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ABSTRACT
Objectives: This research studies the impact of
influenza epidemic in the slum and non-slum areas of
Delhi, the National Capital Territory of India, by taking
proper account of slum demographics and residents’
activities, using a highly resolved social contact
network of the 13.8 million residents of Delhi.
Methods: An SEIR model is used to simulate the
spread of influenza on two different synthetic social
contact networks of Delhi, one where slums and non-
slums are treated the same in terms of their
demographics and daily sets of activities and the other,
where slum and non-slum regions have different
attributes.
Results: Differences between the epidemic
outcomes on the two networks are large. Time-to-peak
infection is overestimated by several weeks, and the
cumulative infection rate and peak infection rate
are underestimated by 10–50%, when slum attributes
are ignored.
Conclusions: Slum populations have a significant
effect on influenza transmission in urban areas.
Improper specification of slums in large urban regions
results in underestimation of infections in the entire
population and hence will lead to misguided
interventions by policy planners.

INTRODUCTION
Slums are characterised by overcrowding,
lack of clean water, poor sanitation and poor
medical facilities. This combined with low
vaccination rates, poor education and self-
medication, result in high vulnerability to
infections. Diseases like cholera, malaria,
dengue, Ebola and HIV are common in
slums across the world.1–3 According to the
United Nations,4 the global number of slum
residents is more than 1 billion, which is over
one-third of the world’s urban population
and a seventh of all humanity, and this
number is estimated to double to about 2
billion by 2030.
India has about one-third of the global

slum population. A study of eight cities in
India finds that in Delhi, 48% of households
in slums have five or more people sleeping

per room, compared with 19% of non-slum
households.5 The overcrowded living condi-
tions facilitate the spread of infectious dis-
eases, especially airborne infections like
influenza.6 7

In general, high-density areas in developed
and developing countries are associated
with poverty and higher incidence of dis-
eases. In the US, counties in 14 states show
correlation between higher census tract-level
poverty with higher influenza-related hospital-
isation.8 9 Yousey-Hindes and Hadler10 find
mean annual incidence of paediatric influenza-
based hospitalisation in high-poverty and high-
density areas to be at least three times higher
in New Haven, Connecticut whereas Kumar
et al11 detect a steeper, earlier influenza rate
increase in high-poverty census tracts in New
Haven.
Thus, it is not surprising that understand-

ing and improving the health and lives of
slum dwellers has been identified as one of
the most pressing developmental challenges
of the 21st century.6 12 This research takes a
step in this direction by quantifying the effect
of slum population attributes (including resi-
dents’ activity patterns) on the spread of influ-
enza. Our methods also address several of the
challenges cited in Pellis et al13 including
developing more realistic heterogeneous
populations and determining their effects on
epidemic outcomes in and outside slums.
The focus of this research is the slum

population of Delhi, the National Capital

Strengths and limitations of this study

▪ A detailed social network has been used for the
first time to study epidemics on slums and the
larger urban population in which they reside.

▪ Omitting the effect of slums will lead to mis-
guided interventions by policy planners.

▪ With over a billion people living in slums, the
results have broader impact.

▪ Owing to lack of space, the effect of interven-
tions will be discussed in a follow-on paper.
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Territory of India. See figure 1 for maps of Delhi and a
zoom-in of some slum zones (regions). Spread and
control of influenza on a synthetic social network of
Delhi has been studied in Xia et al14 but it did not
model the special attributes of the slum population such
as larger household size and different types of daily
activity schedules. Both slum and non-slums residents
were treated in the same manner. For our study, this is
the baseline population, and to the best of our knowl-
edge, the resulting social network is a state-of-the-art rep-
resentation of daily contacts/interactions of human
agents in Delhi, India. However, our study also uses a
second network constructed as part of this research: a
highly refined social network of Delhi, which accounts
for slum demographics and activities. There are 298 geo-
graphic slum regions in Delhi, containing about 13% of
Delhi population. A slum region is defined in India
Census as a residential area where dwellings are unfit for
human habitation due to overcrowding, lack of ventila-
tion, light or sanitation, or a combination of factors that
are detrimental to safety and health. Agent-based simula-
tions, where each individual is represented as an agent,
are conducted for both social networks of Delhi, that is,
the original one in Xia et al14 and the refined one. The
goals are to understand how epidemic dynamics differ
between slum and non-slum populations, and how these
dynamics differ from those in a networked population
that ignores the effects of slums, and later use this
understanding to design appropriate interventions.
To the best of our knowledge, there have been no

