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Abstract

Generative models of neuroimaging and electrophysiological data present new opportunities for accessing hidden or latent
brain states. Dynamic causal modeling (DCM) uses Bayesian model inversion and selection to infer the synaptic mechanisms
underlying empirically observed brain responses. DCM for electrophysiological data, in particular, aims to estimate the
relative strength of synaptic transmission at different cell types and via specific neurotransmitters. Here, we report a DCM
validation study concerning inference on excitatory and inhibitory synaptic transmission, using different doses of a volatile
anaesthetic agent (isoflurane) to parametrically modify excitatory and inhibitory synaptic processing while recording local
field potentials (LFPs) from primary auditory cortex (A1) and the posterior auditory field (PAF) in the auditory belt region in
rodents. We test whether DCM can infer, from the LFP measurements, the expected drug-induced changes in synaptic
transmission mediated via fast ionotropic receptors; i.e., excitatory (glutamatergic) AMPA and inhibitory GABAA receptors.
Cross- and auto-spectra from the two regions were used to optimise three DCMs based on biologically plausible neural
mass models and specific network architectures. Consistent with known extrinsic connectivity patterns in sensory
hierarchies, we found that a model comprising forward connections from A1 to PAF and backward connections from PAF to
A1 outperformed a model with forward connections from PAF to A1 and backward connections from A1 to PAF and a
model with reciprocal lateral connections. The parameter estimates from the most plausible model indicated that the
amplitude of fast glutamatergic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs)
behaved as predicted by previous neurophysiological studies. Specifically, with increasing levels of anaesthesia,
glutamatergic EPSPs decreased linearly, whereas fast GABAergic IPSPs displayed a nonlinear (saturating) increase. The
consistency of our model-based in vivo results with experimental in vitro results lends further validity to the capacity of DCM
to infer on synaptic processes using macroscopic neurophysiological data.
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Introduction

Neural mass models have been used to simulate the electro-

physiological response of cortical regions and have recently served

as generative models for empirical M/EEG and LFP data

[1,2,3,4,5,6,7,8,9]. These models furnish mathematical descrip-

tions of detailed physiological processes including thalamic burst

firing [1], spike frequency adaptation [10], neuronal noise [11],

nonlinear channel conductances [12] and neuromodulation [13].

Of particular interest to empirical neuroscience is the inversion or

fitting of these generative models to real experimental data, where

mechanistic hypotheses regarding the genesis of data features can

be tested. Dynamic causal modelling (DCM) provides a general

framework in which neuronal ensemble models are inverted or

‘fitted’ to data. A particular ensemble model, known as an alpha-

kernel model [14] is often used within DCMs of M/EEG and LFP

data. The form of the dynamics is constrained by parameters that

encode the strength of transmission at different types of synapses.

Clearly, it is important to provide construct validity for these

model parameters and ensure that they have a physiological

interpretability. In this paper, we address this issue using LFP

signals, acquired by invasive recordings in rat auditory cortex,

under different levels of anaesthesia. This work is one from a series

of ongoing validation studies of the models employed in DCM for

electrophysiological data [15] using invasive recordings. Here, we

focus on the ability of DCM to infer on specific aspects of synaptic

transmission, i.e., whether it obtains plausible estimates of

experimentally induced changes in transmission at excitatory

glutamatergic synapses vs. inhibitory GABAergic synapses.

Pharmacological interventions can manipulate aspects of

synaptic processing and can thus be used to validate model

predictions: Here, we use isoflurane, a volatile anaesthetic agent

that is used commonly in animal laboratory studies [16]. While,

compared to other pharmacological agents, it induces a diverse
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range of molecular mechanisms leading to changes in synaptic

signalling both pre- and postsynaptically, the resulting net effect at

the neuronal circuit level is a decrease in excitation and an

increase in inhibition [17]. Studies of specific presynaptic and

postsynaptic effects of volatile anaesthetics have demonstrated

actions on both the release of neurotransmitters and the function

of neurotransmitter receptors [18]. Particular attention has been

on inhibitory neurotransmission, where increased inhibition in the

presence of isoflurane has been attributed to a sensitisation of

GABAA receptors [18], but also to increased synaptic release of

GABA [19]. Glutamatergic neurotransmission has also been

reported to be directly affected by isoflurane. Isoflurane reduces

the strength of synaptic signalling following activation of both non-

NMDA [20,21] and in some cases to a greater [22] or equal [23]

degree of NMDA receptors, as well as leading to its diminished

release [21,24]. Sophisticated biophysical models of anaesthesia

have been developed to explain the theoretical properties they

induce, such as phase transitions and hysteresis at transitions of

consciousness [25,26] and to examine observed side effects such as

epilepsy [27,28]. In this study, we use a coarser neural mass model

[29] that embodies a lumped representation of biophysical

processes underlying synaptic functions. In other words, processes

such as presynaptic release and reuptake of transmitters or binding

of transmitters to postsynaptic receptors are not modelled

explicitly. Instead, the model absorbs these detailed processes into

a slightly more abstract representation, modelling postsynaptic

effects as the convolution of presynaptic inputs with postsynaptic

kernels [4]. The magnitude of these synaptic kernels summarizes

the strength of transmission at specific types of synapses. While less

biophysically detailed than some previously proposed models

mentioned above, this alpha-kernel model is currently most often

used by experimentalists applying DCM to M/EEG data, e.g.

