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Abstract

In the grand scheme of a large Information Retrieval project, the work of our team was that of performing
text classification on both the tweet collections and their associated webpages. In order to accomplish this
task, we sought to complete three primary goals. We bagan by performing research to determine the best
way to extract information that can be used to represent a given document. Following that, we worked
to determine the best method to select features and then construct feature vectors. Our final goal was to
use the information gathered previously to build an effective way to classify each document in the tweet
and webpage collections. These classifiers were built with consideration of the ontology developed for the
IDEAL project. To truly show the effectiveness of our work at accomplishing our intended goals, we also
provide an evaluation of our methodologies.

The team assigned to perform this classification work last year researched various methods and tools. Some
of these proved to be useful in accomplishing the goals we set forth. Last year’s team developed a system
that was able to accomplish similar goals to those we set forth with a promising degree of success. Our
goal for this year was to improve upon their successes using new technologies such as Apache Spark. Spark
provided us with the tools needed to build a well optimized system capable of working with the provided
collections of tweets and webpages in a fast and efficient manner. Spark is also very scalable, and based
on our results with the small collections we have confidence in the performance of our system on larger
collections.

il
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Chapter 1

Introduction

The classification team’s goal is to take collections of tweets and webpages and classify them based on their
relevance to given classes or topics. Our team fits into the grand scheme of the project by working between
the Collection Management team and the Solr team. The Collection Management team was responsible for
taking the raw tweet and webpage data and filtering out any obvious spam, vulgarity, or otherwise unreadable
and unwanted content. They then wrote the cleaned data into a table in our HBase instance. Once this was
done, we attempted to classify each document’s relevance to a specific collection. We explored several
methods for accomplishing this, starting with the methodology laid out by last year’s Classification team
[2]. Once we have the data classified, we are be able to pass it along to the Solr team by writing the newly
classified data back into the primary HBase table as a column family. The Solr team is then be able to use
the column family in the indexing of all the tweet and webpage data. They then provide the indexes for the
data to the Front End team, allowing anyone to make use to the system we have created..

We begin by documenting our understanding of some of the pertinent literature, namely the course textbook
and the Classification team report from last year; this can be found in Chapter 2, our literature review.
Chapter 3 is the primary section of the document and includes our discussion of the project requirements,
an outline for our design for the classification portion of the larger project, and finally a breakdown of our
progress and suggested future work for the text classification project.

These chapters are then followed by a User Manual in Chapter 4, where we discuss the details in which a
user of our methods and programs would have interest. We then include a separate Developer Manual in
Chapter 5, which documents and includes details of the code base so that it might be extended and leveraged
by other developers.

Following this we include our conclusions about the state of our final work and present our thoughts for
possible future work in Chapter 8.



Chapter 2

Literature Review

2.1 Textbook

The textbook [5] introduces the classification problem. That is, given a set of classes, the goal is to determine
what subset of those classes a document may belong to. To that end, the textbook describes a number of
methodologies for selecting features. These features are then used by one of the classification methods
discussed. The primary methods discussed are Naive Bayes, Vector Space Classification, and the Support
Vector Machine.

2.2 Papers

The primary paper that has been used as a reference is the final report of the Classification team from last
year [2]. We have read through this report to understand the progress that the Classification team made last
year as well as using the paper to gain an understanding of the task and interactions of the systems that we
are using to perform our work. At a high level, the paper described a methodology employed by the team
in which they were able to apply the Naive Bayes method to classify sets of data. The team used Apache
Mahout machine learning technology to generate Naive Bayes classifiers to make predictions for new data.
The biggest difference from last year’s work to this year’s work is that we primarily used Apache Spark, and
so while wereable to reference their work, we used entirely different technologies and needed to modify our
approach accordingly.

Initially, we attempted an approach where we would issue queries to Solr to build a set of training data for
a classifier. However, we were informed by the GRAs that this approach would not work because the Solr
API was not exposed on the cluster, and so we would not be able to access it. When we started looking into
new approaches, we were advised to look at Frequent Pattern Mining (FPM). We looked at a paper by Han
et al. [3], which presents a novel frequent pattern tree (FP-tree) structure and FP-tree based mining method
called FP-growth. This method allows for mining the complete set of frequent patterns by pattern fragment
growth. In this paper they also demonstrate that their new method is an order of magnitude faster than the
typical apriori algorithm. The paper goes on to compare the performance against other popular data mining
algorithms and discusses the use of the algorithm on some large industrial databases. We make use of the
FP-growth algorithm and data structure in our text classification methodologies.



