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ABSTRACT 

 

 

A detailed code verification study of an unstructured finite volume Computational Fluid 

Dynamics (CFD) code is performed. The Method of Manufactured Solutions is used to generate 

exact solutions for the Euler and Navier-Stokes equations to verify the correctness of the code 

through order of accuracy testing. The verification testing is performed on different mesh types 

which include triangular and quadrilateral elements in 2D and tetrahedral, prismatic, and 

hexahedral elements in 3D. The requirements of systematic mesh refinement are discussed, 

particularly in regards to unstructured meshes. Different code options verified include the 

baseline steady state governing equations, transport models, turbulence models, boundary 

conditions and unsteady flows. Coding mistakes, algorithm inconsistencies, and mesh quality 

sensitivities uncovered during the code verification are presented. 

In recent years, there has been significant work on the development of algorithms for the 

compressible Navier-Stokes equations on unstructured grids. One of the challenging tasks during 

the development of these algorithms is the formulation of consistent and accurate diffusion 

operators. The robustness and accuracy of diffusion operators depends on mesh quality. A survey 

of diffusion operators for compressible CFD solvers is conducted to understand different 

formulation procedures for diffusion fluxes. A patch-wise version of the Method of 

Manufactured Solutions is used to test the accuracy of selected diffusion operators. This testing 

of diffusion operators is limited to cell-centered finite volume methods which are formally 

second order accurate. These diffusion operators are tested and compared on different 2D mesh 

topologies to study the effect of mesh quality (stretching, aspect ratio, skewness, and curvature) 

on their numerical accuracy. Quantities examined include the numerical approximation errors 

and order of accuracy associated with face gradient reconstruction. From the analysis, defects in 

some of the numerical formulations are identified along with some robust and accurate diffusion 

operators.
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Nomenclature 

Cp, Cv = specific heats, J/Kg · K 

DE = discretization error 

e = energy, J 

gp = coefficient of the leading error term 

h = normalized grid spacing; enthalpy, J/Kg · K 

hf = heat of formation, J/Kg · K 

F = blending function 

f = general solution variable 

k = turbulent kinetic energy 

p = spatial order of accuracy; pressure, N/m
2
 

q = temporal order of accuracy 

qL = laminar heat flux 

qT = turbulent heat flux 

R = gas constant, J/Kg · K 

r = refinement factor 

T = temperature, K 

t = time, sec 

Vi = Volume of cell ‘i’ 

u, v, w = Cartesian velocity components, m/s 

x, y, z = Cartesian coordinates, m 
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Greek Symbols 

ε = error 

µ = viscosity, N · sec/m
2
 

µT = turbulent viscosity, N · sec/m
2
 

ρ = density, Kg/m
3
 

ω = turbulent dissipation rate 

Superscripts 

n = time level 

Subscripts 

exact = exact continuum value 

k = mesh level, 1, 2, 3, etc.; fine to coarse 

ref = reference value 
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1. Introduction 

1.1 Motivation 

Computational Fluid Dynamics, CFD, is playing an ever-increasing role in the design, 

analysis, and optimization of many engineering problems. CFD is used across all disciplines 

where fluid flow is important. Apart from the CFD applications in aerospace engineering, other 

applications of CFD are in automobile engineering, industrial manufacturing, civil engineering, 

environmental engineering, naval architecture and many more. It is therefore very important that 

decision makers have confidence in the correctness of the CFD predictions. With increases in 

computational power, CFD practitioners often focus on solving more complex and difficult 

problems rather than demonstrating accuracy of their current problems, which can lead to a 

decrease in the quality of the simulations.  

With the numerical problems involving fluid flows getting more complicated, mistakes 

made by the developers in building a CFD code for solving those numerical problems will 

increase. Hatton
1
 conducted a study on the reliability of the scientific software. According to 

Hatton, approximately 40% of the software failures are caused due to static faults which are 

mistakes made by the developers during building a code. Some examples of static faults include 

dependency on uninitialized variables, too many arguments passed into a subroutine, use of non-

local variables in functions, etc. Hatton
1
 classified his study into two parts which are collectively 

called the “T Experiments”. In the first part of the study, he examined codes from a wide range 

of scientific disciplines using static testing where testing can be done without running a code and 

in the second part of the study he examined codes in a single disciple using dynamic testing. 

During the static testing, Hatton examined 100 different codes in 40 different application areas 

written in C or FORTRAN. He observed that the C codes contained approximately 8 serious 

static faults for every 1000 lines of executable code, while the FORTRAN codes contained 

approximately 12 serious faults per 1000 lines which can lead to the failure of software meaning 

software giving a wrong solution. In his dynamic testing, where the testing is done by actually 

running the code, Hatton examined codes in the area of seismic data processing. In this study, he 

examined 9 independent, mature commercial codes developed independently by different 

companies which employed the same algorithm, the same programming language, the same user 
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defined parameters, and the same input data and the agreement between the codes was only 

within 100% (i.e., a factor of two). These experiments done by Hatton provide motivation to 

work towards building confidence in CFD solutions. So it is necessary to find any coding 

mistakes or bugs that may have been made during the development stage of a code. Engineers 

and other CFD practitioners who rely on the numerical solutions from CFD codes need assurance 

that the codes are free from coding mistakes. The procedure of finding mistakes in the code is 

called code verification. 

1.2 Literature Review 

Topics investigated include the code verification of finite volume CFD codes using the 

Method of Manufactured Solutions and also the robustness and accuracy of diffusion operators. 

The numerical formulations of the diffusion terms in the Navier-Stokes equations are termed as 

diffusion operators. During the code verification process of an unstructured finite volume CFD 

code, it was observed that the formulation of an accurate and robust viscous operator is a 

challenging task which motivated the study and testing of different diffusion operators.   

1.2.1 Code Verification 

Verification of CFD codes has been the subject of many studies in recent years. Abanto et 

al.
2
 demonstrated an approach to test the accuracy of some of the most widespread commercial 

codes. They presented grid convergence studies on atypical CFD cases using some commercial 

CFD packages. Their verification test cases include an incompressible laminar Poiseuille flow, a 

manufactured incompressible laminar boundary layer flow, an incompressible re-circulating flow 

and an incompressible annular flow. Different types of structured and unstructured meshes were 

used during the study. They observed non-monotonic grid convergence for all their test cases. 

Iterative convergence of the discrete equations to machine zero did not guaranty accurate flow 

field predications which meant that the codes converged to wrong solutions. From their study, 

they recommended that users perform the verification of commercial CFD codes and be cautious 

when using the commercial codes on industrial problems.  

Kleb and Wood
3
 pointed out that the computational simulation community is not 

routinely publishing independently verifiable tests to accompany new models or algorithms. 

They mentioned the importance of conducting component-level verification tests before 

attempting system-level verification and also publishing them when introducing a new 
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component algorithm. They proposed a protocol for the introduction of new methods and 

physical models that would provide the computational community with a credible history of 

documented, repeatable verification tests that would enable independent replication.  

Roache
4
 discussed the verification of codes and calculations along with some definitions 

and descriptions related to confidence building in computational fluid dynamics. Verification 

was described as solving the equations right and validation as solving the right equations. 

Different aspects discussed in the paper include the distinction between code verification and 

validation, grid convergence and iterative convergence, truncation error and discretization error. 

Also discussed were verification of calculations, error taxonomies, code verification via 

systematic grid convergence testing, the Grid Convergence Index (GCI) and sensitivity of grid 

convergence testing. According to the author, verification does not include all aspects of code 

quality assurance like the important concerns of version control or archiving of input data. 

In the books by Roache
5
 and Knupp and Salari,

6
 the authors comprehensively discussed 

code verification, the Method of Manufactured Solutions (MMS) used to obtain exact solutions 

for code verification purposes, and order of accuracy verification. Recently, Oberkampf and 

Roy
7
 also in their book discussed in detail the concepts of verification. Their detailed focus was 

on fundamental concepts of code verification and software engineering, solution verification, 

validation, and predictive capability of scientific computing. 

The first application of MMS for code verification was by Roache and Steinberg in 

1984.
8
 In their work, they used the MMS approach to verify a code for generating three-

dimensional transformations for elliptic partial differential equations. Additional discussions of 

the MMS procedure for code verification have been presented by Roache.
5,9

 More recently, 

Oberkampf and Roy
7
 discussed the use of MMS for generating exact solutions along with the 

order of accuracy testing for code verification.   

In prior work, MMS has been used to verify two compressible CFD codes
10-12

: Premo
13

 

and WIND.
14

 The Premo code employed a node-centered approach using unstructured meshes 

and the Wind code employed a similar scheme on structured meshes. Both codes used Roe’s 

upwind method with MUSCL extrapolation for the convective terms and central differences for 

the diffusion terms making the codes second-order accurate. The form of Manufactured Solution 
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was chosen to be a smooth, infinitely differentiable and chosen such that all the terms in the 

governing equations were exercised. The Manufactured Solutions were tested on different grid 

levels and both the codes demonstrated second-order special accuracy as the mesh was refined, 

thus giving a high degree of confidence that the codes were free from coding mistakes. The 

MMS was found to be an invaluable tool for finding coding mistakes. In their work, the authors 

successfully verified both the inviscid Euler equations and the laminar Navier-Stokes equations. 

An alternative statistical approach to MMS was proposed by Hebert and Luke
15

 for the Loci-

CHEM combustion CFD code.
16

 In their approach, they employed a single mesh level which was 

shrunk down and used to statistically sample the discretization error in different regions of the 

domain of interest. Their work successfully verified the Loci-CHEM CFD code for the 3D, 

multi-species, laminar Navier-Stokes equations using both statistical and traditional MMS. 

Another similar approach to statistical MMS was the downscaling approach to order 

verification
17,18

 which also employed a single mesh which was scaled down about a single point 

in the domain instead of statistically sampling the smaller meshes in the domain of interest. Both 

the statistical MMS and the downscaling approaches have an advantage of being relatively 

inexpensive because they do not require mesh refinement. But one of the disadvantages of using 

these methods is that they neglect the possibility of discretization error transport into the scaled-

down domain. Thus, it is possible to pass a code order of accuracy verification test using 

statistical MMS or the downscaling approach for a case that would fail the test using traditional 

MMS. 

MMS was also applied to verify the boundary conditions. Bond et al.
19,20

 documented the 

development of a Manufactured Solution capable of testing the governing equations and 

boundary conditions commonly implemented in CFD codes. Along with the Euler, Navier-

Stokes, and Reynolds-averaged Navier-Stokes equations, verification of boundary conditions 

including slip wall, no-slip wall (adiabatic and isothermal) boundary and outflow (subsonic, 

supersonic and mixed) boundary conditions was performed. The derived Manufactured Solution 

was applicable not only to Premo for which the Manufactured Solution was used, but also to 

general CFD codes. The verification of the Premo code was done on skewed, non-uniform, 

three-dimensional meshes and the sequence of meshes were designed to obtain asymptotic 

results with reasonable computational cost. The Manufactured Solution used had identified a 

number of formulation weaknesses with boundary conditions and gradient reconstruction 
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methods. In their study, the reason for the inconsistency in the order of accuracy results for the 

Euler slip wall boundary was found to be not because of the coding mistakes but instead caused 

by a problem with the weak enforcement of the slip condition. A newly implemented 

characteristic formulation eliminated the problems and second order convergence was observed. 

The implementation of Green-Gauss gradient calculation in Premo was found to be strictly valid 

only for tetrahedral element types because the implementation neglected some additional support 

necessary for non-Cartesian hexahedral element types and hence showed poor order 

performance.  

There have been three coordinated efforts to apply MMS to turbulent flows. Pelletier and 

co-workers have summarized their work on 2D incompressible turbulent shear layers using a 

finite element code with a focus on a logarithmic form of the k-ε two-equation RANS model.
21,22

 

They employed Manufactured Solutions which mimic turbulent shear flows, with the turbulent 

kinetic energy and the turbulent eddy viscosity as the two quantities specified in the 

Manufactured Solution. For the cases examined, they were able to verify the code by 

reproducing the formal order of accuracy. More recently, Eca and co-workers have published a 

series of papers on Manufactured Solutions for the 2D incompressible turbulent Navier-Stokes 

equations.
23-25

 They also employed physically-based Manufactured Solutions, in this case 

mimicking wall-bounded turbulent flow. This group looked at both finite-difference and finite-

volume discretizations, and examined a number of turbulence models including the Spalart-

Allmaras one-equation model
26

 and two two-equation models: Menter’s baseline (BSL) version 

k-ω model
27

 and Kok’s turbulent/non-turbulent k-ω model.
28

 While successful in some cases, 

their physically-based Manufactured Solution often led to numerical instabilities, a reduction in 

the observed mesh convergence rate, or even inconsistency of the numerical scheme (i.e., the 

discretization error did not decrease as the mesh was refined). In order to independently test 

different aspects of the governing equations, in some cases they replaced certain discretized 

terms (or even whole equations) with the analytic counterpart from the Manufactured Solution. 

For the Spalart-Allmaras model they specified the turbulent viscosity, while for the two equation 

models they specified both the turbulent eddy viscosity and the turbulent kinetic energy. The 

cases they examined employed a Reynolds number of 10
6
 and used Cartesian meshes which were 

clustered in the y-direction towards the wall. 
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Roy et al.
29

 presented a different approach for verifying RANS turbulence models in CFD 

codes. Their approach used smooth, non-physical Manufactured Solutions which were chosen 

such that they provided contributions from all the terms in the turbulence transport equations 

including convection, diffusion, production, and destruction terms. The turbulence model 

verified was the baseline version of Menter’s k-ω model and the code used was the Loci-CHEM 

CFD code. Special attention was paid to the blending function which allowed the model to 

switch between a k-ω and a transformed k-ε model. In their approach, Manufactured Solutions 

were selected such that they activate only one branch of the min and max functions in the 

turbulence model. Certain terms were turned off in both the numerical code and the 

Manufactured Solution to focus on different parts of the turbulence equations. The turbulence 

transport equations along with the RANS equations were verified in the Loci-CHEM CFD code 

by computing the observed order of accuracy on a series of consistently refined two-dimensional 

meshes. For the structured mesh topologies examined, i.e. Cartesian and skewed curvilinear 

meshes, the observed order matched the formal order of two. But for the unstructured meshes 

examined, the observed order of accuracy was found to be first order. Testing the Euler 

equations and Navier-Stokes equations on the unstructured meshes suggested that the source for 

the reduced order of accuracy was the diffusion operator on the unstructured meshes. 

Thomas et al.
18

 presented a new methodology for verification of finite volume 

computational methods using unstructured meshes. The discretization-order properties were 

studied in computational windows, constructed within a collection of meshes or a single mesh 

and tests were performed within each window to address a combination of problem-, solution-, 

and discretizaton/mesh-related features affecting discretization error convergence. A 

computational window was used to improve the verification of unstructured mesh computational 

methods intended for large-scale applications and the integral norms do not provide sufficient 

information to isolate the source of errors. A downscaling technique was also used, in addition to 

a traditional mesh refinement. Meshes within the windows were constrained to be consistently 

refined, enabling a meaningful assessment of asymptotic error convergence on unstructured 

grids. Two types of finite volume schemes were considered: node centered schemes and cell 

centered schemes. Demonstration of the methodology was shown which included a comparative 

accuracy assessment of commonly used schemes on general mixed grids and the identification of 

local accuracy deterioration at boundary intersections. The authors provided recommendations 



7 

 

on choosing relevant tests to verify a code for large-scale computations. They recommended that 

each problem-related feature like boundary conditions etc. to be addressed by choosing an 

appropriate computational window and each solution related features like shocks, boundary 

layer, flow separation etc. to be addressed by choosing an appropriate Manufactured Solution. 

Proper mesh refinement between different mesh levels used for code verification is 

important to achieve correct order of accuracy. Salas
30

 presented the necessary conditions to 

properly establish mesh convergence. He demonstrated his ideas using a theoretical model and a 

numerical example and showed that anomalously low or high observed rates can be exhibited by 

otherwise well-behaved algorithms because of improper use of mesh refinement ratios in 

different directions. In his study, he showed that as the mesh aspect ratio increased, finer meshes 

are required to enter the asymptotic range. 

Etienne et al.
31

 demonstrated three approaches to verification of temporal accuracy of 

unsteady time accurate flow solvers. When higher order time-stepping schemes are used with 

second order special discretization, verifying the time-stepping schemes requires very fine 

meshes that are often impractical to perform calculations on due to limits in memory size and 

CPU times. The three approaches presented to verify time accuracy in a flow solver included the 

direct approach in which both the mesh size and time step were refined simultaneously in a 

consistent and coherent fashion, the decoupled approach in which the mesh size was so small 

that the spatial discretization error could be neglected so that only a time-step refinement study 

was done and the Iterated Richardson Extrapolation method which allowed verification of the 

time-integrators by time step refinement on a coarse mesh. In the direct approach with a higher 

order time-stepping scheme, every time the time step was refined by a factor of two, the mesh 

needs to be refined by a higher factor of 2
n/p

 where n and p are the formal orders of time and 

space, respectively, requiring this approach to use very fine meshes for verifying higher order 

time-stepping schemes. In the case of decoupled approach, a mesh size sufficiently small was 

used so that the spatial contribution to the error was neglected compared to the temporal 

contribution and again this approach required a very fine mesh which makes this approach along 

with the direct approach very expensive or impractical for code verification. In the case of the 

Iterated Richardson Extrapolation method, for a fixed mesh size, a time step refinement study 

was performed, and Richardson extrapolation was applied repeatedly to the data to yield an 
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approximation to the exact solution to the ordinary differential equations in time resulting from 

spatial discretization with the given fixed mesh size. Performing Richardson extrapolation 

decoupled the time step refinement from the mesh size refinement for estimating the temporal 

contribution to the global error in the final time. If the Richardson extrapolation in time was 

feasible, then time-step refinement on any mesh however coarse was sufficient to achieve 

verification of time integrators of arbitrarily high order of accuracy. 

Tremblay et al.
32

 presented the use of MMS for fluid-structure interactions code 

verification and debugging. MMS was used to generate exact solutions and then test the code 

using systematic mesh refinement. Manufactured Solutions were presented for two-dimensional 

incompressible flow strongly coupled with an isotropic structure undergoing large 

displacements. Their results illustrated the power and cost-effectiveness of the approach. 

