/78

25
Consistency and Tool Abstraction: Issues in the Taskmaster Environment

by
Brenda]J. Jackels

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and Shte University
in partial fulfillment of the requirements for the degree of
Master of Science
in

Computer Science and Applications
April, 1990

APPROVED:

James D. Arthur, Chairman

/ Q
& < Z
is G. Kafura Rex Hartson

““»}m ey

Ll
Sl 00
! C)‘;’ cﬂ[lf {)

{4y (',1/

Consistency and Tool Abstraction: Issues in the Taskmaster Environment
by
Brenda. J. Jackels
James D. Arthur, Chairman
Computer Science and Applications

(Abstract)

This thesis presents Taskmaster.2, a graphical environment for interactive task specification,
execution and monitoring. Problem solving in the Taskmaster environment can be accomplished
with top-down programming, bottom-up programming, or a mixture of the two. The use of
top-down programming permits the user to start with a high level task and refine this task into
successively lower level subtasks until, at the lowest level, each subtasks represents a software
tool. Bottom-up programming is accomplished by beginning with the lowest level subtasks,
software tools, and then combining these tools into successively higher level subtasks until, at
the highest level, the high level subtask represents the original problem task. These
programming methods provide the user with abstraction capabilities. Another abstraction
capability within the Taskmaster.2 environment is the network tools. The user creates network
tools by selecting several software tools that, combined, provide a certain functionality. These
network tools can then be reused in solving other problem tasks. In fact, these tools appear no
different to the user than the low level software tools: they are both single indivisible units.
Providing complete abstraction capabilities, i.e. mixing programming styles (top-down and
bottom-up) and network tools, maintains the consistency of the Taskmaster.2 environment. This

makes the environment an easy one to learn, as well as remember.

Key word and phrases:: Bottom-Up Programming, Consistency, Functional Abstraction,

Network Tools, Portability, Top-Down Programming.

Acknowledgements

First and foremost, I would like to thank my parents for supporting me. Nope, I don’t just mean
financially. They’ve helped me through some pretty rough times and I can never thank them

enough for that. Thank you Mom and Dad.

I would also like to thank my advisor, James “Sean” Arthur. He put up with me always being
right (Ha!) and his guidance has been invaluable. For their time and assistance, | owe my

thanks to my committee members, Rex Hartson and Dennis Kafura.

Table of Contents

INBPOAUCHON ... e e e s be e se e a e e 1
1.1 User Interface DevelOPmeNtcoovueiiiiiiiiiiiiic it 1
1.2 The Taskmaster Environment and its Programming Philosophyccococvvuunnniiniennnee. 2
1.3 Motivations for This ReSearch.........ciiiiiec e 3
B S @ OO 4
1.5 Plan of the TRESISuuuuiiuiiiiiiiiiii e s s e re e ennee 5
Background & ApProachcooooimiiiiiiiiiiiice e 6
2.1 Taskmaster ENvironmentcccoiviiiiiiiiimniiiiiiiiicr e e 6
2.1.1 TerminOlOgY...ccueiiiiiiiiiiiiiiiee ittt et e 8
2.1.2 An Example: The Programming Philosophy and Terminologycccccccceeennie 9
2.1.3 The Network EditOr......cccoivmimiiiiiiiiiiiii e 14
2.1.4 The Execution MOMItOTc.evvuimiiiiiniiiiii ittt e 28
2.1.5 The Tools Database......ccccciiiiiiiiiiiiiiiinirecincnie e s 31
2.1.6 The Interaction Among Taskmaster COMPONENtSsc.covvevuerimreiiieiiininenrinnnennne. 32
2.2 Achieving the Goals of this Research..........ccccoociiiiinniiniiini 33
221 Portability.ccooveeiiiiiiiiiii e 33
2.2.2 User Interface CONSIStENCYcccouiiiiiiiiiiiiiiicie e e 36
2.2.3 Summary of Goals Achievement............ccooiiiininrinniieciie 39
Achieving a Consistent INterfaceccoviiiiiiiiiiiiiiiiiii e 40
T8 BN 180 (0 11 T o o) (YO OO PR 40
3.2 COMNSISIENCY ..iieiiviiiiiririiiciee ettt ee e s e e e e e aeanan 41
3.3 Inconsistency in the Taskmaster.1 Interface.........c.ccccovniiiiniinnniiiiiiii, 42

iv

3.3. 1 TerminOlOgY . coccccieiee et s e e 42

3.3.2 The Inconsistencies in the Taskmaster.1 User Interface..........cccccevivviieccrnnecnienn. 43
3.4 The ConsiSteNCY Of ATCS ..uvviiriiiiiiiniiiiiiiieniie sttt te e e e s e s s atb bt e s e aeaeaeaeees 44
3.4.1 Consistency in Arc Creation........miiiiminiininicecc e e 45
3.4.2 Consistency in Arc Specificationcccooveiriiiiiiiiiiiiii 47
3.4.3 Maintaining Arc Consistency: Ramifications on the Collapse Operation........... 47
34.4 Maintaining Arc Consistency: Ramifications on the Expand Operation.............. 48

3.4.5 Maintaining Arc Consistency: Ramifications on the Explode Operation............. 49

3.4.6 Maintaining Arc Consistency: Ramifications on Tool Consistencyc....... 50

3.5 The Consistency of TOOIS......cccciriiiiiiiiiiiieiiieeeiie e 51
3.5.1 The User Interface: TOOIS..........cceuiririummiiiimiiin e 52
3.5.1.1 The User Interface: Network Tool Retrievalcccvvviiiniiiniiiiiinnninnnn, 52

3.5.1.2 The User Interface: Network Tool Creation..........c.ccccevvririinniiiinnniinnne 53

3.5.2 The Implementation: Tool Consistency........cccocovuvimieiiineeiiiiiiiiiiien e 58
3.5.2.1 The Implementation: Network Tool Creation..........ccccoovveiienneiiinnnennnne. 58

3.5.2.2 The Implementation: Network Tool Retrievalooeovnnnnniiinniiinn.. 59

3.5.3 A Ramification of Maintaining Network Tool Consistency.........ccceecerrvererenenee. 60

3.6 The Consistency Of NOAESuceiiivurniiiiiniiiiiiiiiiin it e e 61
3.6.1 The Ports of a Super NoOde......ccccoviriininiiiinnniiine e 61
3.6.2 Node Consistency and the Expand Operation........cccccceeiiiiiiniiininninininnicnn, 64
3.6.3 Node Consistency and the Delete Node Operationcccoccueiiininniiiiinnne 65

3.7 Additional Enhancements to the User Interface........coocoioenivininiinriveniinncinncenene. 65
TR POIt.....ooiiiiiiiiiii e e e e s s re s e e et rr e ae e e se e e e e ans 69
4.1 INrOdUCHON ..ocoeiiiiiiiiiiiiiiic e ee s ar e s seseeeae s nabbanas 69

B B € G o R 1V 0, ¢ PN 70

4.2.1.1 The X Windowing SySteM........cccevmiviirniiririiiniriiineeneene s 71

4.2.1.2 GKSOD ..uoiiiiiiiiriiiiiiritiiriee ittt se e e s e e 71

4.2.2 Windows and Their CONtents........ccccvuveeiiiriiiiiiiiiiii e 72
423 Input Capabilitiesccooovrriiiiiiiiiiii e 73
424 Output Capabilities....ccccceviiniiieiiiiiiniiiii s 74
4241 COOTAINALES ...uvverierirriiiiiiiiiiinitinete it se s s s ssasnssraaens 74

4242 Setting Graphics Attributes........oiveviiivviviiiiniiinninincnrcernee 75

4243 TeXbuiiiiiiiiiiiiiiie ittt s s s e 76

4.2.4.4 Fillioooiiiiiii s 77
4245 Magnification.....ccovvuiiiiiiiiiiiie e 77

4.3 Changes due to Graphics Package........cooeveiiiiiiiiiiiiiiiiiiiiieiiiiieian e 78
4.3.1 Zoom OPperations.....cccccveiuieiiieiiiieniiinieecie e 78
4.3.2 Rubberbandingccccciiiiiiiiiiiiiiiiiiin s 79
4.3.3 Menusand Other INput........cocciiiiiiiiiiiiii e 79
4.3.4 The Displaycccemiiiriiiieiiicccirecc e s e 80
3 {3 ¢ LTS OOy 82
4.5 HardWare....oe ittt s 82
CONCUSIONS ..ottt e ee s e s e e s baasabras e es 84
5.1 Contributions of this Research...........cccccovmmiiiiiiiiiiiiniiiici e 84
5.1.1 Portability ..cccooiiiiiiiiiiic e 84
5.1.2 Consistency in the User Interfaceoooovuerieeeriiniiiiiiiiiniiniinneeiccenccinans 85
5.2 LImitationsS....coccooiiiiiiiiiiiiiiiici ettt bbb aaas 86
5.3 Future Research Possibiliti@s........ccccccviiiiiiiiiiiiiiiiiiccc e 88
REF@ICICES ..uuuniiiiiiiiiiiiieir it et bt e bar s s aab e s s e s s s sabbbanaseeenesesbanns 90

vi

Vita........... eeereetetnerrentraerenrirearanaan errrerenreas vrreererraenenes rrrereenens

seessssscscecsrenesrrrsrcensans

94

-

List of Figures

Hardware Configuration:.........cceeeiiiiiniiinnniiiniiiiieie, Figure 2.1oociviiiiiinninnnnn, 7
Graphical Node Depiction:.......cccccoiiiiiiiiiiiiiiiieinien, Figure 2.2ccoouinininnnn, 10
Task DeSigN:....ccceieriiiriiiiiiiiiiriieieee e Figure 2.3cccoevvniiinnnnenn. 12
Subtask Decomposition:........ccccvienmmiiiiiiiiiniiiciniee, Figure 2.4ccocovvvennninnnn. 13
Operations Allowed on Nodes:cceevieriniiiiinniinieeieneienee, Figure 2.5ccvviiininnnnnnn. 16
Initial Window Configuration:.........cccccomeiiiiiiiiniiiniinnnne, Figure 2.6cocvvvirnenninnnne, 20
A Taskmaster Network:cccceoeieiiiiiiiiiiciiin e, Figure 2.7ooooevvininnnnnnn. 21
Explosion of a Super Node:cccoviiienniiiiiiniiincniee, Figure 2.8 ...ocvvvvvvivvrrnnnnnnnnn. 22
Collapse Operation:.......ccoceveeuieeiernnnnennne. USSR Figure2.9.......cccoevniiiiinnn. 23
Node EXpansion:eceeeiiiiiiineinreiiiieeiiieeeneenninneneeeeenecn. Figure 2.10cccovvneeennn. 24
Arc Specification:ccueeeiiriiiieiiie e Figure 2.11ccocvvvennnnnnn, 25
View NOAE: ..uuvniiiiiiiiiiiiieecr et e Figure 2.12 ..o, 26
Graphical Node Depiction During Execution:...........ccoeveneniein. Figure 2.13cccoceeeiiiine 30
Collapsing with Arc Preservation:.......ccccccoeennneeieincccennnnneens Figure 3.1........ccccoeiinnnn. 46
Specifying a Node:.....ccovvvriiiinienininiiiicicieceeei e Figure 3.2.....oooviiviinnnnn. 55
Network Display of Tools Database Hierarchy:....................... Figure3.3 ..., 56
Network with Ports Shown: ..o, Figure34.......coooniiiiinnnn. 62
The Three Port Models:couveremirviiainiiiiiiiiireie e Figure3.5......cccccceenvnnnnnnn, 63
Tool Menu Examples:..........coouuiimiiiiiniiiiiiiiiiniiicceieie Figure4.1........ccooniiiinnnn. 81

viii

Chapter 1

Introduction

1.1 User Interface Development

The importance of a quality user interface for computer software applications is increasing
dramatically as the community of computer users grows. Due to the advances in computer
hardware and software there are many possible interfaces for a given application. These range
from a textual interface using a command language to a verbal interface using natural language.
A useful interface, regardless of type, embraces the concept of consistency. A consistent interface
can facilitate ease of learning by using the same command for the same operation in different
situations. The Macintosh! interface offers an example of a consistent command. When the user
desires to delete an item, be it an application, document or folder, the icon representing the item
to be deleted is “thrown away”, i.e. dragged to an icon representing a repository of items to be
removed. Remembering the proper usage of an application is aided by a consistent interface;

the user need not remember multiple methods of performing the same operation.

1Macintosh and A/UX are trademarks of Apple Computers

1.2 The Taskmaster Environment and its Pro§rammin§ Philosophy

Taskmaster is an interactive graphical environment for task specification and execution. To
“program a given task within the Taskmaster environment, one decomposes the task into an
ordered set of conceptually simple, high-level operations, and then combines (composes) a
corresponding network of software tools that implements those operations” [ARTH83]. A tools
database containing a collection of software tools supports the task specification operations.
The Taskmaster environment allows the user to solve problems using either a top down or
bottom up specification approach [ARTH88]. The top down approach can be viewed as the
decomposition of a problem task into a set of high-level subtasks. Subtasks are progressively
decomposed into smaller subtasks until, at the lowest level, each subtask represents a tool from
a pre-existing tools database. The bottom up approach can be viewed as a composition of tools
into higher level subtasks until, at the highest level, the subtasks represent the problem task.

The final set of subtasks from either approach can be executed, providing the problem solution.

The development of the Taskmaster environment has been an evolutionary one. Each stage of
its development was concerned with different aspects of the environment. Originally, the task
specification environment was a textually oriented one [ARTH87]. The second stage of
development concentrated on developing a graphical interface for the environment, as well as
providing visual abstractions for subtasks [MULHS87]. Visual abstraction allowed the user to
group subtasks into higher level subtasks, although no functional information about the low
level subtasks underlying the high level subtasks was retained. Functional abstraction and
refinement was the focus during the third stage of development [RAGHS88]. Functional
abstraction provides the user vbwith the ability to save high level subtasks for future use while

retaining information about the underlying low level subtasks, i.e. functional information.

Introduction 2

Taskmaster, the result of the above evolution, is not without its limitations. Consistency of the
interface did not play an important role during its development. Moreover, its support for user

defined functional abstraction was not well integrated.

1.3 Motivations for This Research

Taskmaster is designed to support user task specification. Although each stage of its
development reached the goals of that stage, the following deficiencies are present in the
Taskmaster environment:

* lack of portability,

* an inconsistent presentation of the environment to the user, and

* limited functional abstraction capabilities.

The lack of portability stems from the initial implementation constraints. In particular,
Taskmaster communicates between two machines that have different operating systems, VMS2
and UNIX3. Also contributing to the lack of portability is the graphics package used: the
Graphical Kernel System (GKS). Part of this research has focused on porting Taskmaster to
machines that have similar operating systems, i.e. UNIX. The port from VMS to UNIX has
allowed the use of a different graphics package: The X Windowing System. This graphics
package is becoming the de facto standard and has significantly increased the portability of

the Taskmaster environment.

