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ABSTRACT

Emerging wireless networks are foreseen as an integration of heterogeneous spectrum bands, wireless ac-
cess technologies, and backhaul solutions, as well as a large-scale interconnection of devices, people, and
vehicles. Such a heterogeneity will range from the proliferation of multi-tasking user devices such as smart-
phones and tablets to the deployment of multi-mode access points that can operate over heterogeneous
frequency bands spanning both sub-6 GHz microwave (W) and high-frequency millimeter wave (mmW)
frequencies. This heterogeneous ecosystem will yield new challenges and opportunities for wireless re-
source management. On the one hand, resource management can exploit user and network-specific context
information, such as application type, social metrics, or operator pricing, to develop application-driven,
context-aware networks. Similarly, multiple frequency bands can be leveraged to meet the stringent quality-
of-service (QoS) requirements of the new wireless services such as video streaming and interactive gaming.
On the other hand, resource management in such heterogeneous, multi-band, and large-scale wireless sys-
tems requires distributed and low-complexity frameworks that can effectively utilize all available resources.
The key goal of this dissertation is therefore to develop novel, self-organizing, and low-complexity resource
management protocols — using techniques from matching theory, optimization, and machine learning — to
address critical resource allocation problems for emerging heterogeneous wireless systems while explicitly
modeling and factoring diverse network context information.

Towards achieving this goal, this dissertation makes a number of key contributions. First, a novel context-
aware scheduling framework is developed for enabling dual-mode base stations to efficiently and jointly uti-
lize mmW and uW frequency resources while maximizing the number of user applications whose stringent
delay requirements are satisfied. The results show that the proposed approach will be able to significantly
improve the QoS per application and decrease the outage probability. Second, novel solutions are proposed
to address both network formation and resource allocation problems in multi-hop wireless backhaul net-
works that operate at mmW frequencies. The proposed framework motivates collaboration among multiple
network operators by resource sharing to reduce the cost of backhauling, while jointly accounting for both
wireless channel characteristics and economic factors. Third, a novel framework is proposed to exploit high-
capacity mmW communications and device-level caching to minimize handover failures as well as energy
consumption by inter-frequency measurements, and to provide seamless mobility in dense heterogeneous
mmW-uW small cell networks (SCNs). Fourth, a new cell association algorithm is proposed, based on
matching theory with minimum quota constraints, to optimize load balancing in integrated mmW-uW net-
works. Fifth, a novel medium access control (MAC) protocol is proposed to dynamically manage the wire-
less local area network (WLAN) traffic jointly over the unlicensed 60 GHz mmW and sub-6 GHz bands to
maximize the saturation throughput and minimize the delay experienced by users. Finally, a novel resource
management approach is proposed to optimize device-to-device (D2D) communications and improve traffic
offload in heterogeneous wireless SCNs by leveraging social context information that is dynamically learned
by the network. In a nutshell, by providing novel, context-aware, and self-organizing frameworks, this dis-
sertation addresses fundamentally challenging resource management problems that mainly stem from large
scale, stringent service requirements, and heterogeneity of next-generation wireless networks.
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General Audience Abstract

The emergence of bandwidth-intensive applications along with vast proliferation of smart, multi-tasking
handhelds have strained the capacity of wireless networks. Furthermore, the landscape of wireless commu-
nications is shifting towards providing connectivity, not only to humans, but also to automated cars, drones,
and robots, among other critical applications. These new technologies will enable devices, machines, and
things to be more intuitive, while being more capable, in order to improve the quality of life for human. For
example, in future networked life, smartphones will predict our needs and help us with providing timely and
relevant information from our surrounding. As an another example, autonomous vehicles and smart trans-
portation systems with large number of connected safety features will minimize road incidents and yield a
safe and joyful driving experience.

Turning such emerging services into reality will require new technology innovations that provide high
efficiency and substantial levels of scalability. To this end, wireless communication is the key candidate to
provide large-scale and ubiquitous connectivity. However, existing wireless networks operate at congested
microwave (uW) frequency bands and cannot manage the exponential growth in wireless data traffic or sup-
port low latency and ultra-high reliability communications, required by many emerging critical applications.
Therefore, the goal of this dissertation is to develop novel network resource utilization frameworks to effi-
ciently manage the heterogeneous traffic in next-generation wireless networks, while meeting their stringent
quality-of-service (QoS) requirements.

This transformative, fundamental research will expedite the deployment of communications at very high
frequencies, at the millimeter wave (mmW) frequency bands, in next-generation wireless networks. The
developed frameworks will advance new concepts from matching theory and machine learning for resource
management in cellular networks, wireless local area networks (WLANSs), and the intersection of these sys-
tems at both mmW and W unlicensed frequency bands. This multi-band networking will leverage the
synergies between mmW and W wireless networks to provide robust and cost-effective solutions that en-
able the support of heterogeneous traffic from future wireless services. The anticipated results will transform
the way in which spectral and time resources are used in both cellular networks and WLANS.
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Chapter 1

Introduction and Background

The exponential proliferation of new, highly-capable mobile wireless devices such as smartphones
and tablets has significantly increased the growth in the demand for pervasive wireless access [1].
This rapid increase in the number of devices, combined with the emergence of advanced wireless
networking technologies and systems will lead to a widespread adoption of bandwidth-intensive
wireless services, such as social networking, interactive gaming, and multimedia streaming. This
new breed of wireless services will effectively strain the capacity of existing wireless cellular sys-
tems and impose strict quality-of-service (QoS) requirements, in terms of the required data rates
and tolerable application-specific delays. Naturally, existing wireless standards and network ar-
chitectures, which have been originally designed primarily for voice services, will not be able to
handle such stringent traffic and QoS requirements. Therefore, a substantial amount of research
has recently emerged, in both industry and academia, with a focus on deriving a new generation
of wireless networks that can properly cope with such emerging trends. In this chapter, we will
overview the outcomes of these efforts and emerging technologies while outlining their accompa-
nying research challenges and opportunities.

This chapter is organized as follows. In Section 1.1, key concepts of emerging wireless cellular
networks and their challenges are discussed. The main contributions of this dissertation are pre-
sented in Section 1.2. Section 1.3 provides the list of publications and Section 1.4 presents the
outline of this dissertation.

1.1 Emerging Wireless Heterogeneous Networks: Opportuni-
ties and Challenges

First, we briefly overview a number of key concepts ! and technologies that are expected to shape
the next generation of wireless networks and prove the platform within which the aforementioned,

"Here, we note that emerging future wireless techniques, such as massive MIMO and spectrum sharing will also
play a key role in future cellular networks, but are not within the scope of this dissertation.
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bandwidth-intensive wireless services will operate.

1.1.1 Small cell networks

Over the past decade, wireless cellular networks were typically reliant on high-power macrocel-
lular base stations (MBSs) that provide coverage for large geographical areas (few kilometers).
However, such a conventional deployment of base stations (BSs) may not be spectrally efficient
and has been shown to be ineffective in catering for bandwidth-intensive wireless applications [2].
In addition, cell splitting gains are significantly limited by severe inter-cell interference as more
MBSs are deployed. To overcome these challenges, one promising concept is to reduce the cell
sizes by deploying low-power small base stations (SBSs) [3—6]. Such small cell networks (SCNs),
composed of densely deployed SBSs, such as picocells and femtocells, allow reducing the cover-
age holes and substantially increasing the spectral efficiency. Compared with conventional cellular
networks, some of main challenges of SCNs include: [5]

e Density: A dense deployment of SCNs will introduce new challenges in terms of interfer-
ence management and resource allocation. These challenges stem from the key features
of SCNs such as the unplanned SBSs distribution, limited coverage, and limited backhaul
capacities [3-6].

e Cell association: Conventional cell association approaches assign each user to the MBS
with maximum RSSI or maximum SINR. In SCNs, such association mechanisms may result
in unbalanced load distributions, since most of the users will be assigned to the SBSs with
higher transmit powers.

e Backhaul: Unlike conventional MBS-based cellular networks, in SCNs, providing a fiber
backhaul for connecting a dense number of SBSs to the core network will not be cost-
effective from an economic perspective, due to high cost of deployment and leasing of fiber
backhaul. In addition, fiber backhaul solution is not feasible for SBSs that are deployed in
adverse locations. Therefore, wireless backhaul solutions are being considered as a viable
solution for the SCNs as they can enable each SBS to connect to the core network via a
single-hop or a multi-hop wireless backhaul link. Supporting high capacity and reliable
wireless backhaul is one of the key challenges of SCNs deployment [7-16].

e Mobility management: Due to the reduced cell sizes in SCNs, handovers (HOs) happen more
frequently for mobile users, compared to the macro cellular networks [17-25]. Handover
introduces packet loss and latency which can be detrimental to the QoS of wireless data
communication. Conventional handover techniques which are based on the received signal
power will be inefficient in SCNs, since they can adversely increase the number of handovers
and degrade the performance.

In addition, we note that the capacity scales linearly with the number of cells. Hence, SCNs
alone will not be able to meet the required capacity to accommodate orders of magnitude increase
in mobile data traffic [26]. This, in turn, has led to the emergence of additional technologies, as
discussed in the following sections, which are expected to co-exist with SCNs.
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1.1.2 Millimeter wave communications

Most mobile communication systems today operate at the sub-6 GHz frequency bands, in particular
within the frequency spectrum range of 300 MHz- 3 GHz. One of the key problems of operating at
such frequency bands is that the transceivers and their RF components, including power amplifiers,
low noise amplifiers, mixers, and antennas, are bulky and often power inefficient [26]. In addition,
these frequency bands are very congested and expensive to lease. Moreover, low-frequency signals
can effectively penetrate the obstacles and reflect from the object. Although this is desired in gen-
eral, it makes the interference mitigation more challenging for dense SCNs. These challenges have
provided incentives for mobile network operators (MNOs) to consider the possibility of operating
cellular networks at higher frequency bands at which high bandwidth is readily available [26].

The millimeter wave (mmW) spectrum band, ranging from 30-300 GHz is an attractive solution
as it offers a significantly large available bandwidth that can reach, up to 1 GHz. Indeed, in the
past few years, mmW has been utilized in several industrial standards, such as IEEE 802.15.3c and
IEEE 802.11ad [27]. Operating at mmW frequencies allows the use of small-size antenna arrays
with large number of elements that can achieve high beamforming gains. In fact, the path loss
and rain attenuation at 28 GHz band can be compensated by using directional antennas. Recent
field measurements have shown that mmW transmission over distances up to 300 meters is feasible
which makes mmW a very natural solution for covering cell sizes in SCN’s [28].

However, mmW signals are highly susceptible to the blockage. For example, metal-coated glass
walls can attenuate the mmW signal for up to 50 dB, while penetration loss for brick walls is even
much higher [29]. This characteristic of mmW frequencies will substantially reduce the inter-cell
interference, however, it can also be detrimental for the desired signals. Another practical challenge
for mmW communications is deafness. Deafness occurs whenever transceivers fail to align their
antenna beams in the desired direction. To perform beam alignment, mmW transceivers must
follow a process, called beam training, which essentially assists transceivers to find coefficients
that maximize the beamforming gain.

Unfortunately, blockage and deafness can frequently occur, due to the movements of user or
objects in the environment. Therefore, guaranteeing reliable transmissions for QoS-sensitive ap-
plications will be challenging for mmW networks [7, 26, 30-34]. To this end, mmW commu-
nication has to co-exist with conventional cellular networks operating at microwave (uW) fre-
quencies [26, 31, 35,36]. For such integrated mmW-uW networks, novel protocol and resource
management approaches are required to efficiently allocate available resources at both frequency
bands to the users, while considering the QoS constraints.

1.1.3 Device-to-device communications and caching

One of the key enabling technologies to increase the spectral efficiency and decrease the transmis-
sion delay is to enable mobile devices to directly communicate with one another [37—43]. In fact,
device-to-device (D2D) over cellular communication is defined as a direct transmission between
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two mobile users without traversing the BSs or core network. Therefore, D2D communication can
be an effective technology for reducing the traffic from BSs and the backhaul. Moreover, D2D
communications have a high relevance to expedite the deployment of proximity-based applica-
tions, such as content distribution and location-aware advertisement. Nonetheless, D2D links may
interfere with the uplink and downlink cellular transmissions. In addition, at sub-6 GHz, D2D
communications require each UE to discover nearby devices, initialize a D2D link, and allocate
the resources for D2D and cellular link transmissions. Therefore, novel networking protocols and
resource management techniques must be developed for D2D-enabled cellular networks [37—40].

Along with D2D communications, a promising solution for reducing peak hour traffic is to store
viral data contents at users’ devices for future usage. This concept, referred to as caching, will
allow D2D-enabled SCNs to avoid redundant transmissions at the access network, if the required
content has been effectively cached in nearby devices [44—47]. Modern user devices benefit from
sufficiently large storage capacities which enables the network to store large amount of data at
each device. In addition, caching at SBSs will allow reducing the backhaul traffic which is one
the major bottlenecks of SCNs. The achievable gains of caching for offloading traffic from access
and backhaul networks depend on how much nearby users are interested in similar data contents.
Therefore, novel context-aware resource allocation approaches must be developed that leverage
similarities in users’ interests to increase traffic offloads via D2D communications.

1.1.4 Context-aware heterogeneous networks

Prior to the introduction of modern smart handhelds, mobile devices had limited capabilities and
typically were unable to carry out complicated tasks or run highly complex wireless applications.
Therefore, the majority of the network optimization has traditionally been done at the MBSs. In
fact, MBSs typically act as a centralized control centers that provide service to mobile devices.
Considering the capabilities of modern smart handhelds, they are able to run different applications
simultaneously and provide useful information such as user’s location, user’s trajectory, and among
other useful information [48-54]. Therefore, conventional resource allocation solutions may not
be optimal anymore, in the sense that they do not leverage the capabilities of smart devices. To
this end, new resource allocation approaches have recently been introduced that aim to exploit
useful information extracted from smart devices, which is known as context information (CI), in
the network optimization.

Context, as a research notion, has been introduced and exploited in many fields of informatics
since 1960s and refers to the idea that computers can sense, react and possibly adapt their func-
tionalities based on the information they acquire from their environment [55]. The term context
awareness was first explicitly introduced in the research area of pervasive computing in [56] and
refers, in general, to the ability of computing systems to acquire and reason about the CI and adapt
the corresponding applications accordingly.