1.2.2 Diffusion Operators 

Since the challenge of formulating a diffusion operator for an unstructured mesh is more 

complicated when compared to a structured mesh, the literature survey is concentrated mostly on 

the diffusion operator formulations on unstructured meshes. Knight
33

 developed an implicit 

algorithm for the two-dimensional, compressible, laminar, Navier-Stokes equations using an 

unstructured grid consisting of triangular cells. A cell centered data structure was employed with 

the flow variables stored at the cell centroids. For the viscous fluxes, the values on the faces were 

calculated by applying Gauss’s theorem to the quadrilateral defined by the cell centroids of the 

cells adjacent to the face and the two nodes defining the end points. The solution variables at the 

nodes were obtained by the second order interpolation of the conserved variables from those 

cells sharing the node. A similar formulation of viscous fluxes on the cell faces was used by 

Ollivier-Gooch et al.
34

 They presented a new approach for a high-order-accurate finite-volume 

discretization for diffusive fluxes that was based on the gradients computed during solution 

reconstruction. In their analysis, their schemes based on linear and cubic reconstruction achieved 

second and fourth order accuracy, respectively, while the schemes based on quadratic 

reconstruction were second order accurate. They examined both vertex centered and cell 

centered control volumes for linear, quadratic and cubic reconstructions. For cell centered 

control volumes, gradients were calculated by using Green-Gauss integration around a diamond 

connecting the end points of an edge and the centroids of the cells that share the edge. The 
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solution at the end points of the edge was estimated by averaging data in incident control 

volumes. The numerical experiments conducted showed that nominal accuracy was attained in 

all cases for the advection-diffusion problems. 

Vaassen et al.
35

 presented a finite volume cell centered scheme for the solution of the 

three-dimensional Navier-Stokes equations where they used a conservative and consistent 

discretization approach for the diffusive terms based on an extended version of Coirier’s 

diamond path.
36

 A Gauss formula was employed to perform the integration of fluxes on the cell 

surfaces. To obtain a consistent discretization of the diffusion terms regardless of the irregularity 

of the mesh, a second order approximation of the gradient was used. For the calculation of 

gradients on the face centers, a diamond path was built by connecting each vertex of the face to 

the left and right neighboring cell centroids, forming a polyhedron on which a Green-Gauss 

formula was applied. Numerical results using the solver were shown to have good accuracy even 

on highly distorted meshes. 

Grismer et al.
37

 developed an implicit, unstructured Euler/Navier-Stokes finite volume 

solver which is based on a cell centered scheme. In their procedure for the calculation of viscous 

fluxes, a piecewise linear reconstruction was used to approximate the solution variables within 

cells. The linear reconstruction was derived from the cell values and gradients by applying a 

second-order Taylor-series expansion. The gradient at the cell centroid was evaluated by 

minimizing the weighted error between the reconstructed function and the neighboring cell 

values. The gradient on the face was shown as a vector sum of the components normal and 

tangential to the face. The tangential component of the gradient vector at the cell face was the 

average of tangential components of the gradients in the two cells sharing the face. Luke
39

 used 

the same formulation for the viscous fluxes with some changes in the normal gradient 

calculation. The changes were made after the formulation for the diffusive fluxes was shown to 

be inconsistent on a skewed curvilinear mesh.
38

 The diffusion operator formulations used by 

Grismer
37

 and Luke
39

 are different from the approaches discussed earlier. Instead of directly 

calculating the gradients at the face centers, the gradients were calculated at the cell centriod and 

then interpolated to the face centers.  

Mavriplis
40

 examined the accuracy of the various gradient reconstruction techniques on 

unstructured meshes. He demonstrated that the unweighted least-squares gradient construction 
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severely under-estimated normal gradients for highly stretched meshed in the presence of surface 

curvature. It was shown that the above behavior could be expected for vertex based 

discretizations and cell-centered discretizations operating on triangular and quadrilateral meshes 

(tetrahedral and prismatic meshes in 3D). The use of inverse distance weighting in the least-

squares reconstruction could be used to recover good accuracy for the vertex and cell-centered 

discretizations on quadrilateral meshes and for vertex discretizations on triangular meshes; 

however, and the technique was shown to be ineffective for cell-centered discretizations on 

triangular meshes. The Green-Gauss construction technique produced adequate gradient estimate 

in all the cases. The author concluded that the use of inverse distance weighted least-squares 

gradients and Green-Gauss gradients in the discretization of convective and viscous terms was a 

prudent strategy, but the approaches were shown to be less robust than upwind schemes and 

often required gradient limiting to achieve stable solutions. 

Delanaye et al.
41

 presented a second-order finite volume cell-centered technique for 

computing steady-state solutions of the full Euler and Navier-Stokes equations on unstructured 

meshes. The scheme was designed such that its accuracy was only weakly sensitive to mesh 

distortions. An original quadratic reconstruction with a fixed stencil and high-order flux 

integration by the Gauss quadrature rule was employed to compute the advective term of the 

equations. For the diffusive term, the derivatives were obtained at the midpoint of an edge by 

using a linear interpolation between the right and left neighbors. The scheme’s weak sensitivity 

to mesh distortions was demonstrated for inviscid flow calculation with the computation of 

Ringleb’s flow and for the viscous flow calculation with the computation of the viscous flow 

around an isothermal flat plate. Since the high-order scheme produces oscillations in the vicinity 

of discontinuities leading to instability, the full quadratic reconstruction was used in smooth 

flows and the scheme was automatically switched to a linear reconstruction at the vicinity of 

discontinuities. Two inviscid flow computations over the NACA0012 airfoil, a supersonic flow 

at a free stream Mach number of 1.2 with zero angle of attack and a transonic flow at free stream 

Mach number of 0.8 with angle of attack of 1.25° were performed to illustrate the application of 

their quadratic reconstruction scheme. They also investigated the supersonic flow over a 

compression ramp by using a hybrid grid. 
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Haselbacher et al.
42,43

 presented an upwind flow solution method for mixed unstructured 

meshes in two dimensions consisting of triangular and quadrilateral meshes. The discretization 

of the viscous fluxes on general unstructured meshes was studied and a positive discretization 

was developed for Laplace’s equation and extended to Navier-Stokes equations. A positive 

discretization in this case was defined as the discretization of the Laplacian where the weights in 

the discretized equation were positive. It is desirable for any discretization technique to ensure 

positivity since turbulence models are extremely sensitive to non-positive weights. An 

approximate form of the viscous fluxes was devised that was independent of the cell topology, an 

approach they referred to as mesh transparent. The authors constructed control volumes from 

dual cells and the solution variables were stored at mesh vertices. The authors investigated the 

viscous fluxes to obtain a positive and second order accurate scheme on arbitrary mixed meshes 

that was compatible with the edge based data structure along with mesh transparency. The 

investigation was simplified by studying Laplace’s equation. They presented numerical results 

for transonic inviscid flow, laminar flow about an airfoil with large separation and turbulent 

transonic flow over an airfoil. A mesh refinement study was conducted to assess the accuracy of 

different control constructions and the influence of triangular, quadrilateral and mixed meshes 

for viscous flows. Median-dual control volumes on triangular meshes resulted in higher 

numerical error than the containment dual control volumes on quadrilateral and triangular 

meshes. 

Diskin et al.
44

 compared the node-centered and cell-centered schemes for unstructured 

finite-volume discretization of Poisson’s equation as a model of the viscous fluxes. Accuracy and 

efficiency were studied for six nominally second-order accurate schemes which include a node-

centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-

centered schemes with un-weighted, weighted and approximately mapped least-squares face 

gradient reconstruction. Among the considered schemes, the node centered scheme has the 

lowest complexity and the cell-centered node-averaging scheme has the highest complexity. 

They tested the schemes on grids which ranged from structured regular grids to irregular grids 

composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of 

the grid points to examine the worst possible behavior of the solution. Two classes of tests were 

considered. The first class of tests involved smooth manufactured solution on both isotropic and 

highly anisotropic grids with discontinuous metrics, typical of those encountered in unstructured 
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grid adaptation and the second class of tests were performed on consistently refined stretched 

grids generated around a curved body representative of high Reynolds number turbulent flow 

simulations. From the first class of tests, they observed that the face least-square methods, node-

averaging method without clipping, and the node centered method demonstrated second-order 

convergence of discretization errors. From the second class of tests, they observed that the node-

centered scheme was always second order accurate and cell-centered node-averaging schemes 

were less accurate and also failed to converge to the exact solution when clipping of the node-

averaged values was used. Cell-centered node averaging schemes are second-order accurate and 

stable when the coefficients of the pseudo-Laplacian operator are close to 1 and on highly 

stretched and deformed grids, some coefficients of pseudo-Laplacian become negative or larger 

than 2, which has a detrimental effect on stability and robustness (Barth
45

). Holmes and 

Connell
46

 proposed to enforce stability by clipping the coefficients between 0 and 2. In this 

paper, it was shown that clipping seriously degrades the solution accuracy. The cell-centered 

schemes using least square face gradient reconstruction had more compact stencils with a 

complexity similar to that of the node centered schemes. For simulations on highly anisotropic 

curved grids, the least square methods had to be amended by modifying the scheme stencil to 

reflect the direction of strong coupling. The authors concluded that the accuracies of the node-

centered and best cell-centered schemes were comparable at equivalent number of degrees of 

freedom. 

Many authors also employ finite-element methods for computing viscous flows governed 

by the Navier-Stokes equations. Sun et al.
47

 extended a spectral volume method to handle 

viscous flows. Using the spectral volume method high-order accuracy was achieved through 

high-order polynomial reconstructions within spectral volumes. They developed a formulation 

similar to the Local Discontinuous Galerkin (LDG) approach to discretize the viscous fluxes. 

Gauss’s theorem was used to integrate the gradients in the control volume. Kannan et al.
48

 

improved the Navier-Stokes solver developed by Sun et al.
47

 based on the spectral volume 

method with the use of a new viscous flux formulation. Instead of a LDG-type approach, a 

penalty approach based on the first method of Bassi and Rebay
49

 was used. The advantage of the 

penalty approach over the LDG approach was the speed up of the convergence with the implicit 

method and indicated that the approach had a great potential for 3D flow problems. Fidkowski 

and Darmofal
50

 also used a finite-element approach for high order discretizations of the 
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compressible Navier-Stokes equations. The viscous flux terms were discretized using the second 

form of Bassi and Rebay.
49
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2. Basic Concepts of Verification 

2.1 Verification 

Verification addresses the mathematical correctness of numerical simulations and it plays 

an important role in building confidence in CFD solutions. There are two fundamental aspects to 

verification: code verification and solution verification. Code verification is the process of 

ensuring, that there are no mistakes (bugs) in a computer code or inconsistencies in the numerical 

algorithm. Solution verification is the process of estimating the three types of numerical error 

that can occur in numerical simulations: round-off error, iterative error, and discretization error. 

2.2 Code Verification 

Code verification
7
 is the process of ensuring, that there are no mistakes (bugs) in a 

computer code or inconsistencies in the numerical algorithm. By performing code verification, a 

code can be tested for mistakes and can be followed by code debugging to identify and remove 

the mistakes. During the development of scientific software, there is a high possibility of making 

a number of coding mistakes. These mistakes need to be removed before using the code on real 

applications.  

1. Coding mistake: A simple example of a coding mistake in a FORTRAN program is 

shown below. 

 

FORTRAN Code:  

TEMPNORM = 0 

DO J = 2, JMAX - 1 

    DO I = 2, JMAX - 1 

       RES = RES + ((T(I,J) - TOLD(I,J))/DT )**2 

       TEMPNORM = TEMPNORM + T(I,J)**2 

    ENDDO 

ENDDO 

The underlined part of the code is a mistake in FORTRAN code shown here. The wrong 

term ‘JMAX’ is used instead of the right term ‘IMAX’. This kind of coding mistake is a 
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possibility while developing a code. In the process of code verification, mistakes like the 

one shown above can be identified and removed. 

2. Algorithm Inconsistency: For a consistent numerical algorithm, the discretized equations 

must approach the original partial differential equations in the limit as mesh size (∆x, ∆t) 

approaches zero. A famous example of an inconsistent algorithm is the DuFort-Frankel
51

 

differencing of a 1D unsteady heat equation.
52
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For the 1D unsteady heat equation shown above, the DuFort-Frankel differencing is 

given by 

 
���
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for which the leading terms in the truncation error are shown below. 
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If ∆x and ∆t approach zero at the same rate such that ∆t/∆x = β, then the discretized 

equations will not approach original partial difference equations, i.e., the 1D unsteady 

heat equation, instead they converge to a different partial difference equation shown 

below which is a hyperbolic equation. 
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In the process of code verification, numerical inconsistencies can also be identified and 

corrected. 

2.3 Order of Accuracy 

Order of accuracy
5,6,7

 is the rate of decrease of discretization error with mesh refinement. 

Order of accuracy test, which is equivalent to testing whether the formal order of accuracy 

matches the observed order of accuracy, is the most exercising code verification test. This test 

not only determines whether the solution is converging, but also whether or not the discretization 

error is reduced at the expected rate. 
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2.3.1 Formal Order of Accuracy 

The formal order of accuracy of a numerical scheme is the rate at which the discretized 

equations approach the original partial differential equations. For all discretization approaches 

(finite difference, finite volume, finite element, etc.) the formal order of accuracy is obtained 

from a truncation error analysis of the discrete algorithm. The formal order will be the power of 

∆x or ∆t in the leading terms in the truncation error. Any partial differential equation can be 

written as the sum of the finite difference equation and the truncation error. As an example, for a 

1D unsteady heat equation, applying Taylor series and discretizing the 1D unsteady heat 

equation with a forward difference in time and a central difference in space, it can be written as: 
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(2.5)  

From the above expression, the formal order of accuracy of the finite difference scheme is first 

order in time and second order in space since the leading terms in the truncation error contain the 

factors ∆t and (∆x)
2
, respectively. 

2.3.2 Observed Order of Accuracy 

The observed order of accuracy is computed directly from the code output for a given set 

of simulations on systematically refined grids. The observed order of accuracy will not match the 

formal order of accuracy due to mistakes in the computer code, defective numerical algorithms, 

and when numerical solutions are not in the asymptotic grid convergence range. For calculating 

the observed order of accuracy using two mesh levels, it is required to have an exact solution to 

find the discretization error.  

Assuming that exact solution to the partial differential equations is known, let us now 

consider the method for calculating the observed order of accuracy. The discretization error is 

formally defined as the difference between the exact solution to the discrete equations and the 

exact solution to the governing partial differential equations. Since the exact solution to the 

discrete equations (which will be different on different mesh levels) is generally not known, the 

numerical solution on the same mesh level is substituted in its place, thus neglecting iterative 
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error and round-off error. The observed order of accuracy can be evaluated either locally within 

the solution domain or globally by employing a norm of the discretization error or for a global 

system response quantity. Consider a series expansion of the discretization error in terms of hk, a 

measure of the element size on the mesh level k, 

 &�' � (' � ()*+,- � ./0'/ � 1%� (2.6)  

where fk is the numerical solution on mesh k, gp is the coefficient of the leading error term, and p 

is the formal order of accuracy. Neglecting the higher order terms, we can write the 

discretization error equation for a fine mesh (k=1) and a coarse mesh (k=2) in terms of the 

observed order of accuracy 2̂ as 
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Since the exact solution is known, these two equations can be solved for the observed order of 

accuracy 2̂. Introducing r, the ratio of coarse to fine mesh element spacing (r = h2/h1 > 1), the 

observed order of accuracy becomes 

 2̂ � 56 7&��&��856�9�  
(2.8)  

Thus, when the exact solution is known, only two solutions are required to obtain the observed 

order of accuracy. 

2.4 Method of Manufactured Solutions 

Code verification using order of accuracy testing requires an exact solution to the 

governing equations which are tested in the code. Traditional exact solutions exist only for 

simple governing equations. For complex governing equations which can handle complex 

physics, complex geometries, and significant nonlinearities, it is difficult to find exact solutions. 

The Method of Manufactured Solutions, (MMS) is a general approach for obtaining exact 

solutions for code verification purposes.   

2.4.1 Procedure for MMS 

The procedure for applying MMS with order of accuracy verification is demonstrated 

below for a simple example problem.
7
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1. Choose the specific form of the governing equations; here we choose the linear 1D 

heat equation. 

 
���� � � ������ � 0    (2.9)  

2. Choose the Manufactured Solution. 
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3. Operate the governing equations on the chosen solution, resulting in analytic source 

terms. 
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4. Solve the modified governing equation (original equation plus source terms) on 

various mesh levels. 
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5. Compute the observed order of accuracy and compare it with the formal order of 

accuracy. 

2.4.2 Attributes of a Good Manufactured Solution 

The chosen Manufactured Solution should be smooth, analytic functions with smooth 

derivatives. The choice of smooth derivatives will allow the formal order of accuracy to be 

achieved on relatively coarse meshes. Trigonometric and exponential functions are selected as 

Manufactured Solutions since they are smooth and infinitely differential. There is an advantage 

of using trigonometric functions as they can be adjusted to include only a fraction of an 

oscillation period over the domain which makes it easier to achieve the asymptotic range. The 

Manufactured Solutions need to be selected such that no derivatives vanish, including cross 

derivatives if they are present in the governing equations. Even though the Manufactured 

Solution is not required to be physically realistic, since we are only testing the mathematics, they 

should be chosen to give realizable physical states. For example, if the code requires that the 
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temperature to be positive for the calculation of speed of sound, then the Manufactured Solution 

should be chosen such that the temperature values are only positive. 

A Manufactured Solution should be selected such that all the terms in the governing 

equation have similar magnitudes meaning one term in the governing equation should not 

dominate other terms. For example, a Manufactured Solution should be selected such that the 

convective terms and diffusive terms in Navier-Stokes equations have the same order of 

magnitude. It can be checked whether all the terms in the governing equations are roughly the 

same order of magnitude, by examining the ratios of those terms in the considered domain. 

2.4.3 Advantages of Method of Manufactured Solutions 

There are several advantages of using MMS. This procedure can be applied to all 

discretization schemes (finite-difference, finite-volume, and finite element). MMS can also be 

applied without trouble when dealing with nonlinear equations and multiple equations like the 

Navier-Stokes equations. Roache
5
 showed that by using MMS for code verification, very 

sensitive mistakes in the discretization can be determined. The sensitivity of MMS procedure for 

code verification is explained with this example where during the testing of a compressible 

Navier-Stokes code, the reason for non-convergence of global norms of the discretization error 

was found to be because of a small discrepancy in the 4
th

 significant digit for the thermal 

conductivity between the governing equations and the numerical implementation in the code.
29
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3. Mesh Generation 

A finite volume CFD code is verified on different mesh topologies in the verification 

process. To verify all mesh transformations are coded correctly, the code needs to be run on the 

most general mesh types
29,38

 which include meshes with mild skewness, aspect ratio, curvature, 

and stretching. The most general mesh types are termed as hybrid meshes which contain 

different mesh topologies. However, the code needs to be run on simpler meshes if the code 

verification fails on the general meshes. Simpler meshes include meshes with isolated mesh 

topologies and mesh qualities. The different mesh topologies considered for code verification in 

both 2D and 3D are classified as structured, unstructured, and hybrid meshes which are a 

combination of structured and unstructured meshes. 

