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ABSTRACT 

Software reuse has been shown to increase quality and productivity [Card et al 86] 

[Browne et al 90] [Frakes 91] [Agresti and Evanco 92]. As researchers and development 

organizations begin to recognize the potential benefits of systematic reuse of software, 

formal measures of the amount of reuse in a given system or subsystem are needed. A 

formal measurement of software reuse will provide software developers and managers 

with the necessary data to track reuse progress. This project and report describe such a 

measurement of parts-based reuse, building upon the reuse level metric and the rl 

software tool as described by Frakes in [Frakes 90] and [Frakes 92]. 

This paper reviews the current research literature in the areas of software reuse and 

software reuse metrics. The reuse metrics proposed by Frakes are extended to include 

reuse frequency and a reuse complexity weighting. The metrics are formally defined. 

Results from extensive testing of rl are reported and correlated with program size. The 

enhancements made to the rl program include: 

¢ specification of the reuse frequency metric, 

e an additional call graph abstraction for reuse measurement, 

¢ weighting of software components for complexity, 

e allowing the user to specify the number of uses of a software element which 

indicate reuse, 

¢ and providing multiple choices for abstraction entities.
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1 Introduction 

1.1 Problem Definition 

Many computer professionals believe that software is the most expensive component of a 

system. Hardware and communication capabilities have improved to a level that exceeds 

the speed and efficiency with which software can be developed. [Boehm 81] With this 

problem in mind, corporate managers are actively seeking progressive and effective 

methods to improve the software development process [Keyes 92]. An important part of 

improving the development process is the ability to track progress and measure the 

amount of improvement that occurs over time [Conte et al 86]. 

Software reuse is recognized as a method for dramatically reducing the time and expense 

of software development. By using existing software, development time is reduced and 

software quality is improved [Card et al 86]. As organizations implement software reuse 

programs in an effort to improve productivity and reliability, they must be able to 

measure their progress and identify what reuse strategies are most effective. To satisfy 

the need to measure reuse, this project and report present an empirical approach to reuse 

measurement. The objective of this work is to extend the reuse level [Frakes 90] metric, 

define the metric formally, and demonstrate the metric in an enhanced version of the 7/ 

[Frakes 92] program.



1.2 Organization of this paper 

This paper presents a summary of software metrics and an in-depth review of software 

reuse metrics. The proposed extensions to and applications of the reuse level metric are 

explained in detail. 

Chapter One gives a global definition of the problem and states the purpose of this project 

and report. 

Chapter Two provides important background information in the areas of software 

measurement and software reuse. Justification for a software reuse measurement is 

given along with a thorough review of the literature in this area. 

The actual metrics proposed by this research are presented in Chapter Three. An 

informal overview will acquaint the reader with the terms and definitions necessary for 

more detailed explanations. The reuse level and reuse frequency metrics are discussed in 

detail, along with a formal description of the metrics. 

Chapter Four discusses the 7/ program which has been developed to measure software 

reuse in C programs. A detailed description of the software is given as well as samples of 

its use.



Chapter Five contains a discussion of testing the rl software. Conclusions on the amount 

of reuse found in the set of test programs are given, as well as correlations between the 

amount of reuse and program size. 

Finally, Chapter Six presents a discussion of future work and conclusions obtained from 

this research. 

The appendices contain the source code for the rl software and relevant documentation. 

They also contain listings of the source code used to test the rl program.



2 Literature Review 

2.1 Formal Software Metrics 

As in all engineering disciplines, measurement of software products and processes 

provides a quantitative analysis which can be used to improve the engineering process. 

Sommerville defines a software metric as "any measurement which relates to a software 

system, process or related documentation." [Sommerville 89]. It is important to define 

precise metrics so that different applications of a metric to the same program will obtain 

identical results. The field of software measurement has received abundant attention in 

recent literature; researchers are striving to reject the common criticism of poor empirical 

methodology and lack of theoretical foundation within the field [Baker et al 90]. 

In their book Software Engineering Metrics and Models, Conte, Dunsmore and Shen 

[Conte et al 86] identify five broad attributes of software metrics: software complexity 

metrics, objective and algorithmic measurements, process and product metrics, models of 

the software development process, and meta-metrics. As background information for 

future discussions, the next five sections explain each of these attributes. Much of this 

information is from [Conte et al 86].



2.1.1 Software complexity metrics 

The complexity of a unit of software is determined by characteristics of the software itself 

as well as its interaction with other systems. A complexity metric reflects the difficulty 

one encounters in the design, coding, testing, or maintaining of the software system. 

Types of complexity include problem complexity, design complexity, and product 

complexity. Valid complexity metrics can be obtained objectively and have direct impact 

on program development metrics such as effort. Common complexity measures include 

McCabe's cyclomatic number, which uses graph theoretic techniques, and Halstead's 

programming effort, which measures complexity by considering the number of unique 

operators and operands and their frequency in a program [Sommerville 89]. A very 

simple measure of complexity is a count of the number of source lines of code in a 

program [Nejmeh 88]. As a program increases in size, it also increases in complexity. 

An equivalent size measure includes consideration for reused code vs. newly developed 

code [Conte et al 86]. 

2.1.2 Objective and algorithmic measurements 

According to Conte, et. al., an objective, or algorithmic, measurement "is one that can be 

computed precisely according to an algorithm. Its value does not change due to changes 

in time, place, or observer." This definition implies the mathematical reliability of an 

objective measurement, allowing comparable results for research. Objective 

measurements have historically been difficult; researchers often disagree on how to 

define a metric, and for some abstract concepts, there are no algorithms that accurately 

capture them.



2.1.3 Process and product metrics 

Software metrics are applied to the software product or to the software development 

process. Product metrics are measures of the software product. Products are 

deliverables, artifacts, or, in general, documents that result from the activities during the 

development life cycle. Example product metrics are size of the program, logic structure 

complexity, and data structure complexity. Process metrics quantify attributes of the 

development process and of the development environment. Resource metrics are process 

metrics, measuring the experience of personnel or the cost of development. Effort and 

cost measurements are extremely important to management of development projects. 

They are divided into two categories: the micro-level of measurement for effort expended 

by individual programmers on small projects, and the macro-level of measurement for 

effort expended by teams of programmers on large projects. 

2.1.4 Models of the software development process 

Software development models are mathematical models that deal with the software 

development process. A model is represented by the general form 

Y=f (XJ, X2, 4 Xn) 

where y is the dependent variable and x;, x2, ..., X, are independent variables. In a 

software development model, the dependent variable is a product or process metric. The 

independent variables are product- or process-related. For example, the dependent



variable might be development cost or effort, and the independent variables might include 

product complexity and the amount of reuse in the product. 

A model may be theoretical or data-driven. Theoretical models are based on 

hypothesized relationships among factors, independent of actual data. Data-driven 

models are the result of statistical analysis of data obtained in empirical testing. 

2.1.5 Meta-metrics 

A meta-metric is a measure of a software metric. Conte, et. al. suggest that simplicity, 

reliability, validity, robustness, prescriptiveness, and analyzability are properties, or 

metrics, which can be used to evaluate a proposed metric. Other sources [Prather 

84][Fenton and Melton 90][Weyuker 88] propose a formal framework in which 

complexity measures can be compared and contrasted. Specific axioms are presented 

which may be applied to a metric to asses its validity and reliability. 

2.1.6 Summary 

Many different types of metrics exist to measure aspects of software throughout the 

development cycle. Design metrics attempt to measure program modularization as well 

as the amount of coupling, cohesion and complexity within the design. Defect metrics 

determine the amount of errors or defects within a program; three typical metrics are: 1) 

number of changes required in the design, 2) number of errors, and 3) number of program 

changes. Software reliability metrics are related to defects within a system, providing the



probability of no failure during a given time interval. Metrics are also defined to assess 

the quality and completeness of a testing strategy. 

The recent trend of software development organizations toward total quality management 

has increased the importance of quality measurement. Developers are recognizing the 

value of quality products and quality processes to achieve those products [Keyes 92]. 

Inherent in the push for quality is the need for measurement so that progress can be 

tracked and improved. A reliable and complete measurement technique is imperative for 

any engineering discipline. As Conte, et. al. state, "Systematic collection of [...] useful 

metrics is a necessary prerequisite if the software development process is ever to achieve 

the status of an engineering discipline." [Conte et al 86] 

2.2 Software Reuse 

A common method of problem solving is to apply a known solution to similar new 

problems. When the solution does not exactly fit the problem, the solution is adapted or 

extended. Proven solutions become accepted and standardized. These techniques apply 

to the world of software engineering as they do to everyday life. In software engineering, 

the reuse of software components is known to result in substantial quality and 

productivity payoffs [Agresti and Evanco 92][Card et al 86][Chen and Lee 93][Frakes 

91]. Recent estimates of the quality and productivity payoffs from reuse fall between 10 

and 90 percent [Frakes 91]. With reuse, software development becomes a capital 

investment.



With growing recognition that software reuse is economically viable, the market is 

demanding tools to assist the process of reuse. Most of these tools focus on the reuse of 

source code; methods of storing, searching, and retrieving source code components are 

becoming more common in development environments. Frakes defines software reuse as 

"the use of existing engineering knowledge or artifacts to build new systems" [Frakes 93]. 

Software reuse can apply to any product of the development life cycle, not only to 

fragments of source code. At each phase of the development process, developers should 

consider how previously completed work can be used to reduce the effort needed for the 

current task. This means that developers can pursue reuse of requirements documents, 

system specifications, design structures, and any other development artifact [Barnes and 

Bollinger 91]. Jones [Jones 93] identifies ten potentially reusable aspects of software 

projects: 

1. architectures 6. estimates (templates) 

2. source code 7. human interfaces 

3. data 8. plans 

4. designs 9, requirements 

5. documentation 10. test cases 

2.2.1 Software Reuse Terminology 

Table 1 summarizes some types of software reuse that are defined in the research 

literature. While other references may precede the one mentioned in the description, 

information about each concept can be found in the listed reference. This list affirms the 

attention that reuse is currently receiving, and reveals the range of terms and definitions 

used to describe software reuse.



Table 1: Types of Software Reuse 
  

Type of Reuse Description 
  

public Fenton [Fen91] defines public reuse as "the proportion of a product which was 
constructed externally." See external . 
  

  

  

  

  

  

  

  

  

    

  

private Fenton [Fen91] defines private reuse as "the extent to which modules within a 
product are reused within the same product." See internal . 

external External reuse level [Frakes 90] is the number of lower level items from an 
external repository in a higher level item divided by the total number of 
lower level items in the higher level item. See public. 

internal Internal reuse level [Frakes 90] is the number of lower level items not from 
an external repository which are used more than once divided by the total 
number of lower level items not from an extemal repository. See private. 

verbatim Bieman and Karunanithi define verbatim reuse as reuse of some item without 
modifications [Bieman and Karunanithi 93]. See black-box. 

generic Generic reuse is reuse of generic packages, such as templates for packages or 
subprograms [Bieman and Karunanithi 93]. 

leveraged Bieman and Karunanithi define leveraged reuse as reuse with modifications 
{[Bieman and Karunanithi 93]. 

black-box Black-box reuse is the reuse of software components without any 
modification [Prieto-Diaz 93]. See verbatim.. 

white-box White-box reuse is the reuse of components by modification and adaptation 
[Prieto-Diaz 93]. See leveraged. 

direct Direct reuse is reuse without going through an intermediate entity [BK]. 
indirect Indirect reuse is reuse through an intermediate entity. The level of indirection 

is the number of intermediate entities between the reusing item and the item 
being reused [Bieman and Karunanithi 93]. 

adaptive Adaptive reuse is a reuse strategy which uses large software structures as 
invariants and restricts variability to low-level, isolated locations. An 
example is changing arguments to parameterized modules [Barnes and 
Bollinger 91]. 
  

compositional Compositional reuse is a reuse strategy which uses small parts as invariants; 
variant functionality links those parts together. Programming in a high level 
language is an example [Barnes and Bollinger 91]. 

  

vertical scope Vertical reuse is reuse within the same application or domain. An example is 
domain analysis or domain modeling [Prieto-Diaz 93]. 
  

horizontal scope Horizontal reuse is reuse of generic parts in different applications. Booch Ada 
Parts and other subroutine libraries are examples [Prieto-Diaz 93]. 
  

planned mode Planned reuse is the systematic and formal practice of reuse as found in 
software factories [Prieto-Diaz 93]. 
  

ad-hoc mode Ad-hoc reuse refers to the selection of components which are not designed 
for reuse from general libraries; reuse is conducted by the individual in an 
informal manner [Prieto-Diaz 93]. 
  

compositional Compositional reuse is the use of existing components as building blocks for 
new systems. The Unix shell is an example [Prieto-Diaz 93]. 
  

generative Generative reuse is reuse at the specification level with application or code 
generators. Generative reuse offers the "highest potential payoff." The 
Refine and MetaTool systems are state of the art examples [Prieto-Diaz 93]. 
  

reuse-in-the- 
small 

Reuse-in-the-small is the reuse of components which are dependent upon the 
environment of the application for full functionality. Favaro asserts that 
component-oriented reuse is reuse-in-the-small [Favaro 91]. 
  

reuse-in-the- 
large     Reuse-in-the-large is the use of large, self-contained packages such as 

spreadsheets and operating systems [Favaro 91]. 
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The terms in the table describe various reuse issues. They address the quantity of reuse 

that occurs in a given product and methods of reuse implementation. Terms such as 

reuse-in-the-large and reuse-in-the-small provide categorization of the reused 

component. Some terms in the table overlap in meaning. For example, the terms public 

and external both describe the part of a product which was constructed externally; private 

and internal describe the part of a product which was not constructed externally but is 

developed and reused within a single product. The terms verbatim and black-box both 

describe reuse without modification; leveraged and white-box describe reuse with 

modification. 

2.2.2 The Emerging Technology of Software Reuse 

A software development environment supports the software development process. One 

part of a development environment might be a tool to assist the reuse of existing software 

components. Reuse libraries and classification systems are common functions within 

such a tool. Each reusable component must be efficiently stored, retrieved, and 

represented so that it can be found, understood, and integrated. In their paper 

"Representing reusable software," [Frakes and Gandel 90] propose a framework for 

software reuse representation and discuss methods of representing reusable components. 

The framework for reuse representation is intended to encompass any life-cycle object. 

Frakes and Gandel group methods for representing reusable software into three 

categories: indexing languages from library and information science, knowledge-based 

methods from AI, and hypertext. Catalogs and indexes are traditionally used to provide 

searching mechanisms for software components that satisfy a need. Indexing languages 

11



provide an interface to the search engine; it defines an item's location and summarizes its 

content. Frakes and Gandel extensively discuss the range of indexing languages now 

available and apply the languages to software reuse. Several knowledge-based methods 

of representations have developed from the field of Artificial Intelligence. Semantic nets, 

rules, and frames are discussed. Hypertext provides a structure to navigate text through a 

series of links. Several commercial software library retrieval systems incorporate 

hypertext technology. 

Reusable component representation, storage and retrieval systems are being developed 

commercially and for research. At the University of Texas, for example, Brown, et. al. 

[Browne et al 90] have developed the Reusability-Oriented Parallel programming 

Environment (ROPE), a software component reuse system which helps a designer find 

and understand components using a classification method called structured relational 

classification. ROPE is integrated with a development environment called CODE 

(Computation-Oriented Display Environment), which supports construction of parallel 

programs using a declarative and hierarchical graph model of computation. ROPE 

supports reuse of both design and code components, focusing on the key issues of 

reusability: finding components, then understanding, modifying, and combining them. 

Biggerstaff [Frakes 91] identifies the technologies that enable reuse: reuse libraries, 

classification systems, CASE tools, and object-oriented programming languages. The 

topic of reuse in an object-oriented environment is addressed in the next section of this 

paper. CASE tools provide a standardized environment to promote reuse. It should be 

pointed out that high technology within a reuse program is important but not essential to 

the success of the program [Frakes 91]. 