epidemic simulations of realistic, large urban areas
(eg, with several millions of people) that include the
effects of slums (their geographic locations, composi-
tions, unique home characteristics, and agent-resolved
activity patterns) on infectious disease dynamics.
However, many researchers have pointed out the
importance of studying slums; for example, see Desai
et al,3 Firdaus,15 Go et al,16 Sur et al,17 Riley et al18 and
Sclar et al.12

METHODS
Population generation: We start with a pre-existing Delhi
synthetic population,14 developed from LandScan and
census data for Delhi, a daily set of activities of indivi-
duals, their demographics and the locations of activities
collected through surveys by MapMyIndia.com. New
data produced in this study include ground survey data
on Delhi slum residents’ demographics and daily activity
sets collected by Indiamart.com. We developed the
survey instruments and our commercial partners in
India gathered the data. Data on the geographic extents
of slum zones in Delhi, in the form of spatial polygons,
were obtained from MapMechanic.com. The geographic
extent of Delhi and representative slum zone locations
and sizes are provided in figure 1. Note the irregular
shape of Delhi and the slum zones in figure 1, as well as
the locations of slum zones.

The population generation process—augmented for
the slums and slum residents—assigns slum-specific
characteristics, demographics and activities to the indivi-
duals whose homes are in those regions. In particular,
those who live in slums are those whose home locations
are in slum zones. These home locations have (latitude,
longitude) coordinates as attributes, and hence homes
can be identified as being inside or outside of slums.
Since each human agent is assigned a home (and hence
home location), each person can be identified as a slum
or non-slum resident according to whether the person’s
home is located in a slum zone using data such as those
shown in figure 1. Thus, the number of individuals is
the same in the population without slums and the popu-
lation with slums. The slum population constitutes about
13% (1.8 million) of the entire Delhi population of 13.8
million people. Over half (186) of the slum zones have
fewer than 5000 people; 59 zones have between 5000
and 10 000; and the remainder (53) of the zones has
between 10 000 and 49 490 people. See online
supplementary figures S1–S3 for distributions of age,
populations of the 298 slum zones and household size,
respectively.
For slum and non-slum individuals, we divided activi-

ties into the following six categories: home, work, shop-
ping, school (for youths), college (for older adolescents
and adults) and other. We combine all these data sets to
produce a highly resolved, geolocated and contextua-
lised population of Delhi with slums integrated in it,
using the methodology described in refs. 19 and 20.
More details on the survey datasets and population gen-
eration methodology are provided in the online
supplementary information.
Resulting networks: Social contact networks are gener-

ated from populations as follows. Each person has a
home location and a set of daily activities that includes
one or more of work, shopping, school, college and
other. Each activity means that an individual ‘visits’ a
particular location for the activity, with a start and an
end time. When two people visit the same location, and
their visit times overlap, they interact, meaning that
disease or virus may be transmitted from an infectious
person u to a susceptible one v. This means that a
network representation of the population has an undir-
ected edge {u,v}. This is precisely how the social contact
network is formed. Each edge in the network is labelled
with the activities of two individuals in the interaction,
and the duration of the interaction. The duration of
interaction is used in the epidemic computations below.
Each individual has attributes from the population gen-
eration process that include age, gender and household
ID. But now, the activities of a person that result in inter-
actions with others are encoded as the network edges.
The original social contact network of Delhi, called

Network 1, treats the slum regions like any other region
in Delhi in terms of household sizes, assignment of
demographics and individual activities. The enhanced
Delhi network, called Network 2, produced as part of
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this work, includes 298 slum geographic regions (zones)
in Delhi. We provide selected comparisons between the
two networks, with additional data.
First, a major difference between Networks 1 and 2 is

