for the square containing x
a = |-1 if x was to receive treatment v
0 otherwise
a' = |-1 if x was to receive the first residual of treatment v
{ 0 otherwise
a" = (-1 1if x was to receive the second residual of treatment v
{ 0 otherwise
1 1if x does not occur in the final period
0 otherwise

b' = |-1 1if treatment v occurs in the subject containing x
0 otherwise

¢ = |-1 if treatment v is last on the subject containing x
0 otherwise
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¢' = (-1 if treatment v appears last or next to on the subject
containing x

0 otherwise

d = (-1 if x 1s in the first period
0 otherwise

d' = |-1 if x is in the second period
{ 0 otherwise
0 is x is in the first period
1 otherwise
1 1f x and z occur in the same period and block
0 otherwise
h' = [ 1 4if x and z occur in the same subject

0 otherwise

0 otherwise

1 1f x and z receive the same treatment directly
0 otherwise

k' = | 1 if x and z receive the same first residual treatment
0 otherwise

1 1f neither x nor z are in the first period

0 otherwise

h" = { 1 if x and z occur in the same block

4.2 General Remarks

The missing value formulae which will be presented were obtained
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by the method suggested by Coons [16]. She states, "The purpose of this
paper is to illustrate the full details of a method which can be used
when one or more missing observations exist in an experiment of any
statistical design. The advantages 0f this method are its generality
of application and the ease with which exact tests of significance may
be obtained. Here the word "exact” is used to mean exact when errors
are normally and independently distributed."

She goes on to list six properties which she uses in order to
Justify her computational procedures. Of these six properties, two will
be of interest here. These are

(1) "If an analysis of variance is made with symbols By» B2y
ooy Bq in the place of missing observations, then the best linear un-
biased estimates of the missing observations are the quantities él’ éz,
ceny éq which minimize the error sum of squares."

(6) '"The sum of squares for treatments obtained by analyzing
the data augmented by the missing value estimates is always greater than
or equal to the exact sum of squares for treatments."

The first property can best be seen from a simple example,

Consider the following model:
Yij’u+ri+eij iﬂl,Zandj-l,z
Now suppose observation le is missing. Let B represent the missing

observation., The full set of equations can now be rewritten as

follows:
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11
1 12

Yap=utmntey
Yoo = v+ 1y €2
Yll =y + T, + Bx11 + €11

0 =y <+ 1.+ Bx12 + €12

Y21 =y + Ty + Bxyy + €9)

Y22 = w+ T2 + Bxyy + €2
where the coefficients of B8, that is x4, Xy12» X321 and x5, are equal to
0, -1, 0 and 0 respectively. These xij's form the vector X.

Now, wherever a missing observation appears, one simply inserts a
0. These original observations, with the 0's,are considered to be the Y
variable. The X variable takes on the value 0, except where it corres-
ponds to a missing observation, in which case it is set equal to -1.

This vector will be denoted as Z for a second missing value.

This paper will not present the entire analysis of convariance.
Rather, the above method yields an estimate for B, which will be called
either ; or ;, (refer to Section 4.3) and which will be merely calculated
and inserted into the original data. The usual analysis of variance is
then performed.

From property 6 one sees that this test will not be exact. The F
value that one calculates will be larger than that for an exact test.

This problem will not be great, however. If the calculated F value is
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in the "acceptance' regions as compared to the tabulated value, the
results are used without further concern. Only if the calculated F
value is "slightly" larger than the tabulated F value will it be
necessary to perform the exact test., For this test the reader is

referred to Coons [16].

Note that in performing the analysis of variance one degree of

freedom is lost from error and total for each missing value. This

method yields the same results as the more familiar method of substi-
tuting an unknown quantity for the missing value and minimizing the
error sum of squares.

This paper will merely present the missing value formulae., Type I
designs will offer a more detailed description of how this was done.

The formulas are derived under the assumption that the residual
effects of the missing value actually occurred. In actual experimenta-
tion it seems plausible that this assumption will generally be correct;
for if it were not possible to apply a treatment during a particular

period, it would be better to disregard the entire subject.

4.3 Missing Value Formulae

By following the method of Coons [16], the procedure reduces to
the following. Where one missing value is to be estimated, it will be
denoted by x. 1f two values are to be estimated, they will be denoted
by x and z.

The general formulas will be as follows:



(1) For one missing value

»®
8
mbﬂ‘l

Xx

(2) For two missing values

Mo

~ ExyEzz-E,uEy,

Exszz‘szz

N

o EzyExx—ExyEzx
Exszz‘szz

The meanings of the various quantities will be explained under design
Type 1.

Type I: First it will be necessary to find the error sum of
squares. Again, note that the data with the missing values set equal
to zero are the Y values, and the X values are all zero except those

corresponding to missing values, which are set equal to -1,

1>:Tc2i - iyp2
n

= 2 -
Errors ss Iy 1jkvs o

(k) + 13372 L. - nmini:n:Zlg§v2
w2tk

j (n2-n-1)

n bl § (n+1) 2
-0 + PR 3 LR C U2 9 7
m(n2-n-1) [AS npl n S n2

which simplifies to
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2 _ Llomr2  _ 1gm2 1 ¢m2
Error ss = LY ijkvs ;ZTC { ;ZT j(k) + ;EZT K *

- 1 I[(n?-n-1)T, + nA, + F'_ + P, - nG]?
nm(n2-n~1) (n2-n-2) v Av v 1

- ———l————z[n’-Av + 0Py + nF'y, - (n+1)G)2

n3m(nZ-n-1)

Now, for the case of one missing value one needs Exx and Exy., All
the x values are known, so an exact value can be obtained for Fxx which
differs depending on where in the design the missing value occurs. Exx
is simply the error sum of squares using only the x values.

The first bracketed quantity above reduces :io

a(n?-n-1) + bn+c+d+n , v=1 2, .;., n

which will be called ¥yx. The second quantity reduces to
bn? 4 dn + cn + n+l v=1 2, ..., n

which will be called X'yx. Note that IXyx = IX'yx = 0. This result
holds true for all values of Xyx and X', which will be computed be-
cause they come from values of ;v and év which also sum to zero by
constraint.

Exx can now be written as

m(n-1)2(n2-n-1) (n2-n-2)-n25X2yx - (n2-n-2):X'2yx .
n3m(n2-n~1) (n2-n-2)
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Exy is known as.the error sum of products of the X and Y values.
Each squared quantity in the Error ss is replaced by the product
of two quantities, the total for the x's and the total for the y's.
For example, ZTCZi will be written as z(rci)x(rci)y, where (TC;)x is the
total of the x's for subject i, and (TC;)y is the total of the y's for

the same subject.

The two quantities in brackets can again be reduced as follows
(nz-n-l)Tv +nA, + F', + P; - nG v=1l1l,2, ..., n

for the first quantity, which shall be denoted by W,, and
nzAv + nP

1 + nF'v - (!‘H'l)G v = 1, 2, eo ey n

for the second quantity, which shall be denoted by w'v. Note again that

W, = ZW'V = 0. Eyxy can now he written as

nm(n2-n-1) (n2-n-2) [nTC, (x)+nT, (k) (x)-Ty (x) * J-n? fW Xyx~-(n2-0-2) W' X'y .
n3m(n?=n-1) (n2-n-2) AI T

For the case of two missing values it is necessary to find three
more quantities. The quantities E,, and Ezy are found in a similar
manner to those for E,, and Exy. The fact that z occurs in a different
location will change the values of the coefficients in the reduction of

the bracketed quantities, and the same formulas are used to find
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Xyz = a(n?-n-1) + bn+ c+d +n v=1l, 2, ...y 0

and X'y, = bn2 +dn+cn+n+1 v=1l, 2, ..o, n .

Note that these values do change for different missing values. The fact
that the W, and W'y values remain unchanged yields the desired results
for E;, and E;y, using the formulas for E,, and Ey, respectively. This
method will hold true for all remaining designs also. Only E,, remains
to be found. It is found from the Error ss also, by considering the X
values as before, and the Z values also as from before. Note that the
X values and Z values are all zero, except for one -1, which is in a

different location for both sets of data. Since all the data is known,

Ey» can be simply found as

-nm(n?-n-1) (n2-n-2) [n(h+h')-h"]-n?1X, X ,-(n2-n-2)sX"'vuX'y, .
n3m(n?-n-1) (n2-n-2)

The fact that the variables change for the different locations of
the missing values eliminates the necessity for separate equationmns,
this one case taking care of all combinations.

