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Abstract

A primary objective of the effort reported here is to develop a radiometric instrument mod-

eling environment to provide complete end-to-end numerical models of radiometric instru-

ments, integrating the optical, electro-thermal, and electronic systems. The modeling envi-

ronment consists of a Monte Carlo ray-trace (MCRT) model of the optical system coupled to

a transient, three-dimensional finite-difference electrothermal model of the detector assem-

bly with an analytic model of the signal-conditioning circuitry. The environment provides a

complete simulation of the dynamic optical and electrothermal behavior of the instrument.

The modeling environment is used to create an end-to-end model of the CERES scanning

radiometer, and its performance is compared to the performance of an operational CERES

total channel as a benchmark. A further objective of this effort is to formulate an efficient

design environment for radiometric instruments. To this end, the modeling environment is

then combined with evolutionary search algorithms known as genetic algorithms (GA’s) to

develop a methodology for optimal instrument design using high-level radiometric instru-

ment models. GA’s are applied to the design of the optical system and detector system

separately and to both as an aggregate function with positive results.
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Dwight Smith, Bernardo Carnicero, Jose Dobarco, Maria Santa Maria, Mamadou Barry,

Stéphanie Weckmann, Katherine Coffey, Edwin Ayala, Joel Barreto, and Martial Haeffelin.

Their generous help and friendship was invaluable in assisting my research.

I would like to thank my parents, Duane and Joyce, as well as my brothers, Daniel and Jacob

for their confidence and support throughout the years. Finally, I would like to thank my

wife, Cristina, without whose love and support the realization of my goals and aspirations

would not have been possible.

Ira Sorensen

Virginia Polytechnic Institute and State University

December 2002

iii



Contents

Abstract ii

Acknowledgments iii

List of Figures ix

List of Tables xii

Nomenclature xiv

Chapter 1 Introduction 1

1.1 Radiometric instrument modeling . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goals and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Radiometric instrument modeling environment . . . . . . . . . . . . . . . . . 6

1.4 Organization of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Radiometric Instruments 9

2.1 General properties of radiometric instruments . . . . . . . . . . . . . . . . . 9

2.2 Optical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

iv



2.3 Optical system parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Blur circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Field-of-view and optical point spread function . . . . . . . . . . . . . 14

2.4 Thermal detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Thermistor Bolometers . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Thermopiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Pyroelectric detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Radiometric calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3 Genetic Algorithms 26

3.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.4 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.6 Replacement Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.7 Finishing Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.8 Hybrid Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . 39

Chapter 4 Radiometric instrument modeling environment 41

4.1 Optical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



4.1.1 Optical theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 Monte Carlo ray-trace method . . . . . . . . . . . . . . . . . . . . . . 48

4.1.3 Distribution Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.4 Monte Carlo ray-trace (MCRT) model . . . . . . . . . . . . . . . . . 53

4.1.5 Spatially homogenous scenes . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.6 Spatially inhomogenous scenes . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Dynamic electrothermal model . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Thermal-electrical finite difference model . . . . . . . . . . . . . . . . . . . . 59

4.4 Electronic signal conditioning model . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 5 End-to-end model of the CERES instrument 64

5.1 CERES Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 End-to-end numerical model of CERES scanning radiometer . . . . . . . . . 67

5.3 Optics results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Description of the optical model . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Convergence of the MCRT model . . . . . . . . . . . . . . . . . . . . 68

5.3.3 Solid angle convergence study . . . . . . . . . . . . . . . . . . . . . . 71

5.3.4 On-axis collimated radiation . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.5 Diffusely emitted radiation within a specified solid angle . . . . . . . 73

5.3.6 Optical point spread function . . . . . . . . . . . . . . . . . . . . . . 75

5.3.7 Instrument point spread function . . . . . . . . . . . . . . . . . . . . 76

5.3.8 Absorbed energy on detector surface . . . . . . . . . . . . . . . . . . 78

vi



5.4 Detector assembly electrothermal model results . . . . . . . . . . . . . . . . 81

5.4.1 Temperature distribution when exposed to a blackbody source . . . . 82

5.4.2 Thermistor layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.3 Temperature distributions when instrument is viewing cold space . . 87

5.4.4 Instrument output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Electrothermal sensitivity coefficients . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Matching electrothermal model to the actual CERES instrument . . . . . . . 96

5.6.1 Description of genetic algorithms used in parameter estimation . . . . 98

5.6.2 Model parameter estimation results . . . . . . . . . . . . . . . . . . . 99

Chapter 6 Use of genetic algorithms in radiometric instrument design and

modeling 109

6.1 Optical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.1 Objective function and optimization variables . . . . . . . . . . . . . 110

6.1.2 Approximate model study . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.3 GA parameter study . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.4 Optimal mirror depths . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Detector assembly system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Chapter 7 Conclusions and Recommendations 127

7.1 Accomplishments and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



References 130

Vita 140

viii



List of Figures

2.1 Illustration of a typical Cassegrain-type two-mirror system . . . . . . . . . . 13

2.2 Blur circle for on-axis collimated radiation in a two-spherical-mirror system . 14

2.3 Illustration of scan, θ, and cross-scan, φ,angles . . . . . . . . . . . . . . . . . 15

2.4 Optical point spread function (OPSF) surface plot for the CERES instrument 16

2.5 Schematic diagram of a typical bolometer circuit (adapted from Lenoble [1993]) 19

2.6 Wheatstone bridge configuration for a thermistor bolometer . . . . . . . . . 20

3.1 Flowchart for simple genetic algorithm . . . . . . . . . . . . . . . . . . . . . 29

4.1 End-to-end integrated radiometric instrument model . . . . . . . . . . . . . 42

4.2 Illustration of the optical coordinate system and mirror input parameters . . 43

4.3 Schematic diagram of a CERES thermistor bolometer detector . . . . . . . . 57

4.4 Schematic diagram of the CERES detector assembly . . . . . . . . . . . . . . 58

4.5 Thermal boundary conditions for thermistor bolometer finite difference model 61

4.6 Schematic diagram of pre-amplifier circuit . . . . . . . . . . . . . . . . . . . 63

5.1 Schematic diagram of CERES optical system . . . . . . . . . . . . . . . . . . 65

ix



5.2 Nominal reflectivity values for primary and secondary mirrors used in CERES

end-to-end model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Measured and modeled nominal spectral response (optical throughput) . . . 70

5.4 Distribution factor values for increasing number of emitted collimated energy

bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Distribution factor values for increasing number of diffusely emitted energy

bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Absorbed power for increasing cone angle . . . . . . . . . . . . . . . . . . . 76

5.7 Scattergram for ray trace with collimated incident radiation . . . . . . . . . 77

5.8 Scattergram for raytrace with diffuse incident radiation . . . . . . . . . . . . 78

5.9 Optical point spread function contour plot . . . . . . . . . . . . . . . . . . . 79

5.10 Optical point spread function surface plot . . . . . . . . . . . . . . . . . . . 80

5.11 Instrument point spread function contour plot . . . . . . . . . . . . . . . . . 81

5.12 Instrument point spread function surface plot . . . . . . . . . . . . . . . . . 82

5.13 Absorbed power on active flake when viewing a blackbody source at 359K . 83

5.14 Steady-state temperature distribution on active flake when instrument is view-

ing a blackbody source at 359 K . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.15 Steady-state temperature distribution on reference flake when instrument is

viewing a blackbody source at 359 K . . . . . . . . . . . . . . . . . . . . . . 86

5.16 Steady-state temperature distribution in active thermistor layer when instru-

ment is viewing a blackbody source at 359 K . . . . . . . . . . . . . . . . . . 87

5.17 Steady-state temperature distribution in reference thermistor layer when in-

strument is viewing a blackbody source at 359 K . . . . . . . . . . . . . . . 88

x



5.18 Steady-state spatial resistivity distribution in active thermistor layer when

instrument is viewing a blackbody source at 359 K . . . . . . . . . . . . . . 89

5.19 Steady-state spatial resistivity distribution in reference thermistor layer when

instrument is viewing a blackbody source at 359 K . . . . . . . . . . . . . . 90

5.20 Steady-state temperature distribution on active flake when instrument is view-

ing cold space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.21 Steady-state temperature distribution in active thermistor layer instrument is

when viewing cold space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.22 Steady-state vertical temperature distribution through center of the active

detector when instrument is viewing cold space . . . . . . . . . . . . . . . . 93

5.23 Evolution of instrument transient signal when viewing step-input blackbody

source at 359 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.24 Sensitivity coefficients for thermal conductivity . . . . . . . . . . . . . . . . 95

5.25 Sensitivity coefficients for thermal capacity . . . . . . . . . . . . . . . . . . . 96

5.26 Sensitivity coefficients for layer thickness . . . . . . . . . . . . . . . . . . . . 97

5.27 Measured transient response for CERES total channel . . . . . . . . . . . . . 101

5.28 Measured transient response for CERES total channel and predicted model

response for the case of varied layer thicknesses . . . . . . . . . . . . . . . . 104

5.29 Measured transient response for CERES total channel and predicted model

response for the case of varied thermal properties . . . . . . . . . . . . . . . 106

5.30 Measured transient response for CERES total channel and predicted model

response for the case of varied layer thicknesses and thermal properties . . . 108

xi



List of Tables

5.1 Mirror dimensions for CERES telescope . . . . . . . . . . . . . . . . . . . . . 68

5.2 Distribution factor and percent difference for increasing number of energy

bundles traced for the case of collimated incident radiation . . . . . . . . . . 71

5.3 Distribution factor and percent difference for increasing number of energy

bundles for the case of diffuse incident radiation within a specified solid angle 73

5.4 Values for the distribution factor, total incident power, and absorbed power

within a specified solid angle for an increasing cone angle . . . . . . . . . . . 75

5.5 Nominal values used in CERES electrothermal detector model . . . . . . . . 84

5.6 Nominal values for layer thickness, thermal conductivity, and thermal capacity 102

5.7 Optimal layer thicknesses to match thermistor bolometer model with CERES

bolometer performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Thermal conductivity and thermal capacity values that match thermistor

bolometer model with CERES bolometer performance . . . . . . . . . . . . . 105

5.9 Layer thickness, thermal conductivity and thermal capacity values that match

thermistor bolometer model with CERES bolometer performance . . . . . . 107

xii



6.1 Sensitivity of the fitness of the optical model to the number of energy bundles

emitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Study of crossover techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Study of selection techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Study of replacement techniques . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Study of mutation types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6 Study of mutation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.7 Study of creep probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.8 Study of creep factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.9 Mirror depth study results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.10 Mirror depth study results for full optical model . . . . . . . . . . . . . . . . 121

6.11 Maximum and minimum layer thickness values in GA search . . . . . . . . . 124

6.12 Study using genetic algorithms to find optimal layer thicknesses . . . . . . . 124

xiii



Nomenclature

Symbols:

A Area (m2)

B Thermistor material constant (K)

B∗ Normalized inverse of the blur circle diameter (-)

C Capacitance (µF)

CI Confidence interval (-)

D Detectivity (W−1)

D∗ Normalized detectivity (cm Hz1/2/W)

D′
ij Distribution factor between surface elements i and j (-)

E Electric potential (V)

Erel Relative error (-)

f Frequency (Hz)

FI Fidelity interval (-)

G Instrument Gain (W/m2· sr · counts)
I Electric current (A)

I Radiance (W/m2· sr)
J Current Density (A/m2)

k Thermal conductivity (W/m · K)

l Scene resolution (m)

m Digital counts (-)

xiv



O∗ Normalized optical throughput (-)

Obj Objective function

P Temperature coefficient of resistance (K−1)

q Heat flow rate (W)

q̇ Volumetric heat generation (W/m3)

r Distance between scene and instrument aperture (m)

rs Specularity ratio (-)

Re Resistance (Ω)

R Responsivity (V/W)

s Standard deviation (-)

S Spectral response function (-)

SAB Seebeck coefficient of materials A and B (V/K)

t Time (s)

T Temperature (K)

v Field of view (rad)

V Voltage (V)

Y Instrument output (V)

Greek:

α Absorptivity (-)

δ Kronecker delta function (-)

λ Wavelength (µm)

Ω Solid angle (sr)

ρ Reflectivity (-)

ρe Electrical resistivity (Ω· m)

ρCp Heat capacity per unit volume (J/m3· K)

σ Stefan-Boltzmann coefficient (W/m2· K4)

xv



σe Electrical conductivity (Ω·m)−1

τth Time constant (s)

τ Transmissivity (-)

Subscripts:

bb Blackbody

f Filtered

i Surface element i

j Surface element j

n Noise

p− p Peak-to-peak

rms Root-mean-square

T Thermal

x x-direction

y y-direction

z z-direction

xvi



Chapter 1

Introduction

Increased industrialization over the last century, while bringing a myriad of benefits to

society, has greatly compromised the world’s social structure and its ecosystem. Pollution

of our rivers, oceans, soil, and atmosphere has increased significantly during this century.

One area of increasing concern is the ongoing pollution of the atmosphere. Continued emis-

sions of CFC’s, as well as the burning of fossil fuels, increases the level of CO2 in the

atmosphere, which in turn has led to an increased concern over global warming due to the

“greenhouse effect.”

In order to understand the effects of these changes in our climate, we must first seek to under-

stand the climate system itself. For example, it has been hypothesized that the greenhouse

effect causes, through warming of the lower troposphere, increased concentration of water

vapor in the atmosphere. Because water is itself a greenhouse gas, this raises the possibility

of “runaway” global heating. However, increased water vapor concentration should increase

the production of clouds in the atmosphere, which could then have an overall cooling effect

on the climate. Which of these two trends might actually dominate is a matter of ongoing

debate [Kandel, 1998].

In an effort to better understand the climate system, the international scientific community
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has initiated a series of programs aimed at increasing our knowledge and understanding of

the climate through observation of climatic changes and radiation in the atmosphere.

As part of the National Aeronautics and Space Administration’s (NASA) ongoing efforts

to monitor the earth radiation budget, the Clouds and the Earth’s Radiant Energy Sys-

tem (CERES) instrument [Wielicki et al., 1996; Carman et al., 1992] provides broadband

measurements of reflected solar and earth-emitted longwave radiances. These measurements

are a continuation of the Earth Radiation Budget Experiment (ERBE) measurements [Bark-

strom and Hall, 1982; Barkstrom and Smith, 1986] and are used in scientific investigations to

determine top-of-the-atmosphere (TOA) heat fluxes, radiative forcing properties of clouds,

Earth surface radiation budget, and divergence throughout the atmosphere.

Due to the importance of these measurements to the scientific community, it is neccessary

to obtain a thorough understanding of the behavior of the instrument and the underlying

physics governing that behavior. This can be achieved using detailed analytical models based

on first principles of physics. High-level numerical models of the instrument, modeling its

optical, thermal, and electrical behavior, can be used to gain an increased understanding of

its performance to aid in both the design process and the analysis of operational data. This

results in improved instrument concepts with operational characteristics that maximize the

accuracy of the instrument’s measurements.

1.1 Radiometric instrument modeling

The Thermal Radiation Group (TRG), under the guidance of Dr. J.R. Mahan of the De-

partment of Mechanical Engineering at Virginia Polytechnic Institute and State University,

has been involved in the development of optical, radiative, thermal conduction and elec-

tronic models of spaceborne radiometers for the last twenty-five years. High-level dynamic

electrothermal modeling efforts include NASA’s ERBE and CERES instruments.

Early efforts to study radiometric instruments include Fanney [1975], who peformed an ex-
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perimental study of the optical and thermal characteristics and performance of the spherical

detectors proposed for the LZEEBE (Long-Term, Zonal Earth Energy Budget Experiment)

instrument. A detailed thermal model of the spherical detectors was developed by Rasnic

[1975], and later upgraded by Passwaters [1976] to incorporate realistic radiative exchange

between the Earth’s radiative field and the detector surface.

Subsequent models of the optical systems of radiometric instruments have typically been

developed using the Monte Carlo ray-trace method (MCRT). This is a statistical ray-trace

method that uses probabilities to represent the radiative properties of surfaces and to calcu-

late distibution factors, which are similar but superior to configuration factors in that they

capture the optical properties as well as the geometry of an enclosure. Eskin [1981] was

the first to apply the MCRT method to model a cavity radiometer, and he also developed

the idea of the distribution factor with Mahan [Mahan and Eskin, 1984]. Kowsary [1989]

peformed a study of the radiative characteristics of a diffuse-specular spherical cavity using

an exact analytic method and verified his reults using the MCRT method. Walkup [1996]

used the MCRT method to develop a virtual optical workbench to aid in the design and

analysis of radiometric imaging systems.

Several students devloped radiometric models of the Earth Radiation Budget Experiment

(ERBE) scanning and non-scanning radiometers. Tira [1987] developed a distribution factor-

based model of the ERBE optical system and a finite-element model of the ERBE detector,

and he also performed a dynamic study of the instrument calibration. In his doctoral work,

Tira [1991] developed improved models of the ERBE staring channels to simulate their solar

calibration and dynamic response during the pitch-over maneuver. He also developed a

model of the staring active cavity radiometer (ACR) to study its thermal noise and transfer

function. Meekins [1990] performed a detailed analysis of the ERBE scanning radiometer

optical system and its radiative characteristics using the MCRT method. Haeffelin [1993]

developed a high-level electrothermal model of the ERBE thermistor bolometer detectors to

study the dynamic thermal and electrical behavior of the instrument.
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The Clouds and Earth’s Radiant Energy System (CERES) instrument provided fruitful re-

search for a new generation of students. Bongiovi [1993] developed a Monte Carlo ray-race

model of the CERES optical system and performed an analytical study of its radiative be-

havior and performance. Savransky [1996] developed a thermal model of the instrument

housing and structure using the finite-element method to predict transient temperature re-

sponse and the effect of thermal noise on the performance of the instrument. Haeffelin [1997]

developed a three-dimensional dynamic electro-thermal diffusion model of the CERES ther-

mistor bolometer. He used results from Bongiovi’s optical model as an input to his dynamic

electrothermal model to perform detailed studies of the instrument’s electrical and thermal

performance. Priestley [1997] extended the CERES electrothermal detector model by in-

corporating the reference detector and intervening substrate, and improved its performance

by updating model parameters based on available calibration data. He also integrated the

model with a short-wavelength atmospheric Monte Carlo ray-trace model, developed by Vil-

leneuve [1996], which provides a simulation of the earth-reflected radiation field at the top of

the atmosphere, to perform realistic instrument simulations and provide an accurate assess-

ment of the instrument’s in-flight performance. Coffey [1998] developed an MCRT model

of the CERES optical system and studied the instrument’s predicted performance when the

spherical mirrors were replaced with hyperbolic mirrors and the single precision aperture

was replaced with multiple precision apertures.

In addition to developing detailed models of existing instruments, several members of the

TRG have been involved in using numerical models to develop new instrument concepts.

Weckmann [1997] developed a detailed finite-element thermal model of a new thermopile

detector concept. Sánchez [1998] developed an MCRT-based optical model of a wedge-shaped

cavity radiometer, and Sorensen [1998] integrated the thermal and optical models into a

complete end-to-end model of a wedge-shaped cavity radiometer and developed a numerical

algorithm to remove the optical crosstalk due to diffuse scattering in the cavity. Mahan et al.

[1999] developed an MCRT-based optical model of a novel aureolimeter instrument concept

and performed a detailed optical analysis. Barry [1999] studied thermal conduction issues
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in thin-film thermal detectors, and Dobarco-Otero [2000] studied absorption and thermal

diffusion issues of long-wavelength radiation in thin-film detectors. Detailed analytic models

of pyronometers used to provide surface radiance measurements were developed by Carnicero

[2001] and Smith [1999] in addition to experimental studies of the instruments’ thermal

behavior.

1.2 Goals and motivation

Over the last five years, the TRG has been involved in an effort to develop numerical models

to test new instrument concepts for use in the next generation of spaceborne instruments,

including possible use on the next generation of CERES applications. The technology de-

velopment has consisted of two major efforts:

• development of interactive computer environments to aid in the development of optical

and electrothermal end-to-end numerical instrument models to predict the behavior

and performance of remote sensing instruments, and

• creation of a computer-based optimization environment that utilizes these models to

develop optimal instrument concepts and models under a variety of goals and con-

straints.

Toward these ends, a Monte-Carlo ray trace (MCRT) design environment was developed

by Nevárez [2001] and a statistical methodology for determining the accuracy of high-level

end-to-end instrument models is currently being developed [Sánchez et al., 1999, 2000, 2001;

Sánchez, 2002]. Efforts to incorporate bi-directional surface properties and diffraction effects

into the design environment are also underway.

The aims of the research presented in this dissertation are to extend the capabilities of the

current generation of high-level numerical instrument models by achieving the following:
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• develop a generic instrument modeling environment that integrates the optical and

electrothermal system models and allows the user to test different configurations and

components in the optical and detector systems,

• use the environment to benchmark a complete end-to-end model of the CERES instru-

ment against measured performance parameters from an operational CERES instru-

ment, and

• integrate the modeling environment with intelligent search algorithms (genetic algo-

rithms) to provide an instrument design and optimization tool to aid in the develop-

ment of new instrument concepts.