Chapter 3

Requirements, Design, And
Implementation

3.1 Requirements

Based upon group discussions in a classroom setting, it was decided what information that the Collection
Management team would provide to the other teams that need to work with cleaned tweet data. A full
specification of these decisions can be found by viewing the Collection Management team’s report; however
we will briefly discuss the points that were relevant to us.

Given the cleaned tweet data from Collection Management, our team is able to perform the methodologies
we describe later to classify whether a document is relevant or non-relevant to a given class. A detailed
layout of the project with our interactions highlighted is provided by Figure 3.1.

We then place our classification information in the HBase datastore to mark the relevance of each document.
The Solr team then indexes this class information that we provide, allowing for more robust query results
and more useful facets to be created.

3.2 Design

Our design is based primarily off of recommendations from the GRAs assisting the class. We have also
taken substantial input from last year’s Classification team [2] and Professor Fox.

We designed our solution around pulling training data from and testing on a small collection of around
100,000 tweets. This was originally going to be performed on the small collection that was assigned to our
team, #germanwings. However, due to some changes and in-class discussion among the other teams,
we decided to continue with designing and testing our solution using a cleaned dataset provided by the
Collection Management team. This dataset was the #wdb j7shoot ing small collection.
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Figure 3.1: Layout of the project teams, as provided by Professor Fox and his GRAs.

3.3 Implementation

Our implementation can be easily laid out in a step by step workflow, with only one step requiring true
manual input and evaluation. Figure 3.2 illustrates the general flow of data that we have implemented thus
far. Below we will discuss each step in detail.

Our methodology primarily revolves around building a training set. This training set is used for training a
machine learning model, a.k.a. a classifier.

3.3.1 Environment Set-Up

Our group decided initially to avoid working directly on the cluster, granting us full administrative rights to
a machine, which allowed us to set up and test different configurations and algorithms beyond what might
currently be supported by the Hadoop cluster being used for class. During this time we made use of a Virtual
Machine generously provided to us by the Virginia Tech IT Security Lab, as one of our group members is a
member of that lab.

However, after the necessary upgrades were performed on the Hadoop cluster, we have migrated all of our
processing over to the cluster used by the class. This allows us to place our data directly in the HBase
datastore instead of dealing with the transfer of data files from our separate machine to the cluster. This
migration also allowed for other groups to easily make use of our scripts and for us to write our classification
data directly to the cluster.
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Figure 3.2: High level overview of the flow of data through the classification system.

3.3.2 Building the Training Data

In order to begin the classification process need to prepare a set of training data to use for the machine
learning classification algorithm. In order to do this, we assume that we are working with provided data that
has been cleaned of profanity and non-printable characters.

For our methodology we then need to take the content of each tweet and webpage as a string and tokenize
it. This means that we remove any duplicate words and have the result be a set of the vocabulary in the
tweet (or webpage). At this stage we also remove any stop words that are in the vocabulary to make sure
our algorithms in the next phase are not skewed by taking stop words into account. During this phase we
also strip the # from any hashtags that are present in the tweet.

In our initial design and testing we did not yet have access to cleaned tweets and webpages from the Col-
lection Management team, so we worked primarily to build the methodology that would be used once those
resources became available. Therefore, some of the steps mentioned previously, such as the removal of the
stop words and the removal of the # from hashtags are unnecessary when working with the data provided by
Collection Management in HBase.

The next step in our algorithm involves the use of Frequent Pattern Mining (FPM) to determine the most
frequently used patterns of words in the text of a series of tweets or webpages. FPM looks at the set of
existing vocabulary for each text and determines which tokens appear together most often within a tweet’s
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vocabulary.

This is the stage where manual intervention is necessary. We look at a file containing a sorted list of all the
frequent patterns; from this we choose a set of terms that appear the most frequently and most accurately
represent the collection. In our attempts at training a classifier for our small data collection, we chose to
select a frequent pattern of maximum four words. This was essentially an arbitrary choice, but we believe
that it strikes a good balance between being too specific and missing some relevant tweets and being too
broad and pulling in a number of non-relevant tweets.

We now need to create positive and negative training samples. To do this, we pull a random subset of tweets
that contain our frequent pattern and classify those as positive samples. For our negative sample we pull
a random subset of tweets that do not contain our frequent pattern. To allow for enough training data, we
select approximately 5-10% of the data in the collection as training data for our classification labeling.

