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Valuation in major depression is 
intact and stable in a non-learning 
environment
Dongil Chung1, Kelly Kadlec1,2,3, Jason A. Aimone1,4, Katherine McCurry1,5,  
Brooks King-Casas1,5 & Pearl H. Chiu1,5

The clinical diagnosis and symptoms of major depressive disorder (MDD) have been closely associated 
with impairments in reward processing. In particular, various studies have shown blunted neural and 
behavioral responses to the experience of reward in depression. However, little is known about whether 
depression affects individuals’ valuation of potential rewards during decision-making, independent 
from reward experience. To address this question, we used a gambling task and a model-based analytic 
approach to measure two types of individual sensitivity to reward values in participants with MDD: 
‘risk preference,’ indicating how objective values are subjectively perceived, and ‘inverse temperature,’ 
determining the degree to which subjective value differences between options influence participants’ 
choices. On both of these measures of value sensitivity, participants with MDD were comparable to non-
psychiatric controls. In addition, both risk preference and inverse temperature were stable over four 
laboratory visits and comparable between the groups at each visit. Neither valuation measure varied 
with severity of clinical symptoms in MDD. These data suggest intact and stable value processing in 
MDD during risky decision-making.

Major depressive disorder (MDD) has been associated with impairments in reward processing, and many stud-
ies indicate that symptoms of MDD correlate with diminished neural and behavioral responses when rewards 
are presented1–6. These studies have typically used reward learning and other tasks that provide feedback about 
rewards and focused on individuals’ responses at this feedback or ‘reward outcome’ phase (see Rizvi et al.7 for 
review). However, little is known about how depression affects reward valuation during decision-making in 
the absence of learning and feedback. Understanding whether individuals with MDD have disrupted valuation 
during decision-making at the ‘decision phase’, separate from reward outcome, will clarify whether individu-
als with MDD are disrupted overall in reward valuation or more specifically in experiencing rewards. Here, we 
used a risky decision-making task, a model-based analytic approach, and a repeated measures within-subject 
design across four visits to investigate whether participants with MDD have intact or disrupted valuation during 
decision-making in the absence of learning and feedback.

Sixty-nine individuals with current MDD and 41 non-psychiatric controls were recruited for the current study. 
To investigate ‘value sensitivity’ during decision-making independent from feedback, we asked participants to com-
plete a risky decision-making task (adapted from Holt & Laury8 and Dickhaut et al.9) (Fig. 1). During the task, 
participants made a series of nine choices between two gambles, one of which was objectively riskier than the other8. 
Each pair of gambles had the same high- and low-payoff probabilities; the high-payoff probability increased from 
10% to 90% in 10% increments (as the low-payoff probability decreased) along the nine pairs. Participants’ choices 
between the safer and riskier options, at each payoff and probability combination, were recorded to investigate indi-
vidual value sensitivity. Participants were paid based on the actual outcome of one of their choices; the outcome was 
determined after all choices had been made (i.e., no feedback at each decision). This paradigm allowed us to examine 
valuation during decision-making, independent from potential learning and outcome effects.

Tasks of this sort are classically used to study individuals’ value-based decision-making under risk10,11, and 
expected utility theory12 points to two basic components that account for differences among individuals’ choices 
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in such tasks. The first, ‘risk preference13,14 (RP)’ reflects how objective values are subjectively perceived (sub-
jective value) and is quantified by the curvature of a power utility function12. This approach is equivalent to 
defining risk as the variance of each option and thus, takes into account both the reward magnitude outcome 
spread and probability information. The second component determines the degree to which subjective value 
differences between options affect the probability of choosing one option over the other, and is often referred to as 
‘inverse temperature15 (IT)’. Both components characterize individual differences in the direction and the degree 
to which objective values impact individual choices, and thus are used as measures of value sensitivity in the 
current study. Note that each measure explains a different functional relationship between subjective values and 
decision-making: RP accounts for nonlinear (concave or convex function) subjective valuation and IT is a linear 
scaling of subjective values (similar to ‘reward sensitivity’ in other MDD studies1; see Methods for expected utility 
model specifications). The value sensitivity measures were estimated from individuals’ choices using maximum a 
posteriori fitting (see Methods for parameter estimation procedure).