The original use of the GKS graphics package also contributed to an inconsistent presentation of

the environment to the user. GKS does not provide flexibility to the programmer. Attendant

2 VMS, VAXstation, VAX, Ultrix, DECnet, and MicroVMS are all trademarks of the Digital
Equipment Corporation

3 UNIX is a trademark of AT&T

Introduction 3

restrictions are reflected in applications developed using this package. The X Windowing
System provides the programmer with complete control over the display device. This allows

the design of an interface that presents a consistent view of the environment.

The incomplete integration of support for functional abstraction contributes to the conceptual
inconsistency of the Taskmaster environment. The functional abstraction provided to the user in
the last stage of Taskmaster’s development allows the user to create and save high level
subtasks. However, the implementation of this abstraction leaves much to be desired. When
reusing a previously saved high level subtask, the user cannot treat the subtask as one
indivisible unit, and must manipulate the individual low level subtasks underlying the high

level one. As mentioned earlier, these low level subtasks ultimately represent software tools.

Another drawback caused by the implementation of functional abstraction is the lack of support
for the mixing of top-down and bottom-up programming. Direct modification of a high level
subtask is not permitted. In order to alter the functionality of a high level subtask, the user
must first replace it with its underlying low level subtasks. The user can then modify these

subtasks.

1.4 Goals

The first goal of this research is the consistency of the Taskmaster interface. = As mentioned
earlier, a consistent interface can facilitate the use of an application, as well as aid the

learning process. Inconsistencies in the interface are exhibited in
* the display of the environment,
* the relationship between software tools and subtasks, and

* the capabilities for modification of subtasks.

Introduction 4

The second goal of this research is the portability of the Taskmaster environment. The
portability of Taskmaster is effected mainly by the package used to provide graphics and by

the operating systems between which the environment must communicate.

1.5 Plan of the Thesis

A detailed description of the Taskmaster environment which contrasts Taskmaster.2 (the
version resulting from this research effort) with Taskmaster.1 is provided in Chapter 2. This
chapter also briefly outlines the achievement of the goals of this thesis. Chapter 3 elaborates
on the achievement of the first goal of this thesis, consistency. The areas of Taskmaster.1
lacking in consistency are identified, and the possible methods used to maintain consistency in
these areas are explained. The advantages and disadvantages of each method are explored
previous to presenting the method chosen. These methods impact areas of the Taskmaster
environment that do not lack in consistency, and this impact is also discussed. Chapter 4
discusses the achievement of the second goal of this thesis, portability. The methods used to
achieve portability are discussed, and the differences between the implementations of the two
version of Taskmaster are pointed out. Chapter 5 summarizes the contributions of this thesis,
addresses the limitations of the current implementation of the Taskmaster environment and

explores future research possibilities.

Introduction 5

Chapter 2

Background & Approach

2.1 Taskmaster Environment

h

The Taskmaster environment is comprised of three components — the network editor, the
execution monitor and the tools database - which work together to provide an environment
supporting the Taskmaster programming philosophy explained above. The network editor
resides on a Macintosh II running A/UX (local workstation), and the execution monitor on a
VAXstation 2000 running Ultrix-32 (host computer). These two components are connected by a
high speed communication link, as depicted in Figure 2.1. A master copy of the tools database
resides on the host computer with the execution monitor, and a local copy resides on the user

workstation with the network editor.

The network editor provides the graphical interface to the user for creating networks and for
sending networks to the execution monitor forinstantiation. Once a network is instantiated by
the execution monitor, the execution of the network is monitored and information pertaining to

the execution status of the network is sent back to the network editor. The network editor then

Macintosh II — A/UX

¢ Network Editor
e Execution Monitor Interface

¢ Tools Database

Hide Speed Link

VAXstation 2000 - Ultrix

¢ Execution Monitor
* Network Processes

¢ Supporting Tools

Figure 2.1

Hardware Configuration

Background & Approach

conveys this information to the user. The tools database provides tools, and information about
the tools, to the network editor. The three components of Taskmaster are described in detail in
the following sections, beginning with an explanation of the terminology. To achieve the goals
of this research, as briefly discussed in Section 1.3 and elaborated on in Section 2.2, an
enhancement of the Taskmaster package is required. The original version is referred to as
Taskmaster.1l and the enhanced version as Taskmaster.2. Both Taskmaster.1 and its successor,

Taskmaster.2, are discussed in the following sections.

2.1.1 Terminology

As mentioned previously, problem solving in the Taskmaster environment involves decomposing
a task into subtasks. Subtasks are depicted graphically as nodes and the communication
between the subtasks as arcs. The collection of nodes and arcs is referred to as a network.
Subtasks are progressively decomposed into lower subtasks until each subtask, depicted as a
node, represents a tool from a pre-existing database. A tool, as used in this thesis, is a program
which performs a single high-level operation with minor variations. There are two types of
tools, atomic tools and network tools. As is implied by the name, an atomic tool is a single unit
and cannot be decomposed. A network tool, however, is a tool composed of many tools. Note
that both types of tools perform a single high-level operation. Network tools are created by
the user and stored in the tools database for future use. Ports are used to indicate whether or not
a tool, network or atomic, performs any input or output function, with one port for each input and

each output stream. These ports are used for communication with other tools.

Two types of nodes are present in the Taskmaster environment: atomic nodes and super nodes. As
implied by the name, atomic nodes are single units and cannot be decomposed. A super node

represents a collection of nodes, i.e. a subnetwork. Both types of nodes can be either specified or

Background & Approach 8

unspecified. A specified atomic node is a node with a tool from the database attached to it,
and an unspecified atomic node has no tool attached to it. A specified super node represents a
subnetwork in which all the nodes are specified. An unspecified super node represents a
subnetwork in which at least one node is unspecified. Note that the definition of a specified or
unspecified super node is recursive in nature. The different nodes are distinguished by their
graphical depictions (see Figure 2.2):

* specified atomic node - solid black;

* unspecified atomic node - grey;

* specified super node - solid black surrounded by grey ring;

¢ unspecified super node - grey surrounded by grey ring.

Communication between the nodes, represented by arcs, is in one direction only. The arcs are
graphically depicted as line segments, with an arrow on each line indicating the direction of
the data flow. A specified arc is an arc for which the communication between the nodes at the
ends of the arc has been completely defined; at least one connection has been made between an
output port of one node and an input port on the other node. Specified and unspecified arcs can
be distinguished by their graphical representation. Specified arcs are represented by solid
lines and unspecified arcs by dashed lines. A generic, or unspecified, network is a network that
contains any nodes or arcs that are unspecified. A specified network is a network in which all

nodes and all arcs are specified.

2.1.2 An Example: The Programming Philosophy and Terminology

The following example, provided by [RAGH88], illustrates the top down programming
paradigm. A matrix multiplication scheme with vector operations can be specified with a

Taskmaster network, and allows the user to exploit the parallelism offered by vectorization. A

Background & Approach 9

Specified Unspecified

Atomic Nodes

Specified Unspecified

Super Nodes

Figure 2.2
Graphical Node Depiction

Background & Approach

10

high-level diagram representing such a design is pictured in Figure 2.3. The pre-multiplier
matrix A is vectorized by row by the subtask “Vectorize by row” and the post-multiplier matrix
B is vectorized by column by the subtask “Vectorize by column”. The product matrix elements
are individually computed in parallel by the subtask “Perform parallel vector
multiplications”, whose output is sent to the subtask “Compose product matrix”. This subtask
produces the final output, the problem solution, by composing the product matrix. The details
of how these subtasks achieve their goals are not addressed at this level of decomposition.

7.

Given the primitive tools from the pre-existing tools database “vectorize by row”, “vectorize
by column”, “combine row elements”, “combine row vectors”, and “multiply row by column”
(“mult” in Figure 2.4), for the case where both A and B are two-dimensional matrices, the high
level task diagram can be refined to the fully defined diagram shown in Figure 2.4. Each high

level subtask is replaced with the tools that are appropriate for accomplishing the given

subtask.

By looking at the above example in reverse, the bottom up approach is demonstrated. The
lowest level subtasks are created first and are associated with tools from the database, as
shown in Figure 2.4. These subtasks are grouped together to form the higher level subtasks

shown in Figure 2.3.

This conceptual specification is supported via tools from the database, nodes and arcs. The

subtasks “vectorize by row”, “vectorize by column”, “mult”, “combine row elements”, and

“combine row vectors” in Figure 2.4 correspond to atomic nodes representing tools from the

database. The lines connecting the subtasks correspond to arcs representing communication
" ou " u

paths between the tools. The subtasks “vectorize by row”, “vectorize by column”, “perform

parallel vector multiplications” and “compose product matrix” from Figure 2.3 correspond to

Background & Approach 11

AINM]

Vectorize

BIM,L]

by

row

Vectorize
by
column

ApIN1l1sm<M

Perform
parallel Cii

vector
multiplications

Bp{lLl1<m<M

Figure 2.3
Task Design

Background & Approach

Compose
product
matrix

CIN,L]

12

mult

combine
row

vectorize

—1 combine
TOW
vectors

mult

vectorize combine
by row
column elements

by / elements
row
mult

mult

Figure 2.4

Subtask Decomposition

Background & Approach 13

super nodes. Both figures in their entirety correspond to a Taskmaster network.

213 | The Network Editor

With the use of the windowing and graphics capabilities of the X Windowing System
[NYE88al, [NYE88b], the network editor provides a graphical user interface for network
development. This interface provides operations to create generic networks and to specify the
nodes and arcs using a menu-driven interaction process. This process makes use of windowing

and mouse input, and assists the user with instructions and help and error messages.

The operations supplied by the network editor can be categorized as follows:

* generic network development
create node, delete node,
create arc, delete arc
explode node, expand node,
collapse

* network specification
specify node, specify arc

* network viewing
move node,
view node, view arc
zoom in, zoom out
‘pan

* network storage and retrieval

save network, create new network, open network,

Background & Approach 14

create network tool , attach network tool
® erToT recovery

undo last operation
¢ network instantiation

execute network.

The application of these operation often depends on the type of the nodes involved, as can be
seen in Figure 2.5. Many of these operations have different names in Taskmaster.l. What the
differences are and the reasons for the differences are discussed in Section 3.7. These operations
are supported through the use of a large window displaying the network topology currently
being edited, and additional windows for displaying

* menus,

* multiple views of nodes and arcs,

* instructions,

* help and error messages, and

* user confirmation requests.
These windows and their uses are explained in more detail in the following paragraphs. The
initial window configuration containing the topology window, instruction window and main

menu is shown in Figure 2.6.

The create node operation graphically creates an atomic node on the display device. Any node
can be deleted with the delete node operation in Taskmaster.2. Taskmaster.1, however, does
not allow this operation to be applied to super nodes. Any arcs associated with a node being
deleted are also deleted. Creating an arc with the create arc operation allows the user to
indicate that there is a data flow between two nodes. The user is prompted to select two nodes.

The first node selected is the start, or left end, of the arc. The second node selected is the end, or

Background & Approach 15

Atomic Nodes

Unspecified Specified

delete node J

I St—a——

[. |

Super Nodes

Unspecified

.

Specified

create arcl

L d

delete arcl

L d

explode node

expand node

collapse2

specify node

specify arcl

move node

view node

view arcl

create network tool2

attach network tool

N

Respecify

e

Figure 2.5

The atomic node becomes a super node after the network tool is attached.

Operations Allowed on Nodes

Background & Approach

The indicated nodes can be at the ends of the arc having the operation applied to it.
The indicates nodes can be included in the subnetwork selected during the operation.

16

(B8 Network Topology ===l

Eﬂlnstructions =1

Select an operation to perform on
the network

EEI Main Menu F]|

Create Node
Delete Node
Create Arc
Delete Arc

Explode Node
Expand Node
Collapse

Specify Node
Specify Arc

Move Node
View Node
View Arc
ZoomIn
Zoom Out
Pan

Create Super Tool
Attach Tool Network
Save Network
Create New Network
Open New Network

Undo Last Operation
Execute Network

Hide Instructions
Exit

Figure 2.6

Initial Window Configuration

Background & Approach 17

right end, of the arc. The data flow that the arc represents begins at the output of the first node
and ends at the input of the second node. Creating an arc creates a communication path between
the two nodes. Taskmaster.1 requires that the nodes at both ends of the arc be atomic nodes.
This requirement has been removed in Taskmaster.2, and the nodes can be either atomic or super

nodes. The delete arc operation can be applied to either specified or unspecified arcs.

Modification of a subnetwork represented by a super node can be achieved in one of two ways in
Taskmaster.2: expanding the super node or exploding the super node. In Taskmaster.1,
exploding a super node is the only way to modify its subnetwork. More specifically, the
explode node operation results in the selected super node being replaced by the subnetwork that
it represents and expand node results in creation or modification of a subnetwork (see below for
further explanation). Figure 2.8 shows the resulting network after applying the explode node

operation to the super node “super” in the network shown in Figure 2.7.

Abstraction in Taskmaster is achieved with the use of the collapse and expand operations. The
collapse operation allows the user to create a super node by selecting nodes and arcs in the
current topology to be in its subnetwork. The identified subnetwork is subsequently represented
by a super node. Selection of the nodes and arcs is accomplished by drawing a polygon around
the nodes and arcs that are to be in the subnetwork of the super node, as is shown in Figure 2.9.
After the polygon is completed, a name for the super node is requested from the user, and the

subnetwork is replaced by the super node (Figure 2.7).

The expand operation can be applied to both atomic and super nodes in Taskmaster.2.
Expansion of a super node is not allowed in Taskmaster.1, requiring the user to explode a super
node in order to modify its subnetwork. Expansion of either type of node in Taskmaster.2 results

in a new network window being displayed, and allowing network modification in the new

Background & Approach 18

Background & Approach

Figure 2.7
A Taskmaster Network

19

Background & Approach

Figure 2.8

Explosion of a Super Node

20

Background & Approach

]
1
)
t
1
]
1

tool b

&4-----

Figure 2.9
Collapse Operation

21

window. If the node being expanded is a super node, the subnetwork that the node represents is
displayed for modification in the new network window, as is shown in Figure 2.10, which shows
the display when expanding the super node “super” from the network in Figure 2.7. As can be
seen in Figure 2.10, the operations menu presented during expansion is the same as the main
operations menu (Figure 2.6), minus the operations: save network to disk, restore network, and

execute network.

The expand and collapse operations both create super nodes. The subnetwork represented by the
super node supplies the super node with ports. There are several alternatives for determining
which ports from the subnetwork are considered the ports of the super node. All of the

alternatives as well as the one chosen are discussed in Section 3.6.1.

