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An examination of acoustic wave propagation in a coupled space is presented. The analysis 
presented is limited to the first two longitudinal modes of the cavity. It is shown that the spatial 
behavior of the modes of vibration in the cavity is affected by the coupling discontinuity. The 
degree with which the discontinuity influences the pressure variation is parametrized by a single 
small parameter e, where e is the ratio of the typical cavity height, Ho to the cavity length Lo. An 
approximate solution for the pressure in the space is obtained using the method of matched 
asymptotic expansions. Experimental results are also presented as verification of the theoretical 
results. 

PACS numbers: 43.20. Ks, 43.20.Bi, 43.55.Br 

INTRODUCTION 

The propagation of an acoustic pressure wave in a cou- 
pled space has long been of interest to auditorium acousti- 
cians. Davis I and Eyring 2 have derived expressions for de- 
termining the reverberation time of rooms coupled through 
an adjoining wall. These theories are based on the assump- 
tion that the sound field is diffuse in each of the rooms and 

the absorption coefficient of the walls is uniform. However, 
in situations involving low-frequency and/or nonuniform 
wall absorption an acoustic analysis using statistical theory 
is no longer valid. Hence, the boundary value problem must 
be solved. For this reason Bolt 3 and Harris and Feshbaeh 4 

worked toward determining the effect of boundary perturba- 
tions on the propagation of acoustic waves in a coupled 
space. Bolt, for a similar geometry to that given in Fig. 1, 
showed experimentally that the isobars of the first two longi- 
tudinal modes of the cavity Were nonplanar near the junc- 
tion, but gave no explanation for this result. Harris and 
Feshbach 4 examined both experimentally and analytically 
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FIG. 1. Plan view of a coupled space. 
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how a planar coupling aperture effects the resonant frequen- 
cies of an enclosure. However, they made no mention as to 
the degree with which the aperture effected the spatial vari- 
ation of the pressure in the enclosure. Kagawa and Omote 5 
used a finite-element method to examine plane-wave propa- 
gation in acoustic filters of circular cross section. In the ex- 
perimental phase of their work they found that at a wall 
discontinuity the wave front was spherical in shape. As they 
moved away from the discontinuity in the axial direction, 
the wave front became planar. They attributed the discre- 
pancies between the calculated and measured pressure near 
the discontinuity to inadequate sampling of the space. Lesser 
and Lewis 6 determined the acoustic impedance across a step 
discontinuity in an infinite two-dimensional waveguide with 
slowly varying height using the method of matched asymp- 
totic expansions. However, they neglected to incorporate 
transcendentally small terms into the asymptotic represen- 
tation of the pressure near the discontinuity. For a wave- 
guide having infinite length these terms can be justifiably 
dropped. However, in a cavity these terms determine the 
critical distance between the wall and the discontinuity at 
which interaction between the incompressible and wave re- 
gions take place. Thompson 7'8 has obtained uniform solu- 
tion for the pressure behavior for a waveguide which has a 
single boundary discontinuity. Using an analytical develop- 
ment similar to that given by Thompson 7 we will show that 
the nonplanar behavior of the pressure near the junction of 
the two cavities coupled by a step discontinuity is the result 
of incompressible fluid motion near the junction. 

In this paper a uniformly valid asymptotic representa- 
tion of the standing wave pattern will be determined using 
the method of matched asymptotic expansions, MMAE. We 
will split the cavity into three regions. In the regions of space. 
between X equal to -- 12Lo and 0- and 0 + and 1• L o the 
length scale which parametrizes the fiuid's motion is the 
acoustic wavelength. Hence they will be called wave regions. 
In the region of space between X equal to 0- and 0 + the 
length scale which parametrizes the fiuid's motion is Ho. 
Since Ho is small compared to an acoustic wavelength this 
region will be termed incompressible. The frequency will be 
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held to the range where only longitudinal modes in X are 
excited. Despite this frequency limitation sufficient insight 
can be gained into the difficulties we would encounter if we 
were to embark on a straightforward numerical attack of the 
problem, i.e., under sampling the space. The perturbation 
parameter e in the coupled space problem is taken to equal 
the ratio of the maximum cavity height to the total cavity 
length. The parameter e is assumed to be much less than one 
(see Fig. 1}. 

