
ANALYSIS AND IMPLEMENTATION OF

SOFTWARE REUSE MEASUREMENT

by

Carol G. Terry

Project and Report submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTERS OF INFORMATION SYSTEMS

APPROVED:

(As : 6a

W. Frakes, Chairman

C iW

C. Egyhazy.~ C. Fox

October, 1993

Blacksburg, Virginia

CR

LD

Ves
1993

rrr}

Analysis and Implementation of

Software Reuse Measurement

by Carol G. Terry

ABSTRACT

Software reuse has been shown to increase quality and productivity [Card et al 86]

[Browne et al 90] [Frakes 91] [Agresti and Evanco 92]. As researchers and development

organizations begin to recognize the potential benefits of systematic reuse of software,

formal measures of the amount of reuse in a given system or subsystem are needed. A

formal measurement of software reuse will provide software developers and managers

with the necessary data to track reuse progress. This project and report describe such a

measurement of parts-based reuse, building upon the reuse level metric and the rl

software tool as described by Frakes in [Frakes 90] and [Frakes 92].

This paper reviews the current research literature in the areas of software reuse and

software reuse metrics. The reuse metrics proposed by Frakes are extended to include

reuse frequency and a reuse complexity weighting. The metrics are formally defined.

Results from extensive testing of rl are reported and correlated with program size. The

enhancements made to the rl program include:

¢ specification of the reuse frequency metric,

e an additional call graph abstraction for reuse measurement,

¢ weighting of software components for complexity,

e allowing the user to specify the number of uses of a software element which

indicate reuse,

¢ and providing multiple choices for abstraction entities.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Bill Frakes, for his significant contribution to this

project and report. He provided many ideas along with constant encouragement that

pushed me to meet my goals. His professional expertise in the field of software reuse is

very evident and I consider myself fortunate to have had the opportunity to work with

him.

I would also like to acknowledge the support from my husband Ed that persisted

throughout the project. His patience for tolerating the demands of the project during a

"long" summer was admirable. I could not have made it without his love and

forgiveness.

Thanks to all my friends, family, and colleagues who were forced to listen to the daily

details of academia as I completed my Master's degree. Thanks for the kind ears and

encouraging words. I would like to especially acknowledge my parents and siblings who

taught me the value of education and the rewards of persistence and ambition.

TABLE OF CONTENTS

DL IMtrOdUction 00.0... cece cceeeeeeeessceeececssseaeeesesseeeesessssseeeeessesaeesesecscssseeeaessesseessesesaeaueees 1

1.1 Problem Definition 0... eeeeessceecoecnecesseseeeeseeeeeeesessssaseeeseresseeeasoeoeens 1

1.2 Organization Of this Paperc ee eeeeeseesseeceecceseeeessceesssecesececseeceeseeeesseeeeeas 2

2 Literature REVICWcecseceseesseccssecesssccecesceeeessceeeseeesecessacecsessncececesseneeesepeneenseeeseeney 4

2.1 Formal Software Metrics .0...........ecesscesssecesseecesssecsceeecesnsceeecseeecessseeeeeesseeeneens 4

2.1.1 Software complexity MEUriCs .0.........seeeseeoscsseeeeecesseseeseessesessneeees 5

2.1.2 Objective and algorithmic measurements cesses eseeeeeeens 5

2.1.3 Process and product MEUICS 00.0... ceteessesescessesceeeseeecenseeenecueeesees 6

2.1.4 Models of the software development ProcesSscccceeeeereeeees 6

2.1.5 Meta-Metrics 0.0... eeesseesssceeesseeesecceecesscneeeecessuceecesecssaeeecesesseasens 7

2.1.6 SUMMATY 000... ceessceesseeseeceeeeecnseesescecessseceessseseesesecsesssscescseeeoeeeneeeees 7

2.2 Software REUSE .0..... es ceesseesecsssessecssceessceesseessecesseceesesecsaecessaesessaesessaeeeeoeees 8

2.2.1 Software Reuse Terminology............:ccssccccsscceesseeeceesseceeeeseeeesessaees 9

2.2.2 The Emerging Technology of Software Reuseceeeeeeeeeeee 11

2.2.3 Software Reuse in the Object-Oriented Environment.................... 13

2.2.4 Implementation of Software Reuse «0.0.0.0... ee eseeceeseeeeseeeeeoeeeees 18

2.3 Software Reuse Measurementesssscstesseeceeseecseecesseecessaececeteeeeceeeeees 21

2.3.1 Existing Software Reuse MEUrics cc eessecesesseeceenseeecesesaceeeeens 22

2.3.1.1 Economic Models 0000.0... eeceseeesecceeesseceeeesseeeeescneeeeeoes 24

2.3.1.2 Maturity Models .0....... cee eecseeseeeesseceseeseeeeessceeeesssnseeeenees 29

2.3.1.3 Reuse Ratio Modelseesesceceesscceceessseecececesesaeaeseseees 32

2.3.1.4 Reuse Measurement in the Object-Oriented

ENVIFOMMEDL 00000... eee cess seeeeceessececeeeeeeeseesaaceseceseceeeeeseeeeeeaeeeeeees 35

2.3.2 Measuring Software Reuse Potential 20.0.0... cee eseeseeeeessneeceesseeeeees 37

2.3.3 Relation of Reuse to Quality and Productivityceesceeeeeeeees 38

2.4 Literature Review SUMIMALY:.cccccceessscesscecsscesseetecsensesecesneeseceseeesecsesars 42

3 The Reuse Metrics oc eee ceecsescssecseccesececssecsseescceescesneeesacencneeseeceseceseceeeeeeeeneeesseeeeees 44

BL TMtrOductiOn oo... cece eceesccesecescceesueceecesecessceesnecesseesssesessseepsnesseseesesseesesssesens 44

3.2 Definition of Reuse Level cece ccccescsccessecccssessccesscenscecesceccesessanacceaucses 45

3.3 Related Metrics 20.0... eeceecceecesseecesseneeeesssessesseeeesessaseecensseeaseecessaesenceeneeeeeees 50

3.3.1 Reuse Frequency oc eeeesssceessecesseecsscesssesesssseesseneeseeesseeaeceeeaes 50

3.3.2 Complexity Weighting... ee cesseseeseesssseesenseenstssascessseesevensees 53

4 The rl Software... eee esesecsensesenecesacecsseceeesecseneecssesesseeseceesecseececsseeseessasecsssseeassseeaees 55

4.1 OVETVIEW 00... eececcecssscececeenscececesenccescsesaceeenentsaceeeesesesseceeaecesesessessesasaaaassenes 55

4.1.1 Purpose of the rl Software ce eecssssessesesceesssesesseecnseeessseeessenees 55

4.1.2 Platform and Software Compatibility 00.0. ce seeeeeseeeseeeeees 56

4.2 rl Emhancementisccceescsscccstcesesecseessccessesssecescseconssesseseneesseseessesseesesseees 58

4.2.1 Definition of Reuse Frequencycsssccsssscesssseereenseesesenseeeseens 60

4.2.2 Complexity Weighting 0.0... csccsceeesseeessseesessesessesteeessssnsesescsees 61

4.2.3 Specification of internal threshold level and external

threshold level 0.0.0... ceeecssceseeeessececseceecsceeescesensoaeeeesaceseesseeaeesseseanaeseaees 62

4.2.4 Option to use multicall graph abstraction 20.0... sees eeeeeeeeeees 63

4.2.5 High level and low level abstractions:ccsessseseeseesssseeeees 64

4.2.6 Option to include main() in the function COUNL..........eeeeeeeeeee 64

4.3 Examples Of USC 00.0.0... cesscccseeceseceesseceeeeeseeceeeeeceeseseeeeeccaecesesaeeeesseeeecesseeevens 65

4.3.1 Running rl from a makefilee eee eeeecee cece ce ceseneeeeeseueceseseneseons 68

S Testing 1] oo... cesscssecececsencssscesssesseessecsnecseesesscesseeensecsasessseessaesenseecsaceecaueesesuececsaesessneees 69

5.1 The Testing Procedure 00.0... .ccccescsecssecsssscceseceesnsecesscecsessececsccceessseeeeceeoaeeeees 69

5.2 Testing Results 0... ee ecsecsecseceeseecseeesscessceessseesseeessseeessesensseessosenesseseoes 71

6 Conclusions and Future Work... cssscsesssscenceeccecseesssnceeseeessecoesaeceeaneseseaesesaeesesateses 77

REfETENCES 00.0... ce eseecsescceeecescessscosecncesncesseseesscesscnseceacssssensecasesucscsaecsceseneesaeecsaeeesaeessaesees 79

Appendix A: Definition of Reuse Metrics in Set Notation::cccsscccseseccesreneeeeeeeeees 84

A.1 Abstract Formal Reuse Metric Definitions eee sseeeeeeeeeeees 84

A.2 Formal Reuse Metric Definitions for the C Language................... 89

Appendix B: The rl Software oo... ce eessceeceeenecneeetseceeacesseeceeaeeesceesnaesesaaeseseateesateres 93

Appendix C: rl Manual Page... ceescsssecssrcecssecsessecssceesseesesssesecsesaseeeseceeeescenseesenerss 106

Appendix D: C Test Suite 0.0... ce sscesneceeseeeesssessecseceeecscessaeenecessecesseecssessacensnesesaeones 111

LIST OF TABLES

Table 1: Types of Software Reuse .00.........ccssecssssseceescesececsseeceecesseeseseeeesseeeenseeecesseeesseees 10

Table 2: Software Reuse in C V8. C++ oo. csssecesssssseeeseeessecssseecrseessseessssaeseseeesssuensenaaers 17

Table 3: Questions and Answers about Software Reuse Implementation 19

Table 4: Models for Reuse Measurement cee eesteeserceessecssseccsseeessonsseessossessscneees 23

Table 5: Barnes' and Bollinger's economic investment MOdelsseecesseeeeseseeeenes 27

Table 6: Costs and payoff threshold values for reusable componentscseceeeees 28

Table 7: Hudson and Kolton Reuse Maturity Model ces eseseeseeseseeeseeeceseeseeeeeees 31

Table 8: Characteristics of SEL subsystems [Agresti and Evanco 92]ceeseeees 39

Table 9: Mean Development Time and 95% Confidence Intervals in Hours 40

Table 10: Mean Number of Errors and 95% Confidence Intervals... ee eeeeeeeeeoees 40

Table 11: Reuse level values for Figure 1.00.0... eee scceceecseeeeseceseeseeceseeeeeaesesececseeoeeoos 48

Table 12: Reuse level values for the multicall graph abstraction

SHOWN 1N FIQUC 2 . oo... ceesscecssssecsesecceesaccessescecesseccesseseesessanseceesseasesseseeesececsecasecesenseeaes 50

Table 13: Reuse frequency values for Figure 1. oo... eee ceseeeeeeeeeceeeeecesseaessaeeeessees 53

Table 14: Reuse frequency values for the multicall graph abstraction

SHOWN iN FiQure 2. 20.2... eceessecssccesseecesececsscesceeeesenseesencessacevseeeesseecesesseeseesscaseesescaseeeesees 53

Table 15: Reuse Metric / Abstraction Matrix ec cseescsesesesesseecseecsaecseseneecsessnsesesesesees 59

Table 16: Summary Statistics for Reuse Level ..0....... cc ceeeeescsseeeceteesseeceeceesesnaeceesssenenes 72

Table 17: Summary Statistics for Reuse Frequencyscesesceenceeeeeeeeeseeeaeeeeeneees 74

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

LIST OF FIGURES

Call graph abstraction for higher level item H ou... eee eeeeeeceseeeeeeeeeeeees 47

Multicall graph abstraction for higher level item H eee le ee neeenenees 49

Tl Reuse Frequency Output .0..... cece ceccecssececseececsseesesseeecesaeeeessseeeeesenseeseees 61

rl Reuse Complexity Weighting Output00 eee cseeceereecesneeeeneeseeneeees 62

Sample rl OUtPUL 20.0... ee ceeceessecesneeesseeeceseeesseeencrsesecessessneseesserseeacessenesesenees 66

Internal Reuse Level vs. log NCSL oo... ee eeseeceeseceesseeeesesneeeensssnseeeeanseseeees 73

External Reuse Level vs. log NCSL... ec eececeesseceseeeesceonsacensseaeeeseeenseeesees 74

Internal reuse level vs. Internal threshold leveleceseceseceseceseeeeseseeeeees 75

External reuse level vs. External threshold level... eee eeeeeeereeeeeeeeees 76

Vii

1 Introduction

1.1 Problem Definition

Many computer professionals believe that software is the most expensive component of a

system. Hardware and communication capabilities have improved to a level that exceeds

the speed and efficiency with which software can be developed. [Boehm 81] With this

problem in mind, corporate managers are actively seeking progressive and effective

methods to improve the software development process [Keyes 92]. An important part of

improving the development process is the ability to track progress and measure the

amount of improvement that occurs over time [Conte et al 86].

Software reuse is recognized as a method for dramatically reducing the time and expense

of software development. By using existing software, development time is reduced and

software quality is improved [Card et al 86]. As organizations implement software reuse

programs in an effort to improve productivity and reliability, they must be able to

measure their progress and identify what reuse strategies are most effective. To satisfy

the need to measure reuse, this project and report present an empirical approach to reuse

measurement. The objective of this work is to extend the reuse level [Frakes 90] metric,

define the metric formally, and demonstrate the metric in an enhanced version of the 7/

[Frakes 92] program.

1.2 Organization of this paper

This paper presents a summary of software metrics and an in-depth review of software

reuse metrics. The proposed extensions to and applications of the reuse level metric are

explained in detail.

Chapter One gives a global definition of the problem and states the purpose of this project

and report.

Chapter Two provides important background information in the areas of software

measurement and software reuse. Justification for a software reuse measurement is

given along with a thorough review of the literature in this area.

The actual metrics proposed by this research are presented in Chapter Three. An

informal overview will acquaint the reader with the terms and definitions necessary for

more detailed explanations. The reuse level and reuse frequency metrics are discussed in

detail, along with a formal description of the metrics.

Chapter Four discusses the 7/ program which has been developed to measure software

reuse in C programs. A detailed description of the software is given as well as samples of

its use.

Chapter Five contains a discussion of testing the rl software. Conclusions on the amount

of reuse found in the set of test programs are given, as well as correlations between the

amount of reuse and program size.

Finally, Chapter Six presents a discussion of future work and conclusions obtained from

this research.

The appendices contain the source code for the rl software and relevant documentation.

They also contain listings of the source code used to test the rl program.

2 Literature Review

2.1 Formal Software Metrics

As in all engineering disciplines, measurement of software products and processes

provides a quantitative analysis which can be used to improve the engineering process.

Sommerville defines a software metric as "any measurement which relates to a software

system, process or related documentation." [Sommerville 89]. It is important to define

precise metrics so that different applications of a metric to the same program will obtain

identical results. The field of software measurement has received abundant attention in

recent literature; researchers are striving to reject the common criticism of poor empirical

methodology and lack of theoretical foundation within the field [Baker et al 90].

In their book Software Engineering Metrics and Models, Conte, Dunsmore and Shen

[Conte et al 86] identify five broad attributes of software metrics: software complexity

metrics, objective and algorithmic measurements, process and product metrics, models of

the software development process, and meta-metrics. As background information for

future discussions, the next five sections explain each of these attributes. Much of this

information is from [Conte et al 86].

2.1.1 Software complexity metrics

The complexity of a unit of software is determined by characteristics of the software itself

as well as its interaction with other systems. A complexity metric reflects the difficulty

one encounters in the design, coding, testing, or maintaining of the software system.

Types of complexity include problem complexity, design complexity, and product

complexity. Valid complexity metrics can be obtained objectively and have direct impact

on program development metrics such as effort. Common complexity measures include

McCabe's cyclomatic number, which uses graph theoretic techniques, and Halstead's

programming effort, which measures complexity by considering the number of unique

operators and operands and their frequency in a program [Sommerville 89]. A very

simple measure of complexity is a count of the number of source lines of code in a

program [Nejmeh 88]. As a program increases in size, it also increases in complexity.

An equivalent size measure includes consideration for reused code vs. newly developed

code [Conte et al 86].

2.1.2 Objective and algorithmic measurements

According to Conte, et. al., an objective, or algorithmic, measurement "is one that can be

computed precisely according to an algorithm. Its value does not change due to changes

in time, place, or observer." This definition implies the mathematical reliability of an

objective measurement, allowing comparable results for research. Objective

measurements have historically been difficult; researchers often disagree on how to

define a metric, and for some abstract concepts, there are no algorithms that accurately

capture them.

2.1.3 Process and product metrics

Software metrics are applied to the software product or to the software development

process. Product metrics are measures of the software product. Products are

deliverables, artifacts, or, in general, documents that result from the activities during the

development life cycle. Example product metrics are size of the program, logic structure

complexity, and data structure complexity. Process metrics quantify attributes of the

development process and of the development environment. Resource metrics are process

metrics, measuring the experience of personnel or the cost of development. Effort and

cost measurements are extremely important to management of development projects.

They are divided into two categories: the micro-level of measurement for effort expended

by individual programmers on small projects, and the macro-level of measurement for

effort expended by teams of programmers on large projects.

2.1.4 Models of the software development process

Software development models are mathematical models that deal with the software

development process. A model is represented by the general form

Y=f (XJ, X2, 4 Xn)

where y is the dependent variable and x;, x2, ..., X, are independent variables. In a

software development model, the dependent variable is a product or process metric. The

independent variables are product- or process-related. For example, the dependent

variable might be development cost or effort, and the independent variables might include

product complexity and the amount of reuse in the product.

A model may be theoretical or data-driven. Theoretical models are based on

hypothesized relationships among factors, independent of actual data. Data-driven

models are the result of statistical analysis of data obtained in empirical testing.

2.1.5 Meta-metrics

A meta-metric is a measure of a software metric. Conte, et. al. suggest that simplicity,

reliability, validity, robustness, prescriptiveness, and analyzability are properties, or

metrics, which can be used to evaluate a proposed metric. Other sources [Prather

84][Fenton and Melton 90][Weyuker 88] propose a formal framework in which

complexity measures can be compared and contrasted. Specific axioms are presented

which may be applied to a metric to asses its validity and reliability.