A generic network by itself can display useful information about the final task solution.
However, in order to execute the network and obtain the task solution, tools must be attached to
the nodes, and the communication between the tools must be defined. Attaching a tool from the
database to a node can be achieved through the specify node operation. The user is led through
a series of menus until the specific tool is chosen. After the tool is chosen, the user is prompted
to select optional arguments and to supply values required by arguments. The information
required by the network editor in order to prompt for the arguments is retrieved from the tools
database. These arguments are parameters that may be given to the tool (optional arguments)
and must be given to the tool (required arguments). For example, the UNIX grep tool has

optional arguments (-v, for example) and required arguments (the search string).

The user can apply the specify arc operation to any arc in the network. A specification window
is displayed (Figure 2.11), and the user can select any output port from the node on the left end

of the arc to connect to any input port from the node on the right end of the arc. After the user

Background & Approach 22

tool b

:
;
i
1
v
1
]
]
1
:

EI_MAL,.,A_I, Towalo: = n
BE Expansion - Level 1 BEinstructionsE

Select an operation to perform on
the network

lEIMain Menuf]

Create Node
Delete Node
Create Arc
Delete Arc

Explode Node
Expand Node
Collapse

Specify Node
Specify Arc

Move Node
View Node
View Arc
Zoom In
Zoom Qut
Pan

Create Super Tool
Attach Tool Network

Undo Last Operation

Hide Instructions
Exit

Background & Approach

Figure 2.10

Node Expansion

Arc Specification

O Z e~

1. Standard Output

HC"-ECO

Background & Approach

Grep Sort
Input Ports
O 1. Standard Input
U I
N
T]1 1
; U
Output Ports U T
T
Figure 2.11
Arc Specification

24

indicates which output port is to be connected to which input port, the network editor checks if
the type of the ports are compatible by retrieving type information from the tools database. If
the type of the output port is not compatible with the type of the input port, an error message is

issued, and the connection is not made.

The move node operation can be be used on either atomic or super nodes. Any arcs associated

with a node that is being moved will follow the node.

The default viewing of a network, a level 1 view, is as a network topology consisting of nodes
and arcs. A level 2 view displays communication information about a given node; Figure 2.11
displays a level 2 view of two nodes. A detailed tool description is shown in a level 3 view of a
node, as is shown in the right half of Figure 2.12. The user can get information specific to a node
by selecting view node. A tool information window is presented to the user, displaying the
level 2 and level 3 information pertaining to the selected node (Figure 2.12). The same tool
information can be seen from the arc specification window by clicking on the view button
associated with that node. A detailed description of a port can be seen by clicking on the port in
the tool information window. The view arc operation displays the same window as the specify
arc operation with the same level 2 view of both nodes, without the specification ability, but

retaining the ability to view the node information.

To help the user manipulate complicated and large networks, the graphical view of the
network can be changed with one of the zoom commands, or the pan command. The user has the
option to zoom in and zoom out in order to make the relevant portion of the network topology fit
in the topology window. The pan operation allows the user to indicate a new point to be

centered in the window.

Background & Approach 25

L

Communication b T0'01t°
Requirements eéscription

Tool Name: Grep
Grep

Input Ports Description:

I 1. Standard Input O Grep is a filter that searches the input
N u stream for lines containing a specified
Llp Tl1 pattern. Lines containing the pattern are
U P written to the output.
T Output Ports U
T
1. Standard Output Attributes:
hello
Click the mouse on a port for a
detailed description of the port
Figure 2.12
View Node

Background & Approach 26

A network can be saved to disk and retrieved from disk using the save network to disk and open
network operations respectively. The current network can be discarded and a new network
created with the create new network operation. A subnetwork can be saved as a network tool for
later reuse using create network tool. As defined earlier, a network tool is composed of many
tools. Therefore, all of the nodes in a subnetwork being saved as a network tool must be
specified previous to including them in the subnetwork. A feature of Taskmaster.2 is that once
saved, a network tool can be attached to an atomic node in the same manner as an atomic tool;
the type of the tool is transparent to the user. To support this feature, the network tool is stored
in the tools database (see Section 3.5 for a detailed discussion on the creation of a network tool).
The subnetwork of a network tool can be retrieved for modification with the attach network
tool operation. The user is prompted to select a node to which the subnetwork is attached. Once

the subnetwork is attached, the node becomes a super node.

Error recovery is supported by the undo operation and negates the effect of the most recent

operation that modified the network topology.

After a network has been created and specified it can be sent to the execution monitor for
instantiation using the execute network operation. Before sending the internal representation of
the network topology to the execution monitor, the network editor
* connects ports for unspecified, yet unambiguous arcs,
¢ creates special duplication and merge nodes for ports with multiple outputs and inputs
respectively, and
e performs consistency checking while looking for unconnected ports within the network.

If any unconnected ports are found, the editor allows the user to correct any oversights. After

the network passes inspection, the internal representation is sent to the execution monitor on the

Background & Approach 27

remote host.

2.1.4 The Execution Monitor

Upon invocation, the execution monitor establishes communication with the network editor.
This communication across the network is achieved with UNIX sockets [AUX88], as discussed in
Section 2.1.6. After communication is established, the network editor sends the network to the
execution monitor via the socket, and the execution monitor

* reads the network,

¢ validates the network,

* spawns the network, and

* monitors execution of the network.
Validating the network includes checking the connectivity of the network and checking data
path consistency. A breadth first search is used to traverse the network during the validation
stage. After the network has been validated, it is instantiated. Each node in the network
becomes a separate process and the communication between the processes is achieved with the
use of UNIX pipes. Using UNIX pipes directly restricts the user to using character streams as
data flow. This restriction has been surmounted with the use of a post-processor and a
pre-processor at the opposite ends of the communication link. These processors massage the
data and allow for structured data flow. The post-processor embeds structure descriptors within
the data stream and the pre-processor decodes these descriptors. A breadth first search is used
also for node instantiation order in an effort to try and satisfy the interprocess communication

restrictions in the operating system.

The execution monitor provides feedback to the network editor in order to keep the user

apprised of the network’s status. Each node is in one of three states:

Background & Approach 28

e pre-instantiation - the process is not yet spawned,

e execution - the process is spawned and is either active or idle, or

* terminated - the process has completed.
The different states of a node are reflected in the graphical representation of the node (Figure
2.13). Initially, all the nodes are in the pre-instantiation state and are grey. When node
reaches the execution state, its color changes to black with a white triangle on the bottom of
the node. Within this triangle is either an “A” or an “I”, indicating that the node is active or
idle respectively. At node termination, the node becomes white to blend in with the

background.

In addition to receiving execution status information, the user is able to change the view of the
network topology during execution. Typing a user control interrupt sequence at the keyboard
invokes the menu of operations. Although the user may not alter the functionality of the

network, the view of the network may be modified using the following operations:
* move node, view node, explode node, expand super node,
* view arc,
* collapse,
* zoom in, zoom out, pan, and

* undo last operation.

In Taskmaster.2 expansion of a node is allowed during execution, but on a super node only; this
operation is not allowed in Taskmaster.1 during execution. Expanding an atomic node is
prohibited because of the nature of the operation - it results in a change in the functionality of
the network. Although expansion of a super node is allowed during execution, modification of

the functionality of the super node’s subnetwork is not permitted.

Background & Approach 29

Pre-instantiation

During execution — active and idle

Terminated

Figure 2.13
Graphical Node Depiction During Execution

Background & Approach 30

An additional operations allowed during network execution is abort execution. Applying this

operation immediately stops network execution.

2.1.5 The Tools Database

The tools database is application independent, allowing the integration of different
application domains within the Taskmaster environment with a minimum amount of effort.
The database contains many tools, both atomic and network. For each atomic tool, the
following information is stored:

* communication requirements - number and type of input and output ports,

* arguments, both required and optional,

* a brief and a detailed description of the tool,

* a brief and a detailed description of each port, and

e other information for use during node specification.
For each network tool, the database contains a brief description of the tool and a file name.
The subnetwork of the network tool is stored in a file with the name given in the tools
database. When retrieving a network tool, the network editor imports the subnetwork of the
network tool from the file and attaches it to the selected node. This process is transparent to
the user, whether retrieving a network tool or an atomic tool (see Section 3.5 for a detailed

discussion on the retrieval of a network tool).

The information in the database drives the node and arc specification processes, as well as
provides information used in the different views of the network. The node specification process
uses the information from the database for menu creation and for requesting argument values

from the user. Arc specification retrieves the port descriptions and the communication

Background & Approach 31

requirements in order to assist the user in establishing data flow. The descriptive information

from the database is presented to the user through level 2 and level 3 views of the network.

The master copy of the tools database resides on the same machine as the execution monitor,
the VAXstation 2000. When invoking the network editor from the user workstation, the user is
asked if he wants the local copy of the tools database to be updated by copying the master copy
of the database from the host computer, the VAXstation 2000. During an editing session on the
user workstation, the user can modify the local tools database by saving network tools. If such
modifications are made to the tools database, the modified database can be saved both on the
local workstation and to the remote host upon confirmation from the user at the end of an

editing session.

2.1.6 The Interaction Among Taskmaster Components

As mentioned earlier, the network editor of Taskmaster.2 resides on a Macintosh II running
A/UX, and the execution monitor on a VAXstation 2000 running Ultrix-32. The execution
monitor and the network editor communicate via UNIX sockets in Taskmaster.2 (as opposed to
the DECnet protocols used in Taskmaster.1). In the use of sockets, the network editor plays the
role of the server and the execution monitor that of the client. On invocation, the network
editor creates a socket and signals that it can accept communication on that socket. When a
network is ready for instantiation, the network editor invokes the execution monitor with the
use of the “remsh” command, and waits until the execution monitor is ready to receive the
network. The execution monitor then creates its own socket and attempts to establish
communication with the network editor. After communication is established, the editor sends

the network to the execution monitor.

During execution of the network, the execution monitor sends information regarding the status of

Background & Approach 32

the network back to the network editor via the socket. This information is sent only when there
is a change in the network status, such as a node changing from one state to another: pre-
instantiation to execution, active to idle (and vice-versa) within the execution state, or

execution to termination.

The tools database is stored as a file, which can be read and modified by the network editor.
The information stored in the tools database is used for driving the tool specification process, as
mentioned above. Modification of the database occurs when the user saves a subnetwork as a
network tool. The network tool’s network is stored in a file, and a network tool record is created
for the databas;e, including the name of the file in which the network is stored. There are other

alternatives for storing a network tool, and these are discussed in Section 3.5.

2.2 Achieving the Goals of this Research -

Developing a portable Taskmaster environment and achieving conceptual consistency among
operations supported by the network editor are the goals of this research. The approach taken
to achieve these goals in Taskmaster are discussed briefly in the following sections. The
attainment of user interface consistency is discussed in detail in Chapter 3; A detailed

discussion on the achievement of portability can be found in Chapter 4.

2.2.1 Portability

The portability of software depends on the components of the software, namely
* the implementation language,
* any software packages used (such as math or graphics packages),
¢ the required hardware, and

¢ the required operating system.

Background & Approach 33

Using standard components, i.e. standard languages, software packages, hardware and
operating systems, contributes greatly to the portability of software. Not only must standard
comp(.)nents be used, but they must be used in a standard manner; e.g. Assume the software must
use standard operating system A and standard hardware B. If it is not common for B to support

A, then the software does not use its components in a standard manner.

The portability of the Taskmaster environment also depends on its components. Using standard
components for the implementation of Taskmaster in a standard manner will provide
portability in the environment. The implementation language of Taskmaster.1 is C, the
graphics package used is GKS, the hardware is a VAXstation I and a VAX 11/785, and the
operating systems are MicroVMS and Ultrix. C is a common programming language, and
therefore this component of the environment need not be changed to achieve portability. The
hardware used does not reflect any requirements of the Taskmaster environment, but
requirements of the graphics package and operating system, and therefore plays no direct role
in the portability of Taskmaster. The graphics package and the operating systems used in the
implementation of the Taskmaster.1 environment both contribute to the lack of portability of

the environment, as discussed in detail in the following paragraphs.

Taskmaster.1 uses the GKS package, level Ob, to implement the graphics used by the network
editor. To achieve a higher level of portability, the network editor of Taskmaster.2 uses the X
Windowing System, version 11 (also referred to as X and X11 in this thesis). As mentioned in
[JERN87], the GKS standard leaves too many important issues open to the developer of a GKS
implementation, which results in lack of program portability, even when porting to another
GKS implementation. Another factor affecting the portability of Taskmaster is the changing
graphics standards and the emergence of new graphics packages. Although many graphics

packages are touted as the standard, X is emerging as a de facto standard [ANDE88], [JERNS87],

Background & Approach 34

[KEEF88], [PATES88], [POUN89]. The X Windowing System can be implemented on any
operating system, although it has been developed mainly under UNIX [POUN89]. This allows
X to be portable, which in turn allows the network editor of Taskmaster.2 to be portable. As
mentioned in [PATES88], often the functionalities of graphic systems and of windows
management are developed in separated ways. The X Windowing System combines graphics
and windowing capabilities, allowing the programmer to have complete control over the entire
display in a consistent fashion. This is also in concert with one of the goals of this research

effort.

Taskmaster.1 is physically located on two machines that have different operating systems,
UNIX and VMS. Because of this, the.environment is not easily ported. The first step in
achieving portability with respect to the operating system is to implement Taskmaster on
machines with the same operating system. The next step is to choose an operating system that
is standard and can be used in a standard manner with the rest of the implementation
components. Like the X Windowing System as a graphics package, UNIX is a de facto standard
as an operating system [SCANS8], [PERL86a]. Combining the UNIX operating system with the
X Windowing System and C is common. The portability and popularity of UNIX combined with
the portability of X allows the entire Taskmaster package — both the network editor and the
execution monitor - to be highly portable. Taskmaster.2’s network editor and execution monitor
both reside on machines that have UNIX as thé operating system. Because of this,
Taskmaster.2 can also run on a single UNIX machine. The communication between the network
editor and execution monitor is also effected by both components residing on UNIX machines.
This communication is achieved with the use of sockets, which can be used regardless of

whether or not the two components reside on the same machine.

In summary, to achieve portability of the Taskmaster interface

Background & Approach 35

* a standard graphics package must be used, and

*the environment must be supported by standard operating systems, between which

communication is possible.

The graphics of Taskmaster.2 are supported by the X Windowing System. Both components of

the Taskmaster.2 environment are implemented under the UNIX operating system.

-2.2.2 User Interface Consistency

“The work of a user who interacts with multiple applications can be greatly simplified if the
user interface across these applications is consistent.” [UHLI88]. This also holds true for the
user of a single application - the work of a user who uses any application can be greatly
simplified if the user interface within the application is consistent. When presented with a
consistent interface the user can transfer his learning within the application, allowing him to

spend more time problem solving [POLS88].