[30]. We should emphasize, that the purpose of this paper is not to

use a model for providing new insights into the mechanisms of

isoflurane. Instead, we use isoflurane to induce known changes in

the balance of excitatory and inhibitory transmission in order to

test whether our model can infer these net changes correctly, given

measured local field potentials. In the following, we describe our

model in some more detail.

DCM is a generic modeling approach for inferring on the

physiological mechanisms underlying measured neuroimaging

data [31]. For MEG, EEG or LFP data, detailed biophysical

neural mass models serve as generative models for both evoked,

time domain data [4,32] and steady-state, frequency domain data

[29]. In DCM for steady-state responses (SSR) the auto and cross-

spectra, for active regions or sources in the model, are predicted

using their modulation transfer functions, augmented with white

and 1/f type spectral noise [10]. The model describes dynamic

synaptic interactions among connected assemblies of different

neuron types within brain regions (sources) as well as directed

connections between brain regions. Each source is modelled as a

layered macrocolumn comprising three interconnected cell

populations with excitatory spiny stellate cells (assigned to granular

layer IV), excitatory pyramidal cells and inhibitory interneurons

(occupying both supra- and infra-granular layers; [2]). The

dynamics are prescribed by two mathematical operators applied

to the hidden neuronal states of each subpopulation. These are an

input (synaptic) convolution kernel, which converts presynaptic

firing to a postsynaptic membrane potential, and an output

sigmoidal function that relates mean postsynaptic potential to an

average firing rate [33]. Parameters of the model include

maximum excitatory and inhibitory postsynaptic potentials and

excitatory and inhibitory time constants, gain parameters

describing ensemble firing efficiency and intrinsic connectivity

that encode the efficacy of signalling among subpopulations within

a source [10]. In addition, the signalling among sources is

described with extrinsic coupling parameters. Crucially, these

extrinsic connections can be of a forward, backward or lateral

type, depending on the subpopulations targeted by afferents from

the pyramidal population of each source [34]. Specifying different

arrangements of forward and backward connections enables

competing hierarchical architectures to be compared, using

empirical data.

DCM for SSR assumes small perturbations about a dynamic

equilibrium, where the perturbations are caused by endogenous

fluctuations in cortical activity, i.e. white or coloured noise. The

frequency response of a network of regions is described using the

cross-spectral density of outputs, comprising auto- and cross-

spectral components. Variational Bayesian techniques allow us to

invert this generative model given real data and provide posterior

densities over the parameters and the model evidence [35]. A

Bayesian approach allows the model parameters to be constrained

using physiologically plausible priors (c.f. Table 1 in [29]). In this

validation study, the parameters we are particularly interested in

comprise synaptic parameters encoding the amplitude of population

responses to presynaptic glutamate release, from pyramidal and

spiny stellate cells, and to GABA release by interneurons. Since the

postsynaptic kernels encode mass action responses, their magnitude

is a summary index of postsynaptic gain (determined by various

biophysical properties such as receptor density and receptor

‘‘sensitivity’’; e.g., conformational changes under isoflurane).

Previous validation studies of inference on synaptic processing

using this DCM have used microdialysis measurements of

extracellular glutamate levels to predict the parameter estimates

that should be obtained by the model [15]. In this study, we apply

a complementary test of both excitatory and inhibitory neuro-

transmission concomitantly, using different levels of isoflurane and

a within-animal design. Under four levels of isoflurane 1.4%,

1.8%, 2.4% and 2.8%, we recorded local field potential measures

from A1 and PAF under white noise stimulation and in silence,

respectively, for twenty minutes. The spectral data from these time

series formed the basis of our model inversion. Studies of

isoflurane at similar doses in rats have reported a nonlinear

(saturating) increase in GABAergic synaptic transmission with

increasing isoflurane dose [19,36], and a linear decrease in

glutamatergic transmission [37]. We hoped to find that these dose

effects would be reflected in our model parameter estimates.

Materials and Methods

Surgical Treatments
For recording LFPs in Lister hooded rats, a telemetric recording

system (TSE Systems) was assembled, using chronically implanted

epidural silverball electrodes above left and right auditory cortex

in seven animals. In three of these animals, surgery and recordings

were performed bilaterally and the results presented below use

averages over both hemispheres.

Prior to surgery, rats were placed in an anesthesia box that was

perfused with isoflurane (5%) mixed with 30% oxygen (O2) and

70% nitrous oxide (N2O). Once deeply anaesthetized, rats were

transferred into a stereotactic frame and fixated using ear bars and

a tooth bar. During surgery, animals inhaled a similar mixture of

gases through a mask (isoflurane reduced to 2–3%). Body

temperature was kept constant at 37uC using a heating pad

feedback controlled by means of a rectal probe.

