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A B S T R A C T

The goal of this study was to evaluate whether harmonic regression coefficients derived using all available cloud-
free observations in a given Landsat pixel for a three-year period can be used to estimate tree canopy cover
(TCC), and whether models developed using harmonic regression coefficients as predictor variables are better
than models developed using median composite predictor variables, the previous operational standard for the
National Land Cover Database (NLCD). The two study areas in the conterminous USA were as follows: West
(Oregon), bounded by Landsat Worldwide Reference System 2 (WRS-2) paths/rows 43/30, 44/30, and 45/30;
and South (Georgia/South Carolina), bounded by WRS-2 paths/rows 16/37, 17/37, and 18/37. Plot-specific tree
canopy cover (the response variable) was collected by experienced interpreters using a dot grid overlaid on 1m
spatial resolution National Agricultural Imagery Program (NAIP) images at two different times per region, circa
2010 and circa 2014. Random forest model comparisons (using 500 independent model runs for each com-
parison) revealed the following (1) harmonic regression coefficients (one harmonic) are better predictors for
every time/region of TCC than median composite focal means and standard deviations (across times/regions,
mean increase in pseudo R2 of 6.7% and mean decrease in RMSE of 1.7% TCC) and (2) harmonic regression
coefficients (one harmonic, from NDVI, SWIR1, and SWIR2), when added to the full suite of median composite
and terrain variables used for the NLCD 2011 product, improve the quality of TCC models for every time/region
(mean increase in pseudo R2 of 3.6% and mean decrease in RMSE of 1.0% TCC). The harmonic regression NDVI
constant was always one of the top four most important predictors across times/regions, and is more correlated
with TCC than the NDVI median composite focal mean. Eigen analysis revealed that there is little to no addi-
tional information in the full suite of predictor variables (47 bands) when compared to the harmonic regression
coefficients alone (using NDVI, SWIR1, and SWIR2; 9 bands), a finding echoed by both model fit statistics and
the resulting maps. We conclude that harmonic regression coefficients derived from Landsat (or, by extension,
other comparable earth resource satellite data) can be used to map TCC, either alone or in combination with
other TCC-related variables.

1. Introduction

Tree canopy cover (TCC) is the proportion of the forest floor covered
by the vertical projection of tree crowns (Jennings, 1999). TCC is an
essential measure of forest health and productivity and is used in ap-
plications like climate change mitigation, forest management, and pest

and disease monitoring. TCC influences wildlife habitat (North et al.,
2017), forb yield (Muoghalu and Isichei, 1991), proportion of C3 vs. C4
grasses (Peterson et al., 2007), urban property values (Pandit et al.,
2014), and rainfall partitioning (Owens et al., 2006), among others.
At the national scale, TCC is commonly studied annually. Numerous

authors have shown the benefits of describing multitemporal
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reflectance data using phenology metrics to estimate TCC, as opposed
to selecting one or only a few images throughout the growing season.
DeFries et al. (1995) proposed the use of NDVI temporal dynamics to
estimate (vegetation) continuous fields of canopy cover. Hansen and
DeFries (2004) produced annual global TCC estimates at 8 km spatial
resolution using per-pixel phenological metrics derived from Advanced
Very High Resolution (AVHRR) monthly composites. Training data
were developed using much higher spatial resolution imagery. Phe-
nology metrics utilized were selected monthly composite values cou-
pled with key descriptive statistics for the red, near infrared (NIR),
normalized difference vegetation index, and brightness temperature
bands.
Phenology metrics have been used as predictor variables in other,

more recent, studies in which satellite imagery was used to map tree
canopy cover (Table 1). Gessner et al. (2013) mapped the fraction of
woody canopy cover in southern Africa using phenology metrics
(Table 1) derived from Fourier-smoothed (via harmonic regression,
Fig. 1) annual time series of MODIS imagery with blue, red, SWIR
(2.13 μm), NDVI, and enhanced vegetation index (EVI) bands. Their
resulting random forest models had an RMSE of 8.1% cover in the
Kalahari and 3.1% cover in central and eastern Namibia. The three most
important variables were the SWIR3 minimum in the dry season, the
annual NDVI mean, and the rainy season NDVI mean. Karlson et al.
(2015) mapped tree canopy cover at a 30m pixel resolution in Burkina
Faso using Landsat Operational Land Imager (OLI)-derived spectral,
texture, and phenology variables. All three variable types (including
one phenology metric) were necessary in the resulting random forests
model that required only five variables (R2= 77%, RMSE=8.9%
cover) derived using backwards feature elimination to find the smallest
possible model. Brandt et al. (2016) compared phenology metrics de-
rived using TIMESAT (Jönsson and Eklundh, 2004) smoothed data from
the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sa-
tellite pour l’Observation de la Terre (SPOT) VEGETATION (VGT) for
their utility in mapping percent woody cover at a 1 km scale across the
Sahel. The most important phenology metrics, regardless of sensor,

were the dry season integral and the starting point of the growing
season, defined as 20% of the amplitude. The resulting multiple linear
regression models had good predictive ability (R2, MODIS=73% and
R2, VGT=70%) and excellent RMSEs (MODIS, 3.0% cover and VGT,
3.2% cover), especially given the challenging nature of the arid land-
scape.
Ruefenacht (2016) mapped tree canopy cover using 3×3 pixel

window focal means of the growing season median composite value for
each of the six multispectral bands from the Landsat Thematic Mapper
(TM), plus derived indices NDVI, tasseled cap brightness, greenness,
and wetness, and the normalized difference moisture index (NDMI).
The growing season was defined as the period in which NDVI was
within 0.1 of the growing season maximum. Tree canopy cover was
mapped in Multi-Resolution Land Characteristics Consortium Mapping
Zones 16, 23, 48, 54, and 59. Model quality varied across zones, with
R2s ranging from 50% to 86% and RMSEs ranging from 12.8% cover to
15.3% cover. Median composites were used operationally to map tree
canopy cover as an element of the National Land Cover Database
(NLCD) 2011 suite of nationwide geospatial data layers (Ruefenacht
et al., 2015).
De Beurs and Henebry (2010) categorized methods by which land

surface phenology can be characterized as follows: (1) thresholds, (2)
derivatives, (3) smoothing functions, and (4) fitted models. Given that
standardized markers of start and end of season are first order objec-
tives of these techniques, thresholds and derivatives are less well suited
to develop predictor variables not related to growing season timing or
length. De Beurs and Henebry (2010) further note that complicated
fitted models such as Gaussian local functions result in parameter
coefficients with no clear ecological meaning. As such, simpler
smoothing functions such as the autoregressive moving average or
Fourier analysis can result in parsimonious models with physically
meaningful coefficients with only slight loss to model fit. Given (among
other issues) the subjective, heuristic nature of selecting a suitable lag
time for autoregressive moving average models of land surface phe-
nology, they play an increasingly less prominent role.