3.1 2D Mesh Topologies 

Different 2D structured and unstructured mesh topologies are used during the code 

verification of the finite volume CFD code. The most general mesh topology used for 2D 

verification is a 2D hybrid mesh which includes quadrilateral and triangular cells with 

curvilinear boundaries, skewed cells, and stretched cells. 

3.1.1 2D Structured Meshes 

The 2D structured meshes used for code verification are the Cartesian mesh, the stretched 

Cartesian mesh, the curvilinear mesh, and the skewed curvilinear mesh. The 2D structured 

meshes are shown in Figure 1. The 2D structured meshes considered here contain quadrilateral 

cells. By testing the code on these meshes, the behavior of the code on the quadrilateral cell 

topology along with its cell quality effect can be studied. All these 2D structured meshes are 

generated using the mesh generation tool GRIDGEN.
57

 The stretched Cartesian mesh can be 

used to isolate the effects of grid stretching and aspect ratio, the curvilinear mesh can be used to 

test the effects of curved boundaries without the presence of skewness or stretching, and the 

skewed curvilinear mesh tests all the effects on a single structured mesh type.  
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a)                                                                   b) 

    

c)                                                                   d) 

Figure 1: 2D structured meshes: a) Cartesian, b) stretched Cartesian, c) curvilinear, and d) 

skewed curvilinear  

3.1.2 2D Unstructured Meshes 

Selected 2D unstructured meshes used for code verification are shown in Figure 2. The 

2D unstructured meshes considered here contain triangular cells. The general unstructured mesh 

is generated by automatic mesh generation in GRIDGEN. Other unstructured meshes, i.e., the 

unidirectional diagonal and bidirectional diagonal unstructured meshes shown in Figure 2, are 

generated by starting from a structured mesh and then adding diagonals in the quadrilateral cells. 
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The 2D unstructured meshes generated by adding diagonals in a structured mesh are used in the 

verification study to achieve a uniform and consistent refinement between different mesh levels. 

By testing the code on these meshes, the behavior of the code on the triangular cell topology 

along with its cell quality effect can be studied. The concept of uniform and consistent mesh 

refinement and its necessity for code verification purposes are discussed in Section 3.3.  

 

a)                                                                   b) 

 

c) 

Figure 2: 2D unstructured meshes: a) general unstructured, b) uni-directional diagonal, 

and c) alternate diagonal 
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3.1.3 2D Hybrid Meshes 

A 2D hybrid mesh contains both quadrilateral and triangular cell topologies. The 2D skewed 

hybrid mesh and the highly skewed hybrid mesh considered for code verification are shown 

in a)                                                                   b) 

Figure 3. The 2D hybrid meshes are also generated using the mesh generation tool 

GRIDGEN. By performing code verification on these meshes, the behavior of the code on both 

the triangular and quadrilateral cell topologies with all the different cell quality effects is tested. 

   

a)                                                                   b) 

Figure 3: 2D hybrid meshes: a) skewed hybrid and b) highly skewed hybrid 

3.2 3D Mesh Topologies 

Different 3D structured and unstructured mesh topologies are used during the code 

verification of the finite volume CFD code. The most general mesh topology used for 3D 

verification is a 3D hybrid mesh which includes hexahedral cells, tetrahedral cells, and prismatic 

cells with curvilinear boundaries, skewed cells, and stretched cells. 

3.2.1 3D Structured Meshes 

The 3D structured meshes used during code verification include the Cartesian mesh and 

the skewed curvilinear mesh. The 3D structured meshes are shown in Figure 4. The 3D 

structured meshes contain hexahedral cells. By testing the code on these meshes, the behavior of 

the code on the hexahedral cell topology along with its cell quality effect can be studied. All the 
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3D structured meshes are also generated using GRIDGEN. The skewed curvilinear mesh is 

generated to test the effects of aspect ratio, skewness, stretching and the effect of curved 

boundaries on the code. 

    

a)                                                                   b) 

Figure 4: 3D structured meshes: a) Cartesian and b) skewed curvilinear 

3.2.2 3D Unstructured Meshes 

Different 3D unstructured meshes used for code verification are shown in Figure 5. The 

3D unstructured meshes considered here contain tetrahedral cells and prismatic cells. By testing 

the code on these meshes, the behavior of the code on the tetrahedral and prismatic cell 

topologies along with their cell quality effects can be studied. The 3D unstructured meshes used 

during code verification include the unstructured meshes with tetrahedral and prismatic cells as 

shown in Figure 5a and Figure 5b, respectively, and these meshes have cells close to isotropic 

cells. The highly skewed unstructured meshes with tetrahedral and prismatic cells are shown in 

Figure 5c and Figure 5d, respectively, and these meshes contain highly skewed and stretched 

cells which can be used to study the cell quality effect while testing the code. The unstructured 

mesh with prismatic cells is generated in GRIDGEN by starting with an unstructured 2D domain 

and projecting in the third direction normal to the 2D domain. For generating all the other 3D 

unstructured meshes, particularly for the unstructured tetrahedral meshes, a mesh generation 
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code is developed using Fortran. The reason for developing a Fortran code to generate these 3D 

unstructured meshes is discussed in Section 3.3. 

 

a)                                                                   b) 

 

c)             d) 

Figure 5: 3D unstructured meshes: a) unstructured mesh with tetrahedral cells, 

unstructured mesh with prismatic cells, c) highly skewed unstructured mesh with 

tetrahedral cells, and d) highly skewed unstructured mesh with prismatic cells 
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3.2.3 3D Hybrid Meshes 

The skewed 3D hybrid mesh and the highly skewed 3D hybrid mesh used for code 

verification are shown in Figure 6. The 3D hybrid meshes considered contain hexahedral, 

tetrahedral, and prismatic cells. By testing the code on these meshes, the behavior of the code on 

the hexahedral, tetrahedral and prismatic cell topologies along with their cell quality effect can 

be studied. To isolate the cell quality effects, 3D hybrid meshes which have cells close to 

isotropic can be used to test the code. Again, for generating all the 3D hybrid meshes, a mesh 

generation code is developed using Fortran. 

 

a)                                                                   b) 

Figure 6: 3D hybrid meshes: a) skewed hybrid and b) highly skewed hybrid 

3.3 Systematic Mesh Refinement 

Systematic mesh refinement
7
 is defined as uniform and consistent refinement over a 

spatial domain. A mesh is said to be uniformly refined if the mesh is refined in all the coordinate 

directions equally and it is said to be consistently refined if the mesh quality stays constant or 

improves with mesh refinement. For the purpose of code verification, it is necessary to have a 

systematic mesh refinement.
7
 In the case of structured meshes, refinement/coarsening of the 

meshes for the verification purpose are straightforward. A coarse mesh is generated from a fine 

mesh by removing every alternate mesh point or mesh line to produce mesh levels with a 

refinement factor of two. In this process, the mesh quality is maintained for the structured 
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meshes. But in the case of unstructured meshes refinement/coarsening of meshes with a uniform 

refinement factor throughout the domain preserving the mesh quality is more challenging, 

particularly in 3D. In the 2D case, systematic mesh refinement can be achieved by generating an 

unstructured mesh from a structured mesh by splitting quadrilaterals into triangles using 

diagonals.
38

 To the author’s knowledge, generation of 3D unstructured meshes with uniform 

refinement preserving the mesh quality has not yet been achieved using commercial software. 

Therefore, for code verification purposes, a mesh generation code is developed to generate 3D 

unstructured meshes from a 3D structured mesh with hexahedral elements. In the process, a cube 

will be split into five tetrahedral cells as shown in Figure 7a. The central tetrahedral cell, which 

does not share a surface boundary with the parent cube, is isotropic and the other four tetrahedral 

cells have the same topology with good cell quality. An unstructured mesh with tetrahedral 

elements generated using the mesh generation code is shown in Figure 7b. By generating 

unstructured meshes in this fashion, a uniform and consistent refinement can be achieved by a 

uniform refinement factor and maintaining the cell quality between the mesh levels. Based on 

this concept of generating an unstructured mesh from a structured mesh, another code for 

generating 3D hybrid meshes which contain hexahedral, tetrahedral, and prismatic cells with 

proper connectivity between different cell types was also developed. The prismatic cells in the 

3D hybrid mesh are generated by diagonally splitting a hexahedral cell into two prismatic cells. 

To obtain a hybrid mesh from a structured mesh of hexahedral cells, 25 percent of the hexahedral 

cells are split into prismatic cells, 50 percent of the hexahedral cells are split into tetrahedral cells 

and the other 25 percent are left as hexahedral cells. The 3D hybrid meshes are generated to 

satisfy the uniform and consistent refinement criteria between the mesh levels required for code 

order of accuracy verification. 

 

 

 



28 

 

 

a)                                                                   b) 

Figure 7: a) Cube split into five tetrahedral cells, b) 3D unstructured mesh with tetrahedral 

cells generated from a skewed and stretched curvilinear mesh 

The different mesh levels and mesh types used for code verification are given in Table 1. 

A maximum of seven mesh levels are used for 2D mesh topologies and a maximum of five mesh 

levels are used for 3D mesh topologies with systematic mesh refinement between consecutive 

mesh levels. 

Table 1. Different mesh levels and mesh types 

2D Mesh Topologies 3D Mesh Topologies 

Structured Unstructured Hybrid Structured Unstructured Hybrid 

8×8 128 96 8×8×8 320 1664 

16×16 512 384 16×16×16 2560 13312 

32×32 1024 1536 32×32×32 20480 106496 

64×64 4096 6144 64×64×64 163840 851968 

128×128 16384 24576 128×128×128 1310720 6815744 

256×256 65536 98304    

512×512 262144 393216    
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4. Verification of a Finite Volume CFD Code 

During the verification of a finite volume CFD code, different code options need to be 

tested which include baseline steady-state governing equations, Sutherland’s law for viscosity, 

equation of state, boundary conditions, turbulence models, time accuracy of unsteady flows, etc. 

The options in the code are verified by comparing the observed order of accuracy calculated for 

the CFD solutions for multiple systematically-refined meshes to the formal order of accuracy of 

the numerical method. An option in the code is considered fully verified if it passes the order of 

accuracy test on the 2D hybrid mesh and 3D hybrid mesh with all cell topologies which include 

skewness, aspect ratio, curvature, and mesh stretching. When a verification test fails on the 

hybrid meshes, then the governing equations are tested on other simpler meshes to find whether 

the discrete formulation of the governing equations is inconsistent on a particular mesh topology 

or due to the cell quality attributes or coding mistakes. 

During the code verification process, the observed order of accuracy is calculated using 

the L2, L1 and L∞ norms of the discretization error. Normally the observed order of accuracy 

calculated using L2 and L1 norms of the discretization error showed similar behavior, but the 

observed order of accuracy calculated using L∞ norm of the discretization error asymptoted to 

the formal order of accuracy at a slower rate requiring more mesh levels to see the asymptotic 

behavior. The observed order of accuracy results are shown for the different options verified on 

different meshes using L1 and L∞ norms of the discretization error. Also, the verification test 

results of different options in the finite volume code are shown mostly on 2D and 3D hybrid 

meshes. The verification test results on other meshes are shown for some interesting cases when 

the code options had problems during testing. A summary of the options verified in the finite 

volume CFD code is shown in Appendix A. 

4.1 Finite Volume Code 

The code verification procedure can be applied to any scientific computing code in 

general, but in the current work, the finite volume CFD code verified is Loci-CHEM.
16,58

 Loci-

CHEM was developed at Mississippi State University using the Loci framework
59,60

 and can 

simulate three-dimensional flows of turbulent, chemically-reacting mixtures of thermally perfect 

gases. The Loci framework provides a high-level programming environment for numerical 
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methods that is automatically parallel and utilizes a logic-based strategy to detect or prevent 

common software faults (such as errors in loop bounds or errors caused by subroutine calling 

sequences being inconsistent with data dependencies). The code uses an unstructured, edge based 

method with a formal order of accuracy of two. 

4.2 Verification of Baseline Governing Equations 

The baseline governing equations include the 3D steady state Euler and the Navier-

Stokes equations. Removing the viscous terms from the 3D Navier-Stokes equations lead to 3D 

Euler equations and removing the z-direction variables (∂/∂z = 0 and w = 0) converts the 

equations in three dimensions to two dimensions. 

4.2.1 Flow Equations 

The 3D, steady state, Farve-averaged Navier-Stokes equations
61

 can be written as 

��CD��� � ��CE��F � ��CG��H � 0 (4.1)  

��CD� � 2 � �** � I**��� � ��CDE � �*J � I*J��F � ��CDG � �*K � I*K��H � 0 (4.2)  

��CED � �*J � I*J��� � ��CE� � 2 � �JJ � IJJ��F � ��CEG � �JK � IJK��H � 0 (4.3)  

��CGD � �*K � I*K��� � ��CGE � �JK � IJK��F � ��CG� � 2 � �KK � IKK��H � 0 (4.4)  

��CD0- � D��** � I**� � E��*J � I*J� � G��*K � I*K� � LMN � LON���
� � 7CE0- � D��*J � I*J� � E��JJ � IJJ� � G��JK � IJK� � LMP � LOP8�F
� ��CG0- � D��*K � I*K� � E��JK � IJK� � G��KK � IKK� � LMQ � LOQ��H � 0 

(4.5)  

where tij is the laminar stress tensor given by 

 

�** � 23 S �2�D�� � �E�F � �G�H � ,          �JJ � 23S �2�E�F � �D�� � �G�H �,  
       �KK � 23S �2 �G�H � �D�� � �E�F�  

�*J � S ��D�F � �E��� ,    �JK � S ��E�H � �G�F� ,    �*K � S ��G�� � �D�H� 

(4.6)  
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and τij is the turbulent stress tensor given by 

 

I** � 23SO �2 �D�� � �E�F � �G�H � ,          IJJ � 23SO �2 �E�F � �D�� � �G�H �,  
       IKK � 23SO �2 �G�H � �D�� � �E�F� , 

I*J � SO ��D�F � �E��� ,    IJK � SO ��E�H � �G�F� ,    I*K � SO ��G�� � �D�H� . 
(4.7)  

The turbulent and laminar heat flux terms are 

 

LON � � SOU9O V/ ���� ,    LOP � � SOU9O V/ ���F ,    LOQ � � SOU9O V/ ���H  
LMN � � SU9 V/ ���� ,    LMP � � SU9 V/ ���F ,    LMQ � � SU9 V/ ���H 

(4.8)  

and the total energy and enthalpy are 

 ;- � ; � 12 �D� � E� �G��     W6X      0- �   ;- � UC (4.9)  

where 

 ; � 6Y� �  0Z      W6X       0 � �6 � 1�Y� �  0Z . (4.10) 

The perfect gas equation of state is assumed as 

 U � CY� (4.11) 

and the heat of formation and excited energy mode parameter can be calculated as 

  0Z �  0[)Z � �6 � 1�Y�[)Z      W6X       6 � V\Y  (4.12) 

where href = 0, Tref = 298K, and n = 5/2 are used. 

4.2.2 Verification of the Euler Equations 

In our current work, we adhere to the philosophy that code verification is simply a 

mathematical test to ensure the numerical solution truly represents the solution to the continuum 

mathematical equations that are being solved. As such, we specifically choose the Manufactured 

Solutions which are not physically realistic, but which are simple, smooth, and exercise all terms 

in the governing equations. The steady Manufactured Solutions employed take the following 

general form 
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]��, F, H� � ]: � ]*(̂ 7W_*?�@ 8 � ]J(̂ 7W_J?F@ 8 � ]K(̂ 7W_K?H@ 8
� ]*J(̂ 7W_*J?�F@� 8 � ]JK(̂ 7W_JK?FH@� 8
� ]K*(̂ 7W_K*?H�@� 8 

(4.13) 

where φ = [ρ, u, v, w, p, k, ω]
T
 represents any of the primitive variables and the fs(⋅) functions 

represent sine or cosine functions. After selecting the constants in the above equation, the 2D 

Manufactured Solution used for the verification of Euler equations is given as 

 

C � 1 � 0.15ab=�0.75?�� � 0.1d>6�?F� � 0.08ab=�1.25?�F� D � 70 � 5d>6�1.5?�� � 15ab=�1.5?F� � 7ab=�0.6?�F� E � 90 � 5ab=�1.5?�� � 10ab=�?F� � 11d>6�0.9?�F� 2 � 100000 � 20000ab=�?�� � 50000d>6�1.25?F�� 25000d>6�0.75?�F� 
(4.14) 

The 3D Manufactured Solution used for the verification of Euler equations is given as 

 

C � 1 � 0.15ab=�0.75?�� � 0.1d>6�0.45?F� � 0.1d>6�0.8?H�� 0.08ab=�0.65?�F� � 0.05d>6�0.75?FH�� 0.12ab=�0.5?H�� D � 70 � 5d>6�0.5?�� � 15ab=�0.85?F� � 10ab=�0.4?H�� 7ab=�0.6?�F� � 4d>6�0.8?FH� � 4ab=�0.9?H�� E � 90 � 5d>6�0.8?�� � 10ab=�0.8?F� � 5ab=�0.5?H�� 11ab=�0.9?�F� � 5d>6�0.4?FH� � 5ab=�0.6?H�� G � 80 � 10ab=�0.85?�� � 10d>6�0.9?F� � 12ab=�0.5?H�� 12d>6�0.4?�F� � 11d>6�0.8?FH� � 5ab=�0.75?H�� 2 � 100000 � 20000ab=�0.4?�� � 50000ab=�0.45?F�� 20000d>6�0.85?H� � 25000ab=�0.75?�F�� 10000d>6�0.7?FH� � 10000ab=�0.8?H�� 

(4.15) 

These Manufactured Solutions are smooth and the source terms generated after applying them to 

the governing equations also vary smoothly over the considered domain. As an example, a 

Manufactured Solution for the x-component of velocity is shown in Figure 8a and a smooth 

analytic source term in 3D domain is shown in Figure 8b. 
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a)                                                                   b) 

Figure 8: a) Manufactured Solution of u-velocity and b) mass source term 

The Euler equations are discretized and solved on different mesh levels to calculate the 

observed order of accuracy. The code is then tested on the structured, unstructured and hybrid 

meshes in both 2D and 3D and is verified successfully to be second order accurate. The order of 

accuracy results for the verification of Euler equation are shown for the 3D hybrid case only. The 

observed order of accuracy results calculated using L2, L1 and L∞ norms of the discretization 

error on the 3D skewed hybrid mesh are shown in Figure 9. In the plots shown, the observed 

order of accuracy p is calculated for all the conserved variables and is plotted on the y-axis 

against the normalized mesh size h on the x-axis. Five mesh levels are used for the verification of 

Euler equations in 3D with a uniform mesh refinement of two between consecutive mesh levels. 

