
FRONTEND FOR CYRANO META MODEL

by

Nikhil Samant

Report submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF INFORMATION SYSTEMS

APPROVED:

lJ. g-
Dr. William Frakes Dr. Emile Haddad

December 2, 1994

Falls Church, Virginia

5655
V95\

} AG <f

one

FRONTEND FOR CYRANO META MODEL

by

Nikhil Samant

Committee Chair: Dr. Csaba Egyhazy

Department of Computer Science

(ABSTRACT)

A frontend for new meta model Cyrano was designed and developed. Frontend

development concentrated on the query language specification and the translation of SQL

query to Cyrano representation.

The data models considered in the design included two relational, one object oriented,

one hierarchical and one network model. A sample SQL query was translated into derived

Cyrano classes to resolve the heterogeneity in database names and attribute names.

The prototype implementation included a lexical analyzer which recognized the

SQL tokens, a parser which validated the SQL grammar and a translator which translated a

SQL query into an equivalent Cyrano representation.

ACKNOWLEDGEMENT

A sincere thanks to Dr. Leonard Gallagher from National Institute of Standards and

Technology who send me his two papers on SQL3 for CALS application. These two papers

guided initial search for SQL3 documents.

Iam also grateful to Donald Deutsch from Sybase corporation for allowing me to

electronically download the drafts for the SQL2 and the SQL3 standard.

PAGE III

CONTENTS

CHAPTER 1. INTRODUCTION0..0 0.0.00. nee 1

CHAPTER 2. CYRANO META MODEL 2... 3

2.1. Federated Database Systems and Meta Model. 3

2.2. Cyrano Architecture... 00... 3

2.2.1. External Database.0 2020000000 ees 5

2.2.2. Gateway Database.0 00.0. ees 5

2.2.3. Federated Database.-..005. wee. 5

2.2.4. User Database.0 0 fee ee Loa. SD

2.3. Cyrano Classes a _— ok wee 6

2.3.1. Built-in Class. 2... eens 6

2.3.2. Gateway Class... 002. ees 6

2.3.3. Derived Class. 2.0.2.2 7

CHAPTER 3. FRONTEND FOR CYRANO2..52.00,0 eee 10

3.1 Problem Definition... 0.00000... 000. eee 10

3.2 Query Language and User Interface 0... ..0. 00000 11

3.3 Translation of Query to Cyrano Classes.............. 00 ...00000005 12

3.4 Problem Approach 0.00.00 cee 13

CHAPTER 4. SAMPLE QUERY TRANSLATION 14

4.1 Heterogeneity in the Schemata.00.0.0.0000 000 cee 14

4.2 Sample SQL Query 0.2... 0.00. nee 21

4.3 Translation of Sample Query to Cyrano Classes 21

PAGE IV

4.4 Rationale for Sample Query Translation0.0.00. 24

CHAPTER 5. FRONTEND PROTOTYPE0 00.0000 26

5.1 Parser... eee teens 26

5.2 Lexical Analyzer 2.6.0... ences 27

5.3 Cyrano Translator0 fee eee ee eee . 28

CHAPTER 6. FRONTEND IMPLEMENTATION0. 00005. 29

6.1 Parser Implementation 0.0.0.0... 0 ccc eee ee 29

6.2 Lexical Analyzer Implementation0 00.00.00 cee eee 30

6.3 Cyrano Translator Implementation .. . 30

CHAPTER 7. CONCLUSIONS . 33

Bibliography 2.0.0.0... 00 eens 34

Appendix A. Source Code00 (cee 35

PAGE V

LIST OF TABLES

Table 1. Lexical Analyzer Tokens

PAGE VI

 ,)

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

LIST OF FIGURES

Cyrano Architecture... 0.00.00 keene 4

Original BNF for Derived Cyrano Class0..0...000005- 9

Schema 1 Relational System0 6. ee ee 16

Schema 2 Relational System a 17

Schema 3 Object Oriented System a . 18

Schema 4 Hierarchical System ... «0... 2... eee ee 19

Schema 5 Network System be ee 20

PAGE VII

CHAPTER 1.

INTRODUCTION

A database system consists of a database management system (DBMS) and databases

built according to the DBMS's data model. A Federated database system is defined as a

collection of cooperating but autonomous component database systems. In federated

database systems, the component database management systems are integrated to various

degrees. The federated database management system (FDBMS) integrates the component

databases by controlling and coordinating the manipulation of these components.

A meta model for FDBMS is an integrating model that is capable of embracing the

essence of all underlying data models in the federation. Cyrano is a meta model for federated

database systems based on ideas from rule based and object oriented models. Cyrano sees the

world full of objects in external databases and groups them into classes of similar objects.

Cyrano resolves database heterogeneity by means of derived classes.

Roxanne is the core implementation of the Cyrano meta model which resolves the

heterogeneity. Roxanne can be considered as backend of Cyrano which processes the actual

query. Roxanne is being developed by another student working on his PhD. dissertation.

The purpose of this project was to suggest a suitable frontend for the Cyrano meta

model. A good frontend user interface with flexible query language, is a necessary

component of any database management system. This project primarily concentrates on the

data access component of frontend which involves mapping of the SQL queries into

appropriate Cyrano classes. The SQL is relational data language and Cyrano is object oriented

and rule based model, so a smooth translation from relational to object oriented and rule

based model is a key problem area of this project. This project also makes an attempt to

show that heterogeneity in names and attributes can be resolved more efficienty at the

fronend than at the backend.

PAGE 1

This report describes the design and implementation of the frontend to the Cyrano

meta model. The method adopted to translate the query into Cyrano classes, the rationale

behind the translation and the problems encountered are discussed in detail. Due to space

constraint only the relevant features of the Cyrano meta model are described here. The code

for the prototype is listed in the appendix A and is documented using the guidelines suggested

in [FRAKES].

PAGE 2

CHAPTER 2.

CYRANO META MODEL

The various aspects of the Cyrano meta model that are relevant to the design and

development of frontend are described here.

2.1. Federated Database Systems and Meta Model.

A federated database system is a collection of different database systems. A federated

system may have various databases systems with different database models, languages, and

services. Each database system in a federation can have a different data model. A meta model

is defined as a model behind the existing data models.

A meta model must be capable of encompassing the essence of all underlying data

models in the federation. Thus, it should be able to provide a mechanism for the temporary

storage of incompatible data and its associated semantics. Once these incompatible data sets

are retrieved, they are mapped into a common representation provided by the meta model.

Ideally, the meta model should be based on a theory that contains the theory of all the

underlying data models. In practice, most of the meta models for federated database systems

are either extended relational or object oriented.

2.2. Cyrano Architecture.

Cyrano is a new meta model that can be roughly classified as an object oriented data

model. It uses classes as a primary method of structuring the data and resolving

heterogeneity. It differs from the object oriented models in that objects of a class must satisfy

rules, as opposed to having same attributes. Like object oriented models, Cyrano

PAGE 3

encapsulates the implementation of data items within objects. Like rule based models, it

allows data items to be derived from other data items.

Cyrano has adopted an objected oriented architecture composed of multiple databases

arranged in hierarchy. Each of the databases in the hierarchy represents a degree of federation.

Figure 1 shows the architecture of Cyrano. Each database in Cyrano is differentiated based

on the transactions it processes and emphasizes the behavior instead of the structure. The

various databases are described next.

User User User

atabase atabase atabase

Database ee

| Gateway | Gateway | | Gateway
Database Database Database

External External

Database eal | (Beteral |

Figure 1. Cyrano Architecture

PAGE 4

2.2.1. External Database.

An External database is the real database with its own DBMS. An External database

could be a DBMS based on relational or object oriented or any other model. From the

External database's point of view, the FDBMS is seen as an application requesting the data

access.

2.2.2. Gateway Database.

The objective of the gateway database is to. translate the external database

representation into an equivalent representation using the meta model constructs. It serves

as a gateway between FDBMS and external database. It maps the FDBMS transactions to the

external database's own language and forwards them to external database. It also maps the

results of transaction back to the FDBMS format. Thus, gateway database provides

translations across all possible data models.

2.2.3. Federated Database.

A federated database is a federation of a set of multiple gateway databases. It breaks

the transactions into sub-transactions and sends them to appropriate gateway database. It also

combines the results of sub-transactions to make one result.

2.2.4. User Database.

A user database is a user's view of a database. The user database is not specific to the

Cyrano architecture and is analogous to views in relational model.