that Network 2 has more home-related contacts because
the average non-slum household size is 5.2 whereas in
the slum regions it is 15.5. Second, there is a 15%
increase in number of daily activities in the slum
network: 33 890 156 individual activities per day in
Network 1 versus 39 077 861 activities in Network 2.
According to the activity survey, slum individuals have
more varied activities than non-slum individuals (see
online supplementary figure S4, category ‘other’). The
increased number of activities of slum individuals trans-
lates into ∼10% increase in average interactions
(degree) and average density of ties among individuals
(clustering coefficient): 30.4 and 0.680, respectively, for
Network 1 versus 33.4 and 0.733, respectively, for
Network 2.
Looking in more detail at the different types of inter-

actions (eg, a contact between slum and non-slum
persons is called a ‘slum–non-slum’ contact), we observe
the interplay between the number of contacts of differ-
ent types and the durations of contacts. The effect of
the contact durations is significant because the probabi-
lity of disease transmission between an infected person
and a susceptible one is an exponential function of
contact duration. Using the average duration of a slum–

non-slum contact as a baseline, we observe that the
average durations of slum–slum and non-slum–non-slum
contacts are 2.5 times and 3.2 times greater than base-
line, respectively (see online supplementary figure S5,
the last set of bars under x-axis value of ‘all’). These last
two values are non-intuitive because there are more
people in a slum house than in a non-slum house.
Consequently, one would expect the average contact

duration between two slum people to be greater than
that for two non-slum people. However, non-slum resi-
dents have longer contact durations at work (see online
supplementary figure S6, category work). We will see in
the results below that the lesser contact duration
between two slum individuals compared with two
non-slum individuals is more than offset by the larger
average number of contacts of slum individuals com-
pared with non-slum people, that is, 67.4 vs 28.3 (see
online supplementary figure S7). This latter difference
is a result of the greater variety of activities of slum
people. The online supplementary information
addresses these and other features and differences
among Delhi subpopulations.
Disease model: We use an SEIR model where each of

the 13.8 million individuals can be in one of four states
at any given time: Susceptible (S), Exposed (E),
Infectious (I) and Removed or Recovered (R). We seed
the epidemic in a susceptible population with 20 initial
infections that are randomly chosen. Results are not sen-
sitive to the number of initial infections; that is, varying
the number of index cases did not change the outcomes
of our experiments. An infectious node u spreads the
disease to each susceptible neighbour v independently
with a certain probability, referred to as the transmission
probability.
The transmission probability is a function of the dur-

ation of contact. This probability is selected to simulate
mild, strong and catastrophic influenza. For the Delhi
contact network, the transmissibility values correspond-
ing to mild, strong and catastrophic influenza are cali-
brated to be 0.0000215, 0.000027 and 0.00003,
respectively.21 (Transmissibility is a multiplier on the
contact duration of an interaction; the greater the trans-
missibility, the greater the transmission probability, for
the same duration of contact.) Mild, strong and

Figure 1 Left: Map showing the geographic extent of Delhi, India (in green background) that is modelled in this work. Right:

Zoom-in view to show the irregular shapes and locations of some of the 298 slum zones (in red). The population and social

contact network are discussed in the Methods section.
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catastrophic transmission rates correspond to R0 equal
to 1.05, 1.26 and 1.40 for Network 1 and 1.123, 1.39 and
1.54 for Network 2, respectively.14 22 The incubation
period follows the distribution: 1 day (30%)/2 days
(50%)/3 days (20%) and infectious period follows: 3 days
(30%)/4 days (40%)/5 days (20%)/6 days (10%).20 23

If a susceptible node becomes exposed, it stays
exposed for the incubation period and then switches to
an infectious state for the infected duration, after which
it is recovered or removed. Note that this state transition
is irreversible and is the only possible disease progres-
sion. We refer to Newman,24 Dimitrov and Meyers25 for
more details on stochastic models for epidemics. For
every experiment, 25 runs are simulated and their mean
results are reported; in the text, the full range of results
is given to address variance. Each simulation run consists
of seeding 20 individuals with influenza chosen uni-
formly at random, from a specified set of individuals
(slum residents, non-slum residents, or the entire popu-
lation). From these initially infected individuals, disease
propagates across edges to infect susceptible agents. The
details of the simulation parameters are provided in
online supplementary table S1.
We used EpiFast, a fast discrete event simulator for