In wireless networks, the term context-aware is used to describe the knowledge extracted from
the environment that can be jointly used with physical layer metrics, such as channel state informa-
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Figure 1.1: Context-aware heterogeneous network.

tion (CSI), to improve resource management and scheduling. In this sense, context-aware resource
management is defined as any scheduling scheme that exploits CI. Fig. 1.1 shows a high-level de-
scription of future context-aware heterogeneous networks (HetNets), enabled by the key concepts
introduced in previous subsections.

Although context-aware networks have been studied in computer science and other disciplines
for years, this literature is quite immature in wireless communications. Here, we fist develop a
classification for different types of CI for wireless-oriented problems. For each context category,
we overview the existing literature on context-aware resource allocation approaches.

In general, CI can be classified into two broad groups as follows:

Human-centric CI:

This CI category includes all the information that is extractable from user behavior in real life that
may directly or indirectly affect the wireless network, e.g. data usage patterns, mobility, or mmW
link blockage by a human body. In practice, human behavior is too complicated and cannot be
studied completely using formal analytical models. However, such complicated behavior can be
abstracted into some level of CI by using standard techniques including, monitoring, learning, and
predicting.

With this in mind, one can see that human-centric CI depends on the temporal and spatial corre-
lations of the people activities in real life and their impact on data traffic in wireless network. Based
on the existing works in the literature [51-54,57-63], we introduce four different dimensions for
the user-centric CI, as defined in Table 1.1.
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Table 1.1: Dimensions of human-centric CI
Dimension Definition
Including the location of the user, user path and trajectory.
Physical | This also includes environmental location information such
as the obstacles, moving objects, and whether. [57-60]
The relationship with, and the density, flow, type, and
behavior of, surrounding people. [51-54,61]
The functional relationship of the user with other people
Task and objects, and the benefits (e.g. resources available,
monitory incentives, etc.) or constraints. [62, 63]
The temporal context is embedded within everything, and
is what gives a current situation meaning, based upon past
Temporal | situations/occurrences, expected future events, and the
higher-level temporal context relating to the time of day,
week, month, or season. [57-61]

Social

Our classification in Table 1.1 is in line with the classification presented in [64] for user-centric
and multidisciplinary context-aware frameworks. However, we mainly focus on the CI that can
be exploited in wireless resource allocation problems. Next, we review the body of work in the
literature that takes user driven CI into account.

In [57], a supervised learning algorithm is presented to predict the user’s mobility. Using long-
term handover information and short-term CSI, authors have formulated the prediction as a classi-
fication problem. In [58], authors presented an anticipatory resource allocation scheme for wireless
video streaming. The key assumption of this work is that the channel state can be predicted for
the upcoming time slots by tracking the pathloss of the user’s trajectory. In this regard, the authors
proposed an optimization problem to adjust the video requested rate per time slot to have enough
buffered video on the one hand while consuming the minimum spectrum on the other hand. Au-
thors in [59] extended the work in [58], but considered imperfect rate prediction. In addition,
in [60], authors presented a location-based adaptive video quality planning, content pre-fetching,
and long-term radio resource management.

The work in [51] adopts an analytical model for the epidemic information spreading among
mobile users of an ad hoc network. In [52], resource allocation in a wireless local area networks
(WLAN) is defined as an optimization problem while taking the notion of social distance into
account. The authors in [53] and [54] extend the work in [52] by introducing new utility functions
which again account for the social distance of users, extracted from the social graph.

In addition, the work in [62] considered the pricing as a key concept to provide seamless mobility
for mobile users in future wireless networks. In fact, authors outlined the major issues in designing
resource allocation and pricing in heterogeneous wireless access networks. Moreover, the authors
in [63] proposed a game theoretic analysis for service competition and pricing in heterogeneous
wireless access networks. As we discuss next, there is another CI category that mainly stems from
the network characteristics, rather than the user behavior.
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Table 1.2: Dimensions of Network-centric CI

Context Description
Network may give higher priority and hence, more
Power resources to the device with a low battery state in order to

finish a task in a shorter time. [65, 66]

QoS requirements by different services impacts the
resource allocation. [65—-69]

Based on the type of traffic, e.g. voice, video, etc., network
Traffic type determines which frequency band (WiFi, LTE, mmW, etc.)
is suitable to serve the user. [67,68, 70]

Small screen sizes may not require high quality video
streaming. [68]

User devices with more available storage capacity are able
Storage capacity to cache more content, thus, providing more opportunities
for device to device communications. [70]

Based on the capability of the user devices to operate in
different frequency bands, network can manage vertical
handoffs and traffic offloads. [67,71]

QoS

LCD size

Multi-band operation and
Radio interfaces

Network-centric CI:

This class of Cl includes any information that is specified by network capabilities, the requirements
of the requested traffic, and any other information that is not directly impacted by the human
user. As we discuss later, it is often more convenient to adopt context-aware resource allocation
approaches based on this type of CI, compared with the human-centric CI. That is because network-
centric CI typically presents a wireless network metric, while it may not be straightforward to
translate human-centric CI, e.g. social interrelationships among users, directly into a quantitative
wireless metric.

In Table 1.2, we list some of the network-centric CI that are used in the literature. The work
in [67] proposes a radio access technology (RAT) selection scheme from which small cell base
stations autonomously offload delay-tolerant traffic into the unlicensed frequency band. In [71],
a load-aware user-centric RAT selection scheme is proposed that allows to offload traffic to WiFi
small cells, while minimizing feedback overhead and better accounting for user preferences.

In addition, the work in [68] adopts a context-aware user-cell association approach that takes the
QoS requirements of different traffics into account. The QoS requirements are determined based
on the context features, including application as well as the hardware in use. In [70], the authors
proposed a user-cell association and backhaul resource management by envisioning the popularity
of the cached content at the SBSs and the estimated incoming file requests.

In [69], the authors proposed a context-aware resource management approach that jointly opti-
mizes resource allocation at uplink and downlink. The approach of [69] processes the applications’
profile and traffic patterns in each of the cells to ensure that user requirements are satisfied while
guaranteeing the best network performance in terms of throughput. Moreover, the work presented
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in [65] considered power constraints of user devices for delay-optimal resource allocation in the
uplink. Furthermore, in [66], the authors surveyed different cross-layer resource allocation ap-
proaches in wireless networks that address delay-energy tradeoffs as well as lookahead scheduling
algorithms. Although the various approaches presented in [66] may not directly exploit UE driven
CI, they provide a useful guidelines to develop context-aware approaches for future wireless net-
works.

The body of work we overviewed in this section presents interesting context-aware concepts in
wireless networks. However, it is mostly focused on resource management for conventional cel-
lular networks and disregards specific challenges in heterogeneous networks (HetNets), discussed
in Section 1.1.1-1.1.3, such as resource allocation for integrated mmW-pW communications and
D2D-enabled SCNs. In this dissertation, our goal is to use the notion of context-awareness to
address some of the challenging problems in future HetNets, as outlined in the next section.

1.2 Contributions

The main contribution of this dissertation is to provide novel analytical frameworks that bring for-
ward new ideas from matching theory, machine learning, and optimization, to address some of the
fundamental challenges of future wireless networks by developing novel, context-aware resource
management algorithms and protocols, as well as providing performance analysis for various sce-
narios in both cellular and local area networks. In particular, in this dissertation, we provide a
comprehensive study for the following problems: 1) Traffic management for heterogeneous mmW-
uW cellular networks to increase users’ quality-of-experience (QoE), while considering the unique
constraints of mmW signal propagation, 2) Tractable analysis of joint network formation and re-
source allocation in multi-hop mmW backhaul networks, 3) Mobility management for integrated
mmW-uW networks, 4) Load balancing and cell association for heterogeneous mmW-uW cellular
networks, 5) Performance analysis of joint mmW-4W WLANS, and 6) Leveraging the synergies
between wireless and social networks to enhance the overall QoS delivered by small cell-based
cellular systems.

In fact, in this dissertation, we answer the following fundamental questions:

1) Subject to the intermittent nature of mmW signals, how can a cellular system maximize the
QoS for applications with stringent delay requirements, while leveraging the large band-
width at mmW frequencies?

To answer this question, in Chapter 3, we introduce the concept of integrating mmW com-
munications into W systems at the medium access control (MAC) layer and we propose
a joint scheduler that dynamically manages the mmW-uW resources, while taking into ac-
count the constraints of each frequency band. The proposed framework is shown to effec-
tively leverage the large bandwidth at the mmW frequencies to maximize the number of
severed user applications, while achieving robustness against blockage and increasing the
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2)

QoS by exploiting W frequencies. To achieve this goal, the proposed scheduler employs
a set of context information, including the LoS probability per user, as well as the delay
requirement per user application. To learn this context information, we propose a novel Q-
learning model with fast convergence that finds the line-of-sight (LoS) probability per user
by exploring three states, including mmW LoS, mmW non-LoS (NLoS), and W, over the
past transmissions. We solve this context-aware scheduling problem by proposing two novel
algorithms that run jointly over the mmW and W frequency bands. The main outcomes of
this research direction can be summarized as follows:

— The proposed context-aware scheduling framework for integrated mmW-p W networks
is shown to significantly improve the QoS per user application.

— The proposed framework for QoS provisioning per user application is shown to maxi-
mize the QOE for the users that run multiple applications simultaneously.

— The results show that, compared with conventional scheduling schemes, such as a
proportional fair scheduler, the proposed approach significantly decreases the outage
probability. In addition, the proposed integrated mmW-uW network completely out-
performs the single-mode networks with only mmW or W resources.

— We show that the beam-training overhead at the mmW frequency band substantially
affects the statistics of the outage.

— The complexity of the proposed approach is shown to be polynomial with respect to
the network size.

How can mmW frequencies be exploited to achieve a low-cost, yet reliable backhaul solution
for dense small cell networks, while considering the limitations of mmW communications?

MmW frequencies offer a large bandwidth which can be exploited to achieve high data rates
which makes them a promising candidate for supporting backhaul connectivity for dense
small cell networks. However, mmW links are limited in range and susceptible to blockage.
To address these challenges, in Chapter 4, we propose a framework that allows small cells
to connect to the core network over multi-hop mmW backhaul links. In addition, to achieve
robustness against blockage, we motivate cooperation among network operators, such that
a BS of one operator can support backhaul connections for another operator’s BS the ex-
perience blockage. Within the proposed framework, we develop two novel self-organizing
algorithms to solve backhaul network formation and resource allocation problems. The key
outcomes of this research are:

— We show that the conventional deferred acceptance algorithm fails to guarantee two-
sided stability for the backhaul resource allocation problem. On the other hand, we
prove that the proposed resource management algorithm yields a two-sided stable al-
location of mmW frequency resources to demanding small cells.

— We prove that the proposed algorithms converge in polynomial time with respect to
the network size, are distributed, guarantee two-sided stability, and thus, are suitable
to realize a self-organizing backhaul network with dense small cell deployments.

— The results show that the proposed cooperative scheme achieves a performance that is
close to the optimal solution found by the exhaustive search. In addition, the proposed
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scheme significantly outperforms the non-cooperative approach in which operators do
not share their resources.

— It is shown that cooperation among operators facilitates flexible mmW backhaul solu-
tions that are more immune against the blockage.

— We demonstrate that the proposed framework can effectively capture the economic as-
pects of cooperation among operators. In particular, our results provide a design guide-
line that subject to the resource price and budget constraints, determines the operation
region for the proposed cooperative backhaul network.

3) How to minimize the number of handovers, power consumption, and handover failure for
mobile users in emerging dense heterogeneous networks?

One of the critical challenges of future wireless networks is to provide seamless HO for mo-
bile users, without degrading the QoS. Considering the various coverage areas of each small
cell as well as their dense deployment, a mobile user may potentially be required to perform
frequent HOs which results in an excessive power consumption to perform inter-frequency
search, HO failures, and low QoS. To address this challenging problem, in Chapter 5, we
propose a novel mobility management framework that allows users to mute their HO and cell
search process, while traversing small cells. This scheme is realized in integrated mmW-pyW
networks where high-speed mmW links can be leveraged, whenever available, to cache the
content at the mobile user device. Meanwhile, the control and paging information are han-
dled over the uW frequency band. We provide a comprehensive performance analysis for
the proposed mobility management scheme, using a geometric framework. Furthermore,
we propose a distributed HO mechanism, based on dynamic matching games, to associate
mobile users to the BSs. The major outcomes of this research are:

— Fundamental results on the caching capabilities, including caching probability, dura-
tion, and the average achievable rate of caching are derived for mobile users. Moreover,
the impact of caching on the number of HOs, energy consumption, and the average
handover failure (HOF) is analyzed.

— We propose a novel mobility management algorithm that finds the best HO policy for
a mobile user, i.e., to choose between: a) executing an HO to a target cell, b) being
connected to the macrocell base station, or c¢) perform a transparent HO by using the
cached content.

— The proposed dynamic matching algorithm is proved to converge to a dynamically
stable association between mobile users and BSs. This key result shows the merit of
proposed approach to realize future self-organizing networks.

— The results show that the proposed mobility management framework yields significant
performance gains, in terms of reducing the number of HO failures, energy consump-
tion, and the HO probability.

— The results also show that with low-complexity and overhead, the proposed distributed
algorithm is capable of offloading traffic from the macrocell base stations, even for the
users with relatively high speeds.

4) How to achieve a balanced load distribution in emerging wireless heterogeneous networks
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5)

with both mmW and pW radio access technologies?

Future cellular networks will offer connectivity over multiple RATs using mmW and yW
frequencies. In Chapter 6, we show that the conventional cell association schemes, in-
cluding max-RSSI and max-SINR associations, will result in drastically unbalanced load
distribution across mmW and W BSs. To alleviate this problem, we propose a novel dis-
tributed approach, based on matching games with minimum quota constraint, which yields
the following key results:

— We show that, for cell association problems with minimum quota constraints, the stan-
dard deferred acceptance algorithm may not admit a feasible solution.

— The proposed cell association algorithm is proved to converge to a feasible Pareto
optimal and stable matching between users and BSs.

— Simulation results show that, compared with conventional max-SINR and max-RSSI
with cell range expansion, the proposed approach achieves significant performance
gains in terms of maximizing the sum rate, while maintaining a balanced load across
mmW and W RATs.

What are the performance gains that can be achieved by leveraging unlicensed 60 GHz
mmW band in WLANs?