PAGE 5

The different databases, arranged in a hierarchy, provide a mechanism for translation

across the architectural layers which is a central problem in FDBMS.

2.3. Cyrano Classes

In object oriented models, classes are the primary mechanism of structuring data. The

class defines the attributes of objects. The objects are created by instantiating classes. Thus,

class precedes the object. The schema of object oriented database is formed by the collection

of classes and their inter-relation.

Cyrano presupposes a universe containing all possible objects with all possible

combinations of attributes. Cyrano classes group the similar objects by a set of defining rules.

All the objects that satisfy the rules become members of the class. Thus in Cyrano, object

precedes the class, a major departure from traditional notion of class and objects. Cyrano

supports three types of classes.

2.3.1. Built-in Class.

A Cyrano built-in object is one that is built into the implementation of Cyrano. A

built-in object is a member of built-in class. Examples of built in class are Integer and String.

2.3.2. Gateway Class.

An external object is one that is stored in the external database. A gateway class is a

gateway to the data stored in the external database. A gateway class provides the translation

of external database structure into the Cyrano model and is used by Cyrano backend

Roxanne.

PAGE 6

2.3.3 Derived Class.

A Cyrano derived object is one derived from other objects. A derived class groups the

derived objects. The derived class can also represent classification of known objects. Derived

classes is the mechanism by which Cyrano resolves the database heterogeneity. The rules of

the derived class can perform the necessary mapping between different data items.

In traditional object oriented models, the derived class inherits the attributes of the

parent class. In Cyrano, the class is a parent to a subclass only if the rules of the subclass

imply membership to the parent class. Derived classes are of importance to this project,

because they are used in query translation. The Cyrano query is an ad hoc class definition

which lists the rules that must be satisfied by external objects to match the query. The original

BNF for the derived class is shown in figure 2. This BNF is extended in the sample query

translation to accommodate different types of systems. An example of the derived class

"OVERSIZED BOX" is shown below.

/* FIRST DERIVATION */

CLASS BOX IS DERIVED WITH

/* SUPERCLASS */

SHAPES S:

WITH

/* METHODS */

INT HEIGHT = §S.HEIGHT;

INT BASE AREA= S.BASE AREA;

END;

END CLASS.

/* SECOND DERIVED CLASS DEFINITION */

CLASS OVERSIZED BOX IS DERIVED WITH

/* BASE OBJECT */

BOX B:

/* GUARD CONDITION */
B.HEIGHT > 36

WITH

PAGE 7

/* DERIVED METHOD */
INT BOX_VOLUME = B.HEIGHT * B.BASE AREA;

END;

ENDCLASS.

A derived class definition consists of one or more sets of derivation rules. Each

derivation rule starts with a list of objects and classes to which objects belong. These are the

base objects of derived class. In the example for "OVERSIZED BOX," the base object "B"

is the object of the class "BOX."

The second part of the derivation rule is the guard. The guard contains the rule that

must be satisfied by base objects before they can be used. In the rule, the name of the base

object can appear as free variables. The guard rule evaluates as true or false. If guard

evaluates as true, then all combinations of base objects matching the rules belong to the

derived class. In the above example, BOXES with "HEIGHT" greater that 36 inches can

serve as objects for the "OVERSIZED BOX" class.

The third part of the derivation is a derived method. A derived method is used to

satisfy a message to a derived object. The OVERSIZED BOX has a method

"BOX VOLUME" defined in terms of the BOX's "BASE AREA" and "HEIGHT"

attributes.

PAGE 8

<CLASS>

= "CLASS" <NAME>

"IS" "DERIVED" "WITH" <DERIVATION> ";"
"END" "CLASS" wee

<DERIVATION>
-: = <VARIABLE> {"," <VARIABLE>} ":'" {<GUARD VALUE>}

"WITH" {<DERIVED METHOD> ";"' }
"END"

<VARIABLE> :: = <CLASS NAME> <VAR NAME>

<CLASS NAME> :: = <NAME>

<VAR NAME> :: =<NAME>

<GUARD_VALUE> :; = <COMPLEX VALUE>

<COMPLEX VALUE>
::=<VAR_ NAME> ".""<NAME><COMP_OPERATOR> <VAR_NAME>"." <NAME>
| <VAR_NAME> ".""<NAME>{<COMP OPERATOR> <CONSTANT_VALUE>}

<COMP_OPERATOR> “= Wott | ton | ten | "INT | NM! ">=" Wout" |"LIKE"

<DERIVED METHOD> ~— ::=<CLASS NAME><VAR NAME> "=" <VALUE>

<VALUE>

-- =<VAR_ NAME> ".""<NAME> {<OPERATOR> <VAR_ NAME>"." <NAME>}
| _<CONSTANT_VALUE>

<CONSTANT _VALUE> — :: = <Quated_String> | <Integer> | <Character>

<OPERATOR> = ttytt | tron | thant | tv fit

Figure 2. Original BNF for Derived Cyrano Class

PAGE 9

CHAPTER 3.

FRONTEND FOR CYRANO

Frontend subsystems are defined by [DATE] as families of subsystems that reside

on top of DBMS and assist users in solving the problems of information management like

storing, accessing, manipulating, and presenting data. They are as important as the core of

DBMS because the user interacts with DBMS using these subsystems. Based on the type

of functions performed, frontend subsystems are primarily classified into four categories.

The four categories are:

° Data access components.

. Data presentation components.

° Application generation components.

° Other components

The data access component deals with the process of locating and retrieving the data.

Data presentation refers to the process of displaying data. Application generator allows users

to create applications without programming in the traditional sense. Other components

include the statistical packages, word processors etc. This project primarily concentrates on

the data access component of frontend systems and in particular on the query language. This

section first describes a problem definition for a Cyrano frontend and then discusses the

approach to solve the problem.

3.1 Problem Definition

The scope of Cyrano frontend development considered in this project is limited to

PAGE 10

the two key problems. The two problems are:

° Defining a query language and a user interface.

° Translating the query into Cyrano classes

These two problems are discussed in following sections.

3.2 Query Language and User Interface

The query language is a key component of any database management system. It

provides the mechanism for accessing and updating the underlying databases. The literature

search for various implementations of federated databases, clearly indicated two popular

choices for user interface.

° Query by forms.

° SQL language.

Query by forms though easy for the user to perform, has limitation as far as complex

queries are concerned. Also the forms have to be designed first before they can be used to

access data.

The SQL language has become the de facto standard for the relational DBMS world.

The ANSI standard for SQL 92 is already available and SQL3 work group is in progress. It

was felt that SQL, being the more accepted interface language between the two, should be

the query language of the Cyrano frontend .

PAGE 11

3.3 Translation of Query to Cyrano Classes.

The query translation problem was addressed step by step by noting the various

features of Cyrano. The key points in this process and the reasoning behind them are

described below.

The Cyrano derived classes are used for accessing the external objects and for

resolving the heterogeneity of underlying databases. So the query translation

primarily involves the creation of derived Cyrano classes corresponding to the SQL

query.

The derived Cyrano class is created by specifying the base objects and guard rule.

The base objects are objects that already exist in external databases. A base class is

an external class name that is referenced in the SQL query. So the database names

following the "FROM" keyword in SQL query can be used as base classes.

The Cyrano guard rule is used to select the objects belonging to derived class. Thus,

the guard rule defines the query conditions. The query condition in SQL is listed in

the "WHERE" clause, so the rule should match the "WHERE" clause. The guard

definition uses the messages from base classes.

Cyrano allows the creation of a derivation hierarchy which can be used for matching

the sub-queries. Many of the SQL queries can be written in nested sub-query form.

The example described in the next chapter uses this mechanism to create a hierarchy

of classes matching the query.

PAGE 12

° The set of derived query classes are passed to the Cyrano backend Roxanne for

actual processing of queries. The results of queries are returned to the frontend which

displays them.

Thus, the key component of the frontend development 1s the translation of the SQL

query into one or more derived Cyrano classes.

3.4 Problem Approach

Once the high level translation approach was clear, the next step was to create a

sample query and perform the manual translation of the query. A set of database schemata

was created by Professor Egyhazy for this purpose which was generic enough to

accommodate most of the existing data models supported by Cyrano. All the schemata were

for the same type of application and stored similar information in different formats.

Next step was to define a set of moderately complex queries. From this set, a query

which used all the databases was selected as a sample query. The query in simple English text

was transformed into SQL format. Then, one system was considered at a time and the sample

query was translated to correspond to that system's model. This involved a trial and error type

of a approach. Once all the models were translated, whole process was repeated to resolve

the problems encountered. The final translation revealed that the Cyrano class structure needs

to be extended to accommodate different systems.