Table 1
Phenology metrics used to map tree canopy cover using satellite data. Only the sensors and bands shown to be important in the resulting tree canopy cover models are
listed. Abbreviations: AVHRR, Advanced Very High Resolution Radiometer; MODIS, MOderate-resolution Imaging Spectrometer; OLI, Operational Land Imager,
SPOT VGT, Satellite Pour l’Observation de la Terre VEGETATION; TM, Thematic Mapper; NIR, near infrared; SWIR, shortwave infrared; NDVI, normalized difference
vegetation index; NDMI, normalized difference moisture index; EVI, enhanced vegetation index; FAPAR, fraction of absorbed photosynthetically active radiation; TC
B,G,W, tasseled cap brightness, greenness, and wetness; std, standard deviation; SOS, start of season; DSINT, dry season integral (annual integral minus the integral
from start of season to end of season); RDERIV, right derivative (rate of decrease after growing season maximum).

Study Sensors(s) Bands/Indices Curve Fitting Phenology Metrics

Hansen and DeFries (2004) AVHRR (monthly composite ordinal by calendar year) red
NIR
NDVI
BT

No 2nd
6th
mean (2nd:6th)
mean (2nd:4th)
|6th–2nd|

Gessner et al. (2013) MODIS blue
red
SWIR (2.13 μm)
NDVI
EVI

Fourier minimum*
maximum
mean*
median
amplitude

Karlson et al. (2015) Landsat OLI NDVI No minimum
maximum
mean
median
product*
std

Brandt et al. (2016) MODIS
SPOT VGT

FAPAR TIMESAT DSINT*
SOS*
RDERIV

Ruefenacht (2016) Landsat TM all optical
NDVI
NDMI
TC B,G,W

No median
composite*

*Denotes a particularly important variable.

J.M. Derwin, et al. Int J Appl  Earth Obs Geoinformation 86 (2020) 101985

2



Fourier (harmonic) analysis of annual spectral band reflectances or,
more commonly, vegetation indices derived therefrom, has long been
used to characterize land surface phenology (Moody and Johnson,
2001). Fourier analysis is sensitive to systematic signal changes but
relatively insensitive to (nonsystematic) noise (Moody and Johnson,
2001; De Beurs and Henebry, 2010). Brooks et al. (2012) define Fourier
series as “superimposed sequences, over an interval of time, of a con-
stant with sines and cosines of increasing integer multiples of the ori-
ginal frequency based on the time interval” (see Eq. (1) and Fig. 1). The
constant is the mean of the series, and the sine and cosine pairings at
specified frequencies are called the harmonics of the series (Brooks
et al., 2012) (Eq. (1)).

= + + + +

+ + +

f t a a t b t a t b t

a t b t

( ) ( cos sin ) ( cos 2 sin 2 )

( cos 3 sin 3 )

0 1 1

first harmonic

2 2

second harmonic

3 3

third harmonic (1)

where t is the “time from some initial epoch” (Shureman, 1940), a0 is
the constant, and for each harmonic n, the coefficients an and bn are the
amplitudes of the cosine and sine waves, respectively (Smith, 1997).
Using harmonic regression on Landsat time-series data to produce a
simplified curve overcomes both noise and gaps caused by clouds,
snow, or instrument problems, which is a major advantage to the ap-
proach (Brooks et al., 2012; Wilson et al., 2018).
For land surface phenology applications, the period is one year,

defined in the same units as t. The first harmonic is also known as the
fundamental frequency, and is the frequency that the time domain re-
peats itself (Smith, 1997). As Moody and Johnson (2001) noted, for
vegetation indices the first harmonic is particularly associated with the
overall productivity of the region, with the constant (a0) the mean.
Regional and continental applications, particularly across biomes, often
use only the first harmonic even though the second (and subsequent)
harmonics can improve fit. This is due to the second harmonic being
variable across years and ecosystems due to its sensitivity to secondary
vegetation and climate anomalies (Moody and Johnson, 2001). Fig. 1

demonstrates harmonic regression of surface reflectance observations
and compares it to the median composite method, previously described.
Advantages of harmonic regression include (1) the orthogonality of

the sine and cosine functions (Weisstein, 2010) and (2) the ability to
store the coefficients as rasters (Brooks et al., 2012) (Fig. 2), and (3) the
proven utility of the coefficients themselves in a wide variety of map-
ping applications, both for categorical (Brooks et al., 2016; Wilson
et al., 2018) and continuous (Immerzeel et al., 2005; Wilson et al.,
2018) variables. However, no prior study (Table 1) has used harmonic
regression coefficients derived from moderate resolution resource sa-
tellite imagery as predictor variables to estimate tree canopy cover.
The goal of this study was to evaluate whether harmonic regression

coefficients derived using all available cloud-free observations in a
given Landsat pixel for a three-year period (corresponding with the
timing of imagery used for training data collection) can be used to es-
timate tree canopy cover, and whether using harmonic regression
coefficients as predictor variables is an improvement over calculating
Landsat-derived predictor variables using the median composite, the
current operational standard for NLCD. We explored two research
questions in service of this goal, as follows: (1) Are harmonic regression
coefficients better predictors of TCC than median composite variables
for the same vegetation index and wavelength bands? (2) Can harmonic
regression coefficients, when added to a full suite of median composite
and terrain variables improve the quality of TCC models (simulating the
operational framework for the original 2011 NLCD TCC product vs. that
used for the 2016 NLCD TCC product)? In order to answer the first
question, we compared models using harmonic regression coefficients
for NDVI, SWIR1 and SWIR2, all good predictors of TCC (Table 1; Asner
and Lobell, 1996; Lobell et al., 2001) to the median composite values
for those same three bands. To answer the second question we com-
pared models using (a) the full suite of median composite and terrain
variables used in the original 2011 TCC product, and (b) all predictor
variables used in (a) plus the harmonic regression coefficients from
NDVI, SWIR1, and SWIR2.