Sections I and II will be devoted to the nondimensiona- 

lization of the linear inviscid equations which govern the 
wave and incompressible regions, respectively. The pressure 
and particle velocity in each region will be represented in 
terms of a truncated asymptotic sequence in e. In Sec. III the 
composite solution will be presented. In Sec. IV we will com- 
pare and discuss the theoretical and experimental results of 
our analysis. 

I. THE WAVE REGION 

In the range frequencies where oHo/c • 1 we expect 
the pressure, away from the discontinuity, to be uniform in 
Y. Near resonance the acoustic wavelength A is of O (Lo). 
Using this information the fiuid's behavior in the cavity can 
be p•arametrized by the single small parameter e, which 
equals HolLo. Ho is taken to be the maximum height of the 
cavity and Lo the cavity length. 

The nondimensionalization of the horizontal and verti- 

cal velocities as well as the pressure is as follows: 

u = U/Uo, v = v/(Uo e), 
and 

p = /(Opo œo 
For the coordinates the nondimensionalization is 

x =X/Lo 

and 

y = Y/Ho, 

where 

t =roT, k = roLo/c, 
and 

e = Ho/Lo. 

] eilOc - ikx Po +R ø• e 
ep• = Re 0 

[ep:J o 

o 

e ilex -{- R • e 
0 

-- ikx 

The nondimensional linear inviscid equations of motion in 
the wave region are 

it +p•, --0, e2b +py --0, (1) 
and 

u. + kp=o, 

with the boundary conditions 

u=0 at x=-12, x=l•, 
and 

v=O aty=O, y=h+,andh-. 

As we can see from the aforementioned equations, at 
zeroth order in e the zero normal velocity boundary condi- 
tion cannot be satisfied when x equals zero. Hence these 
equations are singular in the limit of x approaching zero. 
However these equations accurately describe the fluid mo- 
tion outside the region of influence of the discontinuity. The 
regions space where Eq. (1} is valid will be termed wave re- 
gions. 

For our purpose it is sufficient to assume that all state 
variables in Eq. ( 1 ) have a harmonic time dependence of e - 
Under this assumption u, v, and p represent complex ampli- 
tudes. 

We will express the complex amplitudes, p, u, and v in 
terms of an asymptotic sequence in integer powers of e. 
Successive approximations for the pressure and particle ve- 
locities can be determined by evaluating higher order coeffi- 
cients of this sequence. 

( p, u, v)= p, u, v), 
where 

E2f = fo -{- ef • -{- e2f2 -{- 0 (es}. 

In the wave region the coefficients of the asymptotic 
sequence for the pressure satisfy the homogeneous one-di- 
mensional Helmholtz equation to O {63}. 

+ leo + + = o (31. 
The solution of the one-dimensional Helmholtz equation at 
each order of approximation is simply the sum of two plane 
waves. 

(4) 

where the superscript denotes on which side of the discontin- 
uity we are tabulating the pressure. The pressure in the wave 
region must satisfy the boundary conditions 

E,p'=O at x -- l• 

and 

E2p'=0 atx= -12. 

I 

II. THE INCOMPRESSIBLE REGION 

Now let us direct our attention to the motion of the fluid 

in the region near x equal to zero. As x approaches 0 + and 
0- the vertical particle velocity v must become of O { l/e} if 
we are to satisfy the zero normal velocity boundary condi- ' 
tion on the surface of the discontinuity. Hentea locally valid 
set of equations must be derived for the region of space near 
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the discontinuity. Following similar arguments to those giv- 
en in Ref. 7 we will use the following nondimensionalization 
scheme in the incompressible region: 

• = u, • = V6, 

•=p, •=X/•, 
and 

The equations governing the fluid motion in the incompress- 
ible region are 

d, =o, =o, (5) 
and ' 

- 
with boundary conditions 

(•, •). n = 0, 

where n is the outward pointing normal vector to the bound- 
ary. 

The coefficients for the asymptotic sequence for pres- 
sure in the incompressible region are governed by the La- 
place equation at O (e)and the Poisson equation at O (e'a). 
From Eq. (5) 

p•.• +p•. = - i•po. (6) 
The zeroth order pressure mefficients are 

Po = const = po(O +) = po(O-). (7) 
If we let 

)2 = fi2 - k 2)0 •2/2, (8) 
we can rewrite Eq. {6) as a set of two homogeneous Laplace 
equations 

P• +Plii = O, 

with bound• conditions that the nodal velocity equals 
zero on the surface of the step discontinuity. The solution of 
the Laplace equation for the pressure in the coupled enclo- 
sure which has a step discontinuity in height will be solved 
using the Schwartz Chfistoffel transfo•ation. 