There is general agreement that consistency in a user interface is a goal for which to strive
[SCHNS87], [UHLI88], [LEWI89], [BERR88], [PERL86b], [PAYNS86]. Although a precise
definition for consistency is elusive, guidelines for achieving consistency do exist. These
guidelines include

* presenting the display in the same manner in similar situations,

* using the same terminology throughout the interface,

¢ placing error messages and instructions in the same location each time they are

displayed, and
* requiring the use of the same command for the same results in similar situations

[SCHNS87].

Background & Approach 36

The Taskmaster.1 interface follows the first of these guidelines. An example of this is the
“Exit” button the appears during some operations. Whenever this button is displayed, it is in
the upper right hand corner of the current window. The second guideline, using the same
terminology throughout the interface, is not adhered to by the Taskmaster.1 interface. The

names of some of the menu selections do not follow this guideline, as is discussed in Section 3.7.

The Taskmaster.1 interface does adhere to the third of the guidelines above; Error messages
and instructions are displayed in the same location each time they are displayed. However,
this can be a disadvantage. Messages are displayed in separate “pop-up” windows. Even if the
user moves the window, the window appears in the original position the next time a message is

displayed. A better expression of this guideline with respect to windows is

¢ placing error messages and instructions in the same location as they last appeared.

The three main areas in the Taskmaster.1 interface which lack in consistency reflect a lack of
adherence to the fourth guideline; The same command cannot be used in similar situations with
similar results. These areas are:

* arc operations,

¢ the relationship between network and atomic tools, and

* expansion and deletion of nodes.

Taskmaster.1 restricts arc operations by requiring atomic nodes at the ends of an arc at the time
of arc operations. This is not a restriction in version 2. The user can perform these operations
regardless of the types of the nodes at the ends of the arcs. Such an approach allows the user to
specify communication paths to subnetworks within super nodes without exploding the super
nodes. As well as achieving consistency within these operations, removing this restriction

allows for easier mixing of top down and bottom up problem solving. The modifications to arc

Background & Approach 37

operations are discussed further in Section 3.4.

Network tools and atomic tools are very different concepts in Taskmaster.1, requiring that the
user master two distinct methods of attaching a tool to a node. Attaching an atomic tool is
accomplished with the specify node operation in Taskmaster.1, whereas the attach network
tool operation is required for retrieving a network tool. Attaching a network tool results in the
network tool’s subnetwork being retrieved from the file in which it was previously stored. This
subnetwork is attached to a node selected by the user, which, in turn, becomes a super node. In
Taskmaster.2, the specify node operation results in all of the atomic tools and network tools
being presented to the user for selection. The ability to import the subnetwork of a network tool,
as provided by the attach network tool operation in Taskmaster.1, is not lost and is furnished
by the same operation in Taskmaster.2. The different methods for achieving this tool

consistency, as well as the method used, are discussed in Section 3.5.

Atomic nodes and super nodes are similar in many ways; This similarity is reflected more
completely in Taskmaster.2 than in Taskmaster.1. Both versions of Taskmaster allow both
types of nodes to be moved, to be viewed and to be included in a subnetwork either for saving as
a network tool, or for collapsing. The delete node and expand node operations are allowed only
on atomic nodes in Taskmaster.1; This inconsistency is rectified in Taskmaster.2. The different

approaches for achieving node consistency are discussed in Section 3.6.

In summary, to achieve consistency in the Taskmaster interface, adherence to the following
guidelines must be enforced:

¢ using the same terminology throughout the interface,

» placing error messages and instructions in the same location as they last appeared, and

* requiring the use of the same command for the same results in similar situations.

Background & Approach 38

Special attention needs to be paid to enforcing the last guideline with respect to
® arc operations,

e the relationship between network and atomic tools, and

* expansion and deletion of nodes.

2.2.3 Summary of Goals Achievement

To achieve portability of the Taskmaster interface
¢ a standard graphics package must be used, and

ethe environment must be supported by standard operating systems, between which

communication is possible.

To achieve consistency in the Taskmaster environment, the following guidelines must be

enforced:
* using the same terminology throughout the interface,
» placing error messages and instructions in the same location as they last appeared, and

» requiring the use of the same command for the same results in similar situations.

Background & Approach 39

Chapter 3

Achieving a Consistent User Interface

3.1 Introduction

This chapter discusses presentation and dialogue consistency issues in the Taskmaster user
interface. In Section 3.2, the advantages of a uniform interface are discussed. The major areas
currently lacking consistency in the Taskmaster interface — arcs, tools, and nodes, — are briefly
outlined in Section 3.3, with each area discussed in detail in a separate sub-section. Resolving
arc discrepancies is discussed in Section 3.4. The discussion about the forced inconsistent use of
tools is approached from two viewpoints, that of the user and that of the network editor. Both
of these viewpoints are discussed in Section 3.5. The discussion of the user’s viewpoint is first,
due to the user’'s viewpoint impacting the network editor’s viewpoint. The lack of a uniform
representation of nodes is discussed is Section 3.6. As well as rectifying the major inconsistencies
in the Taskmaster interface, other areas in the Taskmaster interface have also been enhanced.

These enhancements are discussed in Section 3.7.

40

3.2 Consistency

“The advantages of consistency lie in facilitating generalizations by the user, who having
learned some parts of the system can then infer others.” [PAYN86]. Although Payne and Green
are referring to the consistency of commands in a command language, this statement can be
applied to commands in any user interface. An example of a consistent command in the
Taskmaster environment is the view node operation. Once the user has used this operation to
view the description of an atomic node, the operation necessary to view the description of a

super node is easily inferred.

Consistency can be applied to the presentation of the interface, as well as the commands offered
by the interface. For example, in Taskmaster the “Exit” button always appears in the upper
left hand corner of each window. Another example is the graphical depiction of the nodes. An

unspecified node, whether it is an atomic or super node, is grey while a specified node is black.

There is general agreement that consistency in a user interface is a goal for which to strive
[SCHNS87], [UHLI88], [LEWI89], [BERR88], [PERL86b], [PAYNS6]. Although a precise
definition for consistency is elusive, guidelines for achieving consistency do exist. These
guidelines include using the same terminology throughout the interface, placing error messages
and instructions in the same location each time they are displayed, and requiring the use of the

same command for the same results in similar situations.

Grudin [GRUD89] cautions against the notion of consistency when applied without regard to
other interface issues, such as ease of use. He claims that although consistency may help ease
of learning, it may hinder ease of use. He is also concerned about creating a user interface that
is consistent to the designers, but not the users — inappropriate consistency. An example he gives

involves the decision made regarding the printing of folders (directories). When the print

Achieving a Consistent User Interface 41

command is executed for a folder, two choices are available: printing a hard copy of the listing
of the folder; or printing a hard copy of all the documents in the folder. The first choice is
preferred by the designers of the system, while the second is more appropriate to the users

[GRUDS9].

Both of the above issues — achieving consistency with a loss to ease of use and achieving
inappropriate consistency - have been considered while deciding how to integrate
enhancements into the Taskmaster interface. Ease of use has not been sacrificed. In fact, the
system is more flexible and easier to use, as is explained below in the descriptions of the
changes made. None of the changes involve inappropriate consistency. All changes are for the
benefit of the user; the difficulty or ease of implementing the changes has played no role in

deciding the best way to achieve this goal.

3.3 Inconsistency in the Taskmaster.1 Interface

3.3.1 Terminology

Recall the following terminology from Section 2.1.1. A tool is a program which performs a
single high-level operation. There are two types of tools: atomic and network. Atomic tools, as
the name implies, are single units and cannot be decomposed. A network tool is a tool composed
of many other tools. These are created by the user and stored in the database for future use.
There are also two types of nodes in the Taskmaster environment, atomic and super, both of
which can be specified or unspecified. A specified atomic node represents a tool from the
database. An unspecified atomic node is a place holder in the network topology. A super node
represents a subnetwork. If all nodes in that subnetwork are specified, then the super node is

specified. If at least one node in that subnetwork is unspecified, then the super node is

Achieving a Consistent User Interface 42

unspecified. A node that is not included in the subnetwork of a given super node is considered
external to that super node and is referred to as an external node. A node in the subnetwork of a

super node is correspondingly termed an internal node.

Note that network tools and super nodes are closely related. A super node represents a
subnetwork of nodes, which may or may not have tools attached to them. A network tool, once
created, is also a subnetwork of nodes, but in this case each node has a tool attached to it. The
major difference between super nodes and network tools lies in their presentation to the user.
The user views a super node as a subnetwork of nodes. The user can perform any operations on
the super node that are applicable (see Figure 2.5). A network tool, on the other hand, is
viewed as an atomic node. Only the operations allowed on specified atomic nodes are
permitted. Note that the expand and explode operations allowed on super nodes are not

allowed on network tools.

3.3.2 The Inconsistencies in the Taskmaster.1 User Interface

The three major areas of the Taskmaster.1 interface that are lacking in consistency are the
three main objects presented to the user: arcs, tools, and nodes. First, arc operations cannot be
performed on an arc that has a super node at an end. Both the input and output ends of the arc
must be atomic nodes. This conflicts with the purpose of the arcs: indicating data flow. Second,
atomic tools are found in the tools database and the user can attach these tools to nodes with
the specify node operation. When the user creates a network tool, it is stored as a network.
Retrieving the network tool is accomplished with a different operation than that of the one
used to retrieve an atomic tool; once the retrieval is complete, the node representing the
network tool is a super node and is treated as such. This contradicts the idea that a tool that

can be retrieved by the user from the database without worrying about the tool’s underlying

Achieving a Consistent User Interface 43

representation. Third, atomic and super nodes are treated differently, even in cases when it is
natural to treat them the same (and makes sense to do so). This can be seen with the expand and
delete node operations. Neither of these operations, however, can be applied to a super node in

Taskmaster.1.

3.4 The Consistency of Arcs

As previously mentioned, Taskmaster.1 does not allow arc operations to be performed on arcs
with a super node at either end. The primary purpose of arcs is to indicate data flow, and data
flow can occur between super and atomic nodes. The ports of a super node are the ports from its
subnetwork that are necessary for communication with the network external to the super node
(see Section 3.6.1 for a more detailed discussion). Effectively, the super node does have ports,

and communication can exist between the super node and its surrounding network.

In order to allow arc operations to be performed on arcs with a super node at either end, several
issues must be resolved:
¢ When creating an arc with a super node at an end, to which internal node of the super
node is the arc attached?
* When specifying a node that has a super node at an end, which port are available for
establishing communication?
¢ When creating a super node with the collapse operation, what happens to the arcs that
are connected such that one node is internal to the super node and the other is external to
the super node?
¢ If a node, whether atomic or super, has arcs before expansion is applied, what happens

to these arcs after expansion is complete?

Achieving a Consistent User Interface 44

¢ When exploding a super node, what happens to the arcs of the super node?

Further explanation of these questions and solutions are discussed in detail in the following

sections.

3.4.1 Consistency in Arc Creation

Both super and atomic nodes have ports, and therefore both can have data flowing to or from
them. Allowing arc creation involving super nodes raises some important issues and questions.
When the user indicates that an arc has a super node at one end, to which internal node is the
arc actually attached? One possibility is to all the intermal nodes of the super node.
Graphically, this is depicted as one arc between the external node and the super node.
Unfortunately, this leads to ambiguity when selecting an arc for an arc operation. For example,
the network shown in Figure 3.1b has a super node super] that represents atomic nodes atomic]
and atomic), both of which have arcs to atomic4, as is shown in Figure 3.1a. Graphically there
is one arc between super] and atomicq, although atomicq actually has established
communication paths with both atomic] and atomic2. When the user selects the arc between
super] and atomic4 in Figure 3.1b, which arc is really being selected? The one between atomic]
and atomic4, or the one between atomic) and atomic4? Another possibility is attaching the arc
to any internal node that supplies the super node with at least one port. Again, this leads to
the same type ambiguity mentioned above when selecting an arc for manipulation. A third
possibility is attaching the arc to the super node itself. This third option appears to be the
more preferable because it does not have the ambiguity that is present in the other options and
helps achieve the goal of consistency. In Taskmaster.2, when the user creates an arc with a

super node at an end, the arc is attached to the super node.

Achieving a Consistent User Interface 45

_

' atomic

! (@)

()

Figure 3.1

Collapsing with Arc Preservation

Achieving a Consistent User Interface 46

3.4.2 Consistency in Arc Specification

Another important question to be answered concerns arc specification. Specifying an arc allows
the user to define the communication between the nodes at the ends of the arc by identifying
which ports from the output node supply data to the ports of the input node. When specifying
an arc that has a super node at an end, which ports are made available for establishing
communication with the super node? Two altemative§ present themselves as solutions to this
question: the ports of the super node as supplied by its subnetwork (see Section 3.6.1 for a
complete discussion on the ports of a super node); or all of the ports from the internal nodes of
the super node. When specifying an arc that has atomic nodes at both ends, the ports of the
atomic nodes are the ports presented for specification. To support consistency, the first option is
the one implemented in Taskmaster. Just as the ports of an atomic node are presented to the user

during arc specification, so are the ports of a super node.

3.4.3 Maintaining Arc Consistency: Ramifications on the Collapse Operation

Allowing arc operations on arcs attached to super nodes impacts the collapse operation. In
particular, when creating a super node with the collapse operation, what happens to the arcs
that are connected such that one node is internal to the super node and the other is external to

the super node? There are four alternatives:

* leave the arcs attached to their original nodes,
* delete the arcs between the original nodes,

* delete the arcs between the original nodes and for each arc, create a new arc between the

external node and the new super node, or

¢ delete the arcs between the original nodes and for each arc, add the external node to a set

Achieving a Consistent User Interface 47

of nodes, N. For each node n in the set N, create an arc between n and the new super node.
Figure 3.1a shows a network with atomic nodes atomic1, atomic2, atomic3, and atomicg before
applying the collapse operation. After applying the collapse operation to nodes atomici and
atomic), the network is displayed as shown in Figure 3.1b, with super node super] representing
the subnetwork containing nodes atomic1 and atomic2. Graphically, there is one arc between
atomic4 and superi in Figure 3.1b. Leaving the arcs attached to their original nodes when a
super node is created causes confusion when performing arc operations In particular these
operations are ambiguous when applied to the arc between atomic4 and super] in Figure 3.1b.
Which arc is the one being selected, the one that connects atomic] to atomicg or the one that
connects atomic2 to atomic4? Using the second alternative, deleting the arcs between the
original nodes, forces the user to recreate any arcs required for communication between the super
node’s underlying subnetwork and the network external to the super node. The third
alternative also creates ambiguity. If there are two nodes internal to the super node with arcs
to the same external node, such as atomic] and atomic? to atomic4 in Figure 3.1, two arcs will be
created between the external node and the super node. These problems are avoided in the
fourth alternative. Only one arc is created between the super node and any given external node.
The created arcs are attached to the external nodes and the super node, not the internal nodes of
the super node. The fourth alternative preserves the communication paths while removing any

ambiguity during arc specification, and is the one employed by Taskmaster.2.