2.1.6 Summary

Many different types of metrics exist to measure aspects of software throughout the

development cycle. Design metrics attempt to measure program modularization as well

as the amount of coupling, cohesion and complexity within the design. Defect metrics

determine the amount of errors or defects within a program; three typical metrics are: 1)

number of changes required in the design, 2) number of errors, and 3) number of program

changes. Software reliability metrics are related to defects within a system, providing the

probability of no failure during a given time interval. Metrics are also defined to assess

the quality and completeness of a testing strategy.

The recent trend of software development organizations toward total quality management

has increased the importance of quality measurement. Developers are recognizing the

value of quality products and quality processes to achieve those products [Keyes 92].

Inherent in the push for quality is the need for measurement so that progress can be

tracked and improved. A reliable and complete measurement technique is imperative for

any engineering discipline. As Conte, et. al. state, "Systematic collection of [...] useful

metrics is a necessary prerequisite if the software development process is ever to achieve

the status of an engineering discipline." [Conte et al 86]

2.2 Software Reuse

A common method of problem solving is to apply a known solution to similar new

problems. When the solution does not exactly fit the problem, the solution is adapted or

extended. Proven solutions become accepted and standardized. These techniques apply

to the world of software engineering as they do to everyday life. In software engineering,

the reuse of software components is known to result in substantial quality and

productivity payoffs [Agresti and Evanco 92][Card et al 86][Chen and Lee 93][Frakes

91]. Recent estimates of the quality and productivity payoffs from reuse fall between 10

and 90 percent [Frakes 91]. With reuse, software development becomes a capital

investment.

With growing recognition that software reuse is economically viable, the market is

demanding tools to assist the process of reuse. Most of these tools focus on the reuse of

source code; methods of storing, searching, and retrieving source code components are

becoming more common in development environments. Frakes defines software reuse as

"the use of existing engineering knowledge or artifacts to build new systems" [Frakes 93].

Software reuse can apply to any product of the development life cycle, not only to

fragments of source code. At each phase of the development process, developers should

consider how previously completed work can be used to reduce the effort needed for the

current task. This means that developers can pursue reuse of requirements documents,

system specifications, design structures, and any other development artifact [Barnes and

Bollinger 91]. Jones [Jones 93] identifies ten potentially reusable aspects of software

projects:

1. architectures 6. estimates (templates)

2. source code 7. human interfaces

3. data 8. plans

4. designs 9, requirements

5. documentation 10. test cases

2.2.1 Software Reuse Terminology

Table 1 summarizes some types of software reuse that are defined in the research

literature. While other references may precede the one mentioned in the description,

information about each concept can be found in the listed reference. This list affirms the

attention that reuse is currently receiving, and reveals the range of terms and definitions

used to describe software reuse.

Table 1: Types of Software Reuse

Type of Reuse Description

public Fenton [Fen91] defines public reuse as "the proportion of a product which was
constructed externally." See external .

private Fenton [Fen91] defines private reuse as "the extent to which modules within a
product are reused within the same product." See internal .

external External reuse level [Frakes 90] is the number of lower level items from an
external repository in a higher level item divided by the total number of
lower level items in the higher level item. See public.

internal Internal reuse level [Frakes 90] is the number of lower level items not from
an external repository which are used more than once divided by the total
number of lower level items not from an extemal repository. See private.

verbatim Bieman and Karunanithi define verbatim reuse as reuse of some item without
modifications [Bieman and Karunanithi 93]. See black-box.

generic Generic reuse is reuse of generic packages, such as templates for packages or
subprograms [Bieman and Karunanithi 93].

leveraged Bieman and Karunanithi define leveraged reuse as reuse with modifications
{[Bieman and Karunanithi 93].

black-box Black-box reuse is the reuse of software components without any
modification [Prieto-Diaz 93]. See verbatim..

white-box White-box reuse is the reuse of components by modification and adaptation
[Prieto-Diaz 93]. See leveraged.

direct Direct reuse is reuse without going through an intermediate entity [BK].
indirect Indirect reuse is reuse through an intermediate entity. The level of indirection

is the number of intermediate entities between the reusing item and the item
being reused [Bieman and Karunanithi 93].

adaptive Adaptive reuse is a reuse strategy which uses large software structures as
invariants and restricts variability to low-level, isolated locations. An
example is changing arguments to parameterized modules [Barnes and
Bollinger 91].

compositional Compositional reuse is a reuse strategy which uses small parts as invariants;
variant functionality links those parts together. Programming in a high level
language is an example [Barnes and Bollinger 91].

vertical scope Vertical reuse is reuse within the same application or domain. An example is
domain analysis or domain modeling [Prieto-Diaz 93].

horizontal scope Horizontal reuse is reuse of generic parts in different applications. Booch Ada
Parts and other subroutine libraries are examples [Prieto-Diaz 93].

planned mode Planned reuse is the systematic and formal practice of reuse as found in
software factories [Prieto-Diaz 93].

ad-hoc mode Ad-hoc reuse refers to the selection of components which are not designed
for reuse from general libraries; reuse is conducted by the individual in an
informal manner [Prieto-Diaz 93].

compositional Compositional reuse is the use of existing components as building blocks for
new systems. The Unix shell is an example [Prieto-Diaz 93].

generative Generative reuse is reuse at the specification level with application or code
generators. Generative reuse offers the "highest potential payoff." The
Refine and MetaTool systems are state of the art examples [Prieto-Diaz 93].

reuse-in-the-
small

Reuse-in-the-small is the reuse of components which are dependent upon the
environment of the application for full functionality. Favaro asserts that
component-oriented reuse is reuse-in-the-small [Favaro 91].

reuse-in-the-
large Reuse-in-the-large is the use of large, self-contained packages such as

spreadsheets and operating systems [Favaro 91].

10

The terms in the table describe various reuse issues. They address the quantity of reuse

that occurs in a given product and methods of reuse implementation. Terms such as

reuse-in-the-large and reuse-in-the-small provide categorization of the reused

component. Some terms in the table overlap in meaning. For example, the terms public

and external both describe the part of a product which was constructed externally; private

and internal describe the part of a product which was not constructed externally but is

developed and reused within a single product. The terms verbatim and black-box both

describe reuse without modification; leveraged and white-box describe reuse with

modification.

2.2.2 The Emerging Technology of Software Reuse

A software development environment supports the software development process. One

part of a development environment might be a tool to assist the reuse of existing software

components. Reuse libraries and classification systems are common functions within

such a tool. Each reusable component must be efficiently stored, retrieved, and

represented so that it can be found, understood, and integrated. In their paper

"Representing reusable software," [Frakes and Gandel 90] propose a framework for

software reuse representation and discuss methods of representing reusable components.

The framework for reuse representation is intended to encompass any life-cycle object.

Frakes and Gandel group methods for representing reusable software into three

categories: indexing languages from library and information science, knowledge-based

methods from AI, and hypertext. Catalogs and indexes are traditionally used to provide

searching mechanisms for software components that satisfy a need. Indexing languages

11

provide an interface to the search engine; it defines an item's location and summarizes its

content. Frakes and Gandel extensively discuss the range of indexing languages now

available and apply the languages to software reuse. Several knowledge-based methods

of representations have developed from the field of Artificial Intelligence. Semantic nets,

rules, and frames are discussed. Hypertext provides a structure to navigate text through a

series of links. Several commercial software library retrieval systems incorporate

hypertext technology.

Reusable component representation, storage and retrieval systems are being developed

commercially and for research. At the University of Texas, for example, Brown, et. al.

[Browne et al 90] have developed the Reusability-Oriented Parallel programming

Environment (ROPE), a software component reuse system which helps a designer find

and understand components using a classification method called structured relational

classification. ROPE is integrated with a development environment called CODE

(Computation-Oriented Display Environment), which supports construction of parallel

programs using a declarative and hierarchical graph model of computation. ROPE

supports reuse of both design and code components, focusing on the key issues of

reusability: finding components, then understanding, modifying, and combining them.

Biggerstaff [Frakes 91] identifies the technologies that enable reuse: reuse libraries,

classification systems, CASE tools, and object-oriented programming languages. The

topic of reuse in an object-oriented environment is addressed in the next section of this

paper. CASE tools provide a standardized environment to promote reuse. It should be

pointed out that high technology within a reuse program is important but not essential to

the success of the program [Frakes 91].

12

2.2.3 Software Reuse in the Object-Oriented Environment

In the above discussion, object-oriented programming languages is listed as one

technology that enables reuse. Some researchers believe that the architecture of the

object-oriented methodology increases reuse potential [McGregor and Sykes 92][Smith

90][Frakes 91]. They assert that aspects of the architecture such as classification,

abstraction, and inheritance support and enable software reuse. Entire books are

dedicated to the subject of effectively reusing software in the object-oriented environment

[McGregor and Sykes 92][Smith 90]. A recent article by Prieto-Diaz states that "object

Orientation is seen as the technique of the future for reuse" [Prieto-Diaz 93]. Yet with all

the speculation, empirical evidence of the benefits of object orientation for reuse is

limited.

[McGregor and Sykes 92] identifies the following levels of reuse which can occur in the

object-oriented paradigm:

e Abstract-level reuse. This is the use of high-level abstractions within an

object-oriented inheritance structure as the foundation for new ideas or

additional classification schemes.

e Instance-level reuse. Instance-level reuse is the most common form of

reuse in an object-oriented environment. It is defined as simply creating

an instance of an existing class.

¢ Customization reuse. This is the use of inheritance to support

incremental development. A new application may inherit information

from an existing class, overriding certain methods and adding new

behaviors.

13

¢ Source code reuse. This is the low-level modification of an existing

class to change its performance characteristics.

Several researchers identify aspects of the object-oriented paradigm which support

software reuse [McGregor and Sykes 92][Smith 90][Owens 93]. Before addressing those

aspects, it will be helpful to know the characteristics of a good design for reuse. The

working group on Design for Reuse at the Fifth Annual Workshop on Institutionalizing

Software Reuse lists the following characteristics of a good design for reuse [Griss and

Tracz 93]:

1. Strive to reuse black-box components, not cut-and-pasted source code.

Black-box reuse is defined in Table 1 as "the reuse of software components without any

modification." For effective reuse, design your system to reuse complete, unmodified

software components.

2. Identify, encapsulate, and specify commonalities and variabilites.

The common attributes of reusable components should be identified and explicitly listed.

Likewise, the differences also need to be recognized.

3. Separate specification of abstract interface from implementation.

Implementation details of a reusable component should be independent of the interface

which a client will use to access the component. Thus implementation details can be

modified or enhanced without altering the abstract interface. Abstract data types are an

important part of this procedure.

4. Do not allow a client to break a component's abstraction.

14

Abstraction is a conceptual generalization which captures relevant aspects of a set of

objects while leaving out irrelevant details [Krueger 92]. A client of a reusable

component should be able to integrate the component with parameterization and

extension without violating the abstract design.

5. Extend component behavior by addition only, not by modification.

The reusability of a component is enhanced if it can be adapted by adding functionality to

the component without altering the original component's definition or implementation.

The literature identifies the following aspects of the object-oriented paradigm which

support the above characteristics of a good design for reuse:

¢ Encapsulation - The class structure of object-oriented systems encapsulate data and

procedures into functional components [Owens 93][Smith 90].

¢ Abstraction - Object-oriented languages provide for the development of a specification

of a class that is separate from the implementation. This hides implementation

details and supports reuse without requiring understanding of a specific class

implementation [McGregor and Sykes 92].

¢ Integration - Owens [Owens 93] identifies two features of object-oriented methods that

support integration of components. The inheritance mechanism specifies

commonality and dependence between modules. Secondly, a framework is a

generic class architecture which specifies the relationship between classes within

a library or a family of applications [McGregor and Sykes 92].

e Incremental development - The object-oriented environment supports the enhancement

of component behavior by addition rather than modification. A class does not

15

need to be fully implemented to be useful; evolutionary development is a natural

tendency in the object-oriented paradigm [McGregor and Sykes 92].

Limited empirical evidence showing the benefits of the object-oriented paradigm toward

software reuse does exist. In a case study by Owens [Owens 93], a C library of device

I/O functions was used as a starting point in the comparison of procedural (C) code and

object-oriented (C++) code. Owens states that the C library, containing over two hundred

functions, is reasonably modular, and each module has fairly high cohesion.

The library was redesigned in the object-oriented paradigm and a C++ class library was

implemented. Functions which were common to several modules were abstracted into

parent classes, leading to increased internal reuse. To support the generic architecture,

variabilities were encapsulated in parameters and virtual functions. Derived classes

provided enhanced versions of base classes. The class library provided enhanced reuse

via inheritance and "has proven easier to maintain than the C function library." Specific

examples of C++ classes show improvements in flow control decisions, variable security,

and encapsulation.

To measure the amount of reuse in the C library and the new C++ library, the reuse level

measurement tool ri [Frakes 90] was run on both sets of code. The C++ code was

measured by using cfront (a C++ to C translator from AT&T) to produce C code, and rl

was run on the result. The results are summarized:

16

Table 2: Software Reuse in C vs. C++ [Owens 93]

C library C++ library

Number of Modules 10 12

Internal Functions Reused 68 80

External Functions Used 25 25

Total Functions Used 229 209

Internal Reuse Level 29% 38%

External Reuse Level 11% 12%
The results show an increase in the number of internal functions reused and a decrease in

the total number of functions, leading to a higher internal reuse level. (See the discussion

of [Frakes 90] in Section 2.3.1.3 for precise definitions of internal reuse level and the

other terms in the table.) The C++ library has more functionality with fewer C functions,

indicating that "internal reuse played a significant part in improving this library.”

Another study of reuse in the object-oriented environment was conducted by Chen and

Lee [Chen and Lee 93]. They developed an environment, based on an object-oriented

approach, to design, manufacture and use reusable C++ components. A controlled

experiment was conducted to substantiate the reuse approach in terms of software

productivity and quality. Results showed improvements in software productivity.

Measured in lines of code per hour (LOC/hr), productivity increased from 30 to 90%

using the proposed construction approach. When the effort required to produce new code

is greater than the effort of reusing reusable code, the benefits of reusability are in

proportion to productivity.

The experiment conducted by Owens validates the improvement in software reuse in an

object-oriented environment, showing more reuse in a C++ rewrite than in the original C

17

system. Chen and Lee validate the benefits of reuse in C++ in terms of quality and

productivity. However, there is no substantial evidence that software reuse, along with

additional quality and productivity, is significantly easier to obtain in the object-oriented

paradigm. While theoretical speculations abound, empirical evidence is lacking.

2.2.4 Implementation of Software Reuse

According to Frakes [Frakes 92], "software reuse is widely believed to be the most

promising technology for significantly improving software quality and productivity."

To be successful, however, research shows that implementation of a reuse program must

be planned, deliberate, and systematic [Favaro 91][Frakes 91][Prieto-Diaz 93]. This

section discusses some issues that an organization must address as it implements a reuse

program. Reuse measurement Is such an issue.

Table 3 shows the primary motivations for software reuse, the factors that affect it, and

the reasons it may not succeed. This information is from [Frakes 93].

18

Table 3: Questions and Answers about Software Reuse Implementation [Frakes 93]

| Questions about software reuse implementation:

1. Why Try It?
® Improved productivity e Better early estimates

e Improved quality and reliability e Faster time to market
e Better bid estimation

2. What Issues Affect it?

e Managerial e Legal
® Economic e Technical

3. Why Will It Not Succeed?
* No attempt to reuse e Part doesn't exist

® Part isn't available e Part isn't found
e Part isn't understood e Part isn't valid
e Part can't be integrated

Section 2.1.4 discussed methods of modeling for the software development process.

Frakes [Frakes 93] identifies the model for the reuse industrial experiment:

benefits = f(reuse level) = g(reuse factors).

The reuse benefits, improved quality and productivity, are a function of the reuse level,

and the reuse level is a function of reuse factors. Reuse factors fall into four categories,

identified in Table 3: managerial, economic, legal, and technical. Several sources show

that management support is an essential ingredient of a successful reuse program [Frakes

93][Favaro 91][Frakes 91][Nunamaker and Chen 89]. Management must enforce policies

that encourage standardization and component reuse as well as provide continuous

education regarding components [Frakes 91]. The economic viability for software reuse

must be created and maintained. The topic of measuring the success of reuse according

to the degree of economic benefits will be addressed in Section 2.3.1.1. Legal issues

regarding component creation and reuse by other organizations must also be addressed.

And finally, technical issues such as reuse support tools and the reuse approach, parts-

19

based or formal-language-based, must be determined. A parts-based approach to reuse

involves a programmer who integrates the software parts by hand. Domain-knowledge is

encoded into an application generator in the formal-language-based approach [Frakes 93].

The reuse failure mode model was developed by Frakes to determine why reuse is not

taking place in an organization [Frakes 90]. Failure mode analysis is the detailed

examination of some failed product or process to determine why it failed, and to

determine corrective action. The third question in Table 3 summarizes a set of failure

modes for software reuse. The given modes are a first-level analysis of an

interdependent set of causes for failure. At least two failure modes relate to the lack of

education or training of software developers: part isn't understood and part can't be

integrated. In two different case studies, insufficient training was found to be a barrier to

reuse. Favaro [Favaro 91] reports that the limited knowledge of essential concepts such

as abstraction and object-oriented design significantly contributed to the difficulty of

integrating reusable components into applications. Schaefer [Frakes 91] agrees. He

asserts that technology enabling reuse such as modular design and data abstraction is not

exploited because developers are not able to effectively apply it.

Nunamaker and Chen [Nunamaker and Chen 89] assert that software developers face

technical and social obstacles to the successful implementation of software reuse. The

technical issues evolve around a development environment that effectively supports

reusability. The social obstacles are:

1. Software developers must be willing to share software development

knowledge.

2. Developers must be willing to use existing solutions.

20

3. Appropriate resource allocation must occur for the identification and

development of common functions, utilities, and tools.

4. Measures to keep track of the reuse rates of various software components

should be established to assist in reviewing and improving the reuse program.

Thus, reuse measurement is established as an important element of an effective reuse

program. Measures of the amount of reuse and methods to obtain the measures must be

defined so that the effectiveness of the reuse program can be monitored and evaluated.

The remainder of this paper will focus on the measurement of software reuse, beginning

with a review of the literature.