Again note that IXy, = IX'y, = 0, and will hold true for all de-
signs. Once all the quantities are found, they can be substituted in
the formulae at the beginning of the section. It will now only be
necessary to give the various quantities represented above for the
remaining designs, the method remains the same.

Type II: For one missing value
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X = a(ntl) - ¢ + 1 v=1l,2, ..., n

Wv = (n+1)Tv - F'V - G v= 1, 2, saey n

nm(n42) (n-1) - IX2 - (n+1) (m+2)d" (1~ %)
nm(n+l) (n+2)

Exx

Exy -

nm(n+2) TCy (x) + n(n+l) (n+2) T4 (k) (x) - m(n+2)Ty (x)* = IXyu Wy

nm(n+1) (n+2)

n+l
(n+1) (nt+2)a" [Av(x)- £ p.]
+ - j=2 7
mm (n+1) (n+2) :

For two missing values: E,, and Ezy are computed from the above formu-—
las, the coefficients of X, changing for different missing values. One
need again only find E.,, which is

| -m(m#2) [nh "+ Dh-h"] - IX, Xy, - (n#1) (42) k' KT

nm(n+l) (n+2)

Type III: For one missing value

Xyx = (P‘“(“z“"'l)[pa-b'] + -(-L'—i—)—[npawpdﬂ-nb'b] v=1l,2, ..., n
P |4

1
X'yx = ;b[npa'+pd+1-nb'b] v=1, 2, ..., n
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- (p-1) (np-n-1)
2

W, [pT,-(TCy)] + Sﬁfll[npAv+pP1-G-n{TCv}]
| v=s1l,2, ..., 0
' 1
W', = ;;{npAv+pPl-G-n{TCv}] ve1l,2, .u., 0,

Some further notation will be required in order to reduce the

complexity of the quantities to be found for this design.

Let Q = (p—l)(gp-n-l)

2.2 2 2

and Q' = -1)’ (a*p’-n’p-np-n°)
2
P

E QjQ(nzp-np-n2+2n-p-1)-np(n-l)szvx—np(n-l)q'zx'zvx
xx * Q"Qup(n-1)

Eyy =

Q'QIn(n-1)TC4 (x)+pT; (k) (x)-(n=1) Ty (x) + ]-np (n=1) IXyyWy-Q'np(n-1)IX"yxW'y .
Q"Qnp (n-1)

For two missing values, E;, and E,y are again computed in a similar

fashion as Exyx and Exy- One need only find E,,, which is

-Q'Q{n(n~1)h'+ph-(n-1)h" ]-np (n~1) LXyxXyz-np(n-1)Q'IX ' yxX'vz .
Q"Qnp(n-1)

Type IV: For one missing value

X = @' + (nd1) L e, d v=1l,2, ..., n
2n? 2n n
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_(2n+%+r'v+ly1 v=1l, 2, ..., n
n

2n2 2n

Wy = A,

(2n3-n2-3n+1) (4n2-2n-1) - 4n3£X2vx

En-
2n3(4n2-2n-1)

(4n2-2n-1)[nzTCi(x)+2nTj(k)(x)+nTvx-Tk(x)--G]-4n3£wvxvx.
Epy = .
2n3(4n2-2n-1)

For two missing values Ez; and E,, are again computed in a similar

fashion as Eyy and Exy. One need only find Exz, which is 7

-(4n2-2n-1) (n2h '+2nh+nk-h"-1) - 4n35XyxXyz .

2n3(4n2-2n-1)
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DESIGNS FOR SECOND ORDER RESIDUAL EFFECTS

5.1 Type V Designs

General Remarks: When speaking about sets of (n-1) orthogonal Lat-

in squares, it was mentioned that these squares are balanced for all
orders of residual effects up to the (n-1)St order. In this section an
analysis of these squares will be presented when direct, first order
and second order residual effects are believed to be present., Refer to
Designs 5, 10, 17, 29, 31 and 32, Additivity of all treatment effects
will be assumed. These designs were first described by Williams [5].

Care must be taken in construction of the analysis of variance,
for direct, first and second order effects are nonorthogonal.

The combined treatment sum of squares for direct, first order
residual and second order residual effects will be broken down in the
following four ways:

(1) Direct (adjusted 1St and ond order) + 15t(adjusted ond order)

+ 28 (unadjusted)
(2) Direct (unadjusted) + 15t (adjusted direct and 2nd order)
+ 2" (adjusted 15t order)

(3) Direct (adjusted 18t order) + 15t (unadjusted) + 2nd (adjusted

direct and 18t order)

(4) Direct (unadjusted) + 18% (adjusted direct) + 204 (adjusted

direct and 18t order).

48
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There are reasons for picking these specific sets of sums of
squares, these being [5],
(1) Method 1 yields a test on direct effects,
(2) Method 2 yields a test on first order effects,
(3) Methods 3 and 4 both yield a test for second order effects,
and (4) Methods 3 and 4 together yield tests on direct and first order
effects if for some reason second order effects are to be
ignored.

The model for this design is

Yijkvst =u + Ci + pj(k) + Ty + O0g + ¢ + €1jkvst

i = 1, 2, ceeoy l‘l(!‘l-l)
j=1,2, «cey n
k=1, 2, ..., (n=1)
v=1l, 2, ..ey N
s=1, 2, ..., n
t=1, 2, ..., N

where &, represents the effect of the tth treatment on the observation
in the second period following it.

The normal equations are

n2 (n-1) WnIC +nlp 40 (n-1) ITy+(n-1) 210+ (n-1) (n-2) T8¢ = G

nitnCyt I o, (4ET 4 ogHrtie, = TCy t=1,2, ..., nn-1)
(k)
nu+ I Ci+np1(k)+21v = Tl(k) k=1, 2, ..., (n-1)

(k)
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nu+(£)ci+n;2(k)+z;v+zés = Ty(k) k=1,2, ..., (n-1)

nik I Cptmp s (KT ATOGHI0, = Ty (K)

3, 4, ey n
(k) 1, 2

j-
k = s eeey (n=-1)

1117

n(n-l);+261+28j(k)+n(n-1);v+(n—1)2 os+(n-2)ziv$q =Ty

v=1,2, ..., n

~ nl\ -~ ~ ~
(n-1)2u+ZVCi+jzzpj(k)+(n-1)ZVirv+(n-1)268+(n-2)ZVii¢t = Ag

s=1,2, ..., n

- - n . - - N
(n-1) (n-2)+rVitic + 1 pj(k)+(n-2)zix1v+(n-2)Zx95+(n-1)(n—2)°t = B,
j=3
t=1,2, ..., n

where Ziés

the sum over all treatments in subject 1 except the

final one,

Ziiat = the sum over all treatments in subject i except those
in the two final periods,

Ziiiés = the sum over all s where s is not equal to v,

£""¢, = the sum over all t where t is not equal to v,

)ZVCi = the sum over all subjects for which treatment s is not
in the final period,

ZVi;v = the sum over all v where v is not equal to s,

ZViiat the sum over all t where t is not equal to s,

zviiici. the sum over all subjects where treatment t is not in
either of the final two periods,
T = the sum over all v where v is not equal to t,

and, IXgg = the sum over all s where s is not equal to t.
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After applying the usual constraints, the normal equations become

nz(n-l); = G

n;'mci‘éM|"°M|";M" = TCi 1 = 1, 2, ee sy n(n-l)
npt I Cytnp (k) = T (k) j=1,2, ... n

(k) k = 1, 2, eoc ey (n-l)
n(n-1)pn(n-1) 1~ (n=1) 6y~ (n-2) ¢, = T, v=1,2, ..., n

(n-2)2p-1%1C,~Ip | (k)= (n-1)1+(n-1) 20~ (n-2) b5 = A,
s=1,2, ..., n

(n-1) (n-2)u-2¥11C4~E5 ) (k)= (k)= (n=2)T¢-(n-2) Og+(n-1) (n-2) & = B,
t=1,2, ,.., n

vhere ZX161 = the sum over all subject effects where treatment s occurs

last in subject 1,

2*1101 = the sum over all subject effects where treatment t is

either in the last or next to last period in subject {.

By solving the normal equations in terms of ; és and 6t only, one

v?

arrives at the following set of reduced normal equations:

-
a(n-1) -(n-1) -(n-2) T T'y

-(n-1) (n-1) (n2-n-1) _ (n+1)(n-2) s - |av,
n n v

—(n-2) - L @=2)  (n+1) (n-2)?

- n n L




52

where T'v =Ty - %G

A', = Ay + %2[nF'v+nP1-(n+1)G]

and B' = B, + %2 [nF' y#nF"y#+nP;+nPy- (n+2)G].