12



2.2.3 Software Reuse in the Object-Oriented Environment 

In the above discussion, object-oriented programming languages is listed as one 

technology that enables reuse. Some researchers believe that the architecture of the 

object-oriented methodology increases reuse potential [McGregor and Sykes 92][Smith 

90][Frakes 91]. They assert that aspects of the architecture such as classification, 

abstraction, and inheritance support and enable software reuse. Entire books are 

dedicated to the subject of effectively reusing software in the object-oriented environment 

[McGregor and Sykes 92][Smith 90]. A recent article by Prieto-Diaz states that "object 

Orientation is seen as the technique of the future for reuse" [Prieto-Diaz 93]. Yet with all 

the speculation, empirical evidence of the benefits of object orientation for reuse is 

limited. 

[McGregor and Sykes 92] identifies the following levels of reuse which can occur in the 

object-oriented paradigm: 

e Abstract-level reuse. This is the use of high-level abstractions within an 

object-oriented inheritance structure as the foundation for new ideas or 

additional classification schemes. 

e Instance-level reuse. Instance-level reuse is the most common form of 

reuse in an object-oriented environment. It is defined as simply creating 

an instance of an existing class. 

¢ Customization reuse. This is the use of inheritance to support 

incremental development. A new application may inherit information 

from an existing class, overriding certain methods and adding new 

behaviors. 
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¢ Source code reuse. This is the low-level modification of an existing 

class to change its performance characteristics. 

Several researchers identify aspects of the object-oriented paradigm which support 

software reuse [McGregor and Sykes 92][Smith 90][Owens 93]. Before addressing those 

aspects, it will be helpful to know the characteristics of a good design for reuse. The 

working group on Design for Reuse at the Fifth Annual Workshop on Institutionalizing 

Software Reuse lists the following characteristics of a good design for reuse [Griss and 

Tracz 93]: 

1. Strive to reuse black-box components, not cut-and-pasted source code. 

Black-box reuse is defined in Table 1 as "the reuse of software components without any 

modification." For effective reuse, design your system to reuse complete, unmodified 

software components. 

2. Identify, encapsulate, and specify commonalities and variabilites. 

The common attributes of reusable components should be identified and explicitly listed. 

Likewise, the differences also need to be recognized. 

3. Separate specification of abstract interface from implementation. 

Implementation details of a reusable component should be independent of the interface 

which a client will use to access the component. Thus implementation details can be 

modified or enhanced without altering the abstract interface. Abstract data types are an 

important part of this procedure. 

4. Do not allow a client to break a component's abstraction. 
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Abstraction is a conceptual generalization which captures relevant aspects of a set of 

objects while leaving out irrelevant details [Krueger 92]. A client of a reusable 

component should be able to integrate the component with parameterization and 

extension without violating the abstract design. 

5. Extend component behavior by addition only, not by modification. 

The reusability of a component is enhanced if it can be adapted by adding functionality to 

the component without altering the original component's definition or implementation. 

The literature identifies the following aspects of the object-oriented paradigm which 

support the above characteristics of a good design for reuse: 

¢ Encapsulation - The class structure of object-oriented systems encapsulate data and 

procedures into functional components [Owens 93][Smith 90]. 

¢ Abstraction - Object-oriented languages provide for the development of a specification 

of a class that is separate from the implementation. This hides implementation 

details and supports reuse without requiring understanding of a specific class 

implementation [McGregor and Sykes 92]. 

¢ Integration - Owens [Owens 93] identifies two features of object-oriented methods that 

support integration of components. The inheritance mechanism specifies 

commonality and dependence between modules. Secondly, a framework is a 

generic class architecture which specifies the relationship between classes within 

a library or a family of applications [McGregor and Sykes 92]. 

e Incremental development - The object-oriented environment supports the enhancement 

of component behavior by addition rather than modification. A class does not 
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need to be fully implemented to be useful; evolutionary development is a natural 

tendency in the object-oriented paradigm [McGregor and Sykes 92]. 

Limited empirical evidence showing the benefits of the object-oriented paradigm toward 

software reuse does exist. In a case study by Owens [Owens 93], a C library of device 

I/O functions was used as a starting point in the comparison of procedural (C) code and 

object-oriented (C++) code. Owens states that the C library, containing over two hundred 

functions, is reasonably modular, and each module has fairly high cohesion. 

The library was redesigned in the object-oriented paradigm and a C++ class library was 

implemented. Functions which were common to several modules were abstracted into 

parent classes, leading to increased internal reuse. To support the generic architecture, 

variabilities were encapsulated in parameters and virtual functions. Derived classes 

provided enhanced versions of base classes. The class library provided enhanced reuse 

via inheritance and "has proven easier to maintain than the C function library." Specific 

examples of C++ classes show improvements in flow control decisions, variable security, 

and encapsulation. 

To measure the amount of reuse in the C library and the new C++ library, the reuse level 

measurement tool ri [Frakes 90] was run on both sets of code. The C++ code was 

measured by using cfront (a C++ to C translator from AT&T) to produce C code, and rl 

was run on the result. The results are summarized: 
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Table 2: Software Reuse in C vs. C++ [Owens 93] 
  

  

  

  

  

  

      

C library C++ library 

Number of Modules 10 12 

Internal Functions Reused 68 80 

External Functions Used 25 25 

Total Functions Used 229 209 

Internal Reuse Level 29% 38% 

External Reuse Level 11% 12%       
The results show an increase in the number of internal functions reused and a decrease in 

the total number of functions, leading to a higher internal reuse level. (See the discussion 

of [Frakes 90] in Section 2.3.1.3 for precise definitions of internal reuse level and the 

other terms in the table.) The C++ library has more functionality with fewer C functions, 

indicating that "internal reuse played a significant part in improving this library.” 

Another study of reuse in the object-oriented environment was conducted by Chen and 

Lee [Chen and Lee 93]. They developed an environment, based on an object-oriented 

approach, to design, manufacture and use reusable C++ components. A controlled 

experiment was conducted to substantiate the reuse approach in terms of software 

productivity and quality. Results showed improvements in software productivity. 

Measured in lines of code per hour (LOC/hr), productivity increased from 30 to 90% 

using the proposed construction approach. When the effort required to produce new code 

is greater than the effort of reusing reusable code, the benefits of reusability are in 

proportion to productivity. 

The experiment conducted by Owens validates the improvement in software reuse in an 

object-oriented environment, showing more reuse in a C++ rewrite than in the original C 
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system. Chen and Lee validate the benefits of reuse in C++ in terms of quality and 

productivity. However, there is no substantial evidence that software reuse, along with 

additional quality and productivity, is significantly easier to obtain in the object-oriented 

paradigm. While theoretical speculations abound, empirical evidence is lacking. 

2.2.4 Implementation of Software Reuse 

According to Frakes [Frakes 92], "software reuse is widely believed to be the most 

promising technology for significantly improving software quality and productivity." 

To be successful, however, research shows that implementation of a reuse program must 

be planned, deliberate, and systematic [Favaro 91][Frakes 91][Prieto-Diaz 93]. This 

section discusses some issues that an organization must address as it implements a reuse 

program. Reuse measurement Is such an issue. 

Table 3 shows the primary motivations for software reuse, the factors that affect it, and 

the reasons it may not succeed. This information is from [Frakes 93]. 
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Table 3: Questions and Answers about Software Reuse Implementation [Frakes 93] 
  

| Questions about software reuse implementation: 

1. Why Try It? 
® Improved productivity e Better early estimates 

e Improved quality and reliability e Faster time to market 
e Better bid estimation 

  

2. What Issues Affect it? 

e Managerial e Legal 
® Economic e Technical 

  

3. Why Will It Not Succeed? 
* No attempt to reuse e Part doesn't exist 

® Part isn't available e Part isn't found 
e Part isn't understood e Part isn't valid 
e Part can't be integrated     
  

Section 2.1.4 discussed methods of modeling for the software development process. 

Frakes [Frakes 93] identifies the model for the reuse industrial experiment: 

benefits = f(reuse level) = g(reuse factors). 

The reuse benefits, improved quality and productivity, are a function of the reuse level, 

and the reuse level is a function of reuse factors. Reuse factors fall into four categories, 

identified in Table 3: managerial, economic, legal, and technical. Several sources show 

that management support is an essential ingredient of a successful reuse program [Frakes 

93][Favaro 91][Frakes 91][Nunamaker and Chen 89]. Management must enforce policies 

that encourage standardization and component reuse as well as provide continuous 

education regarding components [Frakes 91]. The economic viability for software reuse 

must be created and maintained. The topic of measuring the success of reuse according 

to the degree of economic benefits will be addressed in Section 2.3.1.1. Legal issues 

regarding component creation and reuse by other organizations must also be addressed. 

And finally, technical issues such as reuse support tools and the reuse approach, parts- 
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based or formal-language-based, must be determined. A parts-based approach to reuse 

involves a programmer who integrates the software parts by hand. Domain-knowledge is 

encoded into an application generator in the formal-language-based approach [Frakes 93]. 

The reuse failure mode model was developed by Frakes to determine why reuse is not 

taking place in an organization [Frakes 90]. Failure mode analysis is the detailed 

examination of some failed product or process to determine why it failed, and to 

determine corrective action. The third question in Table 3 summarizes a set of failure 

modes for software reuse. The given modes are a first-level analysis of an 

interdependent set of causes for failure. At least two failure modes relate to the lack of 

education or training of software developers: part isn't understood and part can't be 

integrated. In two different case studies, insufficient training was found to be a barrier to 

reuse. Favaro [Favaro 91] reports that the limited knowledge of essential concepts such 

as abstraction and object-oriented design significantly contributed to the difficulty of 

integrating reusable components into applications. Schaefer [Frakes 91] agrees. He 

asserts that technology enabling reuse such as modular design and data abstraction is not 

exploited because developers are not able to effectively apply it. 

Nunamaker and Chen [Nunamaker and Chen 89] assert that software developers face 

technical and social obstacles to the successful implementation of software reuse. The 

technical issues evolve around a development environment that effectively supports 

reusability. The social obstacles are: 

1. Software developers must be willing to share software development 

knowledge. 

2. Developers must be willing to use existing solutions. 
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3. Appropriate resource allocation must occur for the identification and 

development of common functions, utilities, and tools. 

4. Measures to keep track of the reuse rates of various software components 

should be established to assist in reviewing and improving the reuse program. 

Thus, reuse measurement is established as an important element of an effective reuse 

program. Measures of the amount of reuse and methods to obtain the measures must be 

defined so that the effectiveness of the reuse program can be monitored and evaluated. 

The remainder of this paper will focus on the measurement of software reuse, beginning 

with a review of the literature. 

2.3 Software Reuse Measurement 

Combining the philosophies of software measurement and software reuse, software reuse 

measurement is the quantitative measurement of the amount of reuse of some software 

artifact within a defined scope. Most models of reuse measurement are objective product 

metrics, measuring the amount of reuse within a software product. As shown in the next 

section, however, a reuse maturity model categorizes the reuse process. (See Sections 

2.1.2 and 2.1.3 for more information regarding objective/subjective and product/process 

metrics.) Some measurements of software reuse exist, but few are actively used in 

industry. Most measurements are based on comparisons between the length or size of 

reused code and the size of newly written code in a software product. 

The primary motivations for measuring software reuse are: [Frakes 92] 
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¢ to monitor progress of the amount of reuse over time in the quest for achieving 

goals; 

¢ to provide a basis for determining the effects of reuse on software productivity 

and quality; 

¢ to provide insight in developing software that is reusable; 

¢ to determine the effects of particular actions on the amount of reuse. 

2.3.1 Existing Software Reuse Metrics 

Table 4 presents a summary of models for reuse metrics. The economic models measure 

reuse in terms of the economic costs and profits resulting from reuse. Maturity models 

categorize reuse programs according to a scale of labeled reuse levels. The reuse ratio 

models measure reuse by comparing the amount of reused software to the amount of 

newly developed software. 
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Table 4: Models for Reuse Measurement 
  

Source Description 
  

Economic Models 
  

Cost/Productivity 

Models 
Gaffney, Durek 

[Gaffney and 
Durek 89] 

Simple model: 

Let C=cost of software development. R=proportion of 

reused code in the product. b=cost relative to that of 
all new code of incorporating reused code into the 
product. Then 
C=(b-1)R + 1 and productivity P=1/C. 
Cost of development model: 

Let E=cost of developing a reusable component 
relative to the cost of producing a component that is 
not to be reused. Let n be the number of uses over 
which code cost will be amortized. Then C (cost) is 

C=(b + E/n-1)R+1. 
  

Quality of Investment Barnes, Bollinger 

[Barnes and 

Bollinger 91] 

Quality of investment (Q) is the ratio of reuse 
benefits (B) to reuse investments (R): Q = B/R. 

If Q<1 then the reuse effort resulted in a net loss. If 

Q>1 then the investment provided good returns. 
  

Maturity Models 
  

Reuse Maturity Model Kolton, Hudson Levels an organization proceeds through working 

  

  

  

[Kolton and toward effective software reuse: 

Hudson 91] 1. Initial/Chaotic 4. Planned 
2. Monitored 5. Ingrained 

3. Coordinated 

Reuse Capability Model | Software The Software Productivity Consortium identifies four 
Productivity stages in the risk-reduction growth implementation 
Consortium model for software reuse: 

[Davis 93] 1. Opportunistic 3. Leveraged 
2. Integrated 4. Anticipating _ 

Reuse Ratio Models 

Reuse Level Frakes Assume a system consists of parts where a higher 

[Frakes 90] level item is composed of lower level items. Let L = 
total number of lower level items in the higher 

level item, E = number of lower level items from an 

external source in the higher level item, | = number 

of lower level items in the higher level item not from 
an external source, M = number of items not from 

external source used more than once. Then, 

External Reuse Level = E/L 

Internal Reuse Level = M/L 

Total Reuse Level = E/L + M/L 
    Reuse Fraction   Agresti, Evanco 

[Agresti and 

Evanco 92]   The variable FNEMC is defined as the fraction of new 

or extensively modified software units. FNEMC is the 

number of new components plus the number of 
extensively modified components divided by the total 

number of components. FNEMC is equal to one minus 
the "reuse fraction." 
   



The following sections discuss each of these models in turn. 

2.3.1.1 Economic Models 

Cost/Productivity Models 

Gaffney and Durek propose three cost and productivity models for software reuse 

[Gaffney and Durek 89]. The simple model shows the cost of reusing software 

components. The cost-of-development model builds upon the simple model by 

representing the cost of developing reusable components. The general model represents 

the effect of creating reusable components within a given development project. 

Simple model: Let C be the cost of software development for a given product relative to 

all new code (for which C=1). R is the proportion of reused code in the product (R<=1). 

b is the cost relative to that for all new code of incorporating the reused code into the new 

product (b<=1). Then the relative cost for software development is 

(relative cost of all new code)(proportion of new code) + 

(relative cost of reused software)(proportion of reused software). 

Then 

C = (1)(-R) + (b)(R) 

=(b-I)R+1 

and the corresponding relative productivity is 

P =1/C=1/((b-1)R+1). 

Notice that b is expected to be <= 1. If not, it would not be cost efficient to reuse 

software components. The size of b varies with the level of abstraction of the reusable 
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component. If the reusable component is source code, then one must go through the 

requirements, design, and testing phases in a new development project; the authors 

estimate b=0.85. If the reusable component is requirements, design, and code, then only 

the testing phase must be done and b=0.08. 

Cost of development model: Let E represent the cost of developing a reusable component 

relative to the cost of producing a component that is not to be reused. Eis expected to be 

> 1. Let n be the number of uses over which code cost will be amortized. The new value 

for C (cost) incorporates these measures: 

C =(b+E/n-1)R+1 

The general model is not discussed in detail in the paper. Further discussions propose 

models for the effect of reuse on software quality (number of errors) and on software 

development schedules. While no numerical data is given, the authors state that trade- 

offs can occur between the proportion of reuse and the costs of developing and using 

reusable components. Using reusable software parts results in higher overall 

development productivity. Also, costs of building reusable parts must be shared across 

many users to achieve higher payoffs from software reuse. 

Margono and Rhoads applied the cost of development model to assess the economic 

benefits of a reuse effort on a large-scale Ada project (the United States Federal Aviation 

Administration's Advanced Automation System (FAA/AAS)) [Margono and Rhoads 93]. 

The authors applied the model to various types of software categorized by the source 

(local, commercial, or public) and mode of reuse (verbatim or modified). The equation 

for C in the reuse economics model was modified to reflect the different acquisition, 

development, and integration costs. Results show that the development cost for reuse is 
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often twice the development cost of non-reuse. The additional cost due to reuse during 

the detailed design phase of development is estimated to be 60%. 