Guided by stereotaxic coordinates, two electrodes were

positioned above each hemisphere. When placing the electrodes,

the temporalis muscle was partly removed and a cranial window

Dynamic Causal Models: A Validation
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was opened with a dental drill. Silverball electrodes were

positioned epidurally above the primary auditory area, A1,

(Figure 1) (4 mm posterior to bregma) and above the posterior

auditory field, PAF (6 mm posterior to bregma) 7.6 mm lateral at

a depth of 4 mm, targeting a primary and a non primary auditory

cortex, respectively [38]. A fifth electrode, to which all recorded

signals were referenced, was placed 5 mm anterior to bregma over

the frontal sinus. The telemetry socket, to which electrodes were

soldered, was fixed onto the head with dental cement.

All experimental procedures were approved by the State

Agency for Nature, the Environment and Consumer Protection

under file number 9.93.2.10.35.07.056, controlled by the veteri-

nary authorities of the city of Cologne, and supervised by the

Institute’s animal protection officers.

Pharmacological Interventions and Stimulus Conditions
At the beginning of each experiment, rats were placed in an

isoflurane-perfused box for anaesthesia induction. Afterwards,

animals were transferred into a sound shielded chamber and

placed on the heating pad. During electrophysiological recordings,

the heating pad was not turned on in order not to disturb the

measurements. Temperature was verified between recording

epochs and animals were warmed if necessary.

The experiment started with the lowest dose of isoflurane

anaesthesia (1.4%) and was increased to the next level after

40 min. Each level of anaesthesia was accompanied by LFP

recordings with 20 min continuous white noise stimulation,

followed by 20 min under silence. White noise stimuli had a level

of 83 dB (sampling rate 25 kHz) and were delivered by an RX6

processor and two free field magnetic speakers (Tucker Davis

Technologies, TDT) that were placed with a distance of 15 cm, on

both sides of the rats head. Recordings started immediately after

increase of anaesthesia to the next level.

Electrophysiological Recordings and Spectral Analysis
Electrode recordings were amplified (61000) in the transmitter.

Data were transferred to a receiver at a transmission frequency of

400 to 434 MHz, and amplified again (610). Analogue LFP

recordings were analyzed using a data acquisition system

(DasyLab, Version 9.0, 2005, National Instruments) at a sampling

rate of 2 kHz. Digital filtering was applied online (0.6–60 Hz).

The first ten minutes of each 20 min recording (under white

noise and silence respectively) were extracted from the continuous

time domain data and down-sampled to a sampling rate of

125 Hz. Frequency domain data-features were constructed from

these epochs using a vector auto regression (VAR) model of order

8 (p). Channel data y, from the two channels (A1 and PAF) was

modelled as a VAR process (using the SPM Spectral Toolbox:

http://www.fil.ion.ucl.ac.uk, [39]).

yn~A(1)yn{1zA(2)yn{2:::zA(p)yn{pze ð1Þ

The autoregressive coefficients A(n) and channel noise covari-

ance Eij, estimates were used to compute the cross-spectral

densities for frequencies 1–30 Hz using the following transform:

Hij(v)~
1

A
(1)
ij eivzA

(2)
ij ei2vz:::zA

(p)
ij eipv

gij(v)c~Hij(v)EijHij(v)�
ð2Þ

Dynamic Causal Modelling and Bayesian Model Selection
Dynamic causal models treat distributed brain networks as a

connected set of neuronal ensembles or sources, where each

ensemble (e.g., macrocolumn) is described by a set of differential

equations. These equations

_xx~f (x, h, u) ð3Þ

describe the time evolution of states x~(v,g), which are the

membrane potentials vi(t) : i~1, . . . ,7 across and currents

gi(t) : i~1, . . . ,5 flowing through three cell populations in each

macrocolumn and from which a frequency domain response can

be computed (Figure 2A). The measured LFP is assumed to be

dominated by the pyramidal cell membrane potential v6(t) [ x due

to the parallel orientation of their apical dendrites [40]. Stellate

cells and interneurons are assumed a priori to contribute less

aggregate signal, comprising about 20% of the measured response

[41]. These cell populations are modelled as layer specific; with

spiny stellate cells in the granular layer reciprocally connected to

pyramidal cells in infra- and supragranular layers. Inhibitory

interneurons in the infra- and supragranular layers are in turn

reciprocally connected to the pyramidal cells (Figure 2A). The

dynamics are described by two functions describing synaptic and

axonal output. The synaptic input-output function prescribes a

convolution operator where presynaptic firing from one popula-

tion is convolved with the postsynaptic response, either excitatory

or inhibitory (Figure 2B) of another, mediated by intrinsic

connections with strengths ci : i~1, . . . ,5 (Figure 2A). The second

operator transforms membrane potentials to an output firing rate

through a static sigmoid, S(v(t)).