The various adjusted and unadjusted effects which will be neces-
sary to find the different treatment sums of squares will beffound by
modifying this set of equationms.

At this point it will be necessary to change the notation some-
what, in order to incorporate the different adjusted and unadjusted
estimates. The following notation will hold throughout the remainder

of this section.

Ty - estimate of unadjusted direct effect
14 - estimate of direct effect adjusted for 15% order residual
effect

Tah - estimate of direct effect adjusted for both 15t and ond
order residual effects

‘v - estimate of unadjusted 18t order residual effect

éb - estimate of 18t order residual effect adjusted for and
order residual effect

©¢ - estimate of 18t order residual effect adjusted for direct
effect

Otp - estimate of 18t order residual effect adjusted for both

direct and 2"d order residual effects

¢y - estimate of unadjusted 2"d order residual effect
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-

¢ =~ estimate of ond

order residual effect adjusted for direct
effect

;at - estimate of an

order residual effect adjusted for both
direct and 2nd order residual effects

The following equations yield the required estimates:
n?(n-1)1, = nT,~G ve1l,2, ..., n
n(n-l)(nz-n-l)év = n2A,#nF ' #nP - (n+1)G v=1l,2, ..., n

n(n+1) (n-2)28, = nZB4n[F' #F" #P, 4Py ]~ (n+2)G
v=1l,2, ..., n
n(n-2)(n2-2n-1)éb = n(n-2)Av+(n—l)F'v+nnv+F"v+(n-1)P1+P2-nq
v=e1l,2, .., N
n(n-2)2(n2-2)¢; = n?(n-1)By+n(n-1) [F' #F"y]+n(n-1)Py4n (n-2) Ty~ (n2+2n-4)G
' ve1l, 2, ..o

n(n+1)(n-2)(n-1)ét = n2A +nF’ y#nP+nTy-(n+2)6 ve1l,2, ..., n
n(m+l) (n-2) (n=1)7, = (n2-n=1)Ty#nA+F' +P;-nC v=1,2, ...pn

n(n-1) (n-2) (n3-n2-5n-2) 14, = (n+1) (n-2) (n2-20-1)T +n(n+1) (n-2)A,
+(2n2-2n-2)F’ y#n? (n-1) B +n(n-1)F",,
+(2n2-2n-2)P;+n(n-1)P2-n%(n-1)G

v=1l 2, ..., n
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n(n-1) (n-2) (n3-n2-5n-2)6y, = n(n-2) (n2-2)A +n(a-1) (n+2)B,
+(n3-n2-n#2)F' +(n-1) (m+2)F"
+(n3-n2-n+2)P, +(n-1) (n+2)P,
+n(n+1) (n-2)Ty=n(n+2) (n-1)G

v=1l,62, ..., n

n(n-2) (n3-n2-50-2) 44, = n(n?-1)B +n(n+2)A4n (n+1)F' +(n2-1) F"+(n24n+1) Py
+(n2-1)Pp+n?T - (n2+4n+2)G
v=1l, 2, ..., n.

The analysis of variance can now be written as shown in Table VIII.

TABLE VIII

ANALYSIS OF VARIANCE

Degrees of
Source Freedom Sums of Squares
) G 1
Subjects n(n-1)-1 =LTCy - G
n n2(n~-1)
Periods/squares (n-1)2 Ler2 (k) - l’ITZ .o
n J n2" k
Treatment effects . 3(n-1) - see subanalysis -
Error n3-3n242 subtraction
2 (n-1)= 2 -1
Total n<(n-1)-1 b 4 1jkvst nz(n-l)c

The sums of squares for the treatment effects will be displayed in
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a subanalysis (see Table IX). Remember only one of the four sets of
sums of squares can be used to calculate the error sum of squares.
The variance of a difference between any two estimates of the same

kind 1s as follows:

2(n+1) (n2-2n-1)
n(n-1) (n3-n2-5n-2)

Variance (;ab - ;ab')

"
Q
nN

Variance (1. - Tyt -2 02
(ty = o) n(n-1) €

2(n2—n-1) 02
n(n?-1) (n-2)

Variance (15 - t5')

2(n2-2) 2
(n-1) (n3-n?-5n-2)

"
Q

Variance (6¢p - O¢pt)

Variance (éb - éb') a2 g2
(n2-2n-1)

2n 2

P ¢
(n?-1) (n-2)

Variance (9, - Ot-)

Variance (0, -.0yt) = 2n oé
(n-1) (n2-n-1)
- - 2.
Variance (%5, - $a¢') = 2(n®-1) 2

g
(n~-2) (n3-n?-5n-2)

Variance (;t - &) = 2n(n-1) o

(n-2)2(n2-2)

ot N
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TABLE IX

SUBANALYSIS OF TREATMENT SUM OF SQUARES

Degrees of
Source Freedom Sums of Squares
Direct (adjusted for n-1 n(n-l)(n3-n2-5n-2)z;2
18t angd 2nd) (n+1) (n2-2n-1) ab
(1) 18t (adjusted for 279) n-1 (n2-2n-1)162},
2°¢ (unadjusted) n-1 (n+1) (1-2)2
n v
Direct (unadjusted) n-1 n(n-l)z;zv
(2) 15t (adjusted for direct n-1 (n—l)(n3—n2-5n-2)262
and 2nd) (nZ=2) tb
2nd (adjusted for n-1 (n-2)2 (n2-2) .2»
direct) n(n-1) ~t
Direct (adjusted for 15YH) n-1 n(n-l)(n-Z)(n+1)z§2
(n2-n-1) a
-1) (n%2-n-1) -
(3) 18t (unadjusted) n-1 (n )(n Ie zv
2nd (adjusted for direct n-1 (n-2)(n3-n2—5n-2)£$2
and 18t) (n4-1) at
Direct (unadjusted) n-1 n(n—l)Z;zv
(4) 18t (adjusted for direct) n-1 (n+1)(n-1)(n-2),©2
n “Yt
an (adjusted for direct n-1 (n-2)(n3-n2—5n-2)z

and 18t)

62

(n<=1) at
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I 2 2n 2
Variance (9, - &y1) = ————— 0?2

(n+1) (n-2)2

Missing Values: In finding missing value formulae it will be

necessary to assume that the second order residual effect of the miss-
ing observation is actually present. The procedure is identical to
that in Section 4.3. It will again only Be necessary to compute Eyy
and Exy, Ezz and E;y being computed in a like manner. It wiil also be
necessary to compute E,,, after which the formulas from Section 4.3
can be applied directly,

It will be necessary to introduce some simplifying notation.

Let D = (n+l)(n-2)2(n?-2n-1) ,

n(n-1) (n3-n2-5n-2) ,

D" = = D) a2=2noD)

and p" = (n3-3n2+4) .
n

The remaining notation is the same as that from Section 4.3.

Let va = a+=__.l;___-[a'n+c]+ 1 [a"n? (n-1)
(n?-2n-1) (n+1) (n-2) (n?-2n-1)
+c'n(n-1)+2d (n2-n-1)+d'n(n-1)+n2 (n-1)) v=1, 2, .., n
X'y = D“[a'n2+n+cn+dn-1]+£2112£2:El[a"n2+c'n+dn+d'n+n+2]
n

v=1l,2, ..., n

X"y = [a"n?+c'n+dn+n+2) v=1l,2, ..., n
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Wy = Tybe 1 [nA#F' )+ L (n? (n-1)By#n(n-1) [F' #F"y)
(n2-2n-1) (n+1) (n~-2) (n2-2n-1)
+2(n2~n-1)P1+n(n-1)P2-n2(n—l)G} v=1l, 2, ..., n

W'y = D"[nzAv+nF'v+nP1-(n+1)G]+£Eil%$3:31{nznv+n[F'V+F"V+P1+P2]-(n+2)c}
v = 1, 2, ..., n
w"v = n[nBv+F'v+F"v+Pl+P2]-(n+2)c v = 1’ 2, T_'.’ n .

Now,

n2DD' D" (n-1)2-n"DD"EX2yy-D'LX"' 2, ~DD' LX"2yx

n“DD'D"

n2DD' D" [nTCy (x)4nT (k) (x)=Ty (x) * ]-n" DD" L XyxWy~D" IX' yxW' y=DD' IX", ",

n“DD'D"

As before, the variables in the above formulas for Xyyx, X'yx and
X"yx change for each different location in the design the missing value

assumes and X,, X'y, and X", are found from the same formulae.