disease propagation over a contact network.26 It is imple-
mented in C++/Message Passing Interface (MPI) and
uses a parallel algorithm, which enables scaling on dis-
tributed memory systems. EpiFast uses a disaggregated,
agent-based model, which can represent each inter-
action between pairs of individuals and hence is used
for studies of disease transmission.14 Disaggregated
models require neither partitions of the population nor
assumptions about large-scale regularity of interactions,
as do compartmental models.
We have covered the population generation process,

the network generation process, the influenza transmis-
sion model and simulations. It is evident that there are
heterogeneities in all aspects of this work. Agent-based
models are well-suited to capture spatial irregularities in
slum zone geometries and locations, among individual-
level characteristics including activities and demogra-
phics of slum and non-slum residents, and in connectivity
patterns among individuals in the social networks. Other
types of models, including differential equation-based
(ie, uniform mixing),27 compartmental28 and patch
models,29 where counts of agents in each state are main-
tained, do not have the ability to model individual traits
at the level of granularity that agent-based models
provide. For example, in the work by Pandey et al28 on
the spread of Ebola, counts of people in different states
(eg, infectious) is broken down into compartments such
as those in the general community, in hospitals, and
those that are healthcare workers.

RESULTS
We start with a comparative analysis of epidemic dynam-
ics on Networks 1 and 2 to understand the impact of

integrating slums on epidemic measures. The latter
parts mainly focus on Network 2. We also examine the
effect of seeding the infections in slum versus non-slum
regions on epidemic outcomes. In comparisons between
the two networks, we use the same initially infected
agents across corresponding diffusion instances between
Networks 1 and 2, for better comparisons of results.

Epidemics on Network 1 vs Network 2
Figure 2 shows the mean epidemic curves, that is, the
number of new infections per day, for the two networks
under mild, strong and catastrophic influenza cases.
Note that estimates of cumulative infection rate, peak
infection rate and time to peak will be highly underesti-
mated when Network 1 is used.
We used two-sample Student’s t-test to test the differ-

ence between the two networks under the same trans-
mission rate for time to peak infection, peak infection
rate and cumulative infection rate. All tests are statistic-
ally significant with p values smaller than 2.2e-16. The
95% CIs are also calculated. In case of Network 1, mild
influenza does not cause an epidemic whereas for
Network 2 it does. The time to peak infection is 131
(95% CI 120 to 141) days earlier on average in Network
2 for mild influenza, 34 (95% CI 31 to 37) days earlier
for strong influenza and 23 (95% CI 21 to 25) days
earlier for catastrophic influenza, compared with
Network 1. Network 1 takes much longer to reach the
peak of the infection—on the order of a few to many
weeks—compared with Network 2 for all transmission
probabilities, with differences being starker for mild
influenza. This means that the speed of virus transmis-
sion is much faster in the actual population (with slums)
than what policy planners would expect in a slum-free
population.
Similarly, the peak infection rate is underestimated by

a significant fraction under every influenza model in
Network 1, as shown in figure 2. The peak infection rate
is 162.6% (95% CI 161.8% to 163.4%) greater on
average in Network 2 for mild influenza, 47.6% (95% CI
47.4% to 47.8%) greater for strong influenza, and
33.2% (95% CI 33.2% to 33.4%) greater for catastrophic
influenza, compared with those in Network 1. The
cumulative infection rate (or attack rate) is also underes-
timated. Under the same transmission rate, the cumula-
tive infection rate is 78.5% (95% CI 73.4% to 80.7%)
greater on average in Network 2 for mild influenza,
16.1% (95% CI 16.1% to 16.2%) greater for
strong influenza, and 11.0% (95% CI 11.0% to 11.1%)
greater for catastrophic influenza, compared with those
in Network 1.
Figure 3 shows the cumulative infection rates for

different subgroups (slum, age and gender) in the two
networks. An agent can be part of many of these sub-
groups; for example, a woman aged 34 who resides in a
slum. The figure caption describes the details of the
subgroups listed on the x-axis.
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The cumulative infection rate in the slum, as shown by
Network 2, is higher by more than 20 percentage points
compared with non-slums, under all influenza models.
Network 1 makes no distinction between slum and
non-slum regions, and thus both regions face the same
infection rate in Network 1. Subpopulations by gender
and age also show higher infection rates in Network
2. The difference in subpopulation-level infection rate
between the two networks drops as the transmission rate
increases from mild to catastrophic. A similar result was
reported in Kumar et al.11 This outcome can be
explained by the fact that when viral transmission is very
high, as in the case of catastrophic influenza, the higher
contact rates and other characteristics of 13% of indivi-
duals in the network do not matter as much. The high
transmission rate dominates the impact arising from
changes in the network structure. Females, young chil-
dren and the oldest adults encounter relatively higher
infection rates under all scenarios in both networks.
Online supplementary figures S8 and S9 show

differences in contact rates encountered by men and
women at home and outside home, and with children,
respectively. The higher contact rates of females with
children and with others explain the incidence of
higher infection rates among females.