3.4.4 Maintaining Arc Consistency: Ramifications on the Expand Operation

Both atomic and super nodes can be expanded using Taskmaster.2. Recall that expanding an
atomic node allows the user to create a subnetwork to be associated with that node. Expanding
a super node allows the user to modify the subnetwork associated with the super node.

Allowing arc operations to be applied to arcs attached to super nodes impacts the expand

Achieving a Consistent User Interface 48

operation. If a node, whether atomic or super, has arcs before expansion is applied, what
happens to these arcs after expansion is complete? When expanding an atomic node in
Taskmaster.1, the arcs are deleted. This option was one of three possibilities considered for the

expansion of atomic nodes in Taskmaster.2:

¢ delete the arcs,

o delete the arcs and for every arc create an arc between each internal node of the new super

node and the external node, or

¢ delete the arcs and for every arc create an arc between the new super node and the
external node.
As mentioned above during the discussion of the ramifications of maintaining arc consistency on
the collapse operation, deleting the arcs forces the user to recreate any arcs required for
communication between the super node’s underlying subnetwork and the network external to the
super node. Using the second alternative creates the same ambiguity mentioned in the
discussion of arc creation above. The third option maintains a uniform relationship between
arcs and nodes while avoiding ambiguity, and is the one implemented in Taskmaster.2. On
completion of the expand operation applied to an atomic node, all arcs attached to the
pre-expanded atomic node are re-created with one end at the new super node and the other at

the external node.

When expanding a super node, an operation not allowed by Taskmaster.1, the same question
arises: what happens to the arcs between the super node and the surrounding network? In this

case, the super node is already in existence, and its arcs can be preserved.

3.4.5 Maintaining Arc Consistency: Ramifications on the Explode Operation

Recall that applying the explode operation to a super node replaces the super node with its

Achieving a Consistent User Interface 49

underlying subnetwork. Allowing arc operations on arcs attached to super nodes impacts the
explode operation. When exploding a super node, what happens to the arcs of the super node?

Again, four options exist:

* delete the arcs of the super node,

¢ delete the arcs of the super node and for every arc, create an arc between each of the

internal nodes of the super node and the external node,

» delete the arcs of the super node and recreate any arcs between the internal and external
nodes of the super node that existed before the creation of the super node, or
* delete the arcs of the super node and for each specified arc of the super node, create an arc
between the external node and the internal node that contains the port connected to the
external node’s port.
As mentioned earlier, simply deleting the arcs results in the the loss of established
communication paths. Creating an arc between each of the internal nodes and the external node
for each arc results in an excessive amount of arcs, many of which are not desired by the user.
Recreating arcs that existed before the creation of the super node is appropriate, but doesn’t go
far enough. This is true of the fourth alternative also. Therefore, the solution employed by
Taskmaster.2 is the combination of the third and fourth alternatives. That is, the arcs of the
super node are deleted, any arcs existing before the creation of the super node are re-created,
and for each specified arc of the super node, an arc is created between the external node and the

internal node of the super node that contains the port connected to the external node’s port.

3.4.6 Maintaining Arc Consistency: Ramifications on Tool Consistency

Maintaining arc consistency decreases the differences between atomic and super nodes, which

simplifies maintaining tool consistency. As is discussed below in Section 3.5, a node representing

Achieving a Consistent User Interface 50

a network tool is presented to the user as a node representing an atomic tool: as an atomic node.
To the network editor, the node represents an underlying subnetwork, and is treated as such. By
allowing arc operations on arcs attached to super nodes (which also represent underlying

subnetworks), the implementation of a uniform user interface with respect to tools is simplified.

3.5 The Consistency of Tools

As mentioned previously, network tools and atomic tools are treated differently in
Taskmaster.1. To access a network tool, the user must select the “attach network tool”
operation, instead of the “specify node” operation used for retrieving an atomic tool. Once the
subnetwork of the network tool has been retrieved and attached to a node, the node is a super
node and is treated as such; the node has no special status as a network tool once the attach
network tool operation is complete. This presentation of a network tool differs from the
presentation of an atomic tool and can cause confusion. To support consistency in the tools of
Taskmaster.2, network tools are treated the same as atomic tools and the nodes to which they
are attached are treated the same as the nodes to which atomic tools are attached. Several
questions must be answered in achieving this uniformity with regard to both the user interface
and the implementation:

* How is a network tool retrieved by the user?

¢ Once a network tool has been retrieved and attached to a node, how is that node seen by

the user?
¢ How are the descriptions for the network tool acquired?
* How are the ports of the network tool determined?

* Where in the database should the network tool be stored?

* How is the network tool stored in the database?

Achieving a Consistent User Interface 51

The solutions to these questions are discussed in Section 3.5.1. These solutions impact the
implementation of tool consistency. This impact, as well as the issues it raises, is discussed in

Section 3.5.2.

Recall from Section 3.3.1 that super nodes and network tools are closely related. Although they
both represent subnetworks, their presentation to the user is different. Although the internal
representation of a network tool is the same as that of a super node, a node with a network tool

attached is presented to the user as an atomic node.

3.5.1 The User Interface: Tools

In order for the user to retrieve a network tool, it must first be created. The method used to
retrieve a network tool impacts the method used to create a network tool. Section 3.5.1.1
discusses the method used to retrieve a network tool in Taskmaster.2, as well as the status of a
node with a network tool attached. The creation of a network tool from the user’s viewpoint is

discussed in Section 3.5.1.2.

3.5.1.1 The User Interface: Network Tool Retrieval

How does the user retrieve a network tool? The attach network tool operation is used in
Taskmaster.1. To achieve consistency in the user interface among tools, in Taskmaster.2
retrieving a network tool is accomplished with the same operation as that used to retrieve an
atomic tool: the specify node operation. Allowing the user to retrieve a network tool with the
specify node operation has an impact on the storing of a network tool, both from the viewpoint
of the user, as discussed in Section 3.5.1.2, and from an implementation standpoint, as discussed

in Section 3.5.2.1.

Once a network tool has been retrieved and attached to a node, how is that node seen by the

Achieving a Consistent User Interface 52

user? Using Taskmaster.1, the user sees the node as a super node, and can perform operations on
the node as a super node. In Taskmaster.2 a node representing a tool, regardless of whether the
tool is an atomic tool or a network tool, is graphically depicted as an atomic node. The the user
can perform operations on the node as an atomic node, i.e. any operations allowed on an atomic
node can be applied to this node. The operations allowed on nodes depends on whether the node

is atomic or super, and whether the node is specified or unspecified, as can be seen Figure 2.5.

In both versions of Taskmaster, retrieving the subnetwork of a network tool is accomplished
with the attach network tool operation. The user selects a node to which the subnetwork is

attached, and that node consequently becomes a super node.

3.5.1.2 The User Interface: Network Tool Creation

Indicating the subnetwork to be designated as a network tool is accomplished in the same
manner in both Taskmaster.1 and Taskmaster.2: a polygon is drawn around the nodes that the
user wishes to include in the subnetwork. Acquiring the display name for the network tool is

also the same in both versions of Taskmaster: the user is prompted for the name.

Network Tool Descriptions: Taskmaster.1 does not allow a network tool to have a description
associated with it. In an effort to minimize the differences between network and atomic tools,
Taskmaster.2 permits a network tool to have a description. This necessitates the acquiring of a
description and the subsequent recognition of two alternatives: the user can supply the
description; or the network editor somehow infers a description from the descriptions of the
tools in the network tool’s subnetwork. Because the second alternative can result in a “hacked”
description, the user is prompted to supply the network tool’s description. Another factor to
consider is the short description of the tool that appears in the tools menu during node

specification. Obtaining this description can be achieved in one of two ways. Either the

Achieving a Consistent User Interface 53

network editor creates the short description from the long description given by the user, or the
user supplies a short one line description of the tool in addition to the long description. There is
no general algorithm that can be used by the network editor to create a short description from
the long description, therefore the user is also prompted to supply a short, one line description

of the network tool that will be used in the menus during node specification.

Network Tool Ports: Another set of issues surrounding network tools is the handling of
communication ports. In Taskmaster.1, the ports of a network tool are determined by the
network editor at the time of attaching a network tool. Allowing the user to treat a network
tool as an atomic tool requires the determination of the network tool’s port during network tool

creation. Determining the network tools” ports can be achieved in one of three ways:

e the network editor automatically determines the ports,

e the user indicates the ports, or

e the network editor determines default ports and the user can modify these defaults.
The first alternative is very strict and takes the control of network tool creation out of the
hands of the user. The second alternative provides no guidance to the user as to which ports are
appropriate for inclusion as ports of the network tool. The third alternative provides guidance
to the user without being restrictive or taking control away from the user, and is the one
implemented in Taskmaster.2. Using this alternative, however, leads to another question.
Which ports constitute the external interface of a newly created network tool? The choices
here are the same as for determining which ports are the ports of a super node, discussed in
Section 3.6.1, and the same solution is used. The default ports are the ports from the selected

subnetwork that are necessary to maintain functionality.

Network Tools in the Tools Database: In order to allow the user to retrieve a network tool using

Achieving a Consistent User Interface 54

the specify node operation as if it were a conventional tool, the network tool must be stored in
the tools database. How this is accomplished is (and should be) transparent to the user and is
discussed in Section 3.5.2.1. However, the location in the tools database for the network tool is
not transparent to the user. When using the specify node operation, the user is led through a
series of menus that reflect a hierarchy of tools in the database (Figure 3.2). A network tool
must be stored somewhere within this hierarchy. Does the network editor determine that
location or does the user? In an effort to leave control of network tool creation in the hands of
the user Taskmaster.2 allows the user to determine the hierarchical location of the network
tool in the tools database hierarchy. However, allowing the user to determine the
hierarchical location of the network tool raises another question. How does the user indicate
that location? One alternative makes use of windows and menus used during the specify node
operation. The user proceeds through the menu until reaching the menu that represents the
desired location for the network tool. In Figure 3.2, the user selects “File Operations” to
indicate that the network tool belongs in the same group as the “save file”, “open file”, “sort
file” and “delete file” tools. Another alternative makes use of the graphical abilities of the
network editor. A “tree” is drawn of the tools database using the nodes and arcs of the network
editor, where atomic nodes represent the tools in the database and super nodes represent the
possible locations in the database for storing the network tool (Figure 3.3). The tools from the
database are shown as examples in order to assist the user in selecting the appropriate location
for the network tool. The user indicates the location for the network tool by selecting the super
node that represents the desired location for the network tool. Both the menu and tree
approach allow the user to see the hierarchical structure of the database. The tree method,
however, allows the user to see the entire structure at a glance, whereas the menu method
requires the user to make a selection from the menu in order to see the next level of the

database. The tree method allows the user to more easily select the appropriate location for

Achieving a Consistent User Interface 55

@Tool Menu

all

Character Operations

Record Operations

@TOOI Menu

=]

Delete a File
Save a File

Sort a File

Figure 3.2

Specifying a Node

Achieving a Consistent User Interface

56

-

Figure 3.3

Network Display of Tools Database Hierarchy

Achieving a Consistent User Interface 57

the network tool. In addition to this advantage, the tree method presents insertion choices in a
graphical manner consistent with the overall design of the Taskmaster interface. The tree
method is the method employed by Taskmaster.2 for indicating the desired location in the

database for the network tool.

3.5.2 The Implementation: Tool Consistency

3.5.2.1 The Implementation: Network Tool Creation

Creating the Network Tool: As in Taskmaster.1l, when selecting the create network tool
operation the user is prompted to draw a polygon to indicate the subnetwork of the network tool
and to supply the display name of the network tool. As mentioned earlier, Taskmaster.2 allows
the user to supply a long and short description for the network tool; the network editor prompts
the user to supply these descriptions. The ports of the network tool must also be determined.
The network editor displays the complete set of ports from the nodes in the subnetwork to the
user, with the default ports highlighted. The user can modify these default ports by deleting

any of the defaults and by selecting others.

Storing the Network Tool: The network tool is fully defined after the subnetwork, long and
short descriptions, display name and ports have been determined. The only task left is that of
inserting the network tool into the tools database. As mentioned earlier, the user indicates
where in the tools database hierarchy the network tool belongs. The network editor draws a
tree of the hierarchy by creating a network that represents the hierarchy (Figure 3.3). By
presenting the hierarchy to the user in this manner, other network operations can be applied.
Although no functional modification to the hierarchy is allowed, the user can use the
operations that alter the view of a network: i.e. the zoom in, zoom out, pan, view node, and

move node. The leaves of the tree represent the tools that are already in the tools database

Achieving a Consistent User Interface 58

and are depicted graphically as atomic nodes. These are shown as examples in order to assist
the user in determining the appropriate location for the network tool. The internal nodes of the
tree represent the higher levels of the tools database and are depicted graphically as super
nodes. The arcs of the network do not represent communication paths and are shown simply to
indicate the connection between higher level nodes and the leaves and lower level nodes. The

user selects the super node that represents the desired location for the network tool.

After the user has indicated the location for the network tool in the tools database hierarchy,
the network editor must store the network tool in the database. How is the network tool stored
in the database? One option is storing the entire subnetwork in the database along with the
information necessary for the node specification process. A second option stores the information
necessary for the node specification process in the database, along with a file name. The file
name is the name of the file where the network tool’s subnetwork has been stored. The option
chosen does not have an impact on the user’s viewpoint in any way. Because of this, the second
option is the one employed by Taskmaster.2 due to the simplicity of the implementation.
Another advantage to storing the subnetwork in a file involves the size of the database. If the
entire subnetwork of a network tool is stored in the database every time a network tool is

created, the database becomes large and unwieldy [FANSS].

3.5.2.2 The Implementation: Network Tool Retrieval

When the user selects the specify node operation, the tool chosen may be an atomic tool or a
network tool, although the type of the tool is transparent to the user. If an atomic tool is
chosen, the network editor proceeds as in Taskmaster.1. If a network tool is chosen, the network
editor must retrieve the subnetwork from the file given in the database. The subnetwork is
attached to the indicated node and the node appears to the user as an atomic node. Allowing

the network editor to present the network tool to the user as an atomic tool is simplified by

Achieving a Consistent User Interface 59

maintaining arc consistency. A node with a network tool attached to it appears as an atomic
node to the user, and therefore the user expects that arcs can be attached to this node. To the
network editor, this node acts as a network node in many ways, and Taskmaster.1 does not allow

the user to perform arc operations on arcs attached to super nodes.