Exz

.nZDD'D"[nh'+nh—h“]--n"DD"Zvasz-D'}:X'vxx'vz-m)'zx"vxx"vz .

n“DD'D"

Efficiency: Type V designs will be compared to Designs I through
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IV for the same cases as in Section III. Comparisons will be made first
for differences in direct effects. The numbers in the tables represent
efficiencies of Design V to Designs I through IV. The cases n=3, p=3

and n=4, p=3 are presented.

TABLE X
Design | T | 1I | 111 1V Design | I | II | II1| IV
N EN PR E , |23 e [351] 26
32 |15 |32 |8 175 | 86 | 340 | 35

n=3 n=4

The method of analysis in Design V is primarily for second order
residual effects, and if none were assumed to exist, the design could
be analyzed by the method of Design I. This is the reason for the low
efficilencies., Also note, however, that this design is not as efficient
as Design IIT1 1f p=n, but it is more efficient than Design III if p<n.

The next two sections of Table XI contain comparisons for estimat-
ing differences in first order residual effect. The numbers represent
efficiencies of Design V to Designs I through IV for the same two cases

as previously illustrated.

TABLE XI
Design 1I III| IV Design 1 11 IT1 IV
vI3 | &l | o | 52| 65| 1053 | 208
28 | 63 | 28 | 203 70 | 112 | 952 | 385

n=3 n=4
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This case also fllustrates the low efficiencies of Design V to
Designs I through IV, Also, the efficiencies are lower than for direct

effects. Type V is still better than Type I1II for p<ﬂ.

5.2 Type VI Designs

If an experimenter wanted as much information about second order
residual effects as possible, as might be the case in testing medicines,
and if he could afford to have more periods than was necessary for De-
sign Vv, he could choose a design of this type. The reader is referred
to Designs 3, 7 and 19, It can easily be shown that all treatment ef-
fects, direct, first and second order, are orthogonal. The only non-
orthogonality in the designs is found between residual effects and
subject effects.

For the most part these designs have no practical value, and are
merely included for the sake of interest. Some attempt was made toward
generalization of construction, but as practicality is small, it was
abandoned. |

The sources for the analysis of variance for these designs will be

as follows:
Source

Subjects (unadjusted)

Periods

Direct

18t order (adjusted for subjects)
20d grder (adjusted for subjects)
Error

Total
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DESIGNS BALANCED FOR THE LINEAR COMPONENT OF RESIDUAL EFFECTS

6.1 Type VII Designs

General Information: In the following designs only one treatment

will be tested. However, it will be tested at a number of equally
spaced levels, so that the treatment must be quantitative. ﬁqual spac-
ing permits easier analysis for linear and curvature components. A set
of Latin squares is constructed in such a manner that the linear compo-
nent of residual effects and the linear, quadratic, ... components of
direct effects are orthogonal. This type of change-over design was
first discussed by Berenblﬁt [13] where he deals with a specific example
for four levels. In a second paper by Berenblut [9] he extends these
designs to five levels, and includes a test for linear direct x linear
residual interaction. This is essentially a test for additivity of
direct and residual effects, assuming that direct and residual effects
are predominantly linear. He gives no designs for n>5.

In his paper he assumes a model proposed by Finney [17] in which
" . . . errors are uncorrelated but first residual effects are multiples
of corresponding direct effects” [9].

He then gives the following reasoning and conditions for assuming
linearity of residuval effects:

"It is . . . general for the constant of proportionality between
residual and direct effects to be less than unity; if in fact, the

residual effects are very small by comparison with direct effects, even

61
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the presence of some curvature in the direct effects will not seriously
affect the linearity of residual effects, so long as the linear compo-
nent in the direct effects is predominant. We extend this idea to
quantitative treatments in general, and take as the conditions for as-
suming linearity of residual effects (i) direct effects to have a pre-
dominant linear component, (ii) residual effects to be small by compari-
son with direct effects and proportional to them." [9].

For four levels he gives one design, that being Design 12, For
five levels he gives 12 designs, those being Designs 15a through 151.
Each design has a different degree of non-orthogonality, and must have
a unique analysis of variance., All 13 designs will be analyzed entirely.

Note that Designs 12 and 15a through 151 utilize the same notation
as the rest of the designs, but that in this case the letters represent
the different levels of a given quantitative treatment in either ascend-
ing or descending order. For example, a could represent the low level,
b the next level, etc. Also, in this analysis v will represent one
level of the given treatment, and T, will represent the sum over all the
observations at the vth level.

Without Interaction: Only the design for four levels will be

analyzed without interaction. It will also be analyzed in the follow-
ing section under an interaction model.
Model I Yij = u+c1+pj+TLEI+TQEz+TCg3+eLn1+9Qn2+0cn3+€ij

{i=1,2, ..., 8
j=1,2, 3,4

vhere 17, Tq and 1, are the linear, quadratic and cubic components of

direct effects; 6p, GQ and 6, are the linear, quadratic and cubic effects
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of first order residual effects, and €1» &95 &3, Ny e and ny are the

1

orthogonal polynomials for four levels defined as follows:

TABLE XII
Treatment Applied a b c d
3 -3 -1 1 3 Ny
£2 1 -1 -1 1 Ny
€3 -1 3 -3 1 nj
a b c d Previous Treatment

Applying the constraints £Cy = zéj = 0, the normal equations
become

32y = G

4;’+461‘6L+6Q+36C = TCl
hutdCy=30] ~6-6¢ = TCy
4t Cy#30p ~Oq+0¢ = TCs

buthCy+OL+00-30c = TC,

4t Cs+6p:+0,-30¢ = TCs
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buthCe+38 -0q+0c = TCg
4u+4Ce-38; ~0g=C¢ = TC,

4]J+4C8"CL+'3Q'+3GC = TC8

8u+80j = Pj j=1, 2’ 3, 4

1607y, = -3Tg=Th+Tc+3Ty
327-246q = Ta-Tp-Tc+Ta

1607p = ~To+3Tp=3T+Tg

1200, ~C~3Cx+3C3+C4+C5+3C4-3C,=Cg = ~3Az-Ap+Ac+3Ag

246Q-26;Q+él-&2-é3+64+65-é6-67+68

Aa"Ab"Ac"’Ad

12000+3C;-Co+C3-3C4-3Cs+Ce-C+3Cg = -Ag+3Ap-3Ac+Ay .

Solving the above equations for the residual linear, quadratic

and cubic effects, one gets

noéL = -3Aa-Ab+Ac+3Ad+%{TC1+3TC2~3TC3-TC4—TC5-3TC6+3TC7+TCG]
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45Q = Aa-Ab—Ac+Ad-%[TCI-TCZ-TC3+TC4+TCS-TC6—TC7+TC8]+%[Ta-Tb-Tc+Td]
IIOéC = -Aa+3Ab-3Ac+Ad-%[3TC1—TC2+TC3-3TC4—3TCS+TC6-TC7+TC8] .
;Q is also needed
64;Q = 11[Ta-Tb-Tc+Td]+12[Aa-Ab-A¢+Ad]-3[Tgl-TCz-TC3+TC4+TC5-TC6-TC7+TC8],

Two methods of analysis will be presented. The first will be for
testing residual effects, the second for testing direct effects assuming
residual effects are predominantly linear.

The first analysis of variance follows in Table XIII., Note that v
represents the different levels of the given treatment. A test for

significance of curvature of residual effects is

(402 + 11002p)/2
T MSE v Fa,15

Also, the test for linear residual effects is

11002,
wSE . F1,15

However, this analysis does not yield a test for unadjusted

direct effects.

If one could assume that the curvature components of residual
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TABLE XIII

ANALYSIS OF VARIANCE

Degrees of
Source Freedom Sums of Squares
Subjects 7 Lyre2, - L2
4 32
) ) 1
Period 3 =z - =G -
eriods 5 P4y 3262
Direct (unadjusted) 3 Lop2 . !;Gz
8 vV 3
Residual (adjusted) 3 11062, + 402 + 11062
Linear 1 11062],
Quadratic 1 462Q
Cubic 1 110820
Error 15 subtraction
Total 31 ry?,, - Lg2
iy 32

effects are negligiﬁle it is possible to obtain a test for unadjusted
direct effects and also for linear residual effects. This is because
direct effects are orthogonal to linear residual effects, but not to
quadratic residual effects. One merely pools the quadratic residual
sum of squares unadjusted for direct effects with error. Also, the

cubic residual sum of squares should be pooled with error. This yields
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the analysis of variance in Table XIV. The test for linearity of

residual effects now becomes

11002,
S v FL17

in addition to the usual tests for direct effects.-

TABLE XIV

ANALYSIS OF VARIANCE

Degrees of
Source Freedom Sums of Squares
Subjects (unadjusted) 7 lETCZi -1
4 32
Periods 3 liPz - l"—Gz
8 3 32
Direct (adjusted for 3 16072y, + 22120 + 16072
residual quadratic) 11
Linear 1 160;2L
Quadratic (adjusted) 1 8472
) i 1 @
Cubic 1 160;2C
Residual linear (adjusted 1 110073
subjects)
Error 17 subtraction
' 2 1 o2
Total 31 LY<; 4 = —G
3 32
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The variances of the different effects are:

- - 1
= & ——— a2
Variance (TL) Variance (TC) Te0 og

= 11 ;2

Variance (rQ) s O

Variance (éc) = _1 42
110 ¢

Variance (GL)

- 1
Variance (SQ) Z'og

With Interaction: The example just discussed will be analyzed first

to illustrate the procedure. Then the 12 designs for five levels will
be analysed.