Quality of Investment 

In their paper Making software reuse cost effective, Barnes and Bollinger [Barnes and 

Bollinger 91] examine the cost and risk features of software reuse and suggest an 

analytical approach for making good reuse investments. Reuse activities are divided into 

producer activities and consumer activities. Producer activities are reuse investments, or 

costs incurred while making one or more work products easier to reuse by others. 

Consumer activities are reuse benefits, or measures in dollars of how much the earlier 

reuse investment helped or hurt the effectiveness of an activity. The total reuse benefit 

can then be found by estimating the reuse benefit for all subsequent activities that profit 

from the reuse investment, including future activities. 

The quality ofinvestment (Q) is the ratio of reuse benefits (B) to reuse investments (R): 

Q=B/R 

If Q is less than one for a reuse effort, then that effort resulted in a net financial loss. If 

greater than one, then the investment provided good returns. Three major strategies are 

identified for increasing Q: 1) increase the level of reuse, 2) reduce the average cost of 

reuse, and 3) reduce the investment needed to achieve a given reuse benefit. 

Favaro [Favaro 91] utilized the model developed by Barnes, et. al. to analyze the 

economics of reuse. The following variables and formulas are relevant: 
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Table 5: Barnes‘ and Bollinger's economic investment model 
  

  

  

  

    

Variable Definition 

R % of code contributed by reusable components 

b integration cost of reusable component as opposed to development cost 

RC relative cost of overall development effort 

RP relative productivity 

E relative cost of making a component reusable 

No payoff threshold value (all component development costs are recovered) 

Formulas: 

RC =(1-R)1+Ab 

RP = 1/RC 

RC =(b+E / N-1) R+1 

No = E/(1-b) 
  

Favaro's research team estimated quantities for R and b. They found it difficult to 

estimate R, unclear whether actual source code should be measured or relative size of the 

load modules. Should the code size of a generic module be counted only once, or every 

time the module 1s instantiated and code is duplicated in the application? b was even 

more difficult to estimate: is cost measured in the amount of real time necessary to install 

the component in the application, and should the cost of learning be included? 

Favaro developed a classification of BOOCH [Booch 87] components according to their 

relative complexity. The classification used by Favaro ts: 

monolithic | Components were found to have a similar complexity in development 

and use, and could therefore be considered equivalent for this purpose. 

(stacks, queues) 
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polylithic Components exhibited similar complexity regarding integration. (lists, 

trees) 

graph The most complex component in the repository, the graph is an example 

of a nontrivial, domain-dependent reusable component. 

menu, mask End-products of the project. They were developed as generalized, 

reusable components so were included in the study. 

The above categories are listed in order or increasing complexity. Monolithic and 

polylithic are classifications of standard BOOCH components. The graph is a BOOCH 

component in itself. Menus and masks are complex applications developed by Favaro 

from the BOOCH components. 

The following table shows values for E, the relative cost of making a reusable 

component, b, the integration cost of a reusable component, and No, the payoff 

threshold value. 

Table 6: Costs and payoff threshold values for reusable components 
  

  

    

No for simple No for complex 

E b implementations implementations 

Monolithic 1.0 | 0.10 1.33 2.56 

Polylithic 1.2 | 0.15 1.69 3.40 

Graph 1.6 | 0.25 2.56 5.72 

Menu 1.9 | 0.30 3.25 7.81 

Mask 2.2 | 0.40 4.40 12.97         
  

The overall costs of a reusable component relative to a non-reusable component is E+b. 

b is expected to be less than 1.0 since reusable components should be more easily



integrated. E is greater than or equal to 1.0, showing costs of developing reusable 

components are higher than costs of developing non-reusable components. The results 

show that the cost of reusability increased as the complexity of the component increased. 

Monolithic components were so simple there was essentially no extra cost to develop 

them as reusable components. In contrast, the cost of the mask component more than 

doubled as it was generalized. The integration cost b was also high in complex 

applications. The values for No show that the monolithic and polylithic components are 

amortized after only 2 uses. However, the graph component must be used approximately 

5 times before its costs are recovered, and the most complex form of the mask will 

require 12.97 projects for amortization. In summary, the results show that as components 

of some size and complexity are developed for reuse, the costs rise quickly. 

2.3.1.2 Maturity Models 

Rather than providing a specific quantitative measurement of the amount of reuse in 

software, reuse maturity models identify the progression of reuse activities within an 

organization. A reuse maturity model categorizes a reuse program according to a scale of 

labeled reuse levels. The maturity model is at the core of planned reuse, helping 

organizations understand their past, current, and future goals for reuse activities [Prieto- 

Diaz 93}. 

Reuse Maturity Model 

Kolton and Hudson [Kolton and Hudson 91] developed a maturity framework with five 

levels: 

1. Initial/Chaotic 
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2. Monitored 

3. Coordinated 

4, Planned 

5. Ingrained 

They identified ten dimensions of reuse maturity; for each, an attribute was specified for 

each maturity level. The resulting matrix is shown in Table 7. 
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Table 7: Hudson and Kolton Reuse Maturity Model 
  

  

  

  

  

  

  

  

  

  

    

1 Iritiay 2 Monitored 3Coordnated 4 Planned 5 Ingrained 
Chadiic 

Motivaliay Reuse dscouraged | Reuse encouraged | Reuse incertivized| Reuseindoctrinated | Reuse is the way 
Qitue re-enforced we db business 

reverded 
Panning forreuse | Nore Grassroots activity | Targets d Business irrperetive | Part df 

Opportunity Strategic Han 
Breadth d Individual Work group Department DOvsion Erterpisewde 
reuse 
Fesporside = far| Indivicualirititive {| Sterediniidive Dadicated individual | Dedicated group Comporate gop 
mekirg reuse with dvisicn laiscns 

happen 
Process by Reuse  process| Reuse questins! Deskn amphasis; Focusm All software 
wich reuse | chaotic; uncle rased a desig)! placed ~™ off the) devdopg fariies; proicts are 
leveraged how reuse cares! reviews (ater the! shelf parts of genericized for 

in fact) products future 
reuse 

Reuse assds Salvage yad (ro| Catdog identifies | Catdog organized! Cataog = clues | Plarned activity to 
apparert structure! language andi aorg) = aniicaic’ | generic dita acqurear _ 
to platiam = specific | Specific lires processing deveop missirg 
cdiection) parts functions pieces 

in catalog 
Cassification Irforrel, Muttipe independert; Singe —- scherrp| Sarre domain} Forme, carpide 
activity individualized schemes for; catdog published; arelysescoreto j[ consistat = trey 

Classifying parts periodically determine Classification 
Categories 

Technology support | Perscnal tools, if} Many tods, bt not} Cassificainads | Becraic ibray| Autareted support 
ary specidized for ard syrthesis acs | seperde from) integrated wth 

reuse developrrent devedoorent 
emratrert ermiratrent 

Metrics Nometrics m reuse | Nurrber d Nerval tracking di Analyses done to; Allsysten 
vd, res d cote used | reuse identi uilties,  scitware 

pay-cif, ar costs in cost modes occurences of expected paydis} tods ad 
Catalog parts fran  deveoning| accaunting 

reusable parts mechansms 
nstrurerted to 

track reuse 

Legal, contractual | Irhbitar to Irteral accountng; Data ridts and} Poyaty scterre fo! Softwaretreated as 
accaunting gating stated scherre for sharing h all suppers ad) key capita 
Consicerations costs and allocaling | issues resdvedwith; custarers assa 

benefits custarer               

Notice that for each of the ten aspects of reuse, the amount of organizational involvement 

and commitment increases as the level progresses from initial/chaotic reuse to ingrained 

reuse. Ingrained reuse incorporates fully automated support tools and accurate reuse 

measurement to track progress. 
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Reuse Capability Model 

The reuse capability model developed by the Software Productivity Consortium [Davis 

93] identifies four stages in the implementation model for reuse: 

1. Opportunistic The reuse strategy is developed on the project level. Specialized 

reuse tools are used and reusable assets are identified. 

2. Integrated A standard reuse strategy is defined and integrated into the 

corporation's software development process. The reuse program 

is fully supported by management and staff. Reuse assets are 

categorized. 

3. Leveraged The reuse strategy expands over the entire life cycle and is 

specialized for each product line. Reuse performance is measured 

and weaknesses of the program identified. 

4. Anticipating New business ventures take advantage of the reuse capabilities 

and reusable assets. High payoff assets are identified. The reuse 

technology is driven by customer's needs. 

2.3.1.3 Reuse Ratio Models 

Reuse Level 

In [Frakes 90], Frakes states that the basic dependent variable in software reuse 

measurement is the level of reuse. This is a parts-based approach to reuse measurement, 

assuming that a system is composed of parts which exist at different levels. Frakes states 
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that levels of abstraction must be defined to measure reuse. The following quantities can 

be calculated given a higher level item composed of lower level items: 

L = the total number of lower level items in the higher level item. 

E = the number of lower level items from an external repository in the higher 

level item. 

[ = the number of lower level items in the higher level item which are not from an 

external repository. 

M = the number of items not from an external repository which are used more 

than once. 

Given these quantities, the following reuse level metrics are proposed: 

External Reuse Level = E/ L 

Internal Reuse Level = M/L 

The user must provide some information to calculate the reuse measures. The user must 

define the abstraction hierarchy, a definition of external repositories, and a definition of 

the "uses" relationship. For each part in the parts-based approach, we must know the 

name of the part, source of the part (internal or external), the level of abstraction, and the 

amount of usage. 

The tool 7/ was built to perform reuse analysis of C code [Frakes 92]. With "system" as 

the higher level component and "function" as the lower, a C system can be broken down 

into functions which are internal or external within a calling hierarchy. RI uses cflow, a 

Unix tool, to produce calling hierarchy information. Rl was run on 29 systems and the 

resulting data includes internal reuse levels, external reuse levels, total reuse levels, and 

NCSL (non commentary source lines). The results show an average reuse level of 58%, a 

very high figure. DeMarco, for example, estimated 5% reuse on an average project 

[DeMarco and Lister 84]. The high level of reuse is partially attributed to the design of 
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the C programming language, with many simple system capabilities designed as 

functions. Internal reuse, however, is also high, at 7%. 

A high correlation is shown between software size and reuse level. The correlation of 

external reuse vs. log NCSL is r=-0.76, meaning that high external reuse is directly 

related to small size. In contrast, internal reuse statistics also show a strong correlation 

with size but in the opposite direction, meaning that internal reuse is high in large 

software systems. 

[Frakes and Arnold 90] presents a formal model of the reuse level metrics. Nodes and 

relationships are used to decompose a work product. A graphic hierarchical model 

contains nodes, represented by small circles, and two possible relationships between 

nodes which are represented by arrows. The possible relationships are depends_on, 

denoting usage, and directly_contains, denoting containment. A node represents a life 

cycle object. The authors assert that the model can be extended with additional object 

types, relationship types, and attributes. 

An example maps objects from the Ada user domain to the formal model. The authors 

have created tables to aid the mapping process. The example shows how users can apply 

an actual domain to the formal model to obtain a reuse measurement model. A graphical 

catalog of metrics is available to users so that they can effectively use the model to create 

new metrics. The paper discusses the methods that users can use to implement reuse 

measurement through decomposition and mapping to the formal model. 
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Reuse Fraction 

Proposed by Agresti and Evanco [Agresti and Evanco 92], the reuse fraction is a simple 

proportional metric which defines the fraction of reused compilation units. Compilation 

units are categorized into two classes: 

1) those that are reused verbatim or with "slight" modification (<= 25% of lines changed), 

2) those that are new or extensively modified (> 25% of source lines changed). 

Given the following variables, 

cun = number of compilation units of newly developed code, 

cux = number of compilation units extensively modified, 

cutot = total number of compilation units, 

the variable FNEMC is defined as the fraction of compilation units that are new or 

extensively modified: 

FNEMC = (cun + cux) / cutot. 

FNEMC is equal to one minus the reuse fraction. 

The reuse fraction measurement is specific to measuring reuse of source code compilation 

units. It is a simple, non-extensible variation of reuse level, discussed above. 

2.3.1.4 Reuse Measurement in the Object-Oriented Environment 

Bieman and Karunanithi [Bieman 92][Bieman and Karunanithi 93] have proposed reuse 

measurements which are specific to the object-oriented environment. [Bieman 92] 

identifies three perspectives from which to view reuse: the server perspective, the client 

perspective, and the system perspective. The server perspective is the perspective of the 

library or a particular library component, the analysis focusing on how the entity is reused 
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by the clients. From the client perspective, the goal is knowing how a particular program 

entity reuses other program entities. The system perspective is a view of reuse in the 

overall system, including servers and clients. 

The server reuse profile of a class will characterize how the class is reused by the client 

classes. The verbatim server reuse in an object oriented system is basically the same as in 

procedural systems, using object oriented terminology. Leveraged server reuse is 

supported through inheritance. A client can reuse the server either by extension, adding 

methods to the server, or by overload, redefining methods. (Note: [McGregor and Sykes 

92] offers good definitions of the object-oriented terminology used in this section.) 

The client reuse profile characterizes how a new class reuses existing library classes. It 

too can be verbatim or leveraged, with similar definitions to the server perspective. 

Measurable system reuse attributes include: 

¢ % of new system source text imported from the library 

¢ % of new system classes imported verbatim from the library 

e % of new system classes derived from library classes and the average % of the 

leveraged classes that are imported 

e average number of verbatim and leveraged clients for servers, and servers for 

clients 

e average number of verbatim and leveraged indirect clients for servers, and 

indirect servers for clients 

¢ average length and number of paths between indirect servers and clients for 

verbatim and leveraged reuse 
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In [Bieman and Karunanithi 93], Bieman and Karunanithi describe a prototype tool 

which is under development to collect the proposed measures from Ada programs. This 

work recognizes the differences between object oriented systems and procedural systems 

and exploits those differences through unique measurements. 

2.3.2 Measuring Software Reuse Potential 

The above discussions address measuring the amount of software reuse. There is also 

work being done to measure the reusability of software: given a piece of software, how 

much effort must be exerted to reuse it? 

Major work in this area is by Basili, et. al. [Basili et al 90] at the University of Maryland. 

Two reuse studies were performed with respect to the development and reuse of systems 

written in the Ada language. The first study defines a means of measuring data bindings 

to characterize and identify reusable components. The data bindings within a program 

are identified, and a cluster analysis is performed to identify which modules are strongly 

coupled and may not be good candidates for reuse, and which modules are found to be 

independent of others and are potentially reusable. Through application of these metric 

and analysis techniques, a set of guidelines are derived and listed for designing and 

building reusable Ada components. 

The second study defines an abstract measurement of reusability of Ada software 

components. Potentially reusable software is identified, and a method to measure 

distances from that ideal is defined. By measuring the amount of transformation which 

must be performed to convert an existing program into one composed of maximally 
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reusable components, an indication of the reusability of the program can be obtained. 

The latent non-reusability of software can also be found by identifying transformations 

that cannot be performed cost effectively. 

2.3.3 Relation of Reuse to Quality and Productivity 

Since systematic software reuse is not common, empirical evidence relating software 

reuse to quality and productivity is limited. However, several researchers have 

accumulated and published statistics that support the notion that software reuse improves 

quality and productivity. 