Exploiting the large available bandwidth at the unlicensed 60 GHz mmW band, jointly with
the unlicensed uW frequencies, will be a key enabler to support bandwidth-intensive and
delay sensitive emerging applications such as virtual reality in WLANs. To enable such
an integrated mmW-uW WLAN;, in Chapter 7, we propose a novel MAC protocol that en-
ables users to dynamically leverage the bandwidth available at the 60 GHz mmW band
and alleviate the excessive delay caused by the contention-based medium access over the
uW frequencies. To analyze the performance of the proposed MAC protocol, we adopt a
Markov chain model for backoff time and derive the probability of transmission over each
RAT, as well as the system’s saturation throughput. Next, the key findings of this research
are outlined.

— We introduce a novel MAC protocol that relies on dynamic fast session transfer be-
tween mmW and pW RATSs, which is shown to be backward compatible with legacy
IEEE 802.11 WLANS.

— The proposed MAC protocol inherently captures the constraints of each mmW and W
frequency bands, including the intermittent channel at the 60 GHz band, directional
mmW transmissions, and the level of congestion observed over the sub-6 GHz bands.

— Simulation results corroborate the analytical derivations and show that the proposed
integrated mmW-sub 6 GHz MAC protocol yields significant performance gains, in
terms of maximizing the saturation throughput.

— Both analytical and simulation results will show that the proposed MAC scheme ef-
fectively minimizes the delay experienced by the users and is suitable to support low-
latency communications in WLANS.

— The results also provide insights on the tradeoffs between the achievable gains and the
overhead introduced by the fast session transfer procedure.
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6) How to study the users’ common interests and exploit that context information to reduce the
backhaul traffic in heterogeneous cellular networks with D2D capabilities?

Next-generation wireless networks will support proximity services enabled with D2D com-
munications. In Chapter 8, we show that leveraging the D2D capability along with the
underlying correlation in users’ interests will results in substantial offloading gains for wire-
less backhaul networks. The key idea to achieve such offloading gains is to let users with
common interests to form D2D clusters, cache popular content (depending on the users’
interests within the cluster), and allow users to directly serve one another over D2D links.
This framework will decrease the number of users’ requests, submitted to SBSs for receiv-
ing popular content, and consequently reduce the backhaul traffic of small cells. The main
findings of this research are:

— We adopt a graphical learning approach that studies the common attributes from the
users’ profiles in social networks, and translates them into social tie strength among
users.

— Using this context information, we propose a novel resource allocation framework that
enables users with social ties to form social clusters, use the cached content within the
cluster, and avoid redundant requests for the popular content from BSs.

— The context-aware resource management problem is formulated as a one-to-many match-
ing game with externalities, capturing the impact of interdependent social ties on the
social cluster formation.

— We propose a novel distributed resource allocation algorithm that leverages the social
context in addition to the channel state information. We show that the complexity of
the proposed algorithm, in terms of signaling overhead, is polynomial with respect to
the network size.

— We prove that the proposed algorithm effectively handles the externalities observed in
the matching game and yields a two-sided stable allocation of resource blocks to the
users.

— The results show that with manageable complexity, the proposed context-aware ap-
proach can offload a large amount of traffic from the backhaul-constrained small cell
network.

1.3 List of Publications

As a byproduct of the above contributions, this dissertation has led to the following key publica-
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Outline of the Dissertation

The rest of this dissertation is organized as follows.

e Chapter 2 provides an overview on the framework of matching theory.
e Chapter 3 presents the proposed context-aware resource management scheduling scheme for

integrated mmW-p W cellular networks.

Chapter 4 presents the proposed cost-effective and multi-hop backhaul solution for SCN’s
that leverage mmW communications.

In Chapter 5, the proposed mobility management framework for integrated mmW-W SCNs
is presented and its performance is analyzed.

Chapter 6 addresses the load balancing and cell association problems in heterogeneous SCN's
with both mmW and ;W RATs.

In Chapter 7, the proposed MAC protocol is presented for the integrated mmW-pW WLANS.
Moreover, the performance of the proposed framework is comprehensively studied.
Chapter 8 presents the proposed context-aware resource management approach for D2D-
enabled SCNs that exploit user social context information.

Chapter 9 concludes the dissertation.

Note: The notations used in the subsequent chapters will be specific to the chapter in which they
are introduced.



Chapter 2

Matching Theory

Prior to providing an in-depth discussion for each of the aforementioned problems in Section
1.2, we overview matching theory [72] as a powerful mathematical tool that will prove useful
in addressing the resource management problems studied in this dissertation. As we discussed in
Chapter 1, various emerging technologies such as dense SBS deployments, D2D communications,
caching, mmW communications, and others, will shape future wireless networks. Nonetheless,
a successful integration of these technologies in one unified system is contingent upon adopting
novel resource management techniques that can capture the following characteristics:

e Distributed implementation: Existing cellular networks use MBSs as coordination points
that can exchange resource allocation information among one another, manage inter-cell
interference, and allocate network resources (frequency channels, time slots, power) to
the users. However, such a conventional centralized resource management will not effec-
tively work in future wireless networks, due to the following reasons: 1) Dense deployment
of SBSs requires a substantial backhaul infrastructure to provide full coordination among
neighboring cells which may not be viable, 2) Emerging wireless networks are expected to
leverage the unlicensed spectrum (e.g. LTE-U), and thus, maintaining coordination among
cellular BSs and Wi-Fi access points (APs) may not be feasible, 3) Moving airborne BSs,
such as drones, along with terrestrial SBSs will change the conventional macrocell network
architectures and make the centralized network optimization more challenging.

e User-centric: D2D communication is one of the central components for emerging wireless
networks that can increase the spectral efficiency and reduce delay. In addition to these
benefits, D2D communication will be a key enabler for proximity services, such as smart-
home applications, that allows the direct communication among devices. In such ad-hoc
network scenarios, BSs/APs may provide minimum coordination and wireless devices must
perform critical tasks, such as nearby user discovery, channel estimation, as well as resource
allocation. [27].

e Fast convergence: Dense deployments of SBSs in HetNets, uplink/downlink decoupling,
and association of a single user to multiple SBSs are some of the new features of emerging
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wireless networks. These enabling techniques will clearly add to the complexity of cell
association, since each user has the flexibility to be associated to more number of BSs,
compared with the legacy cellular networks.

e Network heterogeneity support: Next-generation wireless networks will provide service by
using multiple RATs at the mmW and sub-6 GHz frequencies. As such, resource manage-
ment algorithms must take into account the heterogeneous characteristics of communication
over different frequency bands. In addition, new capabilities for performing vertical han-
dovers across RATs will further increase the complexity of resource management. [73].

o Context-awareness: As discussed in Chapter 1, advanced resource management algorithms
must enable users to extract CI, and act based on their local information. In fact, collect-
ing CI from all the users and providing network-wide information may results in a large
signaling overhead and latency.

Therefore, resource management algorithms for next-generation wireless systems have to be dis-
tributed, user-centric, fast, robust, context-aware, and consequently self-organizing [74]. In fact,
self-organization allows SBSs or even UEs to use some intelligence to make fast resource allo-
cation decisions [27]. To this end, new optimization schemes and game-theoretic solutions are
introduced in the literature to address the specific challenges of the future HetNets. However, opti-
mization problems are mostly suitable for centralized implementations provided with the network-
wide information, which may result in a significant overhead and complexity. This become even
more important when dealing with combinatorial integer programming problems such as channel
allocation [74].

During the past few years, matching theory is envisioned as a promising approach to solve the re-
source allocation problems in HetNets [74—76]. The rest of this chapter is organized as follows. In
2.1, we first review the fundamentals of matching theory. In Section 2.2, we elaborate the benefits
and challenges of using matching theory to solve resource allocation problems in context-aware
HetNets. Note that the various developments of matching algorithms are provided individually in
Chapters 3, 4, 5, 6, and 8.

2.1 Fundamentals of Matching Theory

Matching theory is a mathematical framework in economics and applied mathematics to study
the formation of mutual beneficial relationships and in particular to solve assignment problems.
In wireless communications literature, matching theory has recently become attractive to solve
resource allocation problems due to exhibiting useful properties, as we discuss in detail.

In wireless networks, we are interested in matching problems that assign network resources (e.g.
time slots, frequency channels, power, etc.) to the demanding entities (e.g. devices, stations).
The goal of the resource allocation matching problem is to optimally allocate the resources to the
users, given the constraints of the wireless network. Following, we define the key components and
terminologies of every matching problem in the context of wireless resource allocation:
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e Two disjoint sets of players: Matching problem u assigns the players in one set (resources
r € R) to the players of the other set (users m € M). We denote p(m) C R as the set of
all resources allocated to user m. Similarly, x(r) C M denotes the set of all users that are
assigned to resource 7.

e Quota: For each player, quota determines the maximum number of players with which it
can be matched. Let ¢, and ¢, be the quota of user m and resource r, respectively. Then,
1(m)] < g and |pu(r)] < g

o Preference relation and strategy: A player uses the preference relation > to rank the
players of the other set. This ranking, which is called the strategy of the player, is based
on some metrics that are important for the player. Each player can quantify its preference
relation by assigning a utility U to each player of the other set. Let >, and U,,(r) denote,
respectively, the preference relation of user m and the utility that user m gives to resource 7.
Then, ry >, 72 if and only if U,,(r1) > U,,(r2).

o Utility function: Determines the utilities each player assigns to the players of the other set.
In wireless networks, U,,,(.) : R — R™, where n = |R|. In essence, U,,(.) is the objective
function of user m, thus, m tries to be matched to the resource r that maximizes U, (.).

e Solution of the matching problem: The solution of the matching problem is a function
p: M — R, such that 1) Ym € M, u(m) C R and |u(m)| < ¢m, 2) Vr € R, u(r) C M
and |u(r)| < ¢, and 3) r € pu(m) if and only if m € u(r). We denote (m,r) € pif m and r
are matched, and (m, r) ¢ u otherwise.

e Two-sided stable matching solution: Consider (m, ) ¢ u, such that 3Im’ € u(r),m =, m’
and 31" € p(m),r =, r’, then m and r can block the matching ;. by leaving their current
assigned player, " and m/, and creating a new matched pair (m, ). Matching p* is two-sided
stable, if there exists no pair of players that blocks p*.

One common method to classify matching problems is based on the quota of the players. Match-
ing problem is one-to-one, if the quota of all players is one. In addition, matching problem is
many-to-one, if the quota of at least one player is greater than one, while for the players of the
other set quota is one. Finally, if there is at least one player per each set with a quota greater than
one, then the problem is called many-to-many matching. For one-to-one and many-to-one match-
ing problems, the deferred acceptance (DA) algorithm proposed in [72], the seminal work by Gale
and Shapely, is always guaranteed to converge to a two-sided stable matching.

In [77], a new wireless-oriented method for classifying matching problems is presented, as
shown in Fig. 2.1. This method classifies matching problems into three classes: 1) Canonical
matching, 2) Matching with externalities, and 3) Matching with dynamics. Simply stated, canoni-
cal matching represents the basic form of matching problems in which the preference of the players
do not vary within the timeframe of the resource allocation (i.e., fixed strategies). Moreover, class
IT of matching problems includes scenarios in which preferences of players are interdependent.
Hence, players may change their preferences (i.e. varying strategies) within the timeframe of the
resource allocation. The third class, i.e. matching with dynamics, represents matching problems
in which the strategy of players in the current resource allocation may depend on the strategies in
the past resource allocations.
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Figure 2.1: Wireless-oriented classification of matching problems [77].

2.2 Matching Theory for Wireless Resource Allocation: Op-
portunities and Challenges

As we discussed earlier in this chapter, self-organizing frameworks must be developed to optimize
the resource management in dense, user-centric, and heterogeneous next-generation wireless net-
works. As such, wireless networks may need a fundamental paradigm shift from the conventional
centralized network optimization into robust, fast, and distributed resource management. In this
dissertation, we advance matching theory and prove it useful to solve various challenging resource
allocation problems for emerging wireless networks. In particular,

e In Chapter 3, we show how matching theory can be applied to solve an NP-hard scheduling
problem with minimum unsatisfied relations. We show that this problem belongs to a class
of matching games with externalities, and propose a novel algorithm to solve it. In addition,
we prove that the proposed matching theoretic framework converges in polynomial time and
guarantees a two-sided stable allocation of frequency resources to user applications.

e In Chapter 4, we solve the complex multi-hop backhaul problem by proposing a framework
based on matching theory. In fact, we pose the original problem as two interdependent
matching games to solve network formation and resource allocation problems. Beyond fast
convergence as well as guaranteeing stability, another key feature of the proposed distributed
solution is to allow multiple network operators to share the backhaul resources and reduce
the backhauling cost of their networks. In fact, due to the conflict-of-interests among net-
work operators to either increase their revenue or decrease the backhauling cost, centralized
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solutions may not be feasible. That is because competing operators may not share a con-
trol center that manages backhaul resources and has access to the operators’ confidential
information, such as pricing mechanisms.

e In Chapter 5, we show that the mobility management problem in HetNets can be formulated
as a dynamic matching game, in which mobile users play a key role on choosing the han-
dover strategy. In addition, we show that the concept of dynamic stability is important in
distributed handover mechanisms to effectively offload mobile users’ traffic from the MBS
to small cells.

e In Chapter 6, we demonstrate how matching theory can be used to solve the load balancing
problem in future wireless networks with both mmW and sub-6 GHz RATs. We show that
the cell association with load balancing can be formulated effectively as a matching game
with minimum quota constraints. By using this framework, we prove that the proposed self-
organizing cell association scheme can achieve significant performance gains, compared
with conventional association approaches with cell range expansion.

e In Chapter 8, we show that exploiting the social context information and the formation of
social clusters will result in interdependent utilities for users in a D2D-enabled small cell
network. In this regard, we propose a resource allocation framework, based on matching
theory, that successfully captures the peer effects induced by the social context informa-
tion. Moreover, we show that the proposed self-organizing approach yields a comparable
performance to the optimal solution.

Aside from these promising aspects of matching theoretic resource management, one may need
to address the following challenges when dealing with the matching theory problems:

e For some practical scenarios in wireless networks, it may be difficult or even infeasible to
find a stable solution. For canonical matching games, classical algorithms such as deferred
acceptance algorithm can be applied to find a stable solution. Nonetheless, as we show in
the rest of this dissertation, this algorithm fails to converge to a stable matching in many
important network scenarios, e.g., for matching games with externalities.

e Matching theory solutions are built upon an iterative signaling mechanism between two sides
of the game, for example, users and BSs. While it is typically assumed that such signaling
is performed over error-free control channels, any error in decoding matching signals may
substantially delay the convergence of algorithm.

e Last but not the least, matching theory algorithms may yield a sub-optimal solution. There-
fore, it is imperative to find the performance gap between a matching theoretic approach and
the optimal solution. For the problems that we study in this dissertation, we show that our
proposed frameworks will achieve a close-to-optimal performance.