Four Levels
Model II

. Yij = u+Ci+pj+1L£1+ch2+TC£3+9Lnl+(Or)c+eij § : i

where everything is defined as in Model I, and (91) represents the ef-
fect of the interaction of linear direct x linear residual.

The coefficien?s ; are found by multiplying together the two ortho~
gonal polynomials €1 and ny» both from linear terms. Upon doing this,
one gets the following values of { as shown in Table XV. An asterisk
is used to represent a treatment sequence which does not occur.

The normal equations after constraints are appliéd become
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TABLE XV

Treatment Applied

a b c d
a * 3 -3
Previous b 3 * * -3
Treatment
c -3 * %

32u = G

- - ~ ~
4u+4Cy -0 +3(01) = TG
~ -~ -~ /A
bu+4Cy-30; +3(01) = TC,
-~ - - 7\
4p+4Ca+30,+3(01) = TCy
-~ - ~ ~
4ut4Ch+0p+3(01) = TC,
- -~ - . ~
AuthCq+d, -3(C1) = TCq
- ~ - Py
4utbCe+30, -3(01) = TCq

-~ A - ~
hu+hCy-30,-3(01) = TC,
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PS - ~ Pa
4u+a08-eL-3(er) = TCg
8u+8pjﬂpj j.ly 2’ 3'4
lGOTL = -3Ta-Tb+Tc+3Td
321Q = Ta'Tb'Tc+Td
160TC = —Ta+3Tb—3Tc+Td
120OL-C].-3C2+3C3+C1‘+CS+3C6-3C7-C8 = ‘BAa-Ab+Ac+3Ad
”\ ~ ~ ~ PN - ~ - -
216 (01)+3[ C #+Co+C3+Cy~C5-Cg~Cy=Cg ] = 3[Tab+Tba+Tcd+Tdc=Tbd-Tdb~Tac~Tca)
-~ ”
Solving for 6, and (61),

1100, = —3Aa-Ab+Ac+3Ad+%[TC1+3TC2-3TC3-TC4—TC5-3TC6+3TC7+TC8]

A
198(0t1) = 3 [Tab"'Tba+Tcd+Tdc'de"Tdb‘Tac'Tca]

3
- Z['JZ'CI-O"I'Czﬁ'TC 3+TC4-TC5-TC-TCy~TCgqg ] .

Define £(T) = [Tah+Th,#Tea*Tdc-Thd-Tgp-Tac-Tcal
g(B) = %{Tcl+rcz+rc3+Tc4-rc5-rc6-rc7-rc8]

Then one gets,

198(61) = 3£(T) - 3g(B).
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The analysis of variance can now be presented as in Table XVI,

TABLE XVI

ANALYSIS OF VARIANCE

Degrees of

Source Freedom Sums of Squares
Subjects (unadjusted) 7 %iTCzi - %EGZ
1> 1 -
Perinds 3 —ZP‘j - =G¢
8 3?
Direct 3 Lpp2 L2
8 vV 32
Linear 1 160;2L
Deviations 2 32;2Q + 160;20
Linear Residual (adjusted 1 IIOéZL
for subjects)
Linear Direct x Linear Residual 1 -~ see below -
(adjusted)
Error 16 subtraction
Total 31 £y?2 - l-G2
1y 32

Note that v represents different levels of the same treatment,
A
Linear Direct x Linear Residual Sum of Squares = 198((-)1)2

-1 - 2
553 (1)-32(8)]

= L (£(T)-g(B))2
22
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Variance (6;) = 152

110 €
Pl
Variance (0Ot) = Y .
198 ¢

Since direct effects are orthogonal to all other effects, a test

statistic for testing direct effects is

Direct MS n~F
EMS 3,16

Five Levels: As previously noted there are no general formulas
for analyzing Designs 15a through 151.

All the designs are orthogonal for direct, linear residual and
linear x linear effects, but neither linear residual nor linear x linear
effects are orthogonal to subject effects. Each design contains a dif-
ferent degree of entanglement so as to render the sums of squares
different in each instance.

The normal equations for u, Pys T TQ, Te and Tq will be the same
for all 12 designs, but those for Cy, 0, and (61) will change. The
normal equatioﬁs will be similar to those for the previous case of four
levels, and will not be presented. Only the method of analysis will be
presented here.

Certain properties and sums of squares will be the same for all

the designs and will be given first. Thereafter, only four quantities

will be needed to complete the analysis.
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Model

Yij = p+ci+pj+tL£1+rQ£2+rCE3+rq£4+6Ln+(91)c+eij

where T, , TQ» Te» ., and (61) are defined as in the case for four
levels, Tq is the quartic component of direct effects, and El’ §2» &3
£, and n are the orthogonal polynomials for five levels and for the

linear level in five levels respectively. They are defined as follows:

TABLE XVII
Treatment Applied a b c d e
€1 -2 -1 0 1 2 n
&9 2 -1 =2 -1 2
£3 -1 2 0 -2 1
€4 1 -4 6 -4 1
a b c d e Previous Treatment

; is the product of £ and n defined as shown in Table XVIII.

Where an * indicates the combination does not occur. It should be
noted that some of the above combinations without an asterisk do not
occur for some designs. For example, consider Design 15a. Treatment e
never immediately follows treatment a, or vice versa. Therefore, 1f
either of the totals T,, or Ty, were required for a general formula,
they would simply be zero for this design.

The general analysis of variance is seen in Table 3xIX, Note

that v represents the different levels.
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TABLE XVIII

Treatment Applied

a b ¢ d e
a * 2 0 -2 -4
Previous b 2 * C -1 -2
Treatment
c 0 0 * 0 0
d -2 -1 0 * 2
e -4 -2 0 2 *

For all designs let h(8) = -2A_-A +A1+2A,,
and let

Now, thg sum of squares for Linear Residual (unadjusted for inter-
action) can be shown to be
1 (a"2
76

and the sum of squares for Linear y Linear Interaction (adjusted) is
C*[AT'+C**A' ]2,

where A' = h(0) + %181(3)],
AT' = £(T) + -;-[gz(B)],
and C*, Ck* gl(B) and g,(B) must be defined separately for each of the

twelve designs,



75

TABLE XIX

ANALYSIS OF VARIANCE

Degrees of
Source Freedom Sums of Squares
Subjects djusted 9 lypc2, - 1 g2
ubj (unadjusted) 710 - 5,
Periods 4 ’ 1ygp2 - 1¢g2
10 J So
Direct A 1rr2, -1¢2
10 50
Linear 1 TE’I-ZT T +T y+2T¢ 12
Quadratic 1 I%a[zra-Tb-zrc-rd+z're]2
Cubic 1 L [-T +2T,,~2T ;+T. )2
Too atcTbTéTd e
uartic 1 L [T,-4T +6T ~4T (+T, ]2
Q 700 2 b c at e]
Linear Residual (unadjusted) 1 - see text -
Linear Direct x Linear Residual 1 - see text -
Exrror 30 subtraction
1
Total 49 ij ?’_G

Design

15a g, (B) = [2TC#TC3-2TC4-TC5-TCGHTCgH2TCy-21C; 4]
82(3) = 2[-2TC1-TC2+TC3+TC7-TC8+2TC]_O]

C* = 0115
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Ch

15,  g3(B) = [TC,+2TC3-2TC4-TC5~2TC ;+2TC4-TC,+TC, ;]

82 (B) = 2 [—TCl-2TC2+TC3+TC6—TC8+2TC9 ]

ck = .0116
C** = -,0210
15¢ g, (B) = [2TC,+TC3-2TC4-TCs+2TCq-2TC7=TCg+TCy]
 89(B) = 2[-2TCy-TCy+TC3+2TCg-TCg+TCq ]
C*x = ,01157
Cr* = 0105
15 g, (B) = [TC)-TC3+2TC;-2TCs+2TCe+TCo-TCq-2TCq)

g2(B) = [-2TC,-4TCy-2TC3-TC5+3TCE+6TCo+2TCg-4TCH+2TCq ]