As mentioned earlier, once a network tool is retrieved and attached to a node, the network
editor considers this node both an atomic node and a super node. It is an atomic node both
graphically and operationally. That is, the node appears to the user as an atomic node and
only those operations that can be applied to atomic nodes may be applied to it (see Figure 2.5).
When applying these operations to this node, the network editor treats the node as a super
node. Similar to a super node, the node represents a subnetwork. The port representation of the
node within the network editor is the same as the representation for super nodes. Recall,
however, that the ports of a network tool are determined in a different manner than those of a
super node. The user determines the ports of a network tool at the time of network tool creation
and the network editor determines the ports of a super node at the time of its creation, (via

either the expand or collapse operation).

The retrieval of the subnetwork of a network tool is done with the same operation in
Taskmaster.2 as in Taskmaster.1, attach network tool. Once retrieved, the node to which the

subnetwork is attached is a super node both graphically and operationally.

3.5.3 A Ramification of Maintaining Network Tool Consistency

If the user saves network tools during an editing session, the database is modified. At the end
of the editing session the user may save the modified database. The user can also save the
modified database on the remote host by supplying a file name as a response to the appropriate

prompt. Allowing the user to save the modified database on the user workstation can lead to

Achieving a Consistent User Interface 60

several local databases. Because of this, at network editor invocation, the user is prompted to

select a database for use during the editing session.

3.6 The Consistency of Nodes

Despite their similarities the nodes of Taskmaster.1, atomic and super, are not consistent with
each other. In both versions of Taskmaster, super nodes have ports supplied using the method
described below in Section 3.6.1. However, the expand and delete node operations can be
applied only to atomic nodes in Taskmaster.1. Reconciling these differences is discussed in

Sections 3.6.2 and 3.6.3.

3.6.1 The Ports of a Super Node

The underlying subnetwork of a super node supplies the super node with ports. Three possible
alternatives are given in [RAGHS88] for determining which ports of the underlying network

become the ports of the representative super node:

* no external context preservation (Figure 3.5a),
¢ external functional context preservation (Figure 3.5b), or
 external relational context preservation (Figure 3.5¢).

Figure 3.4 shows a network with a polygon drawn to indicate the underlying subnetwork of a
super node. Although a network drawn in Taskmaster does not show the ports of the nodes, the
ports are drawn here to simplify the following discussion. The ports are numbered to facilitate

the comparison between Figure 3.4 and Figure 3.5.

Preserving no external context results in a super node with ports as shown in Figure 3.5a. These

are the ports within the subnetwork that are unconnected within the subnetwork. Figure 3.5b

Achieving a Consistent User Interface 61

Figure 3.4
Network with the Ports Shown

Achieving a Consistent User Interface

62

Figure 3.5
The Three Port Models

Achieving a Consistent User Interface

shows the results of applying external functional context preservation. These are the ports
within the subnetwork that are either unconnected within the subnetwork or are connected to an
external node or both. The third model, external relational context preservation, records all
external context information and is very context-specific, as is shown in Figure 3.5c. The ports

for this model are found by creating a port for every external link.

The model utilizing external functional context preservation is the one used in both
Taskmaster.1 and Taskmaster.2. This model supports reusability at the functional level

without relying on the surrounding network for this reusability.

3.6.2 Node Consistency and the Expand Operation

In Taskmaster.1 the expand operation can be applied to atomic nodes. This allows the creation
of a subnetwork, but not the modification. In order modify the subnetwork represented by a
super node, the super node must be exploded. The subnetwork then becomes part of the
surrounding network. This indicates that complete top-down and bottom-up task specification
[ARTH88] is not allowed in Taskmaster.l. In Taskmaster.2, the functionality of the expand
operation is completed. Whether expanding an atomic node or a super node, invoking the
expand operation causes a new window to be presented to the user. If the node being expanded is
a super node, the underlying subnetwork of the super node is displayed in the window for
modification. Expanding an atomic node results in a empty window being presented to the user
for network creation and modification. After exiting the expansion window, the newly created

or modified subnetwork is represented by a super node.

From an implementation standpoint, adding the ability to expand a super node creates new

concerns. In Taskmaster.1, the nodes in the subnetwork are not added to the complete network

Achieving a Consistent User Interface 64

until the expansion window is exited. When exiting the expansion of a super node in
Taskmaster.2, the network editor must not duplicate the nodes from the subnetwork existing
pre-expansion and must delete any nodes from the subnetwork deleted during modification in

the expansion window.

3.6.3 Node Consistency and the Delete Node Operation

Taskmaster.1 does not allow the deletion of a super node. Taskmaster.2 has remedied this
inconsistency by allowing the user to delete a super node. As when deleting an atomic node, a
confirmation is requested from the user before deletion occurs. The arcs associated with the
super node are deleted, all of the nodes iﬁ the underlying subnetwork are deleted, and any

established communication paths are deleted as well.

3.7 Additional Enhancements to the User Interface

Several other areas of the Taskmaster.1 user interface are inconsistent. For example, upon
invocation of the network editor, the user is asked whether or not to update the database via a
prompt at the terminal screen. It is natural to ask this question with the same window that is
used at all other times for getting a yes/no response, as is done in Taskmaster.2. As mentioned
earlier, one guideline to achieving a consistent interface involves using the same terminology
throughout the interface. This guideline is not followed in the Taskmaster.1 interface.
Nowhere in this thesis or in the user interface is the subnetwork of a network tool referred to as
a tool composite. In view of this, the attach tool composite and save tool composite operations
of Taskmaster.1 are now named attach network tool and create network tool respectively.
Although the node operations in the main menu of Taskmaster.1 are create node, delete node,

specify node and view node, the arc operations are create arc, delete arc, specify communication

Achieving a Consistent User Interface 65

path and view communication path. These last two operations are now named specify arc and
view arc respectively. Another confusing operation is the create network operation of
Taskmaster.1. Selecting this operation results in prompting the user to either create a new
network or open a previously saved network. Since these two operations are different from each
other, they are both in the main menu of Taskmaster.2 as create new network and open network
respectively. Another inconsistency in the main menu of the Taskmaster.1 is the organization
of the commands. Taskmaster.2 uses the grouping presented in Section 2.1.3, as can be seen in
Figure 2.8, while Taskmaster.1 uses the following grouping (the names of the operations are the

names used by Taskmaster.2 to allow for easy comparison):
* Node Operations
Create Node, Delete Node, Move Node
Specify Node, View Node, Expand Node
e Arc Operations
Create Arc, Delete Arc
Specify Arc, View Arc
¢ Abstraction Operations
Collapse, Explode, Save Network Tool, Attach Network Tool
* Topology Viewing Operations
Zoom In, Zoom Qut, Pan
* Network Storage and Retrieval
* Save Network on Disk, Create New Network, Open Network
* Error Recovery
Undo Last Operation

o Network Execution

Achieving a Consistent User Interface 66

Execute Network.

Taskmaster.2 allows the user to exit any operation at any step of the operation, and also allows
the user to exit any operation by typing ctrl-e. Taskmaster.1 does not supply the user with the
ability to exit any operation at any step, and typing ctrl-e works in some cases but not others. In
Taskmaster.2, exiting any menu, including those shown during node specification, can be
achieved by either typing ctrl-e or by selecting “Exit” from the menu. When the user is
prompted to type in a string, exiting can be accomplished by entering a null string or by typing
ctrl-e. When presented with a window, such as the network topology window or the node
viewing window, the user can exit by either clicking the mouse on the exit button or by typing
ctrl-e. When supplying a description for a super node or network tool, the user can exit the
operation by typing ctrl-e. In all these cases, typing ctrl-e will allow the user to exit the

operation.

Once a user is familiar with the Taskmaster interface, the user may not need the detailed
instructions that are provided at every step. The displaying of the instructions takes time, and
an experienced user may wish to dispense with the instructions. At the invocation of
Taskmaster.2’s network editor the user is prompted to select either expert mode, which

provides no instructions, or novice mode, which provides the detailed instructions at every step.

Another enhancement provided to assist the user is the use of menus during network saving and
retrieval. Taskmaster.1 requires the user to type in a name when saving or retrieving a
network. When retrieving a network in Taskmaster.2, the user is presented with a menu
containing a list of the previously saved networks, thus lifting the requirement that the user
remember the exact names of all previously saved networks. When storing a network in

Taskmaster.2, a user is shown a list of the previously saved networks and prompted to type in a

Achieving a Consistent User Interface 67

network name in order to prevent overwriting a previously saved network. These menus are

used during network tool creation and network tool network retrieval as well.

Achieving a Consistent User Interface 68

Chapter 4

The Port

4.1 Introduction

To achieve the goal of portability, Taskmaster.2 employs a different graphics package and
operating system than those of Taskmaster.1. As a side effect of changing the graphics package
and operating system, the hardware that Taskmaster.2 uses is different than that of
Taskmaster.l. The implementation of Taskmaster.2’s network editor uses the X Windowing
System Version 11 (X11) on a Macintosh II running A/UX , while Taskmaster.1 uses GKS level
0b (GKSOb) on a VAXstation I running MicroVMS. The execution monitor of both versions is
implemented on a machine with the UNIX operating system Ultrix-32: Taskmaster.2 on a
VAXstation 2000 and Taskmaster.1 on a VAX11/785. These variations lead to many
differences in the implementation of the two versions of Taskmaster. The change in graphics
package has the greatest impact, due to the dissimilarity of the two packages. The two
packages used are discussed in Section 4.2 with emphasis on the differing elements of the

packages that affect the implementation of Taskmaster. As discussed in Section 4.3 the

69

variation in respective graphics packages leads to differences in the Taskmaster
implementation, some of which are transparent to the user, and others visible to the user.
Changing the operating system of the network editor has many advantages; many of them stem
from the fact that both executable components of Taskmaster.2 (the network editor and the
execution monitor) will run under the UNIX operating system. The differences in
implementation due to the change in operating system are discussed in Section 4.4. The
difference in hardware supporting the network editor associated with the two versions has
caused variations in the implementations, all of which are visible to the user. These

variations are discussed in Section 4.5.

4.2 GKSO0b versus X11

The portability of applications using GKS is greatly affected by the different levels of GKS.
Within a given version the levels in GKS, 0a to 2c¢, represent levels of functionality, with a
given level incorporating all the functionality of the levels below it and then adding some of
its own. This means that an application implemented at a given level of GKS can be
implemented at any higher level, i.e. GKS has upwards level compatibility. This is not the
case with the X Windowing System. An application using a given version of X is portable to
any system hosting the same version of the X Windowing System. For both GKS and X, there is
no guarantee of version compatibility, either from an older version to a newer version (upwards
compatibility) or vice-versa (downwards compatibility). However, X11 provides a set of
routines to make it easier to port applications from X10 to X11, while in GKS the upwards
version compatibility depends on the implementation. Version compatibility is not to be
confused with the level compatibility of GKS mentioned above. The packages used by

Taskmaster.1 and Taskmaster.2, i.e. level Ob of GKS (also referred to as GKSOb in this thesis)

The Port ' 70

and X11 respectively, are discussed in the following sections. See [ENDE84] and [VAXG84] for
more detailed discussions about GKS and [NYE88a] and [NYE88b] for more detailed discussions
about the X Windowing System. Section 4.2.1 discusses some background for both packages.
Differences concerning the control of windows and their contents, are discussed in Section 4.2.2.
The greatest differences between the two packages concern the input and output capabilities,

discussed in Sections 4.2.3 and 4.2.4 respectively.

4.2.1 General Background

4.2.1.1 The X Windowing System

The X Windowing System can run on multiple machines (connected via a communication
network) due to its client-server implementation. The server software controls the display and
the input devices, while the application programs are the clients. The two terms, application
program and client, are used interchangeably in this thesis. The server and clients communicate
by sending packets of information across the network; these packets are interpreted by Xlib, the
C-language interface to X. One type of packet, an event, “... is a packet of information that is
generated by the server when certain actions occur, and is queued for later use by one or more
clients.” [NYE88a, p35]. Events are the principle method by which clients get information.
There are different types of events, including types containing information about input,
windows and other clients. Event management is handled with event loops within the
application program. These loops check for key presses, mouse movement and clicking, and

window events. On receiving an event, the action appropriate to that event is taken.

4.2.1.2 GKSo0b

During the execution of a program using the GKSOb graphics package, GKSOb is in a precisely

defined state whose elements consist of the operating state and the values of variables in state

The Port 71

lists present in a GKSOb system. The state can be changed by either directly calling certain
functions or through side effects of function calls. Depending on the operating state, calling a

specific GKSOb function may or may not be allowed [ENDE84, p45].

4.2.2 Windows and Their Contents

The GKSOb graphics package manages the windows and events for the programmer, while the
X Window System gives the control to the programmer. Switching this control from the
graphics package to the application program hindered the port of Taskmaster, yet helped
with achieving the goal of consistency. How the control switch aided in achieving the goal of
consistency is explained in section 4.2.3. The control switch hinders the port, however, by
requiring that the application program handle window management. In turn, this requirement
adds additional complexity to the application software. Window management includes
refreshing the contents of windows whenever necessary. For example, when a window is
mapped to the screen, i.e becomes visible, it can obscure other windows that are already
mapped. Unmapping this window causes the other windows to become visible, and thereby,

requires the contents of these other windows to be refreshed by the programmer.

The term “window” has different meanings in X11 and GKSOb. These different meaning do not
themselves lead to difficulty in porting Taskmaster from GKSOb to X11, but they are explained
here to clear up any confusion caused by these different meanings. In X11, “a window is a
rectangular area that works in several ways like a miniature screen.” [NYE88b, p19] Windows
appear on the screen and can be manipulated by the user. The different windows visible at one
time can each be reflecting a different activity. In GKSOb, a window is “a predefined part of a
virtual space.” [ENDE84, p27]. It is a rectangular region used by the application program for

specifying coordinates for various operations. An X11 type window can be simulated in GKS0b

The Port 72

by treating one screen as multiple workstations. In this thesis, the term “window” refers to the

concept of an X11 window, unless specifically noted otherwise.

4.2.3 Input Capabilities

Input in X11 is controlled through the use of events, while in GKSOb getting input from the user
is achieved through the use of several input functions. Achieving the goal of consistency is
aided by the events of X11. These events allow the application program to get input from
several input devices at one time, while in GKSOb only one input device can supply input at a

time. The advantages of this are explained in more detail in Section 4.3.3.

The user of an application program can generate input events in X11 by moving the mouse,
clicking the mouse button, or pressing a key. These events are queued with any other generated
events, and the client can then access them from the queue. In this way, the client can access
any kind of the input at any time. Some input is not appropriate at certain times, e.g. a mouse
click when the client has requested a string from the user. The client can choose to ignore the
events generated by such input or issue an error message. Note, however, that all events are

added to the queue and the client can use or ignore them as appropriate for the application.