The coarsest skewed hybrid mesh is generated starting from a structured mesh containing 8×8×8 

cells and the finest skewed hybrid mesh is generated starting from a structured mesh containing 

128×128×128 cells. The value of h = 1 means the finest mesh and a higher h value represents a 

coarser mesh. It is seen in the plot that as the mesh is refined, the observed order of accuracy 

asymptotes to two which is the formal order of the code. As mentioned previously, the observed 

order of accuracy results using L2 and L1 norms of the discretization error are similar and for the 

subsequent verification results, only the observed order of accuracy results calculated using L1 

and L∞ norms are presented. 
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a)                                                                            b) 

 

c) 

Figure 9: Order of accuracy results for Euler equations on a 3D skewed hybrid mesh using 

a) L1 norm of the discretization error, b) L2 norm of the discretization error, and c) L∞ 

norm of the discretization error  

4.2.3 Verification of the Navier-Stokes Equations 

Successful verification of the Euler equations on a particular mesh and failure of the 

order of accuracy test for the Navier-Stokes equations means that there is a problem with the 

formulation of the diffusion operator on that particular mesh, i.e., an algorithm inconsistency, a 
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coding mistake, or simply mesh quality sensitivity. The Navier-Stokes equations are tested on 

the structured, unstructured and hybrid meshes in both 2D and 3D and in the process of testing, 

several issues in the formulation of the diffusion operator in the code were uncovered and 

corrected. The Manufactured Solution used for the Euler equations is also used for the Navier-

Stokes equations.  

In the process of selecting the Manufactured Solution for code verification purposes, it is 

required that different terms in the governing equations be roughly same order of magnitude. 

This prevents the larger magnitude errors from masking errors in other terms of smaller 

magnitude. In the current work, during the verification of Navier-Stokes equations, a constant 

viscosity value of 10 N/m
2
 is used such that there is an approximately equal contribution from 

the inviscid and viscous terms. The Navier-Stokes equations are verified successfully to be 

second order accurate on the 2D hybrid and 3D hybrid meshes after correcting the formulation of 

the diffusion operator each time the code failed on a particular mesh. The observed order of 

accuracy results calculated using L1 and L∞ norms of the discretization error for the Navier-

Stokes equations on the 2D hybrid mesh are shown in Figure 10. The observed order of accuracy 

results calculated using L1 and L∞ norms of the discretization error for the Navier-Stokes 

equations on the 3D skewed hybrid mesh are shown in Figure 11. 

 

 

 



36 

 

    

a)                                                                            b) 

Figure 10: Order of accuracy results for Navier-Stokes equations on a 2D hybrid mesh 

using a) L1 norm of the discretization error and b) L∞ norm of the discretization error  

    

a)                                                                            b) 

Figure 11: Order of accuracy results for Navier-Stokes equations on a 3D hybrid mesh 

using a) L1 norm of the discretization error and b) L∞ norm of the discretization error  

The code was tested on different mesh types and failed initially on simpler meshes. Each 

time the code failed on a particular mesh, a problem with the numerical formulation of diffusion 

operator was detected and a correction in the numerical formulation was made by the code 
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developers. Initially, the Navier-Stokes equations were successfully verified on 2D rectangular 

Cartesian and stretched Cartesian meshes, but on the skewed curvilinear meshes, the 

discretization error did not decrease with mesh refinement. Since the code was already verified 

when Euler equations were tested, the problem or the error was found to be in the diffusion 

operator formulation. A modification was made to the diffusion operator by Luke
39

 and the new 

diffusion operator rectified the problem. An observed order of accuracy of two was attained with 

mesh refinement after the modification. The code verification results on the skewed curvilinear 

mesh with the original diffusion operator and the new diffusion operator are shown in Figure 12. 

The improvement in the observed order of accuracy results with the use of modified 

diffusion operator for the structured meshes is explained here. In the cell-centered finite volume 

diffusion operator, gradients are required at the cell faces to compute the viscous fluxes. Since 

unstructured finite-volume CFD codes typically compute and store gradients at the cell centers a 

mechanism for obtaining gradients at the faces is required. The Loci-CHEM code calculates the 

gradient at the face by computing both normal and tangential components of the gradient. The 

original formulation for calculating the normal component of the face gradient utilized the 

strategy suggested by Strang et al.
62

 for the Cobalt 60 code. This approach effectively neglects a 

term in the normal gradient which can lead to stencils with negative weights (which affects the 

code’s stability). Luke
39

 modified the normal gradient calculation such that a limiter is applied to 

the offending term that both maintains second order accuracy in smooth regions of the flow and 

ensures a positive stencil. 
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a)                                                                            b) 

Figure 12: Order of accuracy results using L2 norm of the discretization error for Navier-

Stokes equations on a 2D skewed curvilinear mesh using a) original diffusion operator and 

b) new diffusion operator  

Later on 2D unstructured mesh with triangular cells, preliminary investigations showed 

that the observed order of accuracy was approaching one with mesh refinement. To determine 

the reason for this reduction in order of accuracy, the Navier-Stokes equations were tested on 

different types of unstructured meshes (triangular cells generated from a structured topology). 

On all these 2D unstructured meshes with triangular cells, the behavior was the same. The Euler 

equation were successfully verified to be second order accurate on these 2D unstructured meshes 

which explained that the problem was with the diffusion operator formulation on the 2D 

unstructured meshes. Again, Luke
63

 came up with a modification in the formulation of the 

diffusion operator which rectified the problem. The estimation of gradients at the face centers is 

the cornerstone of the diffusion flux computations which are required to be second order 

accurate. In the old diffusion operator used in Loci-CHEM, gradients at face centers were 

computed by splitting the gradients into tangential and normal components and the diffusion 

operator was using the inviscid operator (gradients at cell centers). While the inviscid operator 

retained second order accuracy, the diffusion operator degenerated to first order as stencils 

departed symmetry. In order to more reliably obtain second order gradients at the face centers, a 

modified method was considered. In this method, a new control volume centered about the face 
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was constructed and a second order function reconstruction was used to compute the nodal 

values of a control volume centered about the face center. Greens theorem was employed to 

compute second order gradients at the face center in the control volume (diamond cell). This 

form of reconstruction retained second order gradients at face centers even when the gradients at 

cell centers degenerate to first order. The modified diffusion operator formulation was 

successfully verified to be second order accurate on all 2D unstructured meshes with triangular 

cells. The code verification results on the 2D alternate diagonal unstructured mesh with the old 

diffusion operator and the modified diffusion operator are shown in Figure 13. 

    

a)                                                                            b) 

Figure 13: Order of accuracy results using L2 norm of the discretization error for Navier-

Stokes equations on a 2D alternate diagonal unstructured mesh using a) old diffusion 

operator and b) modified diffusion operator  

 These two modifications in the formulation of the diffusion operator enabled the Navier-

Stokes equations to be successfully verified as second order accurate on the 2D hybrid mesh and 

the 3D skewed hybrid mesh, thus covering the effect of all cell topologies which include some 

skewness, aspect ratio, curvature, and mesh stretching.  

4.2.4 Effect of Mesh Quality 

The Navier-Stokes equations are also tested on the 2D highly skewed hybrid meshes (a)                                                                   

b) 
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Figure 3b) to look at the effect of cell quality of quadrilateral cells and triangular cells on 

the discrete formulation of the governing equations. On this mesh, the code is successfully 

verified and the observed order of accuracy approaches two with mesh refinement. The observed 

order of accuracy results calculated using L1 and L∞ norms of the discretization error for the 

Navier-Stokes equations on the 2D highly skewed hybrid mesh are shown in Figure 14. This 

shows that the finite volume code works fine on highly skewed quadrilateral and triangular cells 

in 2D. 

    

a)                                                                            b) 

Figure 14: Order of accuracy results for Navier-Stokes equations on a 2D highly skewed 

hybrid mesh using a) L1 norm of the discretization error and b) L∞ norm of the 

discretization error  

The Navier-Stokes equations are also tested on a 3D highly skewed hybrid mesh (Figure 

6b) to look at the effect of cell quality of hexahedral, prismatic, and tetrahedral cells on the 

discrete formulation of the governing equations. The 3D highly skewed hybrid mesh is generated 

starting from a 3D skewed curvilinear mesh shown in Figure 4b and using the mesh generation 

code which generates the hybrid mesh (containing hexahedral, tetrahedral, and prismatic cells) 

from the structured mesh. The Navier-Stokes equations are successfully verified to be second 

order accurate on the 3D skewed curvilinear mesh with hexahedral cells shown in Figure 4b, but 

the verification test failed on the 3D highly skewed hybrid mesh. The observed order of accuracy 

results calculated using L1 and L∞ norms of the discretization error for the Navier-Stokes 
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equations on the 3D highly skewed hybrid mesh are shown in Figure 15. From the plot, the 

observed order of accuracy seems to approach a value less than one with mesh refinement. The 

difference between the 3D skewed hybrid mesh (Figure 6a) and the 3D highly skewed hybrid 

mesh (Figure 6b) is only the quality of the cells in the mesh; otherwise both the meshes have the 

same mesh topology and connectivity. This indicates a problem in the discrete formulation of the 

governing equations when the cells have a comparatively lower quality. The cell quality is 

quantified with some parameters and quantification of cell quality of the 3D skewed hybrid mesh 

and the 3D highly skewed hybrid mesh is shown in Table B1 in Appendix B. 

    

a)                                                                            b) 

Figure 15: Order of accuracy results for Navier-Stokes equations on a 3D highly skewed 

hybrid mesh using a) L1 norm of the discretization error and b) L∞ norm of the 

discretization error  

The L2 norms of the discretization error for both the 3D skewed hybrid mesh and the 3D 

highly skewed hybrid mesh are compared and it is observed that the error is higher for the highly 

skewed hybrid meshes relative to the skewed hybrid meshes for the same number of cells and 

similar mesh structure. The comparison of the L2 norm of the discretization error is shown in 

Figure 16. In the plot, errors shown in the solid lines correspond to the 3D skewed hybrid mesh 

and the errors shown in dashed lines correspond to the 3D highly skewed hybrid mesh. This plot 

gives the effect of cell quality on the error in the solution. The error in the solution either 

decreases slowly or does not decrease with mesh refinement for lower quality meshes. 
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Figure 16: Comparison of L2 norm discretization error on 3D skewed hybrid mesh and 3D 

highly skewed hybrid mesh  

To further study the discrete formulations of the inviscid and viscous terms in the 

governing equations, the Euler and Navier-Stokes equations are tested separately on meshes with 

a particular mesh topology, i.e., either highly skewed tetrahedral cells or highly skewed prismatic 

cells alone. The above analysis explains how MMS along with the order of accuracy test can be 

used to find sensitivities to mesh quality by testing on different meshes with different cell 

topologies and different cell quality. From the study, it is observed that the code is successfully 

verified to be second order accurate while testing Euler and Navier-Stokes equations on highly 

skewed hexahedral and prismatic cells but failed the order of accuracy test while testing Euler 

equations and Navier-Stokes equations on highly skewed tetrahedral cells and hence on the 3D 

highly skewed hybrid mesh. The Euler equations are only first order accurate and the Navier-

Stokes equations are less than first order accurate on highly skewed tetrahedral cells which led to 

the same effect on 3D highly skewed hybrid mesh. The order of accuracy of the governing 

equations on the highly skewed cells in 3D is tabulated in Table 2. 

The reason for failure of code verification on the 3D highly skewed hybrid mesh is 

because of the instability in the inviscid operator. Testing only the heat equation (similar to 

testing the diffusion operator) on the highly skewed 3D hybrid mesh produced second order 

accuracy. On the highly skewed mesh, a limiter is needed to achieve iterative convergence. 

Running the Euler equations with the limiter, the code converges to only first order because of a 
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stability problem caused by the geometry of the gradient stencil at the boundary. Since there is 

instability in the inviscid operator, the limiter is forced to be active and it affects the diffusion 

operator which also incorporates the limiter. The diffusion operator incorporates the limiter to 

ensure that it does not introduce new solution extrema. 

Table 2. Order of accuracy of the governing equations on highly skewed cells in 3D  

 Euler Equations Navier-Stokes Equations 

Hexahedral Cells 2
nd

 Order 2
nd

 Order 

Prismatic Cells 2
nd

 Order 2
nd

 Order 

Tetrahedral Cells 1
st
 Order Less than 1

st
 Order 

Hybrid Cells 1
st
 Order Less than 1

st
 Order 

 

4.3 Verification of Transport Models 

Other equations verified in the finite volume code are the equation of state, thermally 

perfect thermodynamic model and Sutherland’s law of viscosity. Verifying the Navier-Stokes 

equations in the Loci-CHEM code automatically verifies equation of state. For verifying the 

thermally perfect thermodynamic model and Sutherland’s law of viscosity, thermal conductivity 

and viscosity are defined as functions of temperature. Both the equations are tested in 3D skewed 

hybrid mesh and are successfully verified to be second order accurate with the observed order of 

accuracy approaching two with mesh refinement. The Manufactured Solution used for the 

verification of the transport equations is same as the Manufactured Solution used for the Euler 

and Navier-Stokes equations. The order of accuracy results for the Sutherland’s law of viscosity 

on a 3D skewed hybrid grid are shown in Figure 17. 
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a)                                                                            b) 

Figure 17: Order of accuracy results for Sutherland’s law of viscosity on a 3D skewed 

hybrid mesh using a) L1 norm of the discretization error and b) L∞ norm of the 

discretization error  

4.4 Verification of Boundary Conditions 

In order to verify the implementation of a boundary condition in a code, the 

Manufactured Solution can be tailored to exactly satisfy a given boundary condition on a domain 

boundary. A general approach for tailoring Manufactured Solution to ensure that a given 

boundary condition is satisfied along a domain boundary was developed by Bond et al.
20

 The 

approach is explained with a simple example in 2D.
7
 The standard form of the Manufactured 

Solution for the 2D steady-state solution can be written as 

 ]��, F� � ]: � ]���, F� (4.16) 

where 

 ]���, F� � ]*(̂ 7W_*?�@ 8 � ]J(̂ 7W_J?F@ 8 � ]*J(̂ 7W_*J?�F@� 8 (4.17) 

A boundary in 2D can be represented by a general curve F(x,y) = C, where C is a constant. The 

new Manufactured Solution for verifying boundary conditions can be found by multiplying the 

φ1(x,y) term with the function [C-F(x,y)]
m
 as shown below: 

 ]hi��, F� � ]: � ]���, F�ja � k��, F�lm . (4.18) 
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This procedure will ensure that the Manufactured Solution is equal to a constant φ0 satisfying a 

Dirichlet boundary condition φ(x,y) = φ0 along the specified boundary for m = 1. For m = 2, it 

ensures that the Manufactured Solution will satisfy both Dirichlet and Neumann (zero normal 

gradient) boundary conditions along the specified boundary. 

To test a boundary condition option where the boundary is curved, a well-defined curved 

boundary for 2D meshes, i.e., F(x,y) = C and a well defined curved surface for 3D meshes, i.e., 

F(x,y,z) = C are considered as one side of a domain in 2D and 3D, respectively, and the mesh is 

built along with that boundary. The analytic definition of the curved boundaries considered for 

the boundary condition verification in both 2D and 3D are defined as given below.  

 

k��, F� � F � �d>6�5? 180⁄ � � 0.05d>6�2?�� � 0 k��, F, H� � 2F � �d>6�5? 180⁄ � � Hd>6�6? 180⁄ � � 0.06d>6�2?��� 0.05d>6�2?H� � 0 

(4.19) 

These boundaries are used both in the Manufactured Solution and the grid generation. The 

curved surface used for the verification of boundary conditions in 3D is shown in Figure 18. The 

boundary conditions are also tested when the boundary is a straight boundary (straight line in 2D 

and a flat surface in 3D) instead of a curved boundary. 

           

Figure 18: Wavy surface used as a well-defined boundary for 3D meshes 

The different boundary condition options verified in the finite volume code include the no-slip 

adiabatic wall, no-slip isothermal wall, slip wall with the Euler equations and the Navier-Stokes 

equations, isentropic inflow, outflow, extrapolation, and farfield. 
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4.4.1 Mesh Topologies 

The meshes used for verification of boundary conditions are different and a separate set 

of meshes are generated for boundary condition verification in both 2D and 3D. The 2D hybrid 

mesh and the 3D hybrid mesh with a curved boundary used for the boundary condition 

verification are shown in Figure 19. In the figure, for both meshes the bottom boundaries are the 

well defined curved boundaries which are tested for different boundary condition options. While 

generating these meshes for boundary condition verification, the mesh is generated to be normal 

to the tested boundary. 

    

a)                                                                            b) 

Figure 19: Meshes used for boundary condition verification a) 2D hybrid mesh and b) 3D 

hybrid mesh 

4.4.2 No-slip Wall 

The no-slip wall boundary is verified as an adiabatic boundary and an isothermal 

boundary. In both the cases, the no-slip wall boundary is tested as a straight wall boundary and 

also as a curved wall boundary. 