With that in mind, next, we present the first research work that addresses the scheduling problem
in integrated mmW and sub-6 GHz wireless cellular networks.



Chapter 3

Context-Aware Scheduling of Joint
Millimeter Wave and Microwave Resources
for Dual-Mode Base Stations

3.1 Background, Related Works, and Summary of Contribu-
tions

Communication at high frequency, mmW bands is seen as promising approach to overcome the
scarcity of the radio spectrum while providing significant capacity gains for tomorrow’s wireless
cellular networks [7,10,27]. However, field measurements [7] have shown that the availability
of mmW links can be highly intermittent, due to various factors such as blockage by different
obstacles. Therefore, meeting the stringent QoS constraints of delay-sensitive applications, such
as HDTV and video conferencing, becomes more challenging at mmW frequencies compared to
sub-6 GHz frequencies [7,26,30-34].

Such strict requirements can be achieved by deploying dual-mode SBSs that can support high
data rates and QoS by leveraging the available bandwidth at both mmW and W frequency bands
[26]. Indeed, in order to provide robust and reliable communications, mmW networks must coexist
with small cell LTE networks that operate at the conventional W band [26, 32-35]. However,
differences in signal propagation characteristics and in the available bandwidth lead to a significant
difference in the achievable rate and the QoS over mmW and ¢W frequency bands, thus, yielding
new challenges for joint mmW-uW user scheduling [35,78]. In addition, QoS provisioning in dual-
mode mmW-u W networks requires overcoming two key challenges: 1) a joint scheduling over both
frequency bands is required, since resource allocation over one band will affect the allocation of
the resources over the other frequency band and 2) the QoS constraints per user application (UA)
will naturally dictate whether the traffic should be served via mmW resources, uW resources, or
both. Therefore, robust and efficient scheduling algorithms for dual-mode SBSs are required that
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exploit context information per UA, including the CSI, maximum tolerable delay, and the required
load to maximize users’ QoE.

3.1.1 Related works

The work in [26] provides an overview on possible mmW-yW dual-mode architectures that can
be used to transmit control and data signals, respectively, at 4uW and mmW frequency bands. To
cope with the intermittent mmW link quality, the authors in [79] formulate the handover decision
problem as a Markov decision process (MDP) in mmW networks. In addition, the work in [80]
studies the problem of RAT selection and traffic aggregation where each user can simultaneously
be connected to multiple BSs. In [36], the authors develop an RAT selection scheme for mmW-pyW
networks via a multi-armed bandit problem that aims to minimize the cost of handoffs for the UEs.
Furthermore, the authors in [81] propose a cross-layer resource allocation scheme for full-duplex
communications at the 60 GHz mmW frequency band.

Although interesting, the body of work in [26], [36,79,80], and [81] does not address the schedul-
ing problem in mmW-uW networks. In fact, [36,79,80] focus only on the cell association problem
without taking into account, explicitly, the joint allocation of mmW and ;W resources. Moreover,
existing works such as in [79] and [81] are solely focused on the mmW network, while completely
neglecting the impact of the communications over the W frequencies.

In [31], the authors propose an energy-efficient resource allocation scheme for cellular networks,
leveraging both W and unlicensed 60 GHz mmW bands. In [35], the resource allocation prob-
lem for ultra-dense mmW-pW cellular networks is studied under a model in which the cell as-
sociation is decoupled in the uplink for mmW users. However, this work does not consider any
QoS constraint in mmW-uW networks. The problem of QoS provisioning for mmW networks
is studied in [32-34], and [75]. In [32], the authors propose a scheduling scheme that integrates
device-to-device mmW links with 4G system to bypass the blocked mmW links. The work in [33]
presents a mmW system at 60 GHz for supporting uncompressed high-definition (HD) videos for
WLANS. In [34], the authors evaluated key metrics to characterize multimedia QoS, and designed
a QoS-aware multimedia scheduling scheme to achieve the trade-off between performance and
complexity.

Nonetheless, [33] and [34] do not consider multi-user scheduling and multiple access in dual-
mode networks. In addition, conventional scheduling mechanisms, such as in [31-33], and [34],
identify each UE by a single traffic stream with a certain QoS requirement. In practice, however,
recent trends have shown that users run multiple applications simultaneously, each with a differ-
ent QoS requirement. Although the applications at a single device experience the same wireless
channel, they may have different QoS requirements. For example, the QoS requirements for an
interactive video call are more stringent than updating a background application or downloading
a file. With this in mind, each user’s QoE must be defined as a function of the number of QoS-
satisfied UAs. Accounting for precise, application-specific QoS metrics is particularly important
for scheduling mmW resources whose channel is highly variable, due to large Doppler spreads and
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short channel coherence time. In fact, conventional scheduling approaches fail to guarantee the
QoS for multiple applications at a single UE.

3.1.2 Summary of contributions

The main contribution of this chapter is to propose a novel, context-aware scheduling framework
for enabling a dual-band base station to jointly and efficiently allocate both mmW and pW re-
sources to user applications. This proposed context-aware scheduler allows each user to seamlessly
run multiple applications simultaneously, each having its own distinct QoS constraint. To this end,
the proposed scheduling problem is formulated as an optimization problem with minimum unsat-
isfied relations (min-UR) and the goal is to maximize the number of satisfied UAs. To solve this
NP-hard problem, a novel scheduling framework is proposed that considers a set of context infor-
mation composed of the UAs’ tolerable delay, required load, and the LoS probability, to jointly
select and schedule UAs over the uW and the mmW frequency bands. The resource allocation
problem at W band is modeled as a matching game that aims to assign resource blocks (RBs) to
the candidate UAs. To solve this game, a novel algorithm is proposed that iteratively solves the
UA selection and the resource allocation problems. We show that the proposed algorithm is guar-
anteed to yield a two-sided stable matching between UAs and the yW RBs. Over the mmW band,
the scheduler assigns priority, based on the context information, to the remaining UAs that were
not scheduled over the W band. Consequently, over the mmW band, we show that the schedul-
ing problem can be cast as a 0-1 Knapsack problem. To solve this problem, we then propose a
novel algorithm that allocates the mmW resources to the selected UAs. Moreover, we show that
the proposed, two-stage scheduling framework can solve the context-aware dual-band scheduling
problem in polynomial time with respect to the number of UAs. Simulation results show that the
proposed approach significantly improves the QoS per application, compared to the proportional
fair and round robin schedulers.

The rest of this chapter is organized as follows. Section 3.2 presents the problem formula-
tion. Section 3.3 presents the proposed context-aware scheduling solution over the ©W band. The
proposed context-aware scheduling solution over the mmW band is proposed in Section 3.4. Sim-
ulation results are analyzed in Section 3.5. Section 3.6 concludes the chapter.

3.2 System Model

Consider the downlink of a dual-mode SBS that operates over both W and mmW frequency
bands. The coverage area of the SBS is a planar area with radius d centered at (0,0) € R
Moreover, a set M of M UEs is deployed randomly and uniformly within the SBS coverage. UEs
are equipped with both mmW and W RF interfaces which allow them to manage their traffic
at both frequency bands [82]. The antenna arrays of mmW transceivers can achieve an overall
beamforming gain of 1)(y;,y») for a LoS UE located at (y1,y,) € R? [10]. Meanwhile, the yW
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Table 3.1: Variables and notations

Notation Description Notation Description
M Number of UEs M Set of UEs
Km Number of UAs per UE m A Total number of UAs
T Time slot duration 7/ Beam training overhead
L Path loss m Scheduling decision at time slot ¢
K Number of W RBs K1 Set of uW RBs
Ko Number of mmW RBs Ko Set of mmW RBs
Gia Set of UAs to be scheduled over 4W band Gi 2 Set of UAs to be scheduled over mmW band
w1 Bandwidth of ©W RBs wWa Bandwidth of mmW RBs
Gkt uW channel over RB k at time slot ¢ ¢e{0,1} ¢ = 1if link is LoS, otherwise, { = 0.
it mmW channel over RB & at time slot ¢ Pk,1 Transmit power over uW RB k
Pa LoS probability of the link for UA a Dk.,2 Transmit power over mmW RB k&
Py Total transmit power over W band P, Total transmit power over mmW band
T Q-learning reward vector J Number of QoS classes
A Set of all UAs across all UEs Aj; Set of UAs with j-th QoS class
ba, Total required bits for UA a bree(t) Received bits by UA a during time slot ¢
At Number of satisfied UAs over uW band At 2 Number of satisfied UAs over mmW band

transceivers have conventional single element, omni-directional antennas to maintain low overhead
and complexity at the W frequency band [83]. In our model, each UE m € M runs x,,, UAs. We
let A be the set of all UAs with A = )" .k, as the total number of UAs across all UEs.

3.2.1 Channel model and multiple access at mmW and ;W frequency bands

The downlink transmission time is divided into time slots of duration 7. For the ©W band, we
consider an orthogonal frequency division multiple access (OFDMA) scheme in which multiple
UAs can be scheduled over K resource blocks (RBs) in the set K; at each time slot with duration
7. Therefore, the achievable W rate for an arbitrary UA a at RB % and time slot ¢ is:

L (y1.y2)
10

Pre|gre| 210~
w1N0

R, (k,t) = wilogy [ 1+ (3.1)

Here, w; is the bandwidth of each RB at 4W band, and gy, is the Rayleigh fading channel coeffi-
cient over RB £ at time slot ¢. The total transmit power at W band, P, is assumed to be distributed
uniformly among all RBs such that p;; = P;/K;. This uniform power allocation assumption is
due to the fact that at a high SNR regime, as is expected in small cells with relatively short-range
links, optimal power allocation policies such as the popular water-filling algorithm will ultimately
converge to a uniform power allocation [84]. The path loss L;(y,y2) follows the log-distance
model with parameters oy, 31, and &7 that represent, respectively, the path loss exponent, the path
loss at 1 meter distance, and the variance of the shadowing for the ;W band.

Over the mmW band, directional transmissions are inevitable to overcome the significantly high
path loss at the mmW frequencies. Therefore, the multiple access scheme at the mmW band should
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support directional transmissions, while maintaining low complex designs for transceivers. Thus,
the SBS uses a time division multiple access (TDMA) scheme to schedule UAs [7], which is in
line with the existing standards such as WirelessHD and IEEE 802.15.3c [85]. We let G, 2 be
the set of UAs that must be scheduled over the mmW band at slot £. During each time slot, for
UAs that are assigned to the mmW band, the SBS transmits to UA a € G; 5 an OFDM symbol
of duration 7, , composed of Ky RBs. In practice, the mmW transceivers must align their beams
during a beam training phase, in order to achieve the maximum beamforming gain [86]. This
training phase will introduce a non-negligible overhead on the TDMA system, which can become
particularly significant as the number of mmW users increases. Hence, a beam training overhead
time 7/ < 7 is considered per transmission to a UA over the mmW band. In practice, duration of 7/
can reach up to 1.54 milliseconds, depending on the beam resolution [86]. Therefore, the effective
time for data transmission to UAs in G, » will be Tat = T — |Gia|7’, where |G, 2| denotes
the cardinality of the set G o.

a€Gi 2

The large-scale channel effects over the mmW links follow the popular model of [10]:

La(y1,y2) = B2 + aal0logyo(1 /47 + 3) + X, (3.2)

where Ls(y1,y2) is the path loss at mmW frequencies for all UAs associated with a UE located at
(y1,y2) € R2 In fact, (3.2) is known to be the best linear fit to the propagation measurement in
mmW frequency band [10], where s is the slope of the fit and (5, the intercept parameter, is the
pathloss (dB) for 1 meter of distance. In addition, x models the deviation in fitting (dB) which is a
Gaussian random variable with zero mean and variance §§. Overall, the total achievable mmW rate
for UA a at time slot ¢ is given by

K by o)l P10~ 24622
2 Pk 2% (Y1,Y2) |kt —
Zk:le 1Og2 (1+ w2 No ) ) Cat = 17

07 Cat = 07

Ru(t) = (3.3)

where (,; = 1 indicates that a LoS link is feasible for UA a, otherwise, (,; = 0 and the link is
blocked by an obstacle. In fact, (,; is a Bernoulli random variable with probability of success p,,
and is identical for all UAs that are run by the same UE. Moreover, w, is the bandwidth of each
RB, hy; is the Rician fading channel coefficient at RB £ of slot ¢ [87], and NV, is the noise power
spectral density. Furthermore, py o denotes the SBS transmit power at RB & of mmW frequency
band. The total transmit power at mmW band, P, is assumed to be distributed uniformly among
all RBS, such that Pk2 = PQ/KQ.

Let G, ; be the set of UAs that must be scheduled over the ;W band at time slot ¢. During each
time slot, a UA can be scheduled only at one frequency band, i.e., G;1 N G2 = 0.

The proposed dual-band multiple access scheme is shown in Fig. 3.1, where each color identifies
a single, distinct UA.
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Figure 3.1: Example of resource allocation of the dual-band configuration. Colors correspond to different
UAs that may run at different UEs.

3.2.2 Traffic model with QoS constraints

We assume a non-full buffer traffic model in which an arbitrary UA a has a total of b, bits of data
to receive. In addition, each UA has an application-specific tolerable delay which specifies its QoS
class, as formally defined next.

Definition 1. The QoS class, A;, is defined as the set of all UAs stemming from all UEs that can
tolerate a maximum packet transmission delay of j time slots.

Each UA in our system can belong to one out of a total of J QoS classes, A4;,j =1,---,J with
U;.Izl A;j = A and A; N A = 0,5 # 5. Due to system resource constraints, not all UAs can be
served instantaneously and, thus, a transmission delay will be experienced by the UAs. In essence,
to transmit a data stream of size b, bits to UA a € A;, an average data rate of b,/j7, during j
consecutive time slots is needed, otherwise, the UA experiences an outage due to the excessive
delay.

The scheduling decision 7; at a given slot ¢ is a function that outputs two vectors x; and 7, that
determine, respectively, the resource allocation over pW and mmW bands. In fact, x; includes
the variables . € {0,1} with a € A,k € K; where z,,; = 1 indicates that yW RB £k is
allocated to UA a at slot ¢, otherwise, 2, = 0. In addition, each element 7,; € [0,7],a € A, of
7, determines the allocated time to UA a over mmW band. The required bits for UA « at slot ¢,
b'*4(t), depend on the number of bits received during previous slots, 37, b*¢(#). In other words,
DeI(t) = by — S0 bre(t'), with 59(1) = b, and b'*¢(0) = 0. For a given policy 7, the required



Omid Semiari Chapter 3 26

load at time slot ¢ + 1, b™4(¢ + 1), can be written recursively as

K1

T Z Ra(ka t)xakt + Ra(t)TatCat . (34)

k=1

A+ 1) = BE3(E) — () = () —

From (3.4), we observe that policy 7, depends on the scheduling decisions during previous time
slots {7y, 72, ..., my_1 }. Thus, we define 7 = {my, 7o, ..., 7, ..., m;} € IT as along-term scheduling
policy, where 11 is the set of all possible scheduling policies.