Participants completed the decision-making task on up to four laboratory visits as part of a longitudinal study; 
on average, visits were separated by 5.5 weeks (mean of 116.27 days between Time 1 and Time 4 visits). At each 
visit, participants were instructed that one of their actual choices would be randomly selected and played out to 
determine their payoff at the end of the visit. The payoff was determined by the values of a gamble selected via 
random number generator from the participant’s actual choices and a roll of a hundred-sided die (the first deter-
mining which gamble would be played and the second determining the payoff). Participants who made less than 
two visits to the laboratory, had Beck Depression Inventory (BDI-II) scores16 > 12 for controls or < 13 at Time 1 
for MDD participants, or always chose the option with smaller expected value were excluded from analyses (see 
Methods for numbers of excluded participants for each criterion). The analyzed sample for RP and IT parameter 
estimation included 33 non-psychiatric controls (14 females; age =  33.00 ±  11.31) and 65 individuals with MDD 
(48 females; age =  37.92 ±  11.48). See Table 1 for further demographic information.

Results
Valuation is comparable between MDD and non-psychiatric control participants. To compare 
value sensitivity in MDD participants with that of non-psychiatric controls, we estimated each individual’s risk 
preference and inverse temperature for each visit, and first compared the means of these parameters between 
groups (see Methods for details about parameter estimation). Thus, RP and IT at each of the four visits were 
computed for each individual, for participants who visited all four times (Ncontrol =  28, NMDD =  47). Group mean 
parameter values were: RPcontrol =  0.50 ±  0.31; RPMDD =  0.46 ±  0.31; ITcontrol =  3.41 ±  0.41; and ITMDD =  3.25 ±  0.43 
(mean ±  s.d.). Note that both the MDD and non-psychiatric control groups showed risk aversion (RP <  1) con-
sistent with Holt & Laury8. Across four laboratory visits, participants with MDD showed comparable RP and 

Figure 1. Payoffs and probabilities of paired gambles. Participants played a gambling task that consisted of 
a menu of probabilities of high- and low-payoff values. As per Holt & Laury8, participants made nine choices 
between two risky gambles ‘Option A’ and ‘Option B’. The high- and low-payoff assigned to each option were 
fixed as shown here. The probability associated with payoff values was represented as a range of numbers; this 
allowed participants to easily match the probability of each outcome with a roll of a hundred-sided die; this roll 
was performed after the task for one randomly selected gamble to determine the final outcome for payoff. The 
rightmost column shows the expected value differences between the Option A and B. Expected utility theory 
predicts that a risk neutral individual will choose Option A in decisions 1–4 where EV(B) < EV(A) and Option 
B in decisions 5–9 where EV(B) >  EV(A).
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IT to that of non-psychiatric controls (Fig. 2ai,bi; RP: F(1, 219) =  0.63, P =  0.43; IT: F(1, 219) =  2.68, P =  0.11; 
Group ×  Time mixed-design ANOVAs with rank transformation17). These results were confirmed using Bayesian 
null hypothesis significance testing (JASP, version 0.8.0.018) which similarly indicated no group differences in RP 

Control (N = 33) Major depression (N = 65)

Male/female participants 14/19 17/48

Age (years) 33.00 ±  11.31 37.92 ±  11.48

Verbal intelligence quotienta 105.15 ±  14.90 107.06 ±  12.18

BDI-II

 Time 1 1.55 ±  2.05 (33) 30.71 ±  7.75 (65)

 Time 2 1.40 ±  2.19 (30) 22.83 ±  10.70 (53)

 Time 3 1.28 ±  1.79 (29) 19.12 ±  12.79 (49)

 Time 4 1.64 ±  2.57 (33) 17.14 ±  13.34 (64)

BDI-II Anhedonia subscaleb

 Time 1 0.39 ±  0.83 (33) 6.32 ±  2.23 (65)

 Time 2 0.42 ±  1.03 (31) 4.74 ±  2.72 (53)

 Time 3 0.24 ±  0.64 (29) 3.79 ±  2.97 (52)

 Time 4 0.39 ±  0.86 (33) 3.45 ±  2.84 (65)

State Anxiety Scale

 Time 1 28.48 ±  6.55 (33) 49.05 ±  10.82 (65)

 Time 2 27.39 ±  6.35 (31) 46.47 ±  10.97 (53)

 Time 3 27.86 ±  7.72 (29) 42.04 ±  12.40 (51)

 Time 4 27.79 ±  6.73 (33) 39.52 ±  12.76 (64)