As mentioned above, GKSOb handles input in a very different manner. Input is requested by the
application from a specific logical input device. A logical input device is an abstraction of one
or more physical input devices, e.g. a keyboard and a number pad; each logical input device
belongs to an input class. An input class groups logical input devices together based on their

functions. The different input classes of GKSOb provide different forms of input:

* Locator — provides the position given by the user positioning a locator input device, such

as a mouse;

The Port 73

» Stroke — provides a sequence of positions given by the user positioning a locator input
device at several different locations;
e Valuator — provides a real number supplied by the user with the use of a valuator input
device, such as a number pad;
¢ Choice — provides a non-negative integer which represents a selection from a number of
choices supplied by the user choosing one possibility from a choice input device, such as a
menu; and
* String — provides a character string entered by the user from a string input device, such as
a alphanumeric keyboard [ENDE84, p34].
Only one specific logical input device can supply information at a time. This prohibits the
application from allowing the user to supply input in more than one way. For example, if the
user is presented with a menu, a choice must be made from the menu before any other processing

can take place.

When requesting input using GKSOb, the application can require that the input supplied the
user be immediately echoed back to the user. This capability does not exist in X11, although it
can be simulated by the application program. The lack of echo capability in X11 has a
significant impact on the port, because the simulation of echoing is slow. The alternatives and

the method used in Taskmaster.2 are discussed in Section 4.3.2.

4.2.4 Output Capabilities

4.2.4.1 Coordinates

X11 and GKSOb have different coordinate systems, which also impacts the port of Taskmaster
by requiring a revision of the calculations to support graphical output. In X11, each window has

its own xy axis with the origin in the upper left hand corner of the window; additionally, the

The Port 74

coordinate units are represented by pixels. An xy axis is used in GKSOb also, but with the origin
in the lower left hand corner of each window. The application program determines the units
with the use of world coordinates in GKSOb. When requesting graphical output, the
application program indicates in which window the output is to be displayed, and the
coordinates given are relative to the origin of that window For a complete discussion and
explanation of the different coordinate sets in GKS, see [ENDE84]. Recall from Section 4.2.2

that GKSOb can simulate X11 type windows by treating one screen as multiple workstations.

4.2.4.2 Setting Graphics Attributes

When creating a picture on the screen, a graphics package requires values for certain attributes
in order to determine how the picture is to be drawn. For example, to draw a line, the graphics
package need to know the line width, and the line style, e.g. solid or dashed. The values for
such attributes can be supplied by the application program, or provided through initial default

values.

X11 allows the client to set attribute values through the use of a data record called a graphics
context. In GKSOb, each graphics function has its own set of attributes. These attributes can be
set calling a specific function for an attribute, such as changing the line width attribute via a
“set line width” function. This difference mandates a revision in the setting of the graphics
attributes in Taskmaster. Instead of calling a function every time an attribute must be changed,
as in Taskmaster.1, many different graphics contexts are created in Taskmaster.2, each with

different attribute settings.

A graphics context (GC) contains the values for all attributes that X11 requires in order to
correctly draw an image on the screen. When invoking a graphics function, the application

program indicates which attribute values are to be used by passing a GC to the function. The

The Port 75

application program can have several GCs, each with different attribute values. This allows

the application program to quickly change attribute values by passing a different GC.

GKSOb has the notion of bundles and bundle tables for setting graphics attributes, as well as
changing the attribute values through function calls. A bundle contains attribute values for a
specific function, and a bundle table stores many bundles. Using these bundle tables allows the
application program to change attribute values by changing the index that the graphics
package used to access the table. In GKSOb, the bundle tables are predefined and cannot be
changed by the application program. If none of the bundles in the table contains the needed
attribute values, the application program can indicate that the bundle table is not to be used,
and then set the attribute values using the previous method mentioned above - calling functions

to set the values.

42.4.3 Text

Although the two different packages have very different text capabilities, only the
capability to set the size and location of the text has an impact on the implementation of
Taskmaster. In X11, each graphics context has a fixed size font associated with it, while in
GKSO0b a font is simply the shape of the characters in the text and the size is set independently.
The fixed size fonts used in X11 have an impact on the magnification capabilities of
Taskmaster, further discussed in Section 4.3.1. GKSOb allows the application program to
indicate whether the text is to be drawn centered, or left or right justified at the given location.
X11 does not have this capability, and the application program must perform the necessary

calculations to achieve this affect.

Whenever an X function for drawing text called, the font used in drawing the text is the font in

the passed graphics context (GC). The size of the text is determined by the font; if a different

The Port 76

size is desired, a different font is used. The size of text drawn in GKSOb is determined by two
factors: the value of a text size attribute, and the world window boundaries. The world window

boundaries can be changed to create a magnification effect, as is explained in Section 4.2.4.5.

4.2.44 Fill

In both X11 and GKSOb areas on the screen can be filled with either a pattern or one color by
specifying a “fill style”, patterned or solid, and the pattern to use. The difference, which has
an impact on the port, is in pattern creation. In GKSOb patterns are retrieved from a pre-defined
pattern table, while X11 allows the application program to create its own patterns. For

information on pattern creation in X11, see [NYE88a, p128-33].

In X11, the graphics context (GC) has a “fill style” attribute that determines whether the area
is to be filled with a pattern or a solid color. The GC also contains information about the
pattern to be used. The GC contains a “fill style” attribute that can be set to indicate whether
the area is to be filled with a solid color or a pattern. The pattern used is created by the
application program, and the default pattern is a solid color. In GKSOb, an attribute similar to
X11’s “fill style” attribute is set to either solid or pattern. If the “fill style” attribute is set to
pattern, GKSOb uses the pattern indicated from a pre-defined pattern table. Some levels of
GKS higher than 0Ob allow the application program to create patterns for the pattern table, but

level Ob does not.

4.2.4.5 Magnification

In GKSOb, enlarging or shrinking the size of a picture generated on the screen is done by
changing the window boundaries, while in X11 the size of the picture, or the objects in the
picture, must be recalculated by the client and the screen redrawn. Another factor impacting

the magnification capability is the text capabilities of X11, as mentioned in Section 4.2.4.3.

The Port 77

The different magnification capabilities of the two packages have an impact on the zoom

capabilities of the two versions of Taskmaster, as discussed in Section 4.3.1.

As an example of magnification in GKSOb, if the original window boundaries are (0,0), (1,1),
and a 4 times magnification of the picture is desired, the boundaries must be changed to (0,0,
(.5,.5). The graphics calculations remain the same and only the portion of the generated
graphics within the new boundaries is drawn. No such capability exists in X11, requiring the

application program to enlarge or shrink the picture itself.

4.3 Changes due to Graphics Package

The difference between the X Window System and GKS are many, and some of the differences
cause Taskmaster.2 to be different from Taskmaster.1 in ways that are visible to the user.
These differences can be seen when the user chooses either of the zoom operations or any
operations that use rubberbanding in Taskmaster.1. Other differences between the two graphics
packages cause differences between Taskmaster.2 and Taskmaster.1 which are transparent to
the user. Both the visible and transparent modifications are discussed further in the following

sections.

4.3.1 Zoom Operations

As mentioned earlier, no capability exists in X11 for magnification of the picture appearing on
the screen. This is due in part to the fact that text is drawn using fonts in the X Window
System, requiring a particular font size to be chosen. Another contributing factor to the lack of
magnification capability is the line width attribute. Either this attribute must be reset in the
GC used for network drawing, or a separate GC must be created for each level of magnification.

When the view of the network topology is magnified, the default font to be used during normal

The Port 78

network drawing is set to a font one size larger than the current default size and the line width
is reset in the GC used for network drawing. Both versions of Taskmaster of the zoom
capabi.lity, although this capability is implemented differently in the two versions.
Taskmaster.2 has an incremental zoom , while Taskmaster.l has a proportional zoom;
Taskmaster.2 also has a limit as to how far in and out the network can be zoomed, while

Taskmaster.1 has no such limit.

4.3.2 Rubberbanding

In Taskmaster.1, on selecting the move node operation the user is requested to select a node to
move. Once the node is selected, a line connects the node to the cursor, wherever the cursor is,
and this line follows the cursor. The line following the cursor is known as a rubberband. The X
Window System does not have this capability, due to the window and event management being
controlled by the client. A rubberbanding procedure must be written by the programmer to
simulate the rubberbanding capabilities of GKSOb. Such a procedure is very slow to follow the
cursor; a possible explanation for this lies in the implementation of X11. When complying with
a graphics request, X11 calls the underlying graphics package of A/UX, QuickDraw. A
rubberbanding procedure using QuickDraw may increase the speed of such a procedure, but
decreases the portability of Taskmaster. Since this conflicts with one of the goals of this
thesis, an alternate method is used. Using the move node operation as an example, once a node
is selected, that node is highlighted and the cursor changes from the default arrow to a circle.
Effectively, the system is now in “rubberbanding” mode. This method is used in Taskmaster.2 to

replace any rubberbanding used in Taskmaster.1.

4.3.3 Menus and Other Input

In GKSOb, a menu can be used via a call to a GKSOb menu function. The application program

The Port 79

specifies the choices in the menu by creating an array with all of the menu options in it. This
array is passed to a GKSOb routine, which displays a menu with the options in it and returns to
the programmer a value indicating which of the options was selected by the user. A menu in
X11 is simply a window with many subwindows. It must be created and handled by the
programmer. An event loop is used with menus to

e map the subwindows,

» display the text for the options,

* monitor mouse movement in the menu, and

* check for menu option selection.

During the node specification process, a menu is presented to the user for tool selection (a tool
menu). Also presented to the user is a window displaying any information known about the tool,
i.e. a level 3 view. There may be more information about the tool than can fit into the window,
and therefore the user must be allowed to scroll the information. The menu system of GKSOb
requires that a menu selection be made before any other events are processed. Because of this,
the tool menu of Taskmaster.1 contains the choices “Scroll Up” and “Scroll-Down” (Figure
4.1a). This choices refer to the information in the window with the level 3 view, not the menu
itself. It is more natural and consistent to have scroll arrows in the tool information window,
and allow the user to use those arrows, even when the menu is displayed (Figure 4.1b). X11
allows the client to enforce the consistent use of scrolling by handing the control of the windows

and events to the programmer.

43.4 The Display

As mentioned in Section 4.2.2, refreshing the display in X11 is handled by the client. This

means that the application program must redraw the contents of windows that become visible

The Port 80

—E__E_TTOOI Menu

@& Tool Description

The Port

all
Tool 1
Txl 2 Tool Name: The Tool
Tool 3
Tool 4 Description
Ssggill ggwn This tool has a long description.
Because of this, it is necessary to
Exit have some means of scrolling
the text in this window. To
scroll this information, choose
the appropriate scroll choice
from the menu on the left.
(a)
L] * |
IEITOOI Menu =l [ETOOI Description
:f.g}; Tool Name: The Tool
Tool 3 o
Tool 4 Description T
Exit

This tool has a long

description. Because of this, it

is necessary to have some

means of scrolling the text in

this window. To scroll this
information, click on one of

the arrows in this window. \L

(b)

Figure 4.1

Tool Menu Examples

81

after other windows are moved, resized or unmapped. A given window can have a “backing
store” attribute set such that the contents of the window are saved, and whenever the window
becomes visible, the contents are refreshed without the intervention of the application
program. This ability is very useful, but must be used sparingly, due to the amount of memory
required. Because of this, only the topology window has the “backing store” attribute set to

save the contents of the window. All other windows must be refreshed by the client.

4.4 System

The network editor, the execution monitor and the tools database of Taskmaster.2 all reside on
UNIX n'\achines. This simplifies many of the operations of the network editor, and allows the
communication between the network editor and the execution monitor to be achieved with
UNIX sockets. Copying the master copy of the tools database from the host machine is done
through the UNIX “rcp” [AUX88] command; invoking the execution monitor is achieved

through the UNIX “remsh” [AUX88] command. Using “remsh” allows the execution monitor to

simply be a compiled object, instead of the special DECnet object required in Taskmaster.1.

4,5 Hardware

The screen of a Macintosh II is smaller than the screen of a VAXstation I. This necessitates the
re-design of Taskmaster’s windows. The size of the windows in Taskmaster.2 are
proportionally smaller than the windows in Taskmaster.1, and their location is different to
allow for the easy viewing of all important information simultaneously. In the network
topology window of Taskmaster.1, the “Exit” button is visible in the upper right hand corner of

the window, the current operation mode is shown in the upper left hand corner, and the legend

The Port 82

explaining the different marking for execution time nodes is displayed in the lower left hand
corner. Taskmaster.2’s topology window is slightly different due to the window size
differences. In particular, the “Exit” button is in the upper left hand corner, and the current
operational mode is directly to the right of the “Exit” button. The legend is not shown unless a

network is being executed.

The Port 83

Chapter 5

Conclusions

This thesis presents Taskmaster.2, an interactive graphical environment for high-level task
specification, execution and monitoring. The primary goals of this research are to increase the
portability of Taskmaster and to provide consistency in the user interface of Taskmaster. The
development of Taskmaster.2 is the culmination of the research towards achieving these goals.
The remainder of this chapter discusses the contributions of this research, its limitations, and

possible future research work.

5.1 Contributions of this Research

5.1.1 Portability

By porting the network editor of Taskmaster from a machine using the VMS operating system to
a machine using the UNIX operating system, the portability of Taskmaster.2 is much higher
than that of Taskmaster.1. This is true not only because of the wide acceptance of the UNIX
operating system, but because of the implementation of the underlying communication

mechanism used between the network editor and the execution monitor. With both components

84

residing on UNIX machines, the communication between them can be achieved with the use of
sockets. This approach allows both components to reside on the same machine, should that be
desired, or allowing them to reside on different machines. Another factor contributing to the
portability of Taskmaster.2 is the use of the X Windowing System as the underlying graphics
package. The X Windowing System is itself portable, and thereby contributes significantly to

the portability of Taskmaster.2.

As mentioned in Section 2.2, to achieve portability of the Taskmaster interface
¢ the environment must be supported by standard operating systems, between which
communication is possible, and
¢ a standard graphics package must be used.
As is explained in the previous paragraph the environment is supported by standard operating
systems. Actually, it is supported by one operating system, namely UNIX. The graphics are
supplied by a standard graphics package, the X Windowing System. The goal of portability

has been achieved.

5.1.2 Consistency in the User Interface

To achieve consistency in the Taskmaster environment, the following guidelines must be
enforced:

¢ using the same terminology throughout the interface,

e placing error messages and instructions in the same location as they last appeared, and

e requiring the use of the same command for the same results in similar situations.

By changing the names of the some of the commands in the operations menu, the first guideline

has been followed. The second guideline has also been adhered to, with the assistance of the X

Conclusions 85

Windowing System.

The Taskmaster.1 interface exhibits many inconsistencies with respect to the third guideline.
This research not only identifies the areas that do not adhere to this guideline, but determines
whether or not reconciliation is needed in that area. If reconciliation is needed, the methods
for achieving consistency are outlined, and the appropriate option is determined. Significant

results in presenting a consistent user interface are outlined in the next three paragraphs.