1.3 Radiometric instrument modeling environment

The goal of the effort presented here is to develop a radiometric instrument modeling and

design environment. This environment will allow the user to develop end-to-end models of

radiometric instruments, integrating models of the optical, thermal, and electrical systems

of the instrument. The user can select from five mirror configurations within a classical

two-mirror system:

1. a Cassegrain configuration featuring a parabolic primary mirror and a hyperbolic sec-

ondary mirror

2. a Gregorian configuration featuring a parabolic primary mirror and an ellipsoid sec-

ondary mirror

3. a Dall-Kirkham configuration featuring an ellipsoid primary mirror and a spherical

secondary mirror

4. a Ritchey-Chrétian configuration featuring two hyperbolic mirrors
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5. a modified Cassegrain consisting of two spherical mirrors (CERES configuration)

The user provides the mirror dimensions and locations within a telescope system based on

the CERES instrument design, and also defines the optical properties of the system, such as

absorptivity and specularity, for both gray and spectral models. The optical model then uses

the Monte Carlo ray-trace method to simulate the optical performance of the instrument and

determine the distribution of incident radiation throughout the instrument.

The current modeling environment limits the user to a thermistor bolometer detector system,

modeled on the detectors used on the current generation of CERES instruments. The de-

tector assembly consists of two thermistor bolometers separated by an aluminum substrate,

with one detector acting as an active detector and the other acting as a reference detector.

Each detector consists of a thin thermistor layer separated from a substrate by a thin sheet

of Kapton, which acts as a thermal impedance, and a thin layer of highly absorptive black

paint above the thermistor, which absorbs incident radiation. The detector is described in

more detail in Chapter 4. The user can define all thermophysical and electrical properties

of the system, as well as layer thicknesses and all spatial dimensions. A three-dimensional

transient finite-difference thermal model is then created to determine the temperature dis-

tribution at each time-step. Two separate finite-difference electric models are created to

represent the active and reference thermistor layers. These are two-dimensional steady-state

models, whose state is calculated at each discrete time step. The electric models are coupled

to the thermal model, and at each time step the temperature-dependent resistivity of each

element in the electric models are updated and the electric field in each is recalculated. The

active and reference thermistors are in adjacent arms of a Wheatstone bridge circuit, and

the results of the electric models are used in models of the bridge circuit, pre-amplifier, and

analog-to-digital converter to calculate the instrument output at each time step.

The environment can provide the values of various parameters representing the performance

of the instrument, including the spatial distribution of energy on the detector flake, absorbed

energy on various surfaces, the optical point spread function, the instrument point spread
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function, the temperature distibution throughout the detector assembly, the electric field in

both thermistors, and the signal output of the instrument. The terminology is defined at

the appropriate location elsewhere in this thesis.

1.4 Organization of dissertation

The dissertation is divided into seven chapters. The first chapter provides an overview of the

motivation for and the aims of the current research. The second chapter provides an overview

of radiometry and radiometric instruments, including relevant theory and published works

pertaining to the modeling and design of the optical systems and detectors used in these

instruments. The third chapter provides a brief outline of the development and mechanisms

of genetic algorithms (GA’s), which are intelligent search algorithms based on evolutionary

principles, that have been adapted for use in radiometric design in the current effort. The

fourth chapter provides an in-depth description of the modeling environment, detailing the

development of both the optical and electrothermal models. The fifth chapter describes

the application of the modeling environment to the Clouds and Earth’s Radiant Energy

System (CERES) instrument, and comparisons of the modeled performance to the actual

instrument performance. The sixth chapter discusses the application of genetic algorithms

to the modeling environment to provide a tool for instrument design. An analysis of the

GA’s performance for different test cases and objectives is presented, as well as an analysis of

hybrid genetic algorithms and their performance. Finally, chapter seven provides conclusions

and recommendations issuing from the current work.

8



Chapter 2

Radiometric Instruments

This chapter provides the reader with a brief overview of radiometric instruments and ra-

diomety. Topics include general properties of optical systems and detectors, including a

review of optical theory and various mirror configurations used in radiometric instruments.

The different types of thermal detectors and associated performance parameters are dis-

cussed. This chapter is not meant to be an exhaustive discussion of these topics, but rather

is an introduction to topics treated in more detail in later chapters.

2.1 General properties of radiometric instruments

Radiometric instruments consist of an optical system to gather incident radiation, a detector

system to convert the absorbed energy into an electric signal, and an electronic signal con-

ditioning circuit for processing the signal. The optical system is typically either some type

of telescope configuration that focuses incident radiation onto a single detector or array of

detectors located in the focal plane, or a cavity whose shape and surface optical properties

combine to trap incident radiation, which is then ultimately absorbed on the detector after a

series of reflections. The detector system typically consists of thermal detectors that absorb
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incident radiant power and produce a proportional electric signal. In this implementation,

the primary thermal detectors used include thermopile detectors, which produce a signal

using the thermoelectric effect; bolometers, which use temperature-dependent resistivity to

produce a signal; and pyroelectric detectors, which use the change in electrical polarization

of a crystal due to a change in its temperature to produce an electric signal.

Various figures of merit are used to evaluate the performance of radiometric instruments.

The performance of an optical system can be characterized by its the optical throughput,

its field-of-view, its spectral response function, and the size of its blur circle, to name but a

few. Detector performance evaluators include responsivity, time response, noise-equivalent

power (NEP), and signal-to-noise ratio.

2.2 Optical systems

The primary goal of the optical system is to gather incident radiation and direct it to

the detector system. The optical system consists of baffles, mirrors, lenses, filters, and

apertures assembled in a telescope configuration. The optical system defines the spatial and

directional characteristics of the instrument and, along with the detector absorber layer,

strongly influences the spectral characteristics as well. Considerations when designing an

optical system for radiometric instruments include:

• the system should be designed to provide a specified field-of-view (FOV); the FOV can

typically be defined by a precision aperture aligned normal to the optical axis near the

detector plane,

• the system should strive to maximize the optical throughput within the prescribed

field-of-view and desired wavelength interval,

• the blur circle at the detector plane should generally be minimized (although it is

sometimes purposefully defocused to reduce high-frequency aliasing), and
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• the sytem should be as spectrally flat as possible within the desired wavelength inter-

val. By “spectrally flat” it is meant that the instrument response is independent of

wavelength in a specified interval.

The optical systems considered in this work consist only of two-mirror telescopes. This is

justified because two-mirror telescopes are a popular choice in radiometric instrumentation

applications, and the scope of the present effort needs to be limited. These systems consist

of a primary mirror, which reflects incident radiation to a secondary mirror located in front

of the primary mirror, which in turn reflects the radiation to a detector typically located

behind the primary mirror. Five two-mirror systems are considered in the current effort:

• a Cassegrain telescope, consisting of a concave parabolic primary mirror and a convex

hyperbolic secondary mirror,

• a Gregorian telescope, consisting of a concave parabolic primary mirror and a concave

elliptical secondary mirror,

• a Dall-Kirkham telescope, consisting of a concave elliptical primary mirror and a convex

spherical secondary mirror,

• a Ritchey-Chrétian telescope, consisting of a concave hyperbolic mirror and a convex

hyperbolic mirror, and

• a CERES-like telescope, consisting of a concave spherical primary mirror and a convex

spherical seconday mirror.

A typical two-mirror Cassegrain-type system is illustrated in Figure 2.1. The Cassegrain

system is commonly used in radiometric systems because of its ability to sharply reduce

spherical aberrations. The parabolic primary mirror eliminates third-order aberrations from

the primary image, and the hyperbolic element has the property that all rays aimed at

its primary focus will be reflected to its secondary focal point without aberration on-axis
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[Wolfe, 1996]. However, the Cassegrain telescope is costly to fabricate and is often replaced

with a two-mirror system, known as the Dall-Kirkham configuration, having a spherical

secondary mirror. This system has a reduced performance compared to a true Cassegrain

telescope, but is less costly to produce because of the relative ease of forming a spherical

mirror. The Ritchey-Chrétian configuration takes the alternate tack, using two hyperbolic

mirrors to provide superior performance to a Cassegrain, but with a significant increase

in cost. Another variation is to use a system in which the primary or both mirrors are

spherical, as this is even less costly to produce than the Dall-Kirkham. However, this option

comes with another reduction in performance. The use of two spherical mirrors results in a

reduction in off-axis aberrations, which results in a more sharply defined field-of-view, but

with an increase in on-axis aberrations. However, this is tolerable if the instrument is not

an imaging instrument. The Gregorian configuration is easier to manufacture due to having

two convex mirrors; however, it is typically longer than the other systems considered and so

is not used as frequently in space-based systems.

2.3 Optical system parameters

This section provides a brief explanation of various parameters and figures of merit used to

evaluate the performance of optical systems. These are used later in an objective function,

in concert with a search algorithm, to provide an instrument design and optimization tool.

These figures of merit include the blur circle diameter at the detector plane, the instrument

field-of-view (FOV), and the optical point spread function (OPSF).

2.3.1 Blur circle

The quality of an optical system can be expressed by the size of the image formed by a

point source. The image formed is not a point but has a finite size due to diffraction effects

and spherical aberrations. The periphery of the image defines what is referred to as the
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Instrument Housing

Figure 2.1: Illustration of a typical Cassegrain-type two-mirror system

blur circle, and its dimensions can be expressed in angular units or in terms of its linear

diameter [Wyatt, 1987]. An example of a blur circle for the CERES instrument produced by

on-axis collimated radiation is shown in Figure 2.2. This image was created from a ray-trace

model of the CERES instrument, and the crosses represent the intersection of individual rays

entering the instrument aperture with the focal plane, after being traced through the optical

system. It should be noted that the ray-trace model does not include diffraction effects.

The three radial sectors with a lesser concentration of crosses represent the image formed by

the three legs of the “spider,” the familiar name given to the structure which supports the

secondary mirror. Note that the diameter of the blur circle in this case is approximately 0.07

mm, which is significantly less than 1.6 mm, the length and width of the CERES detector

“flake”.
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Figure 2.2: Blur circle for on-axis collimated radiation in a two-spherical-mirror
system

2.3.2 Field-of-view and optical point spread function

The spatial response of the instrument is defined by the field-of-view (FOV). The field-of-view

is the angular resolution of the instrument. The differential field-of-view, dv, is defined as

the ratio of the differential scene resolution, dl, to the distance from the instrument aperture

to the scene, r [Chen, 1997], that is

dv =
dl

r
(2.1)

The instantaneous field-of-view, v, is related to the solid angle, Ω, by [Chen, 1985]

Ω = v2 (sr) (2.2)

The field-of-view must be matched to the source of incident radiation, and is typically spec-

ified prior to the instrument design. A “scanning” instrument is gimbaled so that the point
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where its optical axis intersects the scene sweeps across the scene. The optical point spread

function (OPSF) is related to the field-of-view, and is defined as the angular response of the

instrument to collimated radiation. The OPSF, which is an inherent property of the optical

system, differs from the field-of-view in that the FOV is expressed as a value while the OPSF

is expressed as a distribution along the scan and cross-scan angles. The scan angle is an

angle measured from nadir along the instrument’s scan direction, and the cross-scan angle is

measured from nadir in the direction perpendicular to the scan direction. These angles are

illustrated in Figure 2.3. An example of the OPSF for the CERES optical system is shown

in Figure 2.4. The figure shows the normalized response of the instrument to collimated

radiation coming from various scan and cross-scan angles, and was created from the MCRT

model of the CERES instrument described elsewhere in this dissertation. The instrument’s

response is uniform over a range of ±0.8 deg in the scan direction and ±1.6 deg in the cross-

scan direction. The shape of the OPSF closely matches the shape of the diamond-shaped

precision aperture used on CERES.

φ
θ

Cross-scan
direction

Scan direction

Optical axis

Figure 2.3: Illustration of scan, θ, and cross-scan, φ,angles
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Figure 2.4: Optical point spread function (OPSF) surface plot for the CERES
instrument

2.4 Thermal detectors

The input signal, or flux, to a filtered radiation detector is

Q(λ) = αλ(λ) Φλ(λ) (W/m2) (2.3)

where Φλ(λ) is the incident monochromatic radiant flux (W/m2· sr) and αλ(λ) is the monochro-

matic absorptivity (-) of the detector surface at a particular wavelength λ.

The absorptivity of the detector can be enhanced by two means. The first is through the

use of a “black” coating, i.e., one with an absorptivity approaching unity, on the detector

surface. The second is through the use of a cavity, which causes the incident flux to strike

the detector surface multiple times through mostly specular (mirror-like) reflections.

Two major categories of radiation detectors, thermal detectors and photon detectors, may
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be identified. Thermal detectors transform the absorbed radiant energy into sensible heat,

producing a temperature rise that can be directly converted into an electrical signal. In pho-

ton detectors, absorbed photons excite electrons in the detector material, thereby increasing

their energy level. If the energy of an individual electron is raised sufficiently, it becomes

a free electron that may be extracted from the detector, thereby producing a measurable

photoelectric current.

The responsivity, R, of the detector, as used in the current work, is defined as the signal

output, Y (V), per unit of absorbed radiation, Q (W), and is represented by [Lenoble, 1993]

R =
Y

Q
(V/W) (2.4)

The output of the detector always contains a certain amount of noise. A portion of this noise

arises from the measurement procedure and can be minimized. The remainder is noise that

is inherent to the physical properties of the detector, and is known as fundamental noise.

The output signal of the detector can be expressed as the mean value 〈Y 〉 defined

〈Y 〉 = 1

n

n
∑

i=1

Yi (2.5)

and the noise is expressed as the rms noise (〈∆Y 2〉)1/2 defined

N = (〈∆Y 2〉)1/2 =

[

1

n

n
∑

i=1

(Yi − 〈Y 〉)2
]1/2

(2.6)

The signal-to-noise ratio is defined as the ratio of the mean signal to the rms noise,

SNR =
〈Y 〉

(〈∆Y 2〉)1/2 (2.7)

The noise equivalent power (NEP ) is the detector input that produces a SNR = 1, and the

detectivity is given by

D =
1

NEP
(2.8)
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Detector responsivity is typically wavelength dependent, but different detectors can be char-

acterized using the normalized detectivity

D∗ = D (A∆f)1/2 (2.9)

with A being the sensitive area of the detector and ∆f the measurement bandwidth.

The output signal, Y , of a thermal detector is induced by a temperature variation ∆T

caused by the absorbed power. The responsivity of the thermal detector can be expressed

as [Lenoble, 1993]

R =

(

∆T

Q

)(

Y

∆T

)

(V/W ) (2.10)

The factor ∆T /Q is a physical property that depends only on the thermal characteristics

of the detector.

If the temperature of the detector is raised by ∆To with respect to a reference and then

allowed to decay without any external heat source present, the exponential temperature

decay is given by

∆T (t) = ∆To exp

[

− t

τ

]

(2.11)

where τ = CT RT is the thermal time constant of the detector, assuming a lumped capac-

itance response. A smaller time constant allows the system to return to equilibrium more

rapidly and results in a faster detector response.

2.4.1 Thermistor Bolometers

In a bolometer a temperature increase ∆T due to absorbed thermal energy produces a change

in the electrical resistance Ro of the detector according to

∆R = R−Ro = Ro P ∆T , (2.12)
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where P (K−1) is the temperature coefficient of resistance. If the bolometer is connected

in series with a voltage source, Vb, and a resistance RL much larger than Ro, as shown in

Figure 2.5, the voltage V across RL varies with the temperature according to

∆V =
VbRo P ∆T

RL

(2.13)

RL

R
i

Vb

V

Incident Radiation

Figure 2.5: Schematic diagram of a typical bolometer circuit (adapted from
Lenoble [1993])

A thermistor is a highly temperature-dependent resistor constructed of a semiconducting

material. The resistivity of a thermistor is given by

ρ = ρo exp

[

B

(

1

T
− 1

To

)]

(2.14)

where ρo is the resistivity at a reference temperature To and B is a material characteristic of

the thermistor. It should be noted that this relationship represents a negative coefficient of

resistance, i.e., that the resistivity of the thermistor decreases with increasing temperature.

When used as an infrared detector, the thermistor is coated with a thin layer of black paint

to maximize absorption of incident radiation, and is mounted on a heat sink to dissipate both
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the absorbed radiant energy and the heat generated due to the current from the bias voltage

across the thermistor. A thin layer of an insulating material is typically placed between

the thermistor and the heat sink to prevent an electrical short-circuit and to increase the

temperature rise and thus the reponsivity of the detector. The price paid for the increase in

responsivity, however, is a decrease in the time response.

R4

R3 Active thermistor

Reference thermistor

+VBias

-VBias

V2
V1

R3 and R4 are 
fixed resistances

Figure 2.6: Wheatstone bridge configuration for a thermistor bolometer

The thermistor detector is usually placed in adjacent arms of a Wheatstone bridge circuit

with a similar thermistor detector used as a reference detector, as illustrated in Figure 2.6.

The reference detector tracks the instrument temperature while the active detector is al-

lowed to vary with varying exposure to incident radiation. As the temperature of the active

thermistor rises due to the absorbed energy, its overall resistance decreases, and a bridge

voltage Vbridge = V2 − V1 is produced. A reference thermistor is used in the adjacent arm

instead of a fixed resistor to compensate for any thermal drift in the temperature of the heat

sink to which both are attached. For a more thorough treatment of thermistors, the reader

is directed to Astheimer [1984].
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2.4.2 Thermopiles

Thermopiles operate on the thermoelectric principles on which thermocouples are based.

The three thermoelectric effects that influence the behavior of the thermocouple are the

Peltier, Seebeck and Thomson effects [Pollock, 1985].

The Seebeck effect, named for German scientist Thomas Johann Seebeck, states that an

electric current will flow in a closed circuit composed of two dissimilar metals if their junctions

are maintained at different temperatures. If the circuit is open, an electromotive force, EAB

is created. This emf , termed the relative Seebeck voltage, is directly proportional to the

temperature difference ∆T between the two junctions,

EAB = SAB ∆T (2.15)

where SAB (V/K) is the Seebeck coefficient. The Seebeck effect is the contolling factor in

the performance of a thermopile, and Pollock [1985] maintains that the Seebeck effect is the

result of both the Peltier and Thomson effects.

When used as thermal radiation detectors, one junction of the thermocouple is maintained

at a reference temperature equal to the ambient temperature, Ta, while the other junction

is typically coated with a black absorber material and allowed to store thermal energy by

absorbing incident radiation. A thermopile consists of several thermocouples connected in

series to increase the emf output. For n junction pairs, the output signal is

Y = ∆V = nSAB ∆T (V ) (2.16)

Huang [1990] presents a formal development of Equation 2.16 as well as excellent methods

for calibration and signal conversion of thermopiles for temperature measurements.
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2.4.3 Pyroelectric detectors

A pyroelectric detector consists of a crystal that, when heated by absorbed radiant flux,

produces electric charges on opposite faces due to a change in average position of the electrons

in the crystal. This leads to a current in an external circuit only if the input signal is

modulated. This is because the charge separation related to a temperature change quickly

drains off through the finite electrical resistance of the crystal material.

2.5 Radiometric calibration

The following material has been adapted from a CERES Science Team report [CERES

Science Team, 1995] and is presented to familiarize the reader with some important terms

and concepts in the calibration of radiometric instruments.

A radiometric instrument is typically calibrated by illuminating the aperture with radiance

from a blackbody source maintained at various temperature levels. At each level associated

with a particular blackbody temperature, the sensor output is recorded and the total broad-

band filtered radiance (W/m2·sr) absorbed by the detector, If , is calculated from knowledge

of the instrument spectral response function, S(λ). A full-field uniform blackbody source

that completely fills the instrument field-of-view is used. The total absorbed filtered radiance

can be expressed as

If =

∫ λ2

λ1

Is(λ)S(λ) dλ (2.17)

The unfiltered radiance from the blackbody source, Is, can be calculated from the spectral

emissivity ε(λ) of the blackbody and Planck’s blackbody radiation distribution function,

Is(λ) = ε(λ)Ibb(λ) = ε(λ)
C1

λ5 exp(
C2

λT
− 1)

(2.18)
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where C1 and C2 are the well-known first and second radiation constants.

The spectral response function of the instrument is defined as the fraction of energy incident

to the instrument aperture that is absorbed by the instrument detector at each discrete

wavelength. It is a function of all optical components of the instrument, such as filters,

mirrors and blackened coatings, which transmit, reflect, or absorb the spectral energy. The

theoretical spectral response S(λ) for a two-mirror system can be expressed as

S(λ) = τf (λ) ρ
2(λ)αb(λ) (2.19)

where τf (λ) is the combined transmittance of the bandpass filters, ρ(λ) is the reflectivity

of the two silvered mirrors, and αb(λ) is the absorptivity of the “black” coating on the

detector. The fact that this approach does not take into account diffuse emissions or re-

flections from other objects that may lie in the optical path of the instrument, combined

with the difficulty in accurately characterizing each individual component, has led to the

spectral response function being typically determined experimentally. The characterization

is typically accomplished by illumination of the instrument with monochromatic radiation at

specific wavelengths and normalization of the response with that of a spectrally flat reference

detector.

For a linear instrument, the broadband filtered radiance, If , is directly proportional to the

instrument output. This relationship is expressed by

If = G(m−ms) + Is (2.20)

wherem is the measured instrument output when viewing the blackbody, ms is the measured

output when viewing the reference source (typically a blackbody source at a temperature

much lower than the temperature range used for the calibration points), Is, is the filtered

radiance from the reference source, and G is the gain of the instrument. Alternatively, the

gain can be expressed

G =
If − Is
m−ms

(2.21)
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The gain is calculated by using a least-squares analysis to regress the difference in absorbed

filtered radiances from the blackbody and reference sources with the difference in measured

instrument output when illuminated by the two sources.