9
C* = .0120
Cr* = 0463

15¢ g, (B) = [2TCy+TC3-TC4~2TC5+2TCE+TC7-TCq~2TC; ]
g9(B) = [-2TC1+2TC3+6TC,4-4TC5~TCa-4TCo+3TCy0)
c* = .0092
Ck* = -,0210

15 g (B) = [2TC,+TC3-2TC,~TC5+2TCa=TCy-2TCq+TC)q]
g (B) = [-3TCy-4TCo+2TC3+3TCg=2TCg+5TCy-TCyq]
c* = .0106
Ckk = -,0232

15¢ g, (B) = [TCy+2TC3-2TC,-TC5-TCE+TCy-2TCq+2TCo]
g,(B) = 2[~TC,~2TCy+TC3+2TC,-TCg+TCy]

c* . = ,01157



77

Cx* = ,0210
15h gl(B) = [ZTCZ-TC3-2TCa+TCS-TC6+2TC7+TC8-2T09]
gz(B) = [5TC1-4TCz-ZTC3+3TC4-TC5-4TC7+3TC8+3TC9-3TC10]
C* = ,01427
C** = ,0630
151 g, (B) = [TC)-2TC2-2TC3~TC5+TCq+2TCq-2TCy=TC;q]
8y (B) = 2[-2TCy+TC3~TC4+3TCs5+3TC4-TC7-TCg-2TC; (]
C* = ,01162 '
C** =0
15 81 (B) = [2TCy-2TCy+TC3~TC;~TCe+2TCs+TCg~2TCq]
g (B) = [3TCy-TCy-4TC4+3TC5-4TCy+2TCg+3TC-2TCy )
C* = ,0106
Ck* =0
15k gl(B) = [TCl-ZTCZ-TC3+2TC4—TC6+2TC7+TC8-2TC9]
g2(B) = 2[~2TC,~TC3-TCg+2TCx+TCg+TC) ]
c* = ,01157
Ck* = -~ 0105
151 gl(B) = [—TC1+2TC3-2TCa+TC5+TC6-2TC8+2Tcg-TCIO]
g85(B) = 2[-TCy-TC3-2TC4+TC4+TCg+2TCq)
Ck - .0i158
Ck*x = _0210
Variances: If interaction effects can be assumed negligible, and
no test for it is being made, the variance of éL is the same for all 12
designs, being equal to %E oi. If, however, one is testing using the

-~ \
interaction model, the different variances of 6, and (01) can be found
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from Table XX.

TABLE XX
Design Variance(éL)/oi Variance (6;)/02
15a .01318 .01159
15b .01316 .01158
15¢ .01316 .01157
15d .01318 .01200
15¢ .01316 .00920
15f .01316 : .01600
15g .01316 .01158
15h .01321 .01427
151 .01316 .01162
153 .01316 .01059
15k .01316 ' .01157
151 .01316 .01158

A\
Designs e and j are particularly good for estimating (O1) while
Designs d, f and h are not quite as good as the remainder of them.
All designs are sbout equal with respect to estimation of éL' Design h

having the largest variance.

6.2 Type VIII Designs

General Remarks: Unfortunately there have been no designa
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published of Type VII for greater than five levels, and Beremblut (9]
states that none exist for two or three levels, The extra-period type
IT designs can, however, be analyzed under the same model, also yield-
ing a test for interaction. These designs are orthogonal for linear,
quadratic, ... direct effects and linear residual effects. The linear
residual effect is now orthogonal to subjects, but the direct effects
are no longer orthogonal to subjects. The linear x linear interaction
effect is still nonorthogonal to subjects, but is now also nonorthogonal
to periods.

The efficiency of these designs to Type VII designs is quite low,
and it would be advisable to use one of the latter designs if one is
available. However, Type VIII designs are quite easy to find, exist
for two and three levels, and are not much more complicated to analyze
than those of Type VII. Again there is no general formula to follow
for this analysis.

Two designs will be analyzed, one for three levels and one for
four levels. The four level design will be compared to the four level
Type VII design.

Since the linear rgsidual effect is completely orthogonal to all

other effects it need not be adjusted, and

(Linear Residual MS)
EMS

will always be a proper test statistic for linear residual effects for

these designs.



Three Levels: Design 5 will be used as an extra-period design.

The model will be

Yij = u+Ci+pj+1L51+TQEZ+9Ln+(OT)c+eij i=1,2, ..., 6
j=1,2,3,4
where £, and £y represent the two orthogonal polynomials corresponding
to the linear and quadratic components for three levels, n represents
the linear orthogonal polynomial for three levels, and § is merely £xn

representing the linear direct x linear residual interaction.

El, Ez and n are defined as follows:

TABLE XXI
Treatment Applied a b c
51 -1 0 1 n
a b c Previous Treatment
and  is defined as:
TABLE XXII

Treatment Applied

Previous
Treatment b 0 0 0
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Note that in this analysis the letters a, b, ¢ ... in the designs
represent quantitative equally spaced levels of the same treatment in
either ascending or descending order.

After applying the constraints Zéi = E;j = 0, the normal equations

become:
2y = G

-~ -~ -~ 7\
by + 401 + T + 19 + (Or1) = TC1

S - ~ ~

4u + 4C, - 1, + TQ = T02

- - - A

bu + 4C4 - ZTQ - (o1) = TC,

- A
4u + 4C, - 2TQ - (01) = TCa

/\
by + 4C6 - T + Q + (O1) = T06
6u + 6p, =P

Ve
6u + 6pp - 2(01) = Py

A
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A ~ Ve
6u + 6o, + 4(01) = P4

A ~ -~ ~ -~ -~ ~ -
8(ot) + C1 - C3 - C‘. + C6 - 292 - 203 + 404 - Taa + ch - Tac - Tca

-~

Solving for 1y one gets
151 = -Ty + T - £[TC) - TCy + TC5 - TC,]

- 7\
It will also be necessary to solve for 1Q and (0t). Two quantities

in terms of both effects are obtained,

A-3A.'
&STQ i(er) Q

- 7\

- %TQ'+ 3(01) = AT’

where

Q' = T, - 2Ty + T - %‘.[TCZ + TC; - 2TC3 - 2TC; + TCs + TCg)
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and

1 1
AT' = Tga + Tee = Tac = Tea = F1TC; = TC3 = TC4 + TC5) + S{Py + Py = 274] .

7\

It will only be necessary to solve for (Or1)
1775:) = ar' + Lo

60 300

The analysis of variance can now be constructed as in Table XXIII. The
-~ N
variances of OL and (O1) are

- 1 7\
Variance (GL) = — g Variance (0Ot1) = _60 42
12 ¢ 177 ¢

The test statistic for additivity of direct and residual effects is
”~
%(@T)Z/MSE ~ Fl,ll‘

Four Levels: Design 9 is a completely balanced Latin square for
four treatments. It will be used as an extra-period design with the
treatments a, b, ¢, and d representing four equally spaced levels of a

given treatment.

The model is

Yyg = u+ Cp +oy + 18 + gl + Tc3 + Bun + (0T)T + €y,

1=1,2,3, 4
4=1,2,3,4,5
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TABLE XXIII

ANALYSIS OF VARIANCE

Degrees of
Source Freedom Sums of Squares
Subjects (unadjusted) 5 irrc2, - 12
A T
Periods (unadjusted) 3 lEsz - g2
6 24
Direct (adjusted only for 2 ISrL2 + _}Q'Z
subjects) 45
Linear (adjusted for 1 15;L2
subjects)
Quadratic (unadjusted for 1 1qr2
linear x linear) 45
Linear Residual 1 1262,
\
Linear Direct x Linear 1 177(er)?
Residual (adjusted) 60
Error 11 subtraction
Total 23 £Y?y4 - 12
I3

where the notation-is the same as that for four level Type VII designs
with interaction, except that in this case [ is defined as shown in
Table XXIV because all possible combinations occur.