Effect of seeding infections in slum versus
non-slum regions
Rapid urbanisation is increasing the rise of urban slums
and squatter settlements, especially in developing coun-
tries, and these areas are easy targets for seeding of
epidemic-prone diseases such as influenza and Ebola.30

For example, West Point slum in Liberia was a focal
point in the Ebola epidemic31 and in 2012 a cholera out-
break in the coastal slums of West Africa killed hundreds
and infected more than 25 000 people.2

To understand the effect of seeding infections in slum
versus non-slum areas, we randomly selected 20 indivi-
duals for seeding infections in (1) slum regions only;
(2) non-slum regions only and (3) total Delhi

Figure 2 Average epidemic curves for two networks under different transmission probabilities. Epidemic starts with 20 random

seed infections in each network. The mean infection rate is based on 25 replicates. Network 2 incorporates slum-specific

features, while Network 1 does not.

Figure 3 Cumulative infection rates for different subgroups in the two networks. ‘Total’ refers to the entire population of Delhi.

‘Slum’ and ‘Nonslum’ refer to slum and non-slum regions, respectively. ‘Male’ and ‘Female’ denote the total number of males and

females in Delhi, respectively. The age subgroups are denoted from ‘AG1’ to ‘AG9’, where ‘AG1’ refers to all individuals between

age 0 and age 10 in Delhi, ‘AG2’ refers to individuals between age 11 and age 20 and so on.
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population. For each case we simulated all three influ-
enza models to check the robustness of the results across
transmission rates.
Figure 4 shows the epidemic curves for the entire

Delhi population under different seeding conditions
and three different transmission probabilities, for
Network 2. The simulation results indicate that initial
seeding conditions make no difference on the overall
infection rate of the entire population. Nor does it alter
the peak infection rates. However, it does alter the time
at which the infections peak. In particular, seeding in
the slums results in faster spread of the influenza conta-
gion. For strong influenza, average time to peak occurs
at day 118 (range 114–125) when seeding is carried out
in slums, whereas it is 131 (range 124–144) when
seeding is carried out in non-slums and 128 (range 117–
135) when seeding is randomly carried out in the entire
population.

Demographics and network structure impact infection
rates in slums
In order to design effective interventions, it is important
to examine which slum-specific attributes help explain
changes in cumulative infection rates. We use a

regression model to study the relationship between
infection rate and slum-specific features using a simple
linear regression model. There are a total of 298 slum
zones in Delhi. For each zone, we calculated the cumula-
tive infection rate, for each influenza type, that is, mild,
strong and catastrophic, to be used as the response vari-
able in the regression.
For slum-specific variables, we calculated for each

slum zone: slum-zone population, average degree for
each activity type (ie, home, work, shopping, other,
school, college), average degree for all activities in total,
number of edges in each slum-zone, network density
(the total number of edges within a slum zone divided
by the maximum possible number of edges) in each
slum-zone, average degree within slum-zones for each of
the six activity types and in total, average degree of
nodes connected to non-slums for activity types 2–6 and
total and average household sizes in each slum zone.
Next we identified the mutually correlated variables,
which were average degree for home, average degree for
shopping, average degree within slum for home, and all
average degree connected in non-slum. We removed the
correlated variables and then conducted variable selec-
tion using a bidirectional elimination method (using R

Figure 4 Epidemic curves under different seeding conditions. Epidemics were seeded by randomly selecting 20 individuals in

(1) slum regions only; (2) non-slum regions only and (3) total Delhi population, in Network 2. The three panels show mean

infection rate over 25 replicates under mild, strong and catastrophic influenza models.