The confocal transfo• from the physical plane, 2 
plane, to the upper half • plane, can be made using the rela- 
tion 

d2 1(1•(co-1• 1/2 dco = '•'\•-}\co -- },2} h (0 +), (1 O) 
where r = h {0 +)/h {0-), 

a=x, p=h(0+)-•, 
and 

h (0+) • 1 

(see Fig. 2). Using the substitution 

s2,(co _ y2)/(co _ 1) 

or (11) 

co = (s 2 -- y2)/(s2 -- 1), 

•*-plane 
J •=J(h(O'•-9) 

E • 

__h(•') 
D 

C 

Im(cu) 

cu-plane 
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; t , Re(g.U) 

0 I I• 2 

FIG. 2. Conformal transformation from the 2 plane to the o) plane where 
r = h( + O)/h( - o). 

Eq. (10)can be rewritten as 

d• (h {0+))2( 1 1 ) 
Integrating with respect to s yields 

2 = (h {0+)) log ({1 + s ) (h (0-)) {s + y)),:, (12) 
where the nondimensional complex potential is equal to 

(P -- (1/•)1og • = j• + •, (13) 

where p• • iq• _ • Re • for n = 1,2. Using Eqs. (11), (12), 
and (13), the pressure in the incompressible region can be 
tabulated. 

E2• =•o + 61iqo(0+) + ieql(0+)] Re • [o(&, •)] 
- • :•o(a:/2) + o (d), (14) 

where • must be an implicit function of & and j, and 
--k 2•o{&2/2 ) is a pa•icular solution given in Eq. {8). We 
must deterinc the asymptotic behavior of the velocity po- 
tential as & approaches • •. From these results we can 
dete•in 9 the pressure drop and asymptotic values needed 
to evaluate the composite solution. 

Let us first concentrate our effo• on dete•ining the 
asymptotic behavior of the velocity potential in the limit as & 
goes to -- •. Using Eq. { 11 }, we see that as & goes to -- •, s 
tends to y. Therefore, we must solve for the quantity {s -- y} 
in Eq. {12) in order to obtain an expression of the proper fo• 
to apply Lagrange's expansion theorem. 9 Solving for {s -- y) 
in •. { 12} yields 

(s -- y)= [(1 -- s)/(1 + s)]r(s + y)exp[rr•/h (0-)]. (15) 

Substituting Eq. (11) in (13)yields 

a> -- ( 1/rr)log { [(s + y)(s -- y)]/(s 2 -- 1)}. (16) 

It would seem that Eqs. (15) and (16)are of the appropriate 
form to apply Lagrange's expansion theorem. However, a> is 
not analytic in the limit as s approaches y. By substituting 
(15) into the above equation yields 
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or 

h(0-) q- log ½2_1)' (lq-s) ' (17) 
Apply Lagrange's expansion theorem to Eqs. (17) and (15) 
and taking the real part of the result yield 

lim Re• = • oo [•rrn) •-• oo h(O-• + C- + • Sff exp[ h(O- -- n•l ) 

Xcos{ [nrr/h (0-)])}, (18) 
where 

(7--11)r((j•l) ' C-: (--31rr)1og [ ((7/q- 1 

and 

(1 q-?,) ' 

S•- _((7--1))•-r(,( 1 -- sy:).)(•l•), , (1 q- 7) (1 - •2) 
ß 

ß 

ß 

S- n \rill\ds n• (1 --s) 

X (l+s) s=y 

Following a similar process we can obtain the asympto- 
tic behavior of the velocity potential as 
approaches infinity, s approaches 1. Therefore, solving for 
(1 -- s) using Eqs. (11) and (13) yields 

(1 -- s)= (1 + s)exp[rrz/h (0+)] [(s -- r)/(s q- r)] '/r. (19) 

The complex velocity potential is 

•- (-•l•)1øg[-(s2-y2)((sq- 7) (0+))] 
or 

( )]. h (0 +) + log 
Applying the Lagrange's expansion theorem to the two 
aforementioned equations, we can determine the velocity 
potential in the limit • • m. 