4.4.2.1 No-slip Adiabatic Wall 

By testing the no-slip wall as an adiabatic boundary, a Neumann boundary condition for 

temperature (dT/dn = 0) is verified along with the no-slip condition (V
r

 = 0) on a particular 

boundary. The no-slip wall is tested as an adiabatic boundary on meshes with both straight and 
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curved boundaries in 2D and 3D. The 2D Manufactured Solution used for the verification of no-

slip wall as an adiabatic boundary is of the form 

 

C � C: � �k��, F��� 7]n��, F�8 

D � �k��, F���D: � ]o��, F�� E � �k��, F���E: � ]\��, F�� 
2 � 2: � �k��, F��� 7]/��, F�8 

(4.20) 

and the function F(x,y) is defined for a straight boundary and a curved boundary as 

 
k��, F� � F � 0 k��, F� � F � �d>6�5? 180⁄ � � 0.05d>6�2?�� � 0 

(4.21) 

The 3D Manufactured Solution used for the verification of no-slip wall as an adiabatic boundary 

is of the form 

 

C � C: � �k��, F, H��� 7]n��, F, H�8 

D � �k��, F, H���D: � ]o��, F, H�� E � �k��, F, H���E: � ]\��, F, H�� G � �k��, F, H���G: � ]p��, F, H�� 
2 � 2: � �k��, F, H��� 7]/��, F, H�8 

(4.22) 

and the function F(x,y,z) is defined for a straight boundary and a curved boundary as 

 

k��, F, H� � F � 0 k��, F, H� � 2F � �d>6�5? 180⁄ � � Hd>6�6? 180⁄ � � 0.06d>6�2?��� 0.05d>6�2?H� � 0 

(4.23) 

The constants used in the 2D and 3D Manufactured Solutions are presented in Appendix C in 

Table C1 and Table C2, respectively. By selecting the Manufactured Solution as shown above, 

all the velocity components become zero on the F = 0 boundary and the normal derivatives of 

density and pressure become zero at F = 0 boundary which makes the normal derivative of 

temperature also zero at that boundary satisfying both the no-slip condition and the adiabatic 

condition. The temperature contours in a 3D domain when the bottom boundary is defined as an 

adiabatic no-slip wall are shown in Figure 20. 
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Figure 20: Temperature contours when the bottom boundary is defined as a no-slip 

adiabatic wall 

The no-slip wall is tested as an adiabatic boundary on the 2D hybrid mesh and 3D hybrid 

mesh with curved boundaries and the observed order of accuracy calculated from the numerical 

solutions approached two with mesh refinement for the meshes considered. The results are 

shown here for the 3D hybrid mesh with curved boundaries and the order of accuracy results 

using L1 and L∞ norms of the discretization error for the adiabatic no-slip wall boundary on a 3D 

hybrid mesh are shown in Figure 21. 
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a)                                                                            b) 

Figure 21: Order of accuracy results for adiabatic no-slip wall boundary on a 3D hybrid 

mesh using a) L1 norm of the discretization error and b) L∞ norm of the discretization 

error  

4.4.2.2 No-slip Isothermal Wall 

By testing the no-slip wall as an isothermal boundary, a Dirichlet boundary condition for 

temperature (T = constant) is verified along with the no-slip condition (V
r

= 0) on a particular 

boundary. The no-slip wall is tested as an isothermal boundary on meshes with both straight and 

curved boundaries in 2D and 3D. The 2D Manufactured Solution used for the verification of no-

slip wall as an isothermal boundary is of the form 

 

C � 2: � �k��, F��� 7]/��, F�8Y� 7�: � �k��, F���]O��, F��8 

D � �k��, F���D: � ]o��, F�� E � �k��, F���E: � ]\��, F�� 
2 � 2: � �k��, F��� 7]/��, F�8 

(4.24) 

The 3D Manufactured Solution used for the verification of no-slip wall as an adiabatic boundary 

is of the form 
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C � 2: � �k��, F, H��� 7]/��, F, H�8Y� 7�: � �k��, F, H���]O��, F, H��8 

D � �k��, F, H���D: � ]o��, F, H�� E � �k��, F, H���E: � ]\��, F, H�� G � �k��, F, H���G: � ]p��, F, H�� 
2 � 2: � �k��, F, H��� 7]/��, F, H�8 

(4.25) 

The constants used in the 2D and 3D Manufactured Solutions are presented in Appendix C in 

Table C1 and Table C2, respectively. By selecting the Manufactured Solution as shown above, 

all the velocity components become zero on the F = 0 boundary and the temperature becomes 

constant at that boundary satisfying both the no-slip condition and the isothermal condition. 

Here, the Manufactured Solution for temperature is not used, but a constant temperature 

boundary needs to be satisfied. Hence, the Manufactured Solution for density is selected in terms 

of pressure and temperature which satisfies the needed conditions for isothermal boundary. The 

temperature contours in a 3D domain when the bottom boundary is defined as an isothermal no-

slip wall are shown in Figure 22. 

 

Figure 22: Temperature contours when the bottom boundary is defined as a no-slip 

isothermal wall 

The no-slip wall is tested as an isothermal boundary on the 2D hybrid mesh and 3D 

hybrid mesh with curved boundaries and the observed order of accuracy calculated from the 
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numerical solutions approached two with mesh refinement for the meshes considered. The 

results are shown here for the 3D hybrid mesh with curved boundaries and the order of accuracy 

results using L1 and L∞ norms of the discretization error for the isothermal no-slip wall boundary 

on a 3D hybrid mesh are shown in Figure 23. 

    

a)                                                                            b) 

Figure 23: Order of accuracy results for isothermal no-slip wall boundary on a 3D hybrid 

mesh using a) L1 norm of the discretization error and b) L∞ norm of the discretization 

error  

4.4.3 Slip Wall 

Testing the slip wall is verifying the slip condition Vn = 0 on a particular boundary where 

Vn is the velocity component normal to the surface. Also, on a slip wall boundary, the viscous 

terms need to be zero. This boundary condition is defined with impermeable or reflecting options 

available in the Loci-CHEM code. The slip wall boundary condition is tested with both the Euler 

and the Navier-Stokes equations. The 2D Manufactured Solution used for the verification of slip 

wall boundary is of the form 

 

C � C: � �k��, F��� 7]n��, F�8 

D � D: � �k��, F����]o��, F�� 

E � �k��, F����E: � ]\��, F�� 
(4.26) 
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2 � 2: � �k��, F��� 7]/��, F�8 

The 3D Manufactured Solution used for the verification of slip wall boundary is of the form 

 

C � C: � �k��, F, H��� 7]n��, F, H�8 

D � D: � �k��, F, H����]o��, F, H�� 

E � �k��, F, H����E: � ]\��, F, H�� 
G � G: � �k��, F, H����]p��, F, H�� 
2 � 2: � �k��, F, H��� 7]/��, F, H�8 

(4.27) 

The constants used in the 2D and 3D Manufactured Solutions are presented in Appendix 

C in Table C1 and Table C2, respectively. The above Manufactured Solutions for slip wall 

boundary condition verification will work only for testing on straight boundaries since the 

normal velocity component of zero cannot be achieved for a curved boundary with this 

Manufactured Solution. These Manufactured Solutions are used while testing slip wall along 

with the Navier-Stokes equations. For the curved boundaries, selecting the Manufactured 

Solutions while testing slip wall along with the Navier-Stokes equations is challenging and 

testing of slip wall with the Navier-Stokes equations on curved boundaries is not performed in 

this work. Hence, the slip wall with the Navier-Stokes equations is tested on 2D rectangular 

mesh with straight boundary and 3D hybrid mesh with straight boundary. 

 In the case of verification of slip wall with the Euler equations, selecting the 

Manufactured Solution for testing on curved boundaries is relatively easier since there is no need 

to deal with the viscous terms on the curved boundary. The velocity component normal to the 

slip wall boundary is zero and can be derived using the expression  

 

qk ·s� 0 

t6 2&, �k�� D � �k�F E � 0 

t6 3&, �k�� D � �k�F E � �k�H G � 0 

(4.28) 

The 2D Manufactured Solution for verification of slip wall when using curved boundaries and 

Euler equations is of the form 
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C � C: � �k��, F��� 7]n��, F�8 

D � D: � ]o��, F� 
E � ���k��, F���� �D: � ]o��, F�� 
2 � 2: � �k��, F��� 7]/��, F�8 

(4.29) 

The 3D Manufactured Solution used for the verification of slip wall when using curved 

boundaries and Euler equations is of the form 

 

C � C: � �k��, F, H��� 7]n��, F, H�8 

D � D: � ]o��, F, H� 
E � ���k��, F, H���� �D: � ]o��, F, H��

� ��k��, F, H���H �G: � ]p��, F, H�� 
G � G: � ]p��, F, H� 2 � 2: � �k��, F, H��� 7]/��, F, H�8 

(4.30) 

The constants used in the 2D and 3D Manufactured Solutions are presented in Appendix 

C in Table C1 and Table C2, respectively. The slip wall with the Euler equations is tested on 2D 

hybrid mesh and 3D skewed hybrid mesh with curved boundaries also and the observed order of 

accuracy calculated from the numerical solutions approached two with mesh refinement for the 

meshes considered. The results are shown here for the 3D skewed hybrid mesh with curved 

boundaries and the order of accuracy results using L1 and L∞ norms of the discretization error for 

the slip wall boundary with the Euler equations on a 3D skewed hybrid mesh are shown in 

Figure 24. The slip wall with the Navier-Stokes equations is tested on 2D rectangular mesh and 

3D hybrid mesh with straight boundaries also and the observed order of accuracy calculated from 

the numerical solutions approached two with mesh refinement for the meshes considered. The 

results shown here are for the 3D hybrid mesh with straight boundaries and the order of accuracy 

results using L1 and L∞ norms of the discretization error for the slip wall boundary with the 

Navier-Stokes are shown in Figure 25. 
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a)                                                                            b) 

Figure 24: Order of accuracy results for slip wall boundary with the Euler equations on a 

3D skewed hybrid mesh using a) L1 norm of the discretization error and b) L∞ norm of the 

discretization error  

    

a)                                                                            b) 

Figure 25: Order of accuracy results for slip wall boundary with the Navier-Stokes 

equations on a 3D hybrid mesh with straight boundaries using a) L1 norm of the 

discretization error and b) L∞ norm of the discretization error  

h

O
rd

e
r

o
f

A
c
c
u

ra
c
y
,

p

1 2 3 4

1

2

3

4
rho
rho*u

rho*v
rho*w

rho*e
t

h

O
rd

e
r

o
f

A
c
c
u

ra
c
y
,

p

1 2 3 4

1

2

3

4
rho
rho*u

rho*v
rho*w

rho*e
t

h

O
rd

e
r

o
f

A
c
c
u

ra
c
y
,

p

1 2 3 4

1

2

3

4
rho
rho*uvel

rho*vvel

rho*wvel
rho*e

t

h

O
rd

e
r

o
f

A
c
c
u

ra
c
y
,

p

1 2 3 4

1

2

3

4
rho
rho*uvel

rho*vvel

rho*wvel
rho*e

t



55 

 

4.4.4 Isentropic Inflow 

This boundary condition is an inflow boundary that requires the total temperature and 

total pressure to be constant on the inflow boundary. This boundary condition is applicable to 

only subsonic inflow conditions in the code. The isentropic inflow boundary is tested on 2D 

rectangular mesh and 3D hybrid mesh with straight boundaries. The governing equations used 

while testing isentropic boundary condition are the Euler equations. The 2D Manufactured 

Solution used for the verification of isentropic inflow boundary condition is of the form 

 

C � C: � �k��, F��� 7]n��, F�8 

D � �k��, F����D: � ]o��, F�� 

E � E: � �k��, F����]\��, F�� 
2 � 2: � �k��, F��� 7]/��, F�8 

(4.31) 

The 3D Manufactured Solution used for the verification of isentropic inflow boundary condition 

is of the form 

 

C � C: � �k��, F, H��� 7]n��, F, H�8 

D � �k��, F, H����D: � ]o��, F, H�� 

E � E: � �k��, F, H����]\��, F, H�� 
G � �k��, F, H����G: � ]p��, F, H�� 
2 � 2: � �k��, F, H��� 7]/��, F, H�8 

(4.32) 

The constants used in the 2D and 3D Manufactured Solutions are presented in Appendix 

C in Table C1 and Table C2, respectively. The above Manufactured Solutions for isentropic 

inflow boundary condition verification are developed for testing on straight boundaries. For 

curved boundaries, the Manufactured Solutions need to be selected very carefully and 

verification of isentropic inflow on a curved boundary is not performed in this work. By 

selecting the Manufactured Solution as above, all the variables are constant on the F = 0 inflow 

boundary and also the derivatives of the variables are zero normal to the boundary. The u-

velocity and w-velocity are zero on the F = 0 boundary and with only v-velocity defined on that 

boundary, the velocity is normal to the inflow boundary. With density, pressure, and the velocity 

components constant on the boundary, the stagnation pressure and stagnation temperature are 
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also constant which satisfies the isentropic boundary condition on the inflow boundary. The 

isentropic inflow boundary condition is successfully verified on a 2D rectangular mesh with 

straight boundaries and 3D hybrid mesh with straight boundaries and the observed order of 

accuracy calculated from the numerical solutions approached two with mesh refinement for the 

meshes considered. The results are shown here for the 3D hybrid mesh with straight boundaries 

and the order of accuracy results using L1 and L∞ norms of the discretization error for the 

isentropic inflow boundary on a 3D hybrid mesh are shown in Figure 26. 

    

a)                                                                            b) 

Figure 26: Order of accuracy results for isentropic inflow boundary on a 3D hybrid mesh 

using a) L1 norm of the discretization error and b) L∞ norm of the discretization error  

4.4.5 Outflow 

This boundary condition is a characteristic based outflow condition. The outflow 

boundary condition is tested as a subsonic boundary. For this outflow boundary condition, a 

static pressure is imposed at the boundary. The outflow boundary is tested on 2D rectangular 

mesh with straight boundary and 3D hybrid mesh with straight boundary. The governing 

equations used while testing outflow boundary condition are the Euler equations. The 2D 

Manufactured Solution used for the verification of the outflow boundary condition as a subsonic 

outflow is of the form 
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C � C: � �k��, F��� 7]n��, F�8 

D � �k��, F�����D: �]o��, F�� 
E � �E: � �k��, F����]\��, F�� 
2 � 2: � �k��, F��� 7]/��, F�8 

(4.33) 

The 3D Manufactured Solution used for the verification of outflow boundary condition as a 

subsonic outflow is of the form 

 

C � C: � �k��, F, H��� 7]n��, F, H�8 

D � �k��, F, H�����D: �]o��, F, H�� 
E � �E: � �k��, F, H����]\��, F, H�� 
G � �k��, F, H�����G: �]p��, F, H�� 
2 � 2: � �k��, F, H��� 7]/��, F, H�8 

(4.34) 

The constants used in the 2D and 3D Manufactured Solutions are presented in Appendix 

C in Table C1 and Table C2, respectively. The above Manufactured Solutions for outflow 

boundary condition verification work for testing on straight boundaries. For the curved 

boundaries, the Manufactured Solutions need to be selected very carefully and verification of 

outflow on a curved boundary is not performed here. By selecting the Manufactured Solution as 

above, the u- and w-velocities are zero on the y = 0 boundary and only a negative v-velocity is 

defined on this boundary which ensures that the flow is going out and is normal to that boundary. 

The outflow boundary condition is tested as a subsonic outflow on a 2D rectangular mesh with 

straight boundaries and 3D hybrid mesh with straight boundaries and the observed order of 

accuracy calculated from the numerical solutions approached two with mesh refinement for the 

meshes considered. The results are shown for the 3D hybrid mesh with straight boundaries and 

the order of accuracy results using L1 and L∞ norms of the discretization error for the outflow 

boundary tested as a subsonic boundary on a 3D hybrid mesh are shown in Figure 27. 
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a)                                                                            b) 

Figure 27: Order of accuracy results for subsonic outflow boundary on a 3D hybrid mesh 

using a) L1 norm of the discretization error and b) L∞ norm of the discretization error  

4.4.6 Extrapolation 

The extrapolation-based boundary condition is useful for supersonic outflow conditions. 

The outflow boundary condition is tested with supersonic flow conditions. The extrapolation 

boundary condition is tested on a 2D rectangular mesh and a 3D hybrid mesh with straight 

boundaries. The governing equations used while testing outflow boundary condition are the 

Euler equations. The 2D Manufactured Solution used for the verification of the extrapolation 

boundary condition with supersonic flow is of the form 

 

C � 1 � �k��, F��� 7]n��, F�8 

D � �k��, F�����700 � ]o��, F�� 
E � �900 � �k��, F����]\��, F�� 

2 � 100000 � �k��, F��� 7]/��, F�8 

(4.35) 

The 3D Manufactured Solution used for the verification of extrapolation boundary condition 

with supersonic flow is of the form 
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C � 1 � �k��, F, H��� 7]n��, F, H�8 

D � �k��, F, H�����700 � ]o��, F, H�� 
E � �900 � �k��, F, H����]\��, F, H�� 

G � �k��, F, H�����800 � ]p��, F, H�� 
2 � 100000 � �k��, F, H��� 7]/��, F, H�8 

(4.36) 

The constants used in the 2D and 3D Manufactured Solutions are presented in Appendix 

C in Table C1 and Table C2, respectively. The above Manufactured Solutions for extrapolation 

boundary condition verification are only for testing on straight boundaries. For the curved 

boundaries, the Manufactured Solutions need to be handled carefully and verification of 

extrapolation boundary condition on a curved boundary is not performed here. By selecting the 

Manufactured Solution as above, the u- and w-velocities are zero on the y = 0 boundary and only 

a negative v-velocity is defined on the y = 0 boundary which ensures that the flow is going and 

the flow is normal to that boundary. The Manufactured Solution also ensures that the derivatives 

of all the variables at the boundary are zero. The extrapolation boundary condition is tested on a 

2D rectangular mesh and a 3D hybrid mesh with straight boundaries and the observed order of 

accuracy calculated from the numerical solutions approached two with mesh refinement for the 

meshes considered. The results are shown for the 3D hybrid mesh with straight boundaries and 

the order of accuracy results using L1 and L∞ norms of the discretization error for the 

extrapolation boundary with supersonic flow on a 3D hybrid mesh are shown in Figure 28. 
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a)                                                                            b) 

Figure 28: Order of accuracy results for extrapolate boundary on a 3D hybrid mesh using 

a) L1 norm of the discretization error and b) L∞ norm of the discretization error  

4.4.7 Farfield 

The farfield boundary condition is an inflow-outflow characteristic based boundary 

condition. It is mostly suitable for a farfield condition used in external flows. It is suitable for 

both subsonic and supersonic flow conditions. Here, the farfield boundary condition is tested 

with subsonic flow conditions on 2D hybrid and 3D skewed hybrid meshes with curved 

boundaries. While testing the farfield boundary condition, the Navier-Stokes equations are used 

as the governing equations. The same Manufactured Solution used for testing the baseline 

governing equations, i.e., the Euler and the Navier-Stokes equations are used for testing the 

farfield boundary condition. The farfield boundary condition is successfully verified on the 2D 

and 3D hybrid meshes and the observed order of accuracy calculated from the numerical 

solutions approached two with mesh refinement for the meshes considered. The results are 

shown for the 3D skewed hybrid mesh and the order of accuracy results using L1 and L∞ norms 

of the discretization error for the farfield boundary condition on a 3D skewed hybrid mesh are 

shown in Figure 29. 
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a)                                                                            b) 

Figure 29: Order of accuracy results for farfield boundary on a 3D skewed hybrid mesh 

using a) L1 norm of the discretization error and b) L∞ norm of the discretization error  

4.5 Verification of Turbulence Models 

Verification of turbulence models provides additional challenges for MMS for different 

reasons.
29

 One of the reasons is that the turbulence models often employ min or max functions to 

switch from one behavior to another, thus causing the source terms to no longer be continuously 

differentiable. The turbulence models tested in the finite volume code are the basic k-ω 

turbulence model and the k-ε turbulence model which are part of the baseline version of the 

Menter’s k-ω model
27

 and the Menter’s Shear Stress Transport k-ω model.
27

 In both models, the 

k-ω turbulence model gets activated in the boundary layer region and the k-ε turbulence model 

gets activated away from the wall boundaries in the free shear layers. The general form of the 

turbulent kinetic energy equation and the turbulent frequency equation for compressible flow are: 

 

��Cu��� � ��CDu��� � ��CEu��F � ��CGu��H � U � !vCwu
� ��� A�S � x'SO� �u��B � ��F A�S � x'SO� �u�FB
� ��H A�S � x'SO� �u�HB � 0 

(4.37) 
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��Cw��� � ��CDw��� � ��CEw��F � ��CGw��H � yCSO U � !vCw�

� ��� A�S � x'SO� �w��B � ��F A�S � x'SO� �w�FB
� ��H A�S � x'SO� �w�H B
� 2�1 � k�Cxz� 1w A�u�� �w�� � �u�F �w�F � �u�H �w�H B � 0 

(4.38) 

The turbulence production terms is given by 

 

U � I**{ �D�� � IJJ{ �E�F � IKK{ �G�H � I*J{ ��E�� � �D�F� � IJK{ ��G�F � �E�H�
� IK*{ ��D�H � �G��� 

(4.39) 

where the full compressible stress tensor is used: 

 

I**{ � 23SO �2 �D�� � �E�F � �G�H � Cu�, 
   IJJ{ � 23SO �2 �E�F � �D�� � �G�H � Cu�,  
   IKK{ � 23SO �2 �G�H � �D�� � �E�F � Cu� 

I*J{ � SO ��D�F � �E��� ,    IJK{ � SO ��E�H � �G�F� ,    I*K{ � SO ��G�� � �D�H� 

(4.40) 

The blending function F in the turbulent dissipation rate equation can be used to 

activate/deactivate the cross diffusion term which shifts the turbulence equations between the k-

ω turbulence model and the k-ε turbulence model. By setting the blending function F to zero, the 

cross diffusion term in the turbulent dissipation rate equation is activated and the k-ε turbulence 

model is tested. By setting the blending function F to unity, the cross diffusion term in the 

turbulent dissipation rate equation is deactivated and the k-ω turbulence model is tested. 