MASQ subscales

Anhedonic Depression

 Time 1 45.09 ±  8.97 (33) 83.11 ±  9.12 (65)

 Time 2 43.29 ±  9.84 (31) 71.63 ±  14.39 (52)

 Time 3 42.86 ±  10.72 (29) 66.47 ±  18.96 (51)

 Time 4 43.38 ±  10.36 (32) 65.00 ±  16.86 (65)

Anxious Arousal

 Time 1 18.55 ±  1.99 (33) 26.85 ±  7.25 (65)

 Time 2 18.39 ±  1.87 (31) 23.79 ±  6.90 (52)

 Time 3 18.69 ±  3.29 (29) 23.80 ±  8.31 (51)

 Time 4 18.28 ±  1.49 (32) 23.62 ±  8.21 (65)

GD: Anxiety

 Time 1 14.48 ±  2.59 (33) 25.03 ±  6.97 (65)

 Time 2 13.42 ±  2.47 (31) 20.81 ±  6.18 (52)

 Time 3 14.00 ±  2.60 (29) 20.59 ±  7.57 (51)

 Time 4 13.44 ±  2.06 (32) 18.95 ±  6.86 (65)

GD: Depression

 Time 1 15.72 ±  2.82 (33) 38.94 ±  8.91 (65)

 Time 2 15.16 ±  2.27 (31) 31.10 ±  9.57 (52)

 Time 3 15.07 ±  3.62 (29) 27.49 ±  11.08 (51)

 Time 4 15.09 ±  2.44 (32) 26.68 ±  11.74 (65)

GD: Mixed

 Time 1 22.55 ±  4.49 (33) 45.91 ±  8.41 (65)

 Time 2 21.03 ±  4.53 (31) 39.08 ±  9.13 (52)

 Time 3 20.79 ±  3.80 (29) 37.00 ±  11.01 (51)

 Time 4 21.38 ±  4.83 (32) 34.55 ±  11.16 (65)

Table 1.  Demographic and symptom data. BDI-II, Beck Depression Inventory, Second Edition; State 
Anxiety Scale, State Anxiety Scale of the State-Trait Anxiety Inventory; MASQ, Mood and Anxiety Symptom 
Questionnaire; GD, General Distress; aVerbal intelligence quotient scores were measured with the Wechsler 
Test of Adult Reading (WTAR); bThe Anhedonia subscale was created by summing responses on the following 
BDI-II items associated with anhedonia symptoms: loss of pleasure (item 4), loss of interest (item 12), 
loss of energy (item 15), and loss of interest in sex (item 21). Numbers of participants who were included 
for calculating mean and standard deviation of each questionnaire score are noted in parentheses; see 
Supplementary Fig. S1 for the BDI-II, State Anxiety Scale, and MASQ scores in the smallest subset of included 
participants (visiting all four times), and see Methods for details about inclusion criteria.
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or IT (see Supplementary Text for additional details and Table S5 for Bayes factors). These results indicate that 
MDD and non-psychiatric control participants have comparable linear and nonlinear value sensitivities during 
decision-making.

Valuation is stable over time for both MDD and non-psychiatric control participants. Previous 
studies have shown that risk preferences measured with variations of the Holt & Laury task8 are stable over time 
in unselected control individuals, particularly when model-based estimates were used19,20. As an initial test of RP 
and IT stability within MDD and control participants, we compared within-group means over time; these analy-
ses indicate that neither parameter differed over time for either group (RPcontrol: χ2(3, 81) =  2.12, P =  0.55; RPMDD: 
χ2(3, 138) =  0.66, P =  0.88; ITcontrol: χ2(3, 81) =  2.94, P =  0.40; ITMDD: χ2(3, 138) =  2.40, P =  0.49; Friedman’s 
tests, analogous to non-parametric repeated measures ANOVAs; only participants who visited all four times were 
examined here (Ncontrol =  28, NMDD =  47)). Adopting the approach of previous studies for measuring temporal sta-
bility, we also examined the stability of RP and IT within controls and participants with MDD by correlating the 
value of each parameter between pairs of visits ([1st vs 2nd visit], [1st vs 3rd visit], …  [3rd vs 4th visit]) (Fig. 2aii,bii). 
Both control and MDD participants showed moderate to high stability in both RP and IT, respectively (mean cor-
relation coefficients: RPcontrol: Spearman ρ  =  0.57; RPMDD: ρ  =  0.54; ITcontrol: ρ  =  0.48; ITMDD: ρ  =  0.57; see Fig. 2aii 
and bii for full correlation matrix; Supplementary Table S2 for sample size at each visit). Note that the proportion 