The database schemata for various types of systems and the translation of sample

query are discussed in next chapter.

PAGE 13

CHAPTER 4.

SAMPLE QUERY TRANSLATION

The Database schemata are listed in figures 3 to figure 7. This set consists of two

relational schemata, one object oriented schema, one hierarchical schema, and one network

schema. Cyrano is able to support all the above mentioned data models. This section

describes the heterogeneity in the various schemata, the sample query, the sample query

translation and the rationale for the translation.

4.1 Heterogeneity in the Schemata.

The database considered in above schemata is STUDENT-COURSE type of database

which is used to keep track of courses taken by students and grade received.

Schema 1 shown in figure 3 is relational schema (hereafter referred as Schema 1

Relational) and has three databases) STUDENTS, COURSES, §$ and

STUDENT _TAKE COURSES. The primary keys are indicated at the bottom of each

database. Schema 2 shown in figure 4 is also relational (Schema 2 Relational) and is different

from Schema 1 Relational in database names and attribute names. For example, social

security number is referred to as "SS#" in Schema 1 Relational and "STUD_ID" in Schema

2 Relational. The attribute "NAME" is duplicate in STUDENTS and CLASSES databases

in Schema 2 Relational. In STUDENTS database it refers to student's name and in CLASSES

database it refers to course title.

These examples show that even if two databases are based on the same model they

could be heterogeneous because of difference in attribute and database names. Another kind

of heterogeneity present in these two databases is due to the difference in attribute types. For

example, GRADE attribute in Schema 1 Relational is NUMERIC while GRADE in Schema

PAGE 14

2 Relational is CHAR. The attribute type heterogeneity is resolved at the federated database

level. This falls outside the scope of this project.

The heterogeneity arising due to the difference in names is resolved in the frontend

translation as attributes and database names are specified in the query. It is more appropriate

to resolve it at the frontend level because the frontend can establish a dialog with the user in

case of doubt. For example, if user enters "SELECT NAME" and does not specify the

FROM clause, then query is ambiguous because the attribute" NAME" exists in two

databases (STUDENT and CLASSES) in Schema 2 Relational. In such a case the frontend

prompts the user saying that attribute name is ambiguous and the user needs to give more

information. Another advantage is that the frontend can validate the query before passing

to the backend.

Figure 5 shows the partial schema for STUDENT-COURSES databases in object

oriented format (Schema 3 Object Oriented). The three class definitions represent the object

oriented representation of schemata. The class COURSE STUDENT is derived from

COURSE class and STUDENT class. Figure 6 shows the hierarchical structure (Schema 4

Hierarchical) in IMS format and figure 7 shows the network structure(Schema 5 Network)

in IDMS format. The individual schemata are not discussed here as their syntax are not

relevant to this project.

PAGE 15

TABLE:STUDENTS

ATTRIBUTES

NAME

SS#
NAME
BIRTHDATE
SEX
PHONE

PRIMARY KEY (SS#)

TABLE:COURSES

ATTRIBUTES

NAME

INDEX

NUMBER

TITLE

PRIMARY KEY (INDEX)

TABLE:STUDENT TAKE COURSES
ATTRIBUTES

NAME

SS#

INDEX

GRADE

TYPE LENGTH

NUMERIC 9
CHAR 25

NUMERIC 6

CHAR 1

NUMERIC 10

TYPE LENGTH

NUMERIC 7

ALPHANUM 6

CHAR 25

TYPE LENGTH

NUMERIC 9

NUMERIC 7

NUMERIC 3

PRIMARY KEY (SS#, INDEX)

EXIST COND.

NOT NULL
NOT NULL

NULL

NULL

NULL

EXIST COND.

NOT NULL

NOT NULL

NULL

EXIST COND.

NOT NULL

NOT NULL

NOT NULL

Figure 3. Schema 1 Relational System

PAGE 16

TABLE:STUDENTS

ATTRIBUTES

NAME

STUD_ID
NAME
BIRTHDATE
SEX
ADDRESS

TYPE LENGTH EXIST COND.

NUMERIC 11 NOT NULL

CHAR 30 NOT NULL
NUMERIC 4 NULL

CHAR 6 NULL
ALPHANUM 35 NOT NULL

PRIMARY KEY (STUD ID)

TABLE:CLASSES

ATTRIBUTES

NAME

INDEX

COURSES
NAME

PRIMARY KEY (INDEX)

TYPE LENGTH EXIST COND.

NUMERIC 7 NOT NULL

ALPHANUM 6 NOT NULL

ALPHANUM 25 NULL

TABLE:CLASS_ ENROLLMENTS

ATTRIBUTES

NAME

STUD_ID
INDEX
GRADE

TYPE LENGTH EXIST COND.

NUMERIC 11 NOT NULL

NUMERIC 7 NOT NULL

CHAR 1 NULL

PRIMARY KEY (STUD_ID, INDEX)

Figure 4. Schema 2 Relational System

PAGE 17

define Type COURSE

attributes = {

INDEX : Identifier

NAME : optional String

}
methods = {

display: COURSE info

}

define Type STUDENT

attributes = {

STUD_ID : Identifier

NAME : optional String

BIRTHDATE : optional String
SEX : optional Character

ADDRESS _— :: required String

}
methods= {

display: STUDENT info

}

define Type COURSE STUDENTS

supertype= {STUDENTS}

supertype= {COURSE}
attributes = {

GRADE : required Character

}

methods = {

}
list: STUDENT'S in COURSE

Figure 5. Schema 3 Object Oriented System

PAGE 18

COURSE

COURSENUM TITLE

OFFERING

OFFNUM DATE LOCATION

STUDENT
STUDNUM NAME GRADE

HIERARCHICAL STRUCTURE SCHEMA

DBD

SEG

FIELD
FIELD

SEG

FIELD

FIELD

FIELD

SEG

FIELD

FIELD

FIELD D
m
o
O
o
V
A
N
I
A
N
A
W
N
E
 NAME=EDUCDDB

NAME=COURSE, BYTES=39
NAME=(COURSENUM, SEQ), BYTES=6,START=1
NAME=TITLE,BYTES 33,START 7
NAME=OFFERING, PARENT=COURSE, BYTES=25
NAME=(OFFNUM, SEQ), BYTES=7, START=1
NAME=DATE,BYTES=6,START=8
NAME=LOCATION, BYTES=12,START=14
NAME=STUDENT, PARENT=OFFERING, BYTES=37
NAME=(STUDNUM, SEQ), BYTES=6,START=1
NAME=NAME, BYTES=30,START=7
NAME=GRADE, BYTES=1,START=37

Figure 6. Schema 4 Hierarchical System

PAGE 19

OS
I
A
A
R
W
N
E

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

STUDENT

STUDID NAME ADDRESS

STUDENT-GRADES COURSE

 INDEXNUM TITLE DATE

GRADES COURSE-GRADES

GRADE

SCHEMA NAME IS GRADEEREPORT
RECORD NAME IS STUDENT
LOCATION MODE IS CALC USING STUDID DUPLICATES NOT ALLOWED

02 STUDID PIC xX(9)
02 NAME PIC (25)
02 ADDRESS PIC X(35)

RECORD NAME IS COURSE
LOCATION MODE IS CALC USING INDEXNUM

DUPLICATES NOT ALLOWED
02 INDEXNUM PIC X(7)
02 TITLE PIC (25)
02 DATE PIC X(6)

RECORD NAME IS GRADES
LOCATION MODE IS VIA STUDENT-GRADES SET

02 GRADE PIC X(1)
SET NAME IS STUDENT-GRADES
ORDER IS LAST
OWNER IS STUDENT
MEMBER IS GRADES MANDATORY AUTOMATIC
SET NAME IS COURSE-GRADES
ORDER IS SORTED
OWNER IS COURSE
MEMBER IS GRADES OPTIONAL MANUAL

Figure 7. Schema 5 Network System

PAGE 20

4.2 Sample SQL Query

The sample query is for Schema 1 Relational and it accesses all the three databases.

The query in English language and SQL form are shown below.

° QUERY

List social security number and name of all the students that are in course that has

"DATABASE" as one of the words in the title.