The constants used in the 2D and 3D Manufactured Solutions for the verification of 

turbulence equations are presented in Appendix C in Table C1 and Table C2, respectively. In the 

process of selecting the Manufactured Solution for code verification purposes, it is required that 

different terms in the governing equations are roughly the same order of magnitude such that the 

contribution from each term in the governing equation is of same order of magnitude. This 

prevents the larger magnitude terms from masking errors in other terms of smaller magnitude. 
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During the verification of turbulence models, the Manufactured Solutions are generated such that 

all terms in the turbulence models are roughly same order of magnitude over the domain 

considered for verification. For example, when the source terms are generated for the turbulent 

kinetic energy equation, the ratios of the convection, diffusion, and production terms to the 

destruction terms are calculated to check that all the terms in the turbulent kinetic energy 

equation are of similar orders of magnitude. As an example, the ratio of production term to the 

destruction terms in the turbulent kinetic energy equation in a 2D rectangular domain is shown in 

Figure 30. From the figure, the ratio of the production term to the destruction term is maintained 

such that the production term and the destruction term are of similar orders of magnitude in the 

complete domain. Similar source term ratios for the turbulent dissipation rate equation are 

calculated to check all the terms are of similar orders of magnitude.
29

 

    

Figure 30: Ratio of production term to the destruction term in turbulent kinetic energy 

equation in a 2D rectangular domain  

The k-ω turbulence model is tested on the 3D skewed hybrid mesh and the observed 

order of accuracy approaches two with mesh refinement. The observed order of accuracy result 

for the k-ω turbulence model on the 3D skewed hybrid mesh is shown in Figure 31. During the 

testing of k-ε turbulence model, a problem with the turbulent dissipation rate equation was 

observed and the discretization error for that equation did not decrease at expected rate. The 

observed order of accuracy of the ρω discretization error norms dropped to zero with mesh 
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refinement, but all the other conserved variable discretization norms approached two with mesh 

refinement. The behavior of the observed order of accuracy with mesh refinement for the k-ε 

turbulence model on the 3D skewed hybrid mesh is shown in Figure 32. 

    

a)                                                                            b) 

Figure 31: Order of accuracy results on the 3D skewed hybrid mesh for k-ω turbulence 

model (F=1) using a) L1 norm of the discretization error and b) L∞ norm of the 

discretization error  
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a)                                                                            b) 

Figure 32: Order of accuracy results on the 3D skewed hybrid mesh for k-ε turbulence 

model (F=0) using a) L1 norm of the discretization error and b) L∞ norm of the 

discretization error  

 To explore the reason for failure of the verification test for the k-ε turbulence model on 

the 3D skewed hybrid mesh, it is tested on simpler meshes. Initially the k-ε turbulence model is 

tested on the 2D hybrid mesh and it is observed that the verification is successful with all the 

norms of the discretization errors approaching two with mesh refinement. The order of accuracy 

result for the k-ε turbulence model on the 2D hybrid mesh is shown in Figure 33. The above test 

is also done on a highly skewed 3D curvilinear mesh with hexahedral cells and the k-ε 

turbulence model is successfully verified with all the norms of the discretization error 

approaching two with mesh refinement. The order of accuracy result for the k-ε turbulence 

model in the 3D highly skewed curvilinear mesh is shown in Figure 34. 
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a)                                                                            b) 

Figure 33: Order of accuracy results on the 2D hybrid mesh for k-ε turbulence model (F=0) 

using a) L1 norm of the discretization error and b) L∞ norm of the discretization error  

    

a)                                                                            b) 

Figure 34: Order of accuracy results on the 3D highly skewed curvilinear (i.e., structured) 

mesh with hexahedral cells for k-ε turbulence model (F=0) using a) L1 norm of the 

discretization error and b) L∞ norm of the discretization error  

 In addition, the k-ε turbulence model is tested on a 3D unstructured mesh with tetrahedral 

cells and it is successfully verified with all the norms of the discretization error approaching two 
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with mesh refinement. The order of accuracy result for the k-ε turbulence model on 3D 

unstructured mesh with tetrahedral cells is shown in Figure 35. By testing on different meshes, it 

can be concluded that there is an issue in the discrete formulation of some of the terms in the 

turbulent dissipation rate equation as it works correctly only on 2D mesh topologies, 3D 

structured mesh topologies, and 3D unstructured mesh with tetrahedral cells but it fails on 3D 

unstructured mesh topologies with skewed cells. From the above analysis, it is determined that 

the issue is isolated to the cross-diffusion term in the turbulent dissipation rate equation on 3D 

unstructured mesh with skewed tetrahedral cells. 

    

a)                                                                            b) 

Figure 35: Order of accuracy results on the 3D unstructured mesh with tetrahedral cells 

for k-ε turbulence model (F=0) using a) L1 norm of the discretization error and b) L∞ norm 

of the discretization error  

4.6 Verification of Time Accuracy for Unsteady Flows 

It is more difficult to apply the verification procedure using the order of accuracy test to 

problems that involve both spatial and temporal discretization, especially when the spatial order 

is different from the temporal order. A combined spatial and temporal order verification method 

was developed by Kamm et al.
64

 In their approach, they use the Newton-type iterative procedure 

to solve a coupled, non-linear set of algebraic equations to calculate the coefficients and 

observed order of accuracies for the spatial and temporal terms in the discretization error 
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expansion. In this present work, a simpler approach for spatial and temporal order verification is 

proposed. 

Neglecting the higher order terms, the discretization error for a scheme with spatial and 

temporal terms, can be written as 

 |}N}~ �  .*0*/4 �  .-0-�4  (4.41) 

where 2̂ and L4 are the observed orders of accuracy in space and time, respectively, gx and gt are 

the coefficients of spatial and time terms, respectively, and hx and ht are normalized spatial and 

temporal discretizations respectively . Similarly, with different set of coefficients, the norm of 

the discretization error can be found as 

 �|}N}~� �  .*0*/4 �  .-0-�4  (4.42) 

Initially, a spatial mesh refinement study is performed with a fixed time step to calculate 2̂ and 

gx using three mesh levels which makes the discretization error equation 

 �|}N}~� �  .*0*/4 � ] (4.43) 

where q

tt hg
ˆ

=φ is the fixed temporal error term. Using three mesh solutions, refined by the factor 

rx, coarse (
xx hr

2 ), medium (
xxhr ), and fine (

xh ), the observed order of accuracy 2̂ can be 

calculated
7
 as 

 

 .*�9*�0*�/4 �  .*�9*0*�/4 .*�9*0*�/4 �  .*�0*�/4 � 7�|[N�}N}~ � � ]8 � 7�|[N}N}~ � � ]8
7�|[N}N}~ � � ]8 � 7�|}N}~� � ]8  

 .*�9*0*�/4 �9*/4 � 1�
 .*�0*�/4 �9*/4 � 1� � �|[N�}N}~ � � �|[N}N}~ �

�|[N}N}~ � � �|}N}~�  

2̂ �
56 ��|[N�}N}~ � � �|[N}N}~ ��|[N}N}~ � � �|}N}~� �

56�9*�  

(4.44) 

where 
xr  is the spatial refinement factor between two mesh levels and the coefficient of the 

spatial term gx can be calculated as 
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 .* � �|[N}N}~ � � �|}N}~�0*/4 79*/4 � 18  (4.45) 

Similarly, a temporal refinement study is performed on a fixed mesh to calculate L4 and gt 

using three temporal discretizations, coarse (
tt hr

2 ), medium (
tt hr ), and fine (

th ). With all the 

coefficients calculated, the spatial step size and the temporal step size can be chosen such that 

the spatial discretization error term has the same order of magnitude as the temporal 

discretization error term. It is required that the spatial and temporal discretization error terms 

have the same order of magnitude such that both the terms have the same effect on the 

discretization error of the scheme. With one error term much smaller than the other error term, it 

makes it difficult to verify the order of accuracy of the smaller error term. If the temporal 

discretization error term is so small when compared to the spatial discretization error term, then 

mistakes in the temporal discretization will not be seen on very fine meshes. 

Once these two terms are approximately the same order of magnitude, combined spatial 

and temporal order verification is conducted by choosing the temporal refinement factor such 

that the temporal error term drops by the same order of magnitude as the spatial error term with 

refinement, i.e., qp

xt rr
ˆˆ

= . Here rt is the temporal refinement factor, rx is the spatial refinement 

factor, 2̂ is the spatial order and L4 is the temporal order. In our case, the formal order is 2 in both 

space and time, i.e., 2̂ = L4 = 2. Using this procedure, the unsteady time term is verified on the 2D 

hybrid mesh and the 3D hybrid mesh for Navier-Stokes equations. The observed order of 

accuracy on both the meshes approached two with mesh refinement. The order of accuracy 

results using L2 discretization error for the time accuracy of the unsteady flows on 2D hybrid 

mesh and 3D hybrid mesh are shown in Figure 36 and Figure 37, respectively. 
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a)                                                                            b) 

Figure 36: Order of accuracy results for time accuracy of the unsteady flows on the 2D 

hybrid grid using a) L1 norm of the discretization error and b) L∞ norm of the 

discretization error  

    

a)                                                                            b) 

Figure 37: Order of accuracy results for time accuracy of the unsteady flows on the 3D 

hybrid grid using a) L1 norm of the discretization error and b) L∞ norm of the 

discretization error  
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4.7 Issues Uncovered During Code Verification 

During the verification of the finite volume code, several coding mistakes and algorithm 

inconsistencies were uncovered. Some code options failed the order of accuracy test for the first 

time and the verification studies helped in learning more about the code or the algorithm and 

ultimately removing some of the mistakes in the code or algorithm. Because the verification 

procedure is so sensitive to minor issues like the mesh topology or mesh quality, they can often 

uncover sensitivities to these issues. Issues uncovered during the code verification are 

documented here. 

4.7.1 Coding Mistakes/Algorithm Inconsistencies 

A coding mistake was found and corrected in the formulation of the diffusion operator 

while testing the Navier-Stokes equations in the finite volume code on the 2D skewed curvilinear 

mesh. Initially, the discretization error did not decrease with mesh refinement and a modification 

was done to the diffusion operator by Luke.
39

 The new diffusion operator rectified the problem 

and an observed order of accuracy of two was attained with mesh refinement.  

A coding mistake was found and corrected in the formulation of the diffusion operator 

while testing the Navier-Stokes equations on 2D unstructured mesh with triangular cells. 

Initially, the diffusion operator was found to be only first order accurate on 2D unstructured 

meshes and after modifying the diffusion operator formulation for unstructured grids, the 

diffusion operator tested was found to be second order accurate. 

Testing the k-ε turbulence model on different mesh topologies, it was found that there 

was an issue in the discrete formulation of the cross-diffusion term in the turbulent dissipation 

rate equation. The present formulation works fine on 2D mesh topologies, 3D structured mesh 

topologies, and 3D unstructured mesh with tetrahedral cells but failed on 3D unstructured mesh 

topologies with skewed cells. 

4.7.2 Grid Sensitivities 

Systematic mesh refinement was found to be important for the verification process. Lack 

of systematic mesh refinement on unstructured meshes led to the failure of code verification test. 

As an example, initially 3D unstructured meshes containing tetrahedral cells were generated 

using GRIDGEN. Using this mesh generation tool, a domain was filled with tetrahedral cells 
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automatically. Generating different mesh levels in GRIDGEN, the meshes were not 

systematically refined. When Navier-Stokes equations were tested using these meshes generated 

in GRIDGEN, the code verification test failed where the observed order of accuracy did not 

match the formal order. Later, the 3D unstructured mesh with tetrahedral cells was generated 

using the developed mesh generation code and meshes from this code were systematically 

refined between the mesh levels. Using these meshes, the Navier-Stokes equations were 

successfully verified to second order accurate, hence explaining the importance of systematic 

mesh refinement for code verification. 

During the verification of the no-slip wall boundary conditions it was found that the mesh 

should be normal to the wall and the order of accuracy test failed if the mesh is not normal to the 

wall. To explain this, initially while testing the adiabatic no-slip wall boundary condition in 2D, 

the meshes which were used for verification did not have mesh normal to the boundary. While 

testing the adiabatic no-slip wall boundary on these meshes, the calculated observed order of 

accuracy did not match the formal order and error was found to be near the boundary. Later, 

when the meshes are generated again such that the mesh is normal to the boundary, the adiabatic 

no-slip wall boundary was successfully verified. 

The discrete formulation of the governing equations was found to be sensitive to highly 

skewed tetrahedral and prismatic cells. The baseline governing equations were successfully 

verified on the highly skewed 2D hybrid mesh and highly skewed 3D curvilinear mesh with 

hexahedral cells, but failed the verification test on a highly skewed 3D hybrid mesh. 
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5. Finite Volume Diffusion Operators 

For well over a decade, there has been significant work on the development of algorithms 

for the compressible Navier-Stokes equations on unstructured grids. This work is motivated by 

the fact that unstructured meshes allow more automation of the mesh generation process and thus 

less of the analyst’s time relative to structured meshes. One of the challenging tasks during the 

development of these algorithms is the formulation of consistent and accurate diffusion 

operators. A robust approach is desired for the treatment of diffusion operators such that they are 

at least second order accurate on various structured and unstructured cell topologies. In addition, 

the accuracy of diffusion operators also depends on mesh quality. 

A survey of diffusion operators for compressible CFD solvers was conducted to 

understand different formulation procedures for diffusion fluxes. A patch-wise version of the 

Method of Manufactured Solutions was used to test the accuracy of some of the selected 

diffusion operators. These diffusion operators were tested and compared on different 2D mesh 

topologies to study the effect of mesh quality, mesh resolution, and the solution behavior. For 2D 

structured meshes, mesh quality includes stretching, aspect ratio, skewness, and curvature, but 

for 2D unstructured meshes, these mesh quality attributes cannot be isolated. As an example, a 

triangular mesh with curvature, aspect ratio or stretching will also have skewness.  Quantities 

examined include the numerical approximation errors and order of accuracy associated with face 

gradient reconstruction. In the present work, the testing of diffusion operators is limited to cell-

centered finite volume methods in 2D which are formally second order accurate. 

5.1 Robustness and Accuracy 

In the development of a numerical diffusion operator, one generally desires the creation 

of an accurate and robust operator. The consistent and accurate treatment of diffusion fluxes are 

particularly challenging for finite volume solvers. Generally, it is required for the discrete 

operator to share important properties with the original continuous operator. For diffusion 

operators there are three properties that we would like to satisfy and these are as follows:
39

 

1. The operator should be numerically conservative. If the operator is defined as a sum of 

fluxes over all of the faces of a cell, then the operator is conservative if the shared faces 

utilize the same flux. 
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2. The operator should not generate new extrema. That is, the maximum and minimum 

solution values for diffusion processes should occur at the boundaries. 

3. The operator should be linearity preserving. That is, the operator should evaluate 

identically to zero when given a linear function. 

Satisfaction of the first property of conservation when using a finite-volume scheme is 

easily achieved. If the operator is defined as a sum of fluxes over all of the faces of a cell, and 

the shared faces utilize the same flux, then conservation is automatically achieved. The challenge 

then turns to the formulation of the cell interface fluxes. The second property can be evaluated 

simply for linear schemes. For linear schemes the operator which is formed from the sum of 

interface fluxes is written as a weighted sum of neighboring cell values. If all of the weights in 

this sum are positive then the operator will not produce new extrema as each cell value is an 

average of neighboring values and thus will be bounded by them. For this argument to hold, the 

weights of immediately adjacent cells must be non-zero, otherwise a degenerated ‘rotated’ 

Laplacian could result. An operator that does not satisfy this property could result in solutions 

where there is unbounded growth in the solution. As a result, the second property is required to 

produce a robust scheme. It has been shown for finite-element schemes that a positive stencil 

will be generated for Delaunay simplex meshes. For mixed element meshes, such as those found 

in typical unstructured viscous meshes, no such guarantee has been shown. For finite-volume 

meshes, the most typical strategy for formulating the viscous fluxes is to employ a directional 

derivative technique whereby the derivative in the direction of the vector connecting cell 

centroids is computed using the cell values on either side of the face, while gradients in other 

directions are computed through an average of the cell centered gradients. This averaging 

technique avoids the ‘rotated’ Laplacian stencil that will result if a simple average of cell 

centered gradients were used. Strang et al.
62

 showed that for VGRID generated meshes up to the 

thirty percent of mesh cells had negative coefficients in the diffusion operator stencil. 