Table 1 Linear regression model estimates for mild, strong and catastrophic influenza for slum zones

Y=b0+b1x1+b2x2

Y (infection rate)

Mild influenza Strong influenza Catastrophic influenza

coefficient p Value coefficient p Value coefficient p Value

b0 −0.2590180 3.84e-11 0.0683118 0.00134 0.2277537 <2e-16

b1 0.0053841 <2e-16 0.0043392 <2e-16 0.0032223 <2e-16

b2 0.0275260 <2e-16 0.0242941 <2e-16 0.0229994 <2e-16

Adjusted

R2
0.7686 0.9826 0.9108

The dependent variable is the cumulative infection rate (Y) in each of the 298 slum zones in Delhi, India. The variable ‘average degree,’
denoted by x1, refers to the average number of contacts per individual within the slum zone and the variable ‘average household size,’
denoted by x2, refers to the average household size in the slum zone. b0 refers to the intercept of the fitted regression model, and b1 and b2
are the coefficients of x1 and x2, respectively.
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function ‘both’), which is a combination of forward and
backward elimination, testing at each step for variables
to be included or excluded in the model using Akaike
Information Criterion (AIC).
According to AIC, the average number of contacts

within a slum zone and the average household size of
slums are significant for all influenza models. Table 1
reports the estimates of regression coefficients as well as
other statistics in detail. A companion paper will use this
information to design effective interventions in slum-
specific regions to control the spread of influenza in the
Delhi population.

DISCUSSION
Even though slum regions contain only 13% of the total
population of Delhi, omitting their effects underesti-
mates the cumulative infection rates, the time to peak
infection and the peak infection rates. These results are
robust under all influenza models considered here. The
speed and the size of virus transmission is faster and
underestimated in the actual population (with slums
modelled in Network 2) than what policy planners
would expect in a slum-free population (Network 1).
Our results show that (1) if slums’ attributes are not

appropriately integrated in the population, estimates of
epidemic measures such as epidemic size, its peak value
and time to peak are underestimated (by magnitudes of
10–50% or more; eg, for strong influenza, accounting
for slums increases the peak infection rate by 47.6%);
(2) infection rates by subpopulation show that the slum
subpopulation has infection rates that are 20 percentage
points higher than those in the non-slum subpopulation;
and females and young children encounter higher infec-
tion rates in the overall population; and (3) the epi-
demic size and peak infection rate are independent of
where the infection is seeded, that is, slum or non-slum.
However, the time-to-peak infection changes with seed
locations. Average time-to-peak infection is 118 (range
114–125) days when infection is seeded in slum regions
compared with an average of 131 (range 124–144) days
when it is seeded in non-slum regions. The averages are
based on 25 runs for each case and ranges show the
minimum and maximum time-to-peak values across 25
runs. The qualitative aspects of these results are import-
ant because they may extend to other cities and coun-
tries, and possibly to other infectious diseases.
We also show that initial conditions in terms of

seeding locations have no significant impact on the total
attack rate and peak infection rate. However, seeding in
slums results in faster initial spread of the disease conta-
gion. Among all subpopulations, slums are most vulner-
able to the spread of influenza. Thus, special attention
and appropriate interventions should be applied to
slums in order to control the spread of virus in slum
areas and also in the entire region. Furthermore, these
results may be useful in analysing epidemics in other
countries and regions with slum populations.

This research demonstrates the need to model slum
populations who are more vulnerable to infectious dis-
eases due to large family size, crowded environment and
higher mixing rates within and outside slum regions.
Ignoring the influence of slum characteristics on their
urban environment underestimates the speed of an out-
break and its extent and hence leads to misguided inter-
ventions by public health officials and policy planners.
Moreover, since the models show that time to peak infec-
tion decreases by weeks when slum regions are modelled
appropriately, policy planners have significantly less time
to react to an outbreak. Finally, the results may have
even broader impact for policy planners since over a
billion people in the world live in slums. Consequently,
these results may be useful for policymaking in several
countries, and possibly for other infectious diseases.

Model limitations
This model does not consider differences in susceptibil-
ity that might occur due to age, pre-existing conditions,
and comorbidities. The entire population is assumed to
be susceptible at the beginning of the simulation, except
for the index cases. In reality, the infants, older people,
hospital workers, etc, may be more susceptible than
others.
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