The calibration procedure is a statistical regression of absorbed filtered radiances and mea-

sured instrument output, and the calculated gain can be used to predict the filtered radiance

from a new measured instrument output. However, some uncertainty enters into this calcu-

lated gain due to noise in the measurements as well as uncertainties in other components of

the calibration system. This translates into an uncertainty in the predicted filtered radiance

obtained from the gain. One measure of this uncertainty is the fidelity interval [Barkstrom,

1998], which is the difference between the upper and lower bounds on the estimated ra-

diance, IU and IL, obtained from the gain. The fidelity interval is related to the inverse

confidence interval of the regression, in that while the confidence interval gives the upper

and lower bounds of the estimated radiance in terms of the measured instrument output, m,

the fidelity interval gives them in terms of the estimated radiance, Î, itself.

For a well-determined linear system with N calibration temperature levels and R calibration

points at each level, the fidelity interval can be expressed as [Barkstrom, 1998]

(

IU
IL

)

= Î ± t(ν, 1− α/2)Gs

√

1 +
1

NR
+

(Î − Ī)2

SLL
(2.22)

where Î is the estimated filtered radiance for an observed instrument output, t is the Student-

t statistic for ν degrees of freedom at the 1−α/2 significance level, G is the instrument gain

as expressed in Equation 2.21, SLL is the spread over all calibration levels according to

SLL =
N
∑

n=1

(In − Ī)2 . (2.23)

and s is the standard deviation calculated from

s =

√

∑R
r=1

∑N
n=1(∆mnr −∆m̄n)2

NR− 2
(2.24)
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In this chapter a brief overview of radiometric instruments has been presented. A description

of two-mirror optical systems typical of space-based remote sensing instruments has been

given, with a discussion of the parameters that characterize the performance of the optical

system. Likewise, a brief description of the three most common thermal detectors used in

these applications and their associated parameters has also been presented. Finally, a brief

overview of radiometric calibration theory was provided, along with relations to estimate the

uncertainty associated with radiometric measurements. These concepts have been provided

to familiarize the reader with terms and parameters used in discussion of the radiometric

modeling and design environment and associated results.
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Chapter 3

Genetic Algorithms

Genetic algorithms, a special calss of evolutionary algorithms, provide an attractive tool to

integrate with the numerical instrument models to develop an instrument design tool. Evo-

lutionary algorithms are a special class of search algorithms based on biological processes

in nature, such as selection, crossover, and mutation. Evolutionary algorithms are based

on a population of individuals, with each individual representing a set of the problem pa-

rameters. Each individual is assigned a score based on how well it performs in terms of an

objective function. These individuals compete and evolve based on probablilistic rules that

vary between different available algorithms, but the basic idea is that the better solutions

have a greater chance of surviving and generating offspring, with the overall quality of the

population increasing with each successive generation, and the entire population evolving

towards an optimal solution.

Several advantages may be associated with using evolutionary algorithms in search/optimization

problems:

1. They are zeroeth-order search algorithms, meaning they do not rely on numerical

estimations of derivatives of any functions. This is important in solving problems with

nonlinearities and/or discontinuities [Goldberg, 1989]

26



2. They are extremely robust algorithms that can be easily applied to a variety of different

problems with good results [Schwefel, 2000]

3. Since they are population-based methods, they can search many different areas of the

searchspace simultaneously, which decreases the chance of premature convergence on

a local minima [Goldberg, 1989]

4. They have the property that they can obtain an optimal solution working with approx-

imate function evaluations [Grefenstette and Fitzpatrick, 1985; Beasley et al., 1993a].

However, evolutionary algorithms have disadvatages as well. Because they are population

based, they require many function evaluations. This can be a problem if the objective func-

tion is computationally expensive. Also, they tend to be slow-finishing, in that they can

get in the neighborhood of the optimal solution quickly, but can take many generations to

evolve towards the solution with a high degree of accuracy [De Jong, 1992]. Finally, while

evolutionary algorithms generally perform well on a variety of hard-to-solve problems, they

can often be outperformed by an algorithm developed soley for a single problem [Beasley

et al., 1993a]. Evolutionary algorithms are at their strongest solving search problems with

noisy, multi-modal searchspaces, for performing multi-objective optimization, and for prob-

lems for which classic search techniques fail and/or problem-specific techniques have not

been developed [Schwefel, 2000].

3.1 Genetic Algorithms

Genetic algorithms are a class of evolutionary algorithms developed by John Holland at the

University of Michigan [Holland, 1975]. In genetic algorithms, each parameter of the problem

is encoded onto a gene (or allele), and then all the genes are combined into a chromosome,

such that for a problem containing N variables, each chromosome is made up of N genes.

Holland’s original work used binary encoding for the genes, but current genetic algorithms
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use many different types of encoding, with binary and real number representations being the

most prevalent [Gen and Cheng, 1997].

Genetic algorithms use selection, crossover, and mutation operators. A typical genetic al-

gorithm will begin by initializing the population, usually by assigning random values to the

genes in each chromosome. Each chromosome is applied to the objective function and as-

signed a fitness based on how well it performs. In an optimization setting, the objective

function is typically the function or problem that is being optimized. The fitness value is

typically the value of the objective function in a maximization problem, and for a minimiza-

tion problem it is typically the inverse of the returned value or the value subtracted from

a constant. Once a fitness has been assigned to each chromosome, the selection operator is

applied to select pairs of chromosomes for reproduction. Reproduction itself is handled by

two operators, crossover and mutation. Typically, crossover is applied to a set of parents to

produce offspring, with each offspring having some probability of undergoing mutation. At

this point the offspring are inserted into the population, with the rule governing insertion

varying among the different types of GA’s. Each indivdual is then evaluated, a fitness is

assigned, and selection and reproduction occurs once more. This process, which is repeated

until the algorithm reaches the stopping point, is illustrated in Figure 3.1.

One important aspect of GA’s is that they are blind; that is, the algorithm has no way of

knowing if it has arrived at the correct solution and must be told when to stop [Goldberg,

1989]. While at first sight this might seem a disadvantage, it is an important characteristic

in preventing GA’s from getting trapped on local minima. The most common stopping

criterium are stopping after a preset number of generations or when the average fitness of

the population has converged to the same value; i.e., when the entire population is clustered

around some point in the searchspace.

This is a general overview of a generic genetic algorithm. The following sections contain

more detailed descriptions of some of the operators and other issues involved with genetic

algorithms.
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problem parameters

Encode parameters
as genes

Initialize population

Check convergence

Evaluate fitness

Selection of parents
for reproduction

Apply crossover and
mutation operators to
create new individuals

Insert new indiviuals
into population

No

Yes
Solution

Figure 3.1: Flowchart for simple genetic algorithm

3.1.1 Encoding

As mentioned earlier, several different methods for encoding the search parameters exist,

with binary and real numbers being the two most popular, at least for engineering and opti-

mization applications. However, the question of which encoding to use is a major one, and

no definitive answer exists [Antonisse, 1989]. The original genetic algorithms developed by

Holland used binary encoding, and for years this was the only type of encoding used. In

binary encoding, each gene is represented by a binary string of fixed length. The individ-

ual strings representing the genes are then concactenated into one long binary string that
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represents the chromosome.

Other types of encoding have emerged as the use of genetic algorithms has spread to other

disciplines outside of computer science; however, a school of thought exists that maintains

that binary encoding is the only proper way to use genetic algorithms, and that they lose

some of their usefulness with other types of encoding. Still, it has been shown that for real-

valued continuous functions, using real-valued encoding to represent the genes significantly

outperforms binary encoding [Davis, 1991; Wright, 1991; Eshelman and Schaffer, 1992]. In

real-value encoding, each gene is represented by a real number, and the chromosome is

represented by an array of genes.

The choice of the optimal encoding to use is extremely problem dependent [Davis, 1991].

One obvious limitation in using binary encoding is that it can only search discrete points

in the searchspace, whereas a real-valued GA can find any point in the searchspace, within

the limits of the computer’s precision [Eshelman and Schaffer, 1992; Wright, 1991]. Using

binary strings, the searchspace can be resolved into a mesh of any desired precision, but

higher precision can result in extremely long strings. Another issue is the decoding of the

chromosome by the objective function. The objective function must be able to use the

information contained in the chromosome to return a fitness value. If the objective function is

real-valued and continuous, it is more efficient to use an array of real-numbers to represent the

problem parameters [Wright, 1991]. However, if the objective function is by nature discrete,

such as a problem containing many different possible configurations, then a binary encoding

would be more appropriate. Another factor to consider is that, since genetic algorithms

were initially developed using binary encoding, far more research and literature exists on

GA’s using binary encoding than any other type of encoding. In fact, almost all of the

mathematical theory concerning genetic algorithms, including Holland’s Schemata Theory

[Holland, 1975] and Goldbererg’s Building Block Hypothesis [Goldberg, 1989], are based on

a binary encoding of the problem. Little published information exists on specific operators

and techniques for other types of encoding.
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3.1.2 Fitness

While several parameters can influence the performance of a genetic algorithm (population

size, type of selection, etc.), the most important parameters by far are the type of encoding

used and the definition of the objective, or fitness, function [Beasley et al., 1993a]. Genetic

algorithms are sufficiently robust to perform well under a variety of different settings, but

encoding of a gene and the definition of a fitness function that accurately represents the

problem of interest are essential [Davis, 1991].

The fitness of a chromosome is a numerical representation of how that chromosome performs

in solution of the problem of interest. The fitness function should decode a chromosome,

apply it to the problem, and return a value based on its performance. For example, if the

problem at hand is to minimize the cost of a product under development, the fitness func-

tion could read a chromosome containing values for the design variables, such as dimensions,

materials, etc., compute the cost, and return the cost as the fitness. It is fairly easy to

define a fitness function for problems where one parameter (cost, error, etc.) is optimized

againt several variables, as the parameter to be optimized can easily represent the fitness.

More difficult are multi-objective optimization problems, where several parameters (cost,

performance, time) must be optimized for many design variables. The fitness function must

be constructed so that it returns one value that represents how well the chromosome opti-

mizes all of these parameters. Several different techniques exist for this, and this is an area

of ongoing investigation. The interested reader is directed to Schaffer [1985], Fonseca and

Fleming [2000], and Hajela and Lin [1992].

Another consideration that impacts the fitness function is that of constraints. Since the

genetic algorithm contains abstract encodings of the problem parameters, it is difficult to

apply problem constraints directly in the algorithm. Instead, if a chromosome contains

one or more parameters that violate a problem constraint, that chromosome is accorded a

very low fitness value automatically, according to some type of penalty function [Richardson

et al., 1989]. For example, in a parameter estimation problem where negative parameters are
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impossible, a chromosome that contains a negative value could be assigned a fitness value

of zero. Chromosomes with a very low fitness value will have a poor chance of reproducing

and will eventually be driven from the population. An advantage to this method is that the

level of fitness assigned can be varied by the strength of the constraints, thus allowing for

some exploring outside the constraints with a penalty, if desired [Michalewicz and Janikow,

1991].

3.1.3 Selection

One of the primary operators that allows a genetic algorithm to evolve towards a good

solution is selection . Selection is the process of deciding which individuals in the population

will be allowed to mate to produce offspring. This is a very important step in determining

the convergence of the GA [Miller and Goldberg, 1995]. If too many individuals with low

fitness are allowed to mate, the population will evolve slowly, if at all. However, if too many

extremely fit individuals are allowed to mate, they can in effect take over the population

and cause premature convergence, i.e., convergence on a local solution. A balance must be

struck between fit individuals driving the evolution of the population with less fit individuals

remaining to maintain genetic diversity in the group.

Selection is usually accomplished by allowing each individual some chance of being put into an

intermediate mating pool, with fitter individuals having a greater chance of having multiple

copies in the mating pool, and less fit individuals having decreased chances of having even

a single copy. Parents are then chosen at random from this mating pool. Individuals can

be chosen for the mating pool in many different ways. The most common include fitness

scaling, fitness ranking, and tournament selection.

Fitness scaling puts a certain number of copies of individuals into the mating pool, with the

number being proportional to the fitness. This results in the probability of an individual

being selected to reproduce being directly proportional to its fitness. The problem is that

a superfit individual with an extremely high fitness can put so many copies in the mating
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pool that all others have an extremely small chance of being selected to mate [Hancock,

2000]. A better approach is fitness ranking. Here the population is sorted and ranked based

on fitness. Each individual is given a predetermined number of copies based on its rank.

The advantage here is that the highest ranked individual has a set number of copies in

the mating pool, no matter how high its fitness is relative to the other individuals. This

prevents a superfit individual from dominating the population [Grefenstette, 2000]. Another

commonly used method is tournament selection, where individuals are chosen at random and

the best n individuals are selected to go into the mating pool [Blickle, 2000]. The simplest

variant is the binary tournament, where two individuals are chosen at random and the fitter

is assigned to the mating pool. A tournament selection pressure can be applied by letting the

less fit individual be copied instead a certain percentage of the time. This helps to maintain

diversity in the mating pool [Goldberg and Deb, 1991].

3.1.4 Crossover

Along with selection, the operator that probably most impacts the performance of a genetic

algorithm is crossover. A genetic algorithm performs by two primary methods: exploration

and exploitation [Spears, 1992]. Exploitation refers to exploiting existing points in the

searchspace to investigate those areas in the searchspace that lie within a hypersphere made

up of all the existing points. Exploration refers to the investigation of new points that lie

outside of this hypersphere. Exploitation is achieved by crossover, although some points

within the hypersphere can be reached by mutation as well, while exploration can only be

achieved by mutation [Whitley, 1993].

Crossover is the creation of one or more offspring, or children, from the genetic material of

two parents chosen with the selection operator. Crossover is achieved by blending the genes

from each parent to create a child that has some of the characteristics of each parent. In

an evolutionary algorithm, many different methods can be used to achieve this, with these

methods varying by the type of problem and most significantly, with the type of encoding.
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The crossover methods for binary encoding bear a more direct connection to that seen in

nature. Recall that in binary encoding, the chromosome consists of one long binary string,

made up of substrings containing the individual genes. The simplest crossover technique,

introduced by Holland [1975], is known as one-point crossover . In this technique, two parent

chromosomes of equal length are selected, a random point on the chromosome is selected

as the cut-point, and the offspring chromosome is formed from the binary string up to the

cut-point from one parent, and past the cut-point from the other parent. For example, if we

have two chromosomes, the first being represented as 11111 and the second as 00000, and we

randomly select a cut-point after the third position on the chromosome, then the resulting

child would be either 11100 or 00011. A common technique is to form two children from

each crossover using both possibilities, but this is not necessary.

Two-point crossover is similar to one-point crossover, except that, as the name implies, two

cut-points are used. The offspring contains the string between the two cut-points from one

parent, and the strings outside the two points from the other parent. Using the two parent

chromosomes from the above example, if the two cut-points were located after the second

and fourth positions on the chromosome, the resulting offspring would be either 00110 or

11001. Thus, one-point crossover is simply a specialized form of two-point crossover, with

one of the cut-points being the beginning or end of the chromosome. It is generally agreed

upon by researchers that two-point crossover provides superior results to one-point crossover

[Schaffer et al., 1989].

Another popular crossover technique used for binary encoding is uniform crossover . In this

technique, each bit on the offspring is taken from one of the two parents according to what is

known as a crossover mask. The crossover mask is a randomly generated binary string of the

same length as the chromosomes. For each space on the offspring, if the corresponding space

on the crossover mask is a 1, the bit from the first parent is applied to the offspring, and if

it is a 0, then the bit is taken from the second parent. A new crossover mask is generated

randomly for each new offspring [Syswerda, 1989].
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These three techniques are widely used in practice, but several other techniques exist. No

general consensus exists as to which is the best technique, with two-point, uniform, and

mutiple-point crossover all having their proponents. This is an area of vigorous ongoing

debate and research [Beasley et al., 1993b].

Unlike the selection operator, which operates in the same manner regardless of binary or

real encoding, the cross-over operator for real encoding is quite different. The two parent

chromosomes, each consisting of an array of real numbers, form the offspring by performing

some type of arithmetic operation on each number in the array [Booker et al., 2000]. Usually

this is some type of averaging. The simplest technique is to form each gene of the offspring,

represented by one number in the array, by averaging the corresponding genes from the two

parents [Wright, 1991]. This is repeated for each gene until the new chromosome is formed.

Another common approach is to perform a weighted average of the genes using the fitness of

each parent. The geometric mean, which is the square root of the product of the two genes,

is also sometimes used [Michalewicz et al., 1996].

Aside from averaging, other approaches exist for selecting a point lying in the searchspace

between the two parents. The first is completely arithmetic crossover. This is done using a

simple equation

C1 = RP1 + (1−R)P2 (3.1)

where P1 and P2 are the two parent chromosomes and R is a uniformly distributed random

number between 0 and 1 [Michalewicz, 1996]. Another method is to average the two parents

but add or subtract a random component. This method was proposed by Doyle [1995] and

is summarized as

C1, C2 =
P1 + P2

2
± |P1 − P2|R (3.2)
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where again P1 and P2 are the two parent chromosomes and R is a uniformly distributed

random number between 0 and 1. This can be used to generate two offspring at a time, or

can be modified to generate one offspring from two parents by randomly selecting between

adding or subtracting the random component. Another method is to either add the difference

between the two genes to the higher value or subtract it from the lower value. This method

is known as extension and is unusual in that it explores the area in the searchspace outside

the hypersphere formed by the two parents [Eshelman and Schaffer, 1992].

3.1.5 Mutation

As stated earlier, mutation is the method by which the genetic algorithm explores new

areas of the searchspace. Studies have shown the performance of genetic algorithms to be

more sensitive to mutation rates than crossover rates [Schaffer et al., 1989]. Mutation is an

operator that acts on a single chromosome, changing the value of a gene on that chromosome

slightly. How this is achieved depends on the type of encoding used. In the case of binary

encoding, a random bit on the string is “flipped”, meaning a 0 is changed to 1, and vice

versa [Goldberg, 1989].

For the case of real encoding, the method can be more complex. The idea is to perturb

one of the genes to create a new chromosome [Wright, 1991]. One commom method is to

generate a random number with a Gaussian distribution having as a mean the unperturbed

value of the gene and a variance specified by the user [Back et al., 2000]. This technique

has the advantage of generating most new points in an area close to the original point, but

having a small probability of generating points far from the original point, which helps to

explore new areas.

One point that should be discussed here is the slightly different role mutation can play when

real encoding is used. In binary encoding, there exists a discrete number of points, and

mutation is essentially used to jump to a random point in the searchspace, which may or

may not be near the original point. Since there exist a finite number of points, this type of
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random jump in conjunction with crossover explores the searchspace effectively. However,

in real encoding, where the searchspace is continuous, the mutation operator is sometimes

used both to perform a kind of local search around the original point, and in its more

traditional role of generating a random point in the searchspace. This requires two mutation

operators, which are sometimes known as creep mutations and random (jump) mutations

[Beasley et al., 1993b]. As the name implies, creep mutation refers to a mutation of a real-

valued chromosome where the numerical value of one or more genes is changed by adding

or subtracting a small randomly generated number. Geometric creep is a variation where

the value of the gene is multiplied by a random number close to unity. Jump mutation is

an operator that replaces the numeric value of one or more genes on the chromosome with

a value selected randomly from the searchspace.

It should be noted that, since operators for real-valued chromosomes consist of arithmetic

operations applied to the numerical values contained within the chromosome, a plethora of

variations on the basic operators given here exist. Particularly for crossover, the operators

can be as simple or complex as desired. The basic operators presented here, however, will

handle most problems reasonably well.

3.1.6 Replacement Methods

Once the selection, crossover, and mutation operators have been applied and a suitable

number of new chromosomes have been created, the final challenge is finding the best method

to insert them into the population. These methods fall into one of two main categories:

generational, or simple genetic algorithms, and steady-state genetic algorithms [Sarma and

De Jong, 2000].

In a simple GA, the entire population is replaced by the offspring every generation. In order

to maintain the population size, a number of offspring equivalent to the current population

size must be created each generation. While simple GA’s offer a rapid increase of popula-

tion fitness each generation, replacing the entire population each generation runs the risk
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of throwing out good solutions before they have been fully exploited. To counter this, a

technique known as elitism is often employed. In elitist simple GA’s, the N best individuals

are copied directly into the next generation and the balance of the next generation is filled

with individuals created by crossover and mutation. This strategy provides the exploitation

and exploration of crossover and mutation while retaining the best current solutions [De

Jong, 1992].

A steady-state GA, on the other hand, only generates a certain number of new individuals,

and replaces an equal number of individuals in the current population to form the next

generation. Deciding which individuals to replace in the current population is a key factor in

determining the performance of a steady-state GA. Some methods include replacing the N

worst individuals or replacing the individual most similar to the new individual, to maintain

diversity in the population [Whitley, 1989; Syswerda, 1989]. While steady-state GA’s will

evolve more slowly (on a generational basis) than simple GA’s, they can more fully exploit

current solutions [Beasley et al., 1993a]. Also, a factor that should not be discounted is

computation time; if a steady-state GA only generates a number of new individuals equal

to 10 percent of the population size, then the number of function evaluations per generation

would be one-tenth the number of an equivalent sized simple GA.

3.1.7 Finishing Criteria

One advantage to the use of the genetic algorithms is that they are, in essence, blind to the

problem. This is because they work with an abstraction of the problem contained in the

encoding and fitness values. This is useful because it makes genetic algorithms extremely

robust and general over a wide range of problems. One disadvantage, perhaps, is that they do

not know when to stop without being explicitly told. The GA is typically allowed to run for

a predetermined number of generations sufficient for convergence, or until the average fitness

of the population converges on some value, indicating that all members of the population

are clustered around the same point in the searchspace.
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A convergence criterion based on the problem to be solved can be used, but this may not be

desirable. One problem is that this may require a priori knowledge of the problem and its

solution. The second is that removing some of the abstraction between the genetic algorithm

and the problem at hand reduces the algorithms robustness and generality, by transforming

it into a problem-specific algorithm [Goldberg, 1989].