Haselbacher et al.
42

 showed that for a linear scheme, one could not in general satisfy all of the 

three conditions listed above; therefore one must either relax these requirements or resort to 

some form of non-linear limiting procedure to create a robust diffusion operator within the 

context of a finite volume scheme.  When the stencil positivity property is violated, it usually 

doesn’t result in failure of the scheme; however the robustness of such a scheme is not 

satisfactory for production use. Finally, linearity preserving is generally required to achieve a 



75 

 

second order reconstruction. At the very least, failure to satisfy the linearity preservation 

property guarantees that the solution will be highly sensitive to the local quality and distribution 

of mesh elements. 

5.2 Testing Framework 

The accuracy of a diffusion operator in the Navier-Stokes equations can be tested using 

approaches that are similar to those from the Method of Manufactured Solutions
9
 often employed 

for code verification. During this procedure, a smooth analytic solution is selected to assess the 

diffusion operator. For the diffusion operator to be verified, the observed order of accuracy is 

required to match the formal order of accuracy. 

An analytic solution is used to find the exact solution which is used for the calculation of 

the error for the numerical diffusion operator. The difference in the procedure applied here when 

compared to the MMS is that the analytic solution is not applied to any governing equation to 

generate a source term. During the formulation of the diffusion operator, the common procedure 

is to calculate the gradients on the cell faces and these solution gradients on the cell faces are 

tested for the accuracy of the diffusion operator. For testing the diffusion operators in finite 

volume CFD codes, initially, the numerical solution values at the cell centers are obtained from 

the analytic solution selected for testing and the solution values at the cell centers are used to 

calculate the numerical solution gradients at the face centers. The values of the solution gradients 

may be different depending on the type of formulation used for the calculation of the gradients. 

The analytic solution can also be used to calculate the exact solution gradients at the face centers. 

Then the error in the numerical formulation of the gradient can be calculated as the difference 

between the numerical solution gradients and the exact solution gradients at the face centers. The 

procedure is repeated on multiple mesh levels to get the error from each mesh level which are 

used to calculate the observed order of accuracy. If the observed order of accuracy calculated 

from multiple mesh levels matches the formal order, the diffusion operator can be considered 

verified. Since the mesh quality can affect the accuracy of the diffusion operator, it can be altered 

during the testing process to build an accurate and consistent diffusion operator. 

In the process of calculating the observed order of accuracy, different mesh levels are 

required to obtain the discretization error on different systematically refined meshes. By doing a 

traditional way of refinement as already discussed in the order of accuracy verification using 
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MMS, the computations become expensive particularly for 3D problems where each level of 

refinement is 8 times larger. So, particularly for testing the diffusion operators a different 

approach is used in terms of mesh refinement. This alternate method used is similar to the 

downscaling approach to order verification
17,18

 which employs a single mesh which is scaled 

down about a single point in the domain. In the downscaling approach, several parts of the mesh 

in a domain are selected and they are repeatedly shrunk towards a focal point. In our approach, 

only the stencil or the mesh to be scaled is only considered for testing the numerical formulation 

instead of the complete domain. An example of shrinking a mesh over a focal point for a 2D 

unstructured mesh is shown in Figure 38. In the figure, the mesh is shrunk over the cell centroid 

of the central triangle which is the focal point and the whole mesh is scaled by a factor of two. 

By shrinking the mesh in this fashion, a systematic mesh refinement is achieved which means 

that the refinement is uniform and the mesh quality remains same with refinement. Similarly, the 

mesh can be further scaled down several times to obtain multiple mesh levels for testing the 

formulation of a diffusion operator. 

 

Figure 38: Shrinking of a mesh over a focal point for a 2D unstructured mesh 

5.3 Cell-Centered Finite Volume Diffusion Operators 

After a brief literature survey, a few commonly used cell centered finite volume diffusion 

operator formulations in the literature are selected and tested for their accuracy on different mesh 

topologies with different cell quality aspects. The different numerical formulations tested include 

the node-averaged method, unweighted least squares, weighted least squares, the numerical 
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formulation used by the Loci-CHEM CFD code, and the Face Approximate Mapped Least 

Squares (FAMLSQ) method
44

 which uses a compact stencil. These methods are briefly discussed 

below. 

5.3.1 Node Averaging Method 

For cell centered formulations, a common method for calculating the solution gradients at 

the face centers is the node averaging method.
44

 In this method, the solution values are 

reconstructed at the nodes from the surrounding cell centers. The solution reconstruction is 

proposed in [65, 66] and used in [67] as an averaging procedure that is based on a constrained 

optimization to satisfy the Laplacian properties. For the calculation of gradients on the face 

center, the derivative tangent to the face is computed as the divided difference between the 

solution values reconstructed at the nodes and the derivative normal to the face is computed 

using the solution values at the centroids of the cells sharing the face. The gradient is resolved 

from the derivative along the face and the derivative along the line connecting the cell centers 

across the face.  

5.3.2 Unweighted and Weighted Least Squares 

In the weighted least squares method,
44

 the contributions from the adjacent cells to the 

minimized functional are weighted with weights inversely proportional to the distance from the 

central point, i.e., the face center when calculating the gradients on the face. In the unweighted 

least squares method,
44

 all contributions from the adjacent cells are equally weighted. 

5.3.3 Loci-CHEM Diffusion Operator 

 In order to more reliably obtain second order gradients at the face, an alternative method 

for computing these gradients is introduced in the Loci-CHEM code. In this method, a new 

control volume centered about the face is constructed. Initially, a least squares approach is used 

to calculate the solution gradients at the cell center.
39

 Then, a second order function 

reconstruction is used to compute the nodal values of a control volume centered about a face. 

This is constructed by computing two points that are projected above and below the face centroid 

in the normal direction by a factor of 0.56�� · ���� to form points U� � k, � 0.5�6�� · �����6��, and U[ � k, � 0.5�6�� · �����6�� as illustrated in Figure 39. 6�� is the face normal vector and ���� is the vector 

that connects the left and right cell centroids. 



 

Figure 39: An illustration of the reconstruction of a centered control volume about face F
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the reconstruction of a centered control volume about face F

as shown in the shaded region 

The cell gradients are then used in the respective cells to reconstruct the function values 

at the function values at the face nodes are reconstructed using the 

average of the left and right cell function reconstructions. The gray area in Figure 

this reconstructed diamond cell. The left and right points of the reconstruction along with the 

of the face form triangles that bound this volume. Green’s theorem is then employed to 

der face gradient. 

FAMLSQ Method with Compact Stencil 
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44
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stencil.
44

 The compact stencil typically involves two prime cells and two auxiliary cells; one for 

each prime cell. An auxiliary cell is chosen from the pool of the cells sharing the nodes of the 

face as the cell closest to the prime cell, but not its face neighbor. The compact stencil is 

important for discretizations on high-aspect-ratio grids to represent correctly the direction of the 

strong coupling. 

5.4 Mesh Topologies 

The different formulations of diffusion operators are tested on different mesh types which 

can isolate the mesh quality parameters including cell aspect ratio, cell stretching, cell skewness, 

and curvature. All the above types of cells are considered in the evaluation of the diffusion 

operators. In the process of evaluation, only a minimum grouping of cells required (i.e. the 

stencil) are considered for the calculation of the solution gradients on the face centers of a single 

cell. For 2D structured meshes, only 9 cells are used and the solution gradients are calculated on 

the face centers of the central cell. The 2D structured meshes with different cell quality aspects 

considered for testing the different formulations of diffusion operators are shown in Figure 40 

and Figure 41. A uniform mesh is shown in Figure 40a, a mesh with aspect ratio cells is shown 

in Figure 40b, a stretched mesh is shown in Figure 40c, a mesh with skewed cells is shown in 

Figure 40d, and a curvilinear mesh is shown in Figure 41. For 2D unstructured meshes, the 

stencil contains 16 cells and only 13 cells are required for the calculation of solution gradients on 

the face centers of the central cell. The triangular cells in the three corners of the domain are not 

required for the calculation of solution gradients. The 2D unstructured meshes with different cell 

quality aspects considered for testing are shown in Figure 42. An isotropic triangular mesh is 

shown in Figure 42a, a triangular mesh with aspect ratio cells is shown in Figure 42b where the 

cells also have skewness associated with them, and a curvilinear triangular mesh is shown in 

Figure 42c. 
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 a)                                                                            b) 

 

c)                                                                            d) 

Figure 40: Structured mesh topologies in 2D: a) uniform mesh, b) mesh with aspect ratio 

cells, c) stretched mesh, and d) mesh with skewed cells 
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Figure 41: 2D structured mesh curvilinear mesh 

                 

a)                                                                            b) 

  

c) 

Figure 42: Unstructured mesh topologies in 2D: a) mesh with isotropic cells, b) mesh with 

aspect ratio cells, and c) curvilinear mesh 
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5.5 Effect of Mesh Quality 

The evaluation criteria for diffusion operators are the calculation of the solution gradients 

on the face centers to compare them with the exact gradients for errors in the solution gradients 

and calculation of the observed order of accuracy with mesh refinement. The different numerical 

formulations considered are tested for accuracy on 2D structured meshes and 2D unstructured 

meshes which have some cell quality aspects. The analytic solution used while testing the 

different numerical formulations on 2D meshes is of the form given below: 

 

D��, F� � D: � D*d>6 �2?�� � �:�@ � � DJd>6 �2?�F � F:�@ �
� D*Jd>6 �2?�� � �:��F � F:�@� � 

       (5.2) 

5.5.1 2D Structured Meshes 

On 2D structured meshes, three numerical formulations of diffusion operators are tested. 

They include the node-averaged, unweighted least squares, and weighted least squares methods.  

5.5.1.1 Uniform Mesh 

All three numerical formulations are tested on the 2D structured uniform mesh (Figure 

40a). The solution gradients ∂u/∂x and ∂u/∂y are calculated on the four faces of the cell which is 

the central cell of the stencil considered. The mesh refinement is done by fixing the cell center of 

the central cell as the focal point and shrinking the remaining domain equally in all directions. 

On a uniform mesh all three numerical formulations methods produced similar errors. The 

solution gradients calculated at the face centers showed second order convergence with mesh 

refinement for all the numerical formulations tested on 2D structured uniform mesh. The 

observed order of accuracy results for the solution gradients at the face centers for the left, right, 

top, and bottom faces of the cell on a 2D structured uniform mesh using node averaging method 

and weighted least squares method are shown in Figure 43. 
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a)                                                                            b) 

Figure 43: Order of accuracy results for gradients at face center on a 2D structured 

uniform mesh using a) node averaging method and b) weighted least squares method 

5.5.1.2 Aspect Ratio 

The effect of cell quality on the numerical formulations of the diffusion operators is 

tested. The numerical formulations of diffusion operators are tested on 2D structured mesh which 

has cells with a constant aspect ratio (Figure 40b). Meshes with aspect ratios of 5:1, 10:1 and 

50:1 are used while testing the numerical formulations. The solution gradients ∂u/∂x and ∂u/∂y 

are calculated on the four faces of the cell which is the central cell of the stencil considered. The 

mesh refinement is done by fixing the cell center of the central cell as the focal point and 

shrinking the remaining domain equally in all directions. All three numerical formulations 

methods produced similar errors on the mesh with aspect ratio cells. The solution gradients 

calculated at the face centers showed second order convergence with mesh refinement for all the 

numerical formulations tested on the 2D structured mesh with aspect ratio cells even for cell with 

a high aspect ratio of 50:1. The change in aspect ratio has no effect on the accuracy and a second 

order behavior is observed for all aspect ratio cells considered. The observed order of accuracy 

results for the solution gradients at the face centers on a 2D structured mesh with aspect ratio 

cells of 50:1 using the node averaging method and the weighted least squares method are shown 

in Figure 44. 
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a)                                                                            b) 

Figure 44: Order of accuracy results for gradients at face center on a 2D structured mesh 

with aspect ratio using a) node averaging method and b) weighted least squares method 

5.5.1.3 Stretching 

The numerical formulations of diffusion operators are tested on 2D stretched mesh with a 

constant stretching factor (Figure 40c). Stretched meshes with several stretching factors between 

1 and 1.5 in both the coordinate directions are used while testing the numerical formulations. 

One important note here is that the cell centers of the stretched cells in the mesh are not 

considered as the geometric cell centers, but they are calculated depending on the stretching 

involved in the mesh. The solution gradients ∂u/∂x and ∂u/∂y are calculated on the four faces of 

the cell which is the central cell of the stencil considered. The mesh refinement is done by fixing 

the cell center of the central cell as the focal point and shrinking the remaining domain equally in 

all directions. All three numerical formulations methods produced similar errors on the 2D 

stretched mesh. The solution gradients calculated at the face centers showed second order 

convergence with mesh refinement for all the numerical formulations tested on stretched mesh 

with stretching factors up to 1.5. The change in stretching factor has no effect on the accuracy 

and a second order behavior is observed for all stretching factors considered. The observed order 

of accuracy results for the solution gradients at the face centers on a 2D stretched mesh with a 

stretching factor of 1.5 using node averaging method and weighted least squares method are 

shown in Figure 45. 
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a)                                                                            b) 

Figure 45: Order of accuracy results for gradients at face center on a 2D structured mesh 

with stretched cells using a) node averaging method and b) weighted least squares method 

5.5.1.4 Skewness 

The numerical formulations of diffusion operators are tested on a 2D structured mesh 

with skewed cells (Figure 40d). Skewness in the structured mesh can be measured in many 

possible ways, but here skewness is measured as the minimum angle of the cell. The skewed 

meshes considered for testing have all the cells with same skewness. The 2D structured meshes 

with a minimum angle between two sides of a cell of 60º, 30º, 15º, and 1º are used while testing 

the numerical formulations. The solution gradients ∂u/∂x and ∂u/∂y are calculated on the four 

faces of the cell which is the central cell of the stencil considered. The mesh refinement is done 

by fixing the cell center of the central cell as the focal point and shrinking the remaining domain 

equally in all directions, thus maintaining the cell quality with mesh refinement. All three 

numerical formulations methods produced similar errors on the mesh with skewed cells. The 

solution gradients calculated at the face centers showed second order convergence with mesh 

refinement for all the numerical formulations tested on 2D structured mesh with skewed cells. 

The change in skewness of the mesh has no effect on the accuracy and a second order behavior is 

observed for all skewed cells considered. The observed order of accuracy results for the solution 

gradients at the face centers on a 2D structured mesh with highly skewed cells with a minimum 
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angle of 1º using node averaging method and weighted least squares method are shown in Figure 

46. 

    

a)                                                                            b) 

Figure 46: Order of accuracy results for gradients at face center on a 2D structured mesh 

with skewed cells using a) node averaging method and b) weighted least squares method 

5.5.1.5 Curvature 

The effect of curvature as a mesh quality aspect is also examined for the different 

numerical formulations of diffusion operators. The mesh considered for testing the effect of 

curvature has an inner radius of 5 with different angles made by the stencil range from 15º to 90º. 

The solution gradients ∂u/∂x and ∂u/∂y are calculated on the four faces of the cell which is the 

central cell of the stencil considered. The mesh refinement is done by fixing the cell center of the 

central cell as the focal point and shrinking the remaining domain equally in all directions which 

maintains the quality of the mesh. The difference in the errors in the solution gradients is small 

for all the tested numerical formulations methods on the 2D structured curvilinear mesh. The 

solution gradients calculated at the face centers showed second order convergence with mesh 

refinement for all the numerical formulations tested on 2D structured curvilinear mesh (Figure 

41). The change in the mesh curvature has no effect on the accuracy. The observed order of 

accuracy results for the solution gradients at the face centers on a 2D structured curvilinear mesh 

using node averaging method and weighted least squares method are shown in Figure 47. 
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a)                                                                            b) 

Figure 47: Order of accuracy results for gradients at face center on a 2D structured mesh 

with skewed cells using a) node averaging method and b) weighted least squares method 

As a conclusion, all the numerical formulations tested on 2D structured meshes are 

second order accurate on every type of mesh which has a particular mesh quality aspect 

associated to it. The effect of cell quality on the errors in the solution gradients calculated using 

any particular numerical method is negligible as the errors did not vary much between structured 

meshes with different cell quality. This approach of testing the numerical formulation can be 

extended to 3D without much effort in terms of mesh generation. Also, the shrinking aspect of 

mesh refinement for calculating the order of accuracy from the errors from different mesh levels 

can be applied easily in 3D saving computational resources. The accuracy of these numerical 

formulations is tested under more difficult situations when they are examined on 2D unstructured 

meshes. 

5.5.2 2D Unstructured Meshes 

On 2D unstructured meshes, the four different numerical formulations of diffusion 

operators are tested. They include the node-averaged method, weighted least squares method, 

numerical formulation of diffusion operator used by the Loci-CHEM code, and the numerical 

formulation which uses a compact stencil and applied as a least squares procedure to calculate 

the solution gradients at the face centers which is called the Face Approximate Mapping Least 
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Squares (FAMLSQ).
44

 The FAMLSQ method is tested only for unstructured meshes with 

curvature. 

5.5.2.1 Mesh with Isotropic Cells 

Apart from the FAMLSQ method, other numerical formulations are initially tested on the 

2D unstructured mesh with isotropic cells (Figure 42a). The solution gradients ∂u/∂x and ∂u/∂y 

are calculated on the three cell faces of a triangle which is the central cell of the stencil 

considered. The mesh refinement is again achieved by fixing the cell centroid of the central cell 

as the focal point and shrinking the remaining domain equally in all directions. Three numerical 

formulations which include the node averaged method, the weighted least squares method, and 

the numerical formulation in the Loci-CHEM code are tested on a 2D unstructured mesh with 

equilateral triangles. The same analytic solution used for the 2D structured meshes is used here. 

The solution gradients calculated at the face centers showed second order convergence with 

mesh refinement for all the numerical formulations tested. The observed order of accuracy 

results for the solution gradients at the face centers for the three sides of the triangular cell using 

node averaging method and weighted least squares method are shown in Figure 48.  

    

a)                                                                            b) 

Figure 48: Order of accuracy results for gradients at face center on a 2D unstructured 

mesh with isotropic triangular cells using a) node averaging method and b) weighted least 

squares method 
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In the process of testing the diffusion operator in the Loci-CHEM code, the solution gradients are 

calculated at the face center of only one side of the triangular cell. The observed order of 

accuracy results for the solution gradients at one of the face centers of the triangular cell using 

numerical formulation of diffusion operator in Loci-CHEM code are shown in Figure 49. The 

error in the solution gradients calculated at the face center on a 2D unstructured mesh with 

isotropic cells using the three numerical methods (node averaging, weighted least squares and 

Loci-CHEM formulation) is compared and shown in Figure 50. The errors in the solution 

gradients are almost similar from the three methods and Loci-CHEM approach produced slightly 

higher errors. 