° SQL QUERY

SELECT SS#, NAME
FROM STUDENTS
WHERE SS# IN

(SELECT SS#
FROM STUDENTS TAKE. COURSES
WHERE INDEX IN

(SELECT INDEX
FROM COURSES
WHERE TITLE LIKE '%DATABASE%')))

The query was arranged in sub-query format as it leads to easier translation as discussed in

section 3.3.

4.3 Translation of Sample Query to Cyrano Classes

/* Corresponds to the innermost sub-query. */

CLASS INNER_1 IS DERIVED WITH

/* Base objects. Resolve database name heterogeneity */

COURSES A OR = /*Schema 1 Relational */

PAGE 21

CLASSES B OR /*Schema 2 Relational */

COURSE C OR = /*Schema 3 Object oriented */

COURSE D OR = /*Schema 4 Hierarchical */

COURSE E /*Schema 5 Network */

/* Guard Rule. Resolve attribute name heterogeneity. */

A. TITLE OR
B.NAME OR

C.NAME OR

D.TITLE OR

E.TITLE

/* The query condition in WHERE clause. */
LIKE "*DATABASE%"
WITH

END;
ENDCLASS.

/* Derived method. */
INT INDEX = A.INDEX OR

B.INDEX OR

C.INDEX OR

D.COURSENUM OR

E.INDEXNUM ;

/* Corresponds to second innermost sub-query. */
CLASS INNER_2 IS DERIVED WITH

/* First derivation */

STUDENT _TAKE COURSES A OR
CLASS ENROLLMENTS B OR
COURSE-STUDENTS C OR
OFFERING D OR
GRADES E ,
INNER_ 1 F /* Derivation from INNER_1 */

A.INDEX OR
B.INDEX OR
C.COURSE.INDEX OR
D.NIL OR /* Hierarchical system needs no

further mapping. */
E.MEMBER(COURSE) /*Network Schema */

PAGE 22

IN

F INDEX

WITH

/* Derived Method. */

INT SS# =

A.SS# OR
B.STUD_ID OR

C.STUDENT.STUD_ID OR

D.NIL OR

E.OWNER(GRADE) ;

END;

ENDCLASS.

/* The outermost sub-query translation. */

CLASS OUTER IS DERIVED WITH

/* First derivation */

STUDENTS A OR
STUDENTS B OR
STUDENT C OR

STUDENT D OR

STUDENT E
INNER 2 F /* Derivation from INNER 2 */

A.SS# OR
B.STUD_ID OR
C.STUD_ID OR
D.NIL OR
E.MEMBER(STUDENT)

IN
F.SS#

WITH

/* Derived methods corresponding to SELECT clause */
INT SS# =

A.SS# OR
B.STUD_ID OR
C.STUD_ID OR
D.STUDNUM OR
E.STUDID ;

STRING NAME =

PAGE 23

A.NAME OR
B.NAME OR

C.NAME OR

D.NAME OR

E.NAME ;

END;

ENDCLASS.

4.4 Rationale for Sample Query Translation

In the sample query translation, each derived class corresponds to the sub-query

specified in the SQL format. The translation starts from the innermost query and proceeds

outward till the outermost sub-query is translated. The class derived in the inner sub-query

is used in the derivation of the outer query. The set of classes generated during this process

is the Cyrano representation of the query.

The first class INNER_1 translates innermost sub-query. The base object is the

COURSES database with the rule matching condition specified in the "WHERE" part. The

COURSES database has different names in different schemata so an "OR" clause is used to

resolve the difference in names of base object. Here the key assumption is that the query

translator has access to the federated schema mapping. Such a schema mapping would

indicate that names such as COURSES, CLASSES, COURSE are synonyms as far as

FDBMS is concerned as they correspond to similar databases in underlying DBMSs. A similar

mapping is assumed for attribute names which shows that TITLE in Schema 1 Relational is

same as NAME in Schema 3 Object Oriented. Such interface is assumed to exist.

The class INNER _2 is an example of multiple derivation and is derived from class

INNER_1 and STUDENT_TAKE COURSES database. This class corresponds to the

second innermost sub-query in SQL format. The guard rule for this class joins a base class and

the class INNER_1 derived earlier. The method part of this class defines the variable SS#

which is used to store the social security number for the objects that belong to this class. The

type "INT" for the SS# variable is assumed to be known. The rule in INNER 2 has "NIL"

PAGE 24

for Schema 4 Hierarchical because once COURSENUM 1s identified, all the underlying

OFFERING records are accessible in the hierarchical database. Similarly, the rule for Schema

5 Network has term MEMBER(COURSE). This indicates a link corresponding to

MEMBER for this record. The member can be located by accessing the COURSE GRADE

set. Cyrano backend will have to be intelligent enough to infer such meanings. The method

part for Schema 5 Network shows a similar OWNER term which indicates the owner link

corresponding to the GRADE record. This part of the translation is not easy enough and

needs to be redesigned based on backend implementation. This shows that the translation for

non relational or non object oriented system is not easy. The primary reason for this is that,

Cyrano is object oriented and the query interface is relational.

The class OUTER is derived from class INNER_2 and the STUDENTS base class.

The class OUTER corresponds to the outermost SQL sub-query. The guard rule performs

the join of two classes. The derived method defines two variables corresponding to the

"SELECT" clause. These two variables specify the expected output (SS# and NAME) of the

query.

PAGE 25

CHAPTER 5.

FRONTEND PROTOTYPE

The prototype primarily concentrated on the query translation part of frontend, rather

than user interface. To provide the proof of concept, the prototype development limited itself

to the query described in the previous section. The prototype design is divided into three

parts.

° Parser.

° Lexical Analyzer.

° Cyrano Translator.

Each of these parts is discussed next.

5.1 Parser

The grammar for the SQL supported by the prototype is as shown below:

1. expression = ----->_|-

| sel term from_term where_term

2. Sel term ---=- > SELECT s term sel_term'

3. sel term’ —----- > ,s term sel _term'
| €

4. from_term ----- > FROM s term

J. where term ----- > WHERE s term comp_term where term’

6. where term’ ----- > (expression)

| S term

7. S term = ==--- > VALID TERM

8. comp term -----> VALID COMP _TERM

PAGE 26

The production 1 shows the basic SQL expression of SELECT-FROM-WHERE type. This

basic expression is the core of the sub-query. Production 2 and 3 show the format of

SELECT clause. Select clause has keyword SELECT followed by attribute s_ term. Multiple

attributes can be specified in select clause each separated by comma. Production 4 describes

the FROM clause. For simplicity the FROM clause accepts only one database name but it can

be easily extended. Production 5 and 6 show the WHERE clause. The WHERE clause has

two formats. One format allows the comparison of two terms. The second format allows to

write nested sub-queries. A sub-query is similar to the query and is an expression of type

SELECT-FROM-WHERE. The grammar described here is sufficient to evaluate the sample

query described earlier.

5.2 Lexical Analyzer

The lexical analyzer for the prototype recognizes the tokens shown in table 1.

TABLE 1. Lexical Analyzer Tokens

Tokens Lexemes Description

S_ TERM [a-zA-Z0-9]," ", "'",""") | A word with valid letters

nN Hope

COMP TERM <,>,=, IN, LIKE A comparison term

SEP_TERM A Comma separator

LFT PAR TERM (Left parenthesis

RGT PAR TERM) Right parenthesis

SELECT TERM SELECT Key word

FROM_TERM FROM Key word

WHERE TERM WHERE Key word

EOI NULL End of input

PAGE 27

The "SPACE " is used as white space character. The input string is scanned till a valid

token is detected or a white space is encountered. The term collected is classified into

appropriate token.

5.3 Cyrano Translator

The Cyrano translator translates the sample query into Cyrano classes which are

saved in text format in a output file. The translator is divided into various functions that use

the terms gathered by the parser. It then generates the various parts of derived Cyrano class.

The translator does not have the data dictionary interface, so it does not validate the database

names. The translator has a built-in table which stores the data type of attributes specified in

the sample query. For example, the data type of attribute TITLE is " STRING" and is stored

in the built-in table.

PAGE 28

CHAPTER 6.

FRONTEND IMPLEMENTATION

This section discusses some of the key implementation details at a higher level. The

code is listed in the appendix. The Cyrano backend Roxanne is being developed in Borland

C+. In order to facilitate easy merging, it was decided to use Borland C++ for the frontend.

The Borland C++ version 3.0 compiler running under DOS was used to build the prototype.

The code for the lexical analyzer and the parser for the prototype were reused from the

[HOLUB]. It was modified to suit the frontend design. The code was documented using the

guidelines from [FRAKES].