3.3.3 Training the Classifier

Then we use the sets of positive and negative samples to train a classifier. We are using a logistic regression
classifier in our implementation, primarily due to its ease of implementation in Spark.

FPM allows us to develop a training set by filtering the tweets and webpages down to some subset of those
that do and do not contain the selected frequent patterns. We take these subsets as the positive training data
and the negative training data.

At this point we feed the selected documents into the classifier; this step uses all the words in each document
of the training data, not just the words used for FPM.

To ensure that this labeling is at least mostly correct, we inspect both the positive and negative training sets
(or a portion of them) to confirm that each set is composed of either relevant tweets and webpages or non-
relevant ones as appropriate. If in this inspection we find that the choice of frequent pattern has generated a
poor training set, we choose a different frequent pattern and attempt the process again.

These attempts are relatively easily repeated due to the fact that the running of our FPM algorithm only
requires approximately 10 seconds for each collection and the preparation of the training set and prediction
for each tweet takes about 1 minute for each collection. The largest time spent is in the manual selection of
a frequent pattern for training set generation.

Since we are using Spark CrossValidator, with careful selection of the frequent pattern we only need to
perform a single iteration of this procedure for each collection. CrossValidator takes a range for each regu-
larization parameter and number folds, then trains multiple classifiers and select the best and return it. We
use the best model selected to perform the prediction.

3.3.4 Predicting the Class

After training the classifier, we apply the classifier to all the tweets across our small data collection. This
results in a normalized floating point scoring for each tweet on a scale of non-relevant (0) to relevant (1) to
the collection based upon the training data we selected.
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3.3.5 Evaluating the Classifier

We can evaluate the accuracy of our model by judging how well it classifies some of the data that could
have been in our positive or negative samples. This is the most intuitive evaluation however it requires a
great deal of manual effort to perform. We need to pull out a sampling of classified data and look through it
manually, marking whether or not the classification was correct.

Another evaluation that we can perform looks at how well each small collection does at being relevant to
the topic at hand. If a large number of the documents in the collection are classified as non-relevant, then
the collection as a whole has not done a good job capturing the event in question.

Finally, we need to perform an evaluation of how well our method of using FPM to determine the training
documents works. This is much like the first evaluation in that it can be very manual. We need to dump
the generated training sets out to files and then manually decide whether a given set has all (or primarily)
relevant or non-relevant documents, as appropriate.

In order to begin to accomplish these evaluation goals, we built 7 surveys using Google Forms and distributed
them to the class. Given the class size, and with each survey holding 100 randomly selected tweets, we
planned to be able to have 3 people classify each of 700 tweets. This was to allow for us to compare the
relevance labeled by our classmates to the relevance labeled by the classifier.

Due to some limitations in Google Forms, we had to prepare some Google Scripts code to generate a
form from a list of questions on a Google Sheets document. We include this code in the submission to
VTechWorks.

Evaluation Results

As mentioned previously, we constructed 7 surveys of 100 tweets each and distributed them to the 20 stu-
dents and professor for the class, totaling 21 people to perform the labeling. This was intended to provide 3
responses per tweet, we then planned to average the answers to provide a similar score to that output by the
classifier.

Unfortunately, surveys are often inconsistent, and we feel that our evaluation may be somewhat effected by
the inconsistencies encountered:

* Only 675 tweets were labeled

There were 25 tweets that were never labeled by any of the participants in our surveys, we are unsure
of whether this was due to an error with the survey construction itself or if the students simply quit
before completing the survey. If the latter, it brings into question the validity of their other labels
because they may have just been rushing through.

* Of 21 asked to participate, only 16 responses were received.

One of the 7 surveys only had one participant respond and label the requested tweets. Another survey
had one participant only label 3 tweets. This lack of response obviously effects the averaging to
compare with the classifier results.

For our comparison, we weighted each of the three possible labels — Relevant, Maybe Relevant, and Non-
Relevant — as 1.0, 0.5, and 0.0 respectively. We then averaged the responses to compare with the output of
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our classifier. This was not the most robust method of evaluation for our classifier, but it provided a general
idea of the accuracy of our classifier on this small collection.