2.3 Software Reuse Measurement

Combining the philosophies of software measurement and software reuse, software reuse

measurement is the quantitative measurement of the amount of reuse of some software

artifact within a defined scope. Most models of reuse measurement are objective product

metrics, measuring the amount of reuse within a software product. As shown in the next

section, however, a reuse maturity model categorizes the reuse process. (See Sections

2.1.2 and 2.1.3 for more information regarding objective/subjective and product/process

metrics.) Some measurements of software reuse exist, but few are actively used in

industry. Most measurements are based on comparisons between the length or size of

reused code and the size of newly written code in a software product.

The primary motivations for measuring software reuse are: [Frakes 92]

21

¢ to monitor progress of the amount of reuse over time in the quest for achieving

goals;

¢ to provide a basis for determining the effects of reuse on software productivity

and quality;

¢ to provide insight in developing software that is reusable;

¢ to determine the effects of particular actions on the amount of reuse.

2.3.1 Existing Software Reuse Metrics

Table 4 presents a summary of models for reuse metrics. The economic models measure

reuse in terms of the economic costs and profits resulting from reuse. Maturity models

categorize reuse programs according to a scale of labeled reuse levels. The reuse ratio

models measure reuse by comparing the amount of reused software to the amount of

newly developed software.

22

Table 4: Models for Reuse Measurement

Source Description

Economic Models

Cost/Productivity

Models
Gaffney, Durek

[Gaffney and
Durek 89]

Simple model:

Let C=cost of software development. R=proportion of

reused code in the product. b=cost relative to that of
all new code of incorporating reused code into the
product. Then
C=(b-1)R + 1 and productivity P=1/C.
Cost of development model:

Let E=cost of developing a reusable component
relative to the cost of producing a component that is
not to be reused. Let n be the number of uses over
which code cost will be amortized. Then C (cost) is

C=(b + E/n-1)R+1.

Quality of Investment Barnes, Bollinger

[Barnes and

Bollinger 91]

Quality of investment (Q) is the ratio of reuse
benefits (B) to reuse investments (R): Q = B/R.

If Q<1 then the reuse effort resulted in a net loss. If

Q>1 then the investment provided good returns.

Maturity Models

Reuse Maturity Model Kolton, Hudson Levels an organization proceeds through working

[Kolton and toward effective software reuse:

Hudson 91] 1. Initial/Chaotic 4. Planned
2. Monitored 5. Ingrained

3. Coordinated

Reuse Capability Model | Software The Software Productivity Consortium identifies four
Productivity stages in the risk-reduction growth implementation
Consortium model for software reuse:

[Davis 93] 1. Opportunistic 3. Leveraged
2. Integrated 4. Anticipating _

Reuse Ratio Models

Reuse Level Frakes Assume a system consists of parts where a higher

[Frakes 90] level item is composed of lower level items. Let L =
total number of lower level items in the higher

level item, E = number of lower level items from an

external source in the higher level item, | = number

of lower level items in the higher level item not from
an external source, M = number of items not from

external source used more than once. Then,

External Reuse Level = E/L

Internal Reuse Level = M/L

Total Reuse Level = E/L + M/L
 Reuse Fraction Agresti, Evanco

[Agresti and

Evanco 92] The variable FNEMC is defined as the fraction of new

or extensively modified software units. FNEMC is the

number of new components plus the number of
extensively modified components divided by the total

number of components. FNEMC is equal to one minus
the "reuse fraction."

The following sections discuss each of these models in turn.

2.3.1.1 Economic Models

Cost/Productivity Models

Gaffney and Durek propose three cost and productivity models for software reuse

[Gaffney and Durek 89]. The simple model shows the cost of reusing software

components. The cost-of-development model builds upon the simple model by

representing the cost of developing reusable components. The general model represents

the effect of creating reusable components within a given development project.

Simple model: Let C be the cost of software development for a given product relative to

all new code (for which C=1). R is the proportion of reused code in the product (R<=1).

b is the cost relative to that for all new code of incorporating the reused code into the new

product (b<=1). Then the relative cost for software development is

(relative cost of all new code)(proportion of new code) +

(relative cost of reused software)(proportion of reused software).

Then

C = (1)(-R) + (b)(R)

=(b-I)R+1

and the corresponding relative productivity is

P =1/C=1/((b-1)R+1).

Notice that b is expected to be <= 1. If not, it would not be cost efficient to reuse

software components. The size of b varies with the level of abstraction of the reusable

24

component. If the reusable component is source code, then one must go through the

requirements, design, and testing phases in a new development project; the authors

estimate b=0.85. If the reusable component is requirements, design, and code, then only

the testing phase must be done and b=0.08.

Cost of development model: Let E represent the cost of developing a reusable component

relative to the cost of producing a component that is not to be reused. Eis expected to be

> 1. Let n be the number of uses over which code cost will be amortized. The new value

for C (cost) incorporates these measures:

C =(b+E/n-1)R+1

The general model is not discussed in detail in the paper. Further discussions propose

models for the effect of reuse on software quality (number of errors) and on software

development schedules. While no numerical data is given, the authors state that trade-

offs can occur between the proportion of reuse and the costs of developing and using

reusable components. Using reusable software parts results in higher overall

development productivity. Also, costs of building reusable parts must be shared across

many users to achieve higher payoffs from software reuse.

Margono and Rhoads applied the cost of development model to assess the economic

benefits of a reuse effort on a large-scale Ada project (the United States Federal Aviation

Administration's Advanced Automation System (FAA/AAS)) [Margono and Rhoads 93].

The authors applied the model to various types of software categorized by the source

(local, commercial, or public) and mode of reuse (verbatim or modified). The equation

for C in the reuse economics model was modified to reflect the different acquisition,

development, and integration costs. Results show that the development cost for reuse is

25

often twice the development cost of non-reuse. The additional cost due to reuse during

the detailed design phase of development is estimated to be 60%.

Quality of Investment

In their paper Making software reuse cost effective, Barnes and Bollinger [Barnes and

Bollinger 91] examine the cost and risk features of software reuse and suggest an

analytical approach for making good reuse investments. Reuse activities are divided into

producer activities and consumer activities. Producer activities are reuse investments, or

costs incurred while making one or more work products easier to reuse by others.

Consumer activities are reuse benefits, or measures in dollars of how much the earlier

reuse investment helped or hurt the effectiveness of an activity. The total reuse benefit

can then be found by estimating the reuse benefit for all subsequent activities that profit

from the reuse investment, including future activities.

The quality ofinvestment (Q) is the ratio of reuse benefits (B) to reuse investments (R):

Q=B/R

If Q is less than one for a reuse effort, then that effort resulted in a net financial loss. If

greater than one, then the investment provided good returns. Three major strategies are

identified for increasing Q: 1) increase the level of reuse, 2) reduce the average cost of

reuse, and 3) reduce the investment needed to achieve a given reuse benefit.

Favaro [Favaro 91] utilized the model developed by Barnes, et. al. to analyze the

economics of reuse. The following variables and formulas are relevant:

26

Table 5: Barnes‘ and Bollinger's economic investment model

Variable Definition

R % of code contributed by reusable components

b integration cost of reusable component as opposed to development cost

RC relative cost of overall development effort

RP relative productivity

E relative cost of making a component reusable

No payoff threshold value (all component development costs are recovered)

Formulas:

RC =(1-R)1+Ab

RP = 1/RC

RC =(b+E / N-1) R+1

No = E/(1-b)

Favaro's research team estimated quantities for R and b. They found it difficult to

estimate R, unclear whether actual source code should be measured or relative size of the

load modules. Should the code size of a generic module be counted only once, or every

time the module 1s instantiated and code is duplicated in the application? b was even

more difficult to estimate: is cost measured in the amount of real time necessary to install

the component in the application, and should the cost of learning be included?

Favaro developed a classification of BOOCH [Booch 87] components according to their

relative complexity. The classification used by Favaro ts:

monolithic | Components were found to have a similar complexity in development

and use, and could therefore be considered equivalent for this purpose.

(stacks, queues)

27

polylithic Components exhibited similar complexity regarding integration. (lists,

trees)

graph The most complex component in the repository, the graph is an example

of a nontrivial, domain-dependent reusable component.

menu, mask End-products of the project. They were developed as generalized,

reusable components so were included in the study.

The above categories are listed in order or increasing complexity. Monolithic and

polylithic are classifications of standard BOOCH components. The graph is a BOOCH

component in itself. Menus and masks are complex applications developed by Favaro

from the BOOCH components.

The following table shows values for E, the relative cost of making a reusable

component, b, the integration cost of a reusable component, and No, the payoff

threshold value.

Table 6: Costs and payoff threshold values for reusable components

No for simple No for complex

E b implementations implementations

Monolithic 1.0 | 0.10 1.33 2.56

Polylithic 1.2 | 0.15 1.69 3.40

Graph 1.6 | 0.25 2.56 5.72

Menu 1.9 | 0.30 3.25 7.81

Mask 2.2 | 0.40 4.40 12.97

The overall costs of a reusable component relative to a non-reusable component is E+b.

b is expected to be less than 1.0 since reusable components should be more easily

integrated. E is greater than or equal to 1.0, showing costs of developing reusable

components are higher than costs of developing non-reusable components. The results

show that the cost of reusability increased as the complexity of the component increased.

Monolithic components were so simple there was essentially no extra cost to develop

them as reusable components. In contrast, the cost of the mask component more than

doubled as it was generalized. The integration cost b was also high in complex

applications. The values for No show that the monolithic and polylithic components are

amortized after only 2 uses. However, the graph component must be used approximately

5 times before its costs are recovered, and the most complex form of the mask will

require 12.97 projects for amortization. In summary, the results show that as components

of some size and complexity are developed for reuse, the costs rise quickly.

2.3.1.2 Maturity Models

Rather than providing a specific quantitative measurement of the amount of reuse in

software, reuse maturity models identify the progression of reuse activities within an

organization. A reuse maturity model categorizes a reuse program according to a scale of

labeled reuse levels. The maturity model is at the core of planned reuse, helping

organizations understand their past, current, and future goals for reuse activities [Prieto-

Diaz 93}.

Reuse Maturity Model

Kolton and Hudson [Kolton and Hudson 91] developed a maturity framework with five

levels:

1. Initial/Chaotic

29

2. Monitored

3. Coordinated

4, Planned

5. Ingrained

They identified ten dimensions of reuse maturity; for each, an attribute was specified for

each maturity level. The resulting matrix is shown in Table 7.

30

Table 7: Hudson and Kolton Reuse Maturity Model

1 Iritiay 2 Monitored 3Coordnated 4 Planned 5 Ingrained
Chadiic

Motivaliay Reuse dscouraged | Reuse encouraged | Reuse incertivized| Reuseindoctrinated | Reuse is the way
Qitue re-enforced we db business

reverded
Panning forreuse | Nore Grassroots activity | Targets d Business irrperetive | Part df

Opportunity Strategic Han
Breadth d Individual Work group Department DOvsion Erterpisewde
reuse
Fesporside = far| Indivicualirititive {| Sterediniidive Dadicated individual | Dedicated group Comporate gop
mekirg reuse with dvisicn laiscns

happen
Process by Reuse process| Reuse questins! Deskn amphasis; Focusm All software
wich reuse | chaotic; uncle rased a desig)! placed ~™ off the) devdopg fariies; proicts are
leveraged how reuse cares! reviews (ater the! shelf parts of genericized for

in fact) products future
reuse

Reuse assds Salvage yad (ro| Catdog identifies | Catdog organized! Cataog = clues | Plarned activity to
apparert structure! language andi aorg) = aniicaic’ | generic dita acqurear _
to platiam = specific | Specific lires processing deveop missirg
cdiection) parts functions pieces

in catalog
Cassification Irforrel, Muttipe independert; Singe —- scherrp| Sarre domain} Forme, carpide
activity individualized schemes for; catdog published; arelysescoreto j[consistat = trey

Classifying parts periodically determine Classification
Categories

Technology support | Perscnal tools, if} Many tods, bt not} Cassificainads | Becraic ibray| Autareted support
ary specidized for ard syrthesis acs | seperde from) integrated wth

reuse developrrent devedoorent
emratrert ermiratrent

Metrics Nometrics m reuse | Nurrber d Nerval tracking di Analyses done to; Allsysten
vd, res d cote used | reuse identi uilties, scitware

pay-cif, ar costs in cost modes occurences of expected paydis} tods ad
Catalog parts fran deveoning| accaunting

reusable parts mechansms
nstrurerted to

track reuse

Legal, contractual | Irhbitar to Irteral accountng; Data ridts and} Poyaty scterre fo! Softwaretreated as
accaunting gating stated scherre for sharing h all suppers ad) key capita
Consicerations costs and allocaling | issues resdvedwith; custarers assa

benefits custarer

Notice that for each of the ten aspects of reuse, the amount of organizational involvement

and commitment increases as the level progresses from initial/chaotic reuse to ingrained

reuse. Ingrained reuse incorporates fully automated support tools and accurate reuse

measurement to track progress.

31

Reuse Capability Model

The reuse capability model developed by the Software Productivity Consortium [Davis

93] identifies four stages in the implementation model for reuse:

1. Opportunistic The reuse strategy is developed on the project level. Specialized

reuse tools are used and reusable assets are identified.

2. Integrated A standard reuse strategy is defined and integrated into the

corporation's software development process. The reuse program

is fully supported by management and staff. Reuse assets are

categorized.

3. Leveraged The reuse strategy expands over the entire life cycle and is

specialized for each product line. Reuse performance is measured

and weaknesses of the program identified.

4. Anticipating New business ventures take advantage of the reuse capabilities

and reusable assets. High payoff assets are identified. The reuse

technology is driven by customer's needs.

2.3.1.3 Reuse Ratio Models

Reuse Level

In [Frakes 90], Frakes states that the basic dependent variable in software reuse

measurement is the level of reuse. This is a parts-based approach to reuse measurement,

assuming that a system is composed of parts which exist at different levels. Frakes states

32

that levels of abstraction must be defined to measure reuse. The following quantities can

be calculated given a higher level item composed of lower level items:

L = the total number of lower level items in the higher level item.

E = the number of lower level items from an external repository in the higher

level item.

[= the number of lower level items in the higher level item which are not from an

external repository.

M = the number of items not from an external repository which are used more

than once.

Given these quantities, the following reuse level metrics are proposed:

External Reuse Level = E/ L

Internal Reuse Level = M/L

The user must provide some information to calculate the reuse measures. The user must

define the abstraction hierarchy, a definition of external repositories, and a definition of

the "uses" relationship. For each part in the parts-based approach, we must know the

name of the part, source of the part (internal or external), the level of abstraction, and the

amount of usage.

The tool 7/ was built to perform reuse analysis of C code [Frakes 92]. With "system" as

the higher level component and "function" as the lower, a C system can be broken down

into functions which are internal or external within a calling hierarchy. RI uses cflow, a

Unix tool, to produce calling hierarchy information. Rl was run on 29 systems and the

resulting data includes internal reuse levels, external reuse levels, total reuse levels, and

NCSL (non commentary source lines). The results show an average reuse level of 58%, a

very high figure. DeMarco, for example, estimated 5% reuse on an average project

[DeMarco and Lister 84]. The high level of reuse is partially attributed to the design of

33

the C programming language, with many simple system capabilities designed as

functions. Internal reuse, however, is also high, at 7%.

A high correlation is shown between software size and reuse level. The correlation of

external reuse vs. log NCSL is r=-0.76, meaning that high external reuse is directly

related to small size. In contrast, internal reuse statistics also show a strong correlation

with size but in the opposite direction, meaning that internal reuse is high in large

software systems.

[Frakes and Arnold 90] presents a formal model of the reuse level metrics. Nodes and

relationships are used to decompose a work product. A graphic hierarchical model

contains nodes, represented by small circles, and two possible relationships between

nodes which are represented by arrows. The possible relationships are depends_on,

denoting usage, and directly_contains, denoting containment. A node represents a life

cycle object. The authors assert that the model can be extended with additional object

types, relationship types, and attributes.

An example maps objects from the Ada user domain to the formal model. The authors

have created tables to aid the mapping process. The example shows how users can apply

an actual domain to the formal model to obtain a reuse measurement model. A graphical

catalog of metrics is available to users so that they can effectively use the model to create

new metrics. The paper discusses the methods that users can use to implement reuse

measurement through decomposition and mapping to the formal model.

34

Reuse Fraction

Proposed by Agresti and Evanco [Agresti and Evanco 92], the reuse fraction is a simple

proportional metric which defines the fraction of reused compilation units. Compilation

units are categorized into two classes:

1) those that are reused verbatim or with "slight" modification (<= 25% of lines changed),

2) those that are new or extensively modified (> 25% of source lines changed).

Given the following variables,

cun = number of compilation units of newly developed code,

cux = number of compilation units extensively modified,

cutot = total number of compilation units,

the variable FNEMC is defined as the fraction of compilation units that are new or

extensively modified:

FNEMC = (cun + cux) / cutot.

FNEMC is equal to one minus the reuse fraction.

The reuse fraction measurement is specific to measuring reuse of source code compilation

units. It is a simple, non-extensible variation of reuse level, discussed above.

2.3.1.4 Reuse Measurement in the Object-Oriented Environment

Bieman and Karunanithi [Bieman 92][Bieman and Karunanithi 93] have proposed reuse

measurements which are specific to the object-oriented environment. [Bieman 92]

identifies three perspectives from which to view reuse: the server perspective, the client

perspective, and the system perspective. The server perspective is the perspective of the

library or a particular library component, the analysis focusing on how the entity is reused

35

by the clients. From the client perspective, the goal is knowing how a particular program

entity reuses other program entities. The system perspective is a view of reuse in the

overall system, including servers and clients.

The server reuse profile of a class will characterize how the class is reused by the client

classes. The verbatim server reuse in an object oriented system is basically the same as in

procedural systems, using object oriented terminology. Leveraged server reuse is

supported through inheritance. A client can reuse the server either by extension, adding

methods to the server, or by overload, redefining methods. (Note: [McGregor and Sykes

92] offers good definitions of the object-oriented terminology used in this section.)

The client reuse profile characterizes how a new class reuses existing library classes. It

too can be verbatim or leveraged, with similar definitions to the server perspective.