Agresti and Evanco [Agresti and Evanco 92] conducted a study to predict defect density 

(a software quality measurement) based on characteristics of Ada designs. Data used in 

the analysis, from the Software Engineering Laboratory (SEL) of NASA Goddard Space 

Flight Center, consists of 16 subsystems. The SEL project database provides data on the 

extent of reuse and subsystem identification for each compilation unit as well as reported 

defects and nondefect modifications. Collectively, approximately 149 KSLOC (kilo- 

source lines of code) were considered for the analysis. The project database showed that 

the reuse ratios (fraction of compilation units reused verbatim or with slight modification, 

<= 25% of lines changed) lie between 26 and 28%. Defect density is between 3.0 and 5.5 

total defects per KSLOC. Four sample rows from a table summarizing the project 

characteristics of the subsystems show that a high level of reuse correlates with a low 

defect density (size is in KSLOC units): 
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Table 8: Characteristics of SEL subsystems [Agresti and Evanco 92] 
  

  

  

  

    

Subsystem Software size | Library units | Compilation Reuse Defect 

units Density 

1-5 27.3 38 185 0.44 6.2 

1-6 5.7 18 73 0.94 1.6 

2-4 6.9 23 60 0.74 1.4 

3-3 3.5 12 66 0.09 8.0             
The Reusability-Oriented Parallel] programming Environment (ROPE) [Browne et al 90] 

was briefly described in section 2.2.2. ROPE is integrated with a development 

environment called CODE (Computation-Oriented Display Environment), which 

supports construction of parallel programs using a declarative and hierarchical graph 

model of computation. ROPE supports reuse of both design and code components, 

focusing on the key issues of reusability: finding components, then understanding, 

modifying, and combining them. An experiment was conducted to investigate user 

productivity and software quality for the CODE programming environment, with and 

without the ROPE reusability system. The experimental design included metrics such as 

fraction of code in a program consisting of reused components, development time and 

error rates. Reuse rates were reported as "extremely high" for the 43 programs written 

using ROPE, with a mean reuse rate for a total program (code and design) equal to 79%. 

The researchers used total development time to measure the effect of reusability on 

productivity. Table 9 shows the development time in hours for subjects programming in 

the CODE environment and those programming in CODE and ROPE. The data reveals 

that ROPE had a significant effect on development time for all of the experimental 

programs. 
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Table 9: Mean Development Time and 95% Confidence Intervals in Hours [Browne et al 90] 
  

  

    

Program Name Using CODE only Using CODE and ROPE 

Convex Hull 12.4 [9.0,15.8] 2.2 [2.0,2.5] 

Readers/Writers 4.7 [3.4,6] 1.8 [1.2,2.4] 

Producer/Consumer 3.9 [3.6,4.3] 1.9 [1,2.8] 

Shortest Path 33.3 [16,51] 1.4 [0.7,2.1] 

Parallel Prefix 20 N/A 1.4 [0.9,1.8] 

Divide Region 20 N/A 3.5 [2.5,4.5] 

Sort/Merge 8.5 N/A 1.5 N/A 
  

Error rates were used to measure quality. Compile errors, execution errors, and logic 

errors were all counted. The results are shown in Table 10. The use of ROPE reduced 

error rates, but the data is less clear than that for productivity. The researchers attribute 

this to the difficulty of collecting the data and to the lack of distinction between design 

and code errors. 

Table 10: Mean Number of Errors and 95% Confidence Intervals [Browne et al 90] 
  

  

    

Program Name Using CODE only Using CODE and ROPE 

Convex Hull 8.8 [4.3,13.3] 3.1 [1.4,4.4] 

Readers/Writers 14.5 [5.4,23.6] 1.2 [.4,2.0] 

Producer/Consumer 4.3 [1.9,6.7] 3 [0,.7] 

Shortest Path 10 N/A 4 N/A 

Parallel Prefix 20 N/A 2.5 N/A 

Divide Region 5 N/A 17. N/A 

Sort/Merge 7 N/A 3 N/A 
 



In summary, the final results of the CODE/ROPE experimentation show a high 

correlation between the measures of reuse rate, development time, and decreases in 

number of errors. 

In a relatively early study, Card, Church, and Agresti [Card et al 86] conducted an 

empirical study of software design practices in a Fortran-based scientific computing 

environment. The goals of the analysis of software reuse were to identify the types of 

software that are reused and to quantify the benefits of software reuse. The results were: 

e The modules that were reused without modification tended to be small and simple, 

exhibiting a relatively low decision rate. 

e Extensively modified modules tended to be the largest of all reused software (rated 

from extensively modified to unchanged) in terms of the number of executable 

statements. 

¢ 98 percent of the modules reused without modification were fault free and 82 percent 

of them were in the lowest cost per executable statement category. 

e These results were consistent with a previous Software Engineering Laboratory study 

{Card et al 82] which shows that reusing a line of code costs only 20 percent of the cost 

of developing it new. 

Kazuo Matsumura was a panelist at the International Conference on Software 

Engineering forum entitled Software Reuse: Is It Delivering? [Frakes 91]. In the paper, 

Matsumura describes an implementation of a reuse program. Results of the reuse 

program implementation show a 60% ratio of reuse components and a decrease in errors 

by 20 to 30%. Managers felt that the reuse program would be profitable if a component 

were reused at least three times. 
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The Cost/Productivity Model by Gaffney and Durek [Gaffney and Durek 89] was 

discussed in Section 2.3.1.1. The models specify the effect of reuse on software quality 

(number of errors) and on software development schedules. Results in the paper suggest 

that trade-offs can occur between the proportion of reuse and the costs of developing and 

using reusable components. In a study of the latent error content of a software product, 

the relative error content decreased for each additional use of the software but leveled off 

between 3 and 4 uses. The models show that the number of uses of the reusable software 

components directly correlates to the development product productivity. The authors 

believe that the costs of building reusable parts must be shared across many users to 

achieve higher payoffs from software reuse. 

2.4 Literature Review Summary 

This literature search discusses many aspects of software reuse and software reuse 

measurement. The topic is an active field in the research community, perhaps because, as 

shown above, software reuse is an effective method of increasing software quality and 

productivity and thus reducing the costs of software development. However, as also 

pointed out in the review, developing and using reusable software does have its risks and 

costs. The organization must be willing to plan and support the reuse effort. [Margono 

and Rhoads 93] states that the development cost for reusable software is often twice the 

cost of developing non-reusable software. In the case study by [Favaro 91], the 

development costs of reusable components were amortized after 2 to 13 uses, depending 

on the complexity of the component. On the benefits side of the reuse costs equation, 

[Card et al 86] shows that reusing a line of code is only one-fifth the cost of developing it. 
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Software reuse has been shown to increase quality and productivity. In [Agresti and 

Evanco 92], high levels of reuse were shown to result in low defect densities. [Card et al 

86] found that 98% of the modules reused without modification were fault-free. Software 

reuse resulted in a decrease in errors by 20 to 30% in [Frakes 91]. In [Gaffney and Durek 

89], the latent error content for a reused module leveled off at 0.30 (relative to all new 

code) after three to four uses. [Browne et al 90] showed conclusive evidence that 

software development time was significantly reduced in an environment supporting reuse, 

but empirical studies supporting productivity gains are few. The productivity gains for 

reuse seem to be taken for granted; using a pre-existing component that can be easily 

integrated into an application naturally requires less time than developing the component 

from scratch. 

The literature review has delineated the need and benefits of measuring software reuse. 

While the cost/productivity models formally measure the costs and benefits of reuse, 

Frakes is the only researcher who proposes a formal model for reuse ratio measurement. 

The remainder of this paper expands upon the initial research performed by Frakes as 

summarized in Section 2.3.1.3. 
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3 The Reuse Metrics 

3.1. Introduction 

Frakes introduced the reuse level metric in [Frakes 90], stating that the basic dependent 

variable in software reuse measurement is the level of reuse. This parts-based approach to 

reuse measurement assumes that a system is composed of parts at different levels of 

abstraction. For example, a C system is composed of functions, and functions are 

composed of lines of code. The levels of abstraction must be defined to measure reuse. 

The reuse level of a C system could be defined in terms of functions; in this case, the 

higher level component is a system and the lower level component is a function. The 

reuse level of a function could be expressed in terms of lines of code, in which case the 

higher level component is a function and the lower level component is a line of code. 

A software component (lower level item) may be internal or external. An internal lower 

level component was developed for the higher level component. An external lower level 

component is used by the higher level component but was created for a different item or 

for general use. 

The definition of reuse may vary. A traditional definition for a reused function within a 

C system is one that is called from more than one place within the system. Alternatively, 

the user of the metric may wish to define reuse after an arbitrary number of calls. Also, 

rather than counting the number of places that call a reused function, one may want to 

count the number of actual calls.



3.2 Definition of Reuse Level 

Given a higher level item composed of lower level items, reuse level metrics may be 

defined. [Frakes and Amold 90] defines the internal reuse level of a higher level item as 

the number of reused internal lower level items divided by the total number of lower level 

items in the higher level item. The external reuse level of a higher level item is the 

number of reused external lower level items in the higher level item divided by the total 

number of lower level items in the higher level item. The total reuse level is the sum of 

internal reuse level and external reuse level. 

I have extended the reuse level metric to take into consideration a reuse threshold level. 

The internal threshold level is the maximum number of uses of an internal item that can 

occur before reuse occurs. The external threshold level is the maximum number of uses 

of an external item that can occur before reuse occurs. The variables and reuse level 

metrics are: 

ITL= internal threshold level, the maximum number of uses of an internal item 

that can occur before reuse occurs. 

ETL= external threshold level, the maximum number of uses of an external item 

that can occur before reuse occurs. 

JU= number of internal lower level items which are used more than ITL. 

EU= ___ number of external lower level items which are used more than ETL. 
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T= total number of lower level items in the higher level item, both internal 

and external. 

Internal reuse level: IU /T 

External reuse level: EU/T 

Total reuse level: (IU + EU)/T 

Internal, external, and total reuse level will assume values between 0 and 1: 

0 <= Internal reuse level <= 1 

0 <= Extemal reuse level <= 1 

0 <= Total reuse level <= 1. 

More reuse occurs as the reuse level value approaches 1. A reuse level of 0 indicates no 

reuse. 

One requirement for the calculation of the reuse level metrics 1s a definition of the uses 

relationship which holds between a component and any other component it references. A 

call graph abstraction may be employed to illustrate how lower level items are used 

within a higher level item. Figure 1 shows a call graph abstraction for higher level item 

H. Each node represents a lower level item. The label 'T' indicates an internal item and 

'E' represents an external item. The directional arc between nodes represents the uses 

relationship, or a reference.



  

  

    
@I = internal node 

@E = external node 

— > = reference     
  

Figure 1: Call graph abstraction for higher level item H 

A simple algorithm can be defined to calculate the value of each variable in the reuse 

level equations. Given a call graph abstraction such as the one shown above, the 

algorithms for IU, EU and T are: 

To calculate IU: 

1. set inode_cnt = 0 

2. for each node labeled 'r', called x: 

if number of references to x > ITL then 

inode_cnt = inode_cnt + 1 

3. IU = inode_cnt 

47



To calculate EU: 

1. set enode_cnt = 0 

2. for each node labeled 'E’, called y: 

if number of references to y > ETL then 

enode_cnt = enode_cnt + 1 

3. EU = enode_cnt 

To calculate T: 

1. set node_cnt = 0 

2. for each node: 

node_cnt = node_cnt + 1 

3. T =node_cnt 

Given values for the variables IU, EU and T, the values for internal, external and total 

reuse level can be easily computed using the formulas on page 46. Table 11 shows the 

values for the reuse level metric for the higher level item H shown in Figure 1. 

Table 11: Reuse level values for Figure 1. 
  

  

ITL=1 ITL=2 

ETL=0 ETL=1 

lu 1 0 

EU 3 1 

T 7 7 

Internal reuse level 1/7 0 

External reuse level 3/7 1/7 

Total reuse level 4/7 1/7         

The first column in Table 11 contains the values for reuse level using an internal 

threshold level of one and an external threshold level of zero. This means that at least 

two references to an internal node constitutes reuse. Only one reference to an external 

node constitutes reuse. The second column uses an internal threshold level of two and an



external threshold level of one. As expected, the reuse level values are less in the second 

column. 

A different definition of the uses relationship may allow a node to reference another node 

more than once. For example, a single call might be regarded as a single reference, and 

additional calls are distinct and counted. Figure 2 is a multicall graph abstraction. Each 

arc is labeled with a digit indicating the number of references. 

  

  

    

  

@I = internal node 

@E = external node 

— > = reference       

Figure 2: Multicall graph abstraction for higher level item H 

The algorithms shown above for IU, EU and T can be used to calculate corresponding 

values for a multicall graph abstraction. In the multicall graph abstraction, however, the 
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digit which labels each arc must be taken into consideration. If, for example, an arc is 

labeled with a 3, then that single arc represents three references to the node. Table 12 

shows the values for the reuse level metric for the higher level item H shown in Figure 2. 

Table 12: Reuse level values for the multicall graph abstraction 
shown in Figure 2. 
  

  

ITL=1 ITL=2 
ETL=0 ETL=1 

IU 2 1 

EU 3 1 

T 7 7 

Internal reuse level 2/7 1/7 

External reuse level 3/7 1/7 

Total reuse level 5/7 2/7         

3.3 Related Metrics 

The internal reuse level, external reuse level, and total reuse level metrics were initially 

defined by Frakes in [Frakes 90]. This project and report proposes further metrics which 

build upon and enhance the original reuse level metrics. 

3.3.1 Reuse Frequency 

Referring to Figure 1, each directional arc between nodes represents the uses 

relationship, or a reference. The reuse frequency metric is based on references to reused 

components rather than on the components themselves. The internal reuse frequency of a 

higher level item is the number of references to reused internal lower level items divided



by the total number of references in the higher level item. The external reuse frequency of 

a higher level item is the number of references to reused external lower level items 

divided by the total number of references in the higher level item. 

The variables and reuse frequency metrics are: 

IUF= number of references in the higher level item to reused internal lower level 

items. 

EUF= number of references in the higher level item to reused external lower 

level items. 

TF= total number of references to lower level items in the higher level item, 

both internal and external. 

Internal reuse frequency: IUF/ TF 

External reuse frequency: EUF/TF 

Total reuse frequency: (IUF + EUF) / TF 

Internal, external, and total reuse frequency will assume values between 0 and 1: 

0 <= Internal reuse frequency <= 1 

0 <= External reuse frequency <= 1 

0 <= Total reuse frequency <= 1. 

Again, algorithms can be defined to calculate the value of each variable in the reuse 

frequency equations. The algorithms for IUF, EUF and TF are shown below: 

To calculate [UF: 

1. set iref_cnt = 0 

2. for each node labeled '1', called x: 
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if number of references to x > ITL then 

for each reference to x: 

iref_cnt = iref_cnt + 1 

3. IUF = iref_cnt 

To calculate EUF: 

1. set eref_cnt = 0 

2. for each node labeled 's', called y: 

if number of references to y > ETL then 

for each reference to y: 

eref_cnt = eref_cnt + 1 

3. EUF = eref_cnt 

To calculate TF: 

1. set ref_cnt = 0 

2. for each arc: 

ref_cnt = ref_cnt + 1 

3. TF = ref_cnt 

Given values for the variables IUF, EUF and TF, the values for internal, external and total 

reuse frequency can be computed using the formulas on page 51. Table 13 shows the 

values for the reuse frequency metric for the higher level item H shown in Figure 1. 
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Table 13: Reuse frequency values for Figure 1. 
  

  

      

ITL=1 ITL=2 
ETL=0 ETL=1 

IUF 0 

EUF 

TF 9 

Internal reuse frequency 2/9 

External reuse frequency 5/9 3/9 

Total reuse frequency 7/9 3/9 
  

Table 14 shows the reuse frequency values for H using a multicall graph abstraction as 

shown in Figure 2. 

Table 14: Reuse frequency values for the multicall graph abstraction 

  

  

    

shown in Figure 2. 

ITL=1 ITL=2 
ETL=0 ETL=1 

IUF 5 3 

EUF 6 4 

TF 12 12 

Internal reuse frequency 5/12 3/12 

External reuse frequency 6/12 4/12 

Total reuse frequency 11/12 7/12   
  

3.3.2 Complexity Weighting 

A weighting has been implemented to indicate the complexity of a reused component. 

Program size is often used as a measure of complexity [Conte et al 86]. The complexity 
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weighting for reuse can assume multiple definitions. This research defines the 

complexity weighting for internal reuse as the sum of the sizes of all reused internal 

lower level items divided by the sum of the sizes of all internal lower level items within 

the higher level item. A different approach might define the complexity weighting as the 

average size of all reused components relative to the average size of all components that 

are not reused. 

To calculate the complexity weighting, the following information is needed: 

¢ A definition of higher and lower level items, 

¢ A measure of size for the lower level items, 

¢ Which lower level items are reused within the higher level item. 

An example complexity weighting for internal reuse in a C system is the ratio of the size 

(calculated in number of lines of non-commentary source code) of reused internal 

functions to the size of all internal functions in the system.