Fig. 1. Median composite and harmonic re-
gression. This figure illustrates the median
composite method using NDVI data from
MODIS 250m 16-day composites from 2017
(MYD13Q1 collection 6, coordinates 37.4378°,
−80.2727°). Landsat median composite
images are calculated using the median re-
flectance value from up to 15 images from
three years preceding the target year. In this
example, the maximum MODIS NDVI value is
shown, circled, in violet. The Landsat median
composite selects observations within 0.1
GLOVIS maximum annual NDVI value (circled
in green or red for this example, using annual
maximum MODIS NDVI) are used to calculate
the median composite, circled in red. (Note
that for non-composited Landsat data the ear-
liest and latest value within 0.1 NDVI of the
maximum serve to define the range of data
used, and the pixel-specific effects of cloud
cover result in a median being computed with
different numbers of values from pixel to
pixel.) The figure also demonstrates the har-
monic regression method with MODIS NDVI
data. Harmonic regression of surface re-
flectance observations uses all available ob-
servations (black dots) and fits a harmonic
curve (blue line) following Eq. (1). Both
methods exclude observations identified as
cloud cover. (For interpretation of the refer-
ences to color in this figure legend, the reader
is referred to the web version of this article.)
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2. Data and methods

2.1. Study area

There were two study areas (Fig. 3). The first was in Oregon (USA),
bounded by Landsat Worldwide Reference System 2 (WRS-2) paths/
rows 43/30, 44/30, and 45/30, and the second was in Georgia and
South Carolina (USA) in WRS-2 paths/rows 16/37, 17/37, and 18/37.
There are a variety of land cover types represented across the study
areas, though the western study area has large tracts with reduced TCC,
such as shrublands or pasture. The southern study area has a more di-
verse, dynamic landscape, characterized by managed forests, inter-
spersed with suburban development.

2.2. Training (response) data

Training data were collected using a photo interpretation (PI) ap-
proach that superimposes an evenly spaced 90m×90m dot grid, ap-
proximately the area covered by an FIA field plot, over 1m resolution
NAIP images for a sample of photo interpretation points. These data
were collected by experienced interpreters as part of a joint effort be-
tween the United States Forest Service's (USFS) Forest Inventory and
Analysis (FIA) program and the USFS's Geospatial Technology and
Applications Center (GTAC) (Toney et al., 2009; Goeking et al., 2012).
NAIP images are acquired after green up, when leaves are on trees, so
the PI process assumed those conditions. Image acquisitions occurred

during summer months of 2009 and 2010 for Oregon and Georgia re-
spectively, and spring of 2011 for South Carolina for Time 1. For Time
2, acquisition occurred during the summer months of 2012 and 2013
for Oregon and Georgia respectively, and during the fall of 2013 for
South Carolina (Table 2).
At every photo interpretation point, trained interpreters indicated

whether or not each of 105 dots fell on tree canopy, and plot-level
percent TCC was calculated by dividing the number of canopy ob-
servations by the total number of dots observed. 2626 interpreted
points were used, 1360 in the southern study area and 1266 in the
western study area (Table 3).

2.3. Training (response) data characteristics

For the south, both time periods have relatively consistent bimodal
distributions (Fig. 4, upper half and Fig. 5, left) of observed TCC that
are left-skewed. For time 1, the mean is 66.8% and the median is
86.2%. For time 2 the mean is 65.8% and the median is 83.5%. In the
west, both time periods also have relatively consistent distributions, but
they are not bimodal (Fig. 4, lower half and Fig. 5, right). They are
skewed to the right rather than to the left. For time 1, the median is
0.9% and the mean is 18.2%. For time 2 the mean is 18.6% and median
is 0%. All sets of observations (both regions/dates) have a minimum of
0% and a maximum of 100%.

Fig. 2. Harmonic regression coefficients (one
harmonic) for the Landsat 8 OLI panchromatic
band (15m spatial resolution) using all cloud-
free observations for each pixel from
2014–2016. a0 shown in red, a1 shown in
green, and b1 shown in blue. Image boundary
coordinates (x:y pairs, Conus Albers,
EPSG:5070) upper left 1,485,996m,
1,634,473m; lower right 1,505,392m,
1,613,539m. Note the quality of land cover
and land use discrimination that is possible
even using harmonic regression coefficients
from only one wavelength band. (For inter-
pretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)
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2.4. Development of predictor variables

2.4.1. Predictor variables for median composite models
Following Ruefenacht (2016), we developed a suite of imagery

corresponding to Time 1 (2009 West, 2010–2011 South) and Time 2

(2012 West, 2013 South) of the response data by region. Landsat
median composite images are a composite of observations from up to 15
dates from the three years leading up to the target year (Fig. 1). These
observations were obtained during the annual periods when Global
Visualization Viewer (GLOVIS) NDVI curves for forest classes (forest,
evergreen forest, mixed forest, and woody wetlands) were within 10%
of their annual maximum. Only images with less than 70% cloud cover
were used, and clouds and cloud shadows were masked out of the re-
maining images using Fmask (Zhu and Woodcock, 2012). The median
composite predictor variables (Table 7) include the means and standard
deviations (calculated using a 90m×90m focal window; Ruefenacht,
2016) of NDVI, NDMI, reflectances of Landsat 7 bands 1–5 and 7, re-
flectances of bands 2–7 and 9 for Landsat 8, and tasseled cap bands 1–6.
In addition to median composite imagery, terrain data from a 30m
digital elevation model were derived. These included the means and
standard deviations of elevation, slope, aspect, sin(aspect), and cos
(aspect).