The parameters h encode synaptic inputs in terms of the

amplitude of excitatory and inhibitory postsynaptic potentials

(mE/IPSP; He and Hi in Figure 2B), rate constants (ke/i) and the

parameters of the static sigmoidal firing curve (r1,2). Forward,

backward and lateral connections between regions (AF,B,L)

originate and terminate at specific cell layers (Figure 2A). In this

way DCM for SSR allows one to build hierarchical brain networks

with connectivity rules as suggested by anatomical studies [42]. As

Figure 1. Electrode Placement. Electrode placement (silverball
electrodes) in primary auditory cortex (A1) and posterior auditory field
(PAF) in auditory cortex (A). The anatomical labelling of auditory fields
was taken from [38] and matched to a rat brain from our animals. The
indicated scaling is in mm.
doi:10.1371/journal.pone.0022790.g001

Dynamic Causal Models: A Validation

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e22790



in other sensory systems, the auditory system operates with

connections that are largely bidirectional in nature and have

laminar specificity depending on the hierarchical relation of the

areas involved. All connections originate in pyramidal cells (v
region2
6

in Figure 2A). Forward connections terminate in granular layer IV

[43,44]. In contrast, reciprocal backward connections terminate

primarily outside of layer IV [43,45,46] and lateral connections

impinge on all cell layers. While our model lumps together supra-

and infragranular pyramidal cells, it maintains the general

asymmetries of connectional patterns in hierarchically related

areas (Figure 2A).

We tested whether we could infer the known hierarchical

relation of the primary auditory cortex (A1) to the posterior

auditory field (PAF) in the auditory belt region, from the steady

state LFP data. This hypothesis was tested using Bayesian model

selection (BMS) based on the evidence for competing models [47].

Any given DCM represents a specific probabilistic mapping from

experimentally controlled manipulations via neuronal dynamics to

observed data. The goodness of this mapping (model) can be

evaluated by the log model evidence (i.e., the log probability of

observing the data given the model) which trades-off model

accuracy and complexity in a principled way [39,45,47]. When

comparing any two models, their log-evidence difference can be

exponentiated to give the Bayes Factor (BF) which represents the

ratio of the evidences. Conventionally, a Bayes factor BF.150 is

considered very strong evidence in favour of one model over

another (log Bayes Factor of ,5). For larger systems, one could

employ a network discovery approach [48], which would identify

the sparsity structure in terms of which connection set in a fully

connected Bayesian graph (model) best describe the data.

However, here we deal with a very small (two-region) network,

comprising A1 and PAF, with known reciprocal connectivity

where our question was not whether connections played a role in

generating the data but what type of connections generated the

Figure 2. DCM and the Neural Mass Model. A Neural mass model used to represent regions in auditory cortex. Three cell subpopulations
contribute to the ongoing dynamics. These include spiny stellate cells in granular layer IV, pyramidal cells and inhibitory interneurons in extra
granular layers (II & III and V & VI). Intrinsic connections link dynamics between subpopulations in each source. Dynamic states include currents, g, and
membrane potentials v. Extrinsic connections enter at specific cell layers. B Functions controlling ongoing dynamics and their parameterisation. Left:
Excitatory synaptic kernel, which is convolved with the input firing to produce a depolarising change in membrane potential. The function is
parameterised by its height He and time constant. He is allowed to mediate the effects of isoflurane. Increases in He produce different responses, as
per the arrow. Right: Inhibitory synaptic kernel, which is convolved with the input firing to produce a hyperpolarising change in membrane potential.
The function is parameterised by its height Hi and rate constant ki. Both can mediate the effect of isoflurane. Increases in these parameters produce
different responses as per the arrow. C Three competing hypotheses regarding extrinsic connectivity in hierarchical auditory cortex, embodied by
model 1, with forward connections from A1 to PAF and backward connections from PAF to A1 (M1:FB). The reverse architecture is constructed for
model 2 (M2: BF). Model 3 contains lateral connections between the regions (M3: LL).
doi:10.1371/journal.pone.0022790.g002
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data. In model 1, we specified a two region network comprising A1

and PAF, where forward connections linked A1 to PAF and

backward connections mediated the influences of PAF on A1,

conforming to the hierarchical, forward and backward cortico-

cortical connectivity structure of auditory cortex [49]. A second

(null) hypothesis was instantiated by model 2, where hierarchical

connectivity rules were inverted, with backward connections from

A1 to PAF and forward connections from PAF to A1. Finally a

third model with lateral connections was used to investigate

whether recordings contained hierarchical asymmetry (Figure 2C).

Bayesian Model Inversion and Parameter Estimates
The model was inverted (identified or fitted) by applying it to

the cross-spectral densities from each of the ten hemispheres

separately. In DCM, a variational Bayesian scheme is used, which

factorises the conditional (posterior) density over unknown

parameters into Gaussian marginal densities (here comprising

model parameters and the log-precision of observation noise).