The tools of Taskmaster.1, atomic and network, are treated very differently. By treating them
the same in Taskmaster.2, the user can apply what is known about atomic tools to network tools
and vice-versa. This allows the user to use the same operations in similar situations for similar

results.

The atomic and super nodes of Taskmaster.1 are treated differently with respect to the expand
and delete operations. By treating them the same in Taskmaster.2, both the top-down and
bottom-up approaches to user task specification are succinctly supported. Again, this permits

the use of the same operation in similar situations.

Arcs in Taskmaster.1 cannot be specified or created with super nodes. By allowing this
capability in Taskmaster.2, the user can indicate data flow between any two nodes, whether or

not the nodes are part of a super node’s subnetwork.

All of the guidelines for maintaining consistency are followed in the Taskmaster.2 interface,

and the goal of consistency has been achieved.

5.2 Limitations

Although Taskmaster.2 does achieve the goals stated in this thesis, it is still not without

Conclusions 86

limitations. Of the limitations discussed below, many have a variety of solutions, some of

which are outlined.

1.

Users cannot delete network tools from the database. This can be remedied by supplying
an additional delete network tool operation to the user. The network tools in the

database can be displayed to the user for selection.

Network tools cannot have optional or solicited.arguments. When the user is specifying a
node by attaching an atomic tool, values for the arguments of the tool are supplied by the
user at the time of node specification. Recall that when a network tool is created, all of
the nodes in its subnetwork must be specified. This means that all of the tools attached to
these nodes have values for all of their arguments. Therefore, there is no need for the

network tool to have arguments.

Taskmaster.2 does not perform any data path type checking until an arc is specified. A
limited form of type checking can be performed at the time of arc creation. Assume an arc
is created starting at node A and ending at node B. If none of A’s output ports correspond to

any of B’s input ports, an error message can be issued.

During execution, the nodes in the network topology change their graphical
representation based on their execution status. The arcs, on the other hand, do not change
at all, whether or not there is data flowing along the arcs between two tools. This can be
modified by changing the graphical representation of the arc when data is flowing along
the arc, e.g. thickening the arc. Another‘possible modification is by having a shape, such

as a small circle, travel the arc when data is flowing.

Taskmaster.2 allows the user to have only one network opened at a time. Allowing

Conclusions 87

multiple networks to be open provides the user with the flexibility to create and modify
task networks in a natural manner. For example, during creation of a task network for a
one task specification, the user may realize an intermediate network that solves a
different task. Allowing the user to duplicate and maintain this new network without
saving and closing the original network can be supported by allowing concurrent

development of the two networks.

Other limitations that are present in Taskmaster.1 as well as Taskmaster.2 are discussed in

[RAGHS3].

5.3 Future Research Possibilities

The previous section outlines the limitations of Taskmaster.2 as well as their possible
solutions. This sections addresses a broader scope of research possibilities. Following is a

discussion of these possibilities.

1. One area needing extensive research is the creation of the tools database. Currently,
creating a tools database requires the creation of a file that follows a certain form. A
friendly user interface needs to be developed for not only creating a tools database, but

adding to one.

2. Research needs to be pursued addressing the use of Taskmaster as a learning tool. For
example, with the use of a UNIX tools database a novice can use Taskmaster to learn the

UNIX commands without searching through vast amounts of documentation.

3. Itis possible that Taskmaster can be used as a debugging tool for programs written using

tools for which a Taskmaster tools database exists. The programs, written in a

Conclusions 88

conventional programming style, can be interpreted by Taskmaster, and a network
topology which represents the program can be created by the network editor. Such an
approach allows the programmer to view a graphical representation of the “program”

which, in turn, can assist in spotting errors.

4. Another area of new research concerns the graphical representation of the tools. In
Taskmaster.2, all of the tools have the same graphical representation: a node. Allowing
different graphical representations for different types of tools provides a more powerful
graphical interface. This area has many complications, not the least of which involves

the decision concerning the appropriate graphical representations.
Several other research possibilities are also suggested in [RAGHS88].

In summary, this research has provided portability and consistency for the Taskmaster
environment. Taskmaster can be easily ported to any machines running the UNIX operating
system, either with the network editor and the execution monitor residing on the same
machine, or different ones. In the opinion of the author, the network editor of Taskmaster.2

now presents arcs, tools and nodes to the user in a uniform manner.

Conclusions 89

[ANDESS]

[ARTHS3]

[ARTHS7]

[ARTHSS]

[AUX88]

[BERR88]

[BOTT87]

[BROWS5]

[CHANBS7]

References

Ray Anderson “The X Window - A standard has arrived”, .EXE Magazine,
Vol. 2 Issue 9, March 1988, pp. 52-55.

James D. Arthur, “An Interactive Environment for Tool Selection, Specification
and Composition”, Ph.D. Dissertation, Purdue University, Indiana, 1983.

James D. Arthur, and Douglas E. Comer, “An interactive environment for tool
selection, specification and composition”, International Journal of Man-
Machine Studies, Vol. 26 No. 5, May 1987, pp. 581-595.

James D. Arthur and K.S. Raghu, “Abstraction Mechanisms in Support of Top-
Down and Bottom-Up Task Specification”, TR88-15, Virginia Polytechnic
Institute and State University, Virginia, 1988.

A/UX Programmers Reference - Section 2, System Calls.

R. E. Berry, “Common User Access - A Consistent and Usable Human-Computer
Interface for the SAA Environment”, IBM Systems Journal, Vol. 27, No. 3, 1988,
pp- 284-293.

T. M. Bottegal and D. J. Quammen, “Graphical Development of Software”, IEEE
Proceedings of the 1987 International Conference on Systems, Man &
Cybernetics, October 1987, pp. 334-338.

Gretchen P. Brown, Richard T. Carling, Christopher F. Herot, David A.
Kramlich, and Paul Souza, “Program Visualization: Graphical Support for
Software Development”, IEEE Computer, August 1985, pp. 27-35.

Shi-Kuo Chang, “Visual Languages: A Tutorial and Survey”, IEEE Software,
January 1987, pp. 29-39.

90

[DIAZ80]

[EDELS8S]

[ENDES84]

[KING80]

[FANSS]

[GLINS84]

[GLINS6]

[GRAFS85]

[GROTS8]

[GRUDS89]

[JACO85]

[JERNS7]

[KEEF88]

[LAKI8O0]

[LEWI89]

References

J. L. Diaz-Herrera and R. C. Flude, “Pascal/HSD: A Graphical Programming
System”, IEEE Proceedings of the Computer Software and Applications
Conference, October 1980, pp. 723-728.

Mark Edel, “The Tinkertoy Graphical Programming Environment”, IEEE
Transactions on Software Engineering, Vol. 14 No 8, August 1988, pp. 1110-1115.

G. Enderle, K. Kansy, and G. Pfaff, Computer Graphics Programming: GKS -
The Graphics Standard, Springer-Verlag, 1984.

Stephen King, The Stand, New American Library, New York New York, 1980.

Wen Li Fan, “Partitioned Frame Networks: A Study of Structured Program
Specification”, M.S. Thesis, Virginia Polytechnic Institute and State
University, Virginia, 1988.

Ephraim P. Glinert and Steven L. Tanimoto, “Pict: An Interactive Graphical
Programming Environment”, IEEE Computer, November 1984, pp. 7-25.

Ephraim P. Glinert, “Towards ‘Second Generation’ Interactive, Graphical
Programming Environments”, IEEE Workshop on Visual Languages, June 1986,
pp- 61-70.

Robert B. Grafton and Tadao Ichikawa, “Visual Programming”, IEEE Computer,
August 1985, pp. 6-9.

Michael G. Grottola, “UNIX and OS/2 not UNIX vs. 0OS/2”, Mini-Micro
Systems, Vol.-21 No.-9, September 1988, pp. 92-100.

Jonathan Grudin, “The Case Against User Interface Consistency”, CACM,
Vol. 32 No. 10, October 1989, pp. 1164-1173.

Robert J. K. Jacob, “A State Transition Diagram Language for Visual
Programming”, IEEE Computer, August 1985, pp. 51-59.

Mikael Jern, “Unravelling Graphics Standards”, Datamation, Vol. 33 No. 23,
December 1987, pp. 56/13, 18, 19.

Sarah Keefe, “PC’s To Acquire UNIX Windowing Capability”, .EXE Magazine,
Vol. 3 Issue 1 suppl., June 1988, pp. 4-5.

Fred H. Lakin, “A Structure from Manipulation for Text-Graphic Objects”, ACM
SIGGRAPH Proceedings of the 7th Annual Conference on Computer Graphics
and Interactive Techniques 1980, pp. 100-107.

Clayton Lewis, D. Charles Hair, and Victor Schoenberg, “Generalization,

Consistency and Control”, SICGHI Conference Proceedings ‘89, May 1989,
pp- 1-5.

91

[MAS89]

[MATWS5]

[MOND#4]

[MORI85a]

[MORI85b]

[MULHS6]

[MULHS87]

[MYERSS]

[NYE88a]

[NYES88b]

[PATESS]

[PAYNS6]

[PERL86a]

References

Pai-Chun Ma, Frederic H. Murphy, and Edward A. Stohr, “A Graphics
Interface for Linear Programming”, CACM, Vol.-32 No.-8, August 1989,
pp- 996-1012.

S. Matwin and T Pietrzykowski, “PROGRAPH: A Preliminary Report”,
Computer Languages, Vol. 10 No. 2, pp. 91-126.

N. Monden, Y Yoshino, M Hirakawa, M Tanaka, and T. Ichikawa, “HI-
VISUAL: A Language Supporting Visual Interaction in Programming”, IEEE
Workshop on Visual Languages, 1984, pp. 199-205.

Mark Moriconi and Dwight F. Hare, “Pegasys: A System for Graphical
Explanation of Program Designs”, Proceedings of the ACM SIGPLAN 85
Symposium on Language Issues in Programming Environments - SIGPLAN
Notices, Vol. 20 No. 7 July 1985, pp. 148-160.

Mark Moriconi and Dwight F. Hare, “Visualizing Program Designs Through
Pegasys”, IEEE Computer, August 1985, pp. 72-85.

Kelly. C. Mulheren, “An Interactive, Visual-based Environment for Task
Specification”, M.S. Project Report, Virginia Polytechnic Institute and State
University, Virginia, 1986.

Kelly C. Mulheren, James D. Arthur, and Roger W. Ehrich, “A Network
Specification and Execution Environment”, International Journal of Mini and
Microcomputers, Vol. 9 No. 3, 1987, pp. 57-62.

Brad A. Myers, “Window Interfaces: A Taxonomy of Window Manager User
Interfaces”, IEEE Computer Graphics and Applications, No. 9, September 1988,
pp- 65-84.

Adrian Nye, The Definitive Guides to the X Window System, Volume 1:Xlib
Programming Manual for Version 11, O'Reilly & Associates, Inc., 1988.

Adrian Nye, ed., The Definitive Guides to the X Window System, Volume
2:Xlib Reference Manual for Version 11, O’'Reilly & Associates, Inc., 1988.

F. Paterno, “The Integration Between Functions of Graphics Systems and
Windows Management”, Pixel, Computer Graphics CAD/CAM Image Process,
Vol. 8 No. 10, 1988, pp. 49-54

Stephen J. Payne and T. R. G. Green, “Task-Action Grammars: A Model of the
Mental Representation of Task Languages”, Human-Computer Interaction,

Lawrence Erlbaum Associates, Inc., Vol. 2, 1986, pp. 93-133.

Gary Perlman, “Coding Quality and Tools in Programming Methods”, SIGSOFT
Engineering Notes, Vol. 11 No. 3, July 1986, pp. 44-50.

92

[PERLS86b]

[POLS88]

[POUNS89]

[POWES3]

[RAEDS5]

[RAGHS8]

[RAUCS8]

[REIS86]

[SCANSS]

[SCHNS87]

[STAS87]

[UHLI88]

[VAXG84]

References

Gary Perlman and Frederick L. Horan, “Report on UNIX|STAT release 5.1:
Data analysis programs for UNIX and MSDOS”, Behavior Research Methods,
Instruments, & Computers, Vol.-18 No.-2, 1986, pp. 168-176.

P. Polson, “The Consequences of Consistent and Inconsistent User Interfaces”,
Cognitive Science and Its Applications for Human-Computer Interaction, ed.
Raymonde Guindon, Laurence Erlbaum Assoc., 1988.

Dick Pountain, “The X Window System”, BYTE, January 1989, pp. 353-360.

Michael L. Powell and Mark A. Linton, “Visual Abstraction in an Interactive
Programming Environment”, SIGPLAN Notices, Vol. 18 No. 6, June 1983,
pp- 14-21.

Georg Raeder, “A Survey of Current Graphical Programming Techniques”, IEEE
Computer, August 1985, pp. 11-25.

K. S. Raghu, “Taskmaster: An Interactive, Graphical Environment for Task
Specification, Execution and Monitoring”, M.S. Thesis, Virginia Polytechnic
Institute and State University, Virginia, 1988.

Wendy Rauch-Hinden, “No rupture in the UNIX community”, Mini-Micro
Systems, Vol.-21 No.-9, September 1988, pp. 57-58.

Steven P. Reiss, “GARDEN Tools: Support for Graphical Programming”,
Advanced Programming Environments: Proceedings of an International
Workshop, June 1986, pp. 59-72.

Tim Scannell, “What’s all the fuss about UNIX?”, Mini-Micro Systems, Vol.-21
No.-8, August 1988, p. 56.

Ben Schneiderman, Designing the User Interface: Strategies for Effective
Human-Computer Interaction, Addison-Wesley Publishing Co., Inc., 1987.

Susan Stash, “A Multiple Standards Approach”, Computers and Graphics,
Vol. 11 No. 4, pp. 479-481.

S. Uhlir, “Enabling the user interface”, IBM Systems Journal, Vol. 27 No. 3,
1988, pp. 306-313.

VAX GKSOb, Software Reference Guide, Digital Equipment Corporation,
November 1984.

93

Brenda Jean Jackels was born in Minneapolis, Minnesota January 5, 1966. She attended many
grammar schools (her family moved often), junior high, and two high schools (her first one was
closed and she graduated from her rival high school). She then spent four years in
Urbana-Champaign at the University of Illinois. After getting her bachelor’'s degree in
Computer Science (and getting the nickname Annie), she decided that the real world wasn’t
ready for her. In order to give the real world time to prepare for her arrival, she spent another
two years in school. After getting her Master’s in Computer Science and Applications from the
Virginia Polytechnic Institute and State University (known commonly as Tech, Virginia Tech
and VPI), she accepted a job offer from IBM in Manassas Virginia. It is still unknown if she
found the real world ready for her entrance. The combination of Illini and Hokie can be a

formidable one.

To be continued ...

94