4 The rl Software 

4.1 Overview 

Frakes built the tool r/ to perform reuse analysis of C code [Frakes 92]. In its original 

form, rl reported the following metrics for C code: 

1. internal reuse level - the number of internal functions used more than once in a given 

set of C files (a C system) divided by the total number of functions in the system. 

2. external reuse level - the number of external functions used within a given set of C files 

divided by the total number of functions. 

3. total reuse level - the sum of internal reuse level and external reuse level. 

I have extended rl to perform a more rigorous reuse analysis of C code along with more 

flexibility and better reporting. This Chapter describes in detail the rl software. A listing 

of the software can be found in Appendix B. The manual page in Appendix C provides 

instructions for using rl. 

4.1.1 Purpose of the rl Software 

As stated above, the rl software performs reuse analysis of C source code. Given a set of 

C files, rl reports the following information: 
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1. internal reuse level 

2. external reuse level 

3. total reuse level 

4. internal reuse frequency 

5. external reuse frequency 

6. total reuse frequency 

7. complexity (size) weighting for internal functions 

The rl program accepts parameters which specify the internal threshold level and external 

threshold level. The default values for these arguments are 1 and 0, respectively. The 

user may request usage of a multicall graph abstraction, in which each call to a function is 

considered a "use." The rl program also allows multiple definitions of higher level and 

lower level abstractions. The allowed higher level abstractions are system, file or 

function. The lower level abstraction may be function or NCSL (Non-Commentary 

Source Line of code). 

4.1.2 Platform and Software Compatibility 

The rl software is written in Unix Korn shell scripting language [Bolsky and Korn 89]. 

The software was developed on an Amiga with the AT&T V. 4 Unix operating system 

and on a DEC with the Ultrix operating system. The rl software is dependent on the 

availability of the following software tools:



cflow Cflow is available on most versions of the Unix operating system. This 

tool scans C source code files and produces a hierarchical listing of 

functions that are called within the files. 

cscope Cscope is available only on the AT&T Unix V. 4 operating system. 

Similar to cflow, cscope also scans C source files and produces listings 

and other information regarding the hierarchical structure of the system. 

The cscope tool is used in addition to cflow because it is capable of 

producing a hierarchical calling chart that mimics the multicall graph 

(see Section 3.2). Cscope is necessary only for producing metrics for the 

multicall graph abstraction; all other functions of rl are valid on any 

Unix platform. 

ccounl Developed by Frakes, Fox and Nejmeh [Frakes et al 91], ccount counts 

the number of lines of non-commentary source code in C files. 

The rl software has been bundled into a package containing the rl program, the rl manual 

page, a set of test C programs, the ccount software, and a READ.ME file. It is distributed 

on public domain and is available through anonymous ftp from ftp.vt.edu, in the 

directory pub/reuse. 
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4.2 rl Enhancements 

This project includes several extensions to the rl software. Using command-line options, 

the user may specify different combinations of flags and arguments to control the 

behavior of the rl program. By default, the program reports the reuse level, reuse 

frequency and reuse complexity weighting for the given set of C files. 

To clarify the myriad functions incorporated into rl, I have designed a Reuse Metric / 

Abstraction Matrix, shown in Table 15. Each column is labeled with a high level / low 

level abstraction combination. Each row is a metric calculated by rl. Each cell in the 

matrix provides a definition of the metric for the associated high level and low level 

abstraction. A cell value of 'NI' means that the metric/abstraction is Not Implemented in 

the rl program. The abbreviation NCSL means Non-Commentary Source Lines of code.
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The following sections discuss the implementation of each rl enhancement. 

4.2.1 Definition of Reuse Frequency 

In addition to reporting the reuse level for C code, rl reports the reuse frequency. As 

discussed in Section 3.3.1, reuse frequency is based on the number of static references to 

reused components. For C code, the internal reuse frequency is the number of references 

to reused internal functions divided by the total number of references in the system. The 

external reuse frequency is the number of references to reused external functions divided 

by the total number of references in the system. 

Recall that the definition of uses varies for different abstractions. Using a call graph 

abstraction for C code, function A uses function B one time if A calls B one or more 

times; this uses relation is 1 reference. Using a multicall graph abstraction, function A 

uses function B each time A calls B. Each call is then a reference. The rl program 

differentiates the reuse frequency for a standard call graph abstraction and a multicall 

graph abstraction accordingly. RI does not count dynamic references or recursive calls. 

Figure 3 shows sample rl output for reuse frequency.



  

Reuse Frequency 

References to Reused Internal Functions: 7 

References to Reused External Functions: 22 

Total Number of References: 64 

Internal Reuse Frequency: 0.109 
External Reuse Frequency: 0.344 
Total Reuse Frequency: 0.453       

Figure 3: rl Reuse Frequency Output 

4.2.2 Complexity Weighting 

Ri computes the reuse complexity weighting for internal functions. (See Section 3.3.2 for 

general information regarding the complexity weighting metric.) The ccount tool, 

discussed in Section 3.3.2, is used to count the number of NCSL in C source code. If 

ccount in unavailable, the complexity weighting will not be calculated. Ccount is 

dependent upon a delimiter between each function in the source code. This delimiter may 

be specified to rl using the -d parameter on invocation: 

rl -d "/**new func**/" myprog.c 

If the delimiter is not given as an argument to rl, the environment variable FDELIM is 

used as the delimiter. If FDELIM is also unvalued, rl will display a message and the 

complexity weighting will not be computed: 

No file delimiter given, complexity weighting will not be computed. 

Given a delimiter, rl calculates the reuse complexity weighting as the number of NCSL in 

the higher level component (system or file) divided by the sum of the NCSL for each 

reused internal function. Referring to Table 15, the complexity weighting is valid only 
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for System/Function and File/Function abstractions. Figure 4 shows sample ri output for 

the reuse complexity weighting: 

  

Complexity Weighting 

Total Non-Commentary Source Lines of code: 46 
Total Non-Commentary Source Lines of reused code: 25 
Complexity Weighting based on size: 0.543478 

      
Figure 4: rl Reuse Complexity Weighting Output 

4.2.3 Specification of internal threshold level and external threshold level 

The user may specify values for internal threshold level (ITL) and external threshold 

level (ETL). Section 3.2 defines ITL as "the maximum number of uses of an internal 

item that can occur before reuse occurs." ETL is "the maximum number of uses of an 

external item that can occur before reuse occurs." The default value for ITL is 1 and ETL 

is 0. Fora high level component of system and a low level component of function, this 

means that an internal function must be used at least two times for it to be "reused." An 

external function is "reused" when used only once. 

The ITL and ETL may be given as command line arguments to rl: 

rl -itl 2 -etl 1 myprog.c myutils.c 

RI always displays the ITL and ETL at the beginning of the output report: 

Internal Threshold Level 2 

External Threshold Level 1 
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RI uses the ITL and ETL for all calculations of reuse, for any abstraction. If ITL = 2, 

then a source line of code must occur three times for it to qualify as reused in the 

calculation of internal reuse level for low level component of NCSL. 

4.2.4 Option to use multicall graph abstraction 

Given the -multical1l1 flag as a command line argument, rl will use a multicall graph 

abstraction to calculate the reuse metrics. Rl needs the cscope tool for this function. 

Cscope is available only on the AT&T Unix platform. When using a multicall graph 

abstraction rl displays a message at the beginning of the output report: 

Using a multicall graph abstraction with cscope. 

If cscope is unavailable when the multicall option is specified, rl displays an error and 

ends execution: 

rl error: Cannot use a multicall abstraction. 

The cscope tool is unavailable; valid on AT&T Unix only. 

Section 3.2 of this paper discusses the multicall graph abstraction for generic higher level 

items and lower level items. RI includes a multicall option for each metric except for a 

higher level component of function; the Function / Function abstraction is essentially 

always calculated using a multicall abstraction since reuse is contained within a single 

function. 
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4.2.5 High level and low level abstractions 

The original version of rl calculated the reuse level for functions within a C system. | 

have enhanced the software to calculate the reuse level metrics at various levels of 

abstraction. Each column in Table 15 represents a possible high level and low level 

abstraction combination. The table provides definitions of the metrics for each 

abstraction. 

The default high level abstraction in rl is system. By using the -high flag the user may 

request a high level abstraction of file or function. For the system and file high level 

abstraction, the reuse level for a low level abstraction of function and NCSL are both 

calculated. For a high level abstraction of function, only the function low level 

abstraction is available at the current time. 

4.2.6 Option to include main( in the function count 

The final rl extension is an option to include the main() function in the count of internal 

functions. Specified on the command line, the -main flag causes rl to add 1 to the total 

count of internal functions when main() is one of those functions. By default, rl does not 

include main() in the count, a sensible approach because C allows only one definition of 

main() in a system and thus it is impossible to "reuse" the main() function.



4.3. Examples of use 

The usage statement for rl is: 

Usage: rl [-i num][-main]([-multicall][-high system|file| function] 

[-d delim] <FILES> 

Computes reuse metrics for the source code in the given file(s). 

Parameters: 

~i num num is the internal threshold level, default = 1 

-e num num is the external threshold level, default = 0 

-main include main in the internal function count 

-multicall use a multicall graph abstraction 

-high system|file| function 

indicate system, file or function as the high level 

abstraction entity. Default is system. 

-sysf filename 

filename is the fully-qualified pathname of a file 

containing a list of system functions that should be 

excluded from reuse counts. If this parm is not given 

then all C functions will be included in reuse counts. 

~d delim delim is a delimiter preceding each function 

definition in each C file, needed for computing the 

complexity weighting. If this parm is not given the 

environment variable FDELIM will be used. If neither 

are set then the complexity weighting will not be 

calculated. 

<FILES> name of C source code files 

The only required argument to rl is one or more names of C source files. Figure 5 is the 

report generated by rl for a C system composed of four files, bv.c, hash.c, bvdriver.c, and 

hdriver.c. The output resulted from invoking rl with no optional arguments: 

rl hash.c bvdriver.c bv.c hdriver.c 
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No file delimiter given, complexity weighting will not be computed. 

Internal Threshold Level 

External Threshold Level 

1 
0 

  

REUSE METRICS FOR SYSTEM 
  

Reuse Level 
  

Internal Functions Reused: 9 

External Functions Reused: 7 

Total Functions Used: 30 

Internal Reuse Level: 0.3000 

External Reuse Level: 0.2333 

Total Reuse Level: 0.5333 

Reuse Frequency 
  

References to Reused Internal Functions: 50 

References to Reused External Functions: 17 

Total Number of References: 81 

Internal Reuse Frequency: 0.6172 

External Reuse Frequency: 0.2098 
Total Reuse Frequency: 0.8271 

Lines of Code Reuse Level 

  

Loc: 289 

Reused LOC: 149 

Reuse level for LOC: 0.5155   
  

Figure 5: Sample rl output 

Note that the default high level component is system; the high level component is 

displayed as the last word in the heading "REUSE METRICS FOR ...". Reuse levels for 

low level components of function and lines of code were calculated. No complexity 

weighting was computed because no function delimiter was defined. 

Consider invoking rl with a high level component of file: 

rl -high file hash.c bvdriver.c bv.c hdriver.c



The reuse metrics will be displayed for each file with appropriate headings such as: 

  

REUSE METRICS FOR hash.c 
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4.3.1 Running rl] from a makefile 

A Unix makefile is often used to simplify the compilation and linking procedures for C 

programs. Since rl needs the names of all C source files to compute reuse metrics fora 

system, using the makefile will simplify running rl. 

For example, the following lines can be added to a makefile: 

RLARGS= 

RLDIR=/ul/cterry/RL 

rl: 

$(RLDIR)/rl $(RLARGS) $(CSRC) 

RLDIR 1S the directory path of the rl software. The csrc variable is the list of C source 

files. The rl program can be invoked by typing: 

make rl 

Additional arguments may also be specified: 

make rl RLARGS="-itl 2 -high file" 

To modify the default behavior of rl using a makefile, assign the value for the RLARGS 

variable inside the makefile.



§ Testing rl 

$5.1. The Testing Procedure 

All rl capabilities have been extensively tested. The program incorporates parameter 

edits and other error-prevention procedures that improve the robustness of the software. 

A set of seven very simple C programs were used as test cases for the initial testing 

phases of rl. The programs were designed to provide simple but comprehensive test 

cases. 

The following is a regression test script for rl. It was adapted from a similar script on 

page 197 in [Frakes et al 91]. This script accepts two arguments. The first is the name of 

a file which contains the correct results for the test run. The second is all arguments that 

should be passed to the rl program. 

# 

# Shell script to test the rl program 

# 

# $1 - name of file containing correct results 

# $2 - all parms (enclosed in quotes) to rl 

CORRECT=S$1 

echo Testing rl 

echo Comparing results on reuse metrics 

echo to results in S$CORRECT 
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echo 

# run the rl program, capture stdout and stderr 

echo "rl $2" 

rl $2 > /tmp/tmp.rlout 2>&1 

# test for differences in this output and correct output 

aiff /tmp/tmp.rlout $1 > /tmp/diffs.SCORRECT 

if test "$?" = 1 

then 

echo Error - Differences are: 

cat /tmp/diffs.$CORRECT 

else 

echo No errors 

rm /tmp/tmp.rlout 

rm /tmp/diffs.SCORRECT 

fi 

This script was used to test the rl program on each of the seven simple programs. The C 

test programs are listed in Appendix D. The following list summarizes the rl test cases. 

This list is not comprehensive; additional test cases provide better coverage of parameter 

edits and argument combinations. 

1. rl myprog.c (correct, no options) 

2.rl nofile.c (bogus filename) 

3. rl myprog.c myutil.c (2 correct file names) 

4.r1 (no file names) 

5.rl -itl 2 -etl 1 myprog.c (specify threshold levels) 

6. rl -main myprog.c (-main argument) 

70



7. rl -multicall myprog.c (use multicall graph abstraction) 

8.rl -high file myprog.c myutil.c (high level component = file) 

9.r1 -high file -multicall (high level=file, with multicall abstraction) 
myprog.c myutil.c 

10. rl -high function myprog.c (high level component = function) 
myutil.c 

ll. rl -d "/*%" (-d flag and FDELIM env. variable) 

12. rl -high bogus (bogus high level component) 

5.2 Testing Results 

The rl software was run on 31 production C systems. The systems range in size from 192 

NCSL to 1879 NCSL. Access to C software was limited for this project; it would be 

beneficial to run further analysis on larger systems and systems with existing quality and 

productivity statistics. The following data was accumulated using default rl options: 

internal threshold level = 1, external threshold level = 2, standard call graph abstraction, 

high level component = system and low level component = function. Table 16 shows 

summary statistics for the reuse level metric. 
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Table 16: Summary Statistics for Reuse Level 
  

  

      

Internal Reuse External Total Reuse NCSL 
Level Reuse Level Level 

Mean 0.0858 0.5522 0.6380 818.84 

Median 0.0666 0.5263 0.6190 676 

Max 0.3000 0.9814 0.9814 1879 

Min 0 0.2333 0.4655 192 

Standard Dev 0.0735 0.1474 0.1220 471.82 
  

The average level of reuse is high, at 64%. This figure could be partially attributed to the 

design of the C programming language. The internal reuse level ranges from zero (no 

internal reuse) to 0.3 (approximately one-third of the internal functions were used more 

than once). Figure 6 shows a plot of internal reuse level vs. log NCSL. 
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Figure 6: Internal Reuse Level vs. log NCSL 

The plot would indicate that as software increases in size, internal reuse also increases. 

On the other hand, as shown in Figure 7, external reuse decreases as software increases in 

size. Internal reuse has a positive correlation with log NCSL (r=0.35, r2=0.12). External 

reuse has a negative correlation with log NCSL (r=-0.57, r=0.32). These results indicate 

that small programs reuse a small number of internal functions and a large number of 

external components. Conversely, larger programs reuse more internal components and 

fewer external components. These results are logical because large programs contain 

more code and thus more reusable components, and small programs must use external 

components to increase functionality. 
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Figure 7: External Reuse Level vs. log NCSL 

Table 17 contains summary statistics for reuse frequency. 