2.4.2. Harmonic regression coefficients from Landsat time series
Harmonic regression predictor variables (one harmonic, Table 7)

were derived from multitemporal stacks of all available Landsat 5 and 7
images, acquired from USGS, for 3-year periods (with some pixel-spe-
cific exceptions as noted below). For Time 1, the training period started
in 2008 for the western scenes and 2009 for the southern scenes. For
Time 2, the period was from 2012 to 2014. This amounted to 65 dates
per path/row at a minimum. To ensure a good harmonic curve fit, an R2

threshold of 0.9 was applied for the Time 1 data using the EWMACD
algorithm with the parameters listed in Table 4(Brooks et al., 2016;
EWMACD v.1.8.7, Brooks, 2019). If the curve fit was less than the

Fig. 3. Western(top) and Southern(bottom) study areas with 2011 National Land Cover Database classification.

Table 2
US National Agricultural Imagery Program (NAIP) image acquisition dates.
Note that NAIP aerial images are collected with three visible bands and one
near infrared band on clear days to ensure that images have less than 10 percent
cloud cover per quarter quad tile. National coverage has been obtained every 3
years since 2009 (USDA Farm Service Agency, 2018).

Year State Date Range

2009 Oregon June 1 to August 8
2012 June 10 to August 4
2010 Georgia July 3 to October 6
2013 June 28 to October 26
2011 South Carolina April 19 to May 26
2013 August 25 to October 30

Table 3
Number of photo interpretation (response data) samples per region and
time period.

Time 1 Time 2

South 1360 1360
West 1266 1266
Total 2626 2626
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threshold, the temporal window of training observations was expanded
to include more scenes from earlier dates, allowing time 1's training
period to potentially extend to 2012. Therefore, the total number of
input scenes (dates) varies by pixel, with the maximum number of
scenes for any pixel being 192. Pre-processing for these data included
the masking of clouds, cloud shadows, snow, and water from all images
using cfmask provided in the LEDAPS level-1 product.
We compiled these stacks for the short wave infrared bands (SWIR 1

and SWIR 2), and NDVI (Rouse et al., 1974). For each data type, all

acquisitions were stacked into multitemporal raster stacks, with each
pixel representing a vector of reflectance values chronologically or-
dered through time. To determine the harmonic regression coefficients
for the NDVI and SWIR data, a single harmonic curve (found to be
superior to a two harmonic curve in preliminary analyses) was fit to
each pixel in the multitemporal stack to derive the constant, sine, and
cosine coefficients that describe the temporal behavior for that pixel
(Brooks et al., 2012, Fig. 1, Eq. (1)).

Fig. 4. Histograms of photo interpreted TCC observations for T1 (time 1) and T2 (time 2) in the South and West.

Fig. 5. Scatter plots comparing Time 1 and Time 2 photo interpreted TCC observations for the South and West.
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2.5. Predictive modeling with random forests

Given that the predictor variables are derived from Landsat re-
flectances and indices, there is multicollinearity in the predictor vari-
ables (not shown). This is somewhat mitigated among the harmonic
regression coefficients, but there is still strong correlation between
coefficients with the same function (i.e., the cosines for SWIR 1 and
SWIR 2 are highly correlated, as are the sines). This multicollinearity
causes few, if any, deleterious effects on random forest regression
prediction.
To address the study objectives, four groups of variables (Table 7)

were incorporated into random forest models (Breiman, 2001) using R's
randomForest package (version 3.4.2; Liaw and Wiener, 2002), using
the parameters listed in Table 5. Additionally, R packages listed in
Table 6 were used for computing. The first two models included only
variables derived from the NDVI and SWIR bands, to allow for a direct
comparison between the median composite and harmonic regression
approaches. The second study objective was addressed by the third and
fourth models. The third model includes the same variables that were
used to develop the 2011 NLCD Tree Canopy Cover product (Coulston
et al., 2012; Ruefenacht, 2016). Finally, a hybrid of the median com-
posite and harmonic regression approaches is investigated. Separate
sets of models were trained to predict tree canopy cover for two time
periods in 2010 and 2013 (using predictor variables and response data

from appropriate date ranges) and the two study areas (South and
West), discussed above.

2.5.1. Iterative modeling framework
Each model was run in R (R Core Team, 2018) with an iterative

bootstrapping approach to include all available in-bag training data
while also using an out-of-bag sample for model evaluation. Values
from each of the input variables were extracted to plot locations and
saved to a master table. For in-bag training samples, plots were ran-
domly selected from this table with replacement, allowing for repeat
plots in each bootstrapped sample. In-bag training plots were then used
to estimate a random forest model based on the extracted values at each
sample location. This process was repeated up to 500 times generating
500 forests of 500 decision trees. The same in-bag and out-of-bag plots
were used for corresponding iterations of the four models that used
different groups of predictor variables (i.e., Full model, Median Com-
posite and Terrain, Harmonic Coefficient, and Median Composite
models).
The number of points in the in-bag ample was equal to the number

of extracted plots, and because of the sampling replacement, approxi-
mately 37% (Coulston et al., 2016) of each bootstrapped sample was
left out. These out-of-bag samples were not used in model fitting but
were used for model testing, comparing predicted and observed values
for each of the 500 models (using their associated out-of-bag samples),
and aggregating metrics across all models.

2.6. Model comparison

We compared models using several different measures. Variable
importance for the full suite of model variables was used to assess the
relative importance of included predictors, while mean correlation and
error for the 500 model runs was compared for the four model types.
Inherent dimensionality of predictor variables was used to determine
the relative amount of information available in each model type.
Models were mapped spatially in the southern study area to ensure that
output maps were visually consistent. Finally, prediction variance was
obtained by land cover type by calculating the mean variance of the
500 model predictions at each sample point and then obtaining the
mean of those variances by land cover class.

2.6.1. Variable importance and correlations
Model strength was compared on the basis of mean RMSE (Eq. (2))

and mean pseudo R2 (Eq. (3)) for the bootstrapped models, calculated
for each model using out-of-bag samples as follows:

= = x x
n

RMSE ( ˆ )i
n

i i1
2

(2)

= =

=
R x x

x x
Pseudo 1 ( ˆ )

( ¯)
i
n

i i

i
n

i

2 1
2

1
2 (3)

where xi is the ith observation from the out-of-bag population with n
total observations, x̂i is the ith prediction, and x̄ is the mean of the out-
of-bag observations.
Both metrics were calculated by comparing observed photo inter-

pretations to predicted values obtained for each random forest model
using the ‘predict’ function in R's randomForest package (version 3.4.2;
Liaw and Wiener, 2002).
High levels of correlation among predictor variables can reduce

those variables’ relative importance. Thus correlation matrices were
generated and assessed in order to better inform variable importance
analysis. Correlation matrices and variable importance measures were
aggregated for each of the model types to determine the relative con-
tribution of different groups of variables in the model. Once correlation
was considered, mean decrease in node impurity was obtained for all
variables in each combination of model type, time period, and region.
This metric was obtained using the R randomForest package (Liaw and

Table 4
Parameters used in the EWMACD algorithm.