Measurable system reuse attributes include:

¢ % of new system source text imported from the library

¢ % of new system classes imported verbatim from the library

e % of new system classes derived from library classes and the average % of the

leveraged classes that are imported

e average number of verbatim and leveraged clients for servers, and servers for

clients

e average number of verbatim and leveraged indirect clients for servers, and

indirect servers for clients

¢ average length and number of paths between indirect servers and clients for

verbatim and leveraged reuse

36

In [Bieman and Karunanithi 93], Bieman and Karunanithi describe a prototype tool

which is under development to collect the proposed measures from Ada programs. This

work recognizes the differences between object oriented systems and procedural systems

and exploits those differences through unique measurements.

2.3.2 Measuring Software Reuse Potential

The above discussions address measuring the amount of software reuse. There is also

work being done to measure the reusability of software: given a piece of software, how

much effort must be exerted to reuse it?

Major work in this area is by Basili, et. al. [Basili et al 90] at the University of Maryland.

Two reuse studies were performed with respect to the development and reuse of systems

written in the Ada language. The first study defines a means of measuring data bindings

to characterize and identify reusable components. The data bindings within a program

are identified, and a cluster analysis is performed to identify which modules are strongly

coupled and may not be good candidates for reuse, and which modules are found to be

independent of others and are potentially reusable. Through application of these metric

and analysis techniques, a set of guidelines are derived and listed for designing and

building reusable Ada components.

The second study defines an abstract measurement of reusability of Ada software

components. Potentially reusable software is identified, and a method to measure

distances from that ideal is defined. By measuring the amount of transformation which

must be performed to convert an existing program into one composed of maximally

37

reusable components, an indication of the reusability of the program can be obtained.

The latent non-reusability of software can also be found by identifying transformations

that cannot be performed cost effectively.

2.3.3 Relation of Reuse to Quality and Productivity

Since systematic software reuse is not common, empirical evidence relating software

reuse to quality and productivity is limited. However, several researchers have

accumulated and published statistics that support the notion that software reuse improves

quality and productivity.

Agresti and Evanco [Agresti and Evanco 92] conducted a study to predict defect density

(a software quality measurement) based on characteristics of Ada designs. Data used in

the analysis, from the Software Engineering Laboratory (SEL) of NASA Goddard Space

Flight Center, consists of 16 subsystems. The SEL project database provides data on the

extent of reuse and subsystem identification for each compilation unit as well as reported

defects and nondefect modifications. Collectively, approximately 149 KSLOC (kilo-

source lines of code) were considered for the analysis. The project database showed that

the reuse ratios (fraction of compilation units reused verbatim or with slight modification,

<= 25% of lines changed) lie between 26 and 28%. Defect density is between 3.0 and 5.5

total defects per KSLOC. Four sample rows from a table summarizing the project

characteristics of the subsystems show that a high level of reuse correlates with a low

defect density (size is in KSLOC units):

38

Table 8: Characteristics of SEL subsystems [Agresti and Evanco 92]

Subsystem Software size | Library units | Compilation Reuse Defect

units Density

1-5 27.3 38 185 0.44 6.2

1-6 5.7 18 73 0.94 1.6

2-4 6.9 23 60 0.74 1.4

3-3 3.5 12 66 0.09 8.0
The Reusability-Oriented Parallel] programming Environment (ROPE) [Browne et al 90]

was briefly described in section 2.2.2. ROPE is integrated with a development

environment called CODE (Computation-Oriented Display Environment), which

supports construction of parallel programs using a declarative and hierarchical graph

model of computation. ROPE supports reuse of both design and code components,

focusing on the key issues of reusability: finding components, then understanding,

modifying, and combining them. An experiment was conducted to investigate user

productivity and software quality for the CODE programming environment, with and

without the ROPE reusability system. The experimental design included metrics such as

fraction of code in a program consisting of reused components, development time and

error rates. Reuse rates were reported as "extremely high" for the 43 programs written

using ROPE, with a mean reuse rate for a total program (code and design) equal to 79%.

The researchers used total development time to measure the effect of reusability on

productivity. Table 9 shows the development time in hours for subjects programming in

the CODE environment and those programming in CODE and ROPE. The data reveals

that ROPE had a significant effect on development time for all of the experimental

programs.

39

Table 9: Mean Development Time and 95% Confidence Intervals in Hours [Browne et al 90]

Program Name Using CODE only Using CODE and ROPE

Convex Hull 12.4 [9.0,15.8] 2.2 [2.0,2.5]

Readers/Writers 4.7 [3.4,6] 1.8 [1.2,2.4]

Producer/Consumer 3.9 [3.6,4.3] 1.9 [1,2.8]

Shortest Path 33.3 [16,51] 1.4 [0.7,2.1]

Parallel Prefix 20 N/A 1.4 [0.9,1.8]

Divide Region 20 N/A 3.5 [2.5,4.5]

Sort/Merge 8.5 N/A 1.5 N/A

Error rates were used to measure quality. Compile errors, execution errors, and logic

errors were all counted. The results are shown in Table 10. The use of ROPE reduced

error rates, but the data is less clear than that for productivity. The researchers attribute

this to the difficulty of collecting the data and to the lack of distinction between design

and code errors.

Table 10: Mean Number of Errors and 95% Confidence Intervals [Browne et al 90]

Program Name Using CODE only Using CODE and ROPE

Convex Hull 8.8 [4.3,13.3] 3.1 [1.4,4.4]

Readers/Writers 14.5 [5.4,23.6] 1.2 [.4,2.0]

Producer/Consumer 4.3 [1.9,6.7] 3 [0,.7]

Shortest Path 10 N/A 4 N/A

Parallel Prefix 20 N/A 2.5 N/A

Divide Region 5 N/A 17. N/A

Sort/Merge 7 N/A 3 N/A

In summary, the final results of the CODE/ROPE experimentation show a high

correlation between the measures of reuse rate, development time, and decreases in

number of errors.

In a relatively early study, Card, Church, and Agresti [Card et al 86] conducted an

empirical study of software design practices in a Fortran-based scientific computing

environment. The goals of the analysis of software reuse were to identify the types of

software that are reused and to quantify the benefits of software reuse. The results were:

e The modules that were reused without modification tended to be small and simple,

exhibiting a relatively low decision rate.

e Extensively modified modules tended to be the largest of all reused software (rated

from extensively modified to unchanged) in terms of the number of executable

statements.

¢ 98 percent of the modules reused without modification were fault free and 82 percent

of them were in the lowest cost per executable statement category.

e These results were consistent with a previous Software Engineering Laboratory study

{Card et al 82] which shows that reusing a line of code costs only 20 percent of the cost

of developing it new.

Kazuo Matsumura was a panelist at the International Conference on Software

Engineering forum entitled Software Reuse: Is It Delivering? [Frakes 91]. In the paper,

Matsumura describes an implementation of a reuse program. Results of the reuse

program implementation show a 60% ratio of reuse components and a decrease in errors

by 20 to 30%. Managers felt that the reuse program would be profitable if a component

were reused at least three times.

41

The Cost/Productivity Model by Gaffney and Durek [Gaffney and Durek 89] was

discussed in Section 2.3.1.1. The models specify the effect of reuse on software quality

(number of errors) and on software development schedules. Results in the paper suggest

that trade-offs can occur between the proportion of reuse and the costs of developing and

using reusable components. In a study of the latent error content of a software product,

the relative error content decreased for each additional use of the software but leveled off

between 3 and 4 uses. The models show that the number of uses of the reusable software

components directly correlates to the development product productivity. The authors

believe that the costs of building reusable parts must be shared across many users to

achieve higher payoffs from software reuse.

2.4 Literature Review Summary

This literature search discusses many aspects of software reuse and software reuse

measurement. The topic is an active field in the research community, perhaps because, as

shown above, software reuse is an effective method of increasing software quality and

productivity and thus reducing the costs of software development. However, as also

pointed out in the review, developing and using reusable software does have its risks and

costs. The organization must be willing to plan and support the reuse effort. [Margono

and Rhoads 93] states that the development cost for reusable software is often twice the

cost of developing non-reusable software. In the case study by [Favaro 91], the

development costs of reusable components were amortized after 2 to 13 uses, depending

on the complexity of the component. On the benefits side of the reuse costs equation,

[Card et al 86] shows that reusing a line of code is only one-fifth the cost of developing it.

42

Software reuse has been shown to increase quality and productivity. In [Agresti and

Evanco 92], high levels of reuse were shown to result in low defect densities. [Card et al

86] found that 98% of the modules reused without modification were fault-free. Software

reuse resulted in a decrease in errors by 20 to 30% in [Frakes 91]. In [Gaffney and Durek

89], the latent error content for a reused module leveled off at 0.30 (relative to all new

code) after three to four uses. [Browne et al 90] showed conclusive evidence that

software development time was significantly reduced in an environment supporting reuse,

but empirical studies supporting productivity gains are few. The productivity gains for

reuse seem to be taken for granted; using a pre-existing component that can be easily

integrated into an application naturally requires less time than developing the component

from scratch.

The literature review has delineated the need and benefits of measuring software reuse.

While the cost/productivity models formally measure the costs and benefits of reuse,

Frakes is the only researcher who proposes a formal model for reuse ratio measurement.

The remainder of this paper expands upon the initial research performed by Frakes as

summarized in Section 2.3.1.3.

43

3 The Reuse Metrics

3.1. Introduction

Frakes introduced the reuse level metric in [Frakes 90], stating that the basic dependent

variable in software reuse measurement is the level of reuse. This parts-based approach to

reuse measurement assumes that a system is composed of parts at different levels of

abstraction. For example, a C system is composed of functions, and functions are

composed of lines of code. The levels of abstraction must be defined to measure reuse.

The reuse level of a C system could be defined in terms of functions; in this case, the

higher level component is a system and the lower level component is a function. The

reuse level of a function could be expressed in terms of lines of code, in which case the

higher level component is a function and the lower level component is a line of code.

A software component (lower level item) may be internal or external. An internal lower

level component was developed for the higher level component. An external lower level

component is used by the higher level component but was created for a different item or

for general use.

The definition of reuse may vary. A traditional definition for a reused function within a

C system is one that is called from more than one place within the system. Alternatively,

the user of the metric may wish to define reuse after an arbitrary number of calls. Also,

rather than counting the number of places that call a reused function, one may want to

count the number of actual calls.

3.2 Definition of Reuse Level

Given a higher level item composed of lower level items, reuse level metrics may be

defined. [Frakes and Amold 90] defines the internal reuse level of a higher level item as

the number of reused internal lower level items divided by the total number of lower level

items in the higher level item. The external reuse level of a higher level item is the

number of reused external lower level items in the higher level item divided by the total

number of lower level items in the higher level item. The total reuse level is the sum of

internal reuse level and external reuse level.

I have extended the reuse level metric to take into consideration a reuse threshold level.

The internal threshold level is the maximum number of uses of an internal item that can

occur before reuse occurs. The external threshold level is the maximum number of uses

of an external item that can occur before reuse occurs. The variables and reuse level

metrics are:

ITL= internal threshold level, the maximum number of uses of an internal item

that can occur before reuse occurs.

ETL= external threshold level, the maximum number of uses of an external item

that can occur before reuse occurs.

JU= number of internal lower level items which are used more than ITL.

EU= ___ number of external lower level items which are used more than ETL.

45

T= total number of lower level items in the higher level item, both internal

and external.

Internal reuse level: IU /T

External reuse level: EU/T

Total reuse level: (IU + EU)/T

Internal, external, and total reuse level will assume values between 0 and 1:

0 <= Internal reuse level <= 1

0 <= Extemal reuse level <= 1

0 <= Total reuse level <= 1.

More reuse occurs as the reuse level value approaches 1. A reuse level of 0 indicates no

reuse.

One requirement for the calculation of the reuse level metrics 1s a definition of the uses

relationship which holds between a component and any other component it references. A

call graph abstraction may be employed to illustrate how lower level items are used

within a higher level item. Figure 1 shows a call graph abstraction for higher level item

H. Each node represents a lower level item. The label 'T' indicates an internal item and

'E' represents an external item. The directional arc between nodes represents the uses

relationship, or a reference.

@I = internal node

@E = external node

— > = reference

Figure 1: Call graph abstraction for higher level item H

A simple algorithm can be defined to calculate the value of each variable in the reuse

level equations. Given a call graph abstraction such as the one shown above, the

algorithms for IU, EU and T are:

To calculate IU:

1. set inode_cnt = 0

2. for each node labeled 'r', called x:

if number of references to x > ITL then

inode_cnt = inode_cnt + 1

3. IU = inode_cnt

47

To calculate EU:

1. set enode_cnt = 0

2. for each node labeled 'E’, called y:

if number of references to y > ETL then

enode_cnt = enode_cnt + 1

3. EU = enode_cnt

To calculate T:

1. set node_cnt = 0

2. for each node:

node_cnt = node_cnt + 1

3. T =node_cnt

Given values for the variables IU, EU and T, the values for internal, external and total

reuse level can be easily computed using the formulas on page 46. Table 11 shows the

values for the reuse level metric for the higher level item H shown in Figure 1.

Table 11: Reuse level values for Figure 1.

ITL=1 ITL=2

ETL=0 ETL=1

lu 1 0

EU 3 1

T 7 7

Internal reuse level 1/7 0

External reuse level 3/7 1/7

Total reuse level 4/7 1/7

The first column in Table 11 contains the values for reuse level using an internal

threshold level of one and an external threshold level of zero. This means that at least

two references to an internal node constitutes reuse. Only one reference to an external

node constitutes reuse. The second column uses an internal threshold level of two and an

external threshold level of one. As expected, the reuse level values are less in the second

column.

A different definition of the uses relationship may allow a node to reference another node

more than once. For example, a single call might be regarded as a single reference, and

additional calls are distinct and counted. Figure 2 is a multicall graph abstraction. Each

arc is labeled with a digit indicating the number of references.

@I = internal node

@E = external node

— > = reference

Figure 2: Multicall graph abstraction for higher level item H

The algorithms shown above for IU, EU and T can be used to calculate corresponding

values for a multicall graph abstraction. In the multicall graph abstraction, however, the

49

digit which labels each arc must be taken into consideration. If, for example, an arc is

labeled with a 3, then that single arc represents three references to the node. Table 12

shows the values for the reuse level metric for the higher level item H shown in Figure 2.

Table 12: Reuse level values for the multicall graph abstraction
shown in Figure 2.

ITL=1 ITL=2
ETL=0 ETL=1

IU 2 1

EU 3 1

T 7 7

Internal reuse level 2/7 1/7

External reuse level 3/7 1/7

Total reuse level 5/7 2/7

3.3 Related Metrics

The internal reuse level, external reuse level, and total reuse level metrics were initially

defined by Frakes in [Frakes 90]. This project and report proposes further metrics which

build upon and enhance the original reuse level metrics.

3.3.1 Reuse Frequency

Referring to Figure 1, each directional arc between nodes represents the uses

relationship, or a reference. The reuse frequency metric is based on references to reused

components rather than on the components themselves. The internal reuse frequency of a

higher level item is the number of references to reused internal lower level items divided

by the total number of references in the higher level item. The external reuse frequency of

a higher level item is the number of references to reused external lower level items

divided by the total number of references in the higher level item.

The variables and reuse frequency metrics are:

IUF= number of references in the higher level item to reused internal lower level

items.

EUF= number of references in the higher level item to reused external lower

level items.

TF= total number of references to lower level items in the higher level item,

both internal and external.

Internal reuse frequency: IUF/ TF

External reuse frequency: EUF/TF

Total reuse frequency: (IUF + EUF) / TF

Internal, external, and total reuse frequency will assume values between 0 and 1:

0 <= Internal reuse frequency <= 1

0 <= External reuse frequency <= 1

0 <= Total reuse frequency <= 1.

Again, algorithms can be defined to calculate the value of each variable in the reuse

frequency equations. The algorithms for IUF, EUF and TF are shown below:

To calculate [UF:

1. set iref_cnt = 0

2. for each node labeled '1', called x:

51

if number of references to x > ITL then

for each reference to x:

iref_cnt = iref_cnt + 1

3. IUF = iref_cnt

To calculate EUF:

1. set eref_cnt = 0

2. for each node labeled 's', called y:

if number of references to y > ETL then

for each reference to y:

eref_cnt = eref_cnt + 1

3. EUF = eref_cnt

To calculate TF:

1. set ref_cnt = 0

2. for each arc:

ref_cnt = ref_cnt + 1

3. TF = ref_cnt

Given values for the variables IUF, EUF and TF, the values for internal, external and total

reuse frequency can be computed using the formulas on page 51. Table 13 shows the

values for the reuse frequency metric for the higher level item H shown in Figure 1.

52

Table 13: Reuse frequency values for Figure 1.

ITL=1 ITL=2
ETL=0 ETL=1

IUF 0

EUF

TF 9

Internal reuse frequency 2/9

External reuse frequency 5/9 3/9

Total reuse frequency 7/9 3/9

Table 14 shows the reuse frequency values for H using a multicall graph abstraction as

shown in Figure 2.

Table 14: Reuse frequency values for the multicall graph abstraction

shown in Figure 2.

ITL=1 ITL=2
ETL=0 ETL=1

IUF 5 3

EUF 6 4

TF 12 12

Internal reuse frequency 5/12 3/12

External reuse frequency 6/12 4/12

Total reuse frequency 11/12 7/12

3.3.2 Complexity Weighting

A weighting has been implemented to indicate the complexity of a reused component.

Program size is often used as a measure of complexity [Conte et al 86]. The complexity

53

weighting for reuse can assume multiple definitions. This research defines the

complexity weighting for internal reuse as the sum of the sizes of all reused internal

lower level items divided by the sum of the sizes of all internal lower level items within

the higher level item. A different approach might define the complexity weighting as the

average size of all reused components relative to the average size of all components that

are not reused.

To calculate the complexity weighting, the following information is needed:

¢ A definition of higher and lower level items,

¢ A measure of size for the lower level items,

¢ Which lower level items are reused within the higher level item.

An example complexity weighting for internal reuse in a C system is the ratio of the size

(calculated in number of lines of non-commentary source code) of reused internal

functions to the size of all internal functions in the system.

4 The rl Software

4.1 Overview

Frakes built the tool r/ to perform reuse analysis of C code [Frakes 92]. In its original

form, rl reported the following metrics for C code:

1. internal reuse level - the number of internal functions used more than once in a given

set of C files (a C system) divided by the total number of functions in the system.