Table 17: Summary Statistics for Reuse Frequency 

Internal Reuse External Total Reuse NCSL 

Frequency Reuse Frequency 

Frequency 

Mean 0.1308 0.6525 0.7833 818.84 

Median 0.0983 0.6666 0.7794 676 

Max 0.6172 0.9838 0.9838 1879 

Min 0 0.2098 0.6363 192 

Standard Dev 0.1261 0.1379 0.0725 471.82     
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As expected, because more calls to reused functions exist than reused functions 

themselves, the reuse frequency measurements are slightly above the reuse level 

statistics. 

An additional study evaluates the effect of increasing the threshold level on the 

corresponding reuse level. Figure 8 maps the internal reuse level to the internal threshold 

level. This data was acquired by running rl on a single set of software two different 

times, once with an internal threshold level of 1 and once with an internal threshold level 

of 2. The graph indicates that the reuse level drops significantly when the threshold level 

was increased by 1. All but one test case has a reuse level of 0.075 or less with ITL=1. 
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Figure 8: Internal reuse level vs. Internal threshold level 
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Figure 9 shows an even more dramatic difference in external reuse level when the 

external threshold level is increased from 0 to 1. An ETL of 1 means that an external 

function must be used more than once before "reused." 
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Figure 9: External reuse level vs. External threshold level 

Further testing of rl to evaluate the reuse levels using a multicall graph abstraction would 

be beneficial. Results for such tests are not included in this report due to a computer 

hardware failure. 
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6 Conclusions and Future Work 

In this study, the reuse metrics proposed by Frakes were extended to include reuse 

frequency and a reuse complexity weighting. Threshold levels and a multicall graph 

abstraction were defined to allow variable definitions of "reuse." The metrics were 

formally defined in an algorithmic notation that allows clear understanding. The formal 

definition can be mapped to a specific domain and thus the reuse metrics can be defined 

for any software development artifact. 

The rl reuse measurement software for C code has been greatly enhanced. It now reports 

the reuse level and reuse frequency metrics for several possibilities of high level and low 

level abstraction entities. Rl] allows the user to specify values for internal and external 

threshold levels. It also computes a reuse complexity weighting, and supports calculation 

of the reuse metrics using a multicall graph abstraction. 

Runs of the rl software conclude that internal reuse increases as programs increase in size 

while external reuse decreases as program increase in size. Also, a difference of one in 

the internal or external threshold level causes dramatic decreases in the amount of reuse. 

Much future work remains to be done. For clearer empirical results, the reuse metrics 

could be calculated for systems that have prior quality and productivity measurements. 

Correlations could then be obtained providing empirical evidence of the effect of 

software reuse on software quality and productivity. 
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The abstract definitions of the reuse metrics could be mapped to the object-oriented 

domain to reflect the syntax of an object-oriented language. RI or similar software could 

be written to calculate reuse measurements for an object-oriented language such as C++. 

Valuable results could compare the amount of reuse in procedural source code to the 

amount of reuse in object-oriented code. 

The rl program could be enhanced to compute dynamic reuse metrics, calculated after 

source code bindings have been resolved. Recursion and dynamic references would then 

be included in the reuse equation, as they should be for more precise results. 

As currently implemented, the rl software is dependent upon several other tools to parse 

the source code. An improved implementation might incorporate the parsing procedure 

and generate results more efficiently. 

To improve accessibility, the functions of a reuse measurement tool such as rl could 

easily be integrated into a CASE environment. Users could then graphically request 

reuse statistics for a given software component. 

Software reuse is predicted to become more common and more obtainable in the future of 

software development. Measurement tools such as rl will be an essential part of the reuse 

program. 
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Appendix A: Definition of Reuse Metrics in Set Notation 

This appendix contains a formal definition of the reuse level and reuse frequency metrics. 

The definitions are constructed in formal set notation. Section A.1 contains an abstract 

definition for unknown high level and low level entities. Section A.2 demonstrates how 

the general notation can be applied to an actual domain to define a reuse measurement 

model for a the C programming language. 

A.l Abstract Formal Reuse Metric Definitions 

Assumptions 

Parts-based reuse assumes that a system is divided into parts, or components, which relate 

to each other in some way. Higher-level components are composed of, or use, lower- 

level components. A component which 1s internal to a system was developed for the 

system. An external component was not developed for the system but may be used 

within the system. 

Such a system can be modeled with nodes and relationships between nodes, as in a call 

graph abstraction. In Figure 3, each node represents some object in the development life 

cycle of system S. When a node (A1) uses another node (A2) then the relationship from 

Al to A2 is a uses relation, or a reference. A reference is depicted as a directional arc 

between nodes.



  

Al 

A2 A3 A4 

AS       

Figure 1: Standard call graph abstraction 

The system in Figure 3 does not show whether a node is used by another node more than 

once. By definition, the reference relation is boolean: either Al uses A2 or it does not. 

An alternative representation is a multicall graph abstraction where a node may be used 

several times by another node. In Figure 4, each arc is labeled with a digit which 

indicates the number of uses. Al uses A2 twice and A4 uses A5 three times. 

  

Al 

A2 A3 A4 

A5       

Figure 2: Muiticall graph abstraction 

While more definitions are possible, two basic reuse metrics are defined: 

1) The amount of reuse may be defined in terms of the number of nodes which are used 

more than a given number of times within the system. The resulting metric is 

reuse level [Frakes 90]. Reuse level is defined as the number of nodes which are 

reused divided by the total number of nodes in the system. 

2) The amount of reuse may be defined in terms of the number of references to nodes. 

The resulting metric is reuse frequency. Reuse frequency is defined as the 
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number of references to reused nodes divided by the total number of references in 

the system. 

Reuse level and reuse frequency may both be decomposed into internal and external 

measurements. 

For the purpose of a formal definition, the following assumptions are made: 

Let S be a system. 

Let N be the set of all nodes developed for S (internal nodes). 

Let R be the set of all references within S (to internal and external nodes). 

Let ITL be the internal threshold level, defined to be the maximum number of 

uses of an internal node that can occur before reuse occurs. The default 

value is 1. 

Let ETL be the external threshold level, defined to be the maximum number of 

uses of an external node that can occur before reuse occurs. The default 

value is O. 

Definitions 

T=total # of nodes in S 

IU=# internal nodes in S used > ITL 

IM=# internal nodes in S used > ITL 

with a multicall graph abstraction 

EU=# external nodes used > ETL 

TF=total # of references in S 

IUF=# references in S to internal nodes 

used > ITL 

IMF=# references in S to internal nodes 

used > ITL with a multicall 

graph abstraction 

EUF=# references in S to external nodes 

used > ETL



EM=¥ external nodes used > ETL with IMF=# references in S to external nodes 

a multicall graph abstraction used > ETL with a multicall 

graph abstraction 

T is equivalent to the formal relation | { x | used_cnt(x) = 1} | 

TF is equivalent to the formal relation | R | 

The function used_cnt(a) is the number of times the component a is used in S using a 

standard call graph abstraction. 

The function multicall_used_cnt(a) is the number of times the component a is used in S 

using a multicall graph abstraction. 

The function ref_cnt_to_node(a) is the number of references to a within S using a 

standard call graph abstraction. 

The function multicall_ref_cnt_to_node(a) is the number of references toa within S using 

a multicall graph abstraction. 

Internal Reuse Level 

i_reuse_level =IU/T 

where IU =| {(x EN) | used_cnt(x) > ITL)} | 

i_reuse_level_multicall = IM / T 

where IM =| {(x €N) | multicall_used_cnt(x) > ITL)} | 

External Reuse Level 

e_reuse_level =EU/T 

where EU =| {(x ¢N) | used_cnt(x) > ETL)} |



e_reuse_level_multicall = EM / T 

where EM = 1 {(x ¢ N) 1! multicall_used_cnt(x) > ETL)} | 

Internal Reuse Frequency 

i_reuse_frequency  =IUF/TF 

where IUF =| {(d © R) | ref_cnt_to_node(d) > ITL A 

ref_to_internal_node(d)} | 

1_reuse_frequency_multicall = IMF / TF 

where IMF =| {(d € R) | multicall_ref_cnt_to_node(d) > ITL) 

/\_ ref_to_internal_node(d)} | 

External Reuse Frequency 

e_reuse_frequency = EUF / TF 

where EUF =| {(d € R)1|ref_cnt(d) > ETLA 

ref_to_external_node(d)} | 

e_reuse_frequency_multicall = EMF / TF 

where EMF =| {(d € R) | multicall_ref_cnt_to_node(d) > ETL) 

/\_ ref_to_external_node(d)} | 

Total Reuse Measurements 

total_reuse_level = i_reuse_level + e_reuse_level 

total_reuse_level_multicall = i_reuse_level_multicall + e_reuse_level 

total_reuse_frequency = i_reuse_frequency + e_reuse_frequency



total_reuse_frequency_multicall = i_reuse_frequency_multicall + e_reuse_frequency 

Complexity (size) Weighting 

n n 
Ws= )»D (size (internal_reused_nodes(ITL)) / > (size (all_nodes(S)) 

i=1 i=1 

where size is based on NCSL (Non-Commentary Source Lines of code). 

A.2 Formal Reuse Metric Definitions for the C Language 

This section demonstrates how the formal model can be instantiated for C. The high 

level abstraction for this definition is a C system. The low level abstraction is a function. 

The following assumptions are made: 

Let S be a software system wnitten in the C programming language. Functions 

that were developed for S are called internal functions and functions that 

were not developed for S are called external functions. 

Let F be the set of all internal functions. 

Let C be the set of all references within S to internal and external functions. 

Let ITL be the internal threshold level, defined to be the maximum number of 

references to an internal function that can occur before reuse occurs. 

Let ETL be the external threshold level, defined to be the maximum number of 

references to an external function that can occur before reuse occurs. 
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Definitions 

T=total # of functions TF=total # of references 

IU=# internal functions referenced >ITL [UF=# references to internal functions 

used > ITL 

IM=# internal functions referenced >ITL IMF=# references to internal functions 

with a multicall graph abstraction used > ITL with a multicall graph 

abstraction 

EU=# external functions referenced > ETL EUF=# references to external functions 

used > ETL 

EM=# external functions referenced > ETL EMF=# references to external functions 

with a multicall graph abstraction used > ETL with a multicall graph 

abstraction 

T is equivalent to the formal relation | { f | used_cnt(f) = 1} | 

TF is equivalent to the formal relation | C | 

The function used_cni(f) is the number of times function fis used in S using a standard 

call graph abstraction. 

The function multicall_used_cni(f) is the number of times the function fis used in S 

using a multicall graph abstraction. 

The function ref_cnt(c) is the number of references to function c using a standard call 

graph abstraction. 

The function multicall_ref_cnt(c) is the number of references to functionc using a 

multicall graph abstraction.



Internal Reuse Level 

1_reuse_level = IU /T 

where IU =| {(f € F) | used_cnt(f) > ITL)} | 

i_reuse_level_multicall = IM / T 

where IM =1 {(f € F) 1 multicall_used_cnt(f) > ITL)} | 

External Reuse Level 

e_reuse_level =EU/T 

where EU =| {(f ¢ F) | used_cnt(f) > ETL)} | 

e_reuse_level_multicall = EM / T 

where EM = 1 {(f ¢ F) | multicall_used_cnt(f) > ETL)} | 

Internal Reuse Frequency 

i_reuse_frequency =l[UF/TF 

where IUF = 

l{(c € C)lref_cnt(c)>ITL A ref_to_internal_ftn(c)} | 

i_reuse_frequency_multicall = IMF / TF 

where IMF =| {(c € C)| multicall_ref_cnt(c) > ITL) A 

ref_to_internal_ftn(c)} | 
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External Reuse Frequency 

e_reuse_frequency =EUF/TF 

where EUF = 

l{(c € C)lref_cnt(c) > ETLA ref_to_external_ftn(c)}! 

e_reuse_frequency_multicall = EMF / TF 

where EMF =| {(c € C) | multicall_ref_cnt(c) > ETL) 

/\_ ref_to_external_ftn(c)} | 

Total Reuse Measurements 

total_reuse_level = i_reuse_level + e_reuse_level 

total_reuse_level_multicall = i_reuse_level_multicall + e_reuse_level 

total_reuse_frequency = i_reuse_frequency + e_reuse_frequency 

total_reuse_frequency_multicall = i_reuse_frequency_multicall + e_reuse_frequency 

Complexity (size) Weighting 

n n 
Ws= »> (size (internal_reused_ftns(S,ITL)) / > (size (all_ftns(S)) 

. 

i=1 1= 

where size is based on NCSL (Non-Commentary Source Lines of code).



Appendix B: The rl Software 
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#! /usr/bin/ksh 
PERE ERE TTR TT TERHRR RRR R RRR R AREER ERE R EERE RARE EERE ER EE REET TREE EERE RT TEE 

ee
 = ae
 

oe
 

Q ge
 

rl-- reuse level measurement tool for C, ksh version 

SYNOPSIS: rl [-i num] [-e num] [-main] [-multicall] [-high system|fil 
| function] 

{-d delim] <files> 

ENVIRONMENT: Will use the following environment variables if defined: 
ITL - internal threshold level, default=1 
ETL -—- external threshold level, default=0 
FDELIM - file delimiter for ccount 
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DISTRIBUTION: Not to be distributed without permission from B. Frakes 

AUTHOR: Carol Terry, Va Tech (703) 698-6020 
Bill Frakes, Va Tech (703) 698-6020 
Chris Fox 

HISTORY: 6-22-90 Written by B. Frakes 
1-30-92 Rewritten by C. Fox 
6-20-93 Rewritten by C. Terry 

REFERENCE: W. Frakes, "An Empirical Program for Software Reuse" 
3rd Workshop on Tools and Methods for Reuse 
Syracuse, NY 1990 

C. Terry, "Analysis and Implementation of Software Reuse M 
asurement" 

Masters Project and Report, VPI & SU Northern Virginia 
Falls Church, VA 1993 
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NOTES: Run rl out of your makefile using your source list as input. 

HERR ERE EE TEER EE ERE T EEE ETH EH ER TETHER EEE RH THERESE RET H EEE EH EH EHH 
HERE HH HH 

TMPDIR=/tmp # directory to store temporary files 
HLO=/ul/cterry/carol/RL # high level qualifier (path) for t 
he rl program 
CCNT DIR=/ul/cterry/carol/RL # path for the ccount program 
#HLQ=/home/cterry/rl # path for rl on amiga 
#CCNT_DIR=/home/cterry/rl # path for the ccount program on am 
iga 

# ae ee ee ee ee ee 

# wae ea ee a eo ee 

# Usage 

# eee ee _ —_— =- —_— ee 

Usage() { 
echo 
echo "Usage: rl [-i num] [-main] [-multicall] " 
echo " [-high [system](file][function]] [-d delim] <FILES>" 
echo "Computes reuse metrics for the source code in the given file\(s 

echo "Parameters:" 
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echo " -itl num num is the internal threshold level, default = 1" 
echo " -etl num num is the external threshold level, default = 0" 
echo " -main include main in the internal function count" 
echo " -multicall use a multicall graph abstraction so that, for exa 

mple," 
echo " a function can use another function more than once 

Ww" 

echo " -high [system] [file] [{function]" 
echo " indicate system, file or function as the high leve 

," 

echo " abstraction entity. Default is system." 
echo " -sysf filename" 
echo " filename is the fully-qualified pathname of a file 

echo " containing a list of system functions that should 
be" 

echo " excluded from reuse counts. If this parm is not g 
iven" 

echo " then all C functions will be included in reuse cou 
nts." 

echo " -d delim delim is a delimiter preceding each function defin 
ition” 

echo " in each C file, needed for computing the complexit 
y size" 

echo " weighting. If this parm is not given the environm 
ent" 

echo " variable FDELIM will be used. If neither are set t 
hen" 

echo " the complexity weighting will not be calculated." 
echo " <FILES> name of C source code files" 
exit 1 

} 

# wee a ee ee a a ee ee ee ee 

# we ee ee nn a ee ee ee ee 

# Parmedit - edit all input parms, if errors print Usage stmt and exit 
  rue me ee ee eee ete me arm ree me me ee ee ee ee ce ee re ee ee ee ee ee ae ee ee 

—— 

Parmedit {) 

if [ $# -eq O ] 
then 

Usage 
fi 

# search for valid parameters. Store the names of the c files in the CF 
ILE array. 

let CNT=0 
while [| $# -ne O ] 
do 

case $1 in 
-itl) shift 

ITL=$1 

-etl) shift 
ETL=$1 
7? 