Figure 3.3 shows the distribution of average answers for the 675 tweets. These were calculated by assigning
a number to each answer as mentioned above, then averaging those answers. This average was then divided
evenly into thirds to denote Relevant, Maybe Relevant, or Non-Relevant. Figure 3.4 shows the distribution

Labeled Results Classifier Results
500 500

450

300

Relevant KNon-Relevant Maybe Relevant Relevant Maybe Relevant Non-Relevant

Figure 3.3: Manually Labeled Figure 3.4: Classifier Labeled

that would have been generated by our classifier. An important point here is that the thresholds were set at
the same values for the two histograms. The classifier results were evenly divided into thirds to create the
figure.

The key point to note is that while with the thresholds as they currently are, our classifier places too many
tweets as relevant, the general trend of the classifier is very similar to that of the labeled tweets. We feel
that with some simple modification of the threshold values as to what constitutes relevant, non-relevant, and
maybe relevant, our classifier could be shown to perform very accurately compared to the manually labeled
tweets.

3.3.6 Interfacing with HBase
Manual File Uploading

We are currently able to process the six small data files and determine a probability representing how likely
it is that a specific tweet is relevant to the collection. For each of the data sets we have produced a .tsv file
with two columns: one containing the tweet ID (which serves as the row key in HBase), and one containing
a value between 0.0 and 1.0 which represents the probability that the tweet is relevant to the category.

Within HBase, we have created a column family named "classification." Within our column family, we only
have need of one column, named "relevancy." This column is where the probability value for each document
in the database will be stored for access by other teams. Figure 3.5 shows an example query for a row, which
returns all of the data in that row. The data produced by our system is highlighted.

For this version of the system, we are inserting the data into HBase manually. We accomplish this by using
Hadoop’s importTsv script as explained in the tutorial provided by the Solr team. The importTsv script is
provided by HBase and allows you to take a .tsv file and specify what the columns in the file contain. We
accomplish this with the following command:
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Figure 3.5: An example row in HBase. Our data is highlighted.

$ hbase org.apache.hadoop.hbase.mapreduce.ImportTsv \
—Dimporttsv.columns=HBASE ROW_KEY, classification :relevance \
ideal —cs5604s16 DATA_FILE

Here you can see we specify in the "-Dimporttsv.columns=" parameter that the first column in our .tsv file
corresponds to the row key and the second corresponds to the classification:relevance column. We also
specify that we are writing to the "ideal-cs5604s16" table and give it the file to upload.

Direct Reading and Writing

Using the importTsv script has allowed us to work on our system in our own virtual environment, since we
are able to produce output files that can then be manually uploaded to the cluster. This was very useful while
we were waiting for the software on the cluster to be updated so that we would have access to necessary
libraries. Since the software on the cluster was updated, we moved our implementation onto the cluster;
making it so that our classification system directly reads data from, and writes data to, the database.

Directly reading and writing from the database has several advantages. The main advantage and the primary
motivation for doing it this way is that it allowed us to automate the process. Our system will be able to
work directly with the HBase table, and will not need someone to manually feed in data files as input and
handle the files it produces as output. This will greatly simplify the classification process for any future data
that gets added to the database.

Directly reading and writing from HBase is done via the pyspark library provided by Spark. The library
allows python to establish a connection to HBase which it can use to stream data back and forth. We first
created a rudimentary "hello world" version of this process working on our local virtual environment. This
simplistic version of the read/write functionality was able to scan the table for rows which fit some filter
parameter (in this case, they were in a specific collection). It would then use the data from each row to
populate another column in the same row.
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Since then, we have improved our reading and writing system to be fully end-to-end. The system can
now read information directly from HBase to perform its Frequent Pattern Mining, and write the prediction
results directly back into the table.

tweets

Figure 3.6: Python code for formatting data read from HBase.

Figure 3.6 shows a snippet of the code used to read and format data straight from HBase. We use Spark
to create a Resilient Distributed Dataset (RDD), then we perform several operations on that dataset. First,
we split the data into separate elements at every newline character. This will split the columns within the
same column family into individual RDD elements. next, we apply a filter to the data. This filter will get rid
of any data which is not desired. In this case we filter out elements which are not in the collection we are
currently processing, and elements which are not in the column family that we are interested in. Next, we
have two mapping functions. The first applies a regular expression to do some basic cleaning of the tweet
text. The second formats the data into a tuple containing first the id of the tweet and second the text of the
tweet. Finally, we convert the set of tuples into a dataframe and cache it in memory so that we can perform
the frequent pattern mining operations on it.