2. external reuse level - the number of external functions used within a given set of C files

divided by the total number of functions.

3. total reuse level - the sum of internal reuse level and external reuse level.

I have extended rl to perform a more rigorous reuse analysis of C code along with more

flexibility and better reporting. This Chapter describes in detail the rl software. A listing

of the software can be found in Appendix B. The manual page in Appendix C provides

instructions for using rl.

4.1.1 Purpose of the rl Software

As stated above, the rl software performs reuse analysis of C source code. Given a set of

C files, rl reports the following information:

55

1. internal reuse level

2. external reuse level

3. total reuse level

4. internal reuse frequency

5. external reuse frequency

6. total reuse frequency

7. complexity (size) weighting for internal functions

The rl program accepts parameters which specify the internal threshold level and external

threshold level. The default values for these arguments are 1 and 0, respectively. The

user may request usage of a multicall graph abstraction, in which each call to a function is

considered a "use." The rl program also allows multiple definitions of higher level and

lower level abstractions. The allowed higher level abstractions are system, file or

function. The lower level abstraction may be function or NCSL (Non-Commentary

Source Line of code).

4.1.2 Platform and Software Compatibility

The rl software is written in Unix Korn shell scripting language [Bolsky and Korn 89].

The software was developed on an Amiga with the AT&T V. 4 Unix operating system

and on a DEC with the Ultrix operating system. The rl software is dependent on the

availability of the following software tools:

cflow Cflow is available on most versions of the Unix operating system. This

tool scans C source code files and produces a hierarchical listing of

functions that are called within the files.

cscope Cscope is available only on the AT&T Unix V. 4 operating system.

Similar to cflow, cscope also scans C source files and produces listings

and other information regarding the hierarchical structure of the system.

The cscope tool is used in addition to cflow because it is capable of

producing a hierarchical calling chart that mimics the multicall graph

(see Section 3.2). Cscope is necessary only for producing metrics for the

multicall graph abstraction; all other functions of rl are valid on any

Unix platform.

ccounl Developed by Frakes, Fox and Nejmeh [Frakes et al 91], ccount counts

the number of lines of non-commentary source code in C files.

The rl software has been bundled into a package containing the rl program, the rl manual

page, a set of test C programs, the ccount software, and a READ.ME file. It is distributed

on public domain and is available through anonymous ftp from ftp.vt.edu, in the

directory pub/reuse.

57

4.2 rl Enhancements

This project includes several extensions to the rl software. Using command-line options,

the user may specify different combinations of flags and arguments to control the

behavior of the rl program. By default, the program reports the reuse level, reuse

frequency and reuse complexity weighting for the given set of C files.

To clarify the myriad functions incorporated into rl, I have designed a Reuse Metric /

Abstraction Matrix, shown in Table 15. Each column is labeled with a high level / low

level abstraction combination. Each row is a metric calculated by rl. Each cell in the

matrix provides a definition of the metric for the associated high level and low level

abstraction. A cell value of 'NI' means that the metric/abstraction is Not Implemented in

the rl program. The abbreviation NCSL means Non-Commentary Source Lines of code.

Bl}
BUY

Ul
ISON

je}0}
ey)

Aq
pepiaip

oll}
OY)

Ul
p
e
s
n
e

SO|l}
2

112 0
ISON

eu}
Aq

paplAlp
suojoun;

N
N

N
N

pue
peuljep

suy
pesnal

|euajul
jeU9e}u|

}O
I
S
O
N

$0
WINS

JO
I
S
O
N

JO
WAS

O
N
I
L
H
D
I
S
M

A
L
I
X
A
I
d
W
O
O

SI!}
SU}

Ul
S}]BD

jo
S9j!}

D
We

Jaquunu
jejo,

eu;
Aq |

ur
sfed

yo
Jequunu

PEPIAIP
of}

EYL
UI

|
210}

BU)
Aq

paplAIp
pesnai

ing
aj}

au,
|

SuOOUN)
;eLUE}xe

N
N

N
N

Ul
peuljep

jou
suYy

pasnal
0}

sijeo
jeulaXy

OQ} S}]Bd
JO

equUNNY
DIPEIS

JO
JEQUUNNY

Bil}
OUI

Ul
S{fBd

Jo
SOil}

OD
ie

Joquunu
jejo}

eu;
Aq |

ul
s}jeo

jo
Jequunu

PapIAIp
aj

Oty
Ul

|
fe1O}

ey)
Aq

papiaip
pesnel

pue
eyi}

eu;
|

suoloUN}
jeWayul

N
N

N
N

Ul
pauljep

SuOHOUN|
pesnai

0}
seo

peusayul
0}

$]}29
JO

aqUUNNY
DIVEIS

JO
JEqUUINNY

A
O
N
S
A
N
O
A
S
A

3snsuy
a1}

84}
Ul

pasn
uy

eu}
Aq

pesn
suy |

SU}
Jo

JequUNU
Je}0}

Jo
Jaquunu

je}o}
ayy

|
ay}

Aq
peplAip

9II}
pasn

suoioun]
jo

Aq
pepiaip

uj
ey}

Ul}
© ey)

Ul
pesnas

ing =|
Jequunu

jejo}
au;

Aq
pesnal

ing
Wejshs

|
9j}

ey}
UL

peuyep
|

PEPIAIP
Saji,

D
[ye

ul
N

N
N

eu}
Ul

peUljep
Jou

Suonoun}
SUONHOUN

[BUa}xa
jPUIa}Xa

JOU
SUY

JO
JEqUuNAY

JO
seqUINN

pesnal
jo

Jaquiny

UOHOUN}
Bu}

Aq
pasn

suonoun)
Qjl}

OUL
uonoun}

JO
JeqLUNU

|e}0}
ayy

|
Ul

pesn
SUOTOUNY

Jo

Yoe2
Ul

ISON
Bll}

GY)
SOjl}

[IE
Aq

pepiaip
uonouny

|
saquunu

eyo}
ayy

Aq
|

pesn
suoljounj

Jo
JO

Jaquunu
Je}0}

aul
|

Ul
J
S
O
N

Jo
zequunu |

Ul
S
O
N

jo
vequuinu

eu}
ul

pasnel
PEpIAIP

a]
aul

ul
|

JaquUNu
|e}0}

ay}
Aq

Aq
pepiaip

uonouny
|

Jeo}
ey)

Aq
papiaip

|
|e10}

ey}
Aq

papiaip
pue

wajsks
au}

paesnel
puke

sjij
BU}

|
POPIAID

S2ll}
O

|e
Ydee

Ul
I
S
O
N

al}
DO
SU

U
L
T
S
O
N

|

Seli}oO
ye

ulqISON
|

ul
peulyjep

suoNoun |
ul

peuijap
SUONOUN) |

Ul
SUOHOUN}

;eBLUayUT
(BUIS}U

pesnel
jo

sequin
|

pasnel
jo

vequiny
|

pesnel
jo

JaqUiNN
Jo

JOEqUINN)
Jo

JequINN
pasnel

jo
sequuny

1SA31
S
S
N
S

9018
ISON

ISON
uojoun

uojoun
uonounj

uoloun4
all

w
a
s
k
s

uonjoun4
ali4

we\sks

XHIDJY
UONODAISGY

/ D1dJayy
asnay

iC]
ajqnvy

The following sections discuss the implementation of each rl enhancement.

4.2.1 Definition of Reuse Frequency

In addition to reporting the reuse level for C code, rl reports the reuse frequency. As

discussed in Section 3.3.1, reuse frequency is based on the number of static references to

reused components. For C code, the internal reuse frequency is the number of references

to reused internal functions divided by the total number of references in the system. The

external reuse frequency is the number of references to reused external functions divided

by the total number of references in the system.

Recall that the definition of uses varies for different abstractions. Using a call graph

abstraction for C code, function A uses function B one time if A calls B one or more

times; this uses relation is 1 reference. Using a multicall graph abstraction, function A

uses function B each time A calls B. Each call is then a reference. The rl program

differentiates the reuse frequency for a standard call graph abstraction and a multicall

graph abstraction accordingly. RI does not count dynamic references or recursive calls.

Figure 3 shows sample rl output for reuse frequency.

Reuse Frequency

References to Reused Internal Functions: 7

References to Reused External Functions: 22

Total Number of References: 64

Internal Reuse Frequency: 0.109
External Reuse Frequency: 0.344
Total Reuse Frequency: 0.453

Figure 3: rl Reuse Frequency Output

4.2.2 Complexity Weighting

Ri computes the reuse complexity weighting for internal functions. (See Section 3.3.2 for

general information regarding the complexity weighting metric.) The ccount tool,

discussed in Section 3.3.2, is used to count the number of NCSL in C source code. If

ccount in unavailable, the complexity weighting will not be calculated. Ccount is

dependent upon a delimiter between each function in the source code. This delimiter may

be specified to rl using the -d parameter on invocation:

rl -d "/**new func**/" myprog.c

If the delimiter is not given as an argument to rl, the environment variable FDELIM is

used as the delimiter. If FDELIM is also unvalued, rl will display a message and the

complexity weighting will not be computed:

No file delimiter given, complexity weighting will not be computed.

Given a delimiter, rl calculates the reuse complexity weighting as the number of NCSL in

the higher level component (system or file) divided by the sum of the NCSL for each

reused internal function. Referring to Table 15, the complexity weighting is valid only

61

for System/Function and File/Function abstractions. Figure 4 shows sample ri output for

the reuse complexity weighting:

Complexity Weighting

Total Non-Commentary Source Lines of code: 46
Total Non-Commentary Source Lines of reused code: 25
Complexity Weighting based on size: 0.543478

Figure 4: rl Reuse Complexity Weighting Output

4.2.3 Specification of internal threshold level and external threshold level

The user may specify values for internal threshold level (ITL) and external threshold

level (ETL). Section 3.2 defines ITL as "the maximum number of uses of an internal

item that can occur before reuse occurs." ETL is "the maximum number of uses of an

external item that can occur before reuse occurs." The default value for ITL is 1 and ETL

is 0. Fora high level component of system and a low level component of function, this

means that an internal function must be used at least two times for it to be "reused." An

external function is "reused" when used only once.

The ITL and ETL may be given as command line arguments to rl:

rl -itl 2 -etl 1 myprog.c myutils.c

RI always displays the ITL and ETL at the beginning of the output report:

Internal Threshold Level 2

External Threshold Level 1

62

RI uses the ITL and ETL for all calculations of reuse, for any abstraction. If ITL = 2,

then a source line of code must occur three times for it to qualify as reused in the

calculation of internal reuse level for low level component of NCSL.

4.2.4 Option to use multicall graph abstraction

Given the -multical1l1 flag as a command line argument, rl will use a multicall graph

abstraction to calculate the reuse metrics. Rl needs the cscope tool for this function.

Cscope is available only on the AT&T Unix platform. When using a multicall graph

abstraction rl displays a message at the beginning of the output report:

Using a multicall graph abstraction with cscope.

If cscope is unavailable when the multicall option is specified, rl displays an error and

ends execution:

rl error: Cannot use a multicall abstraction.

The cscope tool is unavailable; valid on AT&T Unix only.

Section 3.2 of this paper discusses the multicall graph abstraction for generic higher level

items and lower level items. RI includes a multicall option for each metric except for a

higher level component of function; the Function / Function abstraction is essentially

always calculated using a multicall abstraction since reuse is contained within a single

function.

63

4.2.5 High level and low level abstractions

The original version of rl calculated the reuse level for functions within a C system. |

have enhanced the software to calculate the reuse level metrics at various levels of

abstraction. Each column in Table 15 represents a possible high level and low level

abstraction combination. The table provides definitions of the metrics for each

abstraction.

The default high level abstraction in rl is system. By using the -high flag the user may

request a high level abstraction of file or function. For the system and file high level

abstraction, the reuse level for a low level abstraction of function and NCSL are both

calculated. For a high level abstraction of function, only the function low level

abstraction is available at the current time.

4.2.6 Option to include main(in the function count

The final rl extension is an option to include the main() function in the count of internal

functions. Specified on the command line, the -main flag causes rl to add 1 to the total

count of internal functions when main() is one of those functions. By default, rl does not

include main() in the count, a sensible approach because C allows only one definition of

main() in a system and thus it is impossible to "reuse" the main() function.

4.3. Examples of use

The usage statement for rl is:

Usage: rl [-i num][-main]([-multicall][-high system|file| function]

[-d delim] <FILES>

Computes reuse metrics for the source code in the given file(s).

Parameters:

~i num num is the internal threshold level, default = 1

-e num num is the external threshold level, default = 0

-main include main in the internal function count

-multicall use a multicall graph abstraction

-high system|file| function

indicate system, file or function as the high level

abstraction entity. Default is system.

-sysf filename

filename is the fully-qualified pathname of a file

containing a list of system functions that should be

excluded from reuse counts. If this parm is not given

then all C functions will be included in reuse counts.

~d delim delim is a delimiter preceding each function

definition in each C file, needed for computing the

complexity weighting. If this parm is not given the

environment variable FDELIM will be used. If neither

are set then the complexity weighting will not be

calculated.

<FILES> name of C source code files

The only required argument to rl is one or more names of C source files. Figure 5 is the

report generated by rl for a C system composed of four files, bv.c, hash.c, bvdriver.c, and

hdriver.c. The output resulted from invoking rl with no optional arguments:

rl hash.c bvdriver.c bv.c hdriver.c

65

No file delimiter given, complexity weighting will not be computed.

Internal Threshold Level

External Threshold Level

1
0

REUSE METRICS FOR SYSTEM

Reuse Level

Internal Functions Reused: 9

External Functions Reused: 7

Total Functions Used: 30

Internal Reuse Level: 0.3000

External Reuse Level: 0.2333

Total Reuse Level: 0.5333

Reuse Frequency

References to Reused Internal Functions: 50

References to Reused External Functions: 17

Total Number of References: 81

Internal Reuse Frequency: 0.6172

External Reuse Frequency: 0.2098
Total Reuse Frequency: 0.8271

Lines of Code Reuse Level

Loc: 289

Reused LOC: 149

Reuse level for LOC: 0.5155

Figure 5: Sample rl output

Note that the default high level component is system; the high level component is

displayed as the last word in the heading "REUSE METRICS FOR ...". Reuse levels for

low level components of function and lines of code were calculated. No complexity

weighting was computed because no function delimiter was defined.

Consider invoking rl with a high level component of file:

rl -high file hash.c bvdriver.c bv.c hdriver.c

The reuse metrics will be displayed for each file with appropriate headings such as:

REUSE METRICS FOR hash.c

67

4.3.1 Running rl] from a makefile

A Unix makefile is often used to simplify the compilation and linking procedures for C

programs. Since rl needs the names of all C source files to compute reuse metrics fora

system, using the makefile will simplify running rl.

For example, the following lines can be added to a makefile:

RLARGS=

RLDIR=/ul/cterry/RL

rl:

$(RLDIR)/rl $(RLARGS) $(CSRC)

RLDIR 1S the directory path of the rl software. The csrc variable is the list of C source

files. The rl program can be invoked by typing:

make rl

Additional arguments may also be specified:

make rl RLARGS="-itl 2 -high file"

To modify the default behavior of rl using a makefile, assign the value for the RLARGS

variable inside the makefile.

§ Testing rl

$5.1. The Testing Procedure

All rl capabilities have been extensively tested. The program incorporates parameter

edits and other error-prevention procedures that improve the robustness of the software.

A set of seven very simple C programs were used as test cases for the initial testing

phases of rl. The programs were designed to provide simple but comprehensive test

cases.

The following is a regression test script for rl. It was adapted from a similar script on

page 197 in [Frakes et al 91]. This script accepts two arguments. The first is the name of

a file which contains the correct results for the test run. The second is all arguments that

should be passed to the rl program.

Shell script to test the rl program

$1 - name of file containing correct results

$2 - all parms (enclosed in quotes) to rl

CORRECT=S$1

echo Testing rl

echo Comparing results on reuse metrics

echo to results in S$CORRECT

69

echo

run the rl program, capture stdout and stderr

echo "rl $2"

rl $2 > /tmp/tmp.rlout 2>&1

test for differences in this output and correct output

aiff /tmp/tmp.rlout $1 > /tmp/diffs.SCORRECT

if test "$?" = 1

then

echo Error - Differences are:

cat /tmp/diffs.$CORRECT

else

echo No errors

rm /tmp/tmp.rlout

rm /tmp/diffs.SCORRECT

fi

This script was used to test the rl program on each of the seven simple programs. The C

test programs are listed in Appendix D. The following list summarizes the rl test cases.

This list is not comprehensive; additional test cases provide better coverage of parameter

edits and argument combinations.

1. rl myprog.c (correct, no options)

2.rl nofile.c (bogus filename)

3. rl myprog.c myutil.c (2 correct file names)

4.r1 (no file names)

5.rl -itl 2 -etl 1 myprog.c (specify threshold levels)

6. rl -main myprog.c (-main argument)

70

7. rl -multicall myprog.c (use multicall graph abstraction)

8.rl -high file myprog.c myutil.c (high level component = file)

9.r1 -high file -multicall (high level=file, with multicall abstraction)
myprog.c myutil.c

10. rl -high function myprog.c (high level component = function)
myutil.c

ll. rl -d "/*%" (-d flag and FDELIM env. variable)

12. rl -high bogus (bogus high level component)

5.2 Testing Results

The rl software was run on 31 production C systems. The systems range in size from 192

NCSL to 1879 NCSL. Access to C software was limited for this project; it would be

beneficial to run further analysis on larger systems and systems with existing quality and

productivity statistics. The following data was accumulated using default rl options:

internal threshold level = 1, external threshold level = 2, standard call graph abstraction,

high level component = system and low level component = function. Table 16 shows

summary statistics for the reuse level metric.

71

Table 16: Summary Statistics for Reuse Level

Internal Reuse External Total Reuse NCSL
Level Reuse Level Level

Mean 0.0858 0.5522 0.6380 818.84

Median 0.0666 0.5263 0.6190 676

Max 0.3000 0.9814 0.9814 1879

Min 0 0.2333 0.4655 192

Standard Dev 0.0735 0.1474 0.1220 471.82

The average level of reuse is high, at 64%. This figure could be partially attributed to the

design of the C programming language. The internal reuse level ranges from zero (no

internal reuse) to 0.3 (approximately one-third of the internal functions were used more

than once). Figure 6 shows a plot of internal reuse level vs. log NCSL.