EWMACD.v.1.8.5 parameters Inputs

trainingPeriod ‘static’
numberHarmonicsSine 1
numberHarmonicsCosine 1
xBarLimit1 1.5
xBarLimit2 20
lambda 0.3
lambdaSigs 3
rounding TRUE
persistence 10
reverseOrder FALSE
trainingFitMinimumQuality 0.9
parallelFramework ‘snow’
summaryMethod ‘mean’
outputType ‘coefficients only’
trainingPeriod ‘static’
lowthresh 0
minTrainingLength 15
maxTrainingLength 30

Table 5
Parameters used in the randomForest algorithm.

randomForest parameters Inputs

ntree 500
corr.bias True
replace True
mtry 4
nodesize 1

Table 6
Additional R libraries used in computing.

Additional libraries Usage

raster (Hijmans, 2018) Raster analysis
spatial.tools (Greenberg, 2018) Spatial data analysis
foreach (Microsoft Corporation and Weston,

2017b)
Advanced for-loops

doSNOW (Microsoft Corporation and Weston,
2017a)

Parallelization with foreach
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Wiener, 2002). Mean decrease in node impurity identifies the amount
that node variance (an indication of impurity) decreases at each split
and averages that decrease by predictor variable.
The ten variables whose removal would contribute to the largest

decrease in node impurity were ranked, with the largest decrease given
a point value of 10 (for most important), and the 10th largest decrease
given a 1. All other variables were given a ranking of 0. For each of the
four model classes, these rankings were added for all 500 model
iterations. Thus, a variable that was considered to be most important for
all 500 iterations would receive a value of 5000, while variables that
were not considered to be in the top ten most important for any
iterations, would be given a point value of 0. This method reflects a
similar rank score technique used in Schroeder et al. (2017). Due to the
presence of correlated variables in our suite of predictor variables, these
rank interpretations were evaluated primarily by comparing the re-
lative contribution of relevant groups of predictor variables instead of
the individual variables themselves.

2.6.2. Inherent dimensionality
The inherent dimensionality of each of the four predictor variable

sets was assessed using principal components analysis (PCA). PCA uti-
lizes a linear transformation which rotates the input images so that the
original axes are orthogonal to one another with decreasing variance
for each successive component (Eklundh and Singh, 1993). This
methodology is commonly used for many remote sensing applications,

including data reduction and feature extraction (Ren et al., 2014;
Eklundh and Singh, 1993). PCA assumes (1) a high signal-to-noise ratio,
and, (2) for some analytical applications, that input variables have a
Gaussian distribution. Landsat data, the only satellite imagery used in
this study, has a high signal-to-noise ratio (Barsi and Markham, 2013),
and use of PCA for descriptive, exploratory applications does not re-
quire strict adherence to distribution assumptions (Jolliffe et al., 2016).
In PCA, eigen values resulting from the transformation can be used

to determine the proportion of total variance explained in each re-
sulting component. Typically a large portion of the variance from the
original dataset can be found in the first principal component, with
decreasing contributions in each successive component. The final
components usually have relatively little variance. Therefore, using
only the sequential number of bands which collectively represent a
large proportion of the original data (usually 95–99%), data can be
reduced. Inherent dimensionality is defined in this study as the number
of principal components necessary to explain 99% of the cumulative
variance. This method is used by Schlamm et al. (2008), as well as
Lungu et al. (2017)). We utilize the inherent dimensionality to quantify
and compare the variance explained by different groups of predictor
variables as a proxy for the amount of unique information they provide.

2.6.3. Mapping TCC across the landscape
For each of the four model ensembles (per date/region), maps were

made using the model whose pseudo R2 was the closest to the mean

Fig. 6. Comparison of models using harmonic regression coefficients for NDVI, SWIR1 and SWIR2 to the median composite values for those same three bands.

J.M. Derwin, et al. Int J Appl  Earth Obs Geoinformation 86 (2020) 101985

8



pseudo R2 from 500 iterations. We did not use the model with the
highest pseudo R2 to avoid selecting an over-fit model. This model was
applied on a pixel-by-pixel basis using a stack of all model inputs. We
then conducted both qualitative visual inspections and quantitative
assessments. Simple image differencing was used to highlight spatial
differences in models. These difference maps were reclassified to
identify areas with greater than |30%| difference in tree canopy cover
to identify patterns or land features where the models disagreed.

2.6.4. Variance of predictions across land cover types and TCC values
For each plot location used in the training dataset the 500 out-of-

bag predictions were used to calculate the plot variance in predicted
TCC. Plot variance for predictions can give a sense for how consistently
a value of TCC is predicted at a location. Land cover classes were ob-
tained from NLCD for each plot location from the training dataset. Plot
variance metrics were averaged for plots in each NLCD land class. These
values were plotted in a bar chart to compare the variance associated
with each land cover class and to observe patterns relating these metrics
to land cover.