Next, we use (3.4) to formally define the QoS criterion for any UA a € A; as

1if S bee(t) > by,

i (3.5
0 otherwise,

Llae Aj;m) = {

where 1(a € A;;m) = 1 indicates that under policy 7, enough resources are allocated to UA
a € A; to receive b, bits within j slots, while 1(a € A;; 7) = 0 indicates that UA «a is going to
experience an outage. We define the outage set O™ = {a|l(a € A;;7) =0,5 =1,---,J} as the
set of UAs in outage.

Prior to formulating the problem, we must note the following inherent characteristics of dual-
mode scheduling: 1) If mmW link with a high LoS probability is not feasible for a UE, scheduling
over the mmW band can cause outage to the associated UAs, specifically for delay-intolerant UAs,
2) larger range of supported rates is available for UAs compared to the conventional single-band
systems. Hence, for some UAs, the required rate exceeds the achievable rate at ©W band. There-
fore, effective dual-mode scheduling should not only rely solely on CSI, but it must also leverage
UA-specific metrics, herein referred to as context information as formally defined next.

Definition 2. At any slot ¢, the tuple C = (A;>,, b™(t), p) defined as context information, is
composed of the delay constraints of UAs, A;>; = Uj:t Aj, the required load per UA, b™(t) =
{0¥4(t)|a € A;>+}, and the LoS probability of each UA, p = {p,|a € A;>}.

Note that exploiting the context information at any time slot ¢ properly links the scheduling
policy 7 to the history, since from (3.5), C at slot ¢ depends on 7;, ¢’ = 1,--- |t — 1.

3.2.3 Problem formulation

Our goal is to find a scheduling policy 7* € II that satisfies (3.5) for as many UAs as possible
over .J time slots. The general long-term scheduling problem for slots ¢ = 1,--- | J can be solved
separately at each slot ¢ to find 7;(C,CSI) = (x;, 7;), while the time-dependency of scheduling
decisions is captured by exploiting the context information. Therefore, the scheduling problem at
an arbitrary slot ¢ can be formulated as follows:
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Figure 3.2: The structure of the context-aware scheduler.

argmax A;1 + E [\ o] , (3.6a)
) Kl
st 7Y Ra(k, t)wa > b3(1), Ya € A, NGy, (3.6b)
k=1
Ra(t)TatCat Z b;eq(t — 1), Ya € At N gt72, (36C)
Ky
x, €X = {xakt € {0, 1}) Z%kt <1, Z%kt < K;,Va € Ath} , (3.6d)
acA k=1
r€Y={ruelnr]| 3 mutlGolr <7 Vac oy, (3.60)
a€Gys 2
K,
T, T, € Z = {thX,TtEy’ZxaktTatzo}, (3.6f)
k=1

where \;; and \; 2 denote, respectively, the number of satisfied UAs scheduled at W and mmW
bands at slot ¢. Given a decision policy m;, A;2 is a random variable that depends on (,; at the
mmW band. In fact, the expectation in 3.6a is taken over (y, for all @ € G, 5. However, A;; is
deterministic, if the slot duration 7 is smaller than the W channel coherence time.

The problem (3.6a)-(3.6f) falls into a class of optimization problems, referred to as Min-UR,
which are known to be NP-hard [88]. Although linear systems with equality or inequality con-
straints can be solved in polynomial time, using an adequate linear programming method, least
mean squared methods are not appropriate for infeasible systems when the objective is to maxi-
mize satisfied relations [88].

With this in mind, we propose a two-stage solution that solves (3.6a)-(3.6e) in polynomial time,
as illustrated in Fig. 3.2. The scheduling at ;#W band is considered first in order to reliably schedule
as many UAs as possible with small required loads over the W band. The motivation for serving
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UAs first at 4W band is due to the fact that transmissions at W frequencies are robust against
blockage. Unlike W frequencies, mmW communication is highly susceptible to blockage and,
thus, scheduling UAs only at the mmW band can potentially cause outage for delay-intolerant UAs.
To this end, a hierarchy scheme is proposed based on the UAs’ QoS class, CSI, and the required
loads. Moreover, the UAs selection and scheduling are jointly done at SBS using an iterative
algorithm. Then, for the remaining UAs that were not scheduled at the W band, we propose a
joint UA selection criterion and scheduling algorithm that introduces a hierarchy to the UAs, based
on the context information, and maximizes the number of satisfied UAs.

3.3 Context-Aware UA Selection and Resource Allocation at
uW Band

Before scheduling at mmW band, the goal of the scheduler is to first find an allocation x; at each
slot ¢t over ;#W band that satisfies

argmax A1 (), (3.7a)
s.t.  (3.6b), (3.6d). (3.7b)

The downlink scheduling problem in (3.7a)-(3.7b) is an inconsistent combinatorial problem of
matching users to resources which does not admit a closed-form solution and has an exponential
complexity [89]. Hence, the solution of (3.7a)-(3.7b) depends on which UAs are chosen to be
scheduled at W band, i.e., the set G, ;. To this end, we introduce a hierarchy for UA selection by
grouping the different UAs into the following sets:

G = {a € Aylj = ,0%9(t) > 0}, (3.8)
G = {a € Ajlj > t,b9(t) > 0}. (3.9)

In fact, the UAs in gt(}l) have higher priority than gt(ﬁ), since they must be served during the
current time slot, otherwise, they will experience an outage. In addition, for UAs of the same set,
the UA that satisfies the following has the highest priority:

* — argmi b (1)

a® = argmin ,
o Dper, Blalk,t)

where (3.10) selects UA a* that minimizes the ratio of the required load to the achievable rate. To

ensure that the constraints set for the selected UAs a € G, ; is feasible, i.e. \¢1(x) = |G 1|, the UA

selection has to be done jointly while solving (3.7a)-(3.7b). Following, we propose a framework
that solves (3.7a)-(3.7b) for a given G, ;.

(3.10)
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3.3.1 Scheduling as a matching game

For a selected set of UAs at uW band, G, ;, we propose a novel resource allocation scheme at /W
band based on matching theory concept, introduced in Chapter 2 [76,90-92]. As explained in
Chapter 2, a matching game is defined as a two-sided assignment problem between two disjoint
sets of players in which the players of each set are interested to be matched to the players of the
other set, according to preference relations. At each time slot ¢ of our scheduling problem, K; and
G:1 are the two sets of players. A preference relation > is defined as a complete, reflexive, and
transitive binary relation between the elements of a given set. Here, we let -, be the preference
relation of UA a and denote k >, K/, if player a prefers RB k over RB £’. Similarly, we use >, to
denote the preference relation of RB £ € ;.

In the proposed scheduling problem, the preference relations of UAs depend on both the rate and
the QoS constraint which will be captured via well-designed, individual utility functions for UAs
and SBS resources, as defined later in this section.

3.3.2 Scheduling at 4W band as a matching game

Each scheduling decision 7, ; determines the allocation of RBs to UAs during time slot ¢ over the
#W band. Thus, the scheduling problem at ©W frequency band can be defined as a one-fo-many
matching game:

Definition 3. Given two disjoint finite sets of players G,; and K;, the scheduling decision at
time slot ¢, m; 1, can be defined as a matching relation, m,1 : G,1 — K, that satisfies 1) Va €
Gia,mea(a) C Ky, 2)VEk € Ky, mea(k) € Gra, and 3) 11 (k) = a, if and only if k& € 11 (a).

In fact, m1(k) = @ implies that 2., = 1, otherwise z,,; = 0. Therefore, 7 is indeed the
scheduling decision that determines the allocation at ©W band. One can easily see from the above
definition that the proposed matching game inherently satisfies the constraint (3.6d). Next, we
need to define suitable utility functions to determine the preference profiles of UAs and RBs.
Given matching 7, ;, we define the utility of UA a for k € K; at time slot ¢ as:

0 if > R.(K,t)T > (1),
U, (k,t;me) = k'em(a) (3.11)
R, (k,t) otherwise.
The utility of uW RBs k € K; for UA a € G, ; is simply the rate
Or(a,t) = Ry(k,t). (3.12)
Using these utilities, the preference relations of UAs and RBs at a given time slot ¢ will be

ko ke Wk tymey) > (Kt men) (3.13)
a >y a's Pyla, t) > Py(d 1), (3.14)
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Algorithm 1 Context-Aware UA Selection and Resource Allocation Algorithm at W Band

Inputs: G\, G2, b™(t), Ra(k,1).
Outputs: z; G, ;.
Initialize: Gy 1 = 0,

1: G'1 =GN Ko =K1, Ya € Gy

Add UA a* € G'; 1 with smallest bg ' (t)/ Y- cxc, Ra(k,t) to G; 1 and remove it from G, ;.
Update the preference ordering of UAs a € G; 1 and RBs k € K1, using (3.11) and (3.12).
Using >, a UA a € G; ; is tentatively assigned to its most preferred RB in /C,.

From the tentative list of UA applicants plus 7. 1(k) for RB k, only the most preferred UA, based on >, is
assigned to k. Next, k is removed from the applicants’ K, sets.

Each UA a updates by () and >, based on (3.13).

repeat Steps 3 to 6

until 1,(x) =1, 0r K, = 0,Va € Gy 1.

9: if Ja € G; 1, 1,(x) # 1 then

10: Remove a* from G, ; and go to Step 3.

11: end if

12: if 3k, Zaegt(}l) Ugt(:zl) Tar: = 0 then let g/t,l — ggi) and go to Step 2.

13: end if

® N

for Va,a' € Gy, and Vk, k' € K. Given this framework, we propose a joint UA selection and
matching-based scheduling algorithm that maximizes ), ;.

3.3.3 Proposed context-aware scheduling algorithm at 4 W band

To solve the proposed game and find a suitable outcome, we use the concept of two-sided stable
matching between UAs and RBs, defined as follows [90]:

Definition 4. A pair (a, k) ¢ m; is said to be a blocking pair of the matching 1, if and only if
a = me1(k) and k =, 71 (a). Matching 7 1 is stable, if there is no blocking pair.

A stable scheduling decision, 7 ;, ensures fairness for the UAs. That is, if a UA a envies the
allocation of another UA «’, then o’ must be preferred by the RB 7, 1 (') to a, i.e., the envy of UA
is not justified. For conventional matching problems, the popular DA algorithm is normally used to
find a stable matching [74,76,90]. However, DA cannot be applied directly to our problem because
it assumes that the quota for each UA is fixed. The quota is defined as the maximum number of
RBs that a UA can be matched to. In our problem, however, quotas cannot be predetermined, since
the number of RBs needed to satisfy the QoS constraint of a UA in (3.7b) depends on the channel
quality at each RB, as well as the context information. In fact, the adopted utility functions in
(3.11) depend on the current state of the matching. Due to the dependency of UAs’ preferences
to the state of the matching, i.e. x,x; variables, the proposed game can be classified as a matching
game with externalities [74]. For matching games with externalities, DA may not converge to
a two-sided stable matching. Therefore, a new matching algorithm must be found to solve the
problem.

To this end, we propose a novel context-aware scheduling algorithm shown in Algorithm 1.
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Algorithm 1 first allocates the RBs to the UAs in Qt(’ll). At every iteration, each UA a* given by
(3.10) is added to the set G, ; of the matching game. In Steps 4 to 10, the algorithm assigns RBs
k € K1 to UAs a € G, as follows. Each UA a € G, ; is tentatively assigned to its most preferred
RB k € IC,. Next, from the tentative list of candidate UAs as well as current assignment 7; 1 (k),
the scheduler allocates RB £ only to the most preferred UA, based on >;. The RB k£ is removed
from the set K, corresponding to each candidate UA a € G,;. Based on the allocated RBs, the
UAs update b5°9(¢) and >,. This process is repeated until the rate constraints for UAs are satisfied,
1,(x) = 1, or K, = () for UAs @ € G;;1. Then, if some of the RBs are left unallocated, the

algorithm follows Steps 2 to 14 to add UAs from gﬁ) to Gy 1.

Theorem 1. The proposed Algorithm 1 is guaranteed to yield a two-sided stable matching between
UAs and (W RBs.

Proof. See Appendix A.1. [

Given G;; by Algorithm 1 at ¢W band, the scheduling problem at slot ¢ is now reduced to
choosing a subset of unscheduled UAs and allocate mmW resources to them such that the number
of satisfied UAs is maximized.

3.4 Context-Aware UA Selection and Resource Allocation at
mmW Band

Welet G'io={a € Ajsila & Gi1,b9(t) > 0} be the set of UAs that have not been scheduled over
the W band. Here, the scheduling problem over the mmW band at slot ¢ can be formulated as a
stochastic min-UR problem as follows:

argmax [E [ A\ o(74)], (3.15a)

Tt

st (3.6¢), (3.6e), (3.6f). (3.15b)

Here, we note that (,,; in (3.6¢) is a Bernoulli random variable with success probability p,. Hence,
for any allocation 7, the number of satisfied constraints \; 5 is a random variable. Although the
exact distribution of )\, 2 may not be found for a general infeasible problem as (3.15a)-(3.15b),
we can approximate the distribution of outage ratio at slot ¢, Poyy = 1 — [(Ae1 + Ar2)/A =], as
follows:

Proposition 1. Let 7; be a feasible solution for the subset of constraints in (3.15b) associated with

UAsa € G o € G5 Given Ny and 0 < Py, < 1 — Xf’li, where P, is an outage threshold, the
J

CDF of the outage ratio at slot ¢, Fp,,, ,(Ps,) can be approximated by,

r (L(l - -Pth)At - /\t,l + ]—J ; Aave)
(1= Pu) Ay — A1 ]! ’

Fpyp.(Pa) =1 — (3.16)
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where |.] is the floor function, I'(.,.) is the incomplete gamma function, and

>\ave =E [>\t,2(7-t)] = Z Pa- (317)

a€Gt,2

Proof. See Appendix A.2. [

From (3.17) and (3.29), we can see that the objective function increases as UAs with higher p,
are satisfied, however, the approximation of the distribution becomes less accurate.