72

0.300 + x

i

n

t x

e 0.225 +
r x

n x

a

|

r

e

U

Ss

e

|

© -0.000 + xx x x x
Vv al, 4 a | l awl,

e
2.50 2.75 3.00 3.25

log NCSL

Figure 6: Internal Reuse Level vs. log NCSL

The plot would indicate that as software increases in size, internal reuse also increases.

On the other hand, as shown in Figure 7, external reuse decreases as software increases in

size. Internal reuse has a positive correlation with log NCSL (r=0.35, r2=0.12). External

reuse has a negative correlation with log NCSL (r=-0.57, r=0.32). These results indicate

that small programs reuse a small number of internal functions and a large number of

external components. Conversely, larger programs reuse more internal components and

fewer external components. These results are logical because large programs contain

more code and thus more reusable components, and small programs must use external

components to increase functionality.

73

—
o

3
7

®
+

Xx
@

©

©
 , T

r

e
u
s 1 x
e 0.4 x Xe

|

€ x

Vv l | wl i
e w c T i

2.50 2.75 3.00

log NCSL

Figure 7: External Reuse Level vs. log NCSL

Table 17 contains summary statistics for reuse frequency.

Table 17: Summary Statistics for Reuse Frequency

Internal Reuse External Total Reuse NCSL

Frequency Reuse Frequency

Frequency

Mean 0.1308 0.6525 0.7833 818.84

Median 0.0983 0.6666 0.7794 676

Max 0.6172 0.9838 0.9838 1879

Min 0 0.2098 0.6363 192

Standard Dev 0.1261 0.1379 0.0725 471.82

74

As expected, because more calls to reused functions exist than reused functions

themselves, the reuse frequency measurements are slightly above the reuse level

statistics.

An additional study evaluates the effect of increasing the threshold level on the

corresponding reuse level. Figure 8 maps the internal reuse level to the internal threshold

level. This data was acquired by running rl on a single set of software two different

times, once with an internal threshold level of 1 and once with an internal threshold level

of 2. The graph indicates that the reuse level drops significantly when the threshold level

was increased by 1. All but one test case has a reuse level of 0.075 or less with ITL=1.

0.300 + +
n

t
e rT

r 0.225 +
n + +

a +

+
0.150 T +

r

e

u :
S$ 0.075 + +
e '

;
e + +

V — 7
' 1.0 2.0

ITL

Figure 8: Internal reuse level vs. Internal threshold level

75

Figure 9 shows an even more dramatic difference in external reuse level when the

external threshold level is increased from 0 to 1. An ETL of 1 means that an external

function must be used more than once before "reused."

x

e

xX x

t og +
e

i
n x
qg 0.6 7 ¥

r 044+ x x
e x x
u

Ss x

x

e .9.90 + x
V + + 4
| 0.0 1.0

ETL

Figure 9: External reuse level vs. External threshold level

Further testing of rl to evaluate the reuse levels using a multicall graph abstraction would

be beneficial. Results for such tests are not included in this report due to a computer

hardware failure.

76

6 Conclusions and Future Work

In this study, the reuse metrics proposed by Frakes were extended to include reuse

frequency and a reuse complexity weighting. Threshold levels and a multicall graph

abstraction were defined to allow variable definitions of "reuse." The metrics were

formally defined in an algorithmic notation that allows clear understanding. The formal

definition can be mapped to a specific domain and thus the reuse metrics can be defined

for any software development artifact.

The rl reuse measurement software for C code has been greatly enhanced. It now reports

the reuse level and reuse frequency metrics for several possibilities of high level and low

level abstraction entities. Rl] allows the user to specify values for internal and external

threshold levels. It also computes a reuse complexity weighting, and supports calculation

of the reuse metrics using a multicall graph abstraction.

Runs of the rl software conclude that internal reuse increases as programs increase in size

while external reuse decreases as program increase in size. Also, a difference of one in

the internal or external threshold level causes dramatic decreases in the amount of reuse.

Much future work remains to be done. For clearer empirical results, the reuse metrics

could be calculated for systems that have prior quality and productivity measurements.

Correlations could then be obtained providing empirical evidence of the effect of

software reuse on software quality and productivity.

77

The abstract definitions of the reuse metrics could be mapped to the object-oriented

domain to reflect the syntax of an object-oriented language. RI or similar software could

be written to calculate reuse measurements for an object-oriented language such as C++.

Valuable results could compare the amount of reuse in procedural source code to the

amount of reuse in object-oriented code.

The rl program could be enhanced to compute dynamic reuse metrics, calculated after

source code bindings have been resolved. Recursion and dynamic references would then

be included in the reuse equation, as they should be for more precise results.

As currently implemented, the rl software is dependent upon several other tools to parse

the source code. An improved implementation might incorporate the parsing procedure

and generate results more efficiently.

To improve accessibility, the functions of a reuse measurement tool such as rl could

easily be integrated into a CASE environment. Users could then graphically request

reuse statistics for a given software component.

Software reuse is predicted to become more common and more obtainable in the future of

software development. Measurement tools such as rl will be an essential part of the reuse

program.

78

References

[Agresti and Evanco 92] Agresti, W. and Evanco, W. “Projecting software defects in

analyzing ada designs.” IEEE Transactions on Software Engineering 18 (11

1992): 988-997.

[Baker et al 90] Baker, A., Bieman, J., Fenton, N., Gustafson, D., Melton, A., and Whitty,

R. “A philosophy for software measurement.” Journal of Systems and Software

(12 1990): 277-281.

[Barnes and Bollinger] Barnes, B. and Bollinger, T. “Making software reuse cost

effective.” IEEE Software (1 1991): 13-24.

[Basili et al 90] Basili, V. R., Rombach, H.D., Bailey, J., and Delis, A. “Ada reusability

and measurement.” Computer Science Technical Report Senes, University _of

Maryland. May (1990).

[Bieman 92] Bieman, J. “Deriving measures of software reuse in object oriented

systems.” In BCS-FACS Workshop on Formal Aspects of Measurement in

Springer-Verlag, 1992.

[Bieman and Karunanithi 93] Bieman, J. and Karunanithi, S. “Candidate reuse metrics

for object oriented and ada software.” In IEEE-CS Ist International Software

Metrics Symposium, 1993.

[Boehm 81] Boehm, B. Software Engineering Economics. Englewood Cliffs, NJ:

Prentice Hall, 1981.

79

[Bolsky and Korn 89] Bolsky, M. and Korn, D. The Korn Shell Command and

Programming Language. Englewood Cliffs, NJ: Prentice Hall, 1989.

[Booch 87] Booch, G. Software components with ada. Menlo Park, CA: Benjamin /

Cummings, 1987.

[Browne et al 90] Browne, J., Lee, T., and Werth, J. “Experimental evaluation of a

reusability-oriented parallel programming environment.” IEEE Transactions on

Software Engineering 16 (2 1990): 111-120.

[Card et al 82] Card, D., McGarry, F., Page, G., et. al. “The software engineering

laboratory.” NASA/GSFC (2 1982).

[Card et al 86] Card, D., Church, V., and Agresti, W. “An empirical study of software

design practices.” IEEE Transactions on Software Engineering 12 (2 1986): 264-

270.

[Chen and Lee 93] Chen, D. and Lee, P. “On the study of software reuse: using reusable

C++ components.” Journal of Systems and Software 20 (1 1993): 19-36.

[Conte et al 86] Conte, S., Dunsmore, H., and Shen, V. Software Engineering Metrics and

Models. Benjamin/Cummings Publishing Company, Inc., 1986.

[Davis 93] Davis, T. “The reuse capability model: a basis for improving an

organization's reuse capability.” In 2nd International Workshop on Software

Reusability in Herndon, VA, 1993.

[DeMarco and Lister 84] DeMarco, T., and Lister, T. "Controlling software projects:

management, measurement, and evaluation." Seminar Notes, New York, Atlantic

Systems Guild Inc., 1984.

[Favaro 91] Favaro, J. “What price reusability? A case study.” Ada Letters (Spring 1991):

115-124.

[Fenton 91] Fenton, N. Software Metrics A Rigorous Approach. Chapman & Hall,

London, 1991.

[Fenton and Melton 90] Fenton, N. and Melton, A. “Deriving structurally based software

measures.” Journal of Systems and Software (12 1990): 177-187.

[Frakes 90] Frakes, W. “An empirical framework for software reuse research.” In Third

Workshop on Tools and Methods for Reuse in Syracuse, NY, 1990.

[Frakes et al 91] Frakes, W., Fox, C., and Nejmeh, B. Software Engineering in the

UNIX/C Environment. Englewood Cliffs, NJ: Prentice Hall, 1991.

[Frakes 92] Frakes, W. “Software reuse, quality, and productivity.” In ISOE

Proceedings. Juran Institute, Inc. 1992.

[Frakes 93] Frakes, W. “Software reuse as industrial experiment.” American Programmer

(September 1993): 27-33.

[Frakes 91] Frakes, W. (moderator). “Software reuse: is it delivering?” In 13th

International Conference on Software Engineering in Los Alamitos, CA, IEEE

Computer Society Press, 1991.

[Frakes and Arnold 90] Frakes, W. and Arnold, R. Reuse level metrics. Software

Productivity Consortium, 1990.

[Frakes and Gandel 90] Frakes, W. and Gandel, P. “Representing reusable software.”

Information and Software Technology 32 (10 1990): 653-664.

[Gaffney and Durek 89] Gaffney, J.E. and Durek, T.A. “Software reuse - key to enhanced

productivity: some quantitative models.” Information and Software Technology

31 (5 1989): 258-267.

81

[Griss and Tracz 93] Griss, M and Tracz, W., editors. “WISR '92: 5th annual workshop

on institutionalizing software reuse: working group reports.” Software

Engineering Notes 18 (2 1993): 74-75.

[Jones 93] Jones, C. “Software return on investment preliminary analysis.” Software

Productivity Research, Inc., 1993.

[Keyes 92] Keyes, J. “New metrics needed for new generation.” Software Magazine

(May 1992): 42-45.

[Kolton and Hudson 91] Kolton, P. and Hudson, A. “A reuse maturity model.” In 4th

Annual Workshop on Software Reuse in Herndon, VA, 1991.

[Krueger 92] Krueger, C. “Software reuse.” ACM Computing Surveys 24 (2 1992): 131-

183.

[Margono and Rhoads 93] Margono, T. and Rhoads, T. “Software reuse economics: cost-

benefit analysis on a large-scale Ada project.” In International Conference on

Software Engineering ACM, 1993.

[McGregor and Sykes 92] McGregor, J. and Sykes, D. Object-Oriented Software

Development: Engineering Software for Reuse. New York: Van Nostrand

Reinhold, 1992.

[Nejymeh 88] Nejmeh, B. “Npath: a measure of execution path complexity and its

applications.” Communications of the ACM 31 (2 1988).

[Nunamaker and Chen 89] Nunamaker Jr., J. and Chen, M. “Software productivity: a

framework of study and an approach to reusable components.” In 22nd Annual

Hawaii International Conference on System Sciences, 965-966, 1989.

[Owens 93] Owens, J. Object-oriented design: benefits for reuse. Virginia Polytechnic

Institute and State University, Paper for CS 6704, (1993).

82

{Prather 84] Prather, R. “An axiomatic theory of software complexity measure.”

Computer Journal 27 (4 1984): 340-347.

[Prieto-Diaz 93] Prieto-Diaz, R. “Status report: software reusability.” IEEE Software

(May 1993): 61-66.

[Smith 90] Smith, J. Reusability and Software Construction C and C++. New York: John

Wiley and Sons, 1990.

[Sommerville 89] Sommerville, I. Software Engineering. Addison-Wesley Publishing

Company, 1989.

[Weyuker 88] Weyuker, J. “Evaluating software complexity measures.” IEEE

Transactions on Software Engineering 14 (9 1988): 1357-1365.

Appendix A: Definition of Reuse Metrics in Set Notation

This appendix contains a formal definition of the reuse level and reuse frequency metrics.

The definitions are constructed in formal set notation. Section A.1 contains an abstract

definition for unknown high level and low level entities. Section A.2 demonstrates how

the general notation can be applied to an actual domain to define a reuse measurement

model for a the C programming language.

A.l Abstract Formal Reuse Metric Definitions

Assumptions

Parts-based reuse assumes that a system is divided into parts, or components, which relate

to each other in some way. Higher-level components are composed of, or use, lower-

level components. A component which 1s internal to a system was developed for the

system. An external component was not developed for the system but may be used

within the system.

Such a system can be modeled with nodes and relationships between nodes, as in a call

graph abstraction. In Figure 3, each node represents some object in the development life

cycle of system S. When a node (A1) uses another node (A2) then the relationship from

Al to A2 is a uses relation, or a reference. A reference is depicted as a directional arc

between nodes.

Al

A2 A3 A4

AS

Figure 1: Standard call graph abstraction

The system in Figure 3 does not show whether a node is used by another node more than

once. By definition, the reference relation is boolean: either Al uses A2 or it does not.

An alternative representation is a multicall graph abstraction where a node may be used

several times by another node. In Figure 4, each arc is labeled with a digit which

indicates the number of uses. Al uses A2 twice and A4 uses A5 three times.

Al

A2 A3 A4

A5

Figure 2: Muiticall graph abstraction

While more definitions are possible, two basic reuse metrics are defined:

1) The amount of reuse may be defined in terms of the number of nodes which are used

more than a given number of times within the system. The resulting metric is

reuse level [Frakes 90]. Reuse level is defined as the number of nodes which are

reused divided by the total number of nodes in the system.

2) The amount of reuse may be defined in terms of the number of references to nodes.

The resulting metric is reuse frequency. Reuse frequency is defined as the

85

number of references to reused nodes divided by the total number of references in

the system.

Reuse level and reuse frequency may both be decomposed into internal and external

measurements.

For the purpose of a formal definition, the following assumptions are made:

Let S be a system.

Let N be the set of all nodes developed for S (internal nodes).

Let R be the set of all references within S (to internal and external nodes).

Let ITL be the internal threshold level, defined to be the maximum number of

uses of an internal node that can occur before reuse occurs. The default

value is 1.

Let ETL be the external threshold level, defined to be the maximum number of

uses of an external node that can occur before reuse occurs. The default

value is O.

Definitions

T=total # of nodes in S

IU=# internal nodes in S used > ITL

IM=# internal nodes in S used > ITL

with a multicall graph abstraction

EU=# external nodes used > ETL

TF=total # of references in S

IUF=# references in S to internal nodes

used > ITL

IMF=# references in S to internal nodes

used > ITL with a multicall

graph abstraction

EUF=# references in S to external nodes

used > ETL

EM=¥ external nodes used > ETL with IMF=# references in S to external nodes

a multicall graph abstraction used > ETL with a multicall

graph abstraction

T is equivalent to the formal relation | { x | used_cnt(x) = 1} |

TF is equivalent to the formal relation | R |

The function used_cnt(a) is the number of times the component a is used in S using a

standard call graph abstraction.

The function multicall_used_cnt(a) is the number of times the component a is used in S

using a multicall graph abstraction.

The function ref_cnt_to_node(a) is the number of references to a within S using a

standard call graph abstraction.

The function multicall_ref_cnt_to_node(a) is the number of references toa within S using

a multicall graph abstraction.

Internal Reuse Level

i_reuse_level =IU/T

where IU =| {(x EN) | used_cnt(x) > ITL)} |

i_reuse_level_multicall = IM / T

where IM =| {(x €N) | multicall_used_cnt(x) > ITL)} |

External Reuse Level

e_reuse_level =EU/T

where EU =| {(x ¢N) | used_cnt(x) > ETL)} |

e_reuse_level_multicall = EM / T

where EM = 1 {(x ¢ N) 1! multicall_used_cnt(x) > ETL)} |

Internal Reuse Frequency

i_reuse_frequency =IUF/TF

where IUF =| {(d © R) | ref_cnt_to_node(d) > ITL A

ref_to_internal_node(d)} |

1_reuse_frequency_multicall = IMF / TF

where IMF =| {(d € R) | multicall_ref_cnt_to_node(d) > ITL)

/_ ref_to_internal_node(d)} |

External Reuse Frequency

e_reuse_frequency = EUF / TF

where EUF =| {(d € R)1|ref_cnt(d) > ETLA

ref_to_external_node(d)} |

e_reuse_frequency_multicall = EMF / TF

where EMF =| {(d € R) | multicall_ref_cnt_to_node(d) > ETL)

/_ ref_to_external_node(d)} |

Total Reuse Measurements

total_reuse_level = i_reuse_level + e_reuse_level

total_reuse_level_multicall = i_reuse_level_multicall + e_reuse_level

total_reuse_frequency = i_reuse_frequency + e_reuse_frequency

total_reuse_frequency_multicall = i_reuse_frequency_multicall + e_reuse_frequency

Complexity (size) Weighting

n n
Ws=)»D (size (internal_reused_nodes(ITL)) / > (size (all_nodes(S))

i=1 i=1

where size is based on NCSL (Non-Commentary Source Lines of code).

A.2 Formal Reuse Metric Definitions for the C Language

This section demonstrates how the formal model can be instantiated for C. The high

level abstraction for this definition is a C system. The low level abstraction is a function.

The following assumptions are made:

Let S be a software system wnitten in the C programming language. Functions

that were developed for S are called internal functions and functions that

were not developed for S are called external functions.

Let F be the set of all internal functions.

Let C be the set of all references within S to internal and external functions.

Let ITL be the internal threshold level, defined to be the maximum number of

references to an internal function that can occur before reuse occurs.

Let ETL be the external threshold level, defined to be the maximum number of

references to an external function that can occur before reuse occurs.

89

Definitions

T=total # of functions TF=total # of references

IU=# internal functions referenced >ITL [UF=# references to internal functions

used > ITL

IM=# internal functions referenced >ITL IMF=# references to internal functions

with a multicall graph abstraction used > ITL with a multicall graph

abstraction

EU=# external functions referenced > ETL EUF=# references to external functions

used > ETL

EM=# external functions referenced > ETL EMF=# references to external functions

with a multicall graph abstraction used > ETL with a multicall graph

abstraction

T is equivalent to the formal relation | { f | used_cnt(f) = 1} |

TF is equivalent to the formal relation | C |

The function used_cni(f) is the number of times function fis used in S using a standard

call graph abstraction.