Writing back to HBase follows a similar procedure. Once we have processed the data and determined the
probability to store in HBase, we need to format the data into a tuple formatted as such:

(row key, [row key, column family, column name, valuel])

In our case, the row key is the tweet collection number and id, the column family is classification,
the column name is relevance, and the value is the probability. This information can then be written into
HBase via the saveAsNewAPIHadoopDataset function provided by pyspark.



Chapter 4

User Manual

4.1 Installation Requirements

In this documentation, we make the assumption that you have already installed at least Spark version 1.5.0
and have it configured properly. If you have not performed this step, you can find installation and setup
instructions at http://spark.apache.org/downloads.html.

The next step will be to clone the Git repository of our team. This can be found hosted on Github at:
https://github.com/hosamshahin/Spring2016_IR_Project.git

Finally, you will need to extract the small_data. zip file that can be found in the
Spring2016_IR_Project/data directory

4.2 Preparing the Server

In order for some of the Machine Learning libraries in Spark to work, you need to ensure that you have
libgfortran3 installed.

On a Debian based system, you can run the following command:

$ sudo apt—-get install libgfortran3

Next install Anaconda which is a completely free Python distribution. It includes more than 400 of the most
popular Python packages for science, math, engineering, and data analysis. For complete instructions on
how to download and install Anaconda go to:

https://www.continuum.io/downloads
Anaconda is shipped with IPython notebook, a powerful interactive shell for Python.

To set up Spark and IPython to run together and provide a nice web interface, there are a number of things
that need to be done.

Begin by creating an IPython profile for PySpark. This can be done using the command:

11
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$ ipython profile create pyspark

If you are running other IPython profiles, you may want to change the default port. This can be done by
modifying ~/ . ipython/profile_pyspark/ipython_notebook_config.py.

You can then change the default port within that file.

c = get_config()
# Simply find this line and change the port value
c.NotebookApp.port = <your port number>

Next the following lines need to be placed in .bashrc.

export PYTHONPATH=$SPARK_HOME/python:$PYTHONPATH
export PYTHONPATH=$SPARK_HOME/python/lib/py4j-0.8.2.1-src.zip:SPYTHONPATH

After this the .bashrc file should be reloaded by relogging in, or sourcing the .bashrc file.

To run the IPython server you should run the following command from within the cloned git repository,
replacing <IP> with the IP address of your server.

ipython notebook —--profile=pyspark —--no-browser --ip <IP>

You can then navigate to <IP>:<PORT> in your browser to get access to the IPython notebook. By default
the port will be 8888.

4.3 Using the IPython Notebook

Once the IPython notebook has been opened in the browser, open the Tweets_Classification-V2.ipynb
IPython notebook. You should see something similar to Figure 4.1.

In order to use the script, you will need to modify the base_dir variable in cell 10. Set this to point at the
data directory.

4.3.1 Using the Configuration File

To go further in using the script, you may need to make modifications tothe collections_config. json
file under data; see Figure 4.3. The provided configuration file is already configured to work with the six
small datasets that were assigned to the groups at the start of the semester. However, the frequent patterns
(FP) field has not been properly configured. This will need to be done for each collection as you work
through the tutorial.

To classify your data, you need to specify the table ID of your collectionin the collections_config. json
configuration file. You should model your entry off of one of the sample entries in the file, or modify a sam-

ple directly. It is also suggested that you update the name field to the name of your collection. At the
moment, don’t worry about the FP values.
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: J u pyter Tweets_CIassification—V2 Last Checkpoint: 35 minutes ago (unsaved changes) #
File Edit View Insert Cell Kernel Help | Python2 Q
B+ s« & B 4+ % M B C Code %/ E | CelToolbar

In [19]: | import codecs, re, json, os, time
from pyspark import SparkContext, SparkConf
from pyspark.mllib.fpm import FPGrowth
from pyspark.sql impeort SQLContext, Row
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer, IDF, StopWordsRemover

Create Spark and SQL context:

In [ ]: conf = SparkConf().setAppName('Text Classifier”)
# 1f not sc:
sc = SparkContext|conf=conf

In [21]: sglContext = SQLContext(sc)

Load Configuration File

In [22]): |def load config(config file):
Load collection configuration file.
with copen(config_file) as data_file:

config data = json.load(data file)
return config data

Parse Tweets to tweet_id and tweet_text

In [23]: def parse_tweet(line):
Parses a tweet record having the following format collectionId-tweetId<\t>tweetString

fields = line.strip().split("\t")

if len(fields) == 2:
# The follewing regex just strips of an URL (not just http), any punctuations,
# or Any non alphanumeric characters
# http://g9oo.gl/JBZXDT

text = re.sub("(€[A-Za-20-9]+)|(["0-9A-Za-z \t])|(\w+:\/\/\S+)"," ", fields[1l]).strip()
# remove terms <= 2 characters
text = ' '.join(filter(lambda x: len(x) > 2, text.split(" ")))