Model inversion furnishes the (approximate) conditional density

q(h), by maximising the negative free energy

F~ln p(y mj ){KL½q(h), p(h y, mj )� ð4Þ

where KL is the divergence between the true and approximate

posterior. The negative free energy is hence a lower bound on the

log model evidence, ln p(y|m). Note that the model evidence, also

known as the marginal likelihood, evaluates the relative goodness

of models by taking account of both the accuracy with which it can

explain (fit) the empirical data features and the complexity of the

model. The complexity term accounts for both the ‘‘effective

degrees of freedom’’ (number of parameters and their interdepen-

dencies) and differences between the parameter estimate and its a

priori value. Simply speaking, a model is more complex (i) the more

parameters it has, (ii) the more independent (low covariances) and

‘‘flexible’’ (low precision) these parameters are, and (iii) the more

the posterior is required to deviate from the prior to account for

the data [35]. The free energy bound on log-evidence is used for

model selection when testing a series of possible neural

architectures. In this case the forward-backward scheme (model

1) was compared to the backward-forward scheme (model 2). A

fixed effects analysis of the models was performed using the group

Bayes factor [47,50], with log-evidences averaged over hemi-

spheres for those animals with dual recordings. The posterior

densities from the best performing model are then used to provide

the conditional mean and variance of our synaptic parameters of

interest.

In our DCM, we modelled four conditions, corresponding to

1.4%, 1.8%, 2.4% and 2.8% isoflurane. The effect of isoflurane

was modelled separately for each condition, allowing for

unconstrained differences in specific synaptic parameters across

increasing depths of anaesthesia. Three parameters were allowed

to change across anaesthesia levels and thus explain condition

specific effects on the spectral densities. These parameters were the

maximum excitatory postsynaptic potential (EPSP), the maximum

inhibitory postsynaptic potential (IPSP), and the inhibitory rate

constants (ki) of regions A1 and PAF. The quantitative effects of

anaesthesia on these animal-specific parameters (averaged over

hemispheres where applicable) for each region were entered into

an ANOVA with anaesthetic depth as a factor. As we predicted

that excitatory parameters decrease and inhibitory parameters

increase with level of anaesthesia, we used one-tailed probabilities

at P,0.05. To test for particular parametric effects, first and

second order polynomials were later fitted to these animal-specific

modulatory effects. We tested for consistent parametric effects

from the polynomial coefficients using a one-tailed t test.

Results

Spectral Estimates
LFP recordings from A1 and PAF were collected after each

anaesthetic administration for both white noise and silent auditory

conditions. An examination of our time series data revealed burst

activity at low doses of anaesthetic, which dissipated progressively

with higher doses in line with the known burst suppression effects

of isoflurane (Figure 3A) [51]. Cross spectral density measures

were obtained from continuous ten minute epochs, comprising

quasi steady-state representations. Across increasing dose levels,

these spectra reflected the burst suppression as a decrease in low-

frequency power [52,53]. In other words, in the spectral domain,

the features of our data reflected dose-dependent expression of

bursts corresponding to low-frequency oscillations, whose power

declined with increasing levels of anaesthesia. Altogether, our

spectral measures reflect the statistical regularities of the data

across time and provide a quasi steady state summary of the data

across the measurement period.

We examined frequency differences (across levels of anaesthesia)

within traditional EEG bands by binning spectral measures per

animal (n = 7) (Figures 3B and 3C). Anaesthetic levels induced a

difference in spectral power in primary auditory cortex for both

white noise and silent conditions in the delta (1–4 Hz; noise:

p,1028, silence: p,1024), theta (4–8 Hz; noise: p,1028, silence:

p,1024), alpha (8–16 Hz; noise: p,1027, silence: p,1026) and

beta (16–30 Hz; noise: p,1024, silence: p,1023) bands. Similarly,

the PAF auto-spectra showed a significant effect of anaesthetic

depth (delta; noise: p,1028, silence: p,1025, theta; noise:

p,10210, silence: p,1026, alpha; noise: p,1026, silence:

p,1026, beta; noise: p,1025, silence: p,1024). Finally, the

cross-spectral densities comprising the off-diagonal components of

Figures 3B and 3C were also profoundly affected by varying the

depth of anaesthesia (delta; noise: p,1027, silence: p,1024, theta;

noise: p,10210, silence: p,1025, alpha; noise: p,1027, silence:

p,1025, beta; noise: p,1025, silence: p,1024).

Model Comparison
These cross-spectra served as data features for model inversion

(see Methods). We tested three models for each data set and

averaged across hemispheres, where dual recordings had been

obtained. Model 1 contained two sources representing A1 and

PAF, with intrinsic dynamics as per Figure 2A with forward

connections from A1 pyramidal cells to layer IV stellate cells in

PAF (Figure 2C). The reciprocal backward connections coupled

PAF pyramidal cells to A1 extra granular layers. In Model 2 the

extrinsic connections were reversed, with forward connections

from PAF to A1 and backward connections from A1 to PAF.