The function multicall_used_cni(f) is the number of times the function fis used in S

using a multicall graph abstraction.

The function ref_cnt(c) is the number of references to function c using a standard call

graph abstraction.

The function multicall_ref_cnt(c) is the number of references to functionc using a

multicall graph abstraction.

Internal Reuse Level

1_reuse_level = IU /T

where IU =| {(f € F) | used_cnt(f) > ITL)} |

i_reuse_level_multicall = IM / T

where IM =1 {(f € F) 1 multicall_used_cnt(f) > ITL)} |

External Reuse Level

e_reuse_level =EU/T

where EU =| {(f ¢ F) | used_cnt(f) > ETL)} |

e_reuse_level_multicall = EM / T

where EM = 1 {(f ¢ F) | multicall_used_cnt(f) > ETL)} |

Internal Reuse Frequency

i_reuse_frequency =l[UF/TF

where IUF =

l{(c € C)lref_cnt(c)>ITL A ref_to_internal_ftn(c)} |

i_reuse_frequency_multicall = IMF / TF

where IMF =| {(c € C)| multicall_ref_cnt(c) > ITL) A

ref_to_internal_ftn(c)} |

91

External Reuse Frequency

e_reuse_frequency =EUF/TF

where EUF =

l{(c € C)lref_cnt(c) > ETLA ref_to_external_ftn(c)}!

e_reuse_frequency_multicall = EMF / TF

where EMF =| {(c € C) | multicall_ref_cnt(c) > ETL)

/_ ref_to_external_ftn(c)} |

Total Reuse Measurements

total_reuse_level = i_reuse_level + e_reuse_level

total_reuse_level_multicall = i_reuse_level_multicall + e_reuse_level

total_reuse_frequency = i_reuse_frequency + e_reuse_frequency

total_reuse_frequency_multicall = i_reuse_frequency_multicall + e_reuse_frequency

Complexity (size) Weighting

n n
Ws= »> (size (internal_reused_ftns(S,ITL)) / > (size (all_ftns(S))

.

i=1 1=

where size is based on NCSL (Non-Commentary Source Lines of code).

Appendix B: The rl Software

93

#! /usr/bin/ksh
PERE ERE TTR TT TERHRR RRR R RRR R AREER ERE R EERE RARE EERE ER EE REET TREE EERE RT TEE

ee
 = ae

oe

Q ge

rl-- reuse level measurement tool for C, ksh version

SYNOPSIS: rl [-i num] [-e num] [-main] [-multicall] [-high system|fil
| function]

{-d delim] <files>

ENVIRONMENT: Will use the following environment variables if defined:
ITL - internal threshold level, default=1
ETL -—- external threshold level, default=0
FDELIM - file delimiter for ccount

He

He

He

He

E
e

St
e

te
 O

D
te

te

e
t

HE

HE

DISTRIBUTION: Not to be distributed without permission from B. Frakes

AUTHOR: Carol Terry, Va Tech (703) 698-6020
Bill Frakes, Va Tech (703) 698-6020
Chris Fox

HISTORY: 6-22-90 Written by B. Frakes
1-30-92 Rewritten by C. Fox
6-20-93 Rewritten by C. Terry

REFERENCE: W. Frakes, "An Empirical Program for Software Reuse"
3rd Workshop on Tools and Methods for Reuse
Syracuse, NY 1990

C. Terry, "Analysis and Implementation of Software Reuse M
asurement"

Masters Project and Report, VPI & SU Northern Virginia
Falls Church, VA 1993

HE

te

st

e
e
t
e

te
 (
D
e

FE

FE

A

E
e

te

HE

He

E
C
E

S
E

HE

HE

NOTES: Run rl out of your makefile using your source list as input.

HERR ERE EE TEER EE ERE T EEE ETH EH ER TETHER EEE RH THERESE RET H EEE EH EH EHH
HERE HH HH

TMPDIR=/tmp # directory to store temporary files
HLO=/ul/cterry/carol/RL # high level qualifier (path) for t
he rl program
CCNT DIR=/ul/cterry/carol/RL # path for the ccount program
#HLQ=/home/cterry/rl # path for rl on amiga
#CCNT_DIR=/home/cterry/rl # path for the ccount program on am
iga

ae ee ee ee ee ee

wae ea ee a eo ee

Usage

eee ee _ —_— =- —_— ee

Usage() {
echo
echo "Usage: rl [-i num] [-main] [-multicall] "
echo " [-high [system](file][function]] [-d delim] <FILES>"
echo "Computes reuse metrics for the source code in the given file\(s

echo "Parameters:"

94

echo " -itl num num is the internal threshold level, default = 1"
echo " -etl num num is the external threshold level, default = 0"
echo " -main include main in the internal function count"
echo " -multicall use a multicall graph abstraction so that, for exa

mple,"
echo " a function can use another function more than once

Ww"

echo " -high [system] [file] [{function]"
echo " indicate system, file or function as the high leve

,"

echo " abstraction entity. Default is system."
echo " -sysf filename"
echo " filename is the fully-qualified pathname of a file

echo " containing a list of system functions that should
be"

echo " excluded from reuse counts. If this parm is not g
iven"

echo " then all C functions will be included in reuse cou
nts."

echo " -d delim delim is a delimiter preceding each function defin
ition”

echo " in each C file, needed for computing the complexit
y size"

echo " weighting. If this parm is not given the environm
ent"

echo " variable FDELIM will be used. If neither are set t
hen"

echo " the complexity weighting will not be calculated."
echo " <FILES> name of C source code files"
exit 1

}

wee a ee ee a a ee ee ee ee

we ee ee nn a ee ee ee ee

Parmedit - edit all input parms, if errors print Usage stmt and exit
 rue me ee ee eee ete me arm ree me me ee ee ee ee ce ee re ee ee ee ee ee ae ee ee

——

Parmedit {)

if [$# -eq O]
then

Usage
fi

search for valid parameters. Store the names of the c files in the CF
ILE array.

let CNT=0
while [| $# -ne O]
do

case $1 in
-itl) shift

ITL=$1

-etl) shift
ETL=$1
7?

-main) COUNTMAIN=yes
echo "main is included in the count of Internal Functions "

-multicall) if [[-n ‘whence cscope]]

95

then
MULTICALL=yes

echo "Using a multicall abstraction with cscope."
else

echo "rl error: Cannot use a multicall abstraction."
echo "The cscope tool is unavailable; valid on AT&T Unix only."
Usage

fi

a
-sysf) shift

SYSFTN_FILE=$1

-high) shift
ABSTRACTION=$1

-d) shift
MY FDELIM=$1

FF

*) CFILE[$CNT]=$1
let CNT=CNT+1

r?
esac
shift

done

#edit high level abstraction
if [[-n $ABSTRACTION }]
then

case $ABSTRACTION in
system) i?
file) 73
function) ;;
*) echo rl error: high level abstraction $ABSTRACTION is not vali

d
Usage

a
esac

fi

#check for existence of function delimiter for ccount
if [[-z $MY_FDELIM }]
then

if ([{ -z $FDELIM]]
then

NO FDELIM=true
echo No file delimiter given, complexity weighting will not be co

mputed.
fi

fi

#edit source file names
if [[-z $CFILE]]
then

echo rl error: no source filenames given
Usage

fi
for filen in ${CFILE[*]}
do

if [[! -f $filen J]
then

echo rl error: no such file: $filen
Usage

fi
done

if [[-n $SYSFTN FILE }]

then

if [[! -f $SYSFTN FILE]]
then ~

echo rl error: no such file: $SYSFTN_FILE
Usage

fi
fi

#edit default directories
if [[! -d $TMPDIR]]
then

echo rl error: no such directory: $TMPDIR
Usage

fi
if {[! -d $HLQ J]
then

echo rl error: no such directory: $HLQ
Usage

fi
if {[! -d $CCNT DIR]]
then ~

echo rl error: no such directory: $CCNT DIR
Usage ~

fi

#set defaults for ITL and ETL if necessary
if ({ -z $ITL }]}
then

ITL=1
Fi
if [{ -z $ETL }]}
then

a me me ee rem ree mcm me meee rm ce se ae ee rere arm ee ete me eS Sree cee em ee ml US ee ee me ee i ce ee ce re ce EE OE EE Sl Ne Ce OE ST ED AS ES ee ee Oe eee ee

ee a em ee me re we i re ee ee ee re ee ee ee ee ee —— —————

Reuse Level Metrics -— generates:
~ intern reuses = # internal functions reused

extern reuses = # external functions reused
total _uses = # functions used

re ae me ee an ee re me a ee ee ree ae i es me re re me cee we a re re oe ae ae we wes as ee ee ee ee ee et ee re oe ee ee ee a ee ee ee ee

a a re me ee mr en re iw a ew we re ee nr a re re re ee te ee ee ee ee ee ae ae ee eS

Catalog the definitions of internal functions by searching for matche

parentheses. Keep only the name and definition line number. Then
extract uses of these defined functions from the cflow output or from
cscope. Count how often each internal function is called.

grep "\(\)" $TMPDIR/cflow.file | awk '{print $2}' > $TMPDIR/intern de

if [[-z $MULTICALL]]
then . .

for function in cat $TMPDIR/intern_defs
do

if [[$function != "main:"
then grep "$function" $TMPDIR/cflow.file | awk '{print $2}'

fi
done > $TMPDIR/intern calls

else
NOTE: for AT&T Unix only use cscope;
Allow option of defining "reuse" as multiple calls within a single fu
nection.
remove the colon from the function name

for function in “sed "s/://" $TMPDIR/intern defs~
do
, cscope -L -3 $function ${CFILE[*]} | awk '{print $4}' | sed "s/\

(.* "

done > $TMPDIR/intern_calls
fi

Count the internal functions used at least once and more than ITL tim

where ITL is set to 1 if undefined.

sort $TMPDIR/intern_calls |} uniq ~-c > $TMPDIR/intern_counts

Add 1 for main if indicated by the -m flag. The number of internal r
euses
is the number of components that are used more than ITL times.

intern_uses= cat $TMPDIR/intern counts | we -1-
if [[=n $COUNTMAIN]]
then .

intern_uses= echo $intern_uses 1 "+p" | dc
fi

Write to $HLQ/reused nodes an ordered list of reused functions
awk '{if ($1>K) print $0}' K=$ITL $TMPDIR/intern_ counts > $HLO/reused

nodes
~ intern _reuses= wc -1 $HLQ/reused_nodes | awk '{print $1}' ~

-------- _ -_-—-— —~-——— +

Count the external functions called at least once by searching for ma
tched
empty angle brackets. Keep only the function name, then sort and uni
ue
the result, and count the distinct functions.

grep "<>" $TMPDIR/cflow.file | awk '{print $2}' | sort > $TMPDIR/exte
rn defs

Tf {{ -z $ETL]]
then ETL=0
fi

use cscope to get a multicall abstraction. Do not count any function
s that are
defined in the $SYSFTN FILE, specified by the -sysf parm.

if [[-z $MULTICALL }]~
then

for function in ‘cat $TMPDIR/extern defs
do ~

if [[-n $SYSFTN FILE]]
then .

if [[-z grep $function $SYSFIN FILE]]
then

grep "$function" $TMPDIR/cflow.file | awk '{print $2}' > §T
MPDIR/extern_ calls

fi
else

grep "$function" $TMPDIR/cflow.file | awk '{print $2}' > $TMP

DIR/extern calls
fi

done
else . .

for function in sed "s/://" $TMPDIR/extern_defs
do

if [[-n $SYSFTN FILE }]
then .

if [[-z “grep $function $SYSFIN FILE }]
then ~

scope -L -3 $function ${CFILE[*]} | awk '{print $4}' | sed
"s/\(.*//" > $TMPDIR/extern calls

fi
else

cscope -L -3 $function ${CFILE[*]} | awk '{print $4}' | sed "s
/\(.*//" > $TMPDIR/extern_calls

fi
done

fi

Count the external functions used at least once and more than ETL tim
es
where ETL is set to O if undefined.

sort $TMPDIR/extern calls | uniq -c > $TMPDIR/extern_counts
extern _uses= cat $TMPDIR/extern_counts | we -l

Write to reused exnodes an ordered list of reused external functions
awk '{if ($1>K) print $0}' K=$ETL $TMPDIR/extern_ counts > $TMPDIR/reu

sed exnodes
extern reuses=— wc -l $TMPDIR/reused exnodes | awk '{print $1}'

Reuse _ Frequency | Metrics - generates:
intern refs = # references to reused internal functions
extern refs = # references to reused external functions
total refs = total # references

ee

———

Reuse Frequency Metrics()

Compute the internal reuse frequency by counting number of references
to each

component. total _intern_refs is the total number of references to int
ernal components.
intern_refs is the number of references above ITL to internal compone
nts.

total _ intern _refs=0 .
for cts in “awk '{print $1}' $TMPDIR/intern counts
do
total _intern_refs= echo $cnts $total_intern refs "+p" | dc~

done

awk '{if ($1>K) print $1}' K=$ITL $TMPDIR/intern_counts > $TMPDIR/int
ern refs counts

intern refs= =0 .
for cnts in cat $TMPDIR/intern_refs counts

do
intern refs= echo $cnts $intern refs "+p" | dc

done ~ ~

Compute the external reuse frequency. Must first compile a list of al

t
e
i
 +H

calls to external components.

total _extern_refs=0 .
for cnts in awk '{print $1}' $TMPDIR/extern counts
dao ~

total extern refs= echo $cnts $total extern refs "+p" | dc
done ~ ~ ~ ~

awk '{if ($1>K) print $1}' K=$ETL $TMPDIR/extern counts > $TMPDIR/ext
ern refs counts ~

extern refs=0 .
for cnts in cat $TMPDIR/extern_refs counts
do

extern refs= echo $cnts $extern refs "+p" | de
done ~ ~

Reuse Lines Metrics
callgraph abstraction = # lines reused / # unique lines
multicallgraph abstraction = # occurrences of reused lines / total
lines

oO

Generates:

T_ LINES = total number of lines in the high lev comp
nent

T LINES REUSED = number of reused lines
—---~-----~ toe To

ee ee ee ee ee ee ee ae ee

Reuse Lines Metrics()

} Compute internal reuse level for lines of code rather than functions
as
the lower level abstraction.

fnames=$*
for filen in $fnames

oO
awk '/\/*/,/*\// {next} {print $0}' $filen # extract commentary

lines
done | sort | uniq -c | awk '{if ($2) print $0}' > $TMPDIR/all lines
awk '{if ($1 > K) print $0}' K=$ITL $TMPDIR/all lines > $TMPDIR/inter

n lines ~

if [[-z $MULTICALL }]
then . .

T LINES= wc ~1 $TMPDIR/all_ lines | awk '{print $1}' # number of
unique lines . .

T LINES REUSED= we -l $TMPDIR/intern lines | awk '{print $1}!
else ~ ~

T LINES=0
T LINES REUSED=0 _
for aline in awk '{print $1}' $TMPDIR/all lines
do ~

T LINES= echo $aline $T_LINES "+p" | dc

100

done
for aline in awk '{print $1}' $TMPDIR/intern lines”

do
T LINES REUSED= echo $aline $T_LINES REUSED "+p" | dc-

done ~~
fi

}

wwe ae ee ee ee en ee ee ee

ee ee ee ee ee a a oe ee a ee ee ee a ee ee ee

Function Reuse Level Metrics
This is highlevel=ftn, lowlevel=ftn
Need a tool to extract code for a given ftn name to implement
highlevel=ftn, lowlevel=sloc
This routine generates a total reuse level metric for each function i
n
the given source files. It does not differentiate internal/external
reuse levels nor does it generate reuse frequency metrics. By the na
ture
of function as the highlevel component, it always uses a multicall
abstraction.

ee me ne ee re a ee nr we wr wee re a a re ee ec wr a ae ae re mee ee we at we wr nee ee et ew ee re ee ee en re ee ee a a ee

oe oe ae ee oe oe

Function Reuse Level Metrics()

echo Reuse Metrics for high level component = function
echo

cflow ${CFILE[*]} > $TMPDIR/cflow.file
grep "\(\)" $TMPDIR/cflow.file | awk '{print $2}' > $TMPDIR/intern_d

efs
let ftns=0

for fname in ~sed "s/://" $TMPDIR/intern defs
do ~

this cscope call lists internal AND external functions called by
$fname; need to differentiate to generate irl and erl

cscope -L -2 $fname ${CFILE[*]} | awk '{print $2}' > $TMPDIR/inter
n_callbys

sort and count functions called
sort $TMPDIR/intern callbys | unig -c > $TMPDIR/intern counts
func_uses= wc -l §$TMPDIR/intern counts | awk '{print $1}!

count number of functions called > ITL times
awk '{if ($1 > K) print $0}' K=$ITL $TMPDIR/intern counts > $TMPDI

R/reused_ nodes . ~ .
func reuses= wc -l $TMPDIR/reused nodes | awk '{print $1}'

output results

echo REUSE METRICS FOR $fname

echo Functions Reused: $func reuses
echo Total Functions Used: $func_uses
echo
echo $func_reuses $func_uses | awk '{printf("Reuse Level: %f\n",$1

/$2)}'

101

 # ---~-------—---~—-—---~-—-—- + - - - + + -+-— -_

ee ee ee ee ee

Complexity Weighting ~- valid only for high level component = SYSTEM o
r FILE
low level component = FUNCTION
Generates:

T NCSL = total noncommentary source lines in given high lev
component
T NCSL REUSED = # noncommentary source lines in internal reused fun
ctions

---~-----—--------~+-------+-----~+------+-~-~+------- +--+ + +--+ +--+ +

Complexity Weighting()

{
fnames=$*

count NCSL in all C files
if [[-n $MY_FDELIM]]
then

$¢CCNT DIR/ccount $fnames -d $MY FDELIM -t > $TMPDIR/ccount.out
else ~ ~

$CCNT DIR/ccount $fnames -t > $TMPDIR/ccount.out
fi

if [[-f£ $TMPDIR/tcnts }]
then

rm $TMPDIR/tcnts
fi
grep "total" $TMPDIR/ccount.out_| awk '{print $3}' >> $TMPDIR/tcnts
for tcnt in cat $TMPDIR/tcnts
do