limRe•-- • +C ++ *•m h( O+ ) n=l h 

>1 X cos , (21) 
h(O +) 

where 

+ = ',,)( ,, )] 
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and 

- S n + ={--1)n(•.l)(dds•_ 
' X{1 q-s)n--l({•/--S)) n/r] . (s + 

The potential drop.across the discontinuity is 

lim [Re 4> -- •/h {0-}] - lim [Re 4> -- •/h (0 +}] 

•(3)( (• --1)log (1 + •) + log (1 + •)2)= •. 
If the distance from the end boundaries satisfies the condi- 
tions 

l• > e log(1/•)h (0 + )/•, 
- l=l > e •og(•/d)h (o-)/•, 

and if the wall of slope at the 0 + and O- is equal to zero, then 
the aforementioned conditions assure the evanescent waves 

generated by the nonplanar nodal velocity distribution at 
the discontinuity contribute to the composite solution at or- 
der d. 

Upon matching •ø the incompressible solution to the 
wave solution it can be shown that the junction conditions at 
the discontinuity are 

•o(0 +) =•o(0-), 
A 

•,(o +) -•,(o-)= iaOqo(O+), 
A 

•=(o +) -•=(o-)= iaOq,(O+), 

qo(O +) = qo(O-), 

q,(O +) = q,(O-), 
and 

q2(0 +) = q2(0-). 

III. COMPOSITE SOLUTION 

We will now determine the pressure in the coupled 
space. Matching •ø the incompressible and wave solutions, 
the zeroth, first, and second order approximations for pres- 
sure will be calculated. 

Consider the physical system shown in Fig. 1. We 
choose Lo and Ho to equal the length and maximum height of 
the cavity. Solving Eqs. (4) and (7) to O (e) and matching the 
results, the zeroth order composite expansion for pressure 
can be written as 

Eo,o P = cos[k {x --/1)], X/>0, 

Eo, o p = cos kx cos kll + 7,' sin kll sin kx, x<0, (23} 

where h {0+} = 1, and •, = 1/h {0-}. The eigenvalue for the 
zeroth order composite solution is determined by solving the 
transcendental equation 

cotan kll + •' cotan kl 2 = O. 

Solving Eqs. {4), {6), and {7) to O {e a) and matching the results, 
the first order expansion for pressure is 

E,,, p = cos[ k (x - l,)] + iqo e[qb (.•, p) -- .• ] 
A 

-- ieqo • + + 0 (ca), x>O, (24) 
and 
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A 

E•,• p = [cos kx(cos kl• - ekA• sin kl•)] 
+ y sin kl• sin kx + ieqo[• (k, .•} 

-- :•/h (0-)1 - ieqo • - + 0 (e2), 
where 

and 

x<0, 

qo = -- ik sin kl•, 

F • 1/h (0-), 

g• --(•2•)(, (•2 --1} In {1 q- •) 2r (r- 1) 

) ^ ^ q- In (1 q- y2_••} =•b + -•-, 
4• 

under the condition 
A 

cotan kl2 + • cotan kl• - ek34 = O. 

Since the wall slope equals zero there the P2 is equal to zero 
and •2 is equal to -{•2/2} p•'. Hence, 

El,1 p = E2, 2 p. (25) 
Therefore the composite solution is valid to O (•). 

IV. PRESENTATION OF RESULTS AND DISCUSSION OF 
THE DATA 

An experiment was performed to determine the validity 
of the composite expansion derived in the previous section. 
A rectangular test enclosure with inner dimensions measur- 
ing 3.92 in. X 8.94 in. X 1 in. was built. The walls of this en- 
closure were constructed of 1.25-in. steel bar. The coupled 
enclosure configuration shown in Fig. 3 was reproduced by 
inserting a steel block measuring 2.29 in. X 1.25 in. X 1 in. in 
the corner of the enclosure. Using these dimensions and the 
nondimensionalization previously discussed, we obtained 

o o o/ O O 
o 

o 
0 l 

o o 0 0 

3.92" 

I .25" 

T 
t 8.94" 

.38" 
.13" •- Rubber gasket 

I I 
m 

FIG. 3., Model of a coupled space. 

MiCrophone 

\Source 

Bed Plate 

FIG. 4. Simplified drawing of the apparatus used to measure the pressure 
isobars. 

the following values for the characterizing parameters: 

Ho = 3.92 in., 

Lo = 8.94 in., 

l• = 6.65 in./Lo -- 0.744, 

12 = 2.29 in./Lo = 0.256, 

h(O+) - 1, 

h(O-) =0.681, 

and 

e =0.4386. 