# return tuple of (collectionId-tweetld, text)
return (fields[0], text)

Load tweets from file into DataFrame:

In [24]): |def Load tweets(collection id):
tweets_file = os.path.join(base_dir , data_dir , "z_" + collection_id)
print('Loading " + tweets_file)
if not os.path.isdir(tweets_file):
print (tweets file + " folder doesn't exist.")
return False
tweets = sc.textFile(tweets_file) \
.map(parse_tweet) \
.filter(lambda x: x is not None) \
.map(lambda x: Row(id=x[0], text=x[1])) \
JtODF() M\
.cache()

Figure 4.1: IPython notebook

4.3.2 Selecting a Frequent Pattern

After setting the configuration file, begin at the first cell and press Shift + Enter to execute each cell in order.
Continue this until you reach “Manually choose frequent patterns and write them in the configuration file.”

You will now need to open each of the frequent pattern output files located at:
data/FPGrowth/«timestamp»_«collectionId»_«collection_name».txt
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"collections": [{
"Id":
"name" : rmanwings",
"type": "binary",
"FP": ["african", "lives"]

{

"Id": "541",
"name": "NAACPBombing",
"type": "binary",
"FP": ["bombing",

colorado"]

{

"Id": "668",

"name": "houstonflood",

"type": "binary",

"FP": ["cambodia", "insurance"]

{
"Id": "700",
"name": "wdbj7 shooting ",
"type": "binary",
"FP": ["unbelievable", "roanoke", "gun"]
{
"Id": "686",
"name" :
"type":
"health"]

"name" :
"type": "binary",
"FP": ["independenceday

n
]

"happy"]

Figure 4.2: Collections configuration file

You should now inspect the file for the tokens frequently found together. Look for high frequency patterns.
Choose a pattern that seems highly relevant to your collection. We suggest a pattern of two to four words
to strike a balance between over and under specification. An example of what this file might look like is
shown in Figure 4.3. The file is formatted as: the number of times a pattern occurred across the collection,
and then the pattern of words themselves. Keep in mind that this is a tokenized and unordered list for the
pattern, FPM only looks to see if those words appear within the tweet text, order is not considered.

Take the pattern and copy it as the value of “FP” in the configuration file.

5664 african stood lives charliehebdo world

5664 african stood lives charliehebdo germanwings
5664 african stood lives charliehebdo

5664 african stood lives

5664 african stood germanwings

5664 african stood charliehebdo world germanwings
5664 african stood charliehebdo world

5664 african stood charliehebdo germanwings

5664 african stood charliehebdo

5664 african stood

5664 african matter lives germanwings

5664 african matter lives

5664 african matter germanwings

5664 african matter

5664 african lives world germanwingq

5664 african lives world

5664 african lives charliehebdo world germanwings
5664 african lives charliehebdo world

5664 african lives charliehebdo germanwings

5664 african lives charliehebdo

5664 african charliehebdo world germanwings

5664 african charliehebdo world

5664 african charliehebdo germanwings

Figure 4.3: Frequent Patterns Mining algorithm output file for Germanwings collection
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4.3.3 Building a Training Set

After the frequent pattern has been selected and input into the configuration file, continue to step through
the script using Shift + Enter in each cell.

This will take you through the process of building a training set by identifying a positive sample set and a
negative sample set and placing those into a DataFrame.

4.3.4 Training a Classifier

Further progression through the script will actually use the training data constructed in the last step to train
a logistic regression classifier.

4.3.5 Running the Classifier

Finally, apply the classification model to our test data and provide a floating point prediction between
relevance (1.0) or non-relevance (0.0) for each tweet in the test data. This data can be found in the
predictions directory and has the same name formatting as the frequent pattern output files.

When running this classifier and getting an output that is a probability, it helps to know what the data looks
like. This helps us to decide where is a reasonable cut-off point for deciding relevance vs non-relevance.
This also allows us to judge how effectively a particular collection captures the intended event. We have
created histograms showing the distributions for each of the small collections. These histograms are shown
in Figure 4.4
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Figure 4.4: Histograms for the small collections of tweets
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Chapter 5

Developer Manual

5.1 Algorithms

5.1.1 Frequent Pattern Mining

Our methodology for constructing training data is based on a frequent pattern mining algorithm [3]. Spark.mllib
version 1.5 provides a parallel implementation of FP-growth, a popular algorithm for mining frequent item-
sets.