-main) COUNTMAIN=yes 
echo "main is included in the count of Internal Functions " 

-multicall) if [[ -n ‘whence cscope ]] 
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then 
MULTICALL=yes 

echo "Using a multicall abstraction with cscope." 
else 

echo "rl error: Cannot use a multicall abstraction." 
echo "The cscope tool is unavailable; valid on AT&T Unix only." 
Usage 

fi 

a 
-sysf) shift 

SYSFTN_FILE=$1 

-high) shift 
ABSTRACTION=$1 

-d) shift 
MY FDELIM=$1 

FF 

*) CFILE[ $CNT]=$1 
let CNT=CNT+1 

r? 
esac 
shift 

done 

#edit high level abstraction 
if [[ -n $ABSTRACTION }] 
then 

case $ABSTRACTION in 
system) i? 
file) 73 
function) ;; 
*) echo rl error: high level abstraction $ABSTRACTION is not vali 

d 
Usage 

a 
esac 

fi 

#check for existence of function delimiter for ccount 
if [[ -z $MY_FDELIM }] 
then 

if ([{ -z $FDELIM ]] 
then 

NO FDELIM=true 
echo No file delimiter given, complexity weighting will not be co 

mputed. 
fi 

fi 

#edit source file names 
if [[ -z $CFILE ]] 
then 

echo rl error: no source filenames given 
Usage 

fi 
for filen in ${CFILE[*]} 
do 

if [[ ! -f $filen J] 
then 

echo rl error: no such file: $filen 
Usage 

fi 
done 

if [[ -n $SYSFTN FILE }]



then 

if [[ ! -f $SYSFTN FILE ]] 
then ~ 

echo rl error: no such file: $SYSFTN_FILE 
Usage 

fi 
fi 

#edit default directories 
if [[ ! -d $TMPDIR ]] 
then 

echo rl error: no such directory: $TMPDIR 
Usage 

fi 
if {[ ! -d $HLQ J] 
then 

echo rl error: no such directory: $HLQ 
Usage 

fi 
if {[ ! -d $CCNT DIR ]] 
then ~ 

echo rl error: no such directory: $CCNT DIR 
Usage ~ 

fi 

#set defaults for ITL and ETL if necessary 
if ({ -z $ITL }]} 
then 

ITL=1 
Fi 
if [{ -z $ETL }]} 
then 

a me me ee rem ree mcm me meee rm ce se ae ee rere arm ee ete me eS Sree cee em ee ml US ee ee me ee i ce ee ce re ce EE OE EE Sl Ne Ce OE ST ED AS ES ee ee Oe eee ee 

ee a em ee me re we i re ee ee ee re ee ee ee ee ee —— —————   

Reuse Level Metrics -— generates: 
~ intern reuses = # internal functions reused 

extern reuses = # external functions reused 
total _uses = # functions used 

re ae me ee an ee re me a ee ee ree ae i es me re re me cee we a re re oe ae ae we wes as ee ee ee ee ee et ee re oe ee ee ee a ee ee ee ee 

  

a a re me ee mr en re iw a ew we re ee nr a re re re ee te ee ee ee ee ee ae ae ee eS 

Catalog the definitions of internal functions by searching for matche 

parentheses. Keep only the name and definition line number. Then 
extract uses of these defined functions from the cflow output or from 
cscope. Count how often each internal function is called. 

grep "\(\)" $TMPDIR/cflow.file | awk '{print $2}' > $TMPDIR/intern de 

if [[ -z $MULTICALL ]] 
then . . 

for function in cat $TMPDIR/intern_defs 
do



if [[ $function != "main:" 
then grep "$function" $TMPDIR/cflow.file | awk '{print $2}' 

fi 
done > $TMPDIR/intern calls 

else 
# NOTE: for AT&T Unix only use cscope; 
# Allow option of defining "reuse" as multiple calls within a single fu 
nection. 
# remove the colon from the function name 

for function in “sed "s/://" $TMPDIR/intern defs~ 
do 
, cscope -L -3 $function ${CFILE[*]} | awk '{print $4}' | sed "s/\ 

(.* " 

done > $TMPDIR/intern_calls 
fi 

# Count the internal functions used at least once and more than ITL tim 

# where ITL is set to 1 if undefined. 

sort $TMPDIR/intern_calls |} uniq ~-c > $TMPDIR/intern_counts 

# Add 1 for main if indicated by the -m flag. The number of internal r 
euses 
# is the number of components that are used more than ITL times. 

intern_uses= cat $TMPDIR/intern counts | we -1- 
if [[ =n $COUNTMAIN ]] 
then . 

intern_uses= echo $intern_uses 1 "+p" | dc 
fi 

# Write to $HLQ/reused nodes an ordered list of reused functions 
awk '{if ($1>K) print $0}' K=$ITL $TMPDIR/intern_ counts > $HLO/reused 

nodes 
~ intern _reuses= wc -1 $HLQ/reused_nodes | awk '{print $1}' ~ 

# -------- _ -_-—-— —~-——— + 

# Count the external functions called at least once by searching for ma 
tched 
# empty angle brackets. Keep only the function name, then sort and uni 
ue 
the result, and count the distinct functions. 

    

grep "<>" $TMPDIR/cflow.file | awk '{print $2}' | sort > $TMPDIR/exte 
rn defs 

Tf {{ -z $ETL ]] 
then ETL=0 
fi 

# use cscope to get a multicall abstraction. Do not count any function 
s that are 
# defined in the $SYSFTN FILE, specified by the -sysf parm. 

if [[ -z $MULTICALL }]~ 
then 

for function in ‘cat $TMPDIR/extern defs 
do ~ 

if [[ -n $SYSFTN FILE ]] 
then . 

if [[ -z grep $function $SYSFIN FILE ]] 
then 

grep "$function" $TMPDIR/cflow.file | awk '{print $2}' > §T 
MPDIR/extern_ calls 

fi 
else 

grep "$function" $TMPDIR/cflow.file | awk '{print $2}' > $TMP



DIR/extern calls 
fi 

done 
else . . 

for function in sed "s/://" $TMPDIR/extern_defs 
do 

if [[ -n $SYSFTN FILE }] 
then . 

if [[ -z “grep $function $SYSFIN FILE }] 
then ~ 

scope -L -3 $function ${CFILE[*]} | awk '{print $4}' | sed 
"s/\(.*//" > $TMPDIR/extern calls 

fi 
else 

cscope -L -3 $function ${CFILE[*]} | awk '{print $4}' | sed "s 
/\(.*//" > $TMPDIR/extern_calls 

fi 
done 

fi 

# Count the external functions used at least once and more than ETL tim 
es 
# where ETL is set to O if undefined. 

sort $TMPDIR/extern calls | uniq -c > $TMPDIR/extern_counts 
extern _uses= cat $TMPDIR/extern_counts | we -l 

# Write to reused exnodes an ordered list of reused external functions 
awk '{if ($1>K) print $0}' K=$ETL $TMPDIR/extern_ counts > $TMPDIR/reu 

sed exnodes 
extern reuses=— wc -l $TMPDIR/reused exnodes | awk '{print $1}' 

  

# Reuse _ Frequency | Metrics - generates: 
# intern refs = # references to reused internal functions 
# extern refs = # references to reused external functions 
# total refs = total # references 
    

ee 

  
——— 

Reuse Frequency Metrics() 

# Compute the internal reuse frequency by counting number of references 
to each 

# component. total _intern_refs is the total number of references to int 
ernal components. 
# intern_refs is the number of references above ITL to internal compone 
nts. 

total _ intern _refs=0 . 
for cts in “awk '{print $1}' $TMPDIR/intern counts 
do 
total _intern_refs= echo $cnts $total_intern refs "+p" | dc~ 

done 

awk '{if ($1>K) print $1}' K=$ITL $TMPDIR/intern_counts > $TMPDIR/int 
ern refs counts 

intern refs= =0 . 
for cnts in cat $TMPDIR/intern_refs counts



do 
intern refs= echo $cnts $intern refs "+p" | dc 

done ~ ~ 

Compute the external reuse frequency. Must first compile a list of al 

t
e
i
 +H 

calls to external components. 

total _extern_refs=0 . 
for cnts in awk '{print $1}' $TMPDIR/extern counts 
dao ~ 

total extern refs= echo $cnts $total extern refs "+p" | dc 
done ~ ~ ~ ~ 

awk '{if ($1>K) print $1}' K=$ETL $TMPDIR/extern counts > $TMPDIR/ext 
ern refs counts ~ 

extern refs=0 . 
for cnts in cat $TMPDIR/extern_refs counts 
do 

extern refs= echo $cnts $extern refs "+p" | de 
done ~ ~ 

  

  

# Reuse Lines Metrics 
# callgraph abstraction = # lines reused / # unique lines 
# multicallgraph abstraction = # occurrences of reused lines / total 
# lines 
# 
# 
oO 
# 

  

Generates: 

T_ LINES = total number of lines in the high lev comp 
nent 

T LINES REUSED = number of reused lines 
# —---~-----~ toe To 

# ee ee ee ee ee ee ee ae ee 

Reuse Lines Metrics() 

} Compute internal reuse level for lines of code rather than functions 
as 
# the lower level abstraction. 

fnames=$* 
for filen in $fnames 

oO 
awk '/\/\*/,/\*\// {next} {print $0}' $filen # extract commentary 

lines 
done | sort | uniq -c | awk '{if ($2) print $0}' > $TMPDIR/all lines 
awk '{if ($1 > K) print $0}' K=$ITL $TMPDIR/all lines > $TMPDIR/inter 

n lines ~ 

if [[ -z $MULTICALL }] 
then . . 

T LINES= wc ~1 $TMPDIR/all_ lines | awk '{print $1}' # number of 
unique lines . . 

T LINES REUSED= we -l $TMPDIR/intern lines | awk '{print $1}! 
else ~ ~ 

T LINES=0 
T LINES REUSED=0 _ 
for aline in awk '{print $1}' $TMPDIR/all lines 
do ~ 

T LINES= echo $aline $T_LINES "+p" | dc 
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done 
for aline in awk '{print $1}' $TMPDIR/intern lines” 

  

do 
T LINES REUSED= echo $aline $T_LINES REUSED "+p" | dc- 

done ~~ 
fi 

} 

# wwe ae ee ee ee en ee ee ee 

# ee ee ee ee ee a a oe ee a ee ee ee a ee ee ee 

# Function Reuse Level Metrics 
# This is highlevel=ftn, lowlevel=ftn 
# Need a tool to extract code for a given ftn name to implement 
# highlevel=ftn, lowlevel=sloc 
# This routine generates a total reuse level metric for each function i 
n 
# the given source files. It does not differentiate internal/external 
# reuse levels nor does it generate reuse frequency metrics. By the na 
ture 
# of function as the highlevel component, it always uses a multicall 
# abstraction. 

ee me ne ee re a ee nr we wr wee re a a re ee ec wr a ae ae re mee ee we at we wr nee ee et ew ee re ee ee en re ee ee a a ee 

oe oe ae ee oe oe 

  

Function Reuse Level Metrics() 

echo Reuse Metrics for high level component = function 
echo 

cflow ${CFILE[*]} > $TMPDIR/cflow.file 
grep "\(\)" $TMPDIR/cflow.file | awk '{print $2}' > $TMPDIR/intern_d 

efs 
let ftns=0 

for fname in ~sed "s/://" $TMPDIR/intern defs 
do ~ 

# this cscope call lists internal AND external functions called by 
# $fname; need to differentiate to generate irl and erl 

cscope -L -2 $fname ${CFILE[*]} | awk '{print $2}' > $TMPDIR/inter 
n_callbys 

# sort and count functions called 
sort $TMPDIR/intern callbys | unig -c > $TMPDIR/intern counts 
func_uses= wc -l §$TMPDIR/intern counts | awk '{print $1}! 

# count number of functions called > ITL times 
awk '{if ($1 > K) print $0}' K=$ITL $TMPDIR/intern counts > $TMPDI 

R/reused_ nodes . ~ . 
func reuses= wc -l $TMPDIR/reused nodes | awk '{print $1}' 

# output results 

echo REUSE METRICS FOR $fname 

echo Functions Reused: $func reuses 
echo Total Functions Used: $func_uses 
echo 
echo $func_reuses $func_uses | awk '{printf("Reuse Level: %f\n",$1 

/$2)}' 
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  # ---~-------—---~—-—---~-—-—- + - - - + + -+-— -_ 

ee ee ee ee ee 

  

# Complexity Weighting ~- valid only for high level component = SYSTEM o 
r FILE 
# low level component = FUNCTION 
# Generates: 

  

# T NCSL = total noncommentary source lines in given high lev 
component 
# T NCSL REUSED = # noncommentary source lines in internal reused fun 
ctions 

# ---~-----—--------~+-------+-----~+------+-~-~+------- +--+ + +--+ +--+ + 

Complexity Weighting() 

{ 
fnames=$* 

# count NCSL in all C files 
if [[ -n $MY_FDELIM ]] 
then 

$¢CCNT DIR/ccount $fnames -d $MY FDELIM -t > $TMPDIR/ccount.out 
else ~ ~ 

$CCNT DIR/ccount $fnames -t > $TMPDIR/ccount.out 
fi 

if [[ -f£ $TMPDIR/tcnts }] 
then 

rm $TMPDIR/tcnts 
fi 
grep "total" $TMPDIR/ccount.out_| awk '{print $3}' >> $TMPDIR/tcnts 
for tcnt in cat $TMPDIR/tcnts 
do 

T NCSL= echo $tcnt $T_NCSL "+p" | dc- 
done 

# intern ncsl is a_list of reused functions 
for function in awk '{if ($1 > K) print $2}' K=$ITL $TMPDIR/intern c 

ounts | sed "s/://" ~ 
do 

grep $function $TMPDIR/ccount.out | awk '{print $3 " " $1}! 
done > $TMPDIR/intern_ncsl 

# sum the NCSL in all reused functions 
T NCSL_REUSED=0 

for fncsl in awk '{print $1}' $TMPDIR/intern_ncsl 
do 

T NCSL REUSED= echo $fncsl $T NCSL REUSED "+p" | dc- 
done _ ~ ~ 

  

er re a re a ee ee re ee a a a ee are te tt en en a ee ee eee i ee re ee i ee ae a ee ee ee ae es ee 
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Output Report () { _ 

echo 
echo " Reuse Level" 
echo ~----~-- 3 rr 
eit $intern reuses | awk '{ printf("Internal Functions Reused: %d\n" 

, $1) }! 
echo $extern_reuses | awk '{ printf("External Functions Reused: %d\n" 

, $1) }! 
echo $total uses | awk '{ printf("Total Functions Used: td\n", $1) 

}' 

echo 
echo $intern_reuses $total_ uses | awk '{printf("Internal Reuse Level: 

sf\n", $1/$2)}' 
echo $extern_reuses $total_ uses | awk '{printf("External Reuse Level: 

%f\n", $1/$2)}' 
echo $intern reuses $total uses $extern_reuses | awk '{printf("Total 

Reuse Level: %f\n", ($1/$2)+($3/$2))}' 
echo 
echo " Reuse Frequency" 
CChO --- rrr rrr rr 
echo $intern_refs | awk '{ printf("References to Internal Functions: 

d\n", $1) }!' 
echo ect refs | awk '{ printf("References to External Functions: 

d\n", $1) }' ~ 
echo $total refs | awk '{ printf("Total Number of References: %d\n", 

$1) }' 
echo 
echo $intern refs $total_ refs | awk '{printf("Internal Reuse Frequenc 

y: %f\n", $1/$2)}' 
echo $extern refs $total_ refs | awk '{printf("External Reuse Frequenc 

y: sf\n", $1/$2)}!' 
echo gintern refs $total refs $extern refs | awk '{printf("Total Reus 

e Frequency: %f\n", ($1/$2)+($3/$2))}' ~— 
echo 
echo "Lines of Code Reuse Level" 
echo ~---3--- 7 
echo "NCSL (Non-Commentary Source Lines): " $T LINES 
echo "Reused NCSL: " $T LINES REUSED ~ 
echo $T_LINES REUSED $T_ LINES | awk '{ printf("Reuse level for NCSL: 

tf\n", $17$2)}'~ 
echo 
if (({ -z $NO_FDELIM }] 
then 

echo " Complexity Weighting" 
CChO mr rrr rrr 
echo $T NCSL | awk '{ printf("Total Non-Commentary Source Lines of 

code: d\n", $1) }' 
echo $T NCSL REUSED | awk '{ printf("Total Non-Commentary Source Li 

nes of reused code: d\n", $1) }' 
echo $T NCSL REUSED $T NCSL | awk '{printf("Complexity Weighting ba 

sed on size: %f\n", $1/$2)}' 
fi 

# Output Stats - write stats to files in stats directory, brief output 
to stdout 
# this routine is for testing purposes only 
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Output Stats() 

echo $intern_reuses $total_ uses | awk '{printf("%f\n", 
LO/stats/irl 

echo $intern reuses $total uses | awk '{printf("irl=%sf\n", $1/$2)}' 
echo $extern_reuses $total_uses 