The top of the enclosure was covered with a 3/8-in. Plexiglas 
sheet while the bottom was left open. The remaining wall of 
the enclosure was formed by placing the cavity on a bed 
plate. By applying a thin layer of soft rubber gasket material 
to the lower surface of the open side, an airtight seal was 
formed when cavity was placed on the bed plate (see Fig. 3). 
A 0.1-in. BBN piezoelectric microphone was installed in the 
bed plate. The bed plate was then attached to a lathe bed (see 
Fig. 4). By moving the bed plate relative to the fixed cavity, 
pressure at any point in the enclosure could be measured. 

Horn 

•i•river . l'•Microphone 

T•st Cavity 

Audio Amplifie7NNN F_requency 
, ••r 

Signal 
Generator 

//•reamplifier 

---'] 5 Hz. Heterodyne 
Filter 

eterodyne 
ilter 

RMS Voltmeter 

FIG. 5. Block diagram of the experimental setup used in measuring the 
resonant frequency of the coupled space. 
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TABLE I. First mode measured at 128 dB: k (exp) -- 3.299, Q = 50. 

Eo, o P Error E •, • p Error 
k{cal) 3.331 0.96% 3.254 - 1.38% 

The system was then excited with a horn driver through a 
0.25-in. hole placed at the top of the cavity. 

The resolution in amplitude was q- 1 dB re: 20$tPa and 
spatially to approximately 0.16-in. as result of the influence 
of the microphone's finite dimensions. 

To measure the first two resonant longitudinal modes 
of the coupled enclosure, we sinusoidally excited the cavity 
with the horn driver (see Fig. 5). The sinusoidal signal to the 
horn driver was provided by an audio amplifier which ampli- 
fi, ed the sine wave output of a signal generator. The resulting 
oscillatory pressure was measured with bed plate micro- 
phone placed at the adjacent corner of the cavity. To reduce 
the interference from signals outside the frequency range of 
interest, the microphone signal was placed through a pream- 
plifier and a cascade of two heterodyne 5-Hz bandwidth 
filters. These filters were then tuned to the excitation fre- 

quency. This arrangement gave us an effective passband of 
2.5 Hz. The filtered signal was then measured using a true 
rms voltmeter and the sound pressure level was then com- 
puted. 

The resonant frequency of the cavity was determined by 
adjusting the excitation frequency such that a maximum re- 
sponse was obtained on the voltmeter. A drift of q- 5 Hz in 
the resonant frequency was encountered when altering over 
the amplitude range of 120-150 dB. Due to this small nonlin- 
earity all measurements will be presented for fixed pressure 
amplitude, 128 dB SPL. The temperature inside the enclo- 
sure was also measured. In this way the speed of sound could 
be accurately determined. Once the peak amplitude and fre- 
quency were determined, the bandwidth of the resonance 
was determined by adjusting the frequency until the mea- 
sured amplitude was 3 dB lower than the peak level. The 
quality factor Q of the resonance was then computed. 

The experimental and theoretical results for the eigen- 
values of the first two longitudinal modes of the coupled 
enclosure are given in Tables I and II. For the first mode, the 
calculated nondimensional wavenumber is 0.96% too high 
when the zeroth order composite solution is used and 1.38% 
too low when the first order composite solution is used. For 
the second mode, the calculated nondimensional wavenum- 
ber is 6.02% too high when the zeroth order composite solu- 
tion is used and 2.3 % too high when the first order compos- 
ite solution is used. 

The quality factor Q for the first and second mode are 
50 and 113, respectively. Hence, neglecting damping in our 
analysis seems to be justified. 

TABLE II. Second mode measured at 128 dB: k (exp) = 5.888, Q = 113. 

Eo, o P Error E •, • p Error 
k(cal) 6.265 6.02% •6.027 2.3% 
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FIG. 6. Experimental result for the acoustic pressure of the first mode. The 
open circles denote measured data points. 