We note that if LoS probabilities p, are known by the SBS, the proposed scheduling problem
over the mmW band becomes equivalent to a 0-1 stochastic Knapsack optimization problem [93].
However, in practice, the explicit values of p, may not be available at the SBS. In Section 3.4.2,
we will introduce a learning approach using which the SBS can determine if p, > p:,, where py,
is a constant value. By learning which UAs satisfy p, > pu,, the SBS assigns priority to the UAs
that are more likely to be at a LoS link from the SBS. This information along with the QoS classes
of UAs will allow the scheduler to group UAs into the following non-overlapping subsets:

) ={a€ A NG alpa > pun), (3.18)
% ={a€AimNGalpa < pin}, (3.19)
Y ={a € AN Gialpa > o}, (3.20)
t(é) ={a e Ajis: NG 12|pa < pin}- (3.21)

In fact, the SBS will adopt a greedy approach that assigns priority to sets Qt(lz) with 2 = 1 as

highest and 7 = 4 as lowest priority. That is due to the fact that UAs in gt(}; cannot tolerate further
delays. Moreover, they belong to UEs with high possibility of LoS access to SBS. In addition,
UAs in Qt(? are in second priority, since they cannot tolerate more delay, while having a low p,.
Moreover, UAs gt(f”; are assigned to a third priority, since they can tolerate more delays and have
high probability to be at LoS mmW link with SBS. The least priority is assigned to UAs in G5 as
they can tolerate further delays, while having low p,.

Furthermore, for the UAs of the same set, the highest priority is given to a UA «* that satisfies:

breq t
a* = arginin }%a—((t; (3.22)

In other words, the SBS selects the UA that requires the least time resource to be satisfied. Similar
to W band scheduling, the SBS must ensure that the constraints set for selected UAs a € G, 5 is
feasible. Therefore, the UA selection has to be done jointly while solving (3.15a)-(3.15b). Next,
we propose a joint UA selection and scheduling algorithm at mmW band.
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Algorithm 2 Context-Aware UA Selection and Resource Allocation Algorithm at mmW Band
Inputs: g,f‘;,z =1,..,4, b™(t), Ry(t).
Output: 7;G; o.

1: Initialize: Gy 2 = 0.

2: fori=1;i < 4;i+ 4+ do
forj=1: |Qfl2)\ do
4 Find UA a* € G{) from (3.22), set 7o- ; = b%(£)/ Ro- () and add a* to Gy o
5 if (3.6¢) is not satisfied then
6: Remove a* from G; ». Break.
7
8
9:

(O8]

end if
end for
end for

3.4.1 Proposed context-aware scheduling algorithm over the mmW band

Over the mmW band, the objective is to serve as many UAs as possible in order to offload more
traffic from the W band, subject to UAs delay constraints. With this in mind, we propose Algo-
rithm 2 to solve (3.15a)-(3.15b). The algorithm follows the priority criterion introduced in (3.19)-

(3.21). Starting with the set Qt(;), the scheduling process is a 0-1 Knapsack problem composed of

|Qt(’12)| items all with the same benefit p;;, and weights equal to the required time 7,; = l;;jc:((g . This
problem can be simply solved by sorting the required time in increasing order and adding UAs
one by one to the set G; ». The algorithm follows the process for the remaining sets and converges,
once the entire mmW time slot duration is allocated and no additional time is available for more
UAs. From Algorithms 1 and 2, we observe that resource allocation at any time slot affects the
scheduling at both mmW and W bands for the subsequent time slots. Therefore, the proposed
UA selection and scheduling schemes at one frequency band are not independent of those at the

other frequency band, thus requiring joint scheduling for the dual-mode system.

The above solution requires the SBS to determine for which UAs the condition p, > py is
satisfied. Next, we introduce a learning scheme that enables the UEs to obtain this information by
monitoring successful LoS transmissions from the SBS over time and send it to the SBS. Clearly,
pao 18 the same for the UAs that run at an arbitrary UE, since they experience the same wireless
channel.

3.4.2 Q-learning model to evaluate the LoS probability

In a real-world cellular network, the UEs will be surrounded by many objects and, thus, the SBS
may never know in advance whether an LoS mmW link will be available or not. Therefore,
scheduling UAs of UEs that are experiencing a high blockage probability not only wastes network
resources, it may drastically degrade QoS for delay intolerant UAs.

In practice, p, depends on many parameters such as the distance between the UE and the SBS,
or blockage by human or other surrounding objects. Although finding a closed-form relation of p,
with these parameters may not be feasible in general, the UEs can learn whether they have a high
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LoS probability based on transmissions from the SBS over time. The UEs will then update and
send this information to the SBS at each time slot. Clearly, a simple averaging over time would
not work, since the environment is dynamic and p, may change over time. To this end, we propose
a learning framework, based on Q-learning (QL) [94], in order to determine UAs with p, > pup
without knowing the actual p, values. QL is a reinforcement learning algorithm that determines
optimal policy without detailed modeling of the system environment [94,95]. The proposed QL
model is formally defined by the following key elements:

o Agents: UEs m € M.

e States: Depending on whether a UA of a given UE is being scheduled over yW or mmW
bands, there are three possible states for the UA: 1) UA is served by the SBS over a LoS
mmW link (.57), 2) UA is scheduled over mmW band, but no LoS link is possible (.5;), and
3) UA is scheduled over £W band (S3).

e Action: At any state, a UE can make a decision d chosen from a set D = {d;, d2} where d;
and ds, respectively, stand for whether to schedule this user’s UAs at the current frequency
band or switch to the other frequency band.

e State transition probability: T(S;,d, S;) denotes the probability of transition from state S;
to S; if decision d € D is chosen by the UE. Hence, T'(S;,d2, S3) = 1 for ¢ = 1,2, and
T(SS, dg, Sl) =1- T(Sg, dg, SQ) = Pa- In addition, T(Sg, dl, Sg) = 1and T(S“ dl, Sl) =
1 —=T(S;,dy,S2) = pg fori =1,2.

e Reward: The UE receives rewards r = [ry, —r9, 3], respectively, for each of its UAs being
at states S;, So, and S3, where r, > r; > r3 > 0. The rewards are assumed the same for
all UAs a € A. The reward values affect both the convergence and the policy. For instance,
for large negative rewards, i.e., 7o > r3, the optimal policy for the UA is to choose uW,
even for large p, values. The long-term reward for choosing mmW band by UA a € A is
r1pa — (1 — pa)re. Therefore, we can set r such that only for p, > py,, mmW band be
preferred by UA a. That is, 1 p, — (1 — ps)r2 > 3 which implies

, Te>11 >13 > 0. (3.23)
rLT T

At any time slot, each UA that is selected for scheduling will explore one of the three states. Con-
sequently, this UA’s corresponding UE will achieve a reward associated with the current residing
state. We note that the UEs do not have any prior knowledge about the transition probabilities in
advance. However, QL provides a model-free approach that instead of estimating p,, it allows UE
to find the best decision while residing at each state. This is done by the notion of Q-values (.S, d)
which represents the value of decision d while being at state S. Starting from an initial Q-values,
UA can find true values via an iterative process as follows:

Q(S,d) + (1 —a)Q(S,d) +a |r(S") + 7 max QS d) |, (3.24)

where « and +y are predetermined constants. It can be shown that updating the Q-table based on
(3.24) maximizes the long-term expected reward: 7 = Tlim T S°7 ., 7(S(t)) [94]. Moreover, given
—00
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Figure 3.3: QL model with state transition probabilities.

the converged () values, the following sufficient condition can be used to find a subset of UAs with
Pa > Pth-

Q(Si,d2) < Q(Si,dy),i=1,2 and Q(S3,dy) < Q(S3,da) = pa > pin.- (3.25)

We note that if there is only one UE that is running only one UA, the criterion given by (3.24)
leads to making optimal decisions in terms of maximizing the expected reward. However, the
multi-user resource allocation cannot be done only based on p, > p;, criterion. On the one hand,
assigning mmW resources only to UAs with high p, and small required load will result low spectral
efficiency. Moreover, UAs with small p, and large b'¥9(¢) will not meet their delay requirement, if
they are scheduled over the ©W frequency band. However, even with small p,, it is still probable
for these UAs to be served over a LoS mmW link. Therefore, multi-user scheduling enforces
SBS to exploit per UA context information, i.e., required load per UA, delay constraint, as well
as UEs-SBS channel diversity. Here, it worth noting that exploiting side information such as the
geographical location information of buildings could also facilitate learning the LoS probabilities
[35,96].

3.4.3 Complexity analysis of the proposed two-stage solution

With this in mind, we can make the following observation with regard to the proposed two-stage
solution in Algorithms 1 and 2 for the original problem in (3.6a)-(3.6f).

Theorem 2. The proposed long-term scheduling algorithm composed of Algorithm 1 and Algo-
rithm 2 solves the problem (3.6a)-(3.6f) in polynomial time with respect to the number of UAs.

Proof. See Appendix A.3. [
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Table 3.2: Simulation parameters

Notation Parameter Value
PP Transmit power 30 dBm
(21, () Available Bandwidth (10 MHz, 1 GHz)
w Bandwidth per RB 180 KHz
K-factor Rician K-factor 2.4 [87]
(&1,&) | Standard deviation of mmW path loss (10,5.2) [10]
(g, a9) Path loss exponent (3,2) [10]
(B, B2) Path loss at 1 m (38,70) dB
(0 Antenna gain 18 dBi1
T Time slot duration 10 ms
T/ Beam-training overhead 0.1 ms
Ny Noise power spectral density —174 dBm/Hz
J Number of QoS classes 5[97]
K Number of UAs per UE 3
r Reward vector (3, —16, 1]

3.5 Simulation Results

For simulations, we consider an area with diameter d = 200 meters with the SBS located at the
center [10]. UEs are distributed uniformly within this area with a minimum distance of 5 meters
from the SBS. Each UE has x UAs chosen randomly and uniformly from .J QoS classes. The main
parameters are summarized in Table 3.2. All statistical results are averaged over a large number
of independent runs. We compare the performance of the proposed context-aware algorithm with
two well-known resource allocation approaches:

e Proportional Fair Scheduler with minimum rate requirement (PF-MRR): The PF scheduling
for multi-carrier systems with minimum rate requirement is different than the conventional
approach. In [98], a simple approach is proposed to implement PF-MRR which we modify
to apply to the dual-mode system. At W band, RB £ is assigned to the UA a € A, that
satisfies

R, (k,t)
a = argmax

_ , 3.26
ac€A; R{lec(t) + qu (t) ( )

where R™(t) is the achieved average rate up to time slot ¢, and R®I(t) = b™4(¢)/7 is the

required average rate at slot ¢ to meet the QoS constraint of UA a. UAs a € Ay>; with
req

unsatisfied rate requirement are scheduled at mmW band where 7, ; = ba_(t)

Ra(t)
the UA a = argmax, W(gm(t)’ while > 7, =7 — |G|
e Round Robin Scheduler (RR): At 4W band, the scheduler allocates equal number of RBs to

each a € A;. Unsatisfied UAs a € Ay, are scheduled at mmW band with 7, ; = Tnlg(it’jh/.

1s allocated to
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Figure 3.4: Performance comparison between scheduling approaches for M = 20 and b, = 5 Mbits. For
the cell edge UEs, p, is sampled randomly from [0, 1] and for others p, = 1.

3.5.1 Quality-of-experience of the users

Fig. 3.4 shows a snapshot of a given network realization in which specific UEs are represented
by circles. Each UE is associated with k = 3 UAs, each having a required load of b, = 5
Mbits. We note that for an arbitrary UA a € A;, the required load b, (bits) can be translated
into data rate b,/(j7). For example, b, = 5 Mbits for a € A; is equivalent to 100 Mbits/s data
rate. The results from this figure show each user’s satisfaction by indicating how many UAs per
UE are satisfied. In Fig. 3.4, the colors red, yellow, and green are used, respectively, to indicate
one, two, and three satisfied UAs per UE. Moreover, circles with no color represent UEs with no
serviced UA. Clearly, in Fig. 3.4, we can see that the proposed approach significantly improves
the overall system performance by providing service to more UEs, compared to both PF-MRR
and RR schemes. In addition, we observe that the proposed context-aware approach outperforms
PF-MRR and RR schemes by satisfying the QoS needs of more applications, which naturally leads
to a higher quality-of-experience per user.

3.5.2 Outage probability vs number of UEs

The overall outage probability, P, is defined as the ratio of the number of QoS violations over
the total number of UAs which will be given by:

J J
Po(r) = 1 — % (Z i) = )\m(w)) (3.27)

—1—lzJ:Z]l(a'7r)—1—l|O”|
A AT

t=1 ac A
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Figure 3.5: Performance comparison between scheduling approaches versus the number of UEs, M. All
users are at LoS. b, = 1 Mbits and p, = 1 forall a € A.

Since Py, is a random variable, we will study whether the proposed scheduling policy n* € IT
guarantees P( Py, (7*) > Py) < €, where Py, is the maximum tolerable outage probability and € is
a pre-defined threshold. This can be written as Fp, (Py,) > 1 — €, where Fp, (.) is the cumulative
distribution function (CDF) of P,.

Fig. 3.5 shows the outage probability as the number of UEs varies, for the three considered ap-
proaches. Fig. 3.5 shows that the outage probability increases as the number of UAs increases. In
fact, the results show the number of UAs that can be satisfied for a given outage threshold. Clearly,
the proposed algorithm outperforms the PF-MRR and RR scheduling approaches. For example, for
a 0.01 outage probability, the proposed context-aware approach satisfies up to 210 UAs, consider-
ing k = 3 UAs per UE. However, the baseline approaches fail to achieve this performance. In fact,
the outage probability is always greater than 0.04 for both the RR and the PF-MMR approaches
over all network sizes. Finally, from Fig. 3.5, we can clearly see that the proposed approach can
always guarantee the QoS for up to 180 UAs on average, which is three times greater than the
number of satisfied UAs resulting from the PF-MRR and RR approaches.

3.5.3 Impact of Q-learning

Fig. 3.6 shows the gain of the proposed QL approach. The QL gain is defined as the respective
number of satisfied UAs with and without QL. The results presented in Fig. 3.6 show that more
gain is achievable as the number of UAs increases. This stems from the fact that, as the number
of UAs increases, it becomes more probable that more number of UEs be at a LoS connection
with the BS. Fig. 3.6 shows that the QL-based information allows scheduling UAs with higher
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Figure 3.7: State exploration and convergence of Q-Learning
LoS probabilities. More interestingly, Fig. 3.6 shows that the gain increases as the required load
per UA increases. This is due to the fact that with more strict QoS constraints, it is become more
important to allocate mmW resources only to the UAs with higher probability of LoS.