Figure 2. Estimated value sensitivities are comparable between non-psychiatric controls and individuals 
with MDD, and stable across visits. We used a standard power utility function and softmax choice rule to 
identify separate ‘risk preference’ and ‘inverse temperature’ parameters to explain nonlinear and linear value 
sensitivities in decision-making. (ai, bi) Estimated RP and IT were stable across four repeated visits for both 
MDD and control participants. Across the repeated visits, both RP and IT were comparable between the control 
and MDD groups (no main effect of group using mixed-design ANOVA with rank transformation). The gray 
dotted line indicates risk neutrality (RP =  1). Each point represents an individual participant; group medians 
are indicated in green. Gray and red shades show the distribution of data points along the y-axis. (aii, bii) 
Spearman’s correlation coefficients were calculated to test whether the rank order of the parameters among 
individuals was consistent between visits to the lab (([1st vs 2nd visit], [1st vs 3rd visit], ... [3rd vs 4th visit]). See 
Supplementary Table S2 for statistical results. Each point represents an individual participant, and the color-
coded lines are the robust regression line between measures from two visits. The x- and y-axes each represent 
the rank order of individual participants at each visit (for simplicity, not labeled here); *P <  0.05, **P <  0.01, 
***P <  0.001, uncorrected; all correlations were significant after applying multiple comparison correction (FDR 
q <  0.0001).
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of risky choices, a model-free measure of risk preference, was also stable over time in both the MDD and con-
trol groups (see Supplementary Fig. S2 for model-free risk preference stability over time). Again, Bayesian null 
hypothesis significance testing confirmed the stable RP and IT across visits (see Supplementary Text and Table S5 
for details and Bayes factors). These significant correlations indicate that for MDD and control participants, the 
risk preference and inverse temperature measures of value sensitivity at the decision phase are stable over time.

Valuation does not vary with severity of clinical symptoms in MDD. Given previous reports that 
reward sensitivity at decision outcome varies with symptoms in depression1,21–23, we also examined whether RP 
and IT varied systematically with depressive or anxious symptoms. Symptoms were measured using the BDI-II16, 
Anhedonia subscale of the BDI-II (sum of BDI items 4, 12, 15, and 21)24, State Anxiety Scale of the Spielberger 
State-Trait Anxiety Inventory (STAI)25, and the five subscales of the Mood and Anxiety Symptoms Questionnaire 
(MASQ; Anhedonic Depression, Anxious Arousal, General distress (GD):Anxiety, GD:Depression, and 
GD:Mixed)26; correlations were performed within the MDD group. None of the clinical symptom scores or changes 
in symptoms over time were related to MDD participants’ RP or IT parameter values (see Supplementary Fig. S1, 
Supplementary Table S3, and S4 for statistical test results). These data demonstrate that individual differences in 
value sensitivity during decision-making are not explained by clinical characteristics of MDD.

Discussion
The current study used a risky decision-making task to investigate MDD individuals’ value sensitivity at the deci-
sion phase independent from learning and feedback. The within-subjects repeated-measures design allowed us to 
examine the stability of the value sensitivity measures, and the model-based approach dissociated linear (inverse 
temperature) and nonlinear (risk preference) value sensitivities that together determine behavioral choices during 
risky decision-making.

A few previous studies have used risky decision-making paradigms and measured MDD individuals’ risk prefer-
ences. The results, however, have been inconsistent. Some studies have  reported decreased risk seeking behavior 
in individuals with MDD21,27,28, while other studies have reported comparable risk preferences between individuals 
with MDD and healthy individuals29,30. In the current study, we showed that risk preferences (nonlinear value sen-
sitivity) in individuals with MDD are comparable with those of healthy individuals. The stability of risk preferences 
was tested across four repeated visits, and consistent with previous findings in unselected control individuals19,20,31,  
MDD participants showed stable risk preferences over time (c.f., model-free measures showing lower reliabil-
ity32–34). In addition to estimating risk preference, we examined inverse temperature (linear value sensitivity, 
similar to ‘reward sensitivity’ in other MDD studies1) at the decision phase, and showed that MDD participants 
have stable and comparable inverse temperature compared with non-psychiatric controls. In addition, none of the 
clinical symptom severity measures within participants with MDD were related to individual differences in risk 
preference or inverse temperature. These results indicate that in contrast with previous decision-making studies 
showing blunted valuation at the outcome phase in MDD1, neither linear nor nonlinear value sensitivity at the 
decision phase in MDD was different from that of controls.