6.1 Parser Implementation

The parser is a primitive recursive descent expression parser and is listed in the

CYR_GRA.C file. Each subroutine in the parser code corresponds to the left hand side of

the grammar specified in last section. For example, the production

from term ----- > FROM s term

is implemented as

void from_term(char * fr_term)

{

if (match(FROM_TERM) {

advance();

sterm(fr_term);

PAGE 29

Some of the functions in the parser, such as where_term are recursive and allow the nested

sub-queries to be processed. In order to support the recursion, the variables used in these

functions are automatic variables so that they are allocated on the stack. The parser validates

the input and if the input does not match the grammar then it rejects the query.

In addition to validating the input, the parser acts as a term collector. The various

terms in SQL clauses such as database names are collected by the parser. The expression is

the highest level parser function and it has arrays to collect the terms. The expression being

recursive, the local arrays are allocated each time a nested expression is encountered. The

pointers to the term collecting arrays are passed as function arguments to lower level parser

functions. These arrays are used by the Cyrano translator to generate the derived classes.

6.2 Lexical Analyzer Implementation

The lexical analyzer is listed in the CYR_LEX.C file. The token identification is

performed at two levels. First a single character is analyzed to see if it is a valid token. The

example of single character token is "=" or ">" character. If the character is not a token

then input is processed until a white space is encountered and the complete term is collected.

The term collected is then compared with valid keywords and if matched, the

corresponding token is returned. The lexical analyzer is implemented in a single function.

6.3 Cyrano Translator

The Cyrano translator uses the terms collected by parser to create the Cyrano classes.

The Cyrano translator is a collection of functions which generate the derived Cyrano classes.

The translator is invoked only if the parser does not detect an error. The prototype translator

generates Cyrano classes in ASCII text format and writes the complete set of classes into a

file "OUT_FILE". The classes generated can be viewed by displaying output file.

PAGE 30

The translator generates the derived class names automatically. The first class

generated’ is named "CL 0", and second class generated is named "CL_1" etc. The internal

counter "class no" is used to generate the names and is incremented after each class

generation. The translator also uses an internal character array to generate the base object

names. The base object names are single character and increase in alphabetical order. For

example, the first base object corresponding to the COURSES database is named as ‘A’.

The built-in data dictionary in the prototype stores the data types for the attributes.

The prototype does not have any mapping of the databases under different systems. As a

result the prototype generates the output for only one type of database. The output generated

by prototype for the sample query is shown below.

CLASS CL_0IS DERIVED WITH

COURSES A: A. TITLE LIKE "%DATABASE%"

WITH

INT INDEX = A.INDEX

END

ENDCLASS

CLASS CL_1 IS DERIVED WITH

STUDENTS_TAKE COURSES B, CL_0C: BINDEX = C.INDEX

WITH

INT SS# = B.SS#

END

ENDCLASS

PAGE 31

CLASS CL _2 IS DERIVED WITH

STUDENTS D, CL_1E: D.SS# = E.SS#

WITH

INT SS# = D.SS#

END

ENDCLASS

PAGE 32

CHAPTER 7.

CONCLUSIONS

A good user interface with a strong query language is a necessary component of any

database management system. The SQL is standard for commercial relational databases and

has a large following of users. So the choice of SQL as the query language for Cyrano

appears to be quite appropriate.

Cyrano supports relational, network, hierarchical, object oriented and rule based

families of data models. For relational or object oriented systems the query translation is

simple. However, the query translation for hierarchical or network system is complex, as

shown in the sample query translation in this paper. More research is required to refine the

translation. Also more complex queries involving multiple databases should be translated.

The sample query translation gives a proof of concept to map relational queries into

object oriented and rule based Cyrano representations. The prototype can be looked as a

demonstration of the feasibility of the concept. The heterogeneity in database and attribute

names can be efficiently resolved at the frontend level by use of an "OR" clause. This

project demonstrates that, a user interface based on SQL is a feasible option for specifying

a derived class (1.e. a query) in the Cyarno.

The prototype implementation can be extended in many ways. The lexical analyzer can

be replaced with the lex and the parser with the yacc. The grammar can be extended to

provide full support to the SQL data manipulation language. The user interface can be

upgraded to WINDOWS platform. Finally, the output of the Cyrano frontend can be linked

to the backend Roxanne, so that a user can execute real queries.

PAGE 33

BIBLIOGRAPHY

Ahmed R.., et al, The Pegasus Heterogenous Multidatabase System, Computer, Vol 24, NO

12, December, 1991, p. 19-27

Breitbart Y., Olson P. L., and Thompson G. R., Database Integration in a Distributed

Heterogenous Database System, Proceedings of the International Conference on

Database Engineering, IEEE, Washington DC, 1986, p.301-310

Chung C., DATAPLEX: An access to Heterogenous Distributed Databases, Communications

of the ACM, Vol 33, No 1, January, 1990, p. 70-80

Date C. J.,An_Introduction to Database Systems Vol. I, Addison-Wesley Publishing

Company, New York, 1991

Dzikiewicz Joseph, Csaba Egyhazy,_ Cyrano : A Meta Model for Federated Database Systems,

Doctoral dissertation in progress, Virginia Polytechnic and State University, VA 1994

Frakes William, Fox Christopher, Nejmeh Brian, Software Engineering in the Unix/C

environment, Prentice Hall, Englewood Cliffs, New Jersey, 1991

Holub Allen, Compiler Design in C, Prentice Hall Englewood Cliffs, New Jersey, 1990

Ram S., Heterogenous Distributed D tems, Computer, Vol 24, No 12, December,

1991, p. 7-11

Shipman D., The Functional Data Model and the Data Language DAPLEX, ACM

Transactions on Database Systems, Vol 6, NO 1, March, 1981 p. 140-173

Thomas G, Thompson G.R., Chung C.W, Barkmeyer E., Carter F., Templeton M., Fox

S.,Hartman B., Heterogenous Distributed database Systems for Production Use,

ACM Computing Surveys, Vol 22, No 3, September, 1990, p. 237-266

PAGE 34

APPENDIX A - SOURCE CODE

[PERK KKK HEH KK KKK Cyrano.h 2H ee fe ie ie he ie 2K ie 2 i ie ic ee 2 afc 2k oie ie aie 2c 2 2k 2k 2K 2 OK ok ok ok

Purpose : To define the constants used in Cyrano Frontend.

History :

Date Name Comment

10/15/94 NSamant Created the header file.

A A HH He He He He He He He ee HR KE EE ER KK KKK KK KK /

[EE EK KE KK EE Public Definition 1 A ek eK KK A KK /

#define FALSE 0
#define TRUE 1

[FA A A eK Enumeration constants for tokens HF ee ee eK /

enum token_type {

EOI, /* End of input */

S_TERM, /* A valid term */
SELECT TERM, /* SELECT keyword */
FROM_TERM, /* FROM keyword */

WHERE_TERM, /* WHERE keyword */
COMP_TERM, /* Comparison term >,= etc. */

LFT PAR _ TERM, /* Left brace */
RGT_PAR_TERM, /* Right brace */
SEP_TERM /* A separator term "," */

};

[REAR A KKK KE EAE AE Data Dictionary structure 7 ee ee ee 2 2 2 2 ee He OK /

typedef struct {

char * attrib_name; /* Attribute name */
char * attrib_type; /* Attribute Structure */

} DATA DICT REC:

[RRR RRR KR KK KK KKK End of Cyrano.h 2 oe ee oe ee ek EE KK KK /

PAGE 35

[BERR EE KK KKK KK KK cyr_lex.c oie ie 2 oe 2k 2k 2 oie ie 2K ce 2K 2 ee 2K oe ok ok ek Kk KK

Purpose: Parse the input and match the terms to token.

Notes : This module contains a lexical analyzer. The lexical

analyzer scans the input string for valid tokens.

The token is returned to parser. The term is stored

in global variable cur_lexme.