Model 3 used reciprocal lateral connections with afferents from

pyramidal cells targeting all layers (Figure 2C). Using the

(approximate) log- evidence, we tested whether the data were

better explained by model 1, which conformed to the normal

connectivity rules in hierarchical sensory systems [42], or models 2

and 3, which would support higher to lower and equivalent

hierarchical level signal exchange respectively. For this purpose,

we computed the group log-evidence by simply adding the log-

evidences Fs~ln(ysjmi) for each model i~1,2,3 over subjects

s~1, . . . ,7. This assumes the data from each subject are

conditionally independent. The resulting log odds ratio (log group

Bayes factor; lnGBF) of model 1 relative to the second best

performing model, model 2, revealed very strong evidence in
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favour of model 1 for both the white noise (lnGBF12 = 33.21) and

silent (lnGBF12 = 80.63) conditions (Figure 3D). As can be seen in

Figures 3B and 3C, the model fitted the spectral estimates from

both conditions very accurately.

Parameter Estimates of Glutamatergic and GABAergic
Neurotransmission

Having established the most probable model, we next examined

its parameters encoding glutamatergic and GABAergic neuro-

transmission. Defining 1.4% isoflurane as a baseline, we modelled

condition-specific effects for trials at 1.8%, 2.4% and 2.8%

isoflurane on parameters controlling the maximal amplitude of

EPSPs and IPSPs and inhibitory rate constants ki (see Methods).

The maximum a posteriori (MAP) estimates (i.e., posterior means)

for condition specific effects were used for statistical analysis at the

group level. We first examined the overall changes in excitation

and inhibition relative to baseline and observed significant

decreases (p,0.005) and increases (p,0.05), respectively, in all

stimulus conditions and in both auditory regions. Our analyses did

not indicate any significant changes in inhibitory rate constants in

A1 or PAF.

Dose-dependent analysis of synaptic parameters was performed

using one-way ANOVAs for white noise and silent stimuli at A1

and PAF, with isoflurane depth as a single factor. In A1 there was

a significant effect of isoflurane concentration on EPSP amplitude

(noise: F3,24 = 6.11, p = 0.0031, silence: F3,24 = 9.26, p = 0.0003),

Figures 4A and 4B. There was, however, only a trend towards

differences in A1 inhibitory activity in terms of the postsynaptic

amplitude (noise: F3,24 = 2.59, p = 0.076, silence: F3,24 = 1.88,

p = 0.16 for both stimulus conditions) (Figures 4A and 4C). Post

hoc analysis of primary auditory cortex revealed a significant

decrease in EPSP amplitude for the 1.8% level compared to 1.4%

Figure 3. Modelled Data. A Time series recording from one animal in the noise condition showing increased burst suppression with increasing
isoflurane dose. B Average cross-spectral density matrix representing spectral responses with prominent low frequency components for four
isoflurane dose levels (Hashed line: 1.4%: green, 1.8%: black, 2.4%: blue, 2.8%: grey) as rats heard a white noise stimulus. Significant differences in
spectral power are found for LFP recordings from A1 and PAF and also for their cross-spectra (off-diagonal term). Fits from model 1, averaged across
animals are shown as full lines. C Average cross-spectra as per B, but for recordings and subsequent fits from the silent environment. D Log-evidence
differences at the group level (relative to worse performing model M3: LL), showing very strong evidence in favour of model 1 (M1: FB) for both noisy
and silent environments.
doi:10.1371/journal.pone.0022790.g003
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(noise: p = 561026, silence: p = 0.016, one-tailed t-test), a signifi-

cant decrease for 2.4% compared to 1.8% (noise: p = 0.002,

silence: p = 0.001, one-tailed t-test), and a trend towards a decrease

for 2.8% compared to 2.4% (noise: p = 0.09, silence: p = 0.05, one-

tailed t-test). The inhibitory trends were driven by significant

increases for dose level differences at low doses (1.8%.1.4% noise:

p = 161026; silence: p = 0.0004, one-tailed t-test). Within the PAF

(Figures 4C and 4D), both excitation and inhibition varied:

ANOVA revealed a significant main effect of anaesthetic depth on

EPSPs (noise: F3,24 = 28.89, p = 461028, silence: F3,24 = 9.05,

p = 0.0003) and on IPSPs (noise: F3,24 = 5.65, p = 0.0045, silence:

F3,24 = 4.21, p = 0.016). Post-hoc we observed consecutive decreases

in EPSP height in PAF similar to A1 (1.8.1.4; noise: p = 0.0001,

silence: p = 0.027, 2.4: .1.8%; noise: p = 0.0002 silence:

p = 0.0006; 2.8%.2.4%; noise: p = 0.01, silence: p = 0.09, one

tailed t-test ), and this coincided with a significant increase in

inhibitory neurotransmission as indexed by IPSP for 1.8%

isoflurane compared to baseline (noise: p = 0.0003, silence:

p = 0.009) that remained high for higher doses (2.4%.1.4%;

noise: p = 0.001, silence: p = 361026, 2.8%.1.4%: noise: n.s.,

silence: p = 0.19, one tailed t-test). Note that EPSP effects in A1

(silence and white noise), EPSP effects in PAF (silence and white

noise) and IPSPs effects in PAF (white noise) survive Bonferroni

correction for 8 multiple comparisons.