3. Results

Mean pseudo R2 was stable, across all four models, at 200 iterations
and beyond. As such, the mean pseudo R2 and mean RMSE at 500
iterations was compared among the resulting 500 random forest
models. Using the same input bands (NDVI, SWIR1, and SWIR2; ob-
jective 1), harmonic regression coefficients slightly outperformed the
median composite values (Fig. 6). Minimum and maximum pseudo R2

values for the 500 random forest models (not shown) range from a low
of 0.55 to a high of 0.82 for the harmonic regression model and from a
low of 0.44 to a high of 0.80 for the median composite model. A similar
slight improvement with harmonic regression was found for RMSE,
with a reduced mean RMSE in all instances (Fig. 6).
To address our second research question (comparing the models

using the full suite of median composite and terrain variables used in
the original 2011 TCC product to models using all those variables plus
the harmonic regression coefficients from NDVI, SWIR1, and SWIR2)
we again compared the mean pseudo R2 and mean RMSE at 500
iterations. The full (hybrid) model slightly outperforms the other
models in all instances (Fig. 7). The full (hybrid) model also has the

Fig. 7. Comparison of models using the full suite of median composite and terrain variables used in the original 2011 TCC product to models using the full suite of
median composite and terrain variables used in the 2011 TCC product plus the harmonic regression coefficients from NDVI, SWIR1, and SWIR2.
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Fig. 8. Comparison of models using the full suite of median composite and terrain variables used in the original 2011 TCC product to models using the harmonic
regression coefficients for NDVI, SWIR1, and SWIR2.

Fig. 9. Observed vs. predicted TCC for mean
(with respect to pseudo R2 out of 500) Time 2
models for the southern study area for the two
models using harmonic regression coefficients
as part of the predictor variable suite, colored
by 2011 NLCD land cover at sample locations.
Brown triangles are non-forest; green circles
are forest. The dotted line represents the 1:1
relationship between x and y axes (y= x) and
the solid line represents the linear relationship
between observed and predicted TCC. The
equation for this linear relationship is
y=0.9489 * x−0.2913 for the HR model and
y=0.996 * x−4.301 for the full model.
Variable to axis assignment follows current
best practice guidelines (Piñeiro et al., 2008).
(For interpretation of the references to color in
this figure legend, the reader is referred to the
web version of this article.)
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highest min/max pseudo R2, in all instances (not shown), ranging from
a low of 0.58 to a high of 0.83.
A comparison of models using the full suite of median composite

and terrain variables used in the original 2011 TCC product (38 vari-
ables) to the harmonic regression coefficients from NDVI, SWIR1, and
SWIR2 (9 variables) revealed mixed model performance (Fig. 8). The 38
median composite and terrain variables outperformed the 9 harmonic
regression coefficients in two regions/times (West Time 2 and South
Time 1), with the harmonic coefficients leading to an improved model

in the other two (West Time 1 and South Time 2).
Observed vs. predicted scatterplots show similar trends. An example

for the HR NDVI and SWIR South Time 2 model with the maximum R2

(0.78), and differentiated by forest/nonforest (according to NLCD land
cover class), is shown as Fig. 9. There is more unexplained variance in
the south, which is consistent across all models (not shown). It is also
evident that the observed data contains more 0% and 100% values than
are predicted by the model. In the observed data in the south, most of
the forested land cover has high tree canopy cover, while the lower tree

Fig. 10. Top 11 variable importances from full random forests model for each region/time. Median composite means are shown in blue, harmonic regression
coefficients in orange. Variable importances were calculated as follows: (1) For each iteration, rank the ten variables whose removal would contribute to the largest
increase in node impurity, largest= 10 and 10th (smallest)= 1. (2) Assign all other variables zero. (3) Repeat for 500 iterations (independent model runs), sum to
obtain cumulative importance score for each variable. A variable that was considered to be most important for all 500 iterations would receive a value of 5000, while
variables that were not in the top ten most important for any iterations, would be given a point value of 0. Abbreviations: HR, harmonic regression; MC, median
composite; NDVI, normalized difference vegetation index; SWIR, shortwave infrared. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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canopy cover values are dominated by nonforest, which includes pas-
ture, grassland, scrub/shrub, etc. There is a more uniform distribution
of canopy cover for the samples in the west (excluding zeroes; Fig. 4),
which at least partially explains the stronger model performance there.

3.1. Variable importance and correlations

Variable importances for the full (hybrid) model are shown in
(Fig. 10). The harmonic regression NDVI constant is always one of the
top four most important predictors. In all cases, all three harmonic
regression constants and all three median composite mean visible bands
are within the top 11 most important variables. The correlations be-
tween our top predictor variables and tree canopy cover are shown for
the top three variables from each of the models (Table 8). Note that the
three predictor variables most correlated with TCC are the harmonic

regression constants, and that NDVI is the most important of the bands/
ratios. Table 9 shows the correlations between the two NDVI predictor
variables and tree canopy cover for each region/time. Note that the
harmonic regression constant is always as well or better correlated with
tree canopy cover than the median composite value.

3.2. Inherent dimensionality

The principal components analysis of our different sets of input
parameters revealed that the models that include harmonic coefficient
variables require more principal components to reach 99% cumulative
variance than models without these variables (Fig. 11). The full suite of
variables (Full) had the greatest inherent dimensionality, followed by
the harmonic coefficients alone (HR), then the median composite and
terrain variables (MC and Terrain), and finally the median composite

Fig. 11. Eigen analysis of predictor variable
sets (South Time 2 shown). The cumulative
percent variance explained for a given prin-
cipal component is calculated as the sum of the
eigen values up to and including that principal
component divided by the sum of all eigen
values for that predictor variable set. Only six
principal components are shown for clarity,
but the number of principal components for a
given predictor variable set is the same as the
number of predictor variables in that set.
Inherent dimensionality as used here is the
number of principal components it takes to
explain nearly all the variance, defined as 99%.
Note the following: (1) harmonic regression
coefficients, alone, or in combination with
other predictor variables, have higher inherent
dimensionality (and thus information content),

and (2) the quantity of available information provided by the harmonic regression coefficients is not substantially increased when looking at the full suite of predictor
variables (47 bands), though this is not an indication of the utility of the information provided in predicting TCC.

Fig. 12. TCC maps (Time 2) for the southern study area for the two models (HR and Full) using harmonic regression coefficients as part of the predictor variable suite.
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Fig. 13. Mean variance by NLCD land cover class (water excluded) for South, all models.

Fig. 14. Mean variance by NLCD land cover class (water excluded) for West, all models.
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NDVI and SWIR variables (MC Reduced). The fact that the harmonic
regression coefficients for three bands alone convey more information
than the 38 variables in the MC and Terrain model is striking. However,

increased information in a set of predictor variables does not necessa-
rily mean that the target variable will be better estimated.