History:

Date Name Comment

10/15/94 NSamant Created the file.
7 eee He ee ee ee ee ee He ee ee ee ee ee ee ee ee 2 ee ee Ae ee EE A EE /

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <string.h>

#include "cyrano.h" /* Frontend specific definitions */

[78 RE EK KK KKK Private variables ERK RK HK KK EK EK KK /

static char *yytext = ""; /* Keeps track of current lexeme */
static int yylength =0; /* No of characters in lexeme */

[8 FH EH HH KK Private functions 2 ee ee ae ee 2 2 2 A /

static int is_valid_char(int c);

[7 ER HH KK KK KK KK Public variables 7 ee Ae Ae ee ke ek EK EE EE EF /

extern char input_buffer[256]; /* Input buffer */

char cur_lexeme[32]; /* The current valid term */

[788 RR KK KK Public functions Fe He ee ee ae ee 2 Ee /

int cyr_lex(void);

[78 HR KE KKK KKK Private functions A A Ae He He He He He 2 2 RE EK KK /

[FE AR A A A A A HH Ee He HE HH ee A A I I KE KK

is valid char(int c)

PAGE 36

Returns : int

Purpose : Check if c is valid character.

Plan: C is valid if ('', \"" '#, '%', ‘\W")

or a alphanumeric character.

Notes : None
7 He He ee ee He He He He ee ee ee ee He He ee He He He A ee ee He ee He ee Ae 2 ee ee a ek A /

static int is_valid_char(int c)

{

if (c — Vi | q==\" | c== '#! | c == yy! || c¢== \")

return(TRUE);

else

return(isalnum(c));

}

[FH EE KKK KK Public functions EE A Ae He a ee EE KK /

[AE AE Ae A ee ee A Ae ee He ee ee ee ee A ee Hee ee ee ee 2 2 A KK

cyr_lex(void)

Returns : int

Purpose : To classify the terms into different tokens.

Also copies the term into global variable cur_lexeme.

Plan: Skip all the blanks.

Check the next character.

If it is token character then return token.

If not, get the full term.

Match the term and return the token.

Notes : None
7H He ee He ee 2 2 A A AE A hee He ee He 2 2 2 A A i ee ee eee ee ee EH A eK HK /

int cyr_lex(void)

{

char * current; /* Pointer to the current character */

static first_ time = 1; /* Flag to indicate first time function is called */

PAGE 37

/* Initialize current to current location in input buffer. */

current = yytext + yylength;

memset(cur_lexeme,0,32);

/*Tf first time set current to input buffer and set flag false. */
if(first_time) {

current = input_ buffer;
first_time = 0;

}

/* If end of input */

if(!*current)
return(EOD);

while(isspace(*current)) /* Skip spaces. */
++current;

for(;*current;++current) {

yytext = current;
yylength = 1;

/* Copy the character into cur_lexeme. */

cur_lexeme[0] = *current;

cur_lexeme[1] = ‘\0';

switch(*current) { /* First check character. */

case ‘\0': return EOT;

case '=': return COMP_TERM;

case '>' : return COMP _TERM;

case '<' : return COMP_TERM;

case '(': return LFT PAR TERM;

case ')' : return RGT_ PAR TERM;
case ',': return SEP_TERM;

case ‘\n': return EOT;

case ‘\t':

case '': break;

default: /* Not a character token. */

/* Check if valid characters in term */

if(!is_valid_char(*current))

PAGE 38

printf("Ignoring invalid characters\n");

else {

/* Collect the term till valid character. */

while(is_valid_char(*current))
++current;

yylength = current - yytext;

/* Copy the term into cur_lexeme. */
strncpy(cur_lexeme,yytext,yylength);

/* Check if term is a keyword.
* If yes then return the token.

*/
if(!stremp(cur_lexeme,"SELECT"))

return(SELECT_TERM);

else if (!strcemp(cur_lexeme,"FROM"))
return(FROM_TERM);

else if(!stremp(cur_lexeme,"WHERE"))

return(WHERE TERM);

else if(!stremp(cur_lexeme,"IN"))

return(COMP_ TERM);

else if(!strcmp(cur_lexeme,"LIKE"))

return(COMP_ TERM);

else

/* Otherwise a regular term. */
return(S_TERM);

}
break;

5
}

/* If we reach here then its end of input. */

return(EOI);

}

PAGE 39

[PR RRK KKK K EKER EEE K cyr cls.c 2he 28 2K ae oe ie oie oe ie fe 2k ok ie 2 2k ce 2 2 ok ie 2k 2k ok ok kk ok ok

Purpose: This module contains routines for Cyrano translator.

Notes : The set of routines create derived Cyrano classes and

write them to a text file named OUT_FILE.

History:

Date Name Comment

11/01/94. NSamant Created the file.
2 KK Ke 2 2 2K KK KK ok ke oe Ke ke 2 oe 2c 2 ke 2 OK 2K OK 2 3K 2c 2 KE oie ik eo 2 oe ok oko 2 2K OK 2k 2k 2 2 2 2K 2 2K 2K KK 2K ok ie ok 2k 2K OK ok kK KK OK KKK KK

/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "cyrano.h" /* Frontend specific definitions */

[FH KK EE KK EE Private variables 7 ee Ae ee ee 2 2 ee Oe EK /

/* The names for base class are single characters. */

static char class_char[26] = { 'A’,'B','C','D','E;, F','G’,'H’,
T'S)'K' LM) 'N''O','P',

‘Qh RSS) TEU VS Wh xX

"'Y''Z'

};

/* Stores the attribute name and data type. Simulates data dictionary.

* The last element MUST be NULL as search routine uses it to terminate

* the loop.

*/

static DATA DICT REC data dictionary[100]= {
{"SS#" ; "INT"}, {"NAME", "STRING"},

{"BIRTHDATE", "INT"}, {"SEX", "CHAR"},

{"PHONE", "INT"}, {"INDEX", "INT"},

{"NUMBER", "STRING"},{"TITLE", "STRING"},

{NULL, NULL}

};

PAGE 40

static class _char_p = -1; /* Used to name base class */

static int class no=0; /* Used to create the derived class name */

static FILE * rox_file; /* OUT_FILE pointer */

[RK KH KH KK KE Private functions Hee He ee ee ee ee eB /

static char * find_attr_type(char * attrib_name);

[FE Public variables 28 8 He ee He 2 2 2 RE HK KK /

[A a ee He eK KH Public functions He ee ee 2 ke ie he ae oe 2 ee 2 2 2 /

void init_op_file(void);

void close_op_file(void);

void wr_class_name(void);

void wr_base_names(char * from_term);

void wr_guard_rule(char * whl_term, char *wh_comp_term, char * wh2_ term);

void wr_methods(char * sel_ term);
void wr_end_class(void);

[7 KK RE KK Private functions 2 ee ee ee A 2 HK HE /

[7 He ee ee ee He He He ee He ee ee ee ee He He ee ee ke eee 2 ee ee ee ee ee ee ee ee 2 A kK

find_attr_type(char * attrib name)

Returns : char *

Purpose : find the data type of attribute.

Plan: Loop through data dictionary array till attribute

name is matched or NULL is found.

Notes :; Data dictionary must have last element as NULL
otherwise loop will never end in case there is no match.

2 He Re He ee ae He ee 2 2 eee Ae ee He He ee He 2 ee 2 2 2 ee Ae He ee He He ee ee eee 2 2 2 Re Ae ee 2 2 2 EE EK /

char * find_attr_type(char * attrib_ name)

{
int index = 0; /*Index into data dictionary array */

while ((stremp(data_dictionary[index].attrib_name,attrib_name)) &&

data_dictionary[index].attrib_ name |= NULL)

index++;

/*Return NULL or matching data type */

PAGE 41

return(data_dictionary[index].attrib_ type);

}

[RK KK KK KKK EE EEE Public functions 8 8 ee Ae ae 2 He 2 2 2 EE /

[9 He He He He He He ee ee ee ee ee 2 He ee He He ee ie i ee ee He ee ee ee 2 2 2 ee a a kk ke

wr_class_name(void)

Returns : void

Purpose : To create a new base class name.

Plan : Use a standard prefix "CL_".

Append the class_no in string format to "CL_".

Increment the class_no.

Notes : None
Me 2 ee ee ee fe ee fe He ee ee a ee ee He He He He He ee ke ee ee ee ie fe ee ee ee A 2 He He Ee KE

void wr_class_name(void)

{
char temp_buf][40];

fprintf(rox_file,"\n");

sprintf{temp_buf,"CLASS CL_%d IS DERIVED WITH\n",class_no);
fprintf(rox_file,temp_buf);

class _no++;

}
[eH He He He He He He He ee ee ee He Ee ee ee ee 2 ee KK

wr_base_names(char * from_term)

Returns : void

Purpose : To create a base object and base class

Plan: Use the class_char array to create base object

name and use database name as base class.

Use the term following FROM keyword.