Parametric Effects of Isoflurane: dose-response curves
To investigate the parametric effects of isoflurane depth, we

estimated dose-response curves, using the parameter estimates

above. We first used simple linear regressions to establish whether

anaesthetic depth changes excitatory and inhibitory postsynaptic

potentials in the expected direction. We then used a polynomial

dose-response curve to assess the prediction that isoflurane

produces a saturating nonlinear (decreasing) effect at higher doses

(i.e., negative second-order term). A linear curve was fitted to the

Figure 4. Parameter Estimates under Isoflurane. A Average dose responses at 1.4%, 1.8%, 2.4% and 2.8% for He (green) and Hi (grey) for region
A1 from white noise condition (** p,0.005,* p,0.05; error bars denote s.e.m.). Overall trial effects are positive compared to zero baseline at 1.4% for
the inhibitory parameters and negative for excitatory parameters. B Dose responses for He and Hi for region A1 from silence data. C Dose responses
for He and Hi for region PAF from white noise data. D Dose responses for He and Hi for region PAF from silence data.
doi:10.1371/journal.pone.0022790.g004
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dose responses of EPSP and IPSP MAP estimates. In A1, we found

a consistent linear effect for EPSP estimates, where slopes were

negative in all animals for noisy and silent conditions (noise:

20.6260.20; mean 6 s.e.m., silence: 20.5160.13); see Figure 5.

Similarly, in PAF, isoflurane produced linear decreases in EPSP

for doses from 1.4% to 2.8% in both environments (noise:

20.4060.05, silence: 20.3260.07). Animals showed variable

positive and negative linear dose response curves for IPSP

measures. However, a second order polynomial model revealed

consistent effects across A1 and PAF for noise and silent stimulus

in all but one case with negative second order effects and positive

linear effects in both conditions (linear coefficient in A1; noise

m = 5.1861.96, silence: 4.2061.59, and in PAF; noise:

6.5161.12, silence: 5.5762.58), Figure 5.

Summary
In short, both inference on models and inference on the

parameters of the model selected provide further endorsement of

DCM as a way of accessing hidden architectures and synaptic

physiology, given seemingly unresolved electrophysiological data.

Our model comparison indentified the hierarchical architecture

that was consistent with the known microanatomy of sensory brain

systems, in terms of the laminar specificity of forward and

backward connections. Furthermore, our pharmacological manip-

ulation produced expected quantitative changes in hidden

parameters encoding specific postsynaptic responses. We were

able to generalise these parametric changes over two different

contexts: the presence and absence of auditory noise in the

environment. These two environments test the basic assumption in

DCM for SSR that the cortical nodes can be understood as filters

of surrounding cortical noise. In other words, even in silence there

is sufficient cortical noise (white and pink components) to drive

through the modulatory transfer function embodied by the neural

state equations to produce the spectral output. The fact that no

external perturbation was required to differentiate these models

also points to a key difference between this DCM for steady state

responses and models of evoked transients [5]. That is, while both

DCMs are based on an input-state-output model, DCM for SSR

uses the brain’s own endogenous fluctuations as the input.

Discussion

Using electrophysiological recordings of LFPs during different

levels of isoflurane-induced anaesthesia, we have shown that by

inverting a biologically plausible generative model of cortical

dynamics one can recover latent quantities, such as the membrane

responses to glutamate and GABA receptor binding. These

conclusions were based on epidural recordings, which reflect,

most prominently, membrane potential changes (net excitation

and inhibition) of synchronous activity at pyramidal cell dendrites

in an open field arrangement. Pyramidal cell apical dendrites are

spatially aligned perpendicular to the cortical surface, producing a

linear summation of currents [40,41], while other cells such as

spiny stellate neurons contribute less to the measured response,

due to their closed field arrangement [41] where dendrites are

oriented asymmetrically. By applying similar dipolar models that

account for brain and tissue impedances, source localisation

techniques can be applied to non-invasive EEG and MEG

recordings to recover analogous focal cortical activity [54].

Though fundamentally ill-posed, plausible assumptions about the

sources generating data makes this model inversion possible for

Figure 5. Dose Response Curves. A Linear components of polynomial fits for each animal individually in noise conditions for regions A1 and PAF,
using a linear regression to describe the dose response of (conditional) EPSP effects (green) and using a second order function to describe the dose
response of (conditional) IPSP effects (grey). B Linear components of polynomial fits for each animal individually during silence, for regions A1 and
PAF obtained as per A.
doi:10.1371/journal.pone.0022790.g005
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both evoked and ongoing steady-state activity [55,56]. Hence the

methodology described and validated here serves as a motivation

for similar non-invasive estimates of neurotransmitter-specific

aspects of synaptic processing [15].