3.3. Mapping TCC across the landscape

Maps generated from the harmonic regression and full models are
generally consistent across the landscape (Fig. 12). Careful examination
of these images revealed some anomalies due to cloud cover or striping
from (SLC-off) Landsat 7. This causes a reduction in the number of input
observations that inform the original harmonic regression fit. Areas
with very few observations due to annually or seasonally persistent
cloud cover could result in similar anomalies, though these were not
observed.

3.4. Variance of predictions across land cover types and TCC values

Tree canopy cover models show some variability in plot-level var-
iance when aggregated by land cover class (Figs. 13 and 14). Mean
variance in predicted value by land cover reveals the greatest incon-
sistency in prediction across land cover classes in the MC Reduced
model with the most consistent predictions overall in the Full model. In
the South, variance is lower in the forest and wetland categories. Higher
variance can be observed in the other land cover types, without con-
sistent pattern across model types and time periods. In the West, there is
higher variance in forest plots, and in some cases (MC Reduced T1, MC
and Terrain T1, MC Reduced T2) in the wetland plots as well. There is
also lower variance in shrubland plots, and in some cases barren plots.
Across land cover classes, models using harmonic regression coeffi-
cients outperform those in which the median composite values are used
for the SWIR bands and NDVI (HR vs. MC Reduced). Adding other
bands/indices along with the terrain variables resulted in additional
decreases in variance across land cover classes (MC and Terrain, Full).

4. Discussion

All predictor sets performed reasonably well for a given region.
However, in the direct comparison (objective 1; MC Reduced vs. HR)
using the same index (NDVI) and wavelength bands (SWIR1 and
SWIR2), the models using harmonic regression coefficients consistently
outperformed those using median composite means and standard de-
viations with respect to both R2 and RMSE across study areas and time
periods (Fig. 7). This is partially explained by the consistently high
variable importance metrics from the harmonic regression coefficients,
particularly the constants, despite the high correlation among pre-
dictors. The improved utility of harmonic regression coefficients with
respect to median composite values is also supported by the higher

Fig. 15. Observations from two similar South
Time 1 plots with fitted harmonic regression
line (solid harmonic fit), harmonic regression
constant (solid horizontal line), and median
composite value (dotted horizontal line)
shown. Note that the median composite value
is properly located near the peak of the
growing season maximum when little noise is
present (a, left), but is lower with noisy ob-
servations (b, right).

Table 7
Model-specific predictor variables. Abbreviations: MC, median composite; HR,
harmonic regression; NDVI, normalized difference vegetation index; NIR, near
infrared; SWIR, shortwave infrared; NDMI, normalized difference moisture
index; TC, tasseled cap; DEM, digital elevation model.

Model Number of predictor variables Variable class Variables

MC reduced 6 MCa NDVI
SWIR1
SWIR2

HR 9 HRb NDVI
SWIR1
SWIR2

MC and terrain 38 MCa Blue
Green
Red
NIR
SWIR1
SWIR2
NDVI
NDMI
TC (all)

Terraina DEM
Slope
Aspect
sin, cos aspect

Full 47 MCa Blue
Green
Red
NIR
SWIR1
SWIR2
NDVI
NDMI
TC (all)

Terraina DEM
slope
aspect
sin, cos aspect

HRb NDVI
SWIR1
SWIR2

a *Focal x̄ and std in 3×3 window.
b a0, a1, b1 (Eq. (1)), the constant, cosine amplitude, and sine amplitude of

the Fourier fit.
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inherent dimensionality of the harmonic regression predictors (Fig. 11)
and the high correlations of the harmonic regression constants with
TCC (Table 8; note that the constants have the highest correlation
coefficients of the seven most important predictor variables).
While there are multiple possible explanations for why the har-

monic regression constant outperforms the median composite value for
a given band, the two most likely are (1) the decreased sensitivity of the
harmonic regression constant to systematic noise (Moody and Johnson,
2001; De Beurs and Henebry, 2010) and (2) the use of another sensor
(MODIS, via GLOVIS) to define the peak NDVI interval within which
the median value is computed. Noise tends to lower the median com-
posite value (Fig. 15), leading to inconsistencies in the median com-
posite value for the same TCC. With respect to the second possible
explanation, the increased temporal resolution of MODIS makes it a
sensible choice for choosing the interval within which the median value
is computed, but MODIS-derived NDVI, while similar to NDVI com-
puted from the Landsat sensors, is slightly different (Steven et al.,
2003).
The coefficients derived from harmonic regression of all-available

cloud-free moderate resolution earth resource satellite data have been
used in a variety of earth science applications, including image classi-
fication (Liang, 2001), stratified estimation of dynamic forest biophy-
sical parameters (Brooks et al., 2016), estimation of static forest bio-
physical parameters besides TCC (Wilson et al., 2018), and, with this
study, TCC. However, despite these successes using harmonic regres-
sion, there are alternative approaches to curve fitting that have been
developed or tested using the same or similar data sets that might prove
to be superior to harmonic regression for this and related applications.
These include the double hyperbolic tangent model (Vrieling et al.,
2018) applied to Sentinel 2 observations and a Bayesian hierarchical
modeling framework (Senf et al., 2017) applied to Landsat observa-
tions, among others. While Atkinson et al. (2012) found harmonic re-
gression the best of four tested approaches (Fourier analysis, asym-
metric Gaussian model, double logistic model, and the Whittaker filter)
for estimating phenological parameters reliably using Medium Resolu-
tion Imaging Spectrometer (MERIS) composite data, their study did not
use moderate resolution earth resource satellite data nor did it test the
more modern approaches just noted. As such, use of alternative curve
fitting approaches as a precursor to TCC estimation using moderate
resolution earth resource satellite data is a potentially fruitful area of

further inquiry.
Mapping yielded visually consistent results across models. However,

due to the inclusion of Landsat 7 SLC-off images in our time-series,
subtle striping can be observed in models with harmonic regression
variables in regions with fewer unmasked pixel observations. This
finding is consistent with other studies (Wilson et al., 2018), and may
be a reason to exclude Landsat 7 observations when feasible.
Mean variance in predicted values yielded inconsistent results