To date, studies examining valuation in MDD have focused primarily on the outcome phase of reward learn-
ing tasks and shown impaired valuation, including diminished neural reward responses35–37, reduced learning 
rate38, lower reward sensitivity1, or enhanced exploration (more frequent choice shifting)39,40 in participants with 
MDD. A few other studies have used various non-learning tasks and have suggested that individuals with MDD 
have low motivation for monetary reward21,41,42; however, in these studies, the focus was also on responses at 
the outcome phase22,23. Unlike the abundant literature about responses to reward outcome (particularly during 
reward learning), little is known about whether individuals with MDD have intact ability to process and compare 
values during decision-making when no learning is required. The current study provided no outcome feedback 
during the task and thus focused on the decision phase dissociated from learning and reward experience. These 
data showed that during the decision phase, participants with MDD have value processes comparable to that 
of healthy individuals. This is consistent with previous studies showing intact neural responses in individuals 
with MDD during reward anticipation (prior to outcome)43,44. Together, the present data suggest that individuals 
with MDD have intact valuation when reward contingencies are fully known (no reward learning required) and 
suggest that previously reported valuation deficits in MDD are specific to the outcome phase of tasks in which 
rewards are experienced and learning occurs. We note that this conclusion is drawn based on the assumption 
of linear probability weighting (see Supplementary Text for nonlinear probability weighting function) and the 
present task where each pair of gambles had the same high- and low-payoff probabilities. Individuals with MDD 
may exhibit altered valuation in other environments (e.g., when making choices between two options that have 
different payoff probabilities); these possibilities cannot be ruled out in the present data.

In MDD, intact valuation, dissociated from learning, may provide mechanistic insight about behavioral acti-
vation therapies for depression45. These type of therapies engage individuals with potential positive reinforcers 
(rewards) in a structured manner and, in doing so, allow individuals with MDD to largely bypass disrupted 
learning processes. That is, behavioral activation provides a guided learning environment wherein engage-
ment and experience of action-reward contingencies are enforced, allowing for the value of rewards to evolve 
from being unsampled and ambiguous to sampled and fully known. Once these values are known, intact deci-
sion processes such as those identified here allow individuals to engage in healthy choices. As our data indi-
cate, when action-reward contingencies are fully known, participants with MDD show intact valuation during 
decision-making. We speculate that this state is comparable to the endpoint of successful behavioral activation 
wherein the experience of reward is restored. In brief summary, the current study suggests specificity of previ-
ously reported value processing disruptions in MDD, informs the conditions under which sensitivity to reward 
values is preserved, and offers the possibility that learning about reward values, rather than discriminating among 
values when making decisions, may be a mechanistic target for intervention in MDD.
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Methods
Participants. Fifty non-psychiatric controls and 80 individuals with MDD were recruited as part of a larger 
ongoing study examining neural substrates of treatment response in MDD (neural and treatment data will be ana-
lyzed as part of another manuscript). Among these participants, we included individuals who at least participated 
in both Time 1 and 4 laboratory visits to maximize the time interval for test-retest reliability. These inclusion 
criteria yielded 41 non-psychiatric controls and 69 individuals with MDD for the present study. Basic inclusion/
exclusion criteria were initially assessed via telephone and were confirmed during the first laboratory visit using 
the Structured Clinical Interview for DSM-IV-TR Axis I Disorders – Research Version – Patient Edition (With 
Psychotic Screen) (SCID-I/P)46 and selected modules of the Mini-International Neuropsychiatric Interview 
(M.I.N.I.)47. At study intake, individuals in the MDD group met DSM-IV criteria for MDD and/or dysthymia 
while individuals in the control group did not meet criteria for any current Axis I disorder. Exclusion criteria for 
all participants included contraindications to magnetic resonance imaging (MRI) and history of neurological dis-
ease. Following the initial screening visit (Time 1), participants returned to the lab up to three times; on average, 
there were 5.5 weeks between each visit. Three controls whose BDI-II scores were above the non-depressive range 
(i.e., greater than 12) at any visit and two individuals with MDD who had BDI-II scores in the non-depressive 
range (i.e., less than 13) at Time 1 were additionally excluded from analyses48. Five controls and two individuals 
with MDD who always chose the option with smaller expected value were also excluded. Therefore, the analyzed 
sample for RP and IT parameter estimation included 33 healthy controls (14 females; age =  33.00 ±  11.31) and 
65 participants with MDD (48 females; age =  37.92 ±  11.48). See Table 1 for additional demographic informa-
tion. Use of psychotropic medication was not an exclusion criterion for individuals with MDD, and at study 
enrollment, 20 participants with MDD were taking one or more psychotropic medications. As noted above, these 
data were collected as part of a larger study examining neural substrates of treatment response in MDD, and a 
subgroup of individuals with MDD received cognitive behavioral therapy (CBT) over the course of participa-
tion (N =  45; see Supplementary Table S1 for demographic data for the treatment group). As such, participants 
showed decline in symptoms over time; neither symptoms nor symptom change was related to either RP or IT (as 
detailed throughout the main text). All participants provided written informed consent following an explanation 
of study procedures. The study was approved by the Institutional Review Board (IRB) of Virginia Tech, and all 
experimental procedures followed relevant institutional guidelines and regulations.