Fig. 3.7.a and Fig. 3.7.b show both random state exploration and the resulting long-term rewards.
The LoS probabilities p, = 0.8 and p, = 0.2 are considered, respectively, in Fig. 3.7.a and Fig.
3.7.b. The results in Fig. 3.7.a show that up to 110 iterations is needed for the QL algorithm to



Omid Semiari Chapter 3 40

State
N
=
N
\
\
1
\
\
1
—
\
1
1
1
1
1
1
—
1
1
1
1
1
—
1
|
B

off 1, = = = Average Reward|
" State
'
_2 L Il Il Il
0 20 40 60 80 100
Iteration
(b) p,,=0.2
4
3 L
i} = = = Average Reward
T 2 |
o State
| el
’
ol ‘ ‘ ‘ ‘
0 20 40 60 80 100
Iteration

Figure 3.8: State transition and average reward resulted by the optimal policy.

converge, for p, = 0.8. However, Fig. 3.7.b shows that the algorithm will converge within less
than 190 iterations for p, = 0.2. Moreover, the average reward is higher in Fig. 3.7.a, since
the UAs with p, = 0.8 are often served over mmW LoS links, while in Fig. 3.7.b, mmW links
are frequently blocked. Real-life field measurements have shown that the blockage duration can
be very long, exceeding several hundreds of milliseconds [99]. This long duration will allow the
proposed QL algorithm to converge, before the blockage environment changes.

In Fig. 3.8.a and Fig. 3.8.b, the average reward and state transitions are shown when the optimal
QL policy is followed, respectively, for p, = 0.8 and p, = 0.2. Clearly, when LoS probability is
high, the optimal policy is to schedule the UA over mmW band, as shown in Fig. 3.8.a. In addition,
compared to Fig. 3.7, we can see that the QL policy will substantially increase the average reward
compared to the random frequency band selection. For example, for p, = 0.2, the average reward
is increased from —5 in Fig. 3.7.b to 1 in Fig. 3.8.b.

3.5.4 Outage probability vs the required load

In Fig. 3.9, we show the outage probability as the required load per UA varies, for the three
scheduling approaches. In this figure, we can see that the outage probability decreases as the
required load per UA decreases. In addition, from Fig. 3.9, we can see that the proposed context-
aware approach yields significant gains, compared to the PF-MRR and RR schemes. In fact, the
proposed approach guarantees the required loads up to 2 Mbits per UA, for 0.01 outage probability.
However, the baseline PF-MRR and RR approaches can guarantee, respectively, less than 0.2 and
0.1 Mbits load per UA for the same outage probability.
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3.5.5 Statistics of the outage probability

The empirical CDF of the outage probability is shown in Fig. 3.10 for M = 30 UAs with b, =
1 Mbits required load. From Fig. 3.10, we can see that the proposed context-aware approach
substantially improves the statistics of the outage, compared with PF-MRR and RR approaches.
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Figure 3.11: Performance comparison between scheduling approaches versus the number of UEs, M for
bs = 0.1 Mbits. p, is sampled randomly from [0, 1] for the half of UAs.

For example, the probability that P, be less than 0.2 is only 30% for PF-MRR approach, while
this value is 80% for the proposed approach.

3.5.6 Dual-mode vs single-mode scheduling

Fig. 3.11 shows the performance of the scheduling algorithms for three scenarios: a) with dual-
mode communication in presence of both mmW and W frequency resources, b) with only W
band being available, and c¢) with only mmW band being available'. The results in Fig. 3.11 show
the key impact of the proposed dual-mode communication on maximizing QoS, compared with
single-mode scenarios. In fact, Fig. 3.11b shows that, without mmW communications, the outage
probability is significantly high across all network sizes. This is due to the fact that the requested
traffic load by UEs falls beyond the available capacity of the network over W band. Moreover,
Fig. 3.11c shows that even for small network sizes, e.g. M = 20 UEs, the outage probability is
greater than 10% which is significantly high for practical cellular networks. That is because the
blockage is likely to happen for the subset of UAs with small p, values. Therefore, to address high
traffic loads on the one hand, and guarantee high QoS on the other hand, joint usage of mmW-yW
resources is imperative. Indeed, Fig. 3.11a shows that the proposed dual-mode scheduling scheme
will yield outage probabilities as low as 1%, while managing very large network sizes up to 300
UAs, with a reasonably small outage probability.

The average transmitted loads to UAs over mmW and pW frequency bands are shown, respec-
tively, in Figs. 3.12a and 3.12b. In fact, Fig. 3.12 shows the average load per RAT at each time
slot. We can observe that the transmitted traffic over the mmW RAT is significantly larger than
the 4W RAT. That is clearly due to the larger available bandwidth at the mmW band. Moreover,
the transmitted load is lower at last time slots, since by that time, most of the UAs would have

"We note that, in our model, the W mode does not employ advanced techniques, such as multi-antenna schemes
(e.g., beamforming) or carrier aggregation to achieve higher data rates. Performance evaluation of such advanced W
systems (e.g. LTE-Advanced) can be considered in future work.
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Figure 3.12: Average transmitted load to UAs at different time slots for A = 90 UAs and b, = 1 Mbits.

already received their requested traffic. In fact, available bandwidth at the mmW band will allow
to serve the LoS UAs prior to their due time slot. Clearly, as the link state becomes random for a
higher number of UAs, more mmW links will be blocked and, thus, the traffic over the mmW band
decreases. Given the results in Figs. 3.11 and 3.12, it is interesting to observe the critical role of
exploiting W resources, despite the significantly larger traffic at the mmW band. In fact, the joint
exploitation of mmW-pW resources allows to leverage mmW resources for the UAs that are less
likely to experience outage, which ultimately decreases traffic at the W band in subsequent time
slots.

3.5.7 Effect of beam training overhead

In Fig. 3.13, the effect of the beam training overhead on the outage probability is shown. Here,
we observe that 7/ will significantly affect the performance. From Fig. 3.13, we can clearly see
that as 7’ increases, the remaining time for data transmissions to UAs decreases which results in
a higher outage probability. Fig. 3.13 shows that, in the absence of beam training overhead, the
outage probability is always less than 0.35. However, for 7/ = 0.8 ms, the outage probability will
always be less than 0.55.

3.5.8 Number of iterations

Fig. 3.14 shows number of iterations resulting from the proposed scheduling approach as the num-
ber of UEs varies for different number of UAs per UE. Clearly, the number of iterations increases
almost linearly with the number of UEs. From this figure, we can see that even for large network
size up to 30 UEs and 60 UAs, the proposed framework is relatively fast, as it converges within
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3.6 Summary

In this chapter, we have proposed a novel context-aware scheduling framework for dual-mode
small base stations operating at mmW and W frequency bands. To this end, we have developed a
two-stage UA selection and scheduling framework that takes into account various network and UA
specific context information to make scheduling decisions. Over the W band, we have formulated
the context-aware scheduling problem as a one-to-many matching game. To solve this game, we
have proposed a novel algorithm for joint UA selection and resource allocation and we have shown
that it yields a two-sided stable matching between W resources and UAs. Next, we have proposed
a joint UA selection and scheduling to allocate mmW resources to the unscheduled UAs. The
scheduling problem over mmW band is formulated as a 0-1 Knapsack problem and solved using a
suitable algorithm. Moreover, we have proved that the proposed two-stage dual-mode scheduling
framework can solve the problem in a polynomial time. Simulation results have shown the various
merits and performance advantages of the proposed context-aware scheduling compared to the
PF-MRR and RR approaches.

3.7 Appendix A

A.1 Proof of Theorem 1

The convergence of the Algorithm 1 at each slot is guaranteed, since a UA never applies for a
certain RB twice. Hence, at the worst case scenario, all UAs will apply for all RBs once, which
yields K, = (), Va € A. Next, we show that, once the algorithm converges, the resulting matching
between UAs and RBs is two-sided stable. Assume that there exists a pair (a, k) ¢ 7, that blocks
1. Since the algorithm has converged, we can conclude that at least one of the following cases is
true about a: 1,(x) =1, or K, = 0.

The first case, 1,(x) = 1 implies that a does not need to add more RBs to 7, (). In addition,
a would not replace any of £’ € m,(a) with k, since k' >, k. Otherwise, a would apply earlier for
k. If a has applied for k£ and got rejected, this means ;1 (k) > a, which contradicts (a, k) to be
a blocking pair. Analogous to the first case, K, = () implies that a has got rejected by k, which
means 7 1 (k) > a and (a, k) cannot be a blocking pair. This proves the theorem.

A.2 Proof of Proposition 1

We can write )\, 5 as the sum of Bernoulli random variables (,, i.e., A 2(7T) = Zaegt , Cat- Hence,
using Le Cam’s theorem, the distribution of \; » follows Poisson distribution, i.e.,
A’;”L)eei)\ave
PA2(Ty) = k| = 22— (3.28)

K
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where E [\; 2(7;)] is the sum of expected values of (,; for selected UAs in G, » as given by (3.17).
Moreover, the approximation error is bounded by

= )\l;fuee_Aave 2

3 ‘IP) D=k = 2meo—[ <2 > o2 (3.29)

k= a€Gy 2

where Ay = A1 + A 2. Next,
Mg+ A

Fryss(Pi) = P (Pousy < Py) = P (1 - St Pth> (3.30)

t
=1-P(N\2 < [(1 = Pn)Ar — Mea)) (3.31)
~1- L (LA = Pin)As — Ma + 1], Aawe) (332)

(1 — Pip)Ar — Aea ]! ’

where (3.32) follows the CDF of the Poisson distribution.

A.3 Proof of Theorem 2

First, we analyze the complexity of Algorithm 1. For each slot ¢, let A;>; = |.A;>| be the number
of UAs that can be selected to be scheduled at ©W band. At most, the algorithm must find the
solution for A;>, number of matchings. In addition, each matching has the complexity of O(Kj),
since in the worst case, each UA must be re-allocated to /; RBs by SBS. Hence, the complexity
of Algorithm 1 at each slot ¢ is O(K;A;>;) and the total complexity from slot ¢t = 1tot = J is

O(K13 71 jA)).

Next, we analyze the complexity of Algorithm 2. At each slot ¢, there are at most A;>,; UAs to
be scheduled at mmW (G, ; = ()). Therefore, the Algorithm 2 must converge after Aj>; resource
allocations, where each allocation is a special case of the 0-1 Knapsack problem. Hence, the total
complexity of the Algorithm 2 from slot ¢ = 1 toslot ¢ = J is O(Z;]:1 jA;). From the above

results, the overall complexity of the proposed long-term scheduling is O ((K 1+ 1) Zj:l jA]-).



Chapter 4

Inter-Operator Resource Management for
Millimeter Wave, Multi-Hop Backhaul
Networks

4.1 Background, Related Works, and Summary of Contribu-
tions

Network densification based on the concept of SCNs is seen as the most promising solution to cope
with the increasing demand for wireless capacity [100]. SCNs are built on the premise of a viral
and dense deployment of SBSs over large geographical areas so as to reduce the coverage holes and
improve the spectral efficiency [101]. However, such a large-scale deployment of SBSs faces many
challenges in terms of resource management, network modeling, and backhaul support [101].

In particular, providing backhaul support for a large number of SBSs that can be deployed at
adverse locations within a geographical area has emerged as one of the key challenges facing the
effective operation of future heterogeneous SCNs [11]. In particular, due to the density of SCNis,
MNOs will not be able to maintain an expensive and costly deployment of fiber backhauls to
service SBSs as shown in [9] and [11]. Instead, MNOs are moving towards the adoption of wireless
backhaul solutions that are viewed as an economically viable approach to perform backhauling in
dense SCNs. In fact, MNOs expect that 80% of SBSs will connect to the core network via wireless
backhaul as detailed in [11] and [12].

4.1.1 Related works

The authors in [102] propose a fair resource allocation for the out-band relay backhaul links. The
proposed approach developed in [102] aims to maximize the throughput fairness among backhaul

47
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and access links in LTE-Advanced relay system. In [103], a backhaul resource allocation approach
is proposed for LTE-Advanced in-band relaying. This approach optimizes resource partitioning
between relays and macro users, taking into account both backhaul and access links quality. Dy-
namic backhaul resource provisioning is another important problem in order to avoid outage in
peak traffic hours and under-utilizing frequency resources in low traffic scenarios. In this regard,
in [104], a dynamic backhaul resource allocation approach is developed based on evolutionary
game theory. Instead of static backhaul resource allocation, the authors take into account the dy-
namics of users’ traffic demand and allocate sufficient resources to the base stations, accordingly.
Although interesting, the body of work in [102-104] does not consider the potential deployment
of millimeter wave communication at the backhaul network and is primarily focused on modeling
rather than resource management and multi-hop backhaul communication.

Providing wireless backhaul links for SBSs over mmW frequencies has recently been dubbed
as one of the most attractive technologies for sustaining the backhaul traffic of SCNs [7-15], due
to the following promising characteristics, among others: 1) The mmW spectral band that lies
within the range 30-300 GHz will deliver high-capacity backhaul links by leveraging up to 10 GHz
of available bandwidth which is significantly larger than any ultra-wideband system over sub-6
GHz frequency band. In addition, high beamforming gains are expected from mmW antenna
arrays, with large number of elements, to overcome path loss [13], 2) more importantly, mmW
backhaul links will not interfere with legacy sub-6 GHz communications in either backhaul or
access links, due to operating at a different frequency band. Even if the access network operates
over the mmW frequency band such as in self-backhauling architectures, mmW communications
will generally remain less prone to interference, due to the directional transmissions, short-range
links, as well as susceptibility to the blockage [96], and 3) over the past few years, research for
utilizing mmW frequencies for wireless backhaul networks has become an interesting field that
attracted a lot of attention in both academia and industry [7-16]. As an example, in 2014, a total of
15 telecom operators, vendors, research centers, and academic institutions (including Nokia, Intel,
and operators Orange and Telecom Italia) have launched a collaborative project in Europe, called
MiWaveS, to develop mmW communications for 5G backhaul and access networks [16].