In Figs. 6 and 7 we have plotted the isobars in decibels 
relative to the sound pressure level in the upper fight-hand 
comer which is 128 dB SPL. In Fig. 6 the experimental re- 
sults for the slope of the first mode is shown. We see that in 
the region about the step discofftinuity we have a bending of 
the isobars. This occurs by virtue of the fact that the vertical 
velocity is increasing in magnitude in this region. Outside of 
this region the pressure behaves like a plane standing wave. 
In Fig. 7 we have plotted the computed isobars for the zeroth 
order composite solution Eo.o P. The isobars to this order of 
approximation are all planar. This is because Eo,o p only sat- 
isfies continuity in pressure and volume velocity and not the 
boundary condition of zero normal velocity on the step. We 
see that computed isobars agree reasonably well with experi- 
mental results in areas to the fight and left of the discontin- 
uity. Figure 8 is a plot of the computed isobars using the first 
order composite solution E•,• p. We see at this order ofsolu- 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

I I I I I I 
-0.2 0.0 0.2 0.4 0.6 0.8 

FIG. 7. Plot of the first mode using the composite solution Eo, o p. 
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FIG. 8. Plot of the first mode using the composite solution, El, ! p. 

tion, we have regained the incompressible behavior in 'the 
vicinity of the step discontinuity. At this order of approxi- 
mation both horizontal momentum and volume velocity are 
conserved at the junction. Note that the predicted eigenval- 
ues given in Table I are higher than the value which would be 
computed if the block in the cavity were removed. Since the 
block serves to constrict the flow, the oscillatory particle 
velocity to the left of the step must increase. The increase in 
the particle velocity gives rise to a shifting of the nodal line 
toward the fight wall of the cavity. The result is an effective 
decrease in the wavelength of the standing wave and there- 
fore an increase in the resonant frequency of the system. The 
mass reactance serves to increase effective length of the cav- 
ity. Therefore the adding effect of mass reactance at order E 
lowers the resonant frequency. 

In Fig. 9 we have plotted the experimental results for 
the isobars of the second mode of the coupled enclosure. We 
see that there is a cosine variation in the pressure across the 
height of the cavity near the right and left walls. It is thought 
that this variation is the result of influence of the cutoff high- 

-- o 

) 

) . .-• ( 
i I• ( 

FIG. 9. Experimental result for the acoustic pressure of the second mode. 
The open circles denote measured data points. 
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FIG. 10. Plot of the second mode using the composite solution Eo.o P. 

er order cross modes in the cavity. Most importantly the first 
cross mode appears in the mode shape far from the discon- 
tinuity. This is because the resonant wavenumber is approxi- 
mately 0.8 of the first cross mode wavenumber. In the vicini- 
ty of the discontinuity, we have a region of slowly varying 
pressure. On the lower surface, total variation in pressure is 
approximately 5 dB over 1/3 of the cavity's length. Consid- 
ering the amplitude and spatial resolution of the experiment, 
determining the absolute location and amplitude of any giv- 
en isobar in this region is difficult. Hence, we can only say 
that the experimentally determined isobars shown in this 
region only represent qualitative estimates of the actual pres- 
sure field. In Fig. 10 we have plotted the Eo,o p pressure 
solution. As we can see, Eo,o P does not satisfy either the 
normal velocity boundary condition on the discontinuity 
nor continuity horizontal momentum. In Fig. 11 we have 

;::'' ' b, b, 

o 4, 4, • , .o o 4, 
0 • 0 0 

o / 
o 

FIG. 11. Plot of the second mode using the composite solution El, l p. 
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plotted the first order composite solution E•,• p. Incorporat- 
ing the contribution of higher order terms in the wave field 
yields a result which is in qualitative agreement with that 
given in Fig. 9. 

Note that the predicted eigenvalues given in Table II 
are lower than the values which would be obtained if the 

block in the cavity were removed. The acoustic impedance 
looking to the left at x ---- 0 for values of k12 between •r?2 and 
•r is springlike. The impedance of the left-most cavity, in 
conjunction with effect the constriction has on the particle 
velocity tend to move the node toward the left-most wall. 
The result is an increase in the effective wavelength of the 
standing wave and therefore a decrease in the resonant fre- 
quency of the system. The effect of the mass reactance at 
order e serves to further increase the effective length of the 
cavity. Therefore the resonant frequency is appropriately 
lowered. 

V. CONCLUDING REMARKS 

An analysis of the wave motion in a coupled space has 
been presented. It has been shown that even for relatively 

high values of e and k the analytical results obtained using 
MMAE correspond favorably with experiment. 
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