Experimental procedure. Participants made a series of nine choices between two gambles, one of which 
was objectively riskier than the other (adapted from Holt & Laury8) (Fig. 1). Each pair of gambles had the same 
high- and low-payoff probabilities that varied from 10% to 90% in 10% increments along the nine pairs. Payoff 
spreads between high- and low- payoffs were fixed for each option; ‘Option A’ had $5.00 and $4.00, and ‘Option B’  
had $9.63 and $0.25 as potential payoffs. Participants were paid based on the actual outcome of one of their 
choices; the payoff was determined by the values of a gamble selected via random number generator from the 
participant’s actual choices and a roll of a hundred-sided die (the first determining which gamble would be played 
and the second determining the payoff).

Model-free analyses. For model-free behavioral analyses, the proportion of choices of the risky option 
(P(risky)) among the nine pairs of gambles was used as a measure of risk preference. Given the expected value 
(EV) between pairs of choices (Fig. 1), a risk neutral individual should show P(risky) =  5/9 ≈  0.56 (as per expected 
utility theory, a risk neutral individual is expected to choose Option B in the trials where EV(B) >  EV(A), deci-
sions 5–9, and to choose Option A in the trials where EV(B) <  EV(A)). Higher P(risky) thus indicates risk seek-
ing. P(risky) was calculated per visit and used to examine stability of model-free risk preferences over time in 
each group.

Estimates of individual risk preference. We applied expected utility theory12 to estimate each individ-
ual’s risk preference (RP) and inverse temperature (IT) that predict the individual’s choices. We used a standard 
power utility function and softmax choice rule as described below:

= +α α–‐ ‐ ‐ ‐U P (V ) (1 P ) (V ) (1)A high payoff high payoff:A high payoff low payoff:A

= +α α–‐ ‐ ‐ ‐U P (V ) (1 P ) (V ) (2)B high payoff high payoff:B high payoff low payoff:B

= = + µ– – –P(risky) P (1 exp[ (U U )]) (3)B B A
1

where UA (UB) is the utility of the Option A (Option B), P is the probability of earning a payoff, V represents the 
payoff amount for each gamble, α  is the risk preference, and μ  is the inverse temperature. The estimated RP, α , indi-
cates whether an individual is risk averse (0 <  α  <  1), risk neutral (α  =  1), or risk seeking (α  >  1). The estimated 
IT, μ , indicates how sensitive an individual is to the utility differences between the two gambles; larger μ  indicates 
higher sensitivity to utility differences and μ  ≈  0 indicates utility (subjective value) insensitivity.

To achieve a more stable parameter estimation for each individual, we adopted a hierarchical model structure 
of the population49 in which it is assumed that a participant i’s parameters (μ i and α i) are sampled from the pop-
ulation’s parameter distribution. Of importance, both controls and participants with MDD were considered to 
share the same group-level (population) distribution (equal prior), which allowed us to compare the two partic-
ipant groups in the further analyses. That is, the two groups were assumed to be coming from the same distribu-
tion every time the group-level parameters were updated throughout the estimation procedures. As this approach 
may bias against finding group differences (because individuals from two groups are treated as samples from 
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equal priors), we also implemented two additional approaches with different assumptions: i) separately estimating 
group-level distributions (biasing toward finding group differences) and ii) estimating an additional variable that 
captures a potential group mean difference (examining whether the mean group difference is different from zero) 
(see Supplementary Text for details).