5.1.2 Logistic Regression

Logistic regression is a popular method to predict a binary response. It is a special case of Generalized
Linear models that predicts the probability of the outcome. A logistic regression model is constructed once
with training data and can then be applied to documents very efficiently, which makes it scale well. There are
several parameters to experiment with which are documented in the spark.mlib documentation. Assuming
the frequent patterns are constructed well, it can be applied to any collection. For more background and
more details about the implementation, refer to the documentation of the logistic regression in spark.mllib.

5.1.3 Dependencies
Java

You will want the latest version of Java, which at the time of this writing is Java Version 8 Update 73.
Download and installation instructions for your environment can be found at:

https://java.com/en/download/

The Hadoop cluster we are working with is currently running Java Version 7 Update 99. This version of
Java is capable of performing everything that we require for this work. However, due to security concerns
among other things we recommend using the latest stable version of Java if setting up a cluster from scratch.
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Python

You will need Python 2.6.6 (our work should be compatible with newer versions of the 2.x.x line, but we
have not tested it). Download and installation instructions for your environment can be found at:

https://www.python.org/downloads/

While the cluster that we have implemented our solution on is using Python 2.6.6, we recommend using the
latest stable version of the Python 2.x.x line if setting up a cluster from scratch.

5.1.4 Apache Spark

This system is built on Apache Spark 1.5.0, which can be downloaded at:
http://spark.apache.org/downloads.html

Any newer versions of Spark should also be compatible for the foreseeable future. So if setting up a cluster
from scratch, we recommend installing the latest stable version of Spark.
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Chapter 6

Plan

Our work on this project has happened in two phases. In the first phase, we attempted to create an initial
prototype working with a small set of sample data. This phase was accomplished mainly in our own external
environment so that we can experiment more freely with the technologies to gain a better understanding of
how they work and interact together.

Phase two of the project involved taking the work done in phase one and expanding it out to the other
small sets of data provided to us. This phase also includes a definition and implementation of an evaluation
approach. Phase one is small enough that we felt a subjective evaluation was sufficient, but as we expanded
it became essential to have a more concrete, quantitative measure of effectiveness.

Please see Table 6.1 for a rough weekly breakdown of work accomplished.
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Table 6.1: Weekly breakdown of work to be done.

Weeks End Date Tasks
Week 1 22 Jan. Understanding the classification task
Week 2 29 Jan.
* Understanding the classification task
* Read about Hadoop streaming using Python
Week 3 5 Feb. Start online tutorials about Hadoop and Apache Spark. [6][7]
Week 4 12 Feb. Continue online tutorials about Hadoop and Apache Spark. [4]
Week 5 19 Feb. Phase 1 will include only tweets small data set:
* Understanding the classification task
* Read about Hadoop streaming using Python
Week 6 26 Feb.
* Prepare training data using FPM
* Build classifier using Apache Spark
Week 7 4 March
* Build classifier using Apache Spark
* Prepare HBase Schema for data storage
Week 8 11 March Optimize classifier performance
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Weeks End Date Tasks
Week 9 18 March Phase 2 will include tweets and webpages:
* Run our methodology to classify the tweets on the cluster.
* Apply the Frequent Pattern methodology on the cleaned web-
pages provided by Collection Management team.
* Develop HBase interface through which the classifier predic-
tion output will be saved on HBase.

Week 10 | 25 March Design an evaluation approach to test and evaluate our methodology.

Week 11 | 1 April Discuss with GRAs and Solr team to finalize HBase schema.

Week 12 | 8 April Move functioning prototype over to newly updated Hadoop cluster.
Train multiple classifiers and pick the best model per collection.

Week 13 | 15 April More research on hyper-parameter optimization. Check the feasibility
of integrating hyper-parameters optimization library [1] output with
Spark.

Week 14 | 22 April Search for known approaches to select the most representative data
samples for each collection. Then check whether training a classifier
using these data samples will enhance the performance or not.