However, compared to existing ultra-dense networks over sub-6 GHz band, the major challenges
of mmW backhaul networks can be listed as follows: 1) MmW backhaul links will typically operate
over much shorter range than their sub-6 Ghz counterparts (usually do not exceed 300 meters
[28,105]), and, thus, more SBSs will be required to provide backhaul support for the users within
a certain geographical area. Therefore, mmW SBS deployments are expected to be even denser,
compared to the already dense sub-6 GHz networks [106]. Such ultra dense network will require
fast and efficient network formation algorithms to establish a multi-hop backhaul link between the
core network and each demanding SBS, 2) the backhaul network must be significantly reliable.
However, the received signal power of mmW signals may significantly degrade if the backhaul
link is blocked by an obstacle. For SBSs that are deployed in adverse locations, such as urban
furniture, the received signal power may degrade due to rain or blockage by large vehicles. One
solution is to increase the density of SBSs such that if a backhaul link between two SBSs is blocked,
the demanding SBS can establish a reliable link with another SBS. However, this solution will
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increase the cost of the backhaul network for the MNO. In our work, we have motivated the use of
cooperation between MNOs to achieve a robust and economically efficient backhaul solution, and
3) due to the directional transmissions of the mmW signals, broadcast control channels can lead to
a mismatch between the control and data planes at mmW frequency bands [107]. Therefore, fully
centralized approaches that rely on receiving control signals from a central station over broadcast
channels may not be practical, thus, motivating the adoption of suitable distributed algorithms for
an effective resource management.

Several recent studies have studied the viability of mmW as a backhaul solution as presented
in [14] and [105, 108—-112]. For instance, the work in [14] proposes a model based on stochastic
geometry to analyze the performance of the self-backhauled mmW networks. The work in [109]
analyzes the performance of a dual-hop backhaul network for mmW small cells. In [105], the au-
thors perform channel measurements and provide insights for the mmW small cell backhaul links.
In [110], the performance of adaptive and switching beamforming techniques are investigated and
evaluated for mmW backhaul networks. Moreover, the impact of diffraction loss in mmW back-
haul network is analyzed in [111]. The authors in [112] propose a multi-objective optimization
framework for joint deployment of small cell base stations and wireless backhaul links. In [108],
the authors propose an autonomous beam alignment technique for self-organizing multi-hop mmW
backhaul networks. In [106], the authors have motivated the use of a multi-hop mmW backhaul
as a viable solution for emerging 5G networks and they analyzed the impact of the deployment
density on the backhaul network capacity and power efficiency. Moreover, in [113], the authors
have proposed a multi-hop backhaul solution with a TDMA MAC protocol for WiMAX.

The body of work in [14] and [105, 108—112] solely focuses on physical layer metrics, such as
links’ capacity and coverage. In addition, it is focused only on single-hop or dual-hop backhaul
networks, while new standards such as IEEE 802.11ay envision fully multi-hop networks. The
work presented in [106] does not provide any algorithm to determine how SBSs must form a
multi-hop mmW backhaul network. Moreover, the proposed model in [106] is too generic and
does not capture specific characteristics of a mmW network, such as susceptibility to blockage and
directional transmissions. Last but not the least, no specific analysis or algorithm is provided for
resource management in multi-hop mmW backhaul networks. The solution presented in [113] is
not directly applicable to the mmW backhaul networks, as mmW is substantially different from
WIMAX systems. In fact, authors in [113] focus primarily on the routing and link activation
protocols in order to minimize the interference among active links. Such a conservative approach
will yield an inefficient utilization of the mmW frequency resources, since interference scenario in
WiMAX systems is completely different with directional mmW communications.

Furthermore, the body of work in [14], [105, 108-112], [106], and [113] does not account for
the effect of backhaul cost in modeling backhaul networks. In fact, these existing works typically
assume that all infrastructure belong to the same MNO which may not be practical for dense
SCNs. In wireless networks, the backhaul cost constitutes a substantial portion of the total cost of
ownership (TCO) for MNOs as indicated in [9] and [11]. In fact, it is economically inefficient for
an individual MNO to afford the entire TCO of an independent backhaul network as demonstrated
in [9], [11], and [114]. The main advantages of inter-operator backhaul sharing is to reduce the
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number of required sites/RAT interfaces per MNO to manage backhaul traffic, site rent, capital
expenditures (CAPEX) by avoiding duplicate infrastructure, site operating expenditures (OPEX),
and electricity costs [115]. Moreover, inter-operator mmW backhaul architectures are more robust
against the blockage and link quality degradation compared to the schemes in which operators
act independently and non-cooperatively [7]. This stems from the fact that cooperation increases
flexibility to establish new backhaul links that can easily bypass obstacles. Therefore, MNOs will
need to share their backhaul network resources with other MNOs that require backhaul support for
their SBSs [114]. Hence, beyond the technical challenges of backhaul management in SCNs, one
must also account for the cost of sharing backhaul resources between MNOs.

To address such economic challenges, a number of recent works have emerged in [15] and
[114,116-118]. The work in [114] motivates a business model for an SCN where multiple MNOs
share the SBSs that are deployed on the street lights of dense urban areas. In [116] an economic
framework is developed to lease the frequency resources to different MNOs by using novel pric-
ing mechanisms. In [117], the authors propose a cost evaluation model for small cell backhaul
networks. This work highlights the fact that integrating heterogenous backhaul technologies is
mandatory to achieve a satisfactory performance in a backhaul network. Moreover, they show that
the TCO of an SCN is much higher than conventional cellular networks. Therefore, it is more
critical to consider backhauling cost in small cell backhaul network design. The authors in [118]
propose a model where MNOs buy energy from the renewable power suppliers for their mmW
backhaul network and solve the problem as a Stackelberg game between MNOs and power suppli-
ers. In [15], we studied the problem of resource management for the mmW-microwave backhaul
networks with multiple MNOs. The approach in [15] considers both cost and the CSI to allocate
backhaul resources to the SBSs. The provided solutions in [114,116—118] focus solely on the eco-
nomic aspects of the backhaul network, while a suitable backhaul network model must integrate
the cost constraints with the physical constraints of the wireless network. In addition, [15] does not
consider multi-hop backhaul networks. Moreover, the backhaul model studied in [15] is restricted
to the case in which only two MNOs are in the network.

4.1.2 Summary of contributions

The main contribution of this chapter is to propose a novel framework to model and analyze re-
source management and pricing for facilitating inter-operator sharing of multi-hop, mmW back-
haul infrastructure in dense SCNs. In particular, the proposed framework is formulated using suit-
able techniques from matching theory [90] so as to provide a distributed solution for managing the
resources over multi-hop backhaul links. In the formulated model, the SBSs of one MNO can act
as anchored BSs (A-BSs) to provide backhaul support to other, demanding BSs (D-BSs) that may
belong to other MNOs. The proposed framework is composed of two highly-interrelated matching
games: a network formation game and a resource management game. The goal of the network
formation game is to associate the D-BSs to A-BSs for every hop of the backhaul links. This game
is shown to exhibit peer effects thus mandating a new algorithmic approach that differs from clas-
sical matching works in [90] and [76]. To solve this game, we propose a distributed algorithm that
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Figure 4.1: An example of mmW-MBN with multiple MNOs. SBSs with the same color belong to the
same MNO.

is guaranteed to converge to a two-sided stable and Pareto optimal matching between the A-BSs
and the D-BSs. Once the stable and optimal network formation solution is found, we propose a
second matching game for resource management that allocates the sub-channels of each A-BS to
its associated D-BSs, determined by the first matching game. The proposed approach considers
the cost of the backhaul jointly with the links’ achievable rates to allocate the sub-channels to the
D-BSs. To solve this resource management matching game with peer effects, we propose a novel
distributed algorithm that yields a two-sided stable and Pareto optimal matching between the sub-
channels and the D-BSs. We compare the performance of the proposed cooperative mmW multi-
hop backhaul network (mmW-MBN) and compare the results with non-cooperative mmW-MBN.
Simulation results show that MNOs cooperation provides significant gains in terms of network’s
average backhaul sum rate, reaching up to 30%, compared to the non-cooperative mmW-MBN.
The results also show that the cooperation among MNOs will significantly improve the statistics
of the backhaul rate per SBS.

The rest of this chapter is organized as follows. Section 4.2 describes the system model and
formulates the problem. Section 4.3 presents our distributed approach to solve the network forma-
tion problem. Section 4.4 provides the proposed solution to solve the resource allocation problem.
Section 4.5 provides the simulation results and Section 4.6 concludes the chapter.

4.2 System Model

Consider a mmW-MBN that is used to support the downlink transmissions of A/ SBSs within the
set M. Each SBS belong to one of N MNOs within the set A/. The set M can be decomposed
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into N subsets M,,, with | J,,.,, M,, = M and (. \r M, = 0, where M,, represents the subset
of SBSs belonging to MNO n. The SBSs are distributed uniformly in a planar area with radius
dmax around an MBS, my, located at (0,0) € R?2. The MBS is connected to the core network over a
broadband fiber link, as shown in Fig. 4.1, and is shared by all MNOs. The SBSs can be connected
to the MBS via a single-hop or a multi-hop mmW link. The mmW-MBN can be represented as a
directed graph G(M, £), in which the SBSs are the vertices and £ is the set of edges. Each edge,
e(m’/,m) € &, represents a mmW backhaul link from SBS m’ to m. Hereinafter, for any link, the

transmitting and the receiving SBSs (over the backhaul) will be referred to, respectively, as the
A-BSs and the D-BSs.

Thus, in our model, an SBS can be either a D-BS or an A-BS. Each A-BS m will serve up to @,
D-BSs, while each D-BSs will be connected to one A-BS.

To show that an arbitrary D-BS m is connected to an A-BS m/’, we use the following binary
variable

1 if ! bot
ee(m',m) = ! e(m',m) € 4.1)
0 otherwise,

where €. (m/, m) = 0 implies that no backhaul link exists from SBS m/ to m. Finally, we denote by
MP-BS the subset of SBSs for whom SBS m’ serves as an A-BS. In other words, MPPS = {m €
M| e.(m',m) = 1}. The backhaul links are carried out over a mmW frequency band, composed of
K sub-channels, within the set K, each of a bandwidth w. A summary of our notation is provided
in Table 4.1.

4.2.1 Channel model

The state of a backhaul link is defined as a Bernoulli random variable (,,,.,,, with success probability
Pmm to determine if the link is LoS or NLoS. In fact, (v, = 1, if e(m/,m) is LoS, otherwise,
Cmm = 0. Based on the field measurements carried out in [10] and [119-121], the large-scale path
loss of the link e(m’, m), denoted by Lqgg (m’, m) in dB, is given by

LdB<m/a m) = 1010g10(l(m/7m)>7

47d, — Y,
= 201log,, ( 7; U) + 10 logy (W) +x, d > do, 4.2)

where )\ is the wavelength at carrier frequency f. = 73 GHz, dj is the reference distance, and
« is the path loss exponent. Moreover, ||y,, — ¥,,|| is the Euclidean distance between SBSs m
and m/, located, respectively, at y,, € R? and Y, € R2. In addition, x is a Gaussian random
variable with zero mean and variance £2. Path loss parameters « and ¢ will naturally have different
values, depending on the state of the link. In fact, depending on whether the link is LoS or NLoS,
these values can be chosen such that the path loss model in (4.2) will provide the best linear fit
with the field measurements carried out in [10]. The benefit of the free space path loss model used
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Table 4.1: Variables and notations

Notation Description Notation Description
M Number of SBSs M Set of SBSs
N Number of MNOs N Set of MNOs
K Number of sub-channels K Set of sub-channels
e(m’,m) Backhaul link from m/ to m 3 Set of backhaul links
Mo Set of SBSs belonging to MNO n M, Set of SBSs of distance d from m
M])r;?s SBSs for whom SBS m/ serves as an A-BS w Bandwidth of each sub-channel
Ce € {0,1} State of link e Pe Expected value of (.
rm (k,m';¢) Rate for D-BS m over sub-channel k rm(m’, x) Rate of D-BS m from A-BS m/, given «
=D Preference profile of D-BSs over A-BSs =1 Preference profile of A-BSs over D-BSs
PD Preference profile of D-BSs over sub-channels P,f Preference profile of sub-channels over D-BSs
i Network formation matching for j-th hop 14 Resource allocation matching for j-th hop
Qm Quota of A-BS m Tm th Backhaul minimum rate requirement for m
1, Indicates if m and m/ belong to same MNO m (m') Average rate for m over all sub-channels

in (4.2), compared with other models such as the alpha-plus-beta model, is that it is valid for all
distances above the reference distance dy and the model parameters o and x have concrete physical
interpretations.

In addition, the field measurements in [122—124] show that the mmW channel delay spread can
be large, reaching up to more than 100 ns, for the outdoor deployment of mmW SBSs in urban
areas. To this end, for any link e(m’, m), a slow-varying frequency flat fading channel h,,/,, is
considered over sub-channel k. Hence, conditioned to the link state (, the achievable rate for a
given link e(m/, m) over sub-channel £ will be given by

pm’,kw(mlv m)l (m,a m) ‘hm’km|2
Zm”;ﬁm,m/ pm”,k’w(m”? m)l (m”> m) |hm”/€m|2 +o0?

rm(k,m’; () = wlogy | 1+ , (43

where p,, and 0% denote, respectively, the transmit power of A-BS m’ over sub-channel & and
the noise power. To strike a balance between system performance and complexity, uniform power
allocation is assumed. Here, we assume that total transmit power p; ,,,s is distributed uniformly over
all sub-channels, such that p,, = p; /K [84,125-127]. The uniform power allocation assump-
tion is also due to the fact that at a high SNR/SINR regime, as is expected in a mmW network with
relatively short-range links and directional transmissions, it is well known that optimal power allo-
cation policies such as the popular water-filling algorithm will ultimately converge to the uniform
power allocation [84]. Moreover, 1)(m’, m) represents the combined transmit and receive antenna
gains. The antenna gain pattern for each BS is assumed to be sectorized and is given by [14]:

Gmax, 1if 0 < |0,
G(0) = 6 < o) (4.4)
Gmin, Otherwise,

where ¢ and 6, denote, respectively, the azimuth angle and the antennas’ main lobe beamwidth.
Moreover, G, and G,;,, denote, respectively, the antenna gain of the main lobe and side lobes. It
is assumed that for a desired link between A-BS m’ and D-BS m, ¢(m’,m) = G2_,. Moreover,
(m”,m) of an interference link from A-BS m” to the target D-BS m is assumed to be random.

Using (4.3), we can write the achievable rate for the link e(m’, m) over the allocated sub-channels
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as follows:

Pm(m5 ) = v (k05 Q) Tkom, (4.5)

kek

where x is the resource allocation vector with elements z,,/4,, = 1, if SBS m/ transmits to m over
sub-channel &, otherwise, x,,/x,, = 