Based on the assumptions for each approach, we estimated the group-level parameter distribution for each 
parameter and set the distribution as a prior for individual estimation (maximum a posteriori (MAP) estimation). 
In the current study, we set the group-level distribution of each parameter as a gamma distribution50 with a shape 
parameter, k, and a scale parameter, θ , (μ  ~ Γ (kμ, θ μ); and α  ~ Γ (kα, θ α)). For each iteration of the group-parameter 
estimation (max iteration of 15,000), 100 random samples were drawn from each parameter distribution for each 
participant, and the average of the calculated likelihoods was used as an approximation of the integral in the 
following equation:

∫θ θ µ α µ θ α θ µ α| = | | |µ α µ α µ µ α αk k d d k kP(choice , , , ) P( , )P( , )P(choice , ) (4)i i i i i i i i

θ θ θ θ| = Π |µ α µ α µ α µ α=k k k kP(choice , , , ) P(choice , , , ) (5)i iall participants {allparticipants}

Note that all participants visited at least twice, including the 1st and the 4th visits.
To allow for RP and IT values to vary across time independent from subject-level information, we did not pro-

vide any information about subjects’ identity in the estimation step; that is, behavioral choices from a participant’s 
1st and 4th visits were considered decision patterns from two independent participants. Note that estimated value 
sensitivities for the same subject from repeated visits were considered as repeated-measures for post estimation 
stability testing. To apply this method, we used 196 sets of behavioral choices for the group-level parameter esti-
mation ([33 HC +  65 MDD] ×  [1st visit +  4th visit]; only 1st and 4th visits were used to provide an equal amount 
of choice information from each individual participant). The group-level parameters were used to define each 
parameter’s prior distribution for individual-level estimation, which was equally applied to individual-level esti-
mations for all four visits. We fit the data using MAP, with the posterior function below:

µ α µ θ α θ| | |µ µ α αk kP(choice , )P( , )P( , ) (6)i i i i i

All parameter estimations were conducted with custom MATLAB R2015b (MathWorks) scripts and the fmin-
search function in MATLAB with multiple initial values.

Clinical measures. At each visit, participants completed a battery of self-report measures to assess current 
depression and anxiety symptoms. Depressive symptom severity was measured using the BDI-II, Anhedonia 
subscale of the BDI-II (sum of BDI items 4, 12, 15, and 21)24, and the Anhedonic Depression subscale score 
of the MASQ. Anxiety symptom severity was measured using the State Anxiety Scale of the STAI (State-Trait 
Anxiety Inventory) and the Anxious Arousal subscale of the MASQ. Additionally, general distress (GD) related 
to depressive symptoms, anxious symptoms, or a mixture of the two were measured using the MASQ subscales, 
GD: Anxiety, GD: Depression, and GD: Mixed, respectively.

Statistical analyses. We examined if model-free risk preference (proportion risky choices) and 
model-based measures of value sensitivity (inverse temperature and risk preference) were consistent across mul-
tiple visits. IT and RP measures in both participant groups were not normally distributed (Shapiro-Wilk test 
P <  0.01 for IT and RP in each group and in each visit), and thus non-parametric tests were used as appropriate 
and available. First, to compare the means of IT and RP across four laboratory visits and between groups, we used 
mixed-design ANOVAs where visit number (Time 1, Time 2, Time 3, Time 4) was the within-subject factor and 
diagnostic group (MDD, control) was the between-subject factor. Parameters were first rank transformed and 
then inserted for the mixed-design ANOVAs17. In addition, we used Friedman’s test to examine whether IT and 
RP across four visits were stable or not, within each group. Second, Spearman’s correlations between risk prefer-
ence measures from two different visits (‘1st visit’ (T1) vs T2, T1 vs T3, T1 vs T4, T2 vs T3, T2 vs T4, and T3 vs T4) 
were calculated to test if the rank-order of risk preference within each group was consistent across multiple visits. 
All statistical tests were two-sided. False discovery rate (FDR) adjusted q-values where indicated were reported 
for multiple comparisons51. MATLAB R2015b was used for all statistical tests.
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