Significance of this study for DCM analysis
DCM was originally designed for the analysis of fMRI time

series [56] to uncover the strength of directed connections between

brain regions activated by experimental perturbation. More

sophisticated neural state equations were used in subsequent

DCM implementations for non-invasive electrophysiological data

(M/EEG) [4,5] and invasive (LFP) recordings [29]. Several

validation studies have shown been performed previously [31].

For example, simultaneous electrophysiological recordings and

fMRI showed that DCM for fMRI could infer the origin of

epileptic activation spread [57]. Other work demonstrated that

DCM for SSR could detect known changes in synaptic

transmission following a developmental perturbation of extracel-

lular glutamate levels [15]. The validation presented here goes

further on two levels. First we have validated the ability of DCM

for SSR to distinguish between excitatory (glutamatergic) vs.

inhibitory (GABAergic) synaptic transmission in cortico-cortical

connections. Secondly, we examine a dose response, showing that

DCM can distinguish between different degrees of drug-induced

synaptic effects. For this, we examined a hierarchical sensory

structure using invasive recordings and inferred a connectivity

architecture that is predicted by anatomical data [42].

Evidence for Architectural and Dose Response Inference
Using electrophysiological recordings, we found that a model

with forward, driving connections from primary auditory cortex to

the posterior auditory field and backward connections in the

opposite direction outperformed a model connected reversely and

a model with lateral connections specifying two regions at the

same hierarchical level. The (first) anatomically plausible model

was inferred with strong evidence for both silent and noisy

environments.

The present view of isoflurane action is that it affects both

excitatory and inhibitory synaptic transmission, influencing pre- as

well as postsynaptic processes; the net effect is a decrease in

excitation and an increase in inhibition [17]. Concerning

inhibitory neurotransmission, increased inhibition due to isoflur-

ane has been attributed to a sensitisation of GABAA receptors [18]

and increased presynaptic release of GABA [19]. Notably, the

increase in inhibition with higher isoflurane levels has been found

to show a nonlinear (saturating) form [19]. In some studies of

spontaneous IPSPs, evidence of a paradoxical reduction of IPSP

amplitude has been observed [58], however when including both

evoked and spontaneous IPSPs, findings show a net increase in the

transfer of negative charge to the postsynaptic cells [59]. Our

model makes no distinction between these two types of post-

synaptic responses and so we consider the parameter estimates in

terms of the drug’s net effects. Moreover pre- and post- synaptic

measures found empirically (for example IPSP amplitude and

frequency) should be included in the expected net effect, and

indicate an overall increase in inhibition. With regard to excitatory

neurotransmission, isoflurane diminishes glutamate signalling

[20,21], probably due to diminished presynaptic release of

glutamate [21,24]. Specifically, at concentrations similar to those

used here, near linear depression of presynaptic glutamate release

has been found [17,37].

It was reassuring to see that our model inversion results were

consistent with these empirical findings, showing a linear decrease

in peak, or maximum EPSP amplitudes with increasing isoflurane

concentration. Moreover, our model parameter estimates also

showed the expected changes in inhibitory synaptic processes with

isoflurane depth, with nonlinear increases in GABAergic neuro-

transmission beyond the 1.4% baseline (Figure 4).

Current Limitations
Our model is limited by the receptor characteristics that

determine its dynamic repertoire. The neural mass model

employed here employs fast linear postsynaptic ion channels, both

at excitatory and inhibitory synapses. Other receptor types not

included in our model, such as glutamatergic NMDA and

cholinergic receptors, have also been shown to be affected by

isoflurane [22,60]. Furthermore the parameters encoding EPSP

and IPSP amplitudes represent lumped coupling parameters that

quantify the collective effect of a number of biophysical processes

such as receptor binding and transmitter reuptake. These are not

separately amenable to the current model assay. Notwithstanding

these limitations, our present investigations complement previous

validation work [15] in demonstrating that DCM can be used to

infer synaptic processes from mass, population measures of

membrane potential fluctuations.

Possible Application and Future Directions
DCM works on the principle that model parameters identifiably

contribute to the dynamic processes controlling measurable brain

responses. In the case of DCM for steady state and evoked

responses, the dynamic processes are described by a neural mass

model and detail how excitatory and inhibitory cells within a given

region interact but also how signals are passed between the regions

themselves. In this work, we have validated the inference that is

made on these unobservable hidden states. Future work will

involve the validation of similar synaptic assays using non-invasive

measures including MEG or EEG where manipulations are

similarly performed using pharmacological agents with known

synaptic consequences. Further work will also examine the validity

of synaptic assays from more complex neural models, e.g. those

including non-linear NMDA channels [61]. Establishing such a

framework would offer great potential to neuroscientists and

clinicians interested in examining normal and pathophysiological

synaptic processing in humans at a combined behavioural, brain

network and synaptic level. This may be of particular relevance for

establishing physiologically interpretable assays of synaptic func-

tion which hold promise for diagnostic categorisation of patients in

psychiatric spectrum disorders, such as schizophrenia [62]. The

approach may also help to elucidate synaptic effects induced by

novel drug compounds.
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