Week 15 | 29 April Final evaluations and modifications to the system.
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Chapter 7

Conclusion

We are very satisfied with the final state of our project. We have succesfully developed an end-to-end
system that can read data from HBase, classify all of the data, and write the results back. Our evaluation
has shown that the accuracy of the system could be improved slightly, but is largely in line with the manual
classification results we received from the class. Some additional structured evaluation would be able to
provide more insight into the differences between our processed data and the manually classified data. Our
system is also designed with future work in mind. The design of our system will make it easy to process
other small collections, and eventually expand out to larger collections.
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Chapter 8

Future Work

There are a few points with our work that need to be accomplished soon to provide the other groups working
with this project some useful information. First and foremost, we are in a position to provide the other
groups information regarding the precision of the small collections. This will be useful for them to know if
they should be working with the entirety of the collections or only a subset that we deem as related to the
small collection and the event it is supposed to encapsulate.

Further reaching future work would be combining multiple classifiers, trained on different aspects of the
same training set, into a single classifier that may provide a more robust prediction than any of the single
classifiers on their own.

Another aspect to look at would be a close collaboration with the work done by the Clustering team. It
would be interesting to compare how well the current method of training a classifier based on frequent
patterns would compare to training a classifier based on using the words that they used for their clustering
within a collection.

Looking even further out, our methodology needs to be evaluated on how it might handle collection growth.
These collections will ideally grow incrementally over time so there will need to be a way to apply a classifier
incrementally to the new data, but also potentially have this classifier receive feedback that might modify
it over time as things such as slang terms and the English language in general change. We do not believe
that implementing this is within the scope of our current project, but believe it would be a very interesting
extension on the work in the future.

23



Acknowledgements

We would like to acknowledge and thank the following for assisting and supporting us throughout this
project.

* NSF grant IIS - 1319578, III: Small: Integrated Digital Event Archiving and Library (IDEAL)

e Dr. Edward Fox

Digital Library Research Laboratory Graduate Research Assistants

— Sunshin Lee

— Mohamed Magdy Farag

e Other teams in CS 5604

* Virginia Tech IT Security Lab

24



Bibliography

Dan Bergstra James; Yamins and David D. Cox. “Hyperopt: A Python library for optimizing the hyper-
parameters of machine learning algorithms”. In: Proceedings of the 12th Python in Science Conference.
2013, pp. 13-20.

Xuewen Cui, Rongrong Tao, and Ruide Zhang. Classification Team Project for IDEAL in CS5604,
Spring 2015. http://vtechworks.lib.vt.edu/bitstream/handle/10919/52253/ReportClassify.pdf. 2015.

Jiawei Han, Jian Pei, and Yiwen Yin. “Mining frequent patterns without candidate generation”. In:
ACM SIGMOD Record. Vol. 29. 2. ACM. 2000, pp. 1-12.

Learn HBase. https://learnhbase.wordpress.com/2013/03/02/hbase-shell-commands/. April 2016.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. An Introduction to Information
Retrieval. Vol. 1. 1. Cambridge University Press Cambridge, 2008.

Spark Examples for Python. https://github.com/apache/spark/tree/master/examples/src/main/python.
February 2016.

Tutorial by Solr Team. https://canvas.vt.edu/courses/21271/files/folder/2016/Tutorials ?preview=691471.

25


http://vtechworks.lib.vt.edu/bitstream/handle/10919/52253/ReportClassify.pdf
https://learnhbase.wordpress.com/2013/03/02/hbase-shell-commands/
https://github.com/apache/spark/tree/master/examples/src/main/python
https://canvas.vt.edu/courses/21271/files/folder/2016/Tutorials?preview=691471

	Front page
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Literature Review
	2.1 Textbook
	2.2 Papers

	3 Requirements, Design, and Implementation
	3.1 Requirements
	3.2 Design
	3.3 Implementation
	3.3.1 Environment Set–Up
	3.3.2 Building the Training Data
	3.3.3 Training the Classifier
	3.3.4 Predicting the Class
	3.3.5 Evaluating the Classifier
	3.3.6 Interfacing with HBase


	4 User Manual
	4.1 Installation Requirements
	4.2 Preparing the Server
	4.3 Using the IPython Notebook
	4.3.1 Using the Configuration File
	4.3.2 Selecting a Frequent Pattern
	4.3.3 Building a Training Set
	4.3.4 Training a Classifier
	4.3.5 Running the Classifier


	5 Developer Manual
	5.1 Algorithms
	5.1.1 Frequent Pattern Mining
	5.1.2 Logistic Regression
	5.1.3 Dependencies
	5.1.4 Apache Spark


	6 Plan
	7 Conclusion
	8 Future Work
	Acknowledgements
	Bibliography