Notes : None
2H ie ee He He ee 28 2 ee ee ee He He ee ee 2 2 ee ee ee ee he ie he ee eee 2 2 ee 2 ee ie ke ke ee 2 8 8 a A /

void wr_base_names(char * from_term)

{
/* Print the first base object and base class name.

PAGE 42

* The base class is same as database name.

*/

class_char_pt++;

fprintf(rox_file,"\tY%os Yc", from_term,class_char[class_char_p]);

/* If more than one class then print other base class. */
if(class_no > 1) {

class _char_pt+;

/* Print the second base object and base class name.

* The base class is a class already derived.

*/

fprintf(rox_file,", CL_%d %c",(class_no-2),

class_char[class_char_p]);

}
/* Print the guard separator */

fprintf(rox_file," :");

}

[96 EE A He He ee He ee ee He He HH HK ER EH KKK KK KK AK KE

wr_guard rule(char * whl_term First WHERE term

char * wh_comp_term Comparison term

char * wh2_term Second WHERE term

)

Returns : void

Purpose : To create the guard rule condition.

Plan: The guard rule condition is same as WHERE clause

for innermost class. The guard rule for other classes
use method of previously derived class.

Notes : None
2H ee ee A ee 2 ae He ee 2 ee eee he ee ee ee ee 2 2 ee He ee eee 2 2 ie ee 28 2 ee ee 2 ee 2 Ee a oe EE /

void wr_guard_rule(char * whl_term, char *wh_comp_term, char * wh2_term)

{
/* Rule for innermost class is same as WHERE clause. */

if(class_no < 2)

fprintf(rox_file,” Yoc.%s %os %s\n",class_char[class_char_p], whl_term,

wh_comp_term, wh2_term);

PAGE 43

else

/* Rule for other classes include method of previously
* derived class.
*/
fprintf{rox_file," Yoc.%s = %c.%s\n",class_char[class_char_p -1],

whl _term,class_char[class char_p],whl_term);

}
[96 ee ee He He He He He ee ee He HH A He He He He He ee A ee He ee ee ee ee OR EE KE

wr_methods(void)

Returns : void

Purpose : To create a method for derived class

Plan: Use the SELECT term in method.
Find the matching data type.

Notes : None
He He Hee 2 ee he ee ee 2 2 Ae kee 2 ee fe fe e282 ie he ee i ie fe ee 2 ee ie ee 2 ee ee 2 2 ie ie he eee ee 2 2 ee 2 eH /

void wr_methods(char * sel_ term)

{
char * var_type;

/* Find the matching data type for attribute. */

if ((var_type = find_attr_type(sel_term)) == NULL) {

printf(""No matching attribute type for “%s in data dictionary\n",

sel_term);
var_type = "UNDEFINED";

3

/* For first derived class use same base object. For others

* use previous object name.

*/
fprintf(rox_file,"WITH\n");

if(class_no < 2)

fprintf(rox_file,"\tYos %s = Yoc.%s;\n",var_type,sel_term,

class_char[class_char_p],sel_term);

else
fprintf(rox_file,"\t%s Yos = Y%oc.%s;\n",var_type,sel_ term,

PAGE 44

class_char[class_char_p-1],sel_term);

}
[EE A Ae Ae ee ee ee ee ee ee ee ee A He He ee ee ee ee 2 ee 2 Re eK KK EE AE

wr_end _ class(void)

Returns : void

Purpose : Create end class marks.

Plan: Write END and END CLASS statements.

Notes : None
FF Ae He ee ee 2 A ee ee ee ee eR RH HH He He He ER KH HK EE KK KK KK /

void wr_end_class(void)

{

fprintf(rox_file,"\tEND;\n");
fprintf(rox_file,"ENDCLASS. \n");

}

[HR HH HH He He HH HH He He He He He He ee ee He He ee He ee KE

init_op_file(void)

Returns : void

Purpose : Open a file "OUT_ FILE".

Plan: Use standard fopen function.

Notes : None
7 A ie ee eee 2 2 2 a Ae A eee He He 2 ee ee ER RH HH KK KH KK HK KK /

void init_op_file(void)

{

if ((rox_file =fopen("out_file","w")) == NULL) {

printf("Enable to create rox_out file.\n");

exit(1);

}

PAGE 45

}
[7 A He HH He He He He He He He ee He ee 2 2 ee ee ee ee ee He He ee ee 2 ee 28 8 A ek EE

close op _file(void)

Returns : void

Purpose : To close the OUT_FILE file.

Plan: Print the output file name.

Close the file.

Notes : None
2 Re HH He He He eH A HH HH HH HH KK KK KK HK KK EK KK EF /

void close_op_file(void)

{
porirnth (Ua F ER OR A KF) 1)

printf("The Derived classes have been written to OUT_FILE file\n");
printf (14 FH I A HR EE EEN 1)

fclose(rox_file);

}

PAGE 46

[ERA AK KH KKK KEE KK AE cyr_gra.c Te eR oe he oe oe eo ee ok KK kok ok

Purpose: Check the grammar.

Collect the input.

Also has main function.

Notes : The parser checks the grammar. Each term on

left hand side of grammar corresponds to function.

Some functions are recursive to process the nested

expressions.

History:

Date Name Comment

10/21/94. NSamant Created the file.
FEOF BORGO OOOO GIORGIO OGIO IOI IO IOI IO IOI I ICI IA II IK /

#include <stdio.h>

#include <stdlib.h>
#include <ctype.h>

#include <string.h>

#include "cyrano.h" /* Frontend specific definitions */

[FREER REE RR KR K KEKE Private variables Ee ee 2 ee EK KE /

static int debug _flag = 0; /* Disable the debugging */

static int no_ errors = FALSE; /* Flag set if errors in parsing. */

static int sel_term_p = 0; /* An index into SELECT terms array. */

static int lookahead = -1; /* Stores next token */

/* Debugging information */
static char * tok strings [] = {

"EOI","S_TERM", "SELECT TERM",
"FROM TERM","WHERE TERM","COMP_ TERM",

"(TERM",") TERM","SEPERATOR_TERM"};
7 AR Re ee 2 2 ee ee 2 2 2 Private functions ee ee 2 ee eee ee 28

static void advance(void);

static int match(int token);
static void statements(void);
static void expression(void);

static void s_term(char * pres_term);

static void select_term(char sel_term[][32]);

PAGE 47

static void from_term(char *fr_term);
static void where_term(char *wherl_term,char *wher_comp_term,

char *wher2_ term);

[FE A HH KK Public variables Ae He eR HK KE /

char input_buffer[256]; /* Input buffer to hold input query. */
extern char cur_lexeme[32]; /* The current lexeme. ¥/

[RRR RK HH KK KEE Public functions FR He He He He He ee /

extern int cyr_lex(void);

extern void init_op_file(void);

extern void close_op_file(void);
extern void wr_class_name(void);

extern void wr_base_names(char * from_term);

extern void wr_guard_rule(char * whl_term, char *wh_comp term, char * wh2_term);

extern void wr_methods(char * sel_ term);
extern void wr_end_class(void);

[BA A EH KK KK Private functions 8 Ae He He He EK AK KK /

[78 A A He He He HH He He He He He He He He He 2 Hee He ee 2 2 ee ee He ee ee He ee ee 2 2 ee 2 2 ee ee ek ae 2 2 2

advance(void)

Returns : void

Purpose : To advance to the next term.

Plan: Call cyr_lex to parse next term from input.

The token returned is stored in lookahead.

Notes : None
FF ee He he He He 2 2 eee ee ee ee 2 2 2 Re He He ee RR HH HK EE KK KKK KK /

static void advance(void)

{
lookahead = cyr_lex();
if(lookahead != EOD) {

if(debug flag > 1)

printf ("Token for %s is %s\n",cur_lexeme,tok_strings[lookahead]);

}
}
[78 A Ae Ee Ae He He ee ee He He He ee He ee ee 2 2 ee 2 ee eee ie he ee ie te ee eee ee 2 ee Ae ke ee ee 2 2 Oe EE

match(int token)

PAGE 48

Returns : int

Purpose : Check if next token matches the one expected.

Plan: Compare lookahead with token and return the result
If this is first call to match then call cyr_lex

first, because lookahead is not initialized yet.