After applying the constraints zéi - zﬁj = 0, the normal equations

become:
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TABLE XXIV

Treatment Applied

a b c d
a 9 3 -3 -9
Previous b 3 1 -1 -3
Treatment
c -3 -1 1 3
d -9 -3 3 9
205 = G

5U+5C1+3TL+TQ+TC+14(OT) = TC1
-~ -~ -~ ~ A e
5u+SCZ+TL—rQ-3TC—14(Or) = TC,
P a~ - ~ -~ 7\
5u+SC3-rL—rQ+3TC—14(OT) = TC3
~ - - B - ~
5u+5C4'3TL+TQ—TC+14(@T) = TC4

4p+401 = Pl
buthpy = P,

a - V)
4u+4p3~20(01) - P3

4;"‘;4 = Pl‘
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. - A
4u+ps+20(9'r) = PS
100TL+3C1+02-C3"3C4 - —3Ta-Tb+Tc+3Td
201q#C) ~Co=Cy+Cy = To-Tp=Tc+Tg

800, = -3A,-Ap+A +3A,

7\ ~ -~ PS a 'S -
400(OT)+14C, ~14C-14C5+14C,-20p 332005 = [Tpp+Tee-Tye=Teb]

+9[Taa+Tdd-Tad-Tdal .
Solving for ;L and ;C one gets
97, =L'  and  967; = C'
L' = -3Ta-Tb+Tc+3Td-%[3TC1+TC2-TC3—3TC4]
and

c' = -Ta+3Tb—3Tc+Tdf§[TC1-3TC2+3TC3-TC4] .

Let 806L = R!
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where R' = -3Aa-Ab+Ac+3Ad .
PN N\
Now, solving for 1) and (O01) one gets the following set of equations:

961q - 35(01) = Q'
5 5

- 567 4+ 216000y o At
>57q + ¢

where Q' = Ta—Tb—Tc+Td-%[TCI—TCZ-TC3+TC4]

and AT' = [Top+Tcc=The-Teb1+3[Tap+Th g+ TcdTde-Tac~Tod-Toq=Tdb]

+9[Taa+Tdd-Tad-Tda]-l%[TCl—Tcz—TC3+TC4]+5[P3-P5]‘

It will only be necessary to find the adjusted interaction effect,
which 1is

N\
110¢07) = AT' + _Io* .
3 12

The analysis of variance can now be constructed as in Table XXV.
Note that in this design and in the previous design for three levels

Linear Residual MS
MSE

is a valid test for linearity of residual effects be-

cause of orthogonality.
The sum of squares for direct effects can be split up as shown in
Table XXVI.

~ 3
The variance of (01) is —— o2
110
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TABLE XXV

ANALYSIS OF VARIANCE

Degrees of
Source Freedom Sums of Squares
Subjects (unadjusted) 3 %xTCzi - Elﬂz
0
Periods (unadjusted) 4 lzpz - _lcz
AN, 20
Direct (adjusted for subjects) 3 - see text -
Linear Residual 1 g2
80
Fal
Linear Direct x Linear 1 .119(01)2
Residual (adjusted) 3
Error 7 subtraction
Total 19 ZYzi - 152
I 20
TABLE XXVI
Degrees of
Source Freedom Sums of Squares
Direct (adjusted for 3 _l{L'Z +5Q'2 + C'?)
subjects) 96
Linear (adjusted
subjects) 1 Ape2
96
Quadratic (adjusted 1 _EQ'Z
subjects) 96
Cubic (adjusted 1 _1¢r2

subjects) 96
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and that for eL is — 0

Efficiency: The design for four levels just discussed will be
compared with design Type VII for four levels with interaction. It
will be necessary to find the number of observations x the variance of
the effects to be compared. The effects to be compared are 6L and (6;).

First for O_:

L
Design Number of Observations x Variance 9,
1
2(~=) = ,2
Type VII 3 (110) 91
Type VIII 20(3.(17) = ,250

The efficiency of Type VIII to Type VII designs is 1.164. There-
fore, if one were mainly interested in estimating first order residual
effects, one should use a Type VIII design which yields a slightly better
estimate., This statement can only be made here for four levels. No at-
tempt will be made in this paper to extend this result to five levels
or more.

Now the two types of designs will be compared for estimation of

interaction effects.

h N
Design Number of Observations x Variance (61)
Type VII 32(L1) = .165
yp 198

VIII 20(3_) = .545
Type 110
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The efficiency of Design VIII to Design VII is seen
to be .303. One sees that Design VII, or Berenblut's design is far
better at estimating the interaction effect.

It can only be concluded that the type of design utilized should
be chosen by the amount of precision desired of the two effects. If
more precision is desired for first order residual effects than inter-

action effects, design Type VIII should be used, and vice versa.

6.3 Type IX Designs

General Remarks: Type VII and VIII designs can be quite useful if

the experimenter is only interested in testing one type of treatment at
various equally spaced levels, Often this is not the case. What if he
were interested in testing, say, two treatments, and still wanted some
test for additivity? As long as his treatments are quantitative there
may be another design he could use., The author has devised some de-
signs which can be analyzed for more than one treatment, each at this
same number of equally spaced levels.

Examples will be given for two treatments, each at two levels; two
treatments, each at three levels; and three treatments, each at two

levels.

Only the first example will be analyzed.

Two Treatments at Two Levels: Construction of the design is as

follows. Take Design 12. Let treatment a be one level of treatment

one, denoted by a;, Let treatment d be the second level of treatment
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one, denoted by a,. Let treatments b ind ¢ be the two levels of treat-
ment two, denoted by b1 and b, respectively. The following design is
now obtained:

ay a; a3 a5 by by by b
131228201 °1 7202
b1 b, b1 by a; a3 a) a,

a, a; ay a, by by by by
by b b2 b. a; a; a; a
1 1 1 1
The four levels of the two treatments can actually be thought of as
four separate treatments, Therefore, each level (or treatment) is seen
to appear once in each subject and twice in each period, rendering
treatments orthogonal to both subjects and periods.
Other orthogonal properties will be discussed after presentation of

the normal equations.

The model for this design is

Yij = u+C1+pj+11£1+0152+r2n1+02n2+(1112)l1+(0192)X2+(1192)C1+(T291)Cz+€1j

where 1, represents the (linear) direct effect of treatment 1,
1, represents the (linear) direct effect of treatment 2,
] represents the (l1inear) residual effect of treatment 1,
62 represents the (linear) residual effect of treatment 2,
(1112) represents a linear contrast in the observations orthogonal to
the direct effects of treatments 1 and 2; or 1 versus 2,
(0162) represents a linear contrast in the observations orthogonal

to the residual effects of treatments 1 and 2; or 1 versus 2,



92

(1162) represents the interaction effect treatment 1 direct x treat-
ment 2 residual,

and (150;) represents the interaction effect treatment 2 direct x treat-
ment 1 residual.

El. 52. ny and n, can be defined as follows:

TABLE XXVII
Treatment Applied ay a, bl by
El -1 1 0 0 52
nl 0 0 -1 1 n2
al a2 b1 bz Previous Treatment

4] and ‘2 can be defined as follows:
TABLE XXVIII

Treatment Applied

2, a, by b,
* * 1 -1
%
Previous a, * * -1 1
Treatment
- * *
b1 1 1
- * *
b2 1 1
& %
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and A_ and Az can be defined as follows:

1

TABLE XXIX

Treatment Applied

ay a, bl bz
Al 1 1 -1 -1
Az -1 -1 1 1

The normal equations
32u =G
by + 4Cy - 0, -
b + 4Cy + 0y +

4 + 4Cy

'
@

N
+

4; + &64 + 62 -

by + 4Cq

!
D

[
+

4y + 4Cg + 0 =

under the constraints Zéi

~ 7\

e

(1109) - 2(1201)

7~ ”~
(Tlez) - 2(1201)

~ ~
(1195) + 2(x50;)

Ve ~
2(T192) - (Tzel)

A ~
2(1102) + (Tz@l)

+

7\
(610,)
N\
(0169)
N\
(0167)
(6,05)
N
(0192)

)
(0167)

Epj

TCy

TC,

TC3

TCA

TC

TCq

= 0 are:
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- - N ~ A

7 7

~ -~ /\ PN A
bu + 4Cg + 0, + 2(110,) - (150;) - (6107) = TCg

1

8u+8;; = P

s j=1,2,3,4

167y = Ta_ =T

2 8

120

]
(2]
w
+
(@]
e
]
(2]
~
+
[g]
()
L]
g
]
>

1

161, = Ty = T
2% b, 7 Ty

126, - él +Cy-Cy#C4~ Ay, =

~
32(131,) = T + T, - T, - T
12 a, a, bl b2

e -~ -~ - - -~ a - a
24(0192)+Cl+cz+c3+c4-c5-c6-c7-c8-Aa1+A.2-Abl-Abz

Ve - - - - - - - -
12(1’192) 01 + Cz + C3 - Cb + 2(05 - c6 - C7 + Cs) = T. b + T‘ b
22 11

~Tgp~=T
%% 4%

PaN - a - - ~ - - -
12("261) + z(cl - c2 - c3 + Cl.) - CS + C6 + C7 - 68 - Tb a + Tb a
11 22
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It can be seen that subject effects are nonorthogonal to residual
effects, direct x residual interaction effects and the linear contrast
among the residual effects.