LO/stats/erl 
echo $extern reuses $total uses t awk '{printf("erl=%sf\n", $1/$2)}' 
echo $intern reuses $total uses 

($1/$2)+($3/$2))}' >> $HLO/stats/trl 
echo $intern reuses $total_uses $extern_reuses | awk '{printf("trl=%f 

\n", ($1/$2)+($3/$2) )}" 
echo $intern refs $total refs | awk '{printf("%f\n", $1/$2)}' >> $HLOQ 

/stats/irf ~ ~ 
echo $intern refs $total refs | awk '{printf("irf=sf\n", $1/$2)}' 
echo $extern refs $total refs 

/stats/erf 
echo $extern refs $total refs { awk '{printf("erf=tf\n", $1/$2)}' 
echo $intern refs $total refs 

$2)+($3/$2))}' >> $HLQ/stats/trf 
echo $intern refs $total_refs $extern_refs | awk '{printf("trf=sf\n", 

($1/$2)+($3/$2))}' 
echo $T LINES REUSED $T_LINES | awk ‘{printf("%f\n", $1/$2)}' >> $HLO 

/stats/irl 
echo $T LINES REUSED $T LINES | awk '{printf("lrl=sf\n", $1/$2)}' 
echo $T NCSL awk '{printf("sda\n", $1) }' >> $HLO/stats/size 

awk '{printf("size=td\n", $1) echo $T NCSL 
echo $infile >> $HLO/stats/fname 
echo fname= $infile 
echo $ITL >> $HLO/stats/itl 
echo itl= $ITL 
echo $ETL >> $HLQO/stats/etl 
echo etl= $ETL 
echo $ABSTRACTION >> $HLO/stats/abstr 
echo abstraction= $ABSTRACTION 
if [[ -z $MULTICALL }] 
then 

echo singlecall >> $HLO/stats/callgraph 
else 
ein? multicall >> $HLO/stats/callgraph 

i 

extern reuses 

    

$1/$2)}' >> $H 

awk '{printf("sf\n", $1/$2)}' >> $H 

| awk '{printf("sf\n", 

awk '{printf("sf\n", $1/$2)}' >> $HLO 

extern refs | awk '{printf£("sf\n", ($1/ 

me rm me a er ee ee ee me er ee a ee a ee we i ne ee ee ee ee re ee ee ee ae a eae ee 

a me mm me cmt a ee me me ae mr me ce tt ee me me ere cee me are re rm me ee ar ee re ee er arr ae ee nr me ee ee ree a i ee ee re ee ee ee ee ee ee ee 

A ee ae wn te em eee me ne em mam se me a rn me me i ee me me ee mre cm ee rm we em re a en ee ee ee ee oe ee 

Cleanup() { 

# 

# 

Redirect standard out and standard error 
exec 2>/dev/null 
Remove temp files 
rm $TMPDIR/ccount.out > /dev/null 
rm $TMPDIR/cflow.file > /dev/null 
rm $TMPDIR/extern calls > /dev/null 
rm $TMPDIR/extern defs > /dev/null 
rm $TMPDIR/extern counts > /dev/null 
rm $TMPDIR/extern refs counts > /dev/null 
rm $TMPDIR/reused exnodes > /dev/null 
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sol 

rm $TMPDIR/intern calls > /dev/null 
rm $TMPDIR/intern counts > /dev/null 
rm $TMPDIR/intern defs > /dev/null 
rm $TMPDIR/intern ncesl > /dev/null 
rm $TMPDIR/intern refs counts > /dev/null 
rm $TMPDIR/intern lines > /dev/null 
rm $TMPDIR/all lines > /dev/null 
exec 2>2 

  

    

mee mr me ce me ee cme ee eer ee me me ee me me me re cere me arm ee me me ce ee me me ct me a mm ee me ee ee ee ee me ee cee cee ar cee ee ce tee ce ee ae ee ee ee ee ee ee ie wee ee ee ee ee 

Calculate Metrics() { — 

infile=$*; 
cflow $infile > $TMPDIR/cflow. file 

echo =====s===2=>===s==S=2=2===>==>SSS=>=S>=== 

if [{ $ABSTRACTION = system }] 
then 

echo REUSE METRICS FOR SYSTEM 
else 
echo REUSE METRICS FOR $infile 

  

Reuse Level Metrics 
Reuse _ _Frequency | Metrics 
total” uses= echo $intern_ uses $extern uses "+p" | dc . 
total refs= echo $total intern refs $total _ extern_refs "+p" | de 
Reuse Lines Metrics $infile ~ 
if ({ ~z $NO_FDELIM j] 
then 

Complexity Weighting $infile 
fi ~ 

### uncomment for testing 
### Output Stats 

Output Report 
### Cleanup 

a ne en a em ee i ee i re re ee me ts we ee te we ee re re ee re ee ee ne ee re ee a ee a ae a ee ee 

Parmedit $* 
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#set -x 

echo Internal Threshold Level = $ITL 
echo External Threshold Level = $ETL 
if ([{ -z $ABSTRACTION }] 
then 

ABSTRACTION=system 
fi 

if [[ $ABSTRACTION = system ]] 
then 

Calculate Metrics ${CFILE[*]} 
elif [{ $ABSTRACTION = file ]}] 
then 

for inputfile in ${CFILE[*]} 
do 

Calculate Metrics $inputfile 
done ~ 

else 
Function Reuse Level Metrics 

fi - ~ ~ 

exit 0 
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NAME 
rl- reuse measurement tool for C. 

SYNOPSIS 
rl [-itl internal threshold level] [-etl external threshold 1 

evel] ~ ~ ~ ~~ 
{[-main] [-multicall] [-high system|]file|]function] [-sysf 

filename] 
[-d delimiter] <C source files> 

DESCRIPTION 
rl calculates reuse metrics for C source code. It produces a 
report in the following format: 

Reuse Level 

Internal Functions Reused: <count> 
External Functions Reused: <count> 
Total Functions Used: <count> 

Internal Reuse Level: <fraction> 
External Reuse Level: <fraction> 

Total Reuse Level: <fraction> 

Reuse Frequency 

Internal References to Reused Functions: <count> 

External References to Reused Functions: <count> 

Total Number of References: <count> 

Internal Reuse Frequency: <fraction> 
External Reuse Frequency: <fraction> 
Total Reuse Frequency: <fraction> _ 

Lines of Code Reuse Level 

NCSL (Non-Commentary Source Lines): <count> 
Reused NCSL: <count> 
Reuse Level for NCSL: <count> 

Complexity Weighting 

Total Non-Commentary Source Lines of code: <count> 
Total Non-Commentary Source Lines of reused code: <count> 
Complexity Weighting based on size: <fraction> 

Reuse Level. 
The reuse level metric is a calculation of the amount of C 
source code that is used more than a given number of times 
in the given source files. 
Internal Functions Reused is a count of the functions 
defined in the C source files argument and called from at 
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least internal threshold level number of functions (or 
recursive functions). 
External Functions Reused is a count of the functions not 
defined in the C source files but called at least 
external threshold level number of times. 
Total Functions Used is a count of all functions either 
defined or called in the C source files. The Internal Reuse 
Level is the number of internal functions reused divided by 
the total number of functions used. 
External Reuse Level is the number of external functions 
reused divided by the total number of functions used. 
Total Reuse Level is the sum of the internal and external 
reuse levels. Note that in a system where every function is 
reused, the total reuse level is l. 

Reuse Frequency. 
The reuse frequency metric is based on the number of calls 
to functions that are called more than a given number of 
times in the given source files. 
Internal References to Reused Functions is a count of calls 
to functions defined in the C source files and called from 
at least internal threshold level number of functions (or 
recursive functions). 
External References to Reused Functions is a count of calls 
to functions not defined in the source files but called at 
least external threshold level number of times. 
Total Number of References is a count of all calls to all 
functions in the files. 
Internal Reuse Frequency is the number of internal 
references divided by the total number of references. 
External Reuse Frequency is the number of external 
references divided by the total number of references. 
Total Reuse Frequency is the sum of the internal and 
external reuse frequencies. 

Lines of Code Reuse Level. 
The lines of code reuse level is the number of non- 
commentary source lines (NCSL) in the reused internal 
components divided by the total number of NCSL in the system 
or file. 

Complexity Weighting. 
The complexity weighting is computed as the sum of the sizes 
of each function which is reused divided by the sum of the 
sizes of all C functions. Size is determined by countin 
Non-Commentary Source Lines (NCSL) of code. The complexity 
weighting is dependent upon the ccount tool which requires a 
function delimiter. See the discussion of the -d flag. 

OPTIONS 

-itl <internal threshold level> 
The internal threshold level is the maximum number of 
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~etl 

RL(1) 

uses of a component which is defined in the C source 
files that precede “reuse". The default value is l. 

<external threshold level> 
The external threshold level is the maximum number of 
uses of a component which is defined outside the source 
listings that precede "reuse". The default value is 1. 

—-main 
Indicates that main(}) will be included in the count of 
internal functions. By default, main() is not counted. 

~multicall 

Specifies that a multicall abstraction will be used 
when counting reused functions. With this flag, a 
function can be reused within a single component. This 
option requires the cscope tool, available only on AT&T 
Unix V.4. 

-high system|file|function 
Indicates a high level abstraction of system, file or 
function. The default value is system, in which case 
the reuse metrics are computed for the system as a 
whole. If the high level abstraction is file then the 
metrics are calculated separately for each C source 
file. If the high level abstraction is function then 
the metrics are calculated for each function defined in 
the source file(s). Internal reuse level is currently 
the only metric available for a high level abstraction 
of function. 

~sysf <filename> 
Specifies that all functions listed in the file 
<filename> should NOT be included in the reuse counts. 
This feature is intended as a mechanism to prevent 
inclusion of low-level C system calls such as printf() 
in the reuse measurements. 

-d <delim> 
<delim> is the delimiter which precedes each function 
definition in each C file. This value is necessary to 
compute the complexity weighting. If this parameter is 
not given the environment variable FDELIM will be used. 
If neither are set then the complexity weighting will 
be zero. <C source files> The only required argument to 
rl is one or more names of C source files. The source 
code should be error free and compilable. 

SUGGESTION 
It is convenient to run rl from your makefile using your 
source list as input. 
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SEE ALSO 
W. Frakes, "An Empirical Program for Software Reuse" 

3rd Workshop on Tools and Methods for Reuse 
Syracuse, NY 1990 

C. Terry, "Analysis and Implementation of Software Reuse 
Measurement" 

Master's Project and Report, Virginia Tech, NoVa 
Falls Church, VA 1993 

cflow 
ccount 
cscope 

AUTHORS 
Carol Terry cterry@goliat.cs.vt.edu 
Bill Frakes frakes@sarvis.cs.vt.edu 
Chris Fox 

Page 4 (printed 10/12/93) 

111



Appendix D: C Test Suite 

112



/* 

t2.c 

No reused functions, internal or external. 

*/ 

#include <stdio.h> 

fl(int n) 

static int st=0; 

st += n; 

} 

main({ ) 

int i; 

i= 1; 
f1(i); 
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/* 

t3.c 
1 reused internal func, 2 references to it. No reused external funcs 

‘/ 
#include <stdio.h> 

fi(int n) 

{ static int st=0; 

st += n; 
if (st < 5) 

fl(n); 

main() 

int i; 

i=1; 
£1(i); 
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/* 

t4.c 
1 reused internal func and 1 reused external 
2 references to each. 

*/ 

#include <stdio.h> 

f2(int n2) 

{ 
static int st2=0; 
st2 += n2; 
printf("st2 = %d\n",st2); 

fl(int n) 
{ 

static int st=0; 

st += n; 
printf("st = td\n",st); 
if (st < 5) 

f1(n); 
else 

f2(n); 

main() 

int i; 

i= 1; 
fF1(i); 
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/* 

t5.c 

2 reused internal with 4 refs, 

*/ 

#include <stdio.h> 
#include <string.h> 

£3(int n3) 

static int st3=0; 
char txt[10]; 

strepy(txt,"In £3\n"); 
printf("The length of txt is %d and contents is:\n 

xt); 
st3 += n3; 
printf("st3 = sd\n",st3); 

£2(int n2) 

static int st2=0; 
st2 += n2; 
printf("st2 = ¢d\n",st2); 
£3(n2); 

fl(int n) 

{ 
static int st=0; 

st += n; 

printf("st = sd\n",st); 
if (st < 5) 

fi(n); 
else 

f2(n); 

main () 

int i; 

i=1; 
f1(i); 
printf("after calling f1 in main\n"); 
£3(i); 
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/* 

t6.c 
f2 qualifies for internal reuse only with a multicall graph abstract 

*on 

x / 

#include <stdio.h> 
#include <string.h> 

f3(int n3) 

static int st3=0; 
char txt[10]; 

strepy(txt,"In £3\n"); 
printf("The length of txt is td and contents is:\n 

xt); 

st3 += n3; 
printf("st3 = sd\n",st3); 

f2(int n2) 

static int st2=0; 
st2 += n2; 
printf("st2 = td\n",st2); 
£3(n2); 

fi(int n) 

static int st=0; 

st += n; 
printf("st = td\n",st); 
f£2(n); 
f2(n); 
if (st <5) 

fl(n); 
else 

f2(n); 
} 

main() 

int i; 

i= 1; 
£1(i); 
printf("after calling f1 in main\n"); 
£3(i); 
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/* 

t7.c 

Has lots of calls to internal function fmany() - test ITL > 1 
External functions - 5 calls to printf, 2 to strcpy - test ETL > O 

*/ 

#include <stdio.h> 
#include <string.h> 

fmany ( ) 

printf("inside fmany again\n"); 

£3(int n3) 

static int st3=0; 
char txt[10]; 

fmany(); 
strepy(txt,"In £3\n"); 
printf("The length of txt is %d and contents is:\n 

xt); 
st3 += n3; 
printf("st3 = td\n",st3); 

f2(int n2) 

static int st2=0; 

fmany(); 
st2 += n2; 
printf("st2 = ¢d\n",st2); 
£3(n2); 

} 

fi(int n) 

Static int st=0; 

fmany(); 
st += n; 
printf("st = td\n",st); 
if (st < 5) 

fi(n); 
else 

f2(n); 

main() 

int i; 
char txt[10]; 

i=l; 
fmany(); 
f1(i); 
printf ("after calling f1 in main\n"); 

(i); 
strepy(txt,"etl=1"); 
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/* 

t8.c 
includes the "/*%" function delimiter for computing the complexity w 

eighting 

*/ 

#include <stdio.h> 
#include <string.h> 

/*% new function */ 
fmany ( ) 

printf("inside fmany again\n"); 

/*% new function */ 
f3(int n3) 

static int st3=0; 
char txt[10]; 

fmany (); 
strepy(txt,"In £3\n"); 
printf("The length of txt is td and contents is:\n %s",strlen(txt),t 

xt); 
st3 += n3; 
printf("st3 = %d\n",st3); 

/*% new function */ 
f2(int n2) 

static int st2=0; 

fmany(); 
st2 += n2; 
printf("st2 = sd\n",st2); 
£3(n2); 

} 

/*% new function */ 
fl(int n) 
{ 

static int st=0; 

fmany (); 
st += n; 
printf("st = td\n",st); 
if (st < 5) 

f1(n); 
else 

£2(n); 

/*% new function */ 
main() 

int i; 
char txt[(10]; 

i= 1; 

fmany(); 
f1(i); 
printf("after calling fl in main\n"); 
£3(i); 
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