across regions (Figs. 13 and 14). In the South, the two land cover types
with more samples (wetlands and forest areas) showed lower variance,
as expected since there was more training data available for those types.
In the West, shrublands were the most prevalent land cover type and
had consistently low variance values as well. However, contrary to
these other examples, the land cover type with most consistently high
variance, at least in the West, was forest, which is the second most
prevalent land cover type in terms of sample points. There are several
possible reasons for the high mean prediction variance in NLCD forest
in the West, including the following: (1) It is common to confuse
shrublands (which, if there are no trees present, should have a TCC
value of 0) with forest areas, both spectrally and during photo inter-
pretation. This could lead to spectrally similar training data having
drastically different observed TCC values, thus limiting the predictive
ability of the model. (2) The majority of the forest types in the west are
coniferous which may not provide as much contrast in reflectance be-
tween tree and non-tree pixels and may not show as much variation
over time resulting in more influence from noise. In all cases (land
cover, region, and time), models with large numbers of predictor
variables (MC and Terrain, 38; Full, 47; Table 7) reduced variance.
Additionally, this observation may also indicate that theMC and Terrain
variables, while possessing less information overall, may have a greater
explanatory power than the harmonic regression coefficients in pre-
dicting TCC.
Given recent advances in high performance computing platforms

that host the Landsat archives (i.e., Google Earth Engine, Gorelick et al.,
2017; NASA Earth Exchange, Nemani, 2011), the selection of an algo-
rithm that reduces input data and pre-processing streams (i.e., image
downloads, cloud masking, and development of predictor variables) is
not a major factor of consideration. Instead, the focus can be more on
striving for analysis techniques that result in more parsimonious pre-
dictive models, with fewer variables but higher explanatory power. This
concept represents the biggest advantage of harmonic regression over
the median composite approach. The inherent dimensionality shown in
Fig. 11 highlights the increased information contained in the models
that contain harmonic regression predictors. This makes sense, given
the large number of input bands/observation dates over which the
Fourier curve is fit (ranging from 60–192 for the 3-year training
period). This is illustrated with a simple correlation between TCC and
the important predictor variables (Table 8), which indicates that the
harmonic regression constants are more strongly correlated to TCC than
any median composite mean or standard deviation. Moreover, though
not an objective of this study, a comparison of Figs. 6 and 7 reveals

Table 8
Correlation matrix of seven-most important predictor variables and tree canopy cover from the South, time 2 model. The three most important variables from the full
random forests model for each region/time (Fig. 10) are shown; there are only seven since the same predictor variables could be among the three most important
across regions/times. Abbreviations: TCC, tree canopy cover; MC, median composite; B, blue; G, green; R, red; a0, harmonic regression constant; NDVI, normalized
difference vegetation index; SWIR, shortwave infrared.

MC B MC G MC R MC NDVI a0 NDVI a0 SWIR1 a0 SWIR2

TCC −0.64 −0.64 −0.66 0.61 0.74 −0.68 −0.70
MC B 0.96 0.96 −0.69 −0.74 0.67 0.76
MC G 0.96 −0.57 −0.71 0.73 0.79
MC R −0.68 −0.74 0.73 0.80
MC NDVI 0.78 −0.32 −0.44
a0 NDVI −0.66 −0.75
a0 SWIR1 0.96

Table 9
Correlations between TCC in each region/time and the two NDVI predictor
variables. Abbreviations: TCC, tree canopy cover; MC, median composite; a0,
harmonic regression constant; NDVI, normalized difference vegetation index.

MC NDVI a0 NDVI

West Time 1 0.77 0.82
West Time 2 0.83 0.85
South Time 1 0.74 0.74
South Time 2 0.61 0.74
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instances where HR (9 predictor variables) is equivalent to or outper-
forms MC and Terrain (38 predictor variables).
The variable importance results (Fig. 10 and Table 8) highlight the

importance of the visible bands to the prediction of TCC, although the
correlation matrix (Table 8) confirms that these bands are highly cor-
related. Our analysis did not include a visible band in the harmonic
regression predictor variables, so direct comparison is not possible.
However, the results suggest that harmonic regression coefficients from
a visible band (or panchromatic band as shown in Fig. 2) could be
valuable to TCC prediction. While this study found the median com-
posite values derived from the tasseled cap bands to be less important
than those derived using the visible bands, harmonic regression coef-
ficients derived from tasseled cap Landsat time series stacks (especially,
and atypically, TC band 6) could also be useful.
Finally, we would like to reiterate that there are instances where

striping from Landsat 7 SLC-off images has produced visually incon-
sistent predictions from harmonic regression coefficients. We have seen
that these inconsistencies relate to differences in the number of ob-
servations available to the harmonic regression algorithm. Even absent
striping, cloud-prone areas or areas with cloud cover over a consistent
portion of the season may not enable sufficient observational re-
presentation of annual phenology, thus reducing the value of harmonic
regression coefficients fit to a poorly articulated curve. Median com-
posite methodologies could also be susceptible to these issues, espe-
cially if observations are lost during the peak of the growing season
from striping or clouds.

5. Conclusions

We conclude that harmonic regression coefficients are better pre-
dictors of TCC than median composite variables for the same vegetation
index and wavelength bands. Correlations support this finding, with
improved R2 and RMSE values for the harmonic regression coefficient
models when compared to the median composite reduced models, as
well as increased inherent dimensionality in harmonic regression
coefficient variables. Further, plot-level prediction variance is lower for
the harmonic regression coefficient models than it is for the median
composite reduced models for almost every land cover type, regardless
of region or time period.
We further conclude that harmonic regression coefficients can be

added to a full suite of median composite and terrain variable to im-
prove the quality of TCC models. Variable importance analysis indicates
that harmonic regression variables are uniquely instrumental to model
success, with the harmonic regression constants appearing consistently
in the top 11 predictor variables. Correlations further support this
finding, with improved R2 and RMSE values for the full model when
compared to the median composite and terrain model, and overall.
Finally, plot-level prediction variance is lowest for the full models than
any other model for almost every land cover type, regardless of region
or time period. Overall, we have found that harmonic regression coef-
ficients can be used to estimate TCC, both on their own, and when
combined with a suite of median composite and terrain variables. The 9
harmonic coefficient variables alone successfully predict TCC without
sacrificing predictive power when compared to models drawing from
greater numbers of variables (MC and Terrain, n=38; Full, n=47;
Table 7).
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