 

Figure 49: Order of accuracy results for gradients at face center on a 2D unstructured 

mesh with isotropic triangular cells using Loci-CHEM approach 
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Figure 50: Comparison of error in the gradients at the face center for the tested numerical 

methods on a 2D unstructured mesh with isotropic triangular cells 

5.5.2.2 Skewness with Aspect Ratio 

For 2D unstructured meshes, triangular cells with high aspect ratios will also be highly 

skewed. These two aspects of mesh quality cannot be tested separately when testing the 

numerical formulations on triangular cells. The aspect ratio of a triangular cell in this study is 

defined as the minimum value of the base to height ratio and the skewness is defined as the 

smallest angle made by any two sides in a triangle. The skewed meshes with a minimum angle of 

30º, 10º, 5º, 1º, 0.1º, and 0.01º are used while testing the numerical formulations. The highest 

aspect ratio achieved using these meshes are approximately 7000:1. The numerical formulations 

of diffusion operators are tested on highly skewed triangular unstructured meshes. The skewed 

meshes considered for testing have all the cells with same skewness. The solution gradients 

∂u/∂x and ∂u/∂y are calculated on the three faces of the triangular cell which is the central cell of 

the stencil considered. The mesh refinement is done by fixing the cell center of the central cell as 

the focal point and shrinking the remaining domain equally in all directions, thus maintaining the 

cell quality with mesh refinement. For the node averaging method and the weighted least squares 

method the solution gradients showed second order convergence with mesh refinement for both 

the numerical formulations tested on 2D unstructured triangular mesh with skewed and aspect 

ratio cells (Figure 42b). The change in skewness/aspect ratio of the mesh has no effect on the 

accuracy and a second order behavior is observed even for the highly skewed meshes. The 
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observed order of accuracy results for the solution gradients at the three face centers on a highly 

skewed triangular mesh with an aspect ratio of 70:1 and a minimum angle between sides of 1º 

using node averaging method and weighted least squares method are shown in Figure 51. While 

testing the diffusion operator in the Loci-CHEM code, the solution gradients are calculated at the 

face center of only one side of the triangular cell and the solution gradients showed second order 

convergence with mesh refinement for the Loci-CHEM formulation of the diffusion operator. 

The observed order of accuracy results for the solution gradients at one of the face centers of the 

triangular cell on a highly skewed mesh with an aspect ratio of 70:1 and a minimum angle 

between sides of 1º using numerical formulation of diffusion operator in Loci-CHEM code are 

shown in Figure 52. The error in the solution gradients calculated at the face center on the 

unstructured mesh with highly skewed and aspect ratio cells using the three numerical methods is 

compared and shown in Figure 53. Of the three numerical methods tested, Loci-CHEM approach 

produced higher errors and the weighted least squares approach produced least errors on 

unstructured mesh with highly skewed and aspect ratio cells. 

    

a)                                                                            b) 

Figure 51: Order of accuracy results for gradients at face center on a 2D unstructured 

triangular mesh with skewed and aspect ratio cells using a) node averaging method and b) 

weighted least squares method 
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Figure 52: Order of accuracy results for gradients at face center on a 2D unstructured 

triangular mesh with skewed and aspect ratio cells using Loci-CHEM approach 

 

Figure 53: Comparison of error in the gradients at the face center for the tested numerical 

methods on a 2D unstructured triangular mesh with skewed and aspect ratio cells 
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and the angle made by the stencil ranging from 8º to 160º. For the node averaging method and 

the weighted least squares methods, the solution gradients ∂u/∂x and ∂u/∂y are calculated on the 

three faces of the triangular cell which is the central cell of the stencil considered. The mesh 

refinement is done by fixing the cell center of the central cell as the focal point and shrinking the 

remaining domain equally in all directions, thus maintaining the cell quality with mesh 

refinement. For the node averaging method, it is observed that the solution gradient showed 

zeroth order accuracy with mesh refinement while testing on curved meshes. The errors in the 

calculation of the solution gradients do not decrease with mesh refinement. The inconsistency 

started showing up when the angle made by the stencil is above 20º. Certainly, the node average 

method is inconsistent while testing it on the 2D unstructured curvilinear mesh (Figure 42c). The 

observed order of accuracy results for the solution gradients at the three face centers using node 

averaging method on a 2D unstructured mesh with curvature (when angle made by the stencil is 

160º) is shown in Figure 54a.  

For the weighted least squares method, it is observed that the solution gradient converged 

to first order accuracy with mesh refinement while testing on curved meshes. Again, the first 

order behavior started showing up when the angle made by the stencil is 20º and above. The 

weighted least squares method is considered to be first order accurate while testing it on the 2D 

unstructured curvilinear mesh. The observed order of accuracy results for the solution gradients 

at the three face centers weighted least squares method on a 2D unstructured mesh with 

curvature (when angle made by the stencil is 160º) is shown in Figure 54b. So both the node 

averaging and weighted least squares methods fail to be second order accurate and an accuracy 

drop is observed while testing these methods on 2D unstructured meshes which curved 

boundaries. 
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a)                                                                            b) 

Figure 54: Order of accuracy results for gradients at face center on a 2D unstructured 

triangular mesh with skewed and curved cells using a) node averaging method and b) 

weighted least squares method 

The next method tested on 2D unstructured curvilinear meshes is the Loci-CHEM 

formulation of diffusion operator. The solution gradients ∂u/∂x and ∂u/∂y are calculated on one 

of the three faces of the triangular cell which is the central cell of the stencil considered. The 

mesh refinement is done by fixing the face center at which the solution gradients are calculated 

as the focal point and shrinking the remaining domain equally in all directions. With the Loci-

CHEM formulation tested on curved meshes, it is observed that the solution gradients calculated 

at the face center showed second order behavior with mesh refinement. The Loci-CHEM 

formulation is tested on a curved mesh where the angle made by the stencil is 80º. Also, the 

change in mesh curvature has no effect on the accuracy. The observed order of accuracy results 

for the solution gradients on the face center using Loci-CHEM formulation of diffusion operator 

on a 2D unstructured mesh with curvature is shown in Figure 55. 

h

O
rd

e
r

o
f

A
c
c
u

ra
c
y
,

p

10
0

10
1

10
2

-2

-1

0

1

2
du/dx - L
du/dy - L

du/dx - R
du/dy - R

du/dx - B

du/dy - B

h

O
rd

e
r

o
f

A
c
c
u

ra
c
y
,

p

20 40 60 80

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

du/dx - L

du/dy - L

du/dx - R
du/dy - R

du/dx - B
du/dy - B



95 

 

 

Figure 55: Order of accuracy results for gradients at face center on a 2D unstructured 

triangular mesh with skewed and curved cells using Loci-CHEM approach 

The other method tested on 2D unstructured curvilinear meshes is the Face Approximate 

Mapping Least Squares (FAMLSQ) method which uses a compact stencil to formulate the 

solution gradients at the face center. The testing is done in a slightly different way for this 

formulation where the mesh is shrunk such that the radial cell size and the angle made by the 

stencil are reduced by a factor of two for every refinement instead of refinement in the x and y 

coordinate directions. Systematic mesh refinement is satisfied even for this kind of refinement 

where the quality of the mesh improves instead of staying constant with every refinement. Using 

this formulation, the solution gradients ∂u/∂x and ∂u/∂y are calculated on one of the three faces 

of the triangular cell which is the central cell of the stencil considered. This formulation used for 

calculating the solution gradients at the face center showed second order accuracy with mesh 

refinement. The observed order of accuracy results for the solution gradients on the face center 

using the FAMLSQ formulation with a compact stencil on a 2D unstructured mesh with 

curvature is shown in Figure 56. The error in the solution gradients calculated at the face center 

on the unstructured mesh with highly skewed and curved cells using the four numerical methods 

tested is compared and shown in Figure 57. From the plot, the errors in the solution gradients 

using node averaging method do not reduce with mesh refinement and the errors in the solution 

gradients using weighted least squares method reduce at first order with mesh refinement. Loci-

CHEM approach and FAMLSQ approach produced similar errors and the errors reduced at 

h

O
rd

e
r

o
f

A
c
c
u

ra
c
y
,

p

10
0

10
1

1

2

3 du/dx - L

du/dy - L



96 

 

second order with mesh refinement for both the approaches on 2D unstructured mesh with 

skewed and curved cells. 

 

Figure 56: Order of accuracy results for gradients at face center on a 2D unstructured 

triangular mesh with skewed and curved cells using FAMLSQ approach 

 

Figure 57: Comparison of error in the gradients at the face center for the tested numerical 

methods on a 2D unstructured triangular mesh with skewed and curved cells 
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when the formulations are tested on unstructured curvilinear meshes. The numerical formulation 

of diffusion operator in Loci-CHEM code and the FAMLSQ method using compact stencil are 

second order accurate on unstructured meshes with all mesh qualities and can be considered as 

consistent formulations for calculation of diffusion terms on 2D unstructured meshes from this 

analysis. This approach of testing the numerical formulation can be extended to 3D, since the 

shrinking aspect of mesh refinement for calculating the order of accuracy from different mesh 

levels can be applied easily in 3D saving significant computational power and time. 
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6. Conclusions 

6.1 Summary of Results 

A detailed code verification study of an unstructured finite volume code was performed. 

The finite volume code, Loci-CHEM, is used for reactive flow simulations of rocket engines. 

The MMS was used to generate exact solutions for complex governing equations. Systematic 

mesh refinement which is important for code verification was explained. Different options in the 

finite volume CFD code were verified which included the baseline steady-state governing 

equations, transport models, different boundary condition options, turbulence models, and time 

accuracy of unsteady flows. All the options were determined to be verified when the observed 

order of accuracy matched the formal order on the 2D hybrid and 3D hybrid mesh which 

contained all cell topologies (triangular, quadrilateral, hexahedral, tetrahedral, and prismatic 

cells). When the verification process failed on any one of these complex hybrid meshes, then 

simpler meshes were considered to isolate the problem. Coding mistakes, algorithm 

inconsistencies, and mesh quality sensitivities uncovered during code verification were 

presented. By testing the finite volume code on different meshes, the effect of cell quality and 

cell topology on the order of accuracy of the code was also assessed. 

A survey of diffusion operators for compressible CFD solvers was conducted to 

understand the different formulation procedures for diffusion terms. Some of the diffusion 

operators extensively used in CFD solvers and some of the recently developed diffusion 

operators were evaluated by testing them on different structured and unstructured mesh 

topologies with different mesh quality aspects for accuracy. A patch-wise version of the Method 

of Manufactured Solutions for code verification was used for the evaluation of the diffusion 

operators. The numerical formulations were tested on 2D structured and 2D unstructured meshes 

with different cell quality aspects like skewness, aspect ratio, stretching and curvature. During 

the testing of the numerical formulations, the observed order of accuracy calculated from 

multiple mesh levels was compared with the formal order of accuracy. Multiple mesh levels 

were achieved by shrinking the mesh over a focal point rather than a conventional mesh 

refinement. All the numerical formulations tested on 2D structured meshes were accurate and 

consistent as they showed second order convergence on every type of mesh considered. All the 

numerical formulations tested on 2D unstructured meshes were accurate when tested on skewed 
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mesh with aspect ratio cells, but the node averaging method and weighted least squares method 

were not consistent as their accuracy dropped to less than second order while testing on 2D 

unstructured curved meshes. The diffusion operator formulation in the Loci-CHEM CFD code 

and the FAMLSQ approach using a compact stencil were found to be consistent and accurate 

diffusion operators while testing the formulations on 2D unstructured meshes as they achieved 

second order convergence on 2D unstructured meshes with all cell quality aspects. 

6.2 Main Contributions of this Work 

There are some new contributions to the field of Computational Fluid Dynamics from 

this research work. 

1. The requirements for generating 3D unstructured meshes with systematic mesh 

refinement were identified and FORTRAN codes were developed to generate multiple 

mesh levels for 3D unstructured meshes and 3D hybrid meshes for code verification 

purposes. To our knowledge, present commercial mesh generation software cannot 

generate different mesh levels of 3D unstructured meshes or 3D hybrid meshes which 

satisfy systematic mesh refinement. 

2. The effect of mesh quality on numerical accuracy was studied by testing governing 

equations and different numerical formulations on different mesh topologies with varying 

mesh qualities. 

3. A unique way of verifying the time accuracy of unsteady flows was identified. In the 

process of verifying the spatial and time terms in a governing equation simultaneously, a 

method for the selection of spatial and temporal step sizes such that the discretization 

error in both spatial and temporal terms are of similar magnitudes was developed. 

4. The shrinking of meshes of over a focal point for generating multiple mesh levels was 

used for testing of different formulations without actually running the code. This 

procedure was applied successfully to decrease the computational effort in code 

verification. 

5. Through the code verification work discussed herein, Loci-CHEM is currently the most 

verified compressible CFD code. We know of no other compressible CFD codes 

presently which are verified as extensively as Loci-CHEM. 
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6.3 Future Work and Recommendations 

Some future recommendations are mentioned here. One of them is generating 

Manufactured Solutions for verification of boundary conditions when the boundaries have 

curvature. It is required to come up with an intelligent way to design the Manufactured Solutions 

for some of the boundary condition options when applied to curved boundaries to satisfy 

constraints on normal derivatives. Another recommendation is the application of verification of 

different numerical formulations in 3D using the shrinking technique for generating multiple 

mesh levels which makes it easier in terms of computational resources for code verification 

purposes. In this case, the numerical formulations are tested without running the code. 
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Appendix A 

A summary of several options verified in the finite volume Loci-CHEM CFD code is shown in 

Figure A1. 

 

Figure A1: Verification of different options in the finite volume Loci-CHEM CFD code 
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Appendix B 

After the Navier-Stokes equations were verified to be second order accurate on a 3D skewed 

hybrid mesh but showed a reduced accuracy on the 3D highly skewed hybrid mesh, the mesh 

quality was quantified with some parameters. The cell quality aspects were quantified and 

tabulated for the 65×65×65 meshes. These numbers which quantify the cell quality did not 

change much for different mesh levels and improved with mesh refinement for a particular mesh 

type which satisfied systematic mesh refinement. The cell quality is quantified for the 3D 

skewed hybrid mesh and the 3D highly skewed hybrid mesh are shown in Table B1. 

Table B1. Quantification of cell quality 

 3D skewed hybrid mesh 3D highly skewed hybrid mesh 

Mesh Size 65×65×65 65×65×65 

Maximum Cell Angle 37.4523 58.1545 

Maximum Twist 0.0100871 0.00480552 

Maximum Shear Twist 0.000306531 0.00100128 

 

In the above table, maximum cell angle is defined as the maximum cell to face angle and it is the 

angle between the face normal and the cell centroids. This angle provides an indication of mesh 

isotropy. Lower the maximum cell angle better is the mesh quality. For non-triangular faces, the 

faces can be non-planar i.e. twisted. The twist metric is the measure of the non-planar component 

of the face geometry. Twist is the deviation of the face in the direction away from the plane of 

the face and shear twist is the deviation of the face in the plane of the face itself. A value of 0.1 

indicates that the face geometry deviates from the planar description by 10 percent. 
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Appendix C 

For boundary conditions and turbulence models, the constants and the trigonometric functions 

used in the Manufactured Solutions in 2D and 3D are in Table C1 and Table C2, respectively.  

Table C1. Constants for 2D Manufactured Solutions 

Equation, φ φ0 φx φy φxy 

ρ (kg/m
3
) 1 0.15 -0.1 0.08 

u (m/s) 70 7 -8 5.5 

v (m/s) 90 -5 10 -11 

p (N/m
2
) 1×10

5
 0.2×10

5
 0.175×10

5
 -0.25×10

5
 

T (K) 350 10 -30 15 

k (m
2
/s

2
) 780 160 -120 80 

ω (1/s) 150 -30 22.5 40 

Equation, φ  aφx aφy aφxy 

ρ (kg/m
3
)  0.75 1 1.25 

u (m/s)  1.5 1.5 0.6 

v (m/s)  1.5 1 0.9 

p (N/m
2
)  1 1.25 0.75 

T (K)  0.75 1.25 1.25 

k (m
2
/s

2
)  0.65 0.7 0.8 

ω (1/s)  0.75 0.875 0.6 

Equation, φ  fs (x) fs (y) fs (xy) 

ρ (kg/m
3
)  cos sin cos 

u (m/s)  sin cos cos 

v (m/s)  sin cos cos 

p (N/m
2
)  cos sin sin 

T (K)  cos sin cos 

k (m
2
/s

2
)  cos sin cos 

ω (1/s)  cos sin cos 
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Table C2. Constants for 3D Manufactured Solutions 

Equation, φ φ0 φx φy φz φxy φyz φzx 

ρ (kg/m
3
) 1 0.15 -0.1 0.1 0.08 0.05 0.12 

u (m/s) 70 7 -15 -10 7 4 -4 

v (m/s) 90 -5 10 5 -11 -5 5 

w (m/s) 80 -10 10 12 -12 11 5 

p (N/m
2
) 1×10

5
 0.2×10

5
 0.5×10

5
 0.2×10

5
 -0.25×10

5
 -0.1×10

5
 0.1×10

5
 

T (K) 350 10 -30 20 10 -12 15 

k (m
2
/s

2
) 780 160 -120 80 80 60 -70 

ω (1/s) 150 -30 22.5 20 40 -15 25 

Equation, φ  aφx aφy aφz aφxy aφyz aφzx 

ρ (kg/m
3
)  0.75 0.45 0.8 0.65 0.75 0.5 

u (m/s)  0.5 0.85 0.4 0.6 0.8 0.9 

v (m/s)  0.8 0.8 0.5 0.9 0.4 0.6 

w (m/s)  0.85 0.9 0.5 0.4 0.8 0.75 

p (N/m
2
)  0.4 0.45 0.85 0.75 0.7 0.8 

T (K)  0.75 1.25 0.5 0.65 0.75 0.5 

k (m
2
/s

2
)  0.65 0.7 0.8 0.8 0.85 0.6 

ω (1/s)  0.75 0.875 0.65 0.6 0.75 0.8 

Equation, φ  fs (x) fs (y) fs (z) fs (xy) fs (yz) fs (zx) 

ρ (kg/m
3
)  cos sin sin cos sin cos 

u (m/s)  sin cos cos cos sin Cos 

v (m/s)  sin cos cos cos sin cos 

w (m/s)  cos sin cos sin sin cos 

p (N/m
2
)  cos cos sin cos sin cos 

T (K)  cos sin sin cos sin cos 

k (m
2
/s

2
)  cos cos sin cos cos sin 

ω (1/s)  cos cos sin cos cos sin 

 

 