Notes : None
2H He ae 2 Ae ke hee 2 2k fee 2 he ie he 2 2 he ie ake fe ee 2 fe he ee ee fe fe ee 2 ee fe ee 2h eke ke He 2 2 ake he fe 2c 2 ke ee ae 2 2 ee ae 2 ok A A 2 /

static int match(int token)

{
/* On first match call lookahead is -1 so call cyr_lexQ) */
if (lookahead == -1) {

lookahead = cyr_lex();
if(debug flag > 1) {

printf("TOKENS IDENTIFIED \n");
printf ("Token for %s is %s\n",cur_lexeme,tok_strings[lookahead]);

}
}

/* Compare token with lookahead. */

return token == lookahead;

}
[7 A Ae Ae ee ee ee ee He he he ae he eee 2 2 2 ee ee He ke he ee He ee ee ee 2 2 ee ee 2 2 Ok

s term(char * pres term)

Returns : void

Purpose : To collect a valid S TERM.

Plan: Check if next term is S_ TERM.
If yes then copy into cur_lexeme.

Notes : None
Be ee 2 Ae ee 2 2 ie ke ie Re ke Ae ee 2k he ae ee 2 Ae ie fe ae 2 ie ke ee 2 2 ie ee 2 2 2 ie ke ee 2 ee ee 2 ie ke 2 2 a /

static void s_term(char * pres_term)

{
/* Check if term is S_ TERM */

PAGE 49

if (match(S_TERM)) {
/* Copy the term into cur_lexeme */

strcpy(pres_term,cur_lexeme);

/* Advance to next term. */

advance();

}
else

printf("A valid term expected. \n");

}
A A ee He ee 2 ee ee ee ie ee 2 ee 28 2 ee ee ee ee ee he ee ee ee 2 2 28 2 Re ee ee ek 2 2 EEE

where_term(char * whl_term First WHERE term

char * wh_comp_term Comparison term

char * wh2_term Second WHERE term

Returns : void

Purpose : To collect valid WHERE clause terms.

Plan: Do a series of match and advance corresponding

to the grammar.

First match wherl_term
Next match wher_comp_ term

Next see if left brace

if yes then nested expression.

else

match wher2_term

Notes : This is a recursive function if nested braces are

found in WHERE clause.
2 AR He ee He He He He He He He ee ee He ee ee ee He ee ee ee He ee He ee Ae A A He ee ee ee a Ae EK /

static void where_term(char *wherl_ term,char *wher_comp_term,
char *wher2_term)

{
if(match(WHERE TERM)) { /* Match WHERE keyword */

advance();
s_term(wher1_term); /* Collect first where term*/

if(match(COMP_TERM)){

/* Collect comparison term */

PAGE 50

strcpy(wher_comp_term,cur_lexeme);

advance();

if(match(LFT_PAR_ TERM)) { /* Match left brace */
advance();

expression(); /* Recursive call to expression */

if(match(RGT_PAR_TERM)) /* Match right brace */
advance();

else

printf("Mismatched parenthesis in WHERE clause.\n");

}
else {

s_term(wher2_term);/* Collect second where term */

/* Set no_errors flag */

no_errors = TRUE;

}
}

else

printf("Comparison term expected in WHERE clause. \n");

}
else

printf("WHERE clause expected.\n");

}

[FRR Re ee He He He He He He He ee ee ee ee ee ee ee ie hee 2 2 eee he ae He He ee ee ee ee ee he ae ae ie ae ae a ak a

from_term(char * fr_term)

Returns : void

Purpose : To collect a valid FROM term.

Plan: Check if next term is FROM.

If yes then collect the term.

Notes : None
2H He ee 2 He ae 2 2 fe he 2 2 2 ie ee 2 2 ie hee 2 2 2 eye ee 2 Ae fe fe ae 2 2 ie fe ee 2 ie ie fe ee 2 ke ke ee 2 ie ee 2 ee /

static void from_term(char *fr_term)

{
if(match(FROM_TERM)) { /* Match FROM keyword. */

advance();

s_term(fr_term); /* Collect the from term. */

PAGE 51

j
else

printf("FROM clause expected.\n");

j

[EE A ee ee ee ee ee He ee ee ee ee He He ee ee 2 He ee 2 8 2 OR ee ee ee EK KK

select_term(char * pres_term)

Returns : void

Purpose : To collect a valid SELECT term.

Plan =: Check if next term is SELECT.

If yes then collect the term.

Notes : None
FOC CGR GG GG IGG A I ICI IG ICR ICI AR A 1 1 IC A 4 ok eo i ki ak a /

static void select_term(char sel_term[][32])

{
if(match(SELECT_TERM)) { /* Match SELECT keyword */

advance();

s_term(sel_term[sel term_p]); /* Collect sterm */

sel_term_pt+t; /* Increment sterm index */

/* Collect all the select terms. Select terms are

* separated by SEPARATOR like ",".

*/

while (match(SEP_TERM)) { /* Match Separator */
advance();

s_ term(sel_term[sel_term_p]);

if(sel_term_p< 10)

sel term_pt++;

else

{
printf("Internal error. More than 10 select terms.\n");

exit(1);

}

}

printf("SELECT clause expected. \n");
else

PAGE 52

5

[RR HR HH HH HH HH HH HH He HH HH He HE HH HH KK KK KK EK KK

expression(void)

Returns : void

Purpose : Enforce the grammar.

Collect the required terms.
Call the translator.

Plan: Initialize all the variables.

Collect SELECT FROM WHERE terms.

Call translator to generate a derived class.

Notes : This is recursive function. All the variables are
automatic because they are created on stack for

each call to expression().
2 Ree ee ee ee ee ee He ee He ee A ee ee Ae He Ae A HH A HH KK KKK KKK /

static void expression(void)

{
char sel_term[10][32], /* Array to hold SELECT terms.

fr_term[32], /* Array to hold FROM term.

wherl_term[32], /* Variable to hold first WHERE term.
wher2_term[32]; /* Variable to hold SECOND WHERE term.

char wher_comp_term[32]; /* Array to hold WHERE comparison terms

int 1; /* Loop counter

/* Initialize the variables to NULL */
memset(fr_term,0,32);

memset(wherl_term,0,32);
memset(wher2_term,0,32);

memset(wher_comp_term,0,32);

for(i=0;i<10;i++)
memset(sel_term[0],0,32);

/* Assume there is a error in expression .*/

no_errors = FALSE;

sel term_p = 0;

PAGE 53

*/
*/
*/
*/
*/
*/

/* Expression is of form SELECT FROM WHERE */

select_term(sel_term);
from_term(fr_term);
where_term(wherl_term,wher_comp_term,wher2_term);

/* If no errors then call translator functions */

if(no_errors) {
if(debug flag > 1) {

printf("\nTERMS IDENTIFIED \n");
printf("Select Terms = %s \n",sel_term[0]);
printf("From Term = %s \n",fr_term),;

printf("Where Term! = %s Comp_term is %s Term2 = %s\n",wherl_term,
wher_comp_term,wher2_term);

}

/* This set creates one derived class. */

wr_class_name();

wr_base_names(fr_term);

wr_guard_rule(wherl_term,wher_comp_term,wher2_term);

wr_methods(sel_term[0});

wr_end_class();

}
}

[A HH He He HE HH HH RR HK KE EK KK KK KK KK K

s_term(void)

Returns : void

Purpose : To parse set of statements.

Plan: Call statements().

Notes : This function is redundant now. But may be needed

in future.
2 ee ee ee He 2 ee ee 2 ie ie a 2 ae ee ee ie ee 2 2 ie Ae te ke 2 2 ie te ee 2 A ee 2 2 ke ee 2 Ee RE KK /

static void statements(void)

{
expression();

}

PAGE 54

[7878 KR KK Public functions 28 He He He ee ee ae ee ee /

[78 AR AR ee ee He ee ee ee ee eH ee He He Ae ee He Re ee A ee ee 2 ee a ee a kk

main(int argc, char ** argv)

Returns : int

Purpose : To collect the input.
Open and close the OUT_FILE.

Plan Get the input. Convert input to uppercse.

Open OUT_FILE.

Call parser.

Close file.

Notes : None
2H He ee He ee ee 2 He He he He He ee He 2 2 ee A ee ee ee ee He ee ee 2 2 ee 2 A ee ee ae 2 2 2 EK /

main(int argc, char ** argv)

{
if(arge > 1)

debug flag = atoi(argv[1]);

if(!gets(input_buffer)) {

printf("Unable to get input.\n");

exit(1);

}
/* Convert input to uppercase */

strupr(input_ buffer);

init_op_fileQ;
statements();

close_op_fileQ);

return 0;

}

PAGE 55