T NCSL= echo $tcnt $T_NCSL "+p" | dc-
done

intern ncsl is a_list of reused functions
for function in awk '{if ($1 > K) print $2}' K=$ITL $TMPDIR/intern c

ounts | sed "s/://" ~
do

grep $function $TMPDIR/ccount.out | awk '{print $3 " " $1}!
done > $TMPDIR/intern_ncsl

sum the NCSL in all reused functions
T NCSL_REUSED=0

for fncsl in awk '{print $1}' $TMPDIR/intern_ncsl
do

T NCSL REUSED= echo $fncsl $T NCSL REUSED "+p" | dc-
done _ ~ ~

er re a re a ee ee re ee a a a ee are te tt en en a ee ee eee i ee re ee i ee ae a ee ee ee ae es ee

102

Output Report () { _

echo
echo " Reuse Level"
echo ~----~-- 3 rr
eit $intern reuses | awk '{ printf("Internal Functions Reused: %d\n"

, $1) }!
echo $extern_reuses | awk '{ printf("External Functions Reused: %d\n"

, $1) }!
echo $total uses | awk '{ printf("Total Functions Used: td\n", $1)

}'

echo
echo $intern_reuses $total_ uses | awk '{printf("Internal Reuse Level:

sf\n", $1/$2)}'
echo $extern_reuses $total_ uses | awk '{printf("External Reuse Level:

%f\n", $1/$2)}'
echo $intern reuses $total uses $extern_reuses | awk '{printf("Total

Reuse Level: %f\n", ($1/$2)+($3/$2))}'
echo
echo " Reuse Frequency"
CChO --- rrr rrr rr
echo $intern_refs | awk '{ printf("References to Internal Functions:

d\n", $1) }!'
echo ect refs | awk '{ printf("References to External Functions:

d\n", $1) }' ~
echo $total refs | awk '{ printf("Total Number of References: %d\n",

$1) }'
echo
echo $intern refs $total_ refs | awk '{printf("Internal Reuse Frequenc

y: %f\n", $1/$2)}'
echo $extern refs $total_ refs | awk '{printf("External Reuse Frequenc

y: sf\n", $1/$2)}!'
echo gintern refs $total refs $extern refs | awk '{printf("Total Reus

e Frequency: %f\n", ($1/$2)+($3/$2))}' ~—
echo
echo "Lines of Code Reuse Level"
echo ~---3--- 7
echo "NCSL (Non-Commentary Source Lines): " $T LINES
echo "Reused NCSL: " $T LINES REUSED ~
echo $T_LINES REUSED $T_ LINES | awk '{ printf("Reuse level for NCSL:

tf\n", $17$2)}'~
echo
if (({ -z $NO_FDELIM }]
then

echo " Complexity Weighting"
CChO mr rrr rrr
echo $T NCSL | awk '{ printf("Total Non-Commentary Source Lines of

code: d\n", $1) }'
echo $T NCSL REUSED | awk '{ printf("Total Non-Commentary Source Li

nes of reused code: d\n", $1) }'
echo $T NCSL REUSED $T NCSL | awk '{printf("Complexity Weighting ba

sed on size: %f\n", $1/$2)}'
fi

Output Stats - write stats to files in stats directory, brief output
to stdout
this routine is for testing purposes only

103

cm ce a se cree me ee ar me rs me me tre eee a re ee ape me me re em em em ne em mre ee me cane ee ne ate ee a te ee re ne ee ee ee ee re ee ee cre ce ee oe ee ne ee ee ee oe

Output Stats()

echo $intern_reuses $total_ uses | awk '{printf("%f\n",
LO/stats/irl

echo $intern reuses $total uses | awk '{printf("irl=%sf\n", $1/$2)}'
echo $extern_reuses $total_uses

LO/stats/erl
echo $extern reuses $total uses t awk '{printf("erl=%sf\n", $1/$2)}'
echo $intern reuses $total uses

($1/$2)+($3/$2))}' >> $HLO/stats/trl
echo $intern reuses $total_uses $extern_reuses | awk '{printf("trl=%f

\n", ($1/$2)+($3/$2))}"
echo $intern refs $total refs | awk '{printf("%f\n", $1/$2)}' >> $HLOQ

/stats/irf ~ ~
echo $intern refs $total refs | awk '{printf("irf=sf\n", $1/$2)}'
echo $extern refs $total refs

/stats/erf
echo $extern refs $total refs { awk '{printf("erf=tf\n", $1/$2)}'
echo $intern refs $total refs

$2)+($3/$2))}' >> $HLQ/stats/trf
echo $intern refs $total_refs $extern_refs | awk '{printf("trf=sf\n",

($1/$2)+($3/$2))}'
echo $T LINES REUSED $T_LINES | awk ‘{printf("%f\n", $1/$2)}' >> $HLO

/stats/irl
echo $T LINES REUSED $T LINES | awk '{printf("lrl=sf\n", $1/$2)}'
echo $T NCSL awk '{printf("sda\n", $1) }' >> $HLO/stats/size

awk '{printf("size=td\n", $1) echo $T NCSL
echo $infile >> $HLO/stats/fname
echo fname= $infile
echo $ITL >> $HLO/stats/itl
echo itl= $ITL
echo $ETL >> $HLQO/stats/etl
echo etl= $ETL
echo $ABSTRACTION >> $HLO/stats/abstr
echo abstraction= $ABSTRACTION
if [[-z $MULTICALL }]
then

echo singlecall >> $HLO/stats/callgraph
else
ein? multicall >> $HLO/stats/callgraph

i

extern reuses

$1/$2)}' >> $H

awk '{printf("sf\n", $1/$2)}' >> $H

| awk '{printf("sf\n",

awk '{printf("sf\n", $1/$2)}' >> $HLO

extern refs | awk '{printf£("sf\n", ($1/

me rm me a er ee ee ee me er ee a ee a ee we i ne ee ee ee ee re ee ee ee ae a eae ee

a me mm me cmt a ee me me ae mr me ce tt ee me me ere cee me are re rm me ee ar ee re ee er arr ae ee nr me ee ee ree a i ee ee re ee ee ee ee ee ee ee

A ee ae wn te em eee me ne em mam se me a rn me me i ee me me ee mre cm ee rm we em re a en ee ee ee ee oe ee

Cleanup() {

Redirect standard out and standard error
exec 2>/dev/null
Remove temp files
rm $TMPDIR/ccount.out > /dev/null
rm $TMPDIR/cflow.file > /dev/null
rm $TMPDIR/extern calls > /dev/null
rm $TMPDIR/extern defs > /dev/null
rm $TMPDIR/extern counts > /dev/null
rm $TMPDIR/extern refs counts > /dev/null
rm $TMPDIR/reused exnodes > /dev/null

104

sol

rm $TMPDIR/intern calls > /dev/null
rm $TMPDIR/intern counts > /dev/null
rm $TMPDIR/intern defs > /dev/null
rm $TMPDIR/intern ncesl > /dev/null
rm $TMPDIR/intern refs counts > /dev/null
rm $TMPDIR/intern lines > /dev/null
rm $TMPDIR/all lines > /dev/null
exec 2>2

mee mr me ce me ee cme ee eer ee me me ee me me me re cere me arm ee me me ce ee me me ct me a mm ee me ee ee ee ee me ee cee cee ar cee ee ce tee ce ee ae ee ee ee ee ee ee ie wee ee ee ee ee

Calculate Metrics() { —

infile=$*;
cflow $infile > $TMPDIR/cflow. file

echo =====s===2=>===s==S=2=2===>==>SSS=>=S>===

if [{ $ABSTRACTION = system }]
then

echo REUSE METRICS FOR SYSTEM
else
echo REUSE METRICS FOR $infile

Reuse Level Metrics
Reuse _ _Frequency | Metrics
total” uses= echo $intern_ uses $extern uses "+p" | dc .
total refs= echo $total intern refs $total _ extern_refs "+p" | de
Reuse Lines Metrics $infile ~
if ({ ~z $NO_FDELIM j]
then

Complexity Weighting $infile
fi ~

uncomment for testing
Output Stats

Output Report
Cleanup

a ne en a em ee i ee i re re ee me ts we ee te we ee re re ee re ee ee ne ee re ee a ee a ae a ee ee

Parmedit $*

105

#set -x

echo Internal Threshold Level = $ITL
echo External Threshold Level = $ETL
if ([{ -z $ABSTRACTION }]
then

ABSTRACTION=system
fi

if [[$ABSTRACTION = system]]
then

Calculate Metrics ${CFILE[*]}
elif [{ $ABSTRACTION = file]}]
then

for inputfile in ${CFILE[*]}
do

Calculate Metrics $inputfile
done ~

else
Function Reuse Level Metrics

fi - ~ ~

exit 0

106

Appendix C: rl Manual Page

107

RL(1) RL(1)

NAME
rl- reuse measurement tool for C.

SYNOPSIS
rl [-itl internal threshold level] [-etl external threshold 1

evel] ~ ~ ~ ~~
{[-main] [-multicall] [-high system|]file|]function] [-sysf

filename]
[-d delimiter] <C source files>

DESCRIPTION
rl calculates reuse metrics for C source code. It produces a
report in the following format:

Reuse Level

Internal Functions Reused: <count>
External Functions Reused: <count>
Total Functions Used: <count>

Internal Reuse Level: <fraction>
External Reuse Level: <fraction>

Total Reuse Level: <fraction>

Reuse Frequency

Internal References to Reused Functions: <count>

External References to Reused Functions: <count>

Total Number of References: <count>

Internal Reuse Frequency: <fraction>
External Reuse Frequency: <fraction>
Total Reuse Frequency: <fraction> _

Lines of Code Reuse Level

NCSL (Non-Commentary Source Lines): <count>
Reused NCSL: <count>
Reuse Level for NCSL: <count>

Complexity Weighting

Total Non-Commentary Source Lines of code: <count>
Total Non-Commentary Source Lines of reused code: <count>
Complexity Weighting based on size: <fraction>

Reuse Level.
The reuse level metric is a calculation of the amount of C
source code that is used more than a given number of times
in the given source files.
Internal Functions Reused is a count of the functions
defined in the C source files argument and called from at

Page 1 (printed 10/12/93)

108

RL(1) RL(1)

least internal threshold level number of functions (or
recursive functions).
External Functions Reused is a count of the functions not
defined in the C source files but called at least
external threshold level number of times.
Total Functions Used is a count of all functions either
defined or called in the C source files. The Internal Reuse
Level is the number of internal functions reused divided by
the total number of functions used.
External Reuse Level is the number of external functions
reused divided by the total number of functions used.
Total Reuse Level is the sum of the internal and external
reuse levels. Note that in a system where every function is
reused, the total reuse level is l.

Reuse Frequency.
The reuse frequency metric is based on the number of calls
to functions that are called more than a given number of
times in the given source files.
Internal References to Reused Functions is a count of calls
to functions defined in the C source files and called from
at least internal threshold level number of functions (or
recursive functions).
External References to Reused Functions is a count of calls
to functions not defined in the source files but called at
least external threshold level number of times.
Total Number of References is a count of all calls to all
functions in the files.
Internal Reuse Frequency is the number of internal
references divided by the total number of references.
External Reuse Frequency is the number of external
references divided by the total number of references.
Total Reuse Frequency is the sum of the internal and
external reuse frequencies.

Lines of Code Reuse Level.
The lines of code reuse level is the number of non-
commentary source lines (NCSL) in the reused internal
components divided by the total number of NCSL in the system
or file.

Complexity Weighting.
The complexity weighting is computed as the sum of the sizes
of each function which is reused divided by the sum of the
sizes of all C functions. Size is determined by countin
Non-Commentary Source Lines (NCSL) of code. The complexity
weighting is dependent upon the ccount tool which requires a
function delimiter. See the discussion of the -d flag.

OPTIONS

-itl <internal threshold level>
The internal threshold level is the maximum number of

Page 2 (printed 10/12/93)

109

RL(1)

~etl

RL(1)

uses of a component which is defined in the C source
files that precede “reuse". The default value is l.

<external threshold level>
The external threshold level is the maximum number of
uses of a component which is defined outside the source
listings that precede "reuse". The default value is 1.

—-main
Indicates that main(}) will be included in the count of
internal functions. By default, main() is not counted.

~multicall

Specifies that a multicall abstraction will be used
when counting reused functions. With this flag, a
function can be reused within a single component. This
option requires the cscope tool, available only on AT&T
Unix V.4.

-high system|file|function
Indicates a high level abstraction of system, file or
function. The default value is system, in which case
the reuse metrics are computed for the system as a
whole. If the high level abstraction is file then the
metrics are calculated separately for each C source
file. If the high level abstraction is function then
the metrics are calculated for each function defined in
the source file(s). Internal reuse level is currently
the only metric available for a high level abstraction
of function.

~sysf <filename>
Specifies that all functions listed in the file
<filename> should NOT be included in the reuse counts.
This feature is intended as a mechanism to prevent
inclusion of low-level C system calls such as printf()
in the reuse measurements.

-d <delim>
<delim> is the delimiter which precedes each function
definition in each C file. This value is necessary to
compute the complexity weighting. If this parameter is
not given the environment variable FDELIM will be used.
If neither are set then the complexity weighting will
be zero. <C source files> The only required argument to
rl is one or more names of C source files. The source
code should be error free and compilable.

SUGGESTION
It is convenient to run rl from your makefile using your
source list as input.

Page 3 (printed 10/12/93)

110

RL(1) RL(1)

SEE ALSO
W. Frakes, "An Empirical Program for Software Reuse"

3rd Workshop on Tools and Methods for Reuse
Syracuse, NY 1990

C. Terry, "Analysis and Implementation of Software Reuse
Measurement"

Master's Project and Report, Virginia Tech, NoVa
Falls Church, VA 1993

cflow
ccount
cscope

AUTHORS
Carol Terry cterry@goliat.cs.vt.edu
Bill Frakes frakes@sarvis.cs.vt.edu
Chris Fox

Page 4 (printed 10/12/93)

111

Appendix D: C Test Suite

112

/*

t2.c

No reused functions, internal or external.

*/

#include <stdio.h>

fl(int n)

static int st=0;

st += n;

}

main({)

int i;

i= 1;
f1(i);

113

/*

t3.c
1 reused internal func, 2 references to it. No reused external funcs

‘/
#include <stdio.h>

fi(int n)

{ static int st=0;

st += n;
if (st < 5)

fl(n);

main()

int i;

i=1;
£1(i);

114

/*

t4.c
1 reused internal func and 1 reused external
2 references to each.

*/

#include <stdio.h>

f2(int n2)

{
static int st2=0;
st2 += n2;
printf("st2 = %d\n",st2);

fl(int n)
{

static int st=0;

st += n;
printf("st = td\n",st);
if (st < 5)

f1(n);
else

f2(n);

main()

int i;

i= 1;
fF1(i);

115

func.

/*

t5.c

2 reused internal with 4 refs,

*/

#include <stdio.h>
#include <string.h>

£3(int n3)

static int st3=0;
char txt[10];

strepy(txt,"In £3\n");
printf("The length of txt is %d and contents is:\n

xt);
st3 += n3;
printf("st3 = sd\n",st3);

£2(int n2)

static int st2=0;
st2 += n2;
printf("st2 = ¢d\n",st2);
£3(n2);

fl(int n)

{
static int st=0;

st += n;

printf("st = sd\n",st);
if (st < 5)

fi(n);
else

f2(n);

main ()

int i;

i=1;
f1(i);
printf("after calling f1 in main\n");
£3(i);

116

3 reused external with 6 refs

$s",strlen(txt),t

/*

t6.c
f2 qualifies for internal reuse only with a multicall graph abstract

*on

x /

#include <stdio.h>
#include <string.h>

f3(int n3)

static int st3=0;
char txt[10];

strepy(txt,"In £3\n");
printf("The length of txt is td and contents is:\n

xt);

st3 += n3;
printf("st3 = sd\n",st3);

f2(int n2)

static int st2=0;
st2 += n2;
printf("st2 = td\n",st2);
£3(n2);

fi(int n)

static int st=0;

st += n;
printf("st = td\n",st);
f£2(n);
f2(n);
if (st <5)

fl(n);
else

f2(n);
}

main()

int i;

i= 1;
£1(i);
printf("after calling f1 in main\n");
£3(i);

117

$s",strlen(txt),t

/*

t7.c

Has lots of calls to internal function fmany() - test ITL > 1
External functions - 5 calls to printf, 2 to strcpy - test ETL > O

*/

#include <stdio.h>
#include <string.h>

fmany ()

printf("inside fmany again\n");

£3(int n3)

static int st3=0;
char txt[10];

fmany();
strepy(txt,"In £3\n");
printf("The length of txt is %d and contents is:\n

xt);
st3 += n3;
printf("st3 = td\n",st3);

f2(int n2)

static int st2=0;

fmany();
st2 += n2;
printf("st2 = ¢d\n",st2);
£3(n2);

}

fi(int n)

Static int st=0;

fmany();
st += n;
printf("st = td\n",st);
if (st < 5)

fi(n);
else

f2(n);

main()

int i;
char txt[10];

i=l;
fmany();
f1(i);
printf ("after calling f1 in main\n");

(i);
strepy(txt,"etl=1");

118

s",strlen(txt),t

/*

t8.c
includes the "/*%" function delimiter for computing the complexity w

eighting

*/

#include <stdio.h>
#include <string.h>

/*% new function */
fmany ()

printf("inside fmany again\n");

/*% new function */
f3(int n3)

static int st3=0;
char txt[10];

fmany ();
strepy(txt,"In £3\n");
printf("The length of txt is td and contents is:\n %s",strlen(txt),t

xt);
st3 += n3;
printf("st3 = %d\n",st3);

/*% new function */
f2(int n2)

static int st2=0;

fmany();
st2 += n2;
printf("st2 = sd\n",st2);
£3(n2);

}

/*% new function */
fl(int n)
{

static int st=0;

fmany ();
st += n;
printf("st = td\n",st);
if (st < 5)

f1(n);
else

£2(n);

/*% new function */
main()

int i;
char txt[(10];

i= 1;

fmany();
f1(i);
printf("after calling fl in main\n");
£3(i);

119