One first needs to obtain 61 and 0, as follows:

S
1161 A 1

1192 bl A'z

where

1
1 - Aa - Aal + Z[TCS - TC6 + TC7 - TCS]

' - - .!'. L -

7\
One needs next to solve for (0192):

7\ .
22(9102) = (AlAz)
where

1
(AlAZ)' - Aal + Aaz - Abl - Abz + 7‘.['1'c5+'1’06+'1‘c7+'r<:8-'rc1-'1‘02-'1‘03-'1‘%] .

Lastly, one needs to solve for the interaction effects; doing so

yields a set of simultaneous equations in both estimates as follows:
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7\ aN
7(1102) + 4(1201) = (T1A2)'
A\ N\ .
&(Tlez) + 7(r261) - (TZAI)
where

1 ,
(T)Ap)" = T,y +Ty p =Ty p =T, p_+7{TC)-TCo-TCTHTC4-2TC5+2TC+2TCs-2TCq]

1"1T 22 21 12

and

1
(TyAy)' = Ty 4 +Ty 5 =Ty 5 -Tp, . +-[-2TC;+2TCy+2TC3~2TC,+TC5=TC~TC+TCq) .
1 lal b2a2 1a2 bza1 4 1 4 6 7

The adjusted estimates now become
A~
33(r102) = 7(T1A2)' - 4(T2A1)'
33(1,01) = 7(T,A,)" = 4(T.A,)"
2°1 2" 172 .

The analysis of variance is shown in Table XXX. Only one pair of
interaction sums of squares should be used when finding the error sum of

squares. As a check, note that

1 Direct x 2 Residual (adjusted) Sum of Squares + 1 Residual x 2 Direct
(unadjusted) Sum of Squares = 1 Residual x 2 Direct (adjusted) Sum of squares

+ 1 Direct x 2 Residual (unadjusted) Sum of Squares.
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TABLE XXX
Degrees of
Source Freedom Sums of Squares
Subjects (unadjusted) 7 lrpc2 - _1g2
4 1 3
Periods 3 l-}IPZ - —lG2
8 3 132
Direct Effects 3 Lrr2, 412, +12, 417, 1-_Lg2
8 % % by Py 32
Treatment 1 Direct 1 —%-[Ta -T, 12
1 1 2
1l
Treatment 2 Direct 1 ——{Tb -T ]2
16 % P
1 2
Treatment 1 vs Treatment 2 1 —[Ty +T, -T, -T, ]
328 8 by by
- . A
Residual Effects 3 11[0%,+6%y+2(06,0,)2]
Treatment 1 Residual 1 11621
Treatment 2 Residual 1 lléz2
e
Treatment 1 vs Treatment 2 1 22(9102)2
33, ©~. 2
1 Dir x 2 Res (adj 1 Res x 2 Dir) 1 —7(1102)
1 Res x 2 Dir (unadjusted) 1 %(TzAl)'z
33, . 2
1 Res x 2 Dir (adj 1 Dir x 2 Res) 1 —7(12@1)
1 Dir x 2 Res (unadjusted) 1 %(TIAZ)'Z
Error 13 subtraction
Total 31 ¥y - 262
: 32
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Since in this design a treatment never directly follows itself, the
interaction between a treatment direct effect and its own residual ef-
fect 1s of no concern. Also, the interactions between the two effects
({;}2) and (é;ez) and the two interaction effects are considered to be
negligible.

The variances of the different effects are as follows:

Variance (;1) = Variance (t,) = — a2 .

Variance (0,) = Variance (62) = —3-02 ,
1 16,

€

7\ /N 7 2
and Variance (1102) = Variance (150;) = 33'05 .

Two Treatments at Three Levels: A design for two treatments each

at three equally spaced levels is:

a a) a) a, a, a, a3 a3 a; b, by by b, b, b, by by b,
b; b, b, b, b, b, b, b, b, a, a, a, a, a, a, a, a; a

1 P2 b3 by b3 by b3 by by 2, a, a3 3, a3 3y 35 3, a,
aj 8, a;a a a a)a, a b, b, b)bybybyb b b
bz b3 bl b3 bl bz bl b2 b3 32 83 al 83 al 82 81 32 33
az 82 82 8.3 83 83 al al al b3 b3 b3 bl bl bl bz b2 b2
by by by by-by by by b3 by a3 a; a; a) ap a3 ay a3 3,

The analysis of this design will not be considered here.

Three Treatments at Two Levels: A design for three treatments each

at two equally spaced levels is:



2,3 8
by ¢

cy by by
by ¢y ¢

analysis

of

this design
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will not

be

considered here.



VII

MISCELLANEOUS DESIGNS

Designs 16, 27 and 28 are examples of balanced designs which do not
fit any of the types already discussed. They might be classified as de-
signs for n treatments, p periods (p<n) and m squares. No attempt will
be made to analyze these designs.

Patterson, in regard to these designs, states, '"When rectangles are
considered it is found that there are not many balanced designs requir-
ing fewer than n(n-1) units.” [14]. Of course a design based on Latin
rectangles for n(n-1) units can always be formed from orthogonal Latin
squares, which have been denoted as Type III designs.

Another group of designs stems from what have been called Type VI
designs. As was noted, the three Designs 3, 7 and 19 are completely
orthogonal for all treatment effects up to second order residual effects.
This orthogonality has been extended in Designs 4, 8 and 20 up to third
order residual effects and in Design 21 up to fourth order residual ef-
fects. These designs are presented to give the reader an idea of what
can be constructed. Other designs could be constructed for other num-
bers of treatments, but practicality does not seem to warrant the effort.
Unfortunately the author is not aware of any other designs with the same
orthogonality properties, but of smaller dimensions. As the presented
designs were constructed by trial and error, none for smaller dimensions

were found, and it does not seem that any might exist.
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VIII

SUMMARY

A number of different types of change-over designs are analyzed.

The analysis of variance for each type is given explicitly, along with
variances and expected mean squares. In some cases different designs
are compared and efficlencies are obtained.

While efficiency is certainly a criterion for choosing a design, it
has bDeen shown that another major factor of consideration is the number
of observations. In some cases a more efficient design leads to more
periods than would necessarily be required. In these cases the subjects
may not be able to handle this increase in number of periods. It also
may be the case that there are simply not enough subjects available.

In any case, no specific design can be recommended for all purposes.
Each different problem requires its own solution, and the necessity to |
choose the best design available, for whatever reasons the problem

dictates.
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APPENDIX

DESIGNS

Designs will be listed by number of treatments. Rows represent

periods and columns represent subjects.

2 Treatments

Design 1 ab
b a
Design 2 abab
baab
baba
abba
Design 3 aabb
abba
abab
bbaa
baab
baba
Design 4 aaaabbbhb
aabbaabb
abababab
aabbbbaa
babaabab
bbbbaaaa
babababa
bbaaaabb
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CHANGE-OVER DESIGNS

James Mark Mason

Abstract

When it is necessary to apply several different treatments in suc-
cession to a given subject, the residual effect of one treatment on
another must be taken into consideration. A number of various designs
have been developed for this purpose. A number of them are presented in
this paper and can be summarized as follows:

Type I: Balanced for first-order residual effects. For n, the
number of treatments, even, any number of Latin squares can be used;
for n odd, an even number of squares is necessary.

Type I1: Formed by repeating the final period of Type I designms.
Direct and residual effects are orthogonal.

Type II1: Formed from p<n corresponding rows of n-1 orthogonal
nyn Latin squares.

Type 1V: Complete orthogonality except for subjects and residuals.
Very efficient but iarge numbers of observations are necessary.

Type V: Designs balanced for first and second order effects. Also
formed from orthogonal Latin squares.

Type VI: Designs orthogonal for direct, first and second order

residuals. Designs presented for n=2, 3 and 5.



Type VII: Orthogonal for linear, quadratic, ... components of
direct and linear component of residual effects. Analysis includes
1linear direct x linear residual interaction. Designs given for n=4, 5.

Type VIII: Type II designs analyzed under model for Type VII
designs. Less efficiency, but designs available for all n.

Type IX: Designs useful for testing more than one treatment and
direct y residual interactions.

Analysis for most designs includes normal equations, analysis of
variance, variances of estimates, expected mean squares, efficiencies
and missing value formulas.

A 1list of designs is presented in an appendix.
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