3.1.8 Hybrid Genetic Algorithms

The performance of genetic algorithms can be improved for some problems by incorporat-

ing existing domain knowledge or specific algorithms to create hybrid genetic algorithms

[Michalewicz, 2000]. This takes advantage of the robustness of the genetic algorithm while

utilizing existing methods specific to the problem [Davis, 1991].

One approach is to incorporate specific knowledge of the problem into the objective function

or constraints via penalty functions. Another is to incorporate neighborhood search algo-

rithms, such as direct-descent or simplex algorithms. This can be done both during or after

execution of the genetic algorithm routine. Local search operators can be used to search the

neighborhood surrounding each new individual produced from cross-over, with the optimal

local point replacing the individual prior to its evaluation in the objective function. This

is one method of inserting Lamarkian learning into the genetic algorithm [Gen and Cheng,

1997]. Another approach is to run the genetic algorithm with its normal stopping criteria

(number of generations or average fitness) and then use the result as a starting point for a

problem-specific or local search method. While this method can be used to overcome the

slow-finishing aspects of GA’s, it could increase the possibility of premature convergence on

a suboptimal point.

This chapter serves as an overview of genetic algorithms, and introduces the reader to the

basic algorithm and some of the specific mechanisms used, such as selection, crossover,

mutation, and replacement. In addition, a discussion of two types of encoding, floating-

point and binary, is presented along with and the relative merits of each. The objective
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function is also discussed, along with its role in representing the problem of interest, such

as an engineering optimization problem, in the GA environment. In the following chapters,

an end-to-end optical and electrothermal radiometric instrument modeling environment will

be presented in detail, as well as a description of its use with GA’s to optimize the model’s

performance and to aid in the development of new instrument concepts.
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Chapter 4

Radiometric instrument modeling

environment

A radiometric instrument modeling environment has been developed in an attempt to aid in

the analysis and design of radiometric instruments. The motivation for developing this tool

is the need to simplify the modeling of radiometric instruments by eliminating the need to

create a dedicated Monte Carlo ray-trace model and/or a dedicated electrothermal model

for each standard radiometric instrument configuration. Also, modeling avoids the need to

build and test expensive prototypes. The environment has been developed as a series of

C++ classes and programs that allow the user to develop coupled optical and electrother-

mal models of the instrument optical and detector subsystems. A schematic digram of the

model is presented in Figure 4.1. The user can create an integrated end-to-end model of

a radiometric system by specifying various parameters that define the optical and detector

subsystems. A Monte Carlo ray-trace (MCRT) model of the optical system and a coupled

finite-difference electrothermal model of the detector system results. The model provides

a dynamic simulation of the instrument’s behavior, using a dynamic radiative input to the

instrument to produce the time varying electric signal. In addition, various other parame-

ters that characterize the instrument’s behavior can be produced, such as the distribution
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of absorbed energy and transient temperature distributions in the detector assembly, among

others.

Monte Carlo 
ray-trace model

(Nλ spectral bands)

Electrothermal
model of the

detector assembly

Incident
radiance

Digital
counts

Figure 4.1: End-to-end integrated radiometric instrument model

4.1 Optical model

The optical model described in this chapter uses the Monte Carlo ray-trace (MCRT) method

to determine the distribution of thermal radiation throughout the instrument housing and

particularly, on the surface of the detector. The current version of the optical model is

restricted to a two-mirror configuration, as this is the most common configuration in space-

based remote sensing applications, which were the driving force behind model development.

The optical model is fully spectral, and reads the spectral absorptivity and specularity ratio

values and the associated wavelength intervals for each participating surface from an input

file. The assumption of gray surfaces can be used by defining only one wavelength interval

over the spectral range of interest and providing the appropriate values for absorptivity and

specularity.

The optical model allows the user to select from five standard two-mirror configurations:

1. Cassegrain (parabolic primary mirror, hyperbolic secondary mirror)

2. Gregorian (parabolic primary mirror, ellipsoid secondary mirror)
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3. Dall-Kirkham (ellipsoid primary mirror, spherical secondary mirror)

4. Ritchey-Chrétian (two hyperbolic mirrors)

5. Modified Cassegrain (two spherical mirrors)

Each mirror can be defined by the location of its vertex on the optical axis, Zv, the outer

radius of the mirror slice, a, and the mirror depth, c. These dimensions are illustrated in

Figure 4.2. Note that this is consistent with the notation used by Walkup [1996].

Secondary
Mirror

Primary
Mirror

a1

a2

c1
c2

z

h

zv2
zv1

Figure 4.2: Illustration of the optical coordinate system and mirror input pa-
rameters

The following sections provide a description of the four conic surfaces used as reflectors

in the modeling environment: sphere, parabaloid, hyperboloid, and ellipsoid. The analytic

equations for each surface and their relations to the input variables a, c, and Zv are provided.

The analytic expressions were adapted from Walkup [1996] and are in agreement with those

provided by Korsch [1991].
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4.1.1 Optical theory

This section provides a brief review of geometric optics used in the radiometric instrument

modeling environment, including mathematical descriptions of the various conic surfaces

used as mirrors, an overview of Gaussian (first-order) optical theory, and a description of

the quadric surfaces used in the model.

For the radiometric instrument modeling environment, we consider only mirrors that are

symmetrical about the optical axis, which coincides with the z-axis in the global coordinate

system. We can then calculate all mirror parameters using the meridonial coordinate system,

in which

x2 + y2 = h2 (4.1)

as illustrated in Figure 4.2.

The curvature of a mirror, ρ, is related to the vertex radius of a mirror, R, by

ρ =
1

R
(4.2)

where R is a characteristic of each conic shape. The deformation constant is a parameter

used to characterize the performance of an optical system, and is calculated from the two

focal points of an axisymmetric function representing a surface by

δ = −f1 − f2

f1 + f2

(4.3)

The object and image planes of a given optical surface are related by

n′

l′
− n

l
= ρ(n′ − n) (4.4)

where l, l′ represent the distance from the optical surface to the object and image plane,

respectively, and ρ represents the surface curvature [Mouroulis and MacDonald, 1997]. Dis-

tances to the left of the vertex are considered negative and those to the right are considered
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positive. For the case of a mirror, n = n′, and thus Equation 4.4 reduces to

1

l′
+

1

l
= 2ρ =

2

R
(4.5)

In the following paragraphs we explore the ramifications of Equation 4.5 applied to spherical,

parabolic, hyperbolic, and elliptical mirrors.

Spherical mirrors

The geometric equation for a sphere, in a local x, y, z-coordinate system, is

x2 + y2 + (z − zo)
2 = h2 + (z − zo)

2 = R2 (4.6)

and the radius of the sphere is given by

R =
a2 + c2

2c
(4.7)

where a and c are the mirror width and depth and correspond to the input dimensions to

the optical modeling environment. The vertex radius of a sphere is equal to its true physical

radius. The deformation constant is zero for a sphere (δ = 0) and is generally referred to as

the aspheric deformation constant.

Both focal points of a sphere lie at its geometric center, a distance R from the mirror vertex,

that is

f1,2 = R (4.8)

Parabolic mirrors

The geometric equation for a parabaloid is

x2

a2
+
y2

b2
=

(z − zv)
2

c
(4.9)
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where a = b due to the symmetry about the optical axis. The vertex radius can be calculated

from the input mirror dimensions a and c using

Rv =
a2

2c
(4.10)

The aspheric deformation constant is negative unity for a parabaloid (δ = −1). The two

focal points are given by

f1 =∞, f2 =
Rv

2
(4.11)

Hyperbolic mirrors

The hyperboloid is the only conic section that consists of two separate surfaces. Its geometric

equation is given by

(z − zo)
2

ch2
− x2

A2
− y2

B2
= 1 (4.12)

The coefficient ch is the distance between the center of the two sheets and each vertex, and

is given by

ch =
c√
2− 1

(4.13)

The coefficients A and B are set equal to each other due to symmetry about the optical

axis. As noted by Coffey [1998], the coefficient A is not the same as the coefficient a used to

describe the width of the mirror slice, as erroneously stated by Walkup [1996], but can be

related to the input dimensions by

A =
ach
ch + c

(4.14)

The vertex radius can be calculated from

Rv =
A2

ch
(4.15)
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the aspherical deformation constant is given by

δ = −
(
√
A2 + ch2

ch

)2

(4.16)

and the focal points are given by

f1,2 =
√

A2 + ch2 ± ch (4.17)

with one lying on either side of the mirror vertex.

Elliptical mirrors

The geometric expression for an ellipsoid is

x2

A2
+

y2

B2
+

(z − zo)
2

C2
= 1 (4.18)

where

A = B < C (4.19)

due to symmetry and to obtain a prolate ellipsoid. Unfortunately, the minor axis coefficient

A is not directly related to the input dimensions a and c, and must be separately specified.

The major axis coefficient can then be specified by

C =
c

1−

√

1−
a2

A2

(4.20)

the vertex radius is given by

Rv =
A2

C
(4.21)

the aspherical deformation constant is given by

δ = −
(
√
A2 − C2

C

)2

(4.22)
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and the two focal points are given by

f1,2 =
√
C2 − A2 ± C (4.23)

4.1.2 Monte Carlo ray-trace method

The Monte Carlo ray-trace (MCRT) method is a statistical approach to modeling radiation

heat transfer problems [Mahan, 2002]. The radiative exchange between the participating

surfaces is treated as the summation of the effects of individual energy bundles being emitted,

reflected, and absorbed by the various surfaces. In the MCRT method, the paths of these

energy bundles are called “rays.” Each energy bundle is emitted from a surface in a random

direction, and its path traced until it intersects a participating surface. A probabilistic

approach is used to determine if the energy bundle is absorbed or reflected, where the

absorptivity of the surface can be interpreted as the probability that an individual energy

bundle striking that surface will be absorbed. If the energy bundle is reflected, a probabilistic

method is used to determine the direction of reflection, and the energy bundle is traced until

it strikes another surface. When the energy bundle is finally absorbed, the location of

absorption is recorded and the process is repeated for another energy bundle. This process

is repeated for a large number of energy bundles being emitted from each surface. Typically,

on the order of several million energy bundles are emitted from each surface to achieve

adequate sampling.

MCRT methodology

The first step in a Monte Carlo ray trace is to determine the point of emission on the emitting

surface for the individual energy bundle. For example, for a simple rectangular plane surface,

the x and y locations can be obtained from

x = xmin + (xmax − xmin)Rx (4.24)
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and

y = ymin + (ymax − ymin)Ry , (4.25)

where Rx and Ry are uniformly distributed random numbers drawn from the interval R(0, 1).

The z coordinate can then be calculated from the equation of the surface, S(x, y, z) = 0.

Similarly, for a plane disk, the emission point, in polar coordinates, can be calculated from

[Walkup, 1996]

r = rmax
√

Rr (4.26)

and

φ = 2πRφ , (4.27)

where r and φ are the radial and angular coordinates and Rr andRφ are random numbers

drawn from the interval R(0, 1).

The next step in the MCRT method is to determine the direction of emission. For the case of

diffuse emission, the zenith and azimuth angles, θe and φe, can be determined from [Meekins,

1990; Sparrow and Cess, 1966]

θe = sin−1(
√

Rθ) (4.28)

and

φe = 2πRφ , (4.29)

where Rθ and Rφ are sequential random numbers drawn from the interval R(0, 1). It should

be noted that θe and φe are calculated in terms of the local coordinate system for the surface

in question, and must be converted to values in the global coordinate sytem, as described in

Mahan [2002].
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Once the location and direction of emission are determined, the surfaces that the path of the

emitted energy bundle will intersect must be determined. In the MCRT models described

in this dissertation, all surfaces are modeled as quadrics. A quadric is a surface that can be

represented by the parametric equation

Q = Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0 (4.30)

where A,B,C,D, and E are parameters whose values determine the nature of the surface.

A quadric can also be expressed in matrix form as

MQ =

















A D E C

D B F H

E F C I

C H I J

















P =

















x

y

z

1

















(4.31)

For a point P to be contained on quadric surface Q, then

Q+ P T ·MQ · P = 0 (4.32)

must be true. Each quadric surface making up an enclosure is checked to see if an intersection

with the path of the energy bundle exists.

When the intersection between the energy bundle and a surface is found, then a probabilistic

approach is used to determine if the enegy bundle is absorbed. A random number is drawn

from a large population of uniformly distributed random numbers on the interval (0, 1).

If the random number is less than the absorptivity of the surface in question, the energy

bundle is absorbed; otherwise the energy bundle is reflected. The reflectivity can be treated

approximately as the sum of diffuse and specular components [Sparrow et al., 1962], according

to

ρ = ρd + ρs (4.33)
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where ρd is the diffuse component of reflection, and ρs is the specular component of relection.

The specularity ratio of the surface, rs, is then defined

rs =
ρs

ρd + ρs
(4.34)

Although this model has practical limitations, it can be quite accurate if used in an enclosure

where the reflectivity is small and the specularity ratio is large, as it is on interior surfaces

of optical instruments such as cameras and telescopes. If the energy bundle is reflected,

a random number is drawn, and if its value is less than that of the specularity ratio, the

energy bundle is reflected specularly and the direction of reflection can be calculated from the

direction of incidence; otherwise, the ray is reflected diffusely, and the direction of reflection

is calculated as if the energy bundle were diffusely emitted with no knowledge of the incident

direction. If the energy bundle is absorbed, a counter is incremented and a new energy bundle

is emitted and traced through the enclosure until it too is absorbed. This process is repeated

for N energy bundles, with N being sufficiently large to achieve satisfactory sampling.

4.1.3 Distribution Factors

The total diffuse-specular distribution factor Dij between two gray surfaces is defined as the

fraction of power emitted by surface i that is ultimately absorbed by surface j, both directly

as as a result of all possible reflections [Mahan, 2002], according to

Qij = εiAiσT
4
i D

′
ij (W ) (4.35)

where Qij is the energy emitted by surface i that is absorbed by surface j, εi, Ai, and Ti

are the emissivity, area, and temperature, respectively, of surface i, and D′
ij is the diffuse-

specular distribution factor from surface i to surface j.

The diffuse-specular distribution factor has three useful properties when dealing with gray
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surfaces, summarized as

n
∑

j=1

D′
ij = 1.0 , i = 1, 2, ..n (4.36)

εiAiD
′
ij = εjAjD

′
ji , i, j = 1, 2, ..n (4.37)

and

n
∑

i=1

εiAiDij
′ = εjAj , j = 1, 2, ..n (4.38)

where Equation 4.36 is a statement of the conservation of energy, Equation 4.37 is a statement

of reciprocity, and Equation 4.38 can be derived by combining the previous two equations.

The distribution factor can be estimated in the MCRT method by

D′
ij
∼=
N ′
ij

Ni

(4.39)

where N ′
ij is the number of rays emitted by surface i that are absorbed by surface j, and Ni

is the total number of rays emitted by surface i.

For the special case of heat transfer between an opening in an enclosure and a surface within

the enclosure, the distribution factor between the opening and surface j can be defined as

the fraction of energy entering the enclosure that is absorbed by surface j according to

Qoj = QoDoj (4.40)

where Qo is the energy entering the enclosure through the opening, Qoj is the fraction of that

energy that is absorbed by surface j, and Doj is the distribution factor between the opening

and surface j. The distribution factor can be estimated by treating the opening as a virtual

surface and firing rays from the surface and estimating Doj according to Equation 4.39.
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4.1.4 Monte Carlo ray-trace (MCRT) model

A model of the generic telescope optical system has been developed using the Monte Carlo

ray-trace method. The Monte Carlo ray-trace method is a statistical method widely used

in optics and thermal radiation analysis. In the MCRT method, a large number of energy

bundles, or rays, is emitted from each emitting surface, and probabilistic methods are used

to determine where they are ultimately absorbed.

For the purposes of the model formulated in this dissertation, the instrument aperture is con-

sidered to be the only emitting surface in the ray trace. Energy emitted from the instrument

structure is treated as a constant heat flux on the detector surface. This is justified because

the structure experiences minimal temperature variations during the duration of a scan, and

the only variation in energy received by the detector is due to variations in energy entering

the instrument aperture [Savransky, 1996]. Energy bundles are emitted from the aperture,

either diffusely within a specified solid angle or at a specified azimuth and zenith angle, and

tracked through the instrument until absorbed, and the spatial coordinates where they are

absorbed on the detector surface are recorded. An estimate of the distribution factor be-

tween the aperture and the detector surface is then calculated using Equation 4.39 and used

to convert the power entering the instrument aperture to absorbed power on the detector

surface. The exact details of the ray-trace and distribution factors depend on whether the

incident radiant intensity is spatially homogenous or non-homogenous, and are discussed in

the relevant sections of this dissertation.

4.1.5 Spatially homogenous scenes

The assumption of a spatially homogenous scene is made when the magnitude of the incident

radiance may be assumed equal from all angles entering the instrument aperture. This

assumption is used primarily when viewing a blackbody source that fills the instrument field-

of-view or when viewing Earth scenes with the emphasis on studying their spectral rather
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than spatial variations. This assumption allows energy bundles to be diffusely emitted from

the entire instrument aperture into the instrument.

The spectral distribution factor between the aperture and a spatial bin j on the detector

surface for a spatially homogenous scene is defined as the fraction of energy entering the

instrument aperture from the incident scene in wavelength band k of width ∆λk that is

ultimately absorbed by detector surface element j through direct radiation and all reflections.

This distribution factor can be estimated from the ray-trace by

Dk
aperture−j

∼=
Nk
aperture−j

Nk
aperture

(4.41)

where Nk
aperture−j is the number of energy bundles absorbed by detector element j in wave-

length band k and N k
aperture is the number of energy bundles emitted by the aperture in

wavelength band k. The energy bundles are emitted from the aperture diffusely within a

specified solid-angle represented by a cone angle. The zenith and azimuth angles, θ and φ,

are calculated from

θ = sin−1
[

sin(θmax)
√

Rθ

]

(4.42)

and

φ = 2πRφ (4.43)

where θmax is the maximum zenith angle defining the cone angle, and Rθ and Rφ are random

numbers uniformly distributed on the interval (0, 1) [Walkup, 1996].

The power absorbed by any element j on the detector surface can be calculated from the

total power entering the instrument aperture using the distribution factors. For a spatially

homogeneous scene, the power incident to the instrument aperture in wavelength band k

can be represented by

P k
aperture = IkΩAaperture (4.44)

54



where Ik is the band-averaged radiance in wavelength interval k, Ω is the instrument solid

angle associated with the instrument’s field of view, and Aaperture is the area of the instrument

aperture.

The power absorbed by a detector element j can be calculated by multiplying the power

entering the aperture by the distribution factor between the aperture and element j for each

wavelength band k, and then summing over all wavelengths. This idea can be expressed

Pabs,j =

Nλ
∑

k=1

P k
abs,j =

Nλ
∑

k=1

P k
apertureD

k
aperture−j (4.45)

where P k
abs,j is the power absorbed by detector element j in wavelength band k, Pabs,j is the

total power absorbed by element j, and Nλ is the number of wavelength intervals.

4.1.6 Spatially inhomogenous scenes

A spatially inhomogenous field is one where the intensity incident at the instrument aperture

varies across the scan and cross-scan angles. To accurately model this, it is necessary to

subdivide the incident scene into discrete angular bins, with each bin representing a particular

scan and cross-scan angle. Each angular bin measures ∆θ by ∆φ, where θ represents the

scan angle and φ represents the cross-scan angle.

The spectral distribution factor between the aperture and a spatial bin j on the detector

surface for a spatially inhomogenous scene is defined as the fraction of energy entering the

instrument aperture from angular bin (θ, φ) in wavelength band k that is ulimately absorbed

by detector surface element j through direct radiation and all reflections. This distribution

factor can be estimated from the ray trace by

Dk
θ,φ−j

∼=
Nk
θ,φ−j

Nk
θ,φ

, (4.46)

where Nk
θ,φ−j is the number of rays absorbed by detector element j in wavelength band k,

and Nk
θ,φ is the number of rays emitted by the aperture in angular bin (θ, φ) and wavelength
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band k.

For a spatially inhomogenous scene, the power incident to the instrument aperture in wave-

length band k from angular bin (θ, φ) can be computed as

P k
aperture,θ,φ = Ikθ,φΩθ,φAaperture (4.47)

where Ikθ,φ is the band-averaged radiance in wavelength interval k from angular bin (θ, φ),

Ωθ,φ is the solid angle associated with angular bin (θ, φ), and Aaperture is the area of the

instrument aperture. Haeffelin et al. [1997] showed that, for sufficiently small values of θ

and φ, the solid angle for an angular bin can be well approximated by

Ωθ,φ
∼= ∆θ∆φ (4.48)

The power absorbed by a detector element j can be calculated by multiplying the power

entering the aperture by the distribution factor between the aperture and element j from

each angular bin (θ, φ) for each wavelength band k, and then summing over all scan angles,

cross-scan angles, and wavelengths. This idea can be expressed

Pabs,j =

Nλ
∑

k=1

P k
abs,j =

Nλ
∑

k=1

Nθ
∑

nθ=1

Nφ
∑

nφ=1

P k
aperture,θ,φD

k
θ,φ−j (4.49)

where P k
abs,j is the power absorbed by detector element j in wavelength band k, Pabs,j is

the total power absorbed by element j, Nλ is the number of wavelength intervals, Nθ is the

number of subdivisions in the scan direction, and Nφ is the number of subdivisions in the

cross-scan direction.

4.2 Dynamic electrothermal model

The radiometric modeling environment allows the user to model a generic bolometer detec-

tor assembly. The environment uses a finite difference electro-thermal model of a detector
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assembly based on the thermistor bolometers used in the CERES instrument. Each detector

consists of a thin sheet of Kapton bonded to an aluminum substrate by a thin layer of epoxy.

A thermistor layer is then bonded to the Kapton with another thin layer of epoxy. Gold pads

are deposited on each end of the thermistor, where platinum leads are attached. Another

layer of epoxy and a layer of varnish are then deposited on top of the thermistor and gold

pads. Finally a thin layer of black paint is deposited above the varnish. A schematic diagram

of a single detector is presented in Figure 4.3.

Incident radiation
Platinum lead

Gold

Epoxy

Aluminum

Black paint

Epoxy/varnish

Thermistor

Kapton

Figure 4.3: Schematic diagram of a CERES thermistor bolometer detector

The detector assembly is created by attaching two nearly identical detectors to their respec-

tive aluminum substrates. The two aluminum substrates are then clamped together back

to back with an intervening layer of indium, resulting in a single structure with a detector

on each side facing opposite directions. One detector is exposed to incident radiation and

acts as the active detector, while the other detector is maintained in a nearly isothermal

enclosure and acts as the reference, or compensating, detector. A schematic diagram of the

entire detector assembly is presented in Figure 4.4.
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Incident radiation

Active detector

Reference detector

Figure 4.4: Schematic diagram of the CERES detector assembly

Although the detector model developed in this dissertation is based on the CERES design, it

can be modified to model various bolometers by altering its physical properties and spatial

dimensions. The thermal properties and the spatial dimensions are defined by two input

files. The model can therefore be used to study the effect of different thermal impedance

materials, thermistor materials, and absorber layers, as well as various detector sizes and

thicknesses.

A three-dimensional transient finite-difference thermal diffusion model was developed to

predict the change in temperature distribution in the active and reference detectors as well

as in the substrate due to a spatially and temporally varying radiant input. Two-dimensional

finite-difference electrical diffusion models of each thermistor layer were also developed to
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predict the change in resistance in these layers due to changes in temperature. These models

are coupled with the thermal model and use the temperature distributions in the layers

to calculate temperature dpendent electrical resistivities in the electric models, which then

provide the value of Joulean heating to the thermal model. The electric models are steady-

state models calculated at each discrete time step of the unsteady thermal model.

At each discrete time step, the temperature distribution throughout the entire detector

assembly is calculated with the thermal model. The resistivity of each control volume in

the thermistor layers is calculated using the temperature distributions of each thermistor.

This resistivity and the applied bias voltage across the detector are used to compute a

discrete electric field distribution using the finite-difference method. Once the electric field

is established, Ohm’s law is applied locally to the control volumes along the borders where the

voltage is applied to calculate the electric current entering and leaving the thermistor. This

current is used with the bias voltage to determine the average resistance of each thermistor

layer. These average resistances are used in the Wheatstone bridge circuit to calculate the

new bridge voltage to be used in the next time-step.

At each discrete time-step, the bridge voltage is calculated and then used as the input to

a model of the low-noise pre-amplifier and low-pass filter. The output of the filter is then

converted to digital counts using 12-bit analog-to-digital conversion.

4.3 Thermal-electrical finite difference model

A finite difference model of each of the two thermistor layers was created to calculate the

electric field distribution between the platinum leads at each discrete time step. A two-

dimensional model is used, as opposed to a three-dimensional thermal model, because the

thermistor layer is assumed to be electrically insulated by the layers of epoxy above and

below in the z direction, and so current can flow only in the x and y directions. The

model is steady-state and the electric field is recalculated at each time-step as the boundary
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conditions change due to the transient thermal model.

The temperature distribution in the thermistor assembly is governed by

∂

∂x

(

kx
∂T

∂x

)

+
∂

∂y

(

ky
∂T

∂y

)

+
∂

∂z

(

kz
∂T

∂z

)

+ q̇ = ρCp
∂T

∂t
(4.50)

where k is the thermal conductivity in W/m·K, T is temperature in K, q̇ is the volumetric

heat generation in W/m3, ρCp is the heat capacity per unit volume in J/m3· K, and t is time

in s. The thermal boundary conditions are:

• a combined incident heat flux and radiative boundary condition at the active detector

surface

• a radiative boundary condition at all other exposed detector and substrate surfaces

• an adiabatic boundary condition along the vertical sides of the substrate.

The boundary conditions are illustrated in Figure 4.5. Equation 4.50 with the associated

boundary conditions is solved using a fully implicit finite difference formulation.

The electric field in the thermistor layer is calculated based on the principle of conservation

of electric charge, according to

∂Jx
∂x

+
∂Jy
∂y

= 0 (4.51)

where Jx and Jy (A/m2) are the current densities in the x and y directions, respectively.

The current densities are related to the electrical conductivity, σe, (Ω·m)−1 and the electric

potential, E (V), according to

Jx = −σe
∂E

∂x
and Jy = −σe

∂E

∂y
(4.52)

Equations 4.51 and 4.52 can be combined to obtain

∂

∂x

(

σe
∂E

∂x

)

+
∂

∂y

(

σe
∂E

∂y

)

= 0 (4.53)
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Active detector

Applied heat flux and radiative boundary condition

Radiative boundary condition

Adiabatic boundary  condition

Reference detector

Substrate Substrate

SubstrateSubstrate

Figure 4.5: Thermal boundary conditions for thermistor bolometer finite differ-
ence model

which can be solved using the finite-difference method to provide the electric potential field

E = E(x, y).

The two-dimensional model is discretized into surface elements with the same x-y dimensions

as the three-dimensional thermal model. The electrical resistivity of each element ρe = 1/σe

at temperature T is determined by

ρe = ρe,o exp

{

B

(

1

T
− 1

To

)}

(4.54)

where ρe,o is the resistivity (Ω·m) of the thermistor layer element at a reference temperature

To, and B (K) is a physical property of the thermistor material [Astheimer, 1984]. The

electrical conductivity, σe, of an individual element can then be calculated from

σe =
1

ρe
=

1

ρe,o exp







B





1

T
−

1

To











(4.55)

At each discrete time-step, the temperature distribution in the thermistor layer is determined
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from the thermal model. The temperature, T , of each element in the thermistor is then used

to calculate the electrical conductivity of each element according to Equation 4.55. The finite

difference coefficients are then calculated for each element and the resulting set of equations

is solved for the electric potential field, E. The electric potential at the thermistor edges

under the platinum leads is supplied by the bias voltage calculated in the electronic circuit

model, and the other edges are assumed insulated.

Once the electric potential field is known, the current through the thermistor can be calcu-

lated by applying Ohm’s law locally at either end containing the platinum leads, according

to

I = σA
Ei − Ei−1

∆x
(4.56)

Once the current across the thermistor is known, an equivalent resistance Requiv for the

thermistor can be calculated from

Requiv =
∆Ethermistor

I
(4.57)

The equivalent resistance is the used in the electronic circuit model to calculate the overall

instrument output.

4.4 Electronic signal conditioning model

An analytic model of a typical pre-amplifier circuit, based on the CERES pre-amplifier

system, was adapted from a previous model developed by Priestley [1997]. The model

consists of an amplifier and low-pass filter, and assumes ideal electronic components. A

detailed diagram of the circuit is displayed in Figure 4.6.

The output of the low-pass filter may be represented as

Vout = −
1

R12C1

∫ [

R11

R8

R5 + 2R6

R5

]

(4.58)
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R12
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R5
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R3 RActive

RRef
R14

R15

R16

C1

+VOut

-VOut

+VBias

-VBias

Figure 4.6: Schematic diagram of pre-amplifier circuit

where the bridge output is given by

Vbridge = V2 − V1 (4.59)

For frequencies sufficiently below

f =
1

2R14C1

(4.60)

the low-pass filter acts primarily as an amplifier [Priestley, 1997] with a gain described by

Vout =
R14

R12

[

R11

R8

R5 + 2R6

R5

]

(4.61)

After leaving the pre-amplifier, the signal is converted to a digital output using a 12-bit

analog-to-digital converter. This provides 4096 bits to cover a full-scale voltage range of

0-to-10 V and a count conversion factor of 409.5 V/count.
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Chapter 5

End-to-end model of the CERES

instrument

5.1 CERES Instrument

The CERES instrument contains three scanning thermistor bolometer assemblies: a visible

channel that measures earth-reflected solar radiance in the 0.3-5.0 µm range, a total channel

that measures both earth-reflected solar radiance and earth-emitted radiance in the 0.3-100

µm range, and an atmospheric “window” channel that measures the portion of earth-emitted

radiance lying in the 8-12 µm range. Each sensor assembly consists of a telescope containing

a Cassegrain optical system; a detector assembly consisting of two bolometers, an active and

a reference detector mounted on opposing sides of an aluminum substrate; and the associated

signal-conditioning electronics.

The optical system consists of a forward baffle, an f1.8 Cassegrain optical module consisting

of an 18-mm diameter silvered spherical primary mirror and an 8-mm diameter silvered

spherical secondary mirror. The shortwave and window channels have filters located before

the “spider” (the three-legged structure that supports the secondary mirror) and in front
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of the active bolometer detector. The shortwave channel filters consist of two 1-mm thick

fused, waterless quartz elements, while the window channel filter system consists of a 1-mm

thick zinc sulfide filter and a 0.5-mm thick cadmium telluride filter. The incident radiance is

collected by the optical system and projected onto a 0.75-by-1.50-mm truncated diamond-

shaped precision aperture mounted directly in front of the active bolometer. The aperture

restricts the sensor to a 1.3-by-2.6-deg field-of-view. A schematic diagram of all participating

radiative surfaces and their geometries is given in Figure 5.1.

Secondary
Mirror

Primary
Mirror

Detector

Instrument Housing

Baffle

1.3 deg

2.6 deg

Precision Aperture

Precision 
Aperture

Figure 5.1: Schematic diagram of CERES optical system

The detector assembly consists of an active bolometer and a reference bolometer mounted on

opposite sides of an aluminum substrate. Each bolometer is a rectangle measuring approxi-

mately 1.6 by 3.0 mm with a 1.6-by-1.6-mm absorber area and is approximately 40 µm thick.

They are mounted on separate aluminum heat-sink disks that are 30.76 mm in diameter and

3.86 mm thick, and are joined via a 100-µm-thick layer of sputtered indium. The heat sinks
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are maintained at a constant temperature of 38◦C using actively controlled 2.3-W electric

heaters. The two detectors are electrically connected as two adjacent legs in a Wheatstone

bridge circuit. As the radiant energy is collected and focused onto the active bolometer’s

absorber paint layer, the absorbed energy is converted to heat and causes a temperature rise

in the active bolometer, which causes a change in the electrical resistance of the thermistor

layer of the active bolometer. This change in resistance is governed by

ρ = ρo exp

[

B

(

1

T
− 1

To

)]

(5.1)

where ρo is the electrical resistivity at a reference temperature To and B is a material property

of the thermistor. The change in resistance causes a deflection of the bridge voltage and the

output signal is passed through the low-noise pre-amplifier and low-pass filter before being

sampled, as described in Chapter 4.
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5.2 End-to-end numerical model of CERES scanning

radiometer

A complete end-to-end numerical model of a single channel of the CERES instrument has

been developed, integrating an optical Monte Carlo ray-trace (MCRT) model, a three-

dimensional transient electro-thermal finite-difference diffusion model, and a model of the

signal-conditioning electronics. This model was created as an extension of previous modeling

efforts by Bongiovi [1993], Priestley [1997], Haeffelin [1997], and Coffey [1998]. It is intended

to increase the computational efficiency and flexibility of these previous models in order to

be integrated with other numeric models.

5.3 Optics results

This section outlines the results of the MCRT model of the CERES optical system developed

in the radiometric instrument modeling environment. The model was created by specifying

the two-mirror system and appropriate parameters that correspond to the geometry and

dimensions of the as-built CERES optical system. The model was used to simulate radiative

transfer in the instrument from the instrument aperture to the active detector surface for

various conditions. A description of the spectral characteristics and performance of the

model is also provided.

5.3.1 Description of the optical model

A MCRT model of the CERES optical system was developed based on nominal dimensions

and properties of the as-built CERES radiometric channel. The optical system consists of

a spherical primary mirror and a spherical secondary mirror in a Cassegrain configuration.

The curvature, vertex radius, and mirror-slice depth that relate the CERES telescope to the
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input parameters for the radiometric modeling environment shown in Figure 4.2 are given

in Table 5.1.

Table 5.1: Mirror dimensions for CERES telescope

Depth c (mm) Mirror slice width a (mm) Location of vertex, Zv (mm)
Primary mirror 1.25 9.50 73.38
Secondary mirror 0.25 4.11 62.43

The instrument housing, baffle, mirror supports, and precision aperture were modeled using

quadric surfaces according to nominal CERES dimensions. The absorptivity of the mirrors

and detector are wavelength dependent, and were discretized into wavelength bands. Repre-

sentative reflectivities are plotted as a function of wavelength for the primary and secondary

mirrors in Figure 5.2. The absorptivity of all other surfaces were assumed to be gray at a

value of 0.9 and the specularity ratio was assumed to be gray for all surfaces at a value of

1.0. The modeled and nominal instrument spectral response (optical throughput) values are

shown in Figure 5.3.

5.3.2 Convergence of the MCRT model

A study was performed to determine the accuracy of the MCRT model as a function of the

number of energy bundles emitted from the emitting surfaces and to establish the appropriate

number of energy bundles to be fired for the desired analysis. Two types of emission are

considered in the optical systems model: collimated radiation from a specified scan and

cross-scan angle, and diffuse radiation within a specified solid-angle. A convergence study

for both types of emission is necessary, as the ideal number of energy bundles emitted for

one case may not necessarily correspond to that for the other case.

For the case of collimated radiation, energy bundles were fired parallel to the optical axis,

corresponding to scan and cross-scan angles of 0 deg. The distribution factor from the
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Figure 5.2: Nominal reflectivity values for primary and secondary mirrors used
in CERES end-to-end model

aperture to the detector for each case corresponding to a specific number of emitted energy

bundles is summarized in Table 5.2 and is displayed in Figure 5.4.

The values for the distribution factor converge to a value of 0.327 for a number of emitted

energy bundles equal to one million. However, it should be noted that the difference between

the values of the distribution factor for the case of ten thousand rays and one million rays

is on the order of half a percent, which indicates that relatively accurate values for the

distribution factor can be obtained with a fairly small number of rays, for this particular

application.

For the case of diffuse radiation in a specified solid angle, energy bundles were fired diffusely
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Figure 5.3: Measured and modeled nominal spectral response (optical through-
put)

within a cone angle of 1.6 deg corresponding to a solid angle of 2.45×10−3 sr. The distribution

factor between the aperture and detector for each case corresponding to a specific number

of energy bundles is summarized in Table 5.3 and is displayed in Figure 5.5.

The values for the distribution factor converge to a value of 0.101 for a number of emitted

energy bundles equal to five million. However, the value of the distribution factor convereges

to within 2 percent of the final value with only five thousand energy bundles, again raising the

possibility of fairly accurate values of the distribution factor with a relatively small number

of energy bundles emitted.
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Table 5.2: Distribution factor and percent difference for increasing number of
energy bundles traced for the case of collimated incident radiation

Number of Rays D′
oj (-) Percent change (%)

1000 0.315 -
5000 0.323 +2.48

10000 0.325 +0.62
50000 0.325 0.00

100000 0.324 -0.31
500000 0.327 +0.92

1000000 0.327 0.00
5000000 0.327 0.00

10000000 0.327 0.00

5.3.3 Solid angle convergence study

For the case of diffuse emission within a specified solid angle, it is necessary to determine the

solid angle associated with the instrument’s field of view. To accomplish this, it is necessary

to find the minimum cone angle, θ, that encompasses the entire field-of-view. This can

be done by varying θ and calculating the absorbed power within the associated solid angle

for a uniform radiant source at the instrument aperture. When the absorbed power is no

longer increasing as a function of the cone angle, then the full field of view is encompassed.

A ray trace using 10,000 energy bundles was performed for several cases corresponding to

increasing cone angles, and the resulting distribution factors, total incident power, and total

absorbed power within the solid angle are displayed in Table 5.4 and in Figure 5.6.

The values for absorbed power on the detector flake converge to approximately 12.3 µW at

a cone angle of 1.3 deg. This corresponds to the theoretical CERES field of view of 1.3 deg

by 2.6 deg. The reason that the absorbed power fluctuates about 12.3 µW in the numerical

study is that, as the cone angle, and thus the solid angle increases, a fixed number of energy

bundles is being fired into an increasingly larger solid angle, and thus the results have a

decreasing accuracy as the solid angle increases, causing some fluctuation in the values for
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mated energy bundles

absorbed power as θ increases. For all further simulations of the CERES optical system

using diffuse emission, a cone angle of 1.6 deg is used in the ray trace.

5.3.4 On-axis collimated radiation

Collimated radiation entering the instrument aperture is simulated by emitting energy bun-

dles into the instrument from the aperture parallel to the optical axis. This is useful for

evaluating properties such as optical throughput and the size of the blur circle on the detec-

tor surface. Figure 5.7 is a plot of the spatial coordinates in the x and y directions of the
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Table 5.3: Distribution factor and percent difference for increasing number of
energy bundles for the case of diffuse incident radiation within a specified solid
angle

Number of energy bundles D′
oj (-) Percent change

1000 0.106 -
5000 0.103 -2.83

10000 0.102 -0.98
50000 0.103 +0.97

100000 0.103 0.00
500000 0.102 -0.98

1000000 0.102 0.00
5000000 0.101 -0.99

10000000 0.101 0.00

energy bundles absorbed on the detector surface. For this case, ten thousand energy bundles

were emitted on-axis from the instrument aperture. We can see that the radius of the blur

circle is approximately 0.07 mm, which compares well with values published by Bongiovi

[1993], Haeffelin [1997], and Coffey [1998]. It is also interesting to note that the image of

the three-legged secondary mirror support, or “spider,” is visible on the detector surface.

The optical throughput, defined in this dissertation as the fraction of energy entering the

aperture that is ultimately absorbed by the detector, is 0.32 for this case.

5.3.5 Diffusely emitted radiation within a specified solid angle

The more common case of diffuse radiation entering the instrument aperture is modeled

by emitting energy bundles diffusely from the aperture surface. While traditionally diffuse

energy bundles are emitted in a hemisphere, the actual instrument has a limited field of view

and cannot “see” incident energy outside this field of view, which has a value of approximately

1.3 deg from nadir. Emitting diffusely into a hemisphere therefore results in a large number

of energy bundles being emitted that cannot reach the detector surface. A more efficient
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approach, suggested by Walkup [1996], is to emit energy bundles diffusely into a limited

field of view, which can be defined as a cone defined by a cone angle θ. Figure 5.8 is a plot

in the x and y directions of the energy bundles absorbed on the detector surface. For this

case, ten thousand energy bundles were emitted from the instrument aperture inside a solid

angle specified by a cone angle of 1.6 deg. Unlike the case of collimated radiation, which

results in a finite blur circle on the detector surface that is much smaller than the precision

aperture, the spatial distribution of absorbed energy on the detector surface is defined by

the precision aperture, as can be seen in Figure 5.8. Also, the “spider” is not readily visible

in the absorption pattern.
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Table 5.4: Values for the distribution factor, total incident power, and absorbed
power within a specified solid angle for an increasing cone angle

θ Doj’ (-) Incident power (µW) Absorbed power (µW)
0.1 0.325 0.476 0.154
0.3 0.324 4.28 1.39
0.5 0.324 11.9 3.85
0.7 0.310 23.3 7.23
0.9 0.267 38.5 10.3
1.1 0.205 57.6 11.8
1.3 0.152 80.4 12.3
1.5 0.116 107.0 12.4
1.7 0.090 137.5 12.3
1.9 0.072 171.7 12.3
2.1 0.058 209.8 12.2
2.3 0.049 297.3 12.3

5.3.6 Optical point spread function

The optical point spread function (OPSF) of the instrument is the angular optical response of

the instrument. This can be represented as the fraction of energy incident from a particular

direction that is absorbed by the detector, and is a function of the angular coordinates that

define the direction of incident radiation. A theoretical value of the OPSF can be calculated

from the MCRT instrument model by emitting collimated energy bundles from a specific

scan and cross-scan angle combination and recording the fraction of energy absorbed. This

is repeated for all possible combinations of scan and cross-scan angles within the range of

interest, which in this case is the instrument field of view. This process was performed using

the current CERES model, and the resulting OPSF is shown as a contour plot in Figure 5.9

and as a surface plot in Figure 5.10. In both plots the OPSF has been normalized to a value

of unity and is plotted against the scan and cross-scan angles. The OPSF is nearly uniform

across the instrument field of view and then falls off sharply at approximately 1.2 deg in the

cross-scan direction and 0.5 deg in the scan direction, eventually going to a value of zero at
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Figure 5.6: Absorbed power for increasing cone angle

1.3 deg in the cross-scan direction and 0.65 deg in the scan direction. The OPSF does not

have a true “top-hat” response but instead a gradual drop-off due to the finite size of the

blur circle, and the roll-off represents the angular region where portions of the blur circle are

actually focused on the precision aperture mask. The shape of the OPSF is governed by the

shape of precision aperture, with the diamond shape clearly visible in both plots.

5.3.7 Instrument point spread function

The instrument point spread function represents the dynamic angular response of the in-

strument, and incorporates both optical and electrothermal effects. It can be measured by
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Figure 5.7: Scattergram for ray trace with collimated incident radiation

scanning across a point source at a specified cross-scan angle and measuring the resulting

instrument output as a function of time, which can be converted to a function of scan angle

with knowledge of the scan rate (63.5 deg/s in this case). This is repeated for all cross-scan

angles of interest, and the resulting point spread function can be presented as a function of

scan and cross-scan angles. This process was simulted with the instrument MCRT model by

simulating an Earth-scan with the instrument model. Incident radiation is emitted by the

aperture at a fixed cross-scan angle and at a scan-angle corresponding to the current time

step. The direction of incident radiation and thus total power absorbed by the detector is

updated at each time step. The absorbed power was used as the boundary condition to the

electrothermal finite-difference model, and the boundary conditions were updated at each

time step and the resulting instrument output was recorded at each time step. The resulting

point spread function is shown as a contour plot in Figure 5.11 and as a surface plot in

Figure 5.12. Unlike the OPSF, the PSF does not have a flat peak but has a very narrow
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Figure 5.8: Scattergram for raytrace with diffuse incident radiation

peak at a scan-angle of approximately 0.5 deg instead of 0 deg. The peak is shifted due to

the transient electrothermal time constant of the detector. The detector response also begins

at approximately -0.7 deg and extends past 1.5 deg in the scan direction. This indicates that

at any given instant, the detector signal is a result of the scene the instrument is viewing

and the scene it has just viewed. The point spread function is an important analytic tool in

post-processing the instrument output to account for these effects.

5.3.8 Absorbed energy on detector surface

The analyses in the preceding sections were all performed assuming gray surfaces. This was

done to reduce the run-time of the MCRT models by only having to run a ray trace for a

single wavelength band. This can be justified because the blur-circle is only a function of the

types, locations, and specularity of the mirrors and other optical components, which are not

functions of wavelength. Likewise, the shape of the OPSF would not vary with wavelength,
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Figure 5.9: Optical point spread function contour plot

although the overall magnitude would be wavelength dependent. However, as we have only

presented normalized values, these latter again would not vary with wavelength. The ab-

sorbed power on the detector surface, however, is dependent on not only the spectral nature

of the optical system but on the emitting source spectral distribution as well. It is therefore

necessary to discretize the optical properties into Nk discrete wavelength intervals, with k

representing the kth wavelength interval of width ∆λk. A ray trace was performed for each

wavelength interval, and distribution factors between the aperture, or angular bin, and each

discrete element j on the detector surface were calculated for each wavelength interval. The

total energy entering the aperture in each wavelength interval was calculated by integrating

the spectral radiance over that wavelength interval and multiplying by the solid angle and

the area of the instrument aperture. The total power is then used with the distribution factor
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Figure 5.10: Optical point spread function surface plot

to find the absorbed power in each detector surface element in that particular wavelength

interval. This is repeated for each wavelength interval, and the resulting absorbed powers

are then summed over all wavelength intervals to find the total absorbed power in each sur-

face element on the detector. This was done with the CERES radiometric model, using the

spectral properties from Figure 5.2 and the incident radiation corresponding to a blackbody

source at 359 K, or a radiance of 300 W/m2-sr. The spatial distribution of the total absorbed

power on the detector surface is shown in Figure 5.13. The spatial distribution is governed by

the shape of the precision aperture, as can be clearly seen in Figure 5.13, and the absorbed

power is essentially uniform over this area, as we would expect for a diffuse source with a

spatially uniform radiance. Some minor variability exists in the absorbed power, which can

be attributed to numerical sampling due to the finite number of energy bundles emitted in
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Figure 5.11: Instrument point spread function contour plot

the ray trace.

5.4 Detector assembly electrothermal model results

The electrothermal model of the detector assembly is a three-dimensional, transient finite

difference thermal model of the entire detector assembly coupled with steady-state finite

difference electrical models of both the active and reference thermistor layers. The boundary

conditions for the thermal models are fixed with time on all surfaces except on the active

detector surface, which has an applied heat flux boundary condition, received from the optical

model, that can vary with time. The model calculates the overall temperature distribution

in the detector assembly, the electric field in both thermistors, and the instrument output
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voltage from the bridge circuit, amplifier circuit, and the final digital output for each time

step. Various studies were performed with the electrothermal model and the results are

outlined in the following sections.

5.4.1 Temperature distribution when exposed to a blackbody source

The CERES radiometric model was used to simulate the instrument viewing a blackbody

source at 359 K, which produces a radiance of approximately 300 W/m2. The incident

radiation was treated as a step input, with the detector assembly in thermal equilibrium

before being exposed to the step input. The electrothermal model was allowed to evolve to

steady-state, with the instrument output recorded for each time step. A discrete time step

of 0.001 s was used in the study. The detector surface was discretized into 16× 16 elements

in the x- and y-directions, the subsequent layers were discretized into 16 × 24 elements in
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Figure 5.13: Absorbed power on active flake when viewing a blackbody source
at 359K

the x- and y-directions, and the aluminum substrate was discretized into 24×32 elements in

the x- and y-directions. All temperatures reported in the following studies are temperature

differences referenced to the initial substrate temperature of 311.15 K. Nominal values for

layer thickness, thermal conductivity, density, and specific heat were used. These nominal

values are displyed in Table 5.5.

The steady-state temperature distribution on the active detector surface is shown in Fig-

ure 5.14. The temperature distribution reflects the shape of the precision aperture, with a

peak temperature defect of 1.18 K over the area under the precision aperture, and diffusing

out to a value of 1.16 K in the areas not directly exposed to incident radiation.
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Table 5.5: Nominal values used in CERES electrothermal detector model

z (µm) k (W/m-K) ρ (kg/m3) Cp (J/kg-K)
Epoxy (µm) 1.0 0.13 1200 1045
Kapton (µm) 7.52 0.12 1420 1091
Thermistor (µm) 15.0 8.36 5000 752.4
Absorber 10.6 0.209 1400 668.8
Varnish/epoxy 7.5 0.1 1150 1000
Gold 0.5 293 19,320 129.6
Aluminum 3668 237 2700 903
Indium 2.54 80.86 11,480 280.3

The steady-state temperature distribution on the reference detector surface is shown in

Figure 5.15. The reference detector is not exposed to incident radiation from the scene, and

so the temperature distribution on the reference detector surface is a result of the energy

released in the thermistor layer due to self-heating leaving the detector by means of radiant

emission from the surface. The maximum surface temperature defect of 1.19 K occurs at

the center of the x-y plane of the detector, and the temperature defect decreases in a radial

direction from the center to a minimum value of 1.18 K.

5.4.2 Thermistor layers

The steady-state temperature distribution in the active thermistor layer is shown in Fig-

ure 5.16. The shape of the precision aperture, while visible to some degree, is much less

prominent than at the detector surface, with the temperature variation being more spatially

uniform due to the heat diffusion throughout the layer. The peak temperature defect in the

layer is 1.19 K, which is actually higher than at the surface due to the effects of the electrical

self-heating in the thermistor layer. In other words, net heat is lost from the active flake

during operation.

The steady-state temperature distribution in the reference thermistor layer is shown in Fig-
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Figure 5.14: Steady-state temperature distribution on active flake when instru-
ment is viewing a blackbody source at 359 K

ure 5.17. As the reference detector is not exposed to incident radiation, the active heat

transfer mechanism in the reference detector is the balance among heat generation in the

thermistor, radiation out of the top of the detector surface, and diffusion into the aluminum

heat sink. The temperature distribution is elliptical, with a peak temperature defect of 1.192

K in the center and decreasing temperatures in both the x- and y-directions.

The steady-state values of the resistivity ρ (Ω-m) in the active thermistor layer when view-

ing a 359-K blackbody source are shown in Figure 5.18. Again the spatial distribution is

influenced by the shape of the precision aperture, with the minimum value of 1.4811 Ω-m

in the center of the layer and the values increasing in both the x- and y-directions, with
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Figure 5.15: Steady-state temperature distribution on reference flake when in-
strument is viewing a blackbody source at 359 K

the maximum values at the four corners of the x-y-plane of the thermistor. The spatial

distribution of resistivity mirrors that of the temperature distribution, with the minimum

being at the center instead of the maximum, due to the fact that the resistivity is inversely

related to the tempertature, as revealed in Equation 5.1.

The spatial distribution of resistivity for the reference thermistor layer is shown in Fig-

ure 5.19. The distribution is similar to that of the active layer, with a minimum value

of 1.4809 Ω-m in the center and increasing values further from the center. Unlike the ac-

tive thermistor, the distribution has a circular shape which mirrors that of the reference

thermistor layer’s temperature distribution.
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Figure 5.16: Steady-state temperature distribution in active thermistor layer
when instrument is viewing a blackbody source at 359 K

5.4.3 Temperature distributions when instrument is viewing cold

space

Another case of interest is when the CERES instrument is viewing cold space. The “space-

look” is used as the reference with respect to which the signal from the earth-scan is mea-

sured. Cold space can be modeled as a blackbody at 4 K, and a simulation can be performed

using the radiometric model in a similar manner to that described in the preceding sections.

The temperature distribution on the detector surface is shown in Figure 5.20, and the tem-

perature distribution in the active thermistor layer is shown in Figure 5.21. For both cases
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Figure 5.17: Steady-state temperature distribution in reference thermistor layer
when instrument is viewing a blackbody source at 359 K

the temperature distributions are nearly identical to the respective temperature distributions

in the reference detector.

The vertical temperature profile through the center of the active detector is shown in Fig-

ure 5.22 as a function of the distance from the detector surface. The maximum temperature

is attained in the thermistor layer due to the electrical self-heating, and the temperature

drops slightly towards the exposed surface due to the heat loss associated with radiative

emission.
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Figure 5.18: Steady-state spatial resistivity distribution in active thermistor
layer when instrument is viewing a blackbody source at 359 K

5.4.4 Instrument output

The transient digital instrument response to a step input of 300 W/m2· sr, corresponding
to a blackbody source at 359 K, is shown in Figure 5.23. The steady-state instrument

output is 1062 digital counts, which corresponds to a responsivity of 34 V/W. The time

constant, τ , defined as the time necessary to achieve 63 percent of the steady-state response,

is approximately 8 ms. The time constant compares well with measured CERES data and

published values from previous models of the CERES instrument [Haeffelin et al., 1997]. The

responsivity is considerably lower than reported values of approximately 64 V/W, and may
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Figure 5.19: Steady-state spatial resistivity distribution in reference thermistor
layer when instrument is viewing a blackbody source at 359 K

indicate that various model parameters need to be adjusted to more accurately match the

instrument’s performance.

5.5 Electrothermal sensitivity coefficients

To aid in detector design, it is important to understand the effect that the various different

thermophysical properties have on the overall performance of the detector. It is possible

to use sensitivity coefficients to quantify the sensitivity of the instrument output signal to

various detector parameters. The sensitivity coefficient Xi is defined as the partial derivative
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Figure 5.20: Steady-state temperature distribution on active flake when instru-
ment is viewing cold space

of the digital instrument signal m with respect to the parameter of interest βi,

Xi =
∂m

∂βi
(5.2)

It is convenient for purposes of intercomparison to normalize the sensitivity coefficients,

X+
i =

βi,n
mss

∂m

∂βi
(5.3)

where mss is the steady-state radiometric instrument output and βi,n is the nominal value of

the parameter of interest. The normalized coefficients describing the sensitivity of the tran-

sient instrument output signal to the thermal conductivity of each material in the detector,
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Figure 5.21: Steady-state temperature distribution in active thermistor layer
instrument is when viewing cold space

βi = ki, are shown in Figure 5.24. The values of the sensitivity coefficients for the Kapton

and epoxy layers below the thermsitor layer begin at zero at the initial time and increase

to a steady-state value of approximately -0.1 for the epoxy layer and -0.8 for the Kapton

layer. The layers above the thermistor layer begin at zero, peak at a small positive value

at approximately 5 ms, and then decrease to a steady-state value of zero. Since the output

signal is proportional to the temperature of the thermistor layer, an increase in the value of

thermal conductivity in the layers below the thermistor have a large negative impact on the

steady-state instrument output, with the Kapton having the largest impact. The thermal

conductivity of the layers that are physically above the thermistor layer have some effect on

the thermal time constant but no impact on the steady-state value, reflected in the fact that
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Figure 5.22: Steady-state vertical temperature distribution through center of
the active detector when instrument is viewing cold space

the sensitivity coefficients reached a maximum value at 5 ms and then decreased towards

zero as the system approaches steady-state.

The normalized coefficients describing the sensitivity of the transient instrument output

signal to the thermal capacitance of each material in the detector, βi = ρCp, are shown in

Figure 5.25. Here the value of thermal capacitance in the thermistor layer has the largest

impact on the output signal, with a maximum value of -0.225 at 8 ms and then decreasing

to zero at steady-state. The other materials follow a similar profile, with smaller peak values

ocurring at lesser time values. The layers above the thermistor layer all have a larger impact,

and the Kapton and epoxy layers below the thermistor layers have little impact. The fact
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Figure 5.23: Evolution of instrument transient signal when viewing step-input
blackbody source at 359 K

that all the sensitivity coefficients reach an early peak and tend to zero indicates that the

thermal capacitance only affects the transient response of the instrument.

Another parameter that can affect the instrument output is the thickness, βi = δi, of each

layer in the detector. Although not a thermophysical property, increasing the thickness

effectively increases the thermal resistance and capacity and thus incorporates the effects

of both the thermal conductivity and thermal capacitance. It is important because, from a

design standpoint, the thickness of the layers is the easiest detector parameter to manipulate

to achieve the desired instrument responsivity and time response. The normalized coefficients

describing the sensitivity of the transient instrument output signal to the layer thickness of
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Figure 5.24: Sensitivity coefficients for thermal conductivity

each material in the detector are shown in Figure 5.26. The thickness of the Kapton layer has

the largest impact on both the transient and steady-state response of the instrument. The

thickness of the epoxy layers below the thermistor layer have a lesser inpact on the steady-

state response and little impact on the transient response. The thickness of the thermistor

layer has the largest impact on the transient response, followed in order of decreasing impact

by that of the absorber paint and layer of epoxy above the thermistor.
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Figure 5.25: Sensitivity coefficients for thermal capacity

5.6 Matching electrothermal model to the actual CERES

instrument

The value of the various optical and thermophysical properties and dimensions used in the

end-to-end radiometric model are typically nominal values supplied by manufacturers, draw-

ings, etc. Inherent uncertainties in the fabrication of the thermistor bolometer detectors,

which is done by hand, can lead to actual parameter values that vary quite significantly

from the nominal values. Also, contact resistance between the layers in the thermistor

bolometer, both from fabrication and delamination effects, can cause increased thermal re-
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Figure 5.26: Sensitivity coefficients for layer thickness

sistance not accounted for in the nominal values. An interesting case in point is the reason

the CERES detector assembly is constructed of two bolometers attached to separate alu-

minum substrates, which are then joined by an intervening layer of indium. In the initial

attempts at constructing these detectors, two bolometers were laid down on opposite sides of

a single substrate. Unfortunately, it proved impossible to achieve two detectors on a single

substrate with matching responsivity and time response. It was then necessary to construct

a large number of detectors on individual substrates, find two with closely matching values

for responsivity and time response, and join the two substrates to form a single detector

assembly. This illustrates how much variance from the nominal values exists in the actual

instruments. While the nominal values are typically sufficient to obtain reasonable accuracy
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from the model, optimal performance requires that the values of various model parameters

be matched more closely with the values associated with the actual instrument, which are

often unknown, at least to the desired precision.

One possible approach is to use parameter estimation techniques to estimate the values of

the model parameters that results in the models performance most closely matching the ob-

served behavior of the actual instrument. This can be done by varying the model parameters

of interest in an intelligent manner that minimizes an objective function containing the mea-

sured output of the actual instrument and the output of the model [Beck and Arnold, 1977].

The varying of model parameters is usually done using some type of search or optimization

algorithm, and the obective function to be minimized is the least squares error between the

observed instrument output and the corresponding model output.

5.6.1 Description of genetic algorithms used in parameter estima-

tion

The search algorithm used in the current application is genetic algorithms (GA’s), which

are probabilistic search algorithms based on evolutionary principles. The use of GA’s in

parameter estimation has been the subject of much study in recent years. Garćıa and Scott

[1998a] performed a detailed study of the application of GA’s to the simultaneous estimation

of highly correlated thermal properties, presenting several case studies, and Garćıa [1999]

used GA’s to estimate the thermal and kinetic properties of polymers during curing. Garćıa

and Scott [1998b] also used GA’s to optimize experimental design for the estimation of

thermal properties, and Hanuska [1998] used GA’s to provide thermal characterization of

complex aerospace structures comprised of several different materials.

The values of individual model parameters are represented as genes, and the array containing

all the values of these genes is known as a chromosome, or indiviual. The initial population

consists of a large number of individuals with values of their genes randomly generated within
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the bounds of the search. Each individual is then passed to an objective function, where the

values of each gene, which corresponds to a specific model parameter, are used to create an

instrument model with those parameters. The model is then run and its output compared

to the actual instrument output, and an error is calculated. This error is used to assign

a fitness value to the individual, with a higher fitness value associated with a lower error.

After all indiviuals have been assigned a fitness, certain individuals are selected to reproduce

based on probablistic selection rules. Two individuals combine to produce offspring, with

the values of the offspring’s genes based on some combination of the values of the parents

genes. A small percentage of the offspring are allowed to mutate, which means that one

or more of their genes have their value slightly altered by some type of perturbation. The

offspring are then inserted into the population, replacing some members of the previous

population, and the cycle is started again. The rules governing the number of offspring

and replacement of individuals by offspring vary among the different types of GA’s. This

process is allowed to iterate until some predetermined stopping point is reached, based on

the number of generations or some convergence criteria. A more detailed explanation of the

behavior of genetic algorithms is given in Chapter 3.

5.6.2 Model parameter estimation results

Three studies were performed to demonstrate the use of parameter estimation techniques

to match the performance of a radiometric instrument model with an actual instrument,

such as the CERES instrument. The studies used genetic algorithms to minimize the error

between the instrument performance predicted by the model and the actual instrument

performance. The instrument signal predicted by the model is compared with the measured

instrument signal at each discrete time step, and the GA varies the instrument parameters

in a probabilistic manner to minimize the cumulative error between the predicted and actual

instrument response.

In each study, three GA runs were performed, with each run corresponding to a different set
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of seeds used in the random number generator. A population of 100 chromosomes was used,

and the GA ran for 800 generations using steady-state replacement at a rate of 10 individuals

per generation. Binary tournament selection was used with random-point cross-over using

a cross-over probability of 0.9; and creep-jump mutation was used with a creep factor of

0.05 and a creep probability of 0.5, and a mutation probability of 0.25. These settings were

arrived at based on results of the study described in Chapter 6 and the author’s experience

using GA’s. Each chromosome contained an array of real numbers containing values of the

model parameters to be estimated.

The detector responsivity and time constant were used as measures of the detector perfor-

mance for each chromosome. The three-dimensional transient electrothermal model of the

detector assembly was used to provide values of the responsivity and time response. A coarse

finite-difference discretization in the x-y direction was used to reduce computation time in

the GA environment. This can be justified by the fact that the heat transfer in the detector

is largely one-dimensional, with the two and three dimensional effects having little impact

on the responsivity and time response of the detector, and by the fact that the GA’s are

known to provide very good results with approximate function evaluations Grefenstette and

Fitzpatrick [1985]; Beasley et al. [1993a]. The exposed detector surface was represented by

a 2 × 2 grid in the x-y direction; the epoxy, varnish, thermistor, and Kapton layers were

represented by a 4×2 grid in the x-y direction; and the aluminum substrate was represented

by a 6× 4 grid in the x-y direction. The finite-difference discretization in the z-direction is

the same as the end-to-end CERES instrument model.

The transient response of the CERES total channel, measured during instrument calibration,

was used in the parameter estimation studies. The data, presented in Figure 5.27, was plotted

as a normalized curve of the instrument’s transient response. A responsivity of 62 V/W,

determined from steady-state measurements, was also provided in the instrument calibration.

By using a step input equivalent to a blackbody source at 359K as a reference, the given

responsivity and the transient were used with a gain of 1760 from the electronics model to

construct a transient signal representing the instrument’s response. This signal was used as
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the “measured” instrument response.
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Figure 5.27: Measured transient response for CERES total channel

A step input heat flux boundary condition equivalent to the instrument viewing a 359 K

blackbody source was applied, with 46.84 µW distributed over the detector surface according

to the distribution factors, which were calculated beforehand and read from an input file for

each model evaluation. The transient response of the instrument was calculated at each

time step of 1 ms for a total time of 200 ms, with the step input applied at 100 ms, giving

the detector system time to reach steady-state due to the electrical self-heating, thereby

simulating the instrument’s space-look. The voltage difference from the bridge circuit at 100

ms was subtracted from the voltage difference at 200 ms, providing the voltage rise due to

the step input. This voltage was divided by the total power absorbed on the detector flake

(46.84 µW) and the resulting value interpreted as the detector responsivity. The objective

function was comprised of a cumulative sum of the error between the measured CERES
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output, (Mmeas, and the output from the model,Mmodel, at each of N time steps,

E =
1

N

∑

(Mmeas −Mmodel)
2 (5.4)

The fitness assigned to each chromosome was simply the inverse of the relative error, because

a lower error is associated with a more fit chromosome.

The first study was performed to determine the layer thicknesses that, when used in the elec-

trothermal detector model, provide a predicted instrument response that matches the actual

measured instrument response. The thermistor, Kapton, and epoxy layers were selected,

based on the results of the sensitivity analysis, as candidates to be varied. All other mate-

rials were held constant at their nominal values for layer thickness and thermal properties,

listed in Table 5.6. The thermistor, Kapton, and epoxy layers had their thermal properties

held constant at their nominal values and the thicknesses were varied in the GA.

Table 5.6: Nominal values for layer thickness, thermal conductivity, and thermal
capacity

z (µm) k (W/m-K) ρCp (J/m3-K)
Epoxy 1.0 0.13 1.55 × 106

Kapton 7.52 0.12 1.25 × 106

Thermistor 15.0 8.36 3.56 × 106

Paint 10.6 0.209 9.35 × 105

Varnish/epoxy 7.5 0.1 1.15 × 106

Gold 0.5 293 2.50 × 106

Aluminum 3668 237 2.44 × 106

Indium 2.54 80.86 2.76 × 106

The layer thickness values for the three GA runs are displyed in Table 5.7, with the resulting

values for responsivity and time constant. All three runs were able to provide values for layer

thicknesses that produced a predicted instrument response that closely matched the actual

response. The thickness values for the epoxy and Kapton layers are both larger than their

nominal values from Table 5.6, but both are quite reasonable. This could be due to contact

102



resistances that may exist between layers, which can be modeled by using thicker layers to

account for the increased thermal resistance. The thickness value for the thermistor layer

is slightly smaller than the nominal value of 15 µm, but is a reasonable value based on the

difficulty in accurately fabricating the thermistor bolometers to the nominal specifications.

A plot of the predicted instrument output for all three cases and the measured instrument

response is given in Figure 5.28. The predicted signal for each of the three cases matches

the measured signal reasonably well, but there is a fair amount of variation for the entire

transient response. This could be because the upper and lower limits placed on the the layer

thickness values prevented the GA from obtaining the ideal solution.

Table 5.7: Optimal layer thicknesses to match thermistor bolometer model with
CERES bolometer performance

Run 1 Run 2 Run 3
Epoxy (µm) 3.34 3.37 2.06
Kapton (µm) 11.80 11.39 14.04
Thermistor (µm) 11.08 10.25 10.62
Responsivity (V/W) 62.89 62.47 62.64
Time constant (ms) 12.16 11.61 11.81

The next study determined the values of thermal conductivity and thermal capacity that,

when used in the electrothermal detector model, provide a predicted instrument response that

matches the actual measured instrument response. The thermal conductivity and thermal

capacity of the thermistor, epoxy, and Kapton layers were varied in the GA, while their

thicknesses, along with the thickness and thermal property values of all other layers, were

held constant at their nominal values. The resulting values for thermal conductivity and

thermal capacity, along with the resulting values of responsivity and time constant, are shown

in Table 5.8. The thermal conductivity values for epoxy range from 0.058 to 0.075, which is

lower than the nominal value of 0.12. This can be explained again by the possibility of contact

resistance, which can be modeled by an effective thermal conductivity and thermal capacity

of the layer that account for the increased thermal resistance. The thermal conductivity of
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Figure 5.28: Measured transient response for CERES total channel and predicted
model response for the case of varied layer thicknesses

Kapton ranged from 0.060 to 0.063, which is also lower than its nominal value, and can also

be explained with the possibility of contact resistance. The thermal capacity of both epoxy

and Kapton were much larger than their nominal values. While this can be explained in

part by contact resistance, caution should be used when interpreting these results due to the

very low sensitivity of the detector output to the thermal capacity of these two layers. The

thermal conductivity of the thermistor layer ranged from 7.502 to 8.746, which is reasonably

close to its nominal value, considering the low sensitivity coefficient associated with the

thermsitor thermal conductivity. The thermal capacity of the thermistor layer ranged from

1.723 ×106 to 2.081 ×106, which is below the nominal value of 3.56 ×106. This could

not be explained by contact resistance, which would tend to increase the effective thermal

capacitance of the layer. A plot of the predicted instrument output for all three cases and

the measured instrument response is given in Figure 5.29. The predicted signal for each of
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the three cases almost exactly matches the measured signal, with some slight variance at the

first few and final few time steps.

Table 5.8: Thermal conductivity and thermal capacity values that match ther-
mistor bolometer model with CERES bolometer performance

Run 1 Run 2 Run 3
Epoxy: k (W/m-K) 0.058 0.071 0.075
Epoxy: ρCp (J/m3-K) ×106 6.896 5.103 2.978
Kapton: k (W/m-K) 0.063 0.060 0.060
Kapton: ρCp (J/m3-K) ×106 3.506 1.993 2.509
Thermistor: k (W/m-K) 7.796 7.502 8.746
Thermistor: ρCp (J/m3-K) ×106 1.723 2.010 2.081
Responsivity (V/W) 61.53 61.45 61.46
Time constant (ms) 10.41 10.38 10.39

The final study investigated the combination of layer thickness and thermal property val-

ues that, when used in the electrothermal detector model, provide a predicted instrument

response that matches the actual measured instrument response. The thermal conductivity,

thermal capacity, and layer thickness of the thermistor, epoxy, and Kapton layers were varied

in the GA, while the thickness and thermal property values of all other layers, were held

constant at their nominal values. The resulting values for thermal conductivity and thermal

capacity, along with the resulting values of responsivity and time constant, are shown in

Table 5.9. The layer thickness of the epoxy and Kapton layers were close to their nominal

values, varying between 2.127 and 3.032 µm for epoxy and 8.517 and 10.317 µm for Kapton.

The layer thickness of the thermistor layer varied from 14.103 to 14.902 µm, which is is very

close the nominal value of 15 µm. The thermal conductivity of epoxy varied between 0.084

and 0.104, and the thermal conductivity of Kapton varied from 0.091 to 0.104, both cases

slightly below their respective nominal values. The thermal conductivity of the thermistor

layer ranged from 6.110 to 8.129, which is slightly below the nominal value. This could again

be attributed to the small sensitivity coefficient associated with the thermal conductivity.

The thermal capacity of the epoxy and Kapton layers range from 3.504 ×106 to 4.674 ×106
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Figure 5.29: Measured transient response for CERES total channel and predicted
model response for the case of varied thermal properties

and from 2.730 ×106 to 4.223 ×106, respectively. The values for both layers are well above

their nominal values, which could be attributed to thermal contact resistance and small

sensitivity coefficients. The value for thermal capacity of the thermistor layer varies from

1.487 ×106 to 1.516 ×106, which is again well below the nominal value. A plot of the pre-

dicted instrument output for all three cases and the measured instrument response is given

in Figure 5.30. The predicted signal for each of the three cases almost exactly matches the

measured signal, with some slight variance at the first few and final few time steps.

The results presented here indicate that the use of parameter estimation techniques in con-

cert with a search algorithm such as GA’s can help achieve optimal model performance. The

optimal model parameters calculated in the three studies presented here varied somewhat

from the nominal values given for the actual istrument, particularly in the case of the thick-

ness and thermal capacity of the thermistor layer. Two possible explanations for this exist:
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Table 5.9: Layer thickness, thermal conductivity and thermal capacity values
that match thermistor bolometer model with CERES bolometer performance

Run 1 Run 2 Run 3
Epoxy: z (µm) 3.032 2.127 2.824
Epoxy: k (W/m-K) 0.084 0.101 0.104
Epoxy: ρCp (J/m3-K) x 106 3.504 4.674 4.600
Kapton: z (µm) 8.517 10.317 9.279
Kapton: k (W/m-K) 0.104 0.091 0.095
Kapton: ρCp (J/m3-K) x 106 4.223 3.015 2.730
Thermistor: z (µm) 14.446 14.902 14.103
Thermistor: k (W/m-K) 8.129 7.355 6.110
Thermistor: ρCp (J/m3-K) x 106 1.487 1.504 1.516
Responsivity (V/W) 61.64 61.60 61.54
Time constant (ms) 10.42 10.45 10.42

either the nominal properties do not accurately reflect the actual as-built instrument, or a

physical process in the instrument is not being accurately modeled. Additionally, care must

be taken in interpreting the results, as the GA will tend to find a set a parameters that match

the instrument performance, regardless of whether the parameters are actually feasible. It is

necessary to bound the GA in such a way that resulting parameters are physically viable in

the real instrument. Regardless, these techniques provide a powerful tool in optimizing the

accuracy and performance of high-level numerical models. The use of GA’s, in conjunction

with high-level numerical models of the type presented here, presents a powerful tool for the

design and optimization of radiometric instruments. This possibility is explored in the next

chapter.
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Figure 5.30: Measured transient response for CERES total channel and predicted
model response for the case of varied layer thicknesses and thermal properties
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Chapter 6

Use of genetic algorithms in

radiometric instrument design and

modeling

Genetic algorithms (GA’s), presented in Chapter 3, are powerful probablistic search algo-

rithms based on evolutionary principles. They can be applied to radiometric instrument

design and modeling to provide a means for optimizing various performance parameters by

determining the physical instrument parameters that result in optimal performance. Here

they are applied to end-to-end radiometric instrument models to solve two types of problem:

optimization of the optical system, and optimization of the detector assembly. For each

case it is necessary to construct an objective function that represents the performance of

the system, and then to determine which variables that objective function will be optimized

against.
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6.1 Optical systems

6.1.1 Objective function and optimization variables

The first step in using GA’s to search for an optimal optical configuration is to define

an appropriate objective function that describes the performance of the optical system.

Two parameters can describe the performance of the optical system for incident collimated

radiation: the size of the blur circle, and the optical throughput. These parameters can be

considered separately or together in an aggregate objective function.

The size of the blur circle can be calculated by reading the x-y spatial coordinates of the

energy bundles absorbed on the detector surface and expressing their number density distri-

bution in terms of radial coordinates r and θ. The resulting values are then sorted by r in

descending order, with the maximum values of r still containing energy bundles defining the

radius of the blur circle. A flaw in this approach is the existence of stray energy bundles that

can be absorbed well outside the radius of the blur circle, which could give the impression of

a falsely large blur circle. This can be accounted for by rejecting a predetermined number of

energy bundles with the largest values of r. By trial and error it was ascertained that, for the

case of 10,000 rays emitted, rarely more than three of four stray energy bundles are absorbed.

Accepting as the radius the radius of a circle that encloses 99 percent of the energy bundles

is a reasonable approach to remove outliers and retain a good estimate of the size of the

blur circle. The optical throughput can be estimated by the distribution factor between the

entrance aperture and the detector surface, considering the detector as one surface element.

The goal of the optical system is to minimize the blur circle; therefore, an objective function

representing the blur circle must return a value inversely proportional to the blur circle

diameter. A simple approach is to return the inverse of blur circle diameter and assign that

as the fitness for the associated chromosome in the GA algorithm. The optical throughput of

the system, on the other hand, should be maximized, and an objective function representing

only the optical throughput could simply return the value of the optical thoughput as the
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fitness. Construction of an aggregate function is complicated by the fact that one parameter

should be maximized and the other should be minimized. One approach is to return the

root-square mean of the sum of the weighted inverse of the blur circle and the weighted

optical throughput

Obj =
√

w1(B∗)2 + w2(O∗)2 (6.1)

where B∗ is the normalized inverse of the blur circle diameter, O∗ is the normalized optical

throughput, and w1 and w2 are appropriate weight functions. Care must be taken in selecting

the values to normalize the two parameters to ensure that they have approximately equal

influence on the overall objective function, and the weight functions can then be used to vary

the relative impact on the objective function. Using the CERES optical model with nominal

parameters as a guide, 0.04 mm and 0.4 were taken as nominal values for the blur circle

radius and optical throughput, respectively, and were used to normalize the two parameters

in the aggregate objective function; i.e., B∗ = Do/D, where Do=0.04 mm and O∗ = O/Oo,

where Oo=0.4.

Once an appropriate objective function has been created, the next step is to determine

the model parameters to be used as search variables; i.e., the parameters encoded into the

chromosomes of the GA. In the current application the location and physical properties of

the active optical components (the mirrors and detector) are of primary interest, as they are

the main components around which the optical system is designed. The model parameters

that describe these components are the radius of the mirror slice a, the mirror depth c, the

distance between the two mirrors, and the distance from the secondary mirror to the detector

surface. By fixing the location of the detector and the mirror vertex of the primary mirror,

both distances can be varied by changing the location of the secondary mirror. The search

variables are then the radius of the mirror slice, the depth of both mirrors, and the location

of the secondary mirror.
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6.1.2 Approximate model study

Before the MCRT model of the optical system can be used in the GA environment, the

number of emitted energy bundles to be used to evaluate each model must be determined.

While an increasing number of energy bundles will provide more accurate estimates of the

distribution factors, and thus of the optical performance of the telescope, it will also pro-

hibitively increase the run-time of the GA. Fortunately, GA’s have the useful property that

they can obtain an optimal solution working with approximate function evaluations [Grefen-

stette and Fitzpatrick, 1985; Beasley et al., 1993a]. This feature admits the possibility of

running the MCRT model with a relatively small number of energy bundles in the GA search

while still obtaining an optimal solution. A study was performed to evaluate the variation in

the objective function, using the aggregate function of Equation 6.1 with w1 = w2 = 0.5, to

define the fitness of each chromosome. The results are presented in Table 6.1. The variation

in the fitness with an increasing number of energy bundles is surprisingly small, with values

of 7.805 when emitting a thousand energy bundles and 7.803 when emitting a million energy

bundles. These results clearly indicate that emitting a small number of energy bundles,

on the order of one thousand, will provide a sufficiently accurate estimate of the objective

function to be used in the GA search.

Table 6.1: Sensitivity of the fitness of the optical model to the number of energy
bundles emitted

Number of energy bundles Fitness
500 7.80287

1000 7.80483
5000 7.80347

10000 7.80417
50000 7.80338

100000 7.80300
500000 7.80287

1000000 7.80284
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6.1.3 GA parameter study

Prior to applying the GA to find the optimal optical system parameters, it is first necessary

to fine-tune the GA to the problem at hand. A large number of parameters within the GA

affect its performance, with a badly tuned GA performing as badly as a random search. A

careful parametric study of the various settings of the GA is necessary to determine which

parameter settings result in optimal performance.

A study of the various types of cross-over techniques was performed. Four cross-over mech-

anisms were considered: an arithmetic mean between the two parents, a fitness-weighted

arithmetic mean, an arithmetic mean with a random component added or subtracted, and

a random value between those of the two parents. These four mechanisms are described in

more detail in Chapter 3. For each case, three GA runs were performed, with each run cor-

responding to a different set of seeds used in the random number generator. A population of

100 individuals was used, with steady-state replacement at the rate of 10 individuals replaced

each generation, and the GA was run for 800 generations. Binary tournament selection was

used with a selection probability of 0.9; a cross-over probability of 1.0 was used; and creep-

jump mutation was used with a creep factor of 0.10, a creep probability of 0.8, and a mutation

probability of 0.15. These parameter settings were selected based on the author’s experience

with GA’s. The results of the study are presented in Table 6.2. The study shows that the

worst performance (smallest fitness) is associated with the weighted arithmetic mean, with

the arithmetic mean and the arithmetic mean with a random component performing at ap-

proximately the same level, and the random point approach outperforming (largest fitness)

all other mechanisms. The probable explanation for the superior performance of the random

point approach is that it can search the full range of searchspace between the two parents

most effectively.

A study of the two most common selection techniques was also performed. Roulette wheel

selection uses a probability proportional to the fitness for each individual to select individuals

for mating, whereas binary tournament selects two individuals from the population, with all
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Table 6.2: Study of crossover techniques

Test 1 fitness Test 2 fitness Test 3 fitness
Crossover method Best Avg. Best Avg. Best Avg. Mean
Average 0.378 0.376 0.532 0.519 1.967 1.942 0.959
Weighted average 0.332 0.330 0.327 0.327 0.643 0.627 0.434
Random average 0.954 0.954 0.839 0.832 1.155 1.115 0.983
Random point 2.029 2.003 0.917 0.912 1.561 1.547 1.502

individuals having an equal probability of being selected, and then using the individual with

the higher fitness of the two for mating. For each case, three GA runs were performed, with

each run corresponding to a different set of seeds used in the random number generator.

A population of 100 individuals was used, with steady-state replacement at the rate of 10

individuals replaced each generation, and the GA was run for 800 generations. The random-

point cross-over technique was used with a cross-over probability of 0.9; and creep-jump

mutation was used with a creep factor of 0.10, a creep probability of 0.8, and a mutation

probability of 0.15. The results of the study are presented in Table 6.3. Over the course

of the three runs for each case, roulette-wheel selection slightly outperformed tournament

selection, although not by a significant margin. One might reasonably conclude that the two

methods both work well on the problem, and that the choice as to which to use is arbitrary.

Table 6.3: Study of selection techniques

Test 1 fitness Test 2 fitness Test 3 fitness
Selection method Best Avg. Best Avg. Best Avg. Mean
Roulette wheel 0.620 0.614 0.861 0.842 0.635 0.609 0.705
Binary tournament 0.550 0.541 0.869 0.856 0.555 0.547 0.658

A study was also performed of the number of individuals replaced per generation for steady-

state GA’s. The study was an attempt to determine, for a fixed number of function evalua-
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tions, the balance of the number of generations the GA is allowed to run and the number of

offspring produced in each generation. Too many offspring each generation results in wasted

function evaluations because the same searchspace can be searched by multiple similar indi-

viduals, and too few offspring can result in undersampling the searchspace each generation.

The study considered three cases in which 10, 25, and 50 offspring were replaced. For

each case, three GA runs were performed, with each run corresponding to a different set of

seeds used in the random number generator. A population of 100 individuals was used, with

steady-state replacement at the rate specified for each case, and the GA was run for a number

of generations equivalent to 8,000 function evaluations, i.e., 8000 evaluations of the MCRT

model . The random-point cross-over technique was used with a cross-over probability of 0.9;

and creep-jump mutation was used with a creep factor of 0.10, a creep probability of 0.8, and

a mutation probability of 0.15. The results, presented in Table 6.4, seem to indicate that, of

the three cases, replacing 25 individuals each generation results in the highest average final

fitness over the three runs for a fixed value of 8,000 function evaluations.

Table 6.4: Study of replacement techniques

Test 1 fitness Test 2 fitness Test 3 fitness
Number replaced Best Avg. Best Avg. Best Avg. NFE Mean

10 0.606 0.600 0.840 0.824 0.548 0.548 8,000 0.665
25 0.667 0.640 0.331 0.325 1.796 1.693 8,000 0.886
50 0.588 0.498 0.323 0.323 0.606 0.606 8,000 0.476

A comparison was performed of two different mutation mechanisms. The study considered

two types of mutation: creep-jump mutation, where the mutation is expressed as either a

local pertubation or a jump to a random point in the searchspace, and Gaussian mutation,

which is a local perturbation with a Gaussian distribution centered on the original value of

the gene. For each case, three GA runs were performed, with each run corresponding to a

different set of seeds used in the random number generator. A population of 100 individuals

was used, steady-state replacement at the rate of 10 individuals replaced each generation, and
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the GA was run for 800 generations. The random-point cross-over technique was used with

a cross-over probability of 0.9, the case of creep-jump mutation used a creep factor of 0.10

and creep probability of 0.8. The case of Gaussian mutation used a value of 5 percent of the

original value of the gene for the standard deviation. In both cases a mutation probability of

0.15 was used. The results of the study are presented in Table 6.5. The creep-jump mutation

technique outperformed the Gaussian approach, most likely due to the ability to jump to a

new point in the searchspace while still searching locally, while the Gaussian approach has

a very limited method to jump to a new region and is therefore primarily restricted to local

searches.

Table 6.5: Study of mutation types

Test 1 fitness Test 2 fitness Test 3 fitness
Mutation type Best Avg. Best Avg. Best Avg. Mean
Creep-jump 0.587 0.569 0.366 0.366 0.735 0.716 0.563
Gaussian 0.469 0.438 0.428 0.421 0.532 0.525 0.476

Real-valued GA’s have a tendency to perform better with higher rates of mutation than

binary-encoded GA’s. However, the question of identifying the optimal rate of mutation

is still open, and tends to be problem specific. A study was performed to compare the

performance of the GA with increasing rates of mutation. Mutation rates from 0.05 to 0.95

were considered. For each case, three GA runs were performed, with each run corresponding

to a different set of seeds used in the random number generator. A population of 100

individuals was used, steady-state replacement at the rate specified for each case, and the

GA was run for 800 generations. Roulette-wheel selection was used with random-point cross-

over using a cross-over probability of 0.9; and creep-jump mutation was used with a creep

factor of 0.10, a creep probability of 0.8, and the mutation probability specified in each case.

The results are summarized in Table 6.6. The optimal mutation rate appears to be 0.50,

which is higher than conventional wisdom would suggest; however, the results are far from

definitive, as it is difficult to ascertain a clear trend from the results.
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Table 6.6: Study of mutation rate

Test 1 fitness Test 2 fitness Test 3 fitness
Mutation rate Best Avg. Best Avg. Best Avg. Mean

0.05 0.374 0.374 0.483 0.483 0.298 0.298 0.385
0.10 0.628 0.626 0.477 0.472 0.464 0.454 0.523
0.15 0.735 0.732 0.425 0.419 0.498 0.496 0.553
0.20 0.364 0.362 0.438 0.433 0.413 0.412 0.405
0.25 0.312 0.310 0.993 0.957 0.593 0.588 0.632
0.50 0.615 0.606 0.850 0.831 1.064 1.024 0.843
0.75 0.480 0.456 0.581 0.557 0.727 0.621 0.596
0.95 1.163 1.054 0.440 0.398 0.542 0.486 0.715

The results from a study of the different types of mutation indicate that creep-jump mutation

is the best performer for the current application. Since the mutation is expressed as a

combination of creep and jump mutations, with a probability associated with each, a study of

these probabilities is necessary to determine the optimal setting. Three cases were considered,

with creep probabilities of 0.3, 0.5, and 0.8. The probability for jump mutation is the creep

probability subtracted from unity in each case. For each case, three GA runs were performed,

with each run corresponding to a different set of seeds used in the random number generator.

A population of 100 individuals was used, steady-state replacement at the rate specified for

each case, and the GA was run for 800 generations. Roulette-wheel selection was used with

random-point cross-over using a cross-over probability of 0.9; and creep-jump mutation was

used with a creep factor of 0.10, a creep probability of specified in each case, and a mutation

probability of 0.15. The results are summarized in Table 6.7. A clear trend can be seen from

the results, as the highest performance is associated with a creep probability of 0.3, and

decreasing performance as the creep probability increases. This seems to indicate that the

jump mutation is more important in the current application than the creep, likely indicating

that the local searchspace is effectively searched by the cross-over operator and the ability

to jump to a new area in the searchspace is more critical.
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Table 6.7: Study of creep probability

Test 1 fitness Test 2 fitness Test 3 fitness
Creep probability Best Avg. Best Avg. Best Avg. Mean

0.3 1.362 1.347 0.645 0.637 0.705 0.703 0.904
0.5 0.585 0.578 0.551 0.537 0.519 0.519 0.552
0.8 0.364 0.362 0.438 0.433 0.413 0.412 0.405

Another aspect of creep-jump mutation is the range of the local creep mutation. In the

current work this is expressed as a fraction of the original gene value, and is named the creep

factor. A study was done to determine the optimal value of the creep factor, and a range

of values from 0.005 to 0.2 was used. For each case, three GA runs were performed, with

each run corresponding to a different set of seeds used in the random number generator. A

population of 100 individuals was used, steady-state replacement at the rate specified for

each case, and the GA was run for 800 generations. Roulette-wheel selection was used with

random-point cross-over using a cross-over probability of 0.9; creep-jump mutation was used

with a creep factor specified, a creep probability of 0.8, and a mutation probability of 0.15.

The results, summarized in Table 6.8, indicate that a creep factor setting of 0.05 provides

optimal performance for the GA.

Table 6.8: Study of creep factor

Test 1 fitness Test 2 fitness Test 3 fitness
Creep factor Best Avg. Best Avg. Best Avg. Mean

0.005 0.592 0.592 0.232 0.229 0.481 0.481 0.435
0.01 0.513 0.513 0.265 0.265 0.310 0.309 0.363
0.05 1.373 1.373 0.321 0.318 0.438 0.438 0.711
0.1 0.834 0.834 0.530 0.530 0.446 0.444 0.603
0.2 0.513 0.513 0.409 0.407 0.404 0.404 0.442
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6.1.4 Optimal mirror depths

Once the optimal parameter settings for the GA were determined, the GA was applied

to the end-to-end radiometric model to aid in determining model parameter settings that

correspond to the optimal instrument performance. The GA was applied to the optical

and detector assembly models separately, with the objective function measuring the optical

performance and detector performance, respectively.

The initial study performed was to determine, for a two-mirror system with fixed mirror

vertices and mirror slice widths (Zv and a, respectively, as defined in Section 4.1), the values

of the mirror depths, c1 and c2, that result in optimal optical performance. In this example,

the optical performance is defined in terms of the size of the blur circle on the detector

surface and the optical throughput of the optical system.

The initial study considered a simplified optical system consisting of a forward baffle, a

primary mirror, a secondary mirror, a precision aperture, and the detector surface, as shown

in Figure 5.1. These components were isolated for study because they are the components in

the optical path of the incident energy bundles and they are the surfaces having the primary

impact on the optical performance. All other surfaces, such as the instrument housing,

spider, etc., have only a secondary effect on the optical performance. The initial study can

be viewed as a preliminary design, which can then be refined using the full optical model.

The GA was encoded with chromosomes containing two real values for the depths c1 and c2 of

the primary and secondary mirrors, as shown in Figure 4.2, and a third value A quantifying

the minor axis for the systems with elliptical mirrors. A Monte Carlo ray trace with 1000

energy bundles was used to provide approximate values for the blur circle diameter and the

optical throughput. These values were used in the objective function to provide a fitness

value for each chromosome. A study was done for each of the two-mirror systems described

in Section 2.2, with two GA runs performed for each system. A population of 100 individuals

was used with steady-state replacement at the rate of 10 replaced per generation, and the GA

was run for 800 generations. Roulette-wheel selection was used with random-point cross-over
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using a cross-over probability of 0.9; and creep-jump mutation was used with a creep factor

of 0.05 and a creep probability of 0.3, and a mutation probability of 0.25.

Table 6.9: Mirror depth study results

c1 c2 A Blur Optical Fitness
(mm) (mm) (mm) Circle Throughput

(mm)
Cassegrain Test 1 1.941 2.452 - 0.002 0.741 12494.9
Cassegrain Test 2 1.936 2.347 - 0.002 0.739 16476.1
Modified Cassegrain Test 1 1.323 0.388 - 0.107 0.669 238.3
Modified Cassegrain Test 2 1.121 0.136 - 0.050 0.565 507.4
Gregorian Test 1 1.949 0.931 10.59 0.090 0.351 281.6
Gregorian Test 2 1.494 0.412 4.52 0.047 0.304 544.3
Dall-Kirkham Test 1 1.253 0.311 36.90 0.038 0.406 660.6
Dall-Kirkham Test 2 1.483 0.824 31.45 0.149 0.465 170.9
Ritchey-Chrétian Test 1 0.565 0.046 - 0.246 0.118 103.2
Ritchey-Chrétian Test 2 0.837 0.681 - 1.257 0.096 20.2

The blur circle diamter, optical throughput, and resulting fitness values based on Equa-

tion 6.1 with equal weighting between the blur circle and optical throughput for all cases are

shown in Table 6.9. The resulting blur circle radius values attained were smaller than that

of the CERES telescope value of 0.04 mm for the Cassegrain system, were at approximately

the same level in at least one test for the modified Cassegrain, Gregorian, and Dall-Kirkham

systems, and were much poorer for the Ritchey-Chrétian systems. The poor values in the

Ritchey-Chrétian systems indicate the possibility that the search bounds were not properly

set or the presence of local minima which produce values for the blur circle much larger than

that of the global minimum.

The study was repeated, using the same optical parameters encoded on the chromosome,

but using the full optical model to evaluate the optical system as opposed to the simplified

model used in the previous study. The same settings were used for the GA, and the aggregate

objective function, Equation 6.1, was used to quantify the optical performance, with equal
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weighting between the blur circle and optical throughput. A Monte Carlo ray trace with 1000

energy bundles was used to evaluate the blur circle and optical throughput. The results are

tabulated in Table 6.10. The resulting blur circle radius values using the full optical model

were generally larger than those for the simplified model. This is due to the GA trying to

minimize the blur circle while maximizing the optical throughput, and the resulting values

represent the best compromise between the two outcomes. The optical throughput values

compared well with the optical throughput of the CERES instrument optical model using

nominal dimensions, which produces an optical throughput of 0.37. The blur circle of the

Cassegrain and Gregorian systems are equal or superior to that of the CERES model, the

modified Cassegrain had blur circles slightly inferior to that of the CERES model, and the

blur circle diameters of the Dall-Kirkham and Ritchey-Chrétian systems were much larger

than that of the CERES model.

Table 6.10: Mirror depth study results for full optical model

c1 c2 A Blur Optical Fitness
(mm) (mm) (mm) Circle Throughput

(mm)
Cassegrain Test 1 1.905 1.880 - 0.012 0.363 1.399
Cassegrain Test 2 1.880 1.651 - 0.021 0.31 0.618
Modified Cassegrain Test 1 1.372 0.483 - 0.142 0.3668 2.098
Modified Cassegrain Test 2 1.372 0.457 - 0.137 0.361 0.624
Gregorian Test 1 0.163 0.324 36.74 0.047 0.139 0.601
Gregorian Test 2 1.406 0.521 16.38 0.085 0.365 0.690
Dall-Kirkham Test 1 1.801 1.893 25.85 0.732 0.214 0.319
Dall-Kirkham Test 2 1.593 0.947 53.12 0.338 0.369 0.549
Ritchey-Chrétian Test 1 0.721 0.178 - 0.736 0.109 0.207
Ritchey-Chrétian Test 2 0.696 0.145 - 0.598 0.116 0.218
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6.2 Detector assembly system

A study was performed to determine the suitability of applying GA’s to optimize the per-

formance of the thermistor-bolometer detectors. The thickness of the paint, thermistor,

epoxy, and Kapton layers, of the detector were the detector parameters encoded into the

GA chromosome. The detector responsivity and time constant were used as measures of the

detector performance. The three-dimensional transient electrothermal model of the detec-

tor assembly was used to provide values of the responsivity and time response. A coarser

finite-difference discretization in the x-y direction was used to reduce computation time in

the GA environment. This can be justified by the fact that the heat transfer in the detector

is largely one-dimensional, with the two and three dimensional effects having little impact

on the responsivity and time response of the detector, and by the fact that the GA’s are

known to provide very good results with approximate function evaluations. The exposed

detector surface was represented by a 2 × 2 grid in the x-y direction, the epoxy, varnish,

thermistor, and Kapton layers were represented by a 4× 2 grid in the x-y direction, and the

aluminum substrate is represented by a 6× 4 grid in the x-y direction. The finite-difference

discretization in the z-direction is the same as the end-to-end CERES instrument model

described in Chapter 5.

A step input heat flux boundary condition equivalent to the instrument viewing a 359-K

blackbody source was applied, with 46.84 µW distributed over the detector surface according

to the distribution factors, which were calculated beforehand and read from an input file for

each model evaluation. The transient response of the instrument was calculated at each time

step of 1 ms for a total time of 200 ms, with the step input applied at 100 ms, giving the

detector system time to reach steady-state due to the electrical self-heating, and simulating

the instrument’s space-look. The voltage difference from the bridge circuit at 100 ms was

subtracted from the voltage difference at 200 ms, providing the voltage rise due to the step

input. This voltage was divided by the total power absorbed on the detector flake (46.84

µW) and the resulting value interpreted as the detector responsivity. The time constant used
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is defined as the time it takes from the moment the step input is applied for the instrument

output signal to rise to 63 percent of its steady-state value. Once the steady-state voltage of

the detector model was calculated, the signal history was searched to find the signal matching

63 percent of the output signal, and the time associated with that signal was recorded as

the time constant. Linear interpolation was used to calculate the time constant when the

voltage fell between two recorded values.

The GA used consisted of chromosomes with four genes, each representing one of the four

layer thicknesses under consideration. The objective function used was an aggregate function

quantifying the effects of both the responsivity and time constant by

Obj = w1

R

R̄
+ w2

τ̄

τ
(6.2)

In Equation 6.2 R̄ and τ̄ are reference values for responsivity and the time constant used to

normalize the two quantities in the aggregate objective function, and w1 and w2 are weighting

factors to vary the relative importance of responsivity and time constant in the objective

function. Values of 50 V/W and 10 ms were used for the responsivity and time constant,

respectively. Three studies were performed with weighting factors (w1, w2) of (0.5, 0.5),

(0.75, 0.25), and (0.25, 0.75). In each study, three cases were run using a population of 100

chromosomes for 800 generations using steady-state replacement at a rate of 10 individuals

per generation. Roulette-wheel selection was used with random-point cross-over using a

cross-over probability of 0.9; and creep-jump mutation was used with a creep factor of 0.05

and a creep probability of 0.5, and a mutation probability of 0.25. The maximum and

minimum allowable values for the individual layer thicknesses are given in Table 6.11. The

values for responsivity, time constant, and overall fitness for each case in the three studies

are given in Table 6.12.

In the first study, with the weighting factors equal at 0.50 each, the results tended towards

two very different sets of values, with one case converging on a set of layer thicknesses

resulting in a responsivity of 80 V/W and time constant of 14 ms, and the other two cases

converging on values resulting in a responsivity of approximately 26 V/W and time constant

123



Table 6.11: Maximum and minimum layer thickness values in GA search

Paint (µm) Thermistor (µm) Epoxy (µm) Kapton (µm)
Maximum 15.0 20.0 5.0 15.0
Minimum 5.0 10.0 0.1 5.0

Table 6.12: Study using genetic algorithms to find optimal layer thicknesses

w1 w2 GA Paint Thermistor Epoxy Kapton R τ Fitness
(−) (−) Run (µm) (µm) (µm) (µm) (V/W ) (ms) (−)
0.50 0.50 1 7.80 10.51 4.82 14.04 80.0 14.3 1.149
0.50 0.50 2 5.87 10.24 0.49 5.40 26.1 4.9 1.275
0.50 0.50 3 6.73 10.89 0.34 5.62 25.8 5.2 1.224
0.25 0.75 1 7.89 10.42 0.68 6.33 30.4 5.9 1.415
0.25 0.75 2 6.79 10.78 0.62 5.26 26.4 5.3 1.553
0.25 0.75 3 7.81 12.70 0.83 5.70 29.1 6.4 1.315
0.75 0.25 1 7.33 10.53 4.74 14.44 80.7 14.3 1.385
0.75 0.25 2 10.36 10.73 4.58 14.71 80.4 15.3 1.369
0.75 0.25 3 8.86 11.13 4.63 14.42 79.4 15.0 1.358

of approximately 5 ms. This indicates the possibility of two local maximae in the searchspace

that the GA population converges upon.

In the second study, the responsivity weighting factor and the time constant weighting

factor were assigned values of 0.25 and 0.75, respectively. The population converged on

layer thickness values that produced responsivity values ranging from 26 to 30 V/W and

time constants ranging from 5.3 to 6.4 ms. The average thickness over the three cases for

the paint layer was 7.5 µm, the average thermistor layer thickness was 11.3 µm, the average

epoxy layer thickness was 0.7 µm, and the average Kapton layer thickness was 5.8 µm. These

are all lower than the nominal thickness values for the CERES thermistor bolometer, which

has a time constant of approximately 9 ms.

In the third study, the responsivity weighting factor and the time constant weighting fac-
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tor were assigned values of 0.75 and 0.25, respectively. The population converged in layer

thickness values resulting in responsivity values of approximately 80 V/W and time constant

values ranging from 14.3 to 15.3 ms. The average thickness over the three cases for the paint

layer was 8.9 µm, the average thermistor layer thickness was 10.8 µm, the average epoxy

layer thickness was 4.7 µm, and the average Kapton layer thickness was 14.5 µm. The paint

and thermistor layer thicknesses were not significantly different from the previous study;

however, the thickness of the epoxy and Kapton layers is much greater than in the previous

study. This is because the responsivity is most sensitive to changes in these two layers, and

thus they saw the largest change when greater weighting was placed on the responsivity in

the objective function.

The results presented in this chapter indicate that the use of GA’s with high-level numerical

models is a viable method to assist in the design of radiometric systems. One important

result presented is that GA’s can be used with MCRT models emitting only a small number

of energy bundles, and still obtain optimal results. It had been believed that MCRT models

were too computationally expensive to be useful in iterative search algorithms, which was a

perceived limitation on their use that has been eliminated as a result of the present effort. It

has been established that GA’s can be used to find optimal optical configurations to optimize

the performance of radiometric optical systems by minimizing the size of the blur circle on

the detector while maximizing the optical throughput within the constraints of weighting

factors placed on these two objectives. GA’s were also used to vary the thickness and thermal

properties of materials in the thermistor bolometer electrothermal model to achieve a high

responsivity and small time constant.

The studies presented here are somewhat preliminary, in that they establish the viability

of GA’s as a radiometric instrument design tool. To achieve their full functionality, the

GA’s should be used with more complex radiometric system models, combining the optical

and electrothermal models with models estimating weight, cost, time-to-market, and other

performance parameters not discussed here. To achieve this, it seems likely that further effort

will be required to reduce the computational time of the models for use in a probabilistic
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environment such as GA’s.
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Chapter 7

Conclusions and Recommendations

7.1 Accomplishments and conclusions

The following accomplishments and conclusions can be drawn from the work presented in

this dissertation:

• A three-dimensional optical design tool based on the Monte Carlo ray-trace method was

developed to aid in the design and modeling of optical systems for use in radiometric

instruments. The tool allows the user to build up a generic optical system by selecting

one of five standard two-mirror configurations commonly used in space-based remote

sensing applications, and to define the optical system by entering the spatial and optical

characteristics that define the optical system.

• A three-dimensional transient electrothermal generic model of a thermistor bolometer

was developed to aid in the design and modeling of thermistor bolometer thermal

radiation detectors for radiometric applications. The model, based on the fully implicit

finite difference method, allows the user to specify all spatial, thermal, and electrical

properties, as well as the electronic components in the bridge circuit and amplifier

system.
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• The optical and electrothermal systems were integrated into a complete end-to-end

radiometric instrument modeling environment. The model simulates the instruments

dynamic optical and electrothermal response to produce the time-varying signal pro-

duced by the instrument based on specified spatially or temporally varying incident

radiation.

• The end-to-end model was benchmarked with performance data and previous models

of an operational CERES instrument total channel. A predicted responsivity of ap-

proximately 34 V/W and time constant of approximately 8 ms were achieved using

nominal values. Transient data was combined with parameter estimation techniques

to obtain layer thickness and thermal property values in the detector assembly that

resulted in a predicted responsivity of 62 V/W and a time constant of 10.4 ms, which

excactly matched the measured transient response. This establishes the validity of the

modeling environment for use in simulating other instruments and as a radiometric

design tool.

• Genetic algorithm (GA) search methods were combined with the optical and elec-

trothermal radiometric systems models to develop a radimetric instrument design tool.

The GA was used to determine the mirror slice depths for fixed mirror vertices and

width that produced the optimal optical system performance for the five different two-

mirror systems under consideration. In the limited studies presented, the GA provided

equivalent or superior results for simplified models than the as-built CERES instru-

ment in four out of the five cases. The results for the full models were not as satisfying,

with only one case providing equivalent results to the CERES optical system consis-

tently. This is likely due to the increased model complexity and limited computational

times used.

• Low-level system models, including surprisingly undersampled MCRT models, can be

used with GA’s to establish optimal designs, because of the GA’s ability to obtain

optimal search results with approximate function evaluations.
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• The use of GA’s with MCRT and finite-difference models to achieve the optimal design

of scanning radiometers has been demonstrated.

• The use GA’s, in concert with parameter estimation techniques, presents a viable

method to optimize model performance by determining the model parameters that

most closely match the performance of the model with the performance of the system

under study. This was demonstrated by determining the values for layer thickness,

thermal conductivity, and thermal capacity of a numerical electrothermal model of a

thermistor bolometer that matched nominal values of responsivity and time constant

of an actual thermistor bolometer fabricated for use on the CERES instrument.

7.2 Recommendations for future work

Further areas of investigation extending the current work include:

• Extend the optical modeling environment to include one-mirror and off-axis optical

systems

• Extend the detector modeling environment to include thermopile and pyroelectric de-

tectors.

• Develop a Windows-based graphical user interface to facilitate the ease of use of the

environment. While entering parameters via input files and text-based menus was

sufficient for the scope of the research presented here, a GUI interface would greatly

enhance the usability of the modeling environment.

• Pursue further work in incorporating genetic algorithms and other intelligent search

methods in radiometric design. Incorporating more complex design variables such as

accuracy of data produced, overall cost and weight, and spectral performance would

be an interesting area for further work.
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Nevárez, F., 2001,MCRT Design, Ph.D. Thesis, Virginia Polytechnic Institute and State

University.

135



Passwaters, J. O., 1976, Detailed thermal analysis of a thin-shell, spherical ra-

diometer in Earth orbit, M.S. Thesis, Virginia Polytechnic Institute and State Univer-

sity.

Pollock, D. D., 1985, Thermoelectricity, Theory, Thermometry, Tool, ASTM Special

Technical Publication, American Society for Testing and Materials, Philadelphia, PA.

Priestley, K. J., 1997, Use of First Principle Numerical Models to Enhance the

Understanding of the Operational Analysis of Space-Based Earth Radiation

Budget Instruments, Ph.D. Thesis, Virginia Polytechnic Institute and State University.

Rasnic, R. L., 1975, A thermal and kinematic study of a thin-wall spherical shell

satellite, M.S. Thesis, Virginia Polytechnic Institute and State University.

Richardson, J. T., Palmer, M. R., Liepins, G., and Hilliard, M., 1989, Some guidelines for

genetic algorithms with penalty functions, in: Proceedings of the Third International

Conference on Genetic Algorithms.

Sánchez, M. C., 1998, Optical Analysis of a Linear-Array Thermal Radiation De-

tector for Geostationary Earth Radiation Budget Applications, M.S. Thesis, Vir-

ginia Polytechnic Institute and State University.

Sánchez, M. C., 2002, Uncertainty and confidence intervals in Monte Carlo ray-

trace methods, Ph.D. Thesis, Virginia Polytechnic Institute and State University.

Sánchez, M. C., Mahan, J., Ayala, E. A., and Priestley, K. J., 1999, Tools for predicting

uncertainty and confidence intervals in radiometric data products, in: SPIE Proceedings,

International Symposium on Remote Sensing, Florence, Italy, Vol. 3840.

Sánchez, M. C., Mahan, J., Nevárez, F. J., and Priestley, K. J., 2000, Uncertainty and

confidence intervals in optical design using the Monte Carlo ray-trace method, in: SPIE

Proceedings, International Symposium on Remote Sensing, Barcelona, Spain,

Vol. 4169.

136
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